CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering
Department of Control Engineering

Vehicle test platform

Master's thesis

Study program: Open informatics
Major: Computer engineering
Supervisor: Doc. Ing. Jifi Novak, Ph.D.

Martin Zeman

Prague 2014

I confirm that I've completed this thesis myself and have only used the sources
(including literature, projects and software) listed in the corresponding section.

In Prague 30.12. 2014

signature

Abstrakt

Tato prace si klade za cil navrh struktury a implementaci programového vybaveni pro
testovaci platformu vozidlovych komunika¢nich standardt. Népln se skladd z vyvoje
obsluzné aplikace pro platformu PC Windows. Dalsi soucésti je firmware fidiciho
mikrokontroléru samotné platformy postaveny nad operacnim systémem realného cCasu. K
propojeni obou ¢asti je zapotiebi navrhnout komunika¢ni protokol pro jejich interakci. Systém
musi byt schopen vzdalené rekonfigurace hradlového pole, jez je soucasti testovaci platformy

a obsluhy fadict standardu FlexRay v ném implementovangé.

Abstract

This thesis aims to design the structure of and to implement the software component of
a test platform for vehicular communication standards. The task breaks down into two main
areas. The first entails the development of a PC platform-based application responsible for
coordinating all platform functionality. The second part involves the development of firmware
on the platform side. The system is required to run a real-time operating system. In order to
enable interaction between the parts a communication protocol needs to be developed. The
system must be capable of remote reconfiguration of the design in the FPGA, which is a part

of the platform.

Acknowledgements

First and foremost a sincere thank you goes to Doc. Ing. Jiii Novak, Ph.D. | appreciate
his patience and time devoted to helping me succeed. I'm equally grateful for his tolerance for
broken hardware. I'd also like to thank my friend and former classmate Ing. Jifi Blecha, the
author of the platform's hardware, for always taking the time to explain the intricacies of his
design. Last but not least, | express my gratitude to my family who have supported me during

my studies and continue to do so.

Table of contents

Table of contents

AADSTFAKL. ... 2
AADSTFACT ... 2
ACKNOWIEAGEMENES........eeiieeie ettt sre e sne e areenne e 3
TabIE OF CONMTENTS......oeeieiii s 1
List of figures and tables...........cccveiv i 4
Lo INEFOTUCTION ..t 1
1.1, Analysis of the aSSIGNMENT..........coiiiiiiiiiie e 1
1.2, Analysis of the SOIULIONccooiiiiiii e 2

2. FIBXRAY ... e 3
2.1, Brief deSCriPtioNnccoiiiiiiiiiiieieee e 3
2.2, PRYSICAl TAYET ... 4
2.3, LINK TAYET ..o 8
2.3.1. Architecture 0f @N0Ue.........c.cooiiiiiiiic e 9

2.4, COMMUNICALION CYCIEccviiieciiccce e 10
2.4. 1. MICIOLICK — LT 1veiiieieie sttt 11
2.4.2. MACIOUICK — MT ..ot 11
2.4.3. STAIC SEOMENTeoiviiiece et sre s 11
2.4.4. DYNamMIiC SEOMENT....ccuiiieiieiei ettt e ettt re e re e e reebesnaesreas 12

2.5, Frame fOIMALoooviiiieie e 13
2.6. Clock SYNCNrONIZAtIONooviiiiiiiieiciee e 14
2.6.1. MEASUIEMENTottt nneas 14
2.6.2. FTM algOorithmc..couoiviiiiiiiiiieee e 14
2.6.3. Rate Correction CalCUlation............ccoeviiiiiiiiinieeee e, 15
2.6.4. Offset correction calCulation ..., 16

2.7. Startup MEChANISIMoiuiiiiieee e 16

3. SYSLEM AICNITECTIUIE ... et 18

Table of contents

4.

FIEERTOS .. e 19
4.1, POIT SEIINGS .veiveeiiieiieiie ettt sttt st et neesreebesneennees 19
4.2, FRALUIES USEAouiiiieeieeieieieete sttt bbbt 20

B.2.1. TASKS .ottt 20

B.2.2. QUEBUEBSeiueietee ittt ettt ettt et ettt be e st e e bt e e st e e sbe e eab e e b e e enbe e ebeeenbeenbeeenne e 21

4.2.3. Mutexes, semaphores and binary semaphoresccccccvvvevieeieieeneeveennnn 21

FIIMWEIE ... 22
5.1. Porting of the IWIP STACKccociiiiiiiee e 22
5.2, COMMANG PrOCESSING ..c.vveviirieirieieeiesieesie e seesre et e s e este s e e sreesseeseesreesaeeneesneas 22
5.3. Task declaration MACIOScccerueiiireieirie e 24
5.4. TCP server implementationccccocveiiiiieiieiecic e 25
0. 0. EMIF e 26
5.6. MCU State MACKINES........cciiiiiiieieee s 27

5.6.1. MCU Connection state Machinec.ccocviiiiiiiiiii e, 27

5.6.2. MCU FR state Maching..........covviiiiiiiiiieie st 29

5.6.3. FPGA FR state Maching.........ccooiiiiiiiiiie e 32

PC APPHCAIION ...t 34
B.1. STAE MACNINES ...t 34

6.1.1. General state MACNINEccooiiiiiiiiee e 34

6.1.2. FPGA State Machine..........ccooiiiiiiiii e, 37
0.2, FRALUIES.....oitiiiiiic e 38

6.2.1. Monitoring and frame tranSmiSSIONcccevvveeieeiiie e 38

6.2.2. Remote reconfiguration of the FPGAccoeiiie i 42

6.2.3. Remote task CONIOL...........cooiiiiiic e, 42

6.2.4. FIDEX PAISING ..eeiiieiiiiie ettt 43

6.2.5. FPGA FlexRay controller and Testing..........ccocveeririeieneneieneneeeeiee, 46

6.2.6. Target L.P. SEIINGccveieiieiiee e 47

6.2.7. ECU MaPPING ..cveiiieeieiie ettt e e e e eae e nneas 47

Table of contents

6.2.8. Saving and loading of Cluster and MCU parameters.............ccccevevrveienen. 48
6.2.9. Other USEfUl TRATUIESciiiiiiieeee e 49

6.3. TCP client Implementation...........cccooeiiiiiiniiieeee e 51
B.4. DaAtADASE......c.eiieiiiic e 51

7. CommuNiCation PrOTOCOIccuiiiiiiiiieieiee s 55
7.1. Purpose of the ProtoCol...........coeiiiiieiiic s 55
7.2, REQUITEMENTS ...ecuiiiieecieeie ettt et e e e sne e e sraesteeneeaneennes 55
7.3. Negotiation of supported fUNCLIONScccveviiiiiieiee e 56
7.4, MeSSAge TOIMAL........cciiieiie e 56
TA.L PCHOMOECU .o 57
TA.2. MCUTO PC ... 64

8. CONCIUSION ...ttt 66

RO B I S .ttt ettt 67

List of figures and tables

List of figures and tables

List of Figures

Figure 2-1: FlexRay transceiver with two channels ... 4
Figure 2-2: Levels of FlexRay's electrical Signals............c.ccoovviiiiiiiiiiincee 5
Figure 2-3: A Bus With two Channelsccooveiiiii i 6
Figure 2-4: Dual channel single star configurationccccccoovveiiiii i 6
Figure 2-5: Single channel cascaded star configurationccccecvevveve e seece e 6
Figure 2-6: Dual channel cascaded star configuration.............c.ccceevivieieerecieseece e 7
Figure 2-7: Single channel hybrid example.........cccoov i 7
Figure 2-8: Dual channel hybrid eXample ... 8
Figure 2-9: Physical layer and link sub-l1ayers............cccooiiiiiiiiiiieee 9
Figure 2-10: Architecture of a FIEXRAY NOUEccoiiiiiiiiiiiiieee e 10
Figure 2-11: COMMUNICALION CYCIEoviiiiiiiiiiieieee e 11
Figure 2-12: FlexRay frame fOrmat...........ccocooiiiiiiiiiese s 13
Figure 2-13: An example of FTM calculation for K =2ccccooiiiiiiiiiniiinccen, 15
Figure 3-1: System arChiteCtUreccoviiii i 18
Figure 5-1: Command diSPatChingcccooiiiiiiiiiiie s 23
FIQUre 5-2: EMIF SEtINGS ...oovieiii ettt 27
Figure 5-3: MCU Connection state machinegccccvevveiii i 28
Figure 5-4: State machine for handling the MCU's FlexRay controller......................... 29
Figure 5-5: Details of message exchange at the end of data definition........................... 31

Figure 5-6: MCU FPGA State Machineg.........ccooviieiiiii e 32

List of figures and tables

Figure 6-1: PC application's main state Maching...........cccoovvvrieieieienc e 35
Figure 6-2: PC FPGA State MaChiNgccceiieieiieiieie e 37
Figure 6-3: How to select a frame to be monitoredcccoovveiieve e, 38
Figure 6-4: Difference between FPGA and MCU framesccccoveveiveiiere e seennnn, 39
Figure 6-5: Message Editor tab eXxampleccccooveviiiiiieiicc e 40
Figure 6-6: MONItoring eXample........ccvoe i 41
Figure 6-7: Remote CoONfiguration...........cccccveiiiii i 42
Figure 6-8: Task manager WiNAOWcccoiieiiiieie et 43
Figure 6-9: UML diagram of a FlexRay fibex filecccooiiiiiiics 44
Figure 6-10: Cluster Setup after loading a fibex file ..., 45
Figure 6-11: Cycle settings in the MCU ..o 46
Figure 6-12: FGPA StatuS WINAOW...........coiiiiiiiiieieieniesie s 47
Figure 6-13: IP Address Settings WINAOWccueiiiriineninieniseeee e 47
Figure 6-14: ECU Mapping eXample..........c.ccveiiiiiiiiieiee e 48
Figure 6-15: Load and Save MenuU OPLIONSc.ccveieeieiie i 49
Figure 6-16: Absolute VS relative time ..o 50

Figure 6-17: Monitoring record from Figure 6-6 saved as CSV file and displayed in MS

... 50
Figure 7-1: MCU slot definition message format - first word.............ccccooveviveeiieinnnne. 59
Figure 7-2: MCU slot definition message format - second wordccccceveevvveiinenne. 60
Figure 7-3: MCU Tx Data Definition Message FOrmatcccccoevvevveiiieiiieesne s 60
Figure 7-4: MCU Tx Data Update Message FOrmatcccocvvevveiiieiieeiie e 60

Figure 7-5: FPGA TX frame data definition message format - first word 61

List of figures and tables

Figure 7-6: FPGA TX frame data definition message format - Timestamp - second and
LT IR0 o ST 62

Figure 7-7: FPGA TX frame data definition message format - Macrotick - second word

Figure 7-8: FPGA TX frame data definition message format - Macrotick and Cycle -

SECONM WOIT. ...ttt bbb bbb et b et b e r e nn e 62
Figure 7-9: FPGA TX frame data update message formatcccceeveviveveiieieennnnn, 62
Figure 7-10: Send FPGA design message format - bytes 0t0 3........cccccoevveviicicieennnnn, 63
Figure 7-11: Send FPGA design message format - bytesS 4 t0 5.......ccccoeviiiiiiiiicienn, 63
Figure 7-12: Send FPGA design data message format............ccooeveieneneninenenieienns 63
Figure 7-13: Supported Commands and Version Response message format................. 65
Figure 7-14: FlexRay Data Message FOrMat..........cccooviririiininiiieiese e 65

List of Tables
Table 2-1: An example of measured ValUES...........cccccveiveieiieie e 14
Table 2-2: Number of entries to eliminate............ccoooiiiiiiiiierei e 15
Table 6-1: Contents of the ECUS table ..o 52
Table 6-2: Contents of the FPGAS table...........coooiiiiii 53
Table 6-3: Contents of the Frames table ... 54
Table 6-4: Contents of the Signals table ... 54
Table 6-5: Contents of the Triggers table ... 55
Table 7-1: PC to MCU command table ..o 57
Table 7-2: MCU FIeXRaY ParamMeters.........cccouiiiieiiereiesie e 59

Table 7-3: FPGA FIEXRAY Parameters........cccciiueiieiieiiierieeriesieesieesieseesieeseesseesseessesneesseas 61

List of figures and tables

Table 7-4: Trigger TYPE VAIUEScoviiieiieie ettt st nnees 62
Table 7-5: MCU t0 PC response tableoooveieiiiiiiiieeeeee e 64

The three bytes in Figure 7-13 are followed by a number of bytes defined in the
"Number of commands" section. Each byte contains a supported command code from Table

Introduction

1. Introduction

1.1. Analysis of the assignment

The aim of this thesis is to integrate various projects from a number of authors into a
functional and flexible vehicular testing platform. The integration consists of a development
of a PC-Windows-based application responsible for providing an interface between the testing
platform and the user. The application must be capable of controlling the function of the
FlexRay controller present in the platform's MCU such as defining the outgoing

communication and monitoring of the incoming frames.

Another important feature is the remote reconfiguration of the design in the FPGA. The
application has to be able to send an arbitrary design file from the PC's file system to be
loaded into the FPGA or be capable of loading the default design present in the MCU's flash

memory.

Next, the application needs to provide the functionality to remotely run and suspend
user-defined tasks in the MCU. Said tasks are to be defined at compile time as part of the

MCU's firmware.

The application is also responsible for the management of the FlexRay controllers
implemented in the FPGA. These controllers provide some unique features for the testing of
the parameters of the FlexRay networks. The application's role is to trigger these tests and
present the user with results. Specifically, the application needs to provide an interface in

which to configure and manage all the controllers present in the FPGA separately.

On the hardware side the MCU is required to run a real-time operating system to
provide the programmer with methods of task synchronization and resource protection. The
use of a real-time operating system also offers a higher flexibility in terms of task separation,
better control over timing requirements and an overall richer selection of tools for building

non-trivial systems.

The MCU's firmware acts as the execution centre for all the system's functionality. It
needs to receive and decode requests from the PC application and carry out corresponding
actions. In order to facilitate these functions, it is necessary to develop a protocol for

communication between the PC application and the MCU.

Introduction

1.2. Analysis of the solution

From a hardware standpoint the platform provides a TMS570LS3137ZWT
microcontroller from Texas Instruments. This chip has been chosen due to previous
experience with it in which it has proven to be both powerful and cost-efficient. The chip
provides a wide variety of interfaces and modules, as well as a flash memory of sufficient

capacity (3072 KB) for the purposes of the platform.

Another significant advantage of this microcontroller is that Texas Instruments provide
developers with a great tool called Halcogen to generate code for its configuration, initiation
and libraries for all its peripherals, with the exception of the FlexRay interface. This tool is
also capable of generating a port of the freeRTOS real-time operating system specifically for
the TMS570 MCU family.

This makes the choice of the real-time operating systems simple. Our requirements for
the OS are:

e Real-time capability

e Must be lightweight

e Must be able to provide methods of task-synchronization and resource
protection

e Must be able to provide an interface to report defined tasks and run/suspend
them flexibly

e Must be free

e Must be open-sourced with a reasonable license

e Needs to be well-documented

FreeRTOS meets all these requirements and therefore has been selected as the OS for

the platform. Detailed settings of the used port are described in section 4.1.

The firmware can take advantage of a FlexRay library written for the E-Ray controller
by the author of this thesis for a previous project (source [11]). It provides a basic API which

simplifies the handling of the controller's functions.

A decision has been made to use the TCP/IP protocol as a basis for building the
communication protocol between the PC application and the MCU. The main reason for this
decision over the USB, which is in reality the only other candidate, is previous experience
with the IwlP stack. Another factor is TCP's simplicity compared to USB. Its advantage

2

FlexRay

compared to UDP lies in its reliability while maintaining high enough throughputs. This
decision requires the IwlIP stack to be ported for the combination of freeRTOS with TMS570.

A couple of possible ways to implement the communication protocol between the PC
application and the MCU were considered. The first option was to opt for a RPC-type
protocol. This category broke down further into binary-based or human-readable protocols,
Bert and Apache Thrift are examples of the former and JSON-RPC or SOAP of the latter. The
alternative to RPC is a custom-made binary protocol. Considering the rather small
computational frequency of the MCU's core (160 MHz) and the number of tasks it has to
perform, the XML or JSON-based options needed to be dismissed due to the difficulty of their
parsing. A custom binary protocol has been selected since it offers the best performance while

maintaining simplicity.

The C# programming language with its .NET framework has proven to be a powerful,
flexible and versatile choice for our projects in the past. It offers an easy-to-use networking
and database API together with a vast variety of GUI components to build an application that
is both user-friendly and visually pleasing. Therefore, it has been chosen for this project as

well.

The FlexRay protocol defines a large number of parameters, which are necessary for a
network to function. The Fieldbus Exchange Format (FIBEX) is a network description
standard defined by the Association for Standardization of Automation and Measuring
Systems (ASAM) which encompasses all common automotive communication standards
including FlexRay. A FIBEX file contains all the information needed to describe an entire on-
board network and has become the standard input file format for commercial software. For
this reason, a decision has been made to use FIBEX as the input format for the PC

application.

2. FlexRay

2.1. Brief description

The FlexRay standard is a communication protocol released by the FlexRay Consortium
in the year 1999. Members of the consortium are leading companies of the automotive
industry such as GM, Bosch, BMW, Motorola, VVolkswagen, Freescale, Daimler Chrysler and

others. The standard has been developed primarily for the automotive industry.

FlexRay Physical layer

Its intended field of application lies chiefly in safety-critical applications for instance
steer-by-wire or brake-by-wire. In contrast to standards like CAN, TTCAN or LIN it offers
higher bandwidth up to 10 Mbit/s. It is based on the time-division multiplexing (TDMA)
principle the determinism of which is crucial for real-time applications. This also presents its
main advantages over aforementioned standards which use the master/slave (LIN) or
CSMAJ/CR (CAN) methods of arbitration.

However, FlexRay combines both deterministic and stochastic approaches to
communication which makes it flexible. The standard only defines the physical and the link

layers as defined by the ISO/OSI reference model.

2.2. Physical layer

The physical layer is represented by a transceiver and an unshielded twisted-pair
cabling. The standard also offers the possibility to use optical fibers with optical transceivers.
FlexRay supports the usage of two separate channels (commonly referred to as A and B).
Those can act as completely independent media or can provide redundancy to achieve better
reliability. However, data consistency on redundant channels isn't secured by the controller

intrinsically and thus has to be implemented by the host.

Transceiver
Transmitter BP

<_ Channel A Ugp
Receiver oM Uem

GND

Transmitter BP

<_ Channel B

_ BM

Receiver

Figure 2-1: FlexRay transceiver with two channels

Source: [1]

FlexRay Physical layer

UA
IDLE
LP IDLE Log.1 Log.0
1,8-3,2
V Ugp - Ugm
Uge 12V
Ugm

Figure 2-2: Levels of FlexRay's electrical signals

Source: [1]

Furthermore, FlexRay introduces the bus guardian. It is an optional part of the physical
layer. The bus guardian is an element responsible for the protection of the channel from
interference caused by communication that is not in compliance with the cluster's
communication schedule. It is capable of blocking outgoing communication in time slots that
are not assigned to its hosting node. This prevents a potential break down of communication

between all the nodes of a cluster.

There are several approaches to designing a FlexRay cluster depending on its topology.
In addition to pure topologies like a bus or a star, FlexRay also supports their hybrid variants
which are a combination of the two. The number of channels used and their configuration
presents another point of decision. There's a plethora of possibilities. The thing to keep in
mind is the maximum length of a segment between two nodes which is 24 meters. These are

some examples of the possible topologies:

FlexRay Physical layer

Node 1 Node 2 Node 3 Node 4 Node 5
Channel &
o o o o
Channel B
Figure 2-3: A Bus with two channels
Source: [2]
Node 1 Node 2 Node 3 Node 4 Node 5 ‘
Figure 2-4: Dual channel single star configuration
Source: [2]
Node 5
Node 1 |
Nade §
S {/_ /
<
| star 18 - /\
I Node T
Nade 3 {

Hade 2

Nade 4

Figure 2-5: Single channel cascaded star configuration

Source: [2]

FlexRay Physical layer
Node &
Figure 2-6: Dual channel cascaded star configuration
Source: [2]
Node B Node ©
Node A Star 1A Star 28 Node D

Figure 2-7: Single channel hybrid example

Source: [2]

FlexRay Link layer

‘ Node 1 ‘ Hode 2 Node 3 ‘ Node 4 ‘ Node 5

Channel A

| Star 1B
{
L 4
Figure 2-8: Dual channel hybrid example

Source: [2]

From a reliability standpoint it is no doubt preferable to use both channels as redundant
media. The bus topology is the simplest option and also the cheapest making it suitable for
simple applications. In this case the bus transmission line represents a weak link. In case of its

severance the whole network goes out of commission due to faulty line termination.

The active star topology enables us to reduce the consequences of a failure which
occurs in a part of the network. Failure of the active star element is nevertheless still a
potential risk. Hybrid topologies combine the advantages of the bus and the active star. Their
weaknesses can be partially made up for through a correct combination of both topologies

(example Figure 2-8).

2.3. Link layer
This layer of the ISO/OSI model is responsible for is the equivalent of a communication
controller and can be sub-divided into three sub-layers. These layers represent the core of the
standard itself and provide an interface to layers below and above. These include:
e Coding/decoding layer - responsible for modifying the data and physical coding of the
transmitted bits.
e Protocol execution layer - implements the core of the protocol, puts data into frames,
controls the media.

e Controller host interface layer - interface between the node and the host.

FlexRay Link layer

Interface to application processes executed on the host

== Controller host

HI i
CHI services interface layer
i_ T o=
E““TQUHI'“" —|, ; Protocol related frame data | ~— Control & status data
s - - Pratocol
Mp,,; f F;:’S% *'égg ¢ | FaP) execution
. L ' [, layer
Tk I] = o = =
_II _| —t— Frame data | [
i T ! =" Coding/
CODEC decading
. T =)
Bus drivers, BG, Physical interconnections EE::EE

CHI ... Controller hest interface
CEP ... Clock sync processing
C85 ... Clock sync starfup

FSP ... Frame [symbol processing
MAC .. Media access cantrol

MTG ... Macrolick generation

FOC .. Protocol operation control

Figure 2-9: Physical layer and link sub-layers

Source web: http://automatizace.hw.cz/sbernice-komunikace-flexray-nejen-pro-automobily

2.3.1. Architecture of a node

e Host
> Contains the node's firmware
> Sets the parameters of the communication controller
> Enables/disables the usage of the bus guardian (if it is physically present)
e Communication controller
> Implements the protocol's core
> Provides an interface to the host
> Generates interrupts
> Generates the local time base - macrotick (refer to section 2.4.1)
> Synchronizes the local time base with the global time base
> Controls access to media
e Busdriver
> Drives and receives various bus signals

> Detects and reports error states

FlexRay Communication cycle

> Provides support for a remote node wakeup triggered by communication on
the bus

> Two independent channels (A and B)
e Bus Guardian

> Provides protection against unauthorized access to the bus

> Optional

Node 1 Link layer

Application layer . . Cammunizatian contrallar

[] '

r
HOST Transceiver | Physical

- - + layer

Bus Guardian L

Transceiver
. . +
Bus Guardian Node 2 |MNode 3

Channel A) 1 l
FlexRay bus
Channel B - - —

Figure 2-10: Architecture of a FlexRay node

Source: [1]

2.4. Communication cycle

The FlexRay protocol divides time into so called communication cycles. The length of a
communication cycle is parameter which needs to be determined by the network-designer.
This length is constant during run-time. One communication cycle then breaks down into four
different segments. These are the static segment, the dynamic segment, the symbol window
and the network idle time.

10

FlexRay Communication cycle

Static segment Dynamic segment Symbol NIT
{2 - 1023 slots) (O - T98E6 minislots) Window
Deterministic Non-deterministic Symbel
— | transmission
Static slet1 - ++---+| Staticslotn mz:l'“i‘ CAS
MTS
ird Ml
slok slat
EH 5| ™ HH E
Ll T L MT (macratick) L T

Figure 2-11: Communication cycle

Source: [1]

Only the static segment and the network idle time are compulsory parts of the communication
cycle. The length of the communication cycle and its division into segments must be identical

in all the nodes of the cluster.
2.4.1. Microtick — pT

The microtick represents the smallest and atomic time interval. It is derived from the
controller's oscillator and therefore node-specific. The usual length is equal to the period of

controller's time base. It is not a subject to the global clock synchronization mechanism.
2.4.2. Macrotick - MT

Macrotick is a time interval identical for all the nodes in the cluster. It represents the
common perception of time in the FlexRay network. A macrotick consists of an integral
number of microticks, formally MT = uT -k ;k € N, where the constant k can differ in

different nodes of the cluster depending on the frequency of their time bases.
2.4.3. Static segment

The communication cycle always starts with the static segment. It is a compulsory part
of the communication cycle. It consists of n;n € N number of static slots. The maximum
number of static slots is defined by the standard as 1024. Each slots belongs to exactly one

node, however, one node can own multiple slots. The beginning and the end of a static slot is

11

FlexRay Communication cycle

time wise preset and cannot change at run-time according to the payload length transmitted
inside the slot.

The static segment represents the deterministic part of the communication cycle and is
thus suitable for the exchange of time-critical data. The guaranteed latency, however, comes

at the cost of lower utilization of the communication channel.
2.4.4. Dynamic segment

The dynamic segment is an optional part of the communication cycle. It's made up of
m;m € N dynamic slots. Each dynamic slot is then further made up of minislots the number
of which varies depending on the current frame's payload length. The duration of a minislot
must be the same for all nodes in the cluster and it is defined by the number of MT which it
consists of. The length of a dynamic slot is therefore not constant and its beginning and end

cannot be known at network design time.

The slot counter of a communication controller then, as opposed to the static segment,
holds the count for the duration of frame reception or transmission so that all the nodes in the
cluster share the same value of the slot counter. The length of the dynamic segment is
constant, however, for every communication cycle. It is possible for this reason that a frame
assigned to one of the later dynamic slots will not be transmitter and it delayed until the next
cycle (the transmission would cause the frame to overstep the dynamic segment boundary).

This can happen multiple times in a row.

Cluster's behavior in this respect can be influenced by the parameter pLatestTx as
defined by the FlexRay standard v2.1. This parameter sets the time in minislots when a node
is allowed to start transmitting at the latest in the dynamic segment. The communication
controller checks before the transmission of any frame in the dynamic segment if the minislot
counter has exceeded the pLatestTx threshold. If so, then the transmission is suspended until

the next communication cycle.

The dynamic segment represents the non-deterministic part of the communication cycle.
It is therefore most suitable for the exchange of time-noncritical data. Its advantage lies in the
high degree of utilization of communication channel compared to the static segment. For this

reason it can reach a much higher throughput.

12

FlexRay Frame format

2.5. Frame format

A FlexRay frame is made up for three segments. First is the header segment which
begins by the reserved bit and is followed by a series of indicator bits. Frame ID determines
the time slot of the communication cycle in which the frame is being transmitted. It can either
be a static slot or a dynamic slot but no other frames are allowed to have the same Frame ID
in the same communication cycle. The payload length is indicated by a number of half-words
(16 bits). The range is then from 0 to 254 bytes. The header CRC is calculated from the last
two indicator bits, Frame ID and payload length. It serves as a means of verification of the
transmission’s correctness. The cycle count denotes the cycle number. It ranges from 0 to 63.
When it reaches its maximum value it starts over from zero again. This is useful mostly for
the so called cycle filtering. Nodes can for instance only transmit data every n-th cycle with a
possible offset. In the same manner, the protocol supports also filtering of received frames.
This practice, however, should not be exploited for sharing slots between nodes despite it

being technically feasible.

gaag
THHE
HHEH

—-
_
'\

Frame | Payload | Header | Cycle | .5 a1 Data2 Datan | CRC CRC
D length CRC count
24 bits
> < >

11bits | 7bits | 11bits | 6Ebits 0...258 bytes
AW <« re >e > >

Header segment Data segment CRC segment

FlexRay frame 5+ (0 ... 254) + 3 bytes

A
v

Figure 2-12: FlexRay frame format

Source web: http://www.coleparmer.com/TechLibraryArticle/1112

The data segment contains 0 to 254 bytes of payload data. The payload length may vary
in frames with the same Frame ID cycle to cycle. Therefore it's necessary to always read the
payload length field. The CRC segment contains a value calculated over the entire header and

data segments. The presence of two CRCs in a single frame is of the FlexRay's security

13

FlexRay Clock synchronization

features. For details on the generator polynomials and their initialization vectors for the CRC
segment and the header CRC refer to the FlexRay standard (source [2]).

2.6. Clock synchronization

In order to enable the use of TDMA all nodes in a FlexRay cluster must have a common
perception of time with a fairly high precision regardless of their individual oscillator
frequencies. To accomplish this FlexRay introduces the aforementioned global time unit -
macrotick. Nevertheless, real oscillators are imperfect and their frequencies fluctuate with
time. Therefore, it is necessary that all nodes constantly adjust the lengths of their macroticks

(Rate Correction) and the offset of individual cycles (Offset correction).

2.6.1. Measurement

At the beginning of each communication cycle the controller measures the time
deviations between the expected reception time and the actual reception time. This is
performed for every so called synchronization frame of every synchronization node (a node
that transmits a synchronization frame). Measurements are done separately for both channels.

The measured values for the last two cycles are stored.

Even cycle Odd cycle
AT of channel A AT of channel B AT of channel A AT of channel B
[uT] [uT] [uT] [uT]
Nide 5 13 25 32
N‘;de 11 10 14 13
Ncr’]de 35 30 41 29
Table 2-1: An example of measured values
2.6.2. FTM algorithm

The input for the Fault Tolerant Midpoint algorithm is a list of integral values. Those
values are first sorted in descending order. Depending on the number of entries we eliminate k
highest and lowest values. From the remaining values we chose the highest and the lowest

ones. Their arithmetical mean is the output of the FTM algorithm.

14

FlexRay Clock synchronization

Number of entries

1-2
3-7

>7 2
Table 2-2: Number of entries to eliminate

= | O || x

Source: [2]

As
Az

11
. A= 17i2=8
e

&

&

Figure 2-13: An example of FTM calculation for k = 2

Source: [2]

2.6.3. Rate Correction calculation

The value of Rate Correction is calculated during the network idle time of every odd
cycle from two consecutive measurements. Even cycles borrow values from their previous
odd cycles. First we calculate the difference of deviations for even and odd cycles separately
for channels A and B. We then take their arithmetic mean. The result is a single table of
values which is then used as an input for the FTM algorithm. The FTM's output is
consequently a subject to the pClusterDriftDamping parameter (range of insensitivity). Let's
denote the result of which as g. The final value for Rate Correction is then saturated by min
(9, pRateCorrectionOut) where the second argument represents the maximum admissible

value for Rate Correction.

The final output of RC is an integral value which denotes by how many microticks
should the next communication cycle be adjusted. Positive values represent extension and
negative values shortening. The change is applied to the next two consecutive cycles and is
evenly distributed over macroticks so that no two consequent macroticks differ by more than

one microtick.

15

FlexRay Startup mechanism

2.6.4. Offset correction calculation

The Offset Correction value is computed in each cycle. First the minimum value for
each row is taken from the table of deviations. This produces a list of values as an input for
the FTM algorithm. Subsequently, we denote the FTM's output as g. The resulting value is
then saturated by min (g, pOffsetCorrectionOut) where the second argument represents the

maximum admissible value for Offset Correction.

2.7. Startup mechanism

All nodes in a FlexRay cluster need to set up a common perception of time in order to
be able to stick to their scheduled time slots and be able to receive from others. The startup
mechanism thus has to perform an initialization of the time base. This is done by so called
coldstart nodes. To startup a FlexRay network at least two coldstart nodes are required. One

of the two becomes a leading coldstart node and the other a following coldstart node.

Prior to the startup all the nodes must be in the ready state meaning that they already
need to be configured and if required also woken up. As the startup commences all nodes
enter the coldstart-listen state. Each node stays in this state for a random amount of time
during which it listens to the communication channel. The first node to leave this state
transmits its CAS (Collision Avoidance Symbol). By doing so it becomes the leading coldstart

node. Other coldstart nodes assume the roles of following coldstart nodes.

It can occur that two nodes transmit their CAS at the same time. For this reason a
leading coldstart node always transitions to the collision resolution stage after transmitting the
CAS. During this phase the leading coldstart node transmits a startup frame in four
consecutive cycles and listens for possible collisions. In case a collision occurs all nodes have
to recognize this and return to the coldstart-listen state and the startup process is repeated
while each node decreases its counter of remaining coldstart attempts. The coldstart-listen

state may only be entered if the number of remaining coldstart attempts is greater than zero.

If there are no conflicts detected then just after two cycles are the following coldstart
nodes able to determine the correctness of the time schedule by computing the time interval
between the startup frames. All nodes must know the schedule beforehand. They merely
verify its correctness. The other two cycles are essential to perform rate and offset corrections.
Following the four cycles all other coldstart nodes proceed to transmit their startup frames.
The leading coldstart node enters the coldstart consistency check stage in which it checks

whether the frames transmitted by following coldstart nodes comply with its schedule. This

16

FlexRay Startup mechanism

again takes four cycles. At the end of the fourth cycle, if not interrupted by consistency check
errors, the cluster is successfully started and other non-coldstart nodes can join starting with

the next cycle.

17

System architecture

3. System architecture

The platform is to serve as a flexible and unique tool for monitoring and testing of
vehicular networks. In its current state it is capable of monitoring FlexRay clusters by using
the integrated FlexRay controller as one of the cluster's nodes. The FPGA is a key part of the
system since it's responsible for the mapping of all communication outputs from the MCU to
their respective drivers. But equally important are the FlexRay controllers contained within.
Their number can be changed by loading a different design into the FPGA. However, the
system reacts flexibly to this and reads the number from the FPGA's special register. Both the
firmware and the PC application then recognize this number and provide control to the user of
each controller without the need to recompile. The latest hardware version offers two physical
FlexRay drivers (2 x 2 channels) to which either controller type (MCU or FPGA) can be

mapped. At the time of development the mapping was static.

MCU

— Q TARGET BOARD
FPGA DESIGN FILE IN \(‘

1 | A FLASH MEMORY \LA FPGA
WINDOWS freeRTOS

FLEXRAY
CONTROLLERS

—

APPLICATION N y
. < >\I| LoGic < P STACK b r HERARIES
“ A
v

417%“"(\&
[|

MAPPING TO V|
PHYSICAL
INTERFACES

=

/N

APPLICATION LOGIC

PHYSICAL DRIVERS

A DESIGN FILE FIBEX LOCAL DATABASE

Figure 3-1: System architecture

All FlexRay controllers in the FPGA are capable of non-standard operations when
compared to commercially available controllers. Those capabilities are aimed at the testing of
the parameters of FlexRay networks. The ability to change node's parameters at runtime
represents the core principal behind the tests. The MCU partakes in the tests by executing sets
of commands responsible for coordinating the tests and reading the results. FlexRay

18

FreeRTOS

controllers in the FPGA are taken from source [14] and stand as a key component which this
thesis integrates into a complex testing system.

Apart from FlexRay the target board is also equipped with CAN and LIN drivers. Their
utilization is not within the scope of this thesis but they are ready for future applications.
Their usage can either be added to all components of the system meaning the PC application,
the communication protocol and the firmware. Or they can be controlled purely from custom
tasks which are described in more detail in section 5.3.

4. FreeRTOS

FreeRTOS is an open source real time operating system targeted at microcontrollers and
small microprocessors. It has been largely successful over its 12 years of existence. A vibrant
community has been formed around freeRTOS providing free professional-level support. The
kernel has a very small binary image. The exact size varies depending on the components
used. Despite being free freeRTOS has successfully made it into commercial applications and
is known to be reliable. Such a track-record combined with the fact that a port for our chosen
architecture can be easily generated with the Halcogen tool made freeRTOS a clear choice for
this platform over its only considered competitor —- RTEMS.

4.1. Port settings
The Halcogen tool from Texas Instruments offers an easy way of generating a

freeRTOS port with the desired parameters. Here is a list of chosen settings:

e Tick Rate — 1000 Hz, that means one tick equals one millisecond

e Minimum Stack Size — 128 words

e Preemption — Enabled

e Number of Priorities — 3, despite only two being actually used. Wasting of
processor time is prevented by tasks blocking while waiting for resources. While
not being blocked tasks share processor time equally. The remaining priority is
provided for possible future use.

e Heap Size — 32 768 bytes, this current setting may be adjusted according to
need. For instance additional heap space might be needed if a large number of

user tasks were defined. More about user tasks in section 5.3.

19

FreeRTOS

e Memory sections — are not adjustable by the Halcogen’s GUI but can be
considered part of port settings. However, as of now memory sections are
irrelevant for this project since the memory protection unit (MPU) of freeRTOS
is disabled. Though they do need to be considered if that were to change as the

project expands.

4.2. Features used

The features of the real-time operating system that were used to build the firmware are
listed in this section. These include tasks, queues and mutexes. All of these elements have to
be dynamically allocated and therefore can fail to be created. It is a good practice to check the
handler after allocation to see whether it has been successful. This can save a lot of time
debugging for any programmer expanding the firmware with new features (such as the
planned CAN and LIN).

4.21. Tasks

A task in freeRTOS just as in any other operating system represents a small program in
and of itself. There are two basic ways of creating tasks in freeRTOS depending whether we
take advantage of the MPU or not. The two functions to create tasks are
xTaskCreateRestricted and xTaskCreate respectively. Since the MPU is not utilized in this
project only the latter function is used. Here is a list of tasks used in this thesis:

e Command_dispatcher -~ stack size = 128 words, function

commandDispatcher, priority = 1, parameters = none

e Mcu_controller task — stack size = 128 words, function

mcuStateMachineTask, priority = 1, parameters = none

e Fpga_controller task — stack size = 128 words, function
fpgaStateMachineTask, priority = 1, parameters = index of the controller, the
number of these tasks is determined by the value read from the FPGA. One task
for each FlexRay controller is created up to a maximum defined by the macro
MAX_FPGA_FR_CONTROLLERS.

o Lwip_server_task — stack size = 2048 words, function = lwipTask, priority = 1
(later lowered to 0), parameters = none

e Tcp_send task — stack size = 128 words, function = tcpSenderTask, priority =
2, parameters = none

e User defined tasks —refer to section 5.3.

20

FreeRTOS

4.2.2. Queues

Queues are a means of passing data between tasks and can also serve as a way of
synchronization since queues in freeRTOS are capable of blocking for a certain period of time
or indefinitely. When inserting data into a queue or when retrieving it the data is always
copied. Therefore, special care must be taken when dealing with large data structures. In such
a situation it is advised to design the program’s architecture in such a way that only pointers
are stored in the queue. This approach is not used in scope of this project because the largest
queued data structure is 263 bytes long and it happens very sparsely. This size has been
chosen because it is required to accommodate data of largest possible FleRay payload (254
bytes). However, most commands are much shorter than that so only the required number of

bytes is copied. Here is a list of used queues:

e commandQueue — element size = 263 bytes, number of elements = 3

e mcuFrControllerQueue — element size = 263 bytes, number of elements = 2

e fpgaFrControllerQueue — element size = 263 bytes, number of elements = 2,
the number of these tasks is determined by the value read from the FPGA. One
task for each FlexRay controller is created up to a maximum defined by the
macro MAX_FPGA_FR_CONTROLLERS.

e tcpSendQueue - element size = 2 bytes, number of elements =1
4.2.3. Mutexes, semaphores and binary semaphores

Mutexes, semaphores and binary semaphores in freeRTOS all use the same handler type
xSemaphoreHandle. The way to distinguish them is through the method called to initialize
them. Mutex is a binary semaphore that employs the priority inheritance mechanism. Mutexes
are suitable for mutual exclusion. Semaphores and binary semaphores are very similar to
mutexes but they do not include priority inheritance. Binary semaphores can same as mutexes
only be either taken or free (not-taken, unlocked, etc.). A regular (counting) semaphore
contains a counter which determines how many times it can be taken without releasing it.
Both semaphore types are best suited for synchronization. Mutex named tcpSendProtection
is used in the firmware. It is created as the binary semaphore type and is responsible for the
synchronization of requests to send data from multiple state machines (both MCU and FR).
Specifically, it protects the access to the TX buffer which is shared by all tasks. The mutex is

released as soon as the data is written to the EMAC buffers.

21

Firmware

5. Firmware

5.1. Porting of the IwlIP stack

In order to build a protocol based on TCP between the PC application and the MCU an
IP stack needs to be ported for the combination of the architecture and the real-time operating
system. This can be done in many ways. For example one of the decisions that need to be
made is what kind of APl we want to use. LwIP offers three layers from which we can

choose.

e BSD socket APl — the primary advantage is its portability to other stacks. It is
sequential which means that it requires threading to operate it. One thread uses
the API and the second thread runs the stack itself (takes care of timers,
incoming packets etc.)

¢ Netconn API — not portable to other stacks, sequential

e Raw API — not portable to other stacks, uses callbacks, best performance since it

doesn’t have to deal with thread switching

First two options are more complicated to implement and require a deeper knowledge of
the IwlIP stack. Also, issues with performance might arise if more user tasks were defined.
Since the porting of the IwIP stack is not the objective of this thesis but only means to an end

a decision has been made to use the raw API.

5.2. Command processing

Figure 5-1 depicts the flow of command processing in the MCU. Whenever a TCP
packet is received a callback function is invoked. The callback does not interpret the data. Its
only job is to copy the received data into the command queue and signal the reception of data
to the IwIP stack.

Considering the frequency of incoming commands it is not expected that there should
be more than one element in the queue at any time. However, the queue is set to a capacity of

three to allow for extreme cases.

Data from the command queue is read by the Command_dispatcher task. It is set to
wait indefinitely so it doesn’t waste any processing time when there is no command to be
processed. Upon successful retrieval of a command from the queue the dispatcher reads the

command type coded in the first byte. Depending on the command type it has three options. It

22

Firmware

can process the command itself, pass it to the Mcu_controller_task or pass to one of the
Fpga_controller_tasks identified by the index in the second byte.

TCP RECEIVE
INTERRUPT

COMMAND
DISPATCHER
THREAD

DIRECT
PROCESSING

FPGA FPGA
QUEUE 1 QUEUEN

CU QUEUE

MCUFR
CONTROLLER STATE
MACHINE

FPGA CONTROLLER FPGA CONTROLLER
1 STATE MACHINE N State MACHINE

Figure 5-1: Command dispatching

Commands that do not belong to any FlexRay controllers are processed immediately by
the dispatcher. For example when the PC application requests the number of FlexRay

23

Firmware

controllers in the FPGA. This information is has already been stored during initialization so
the dispatcher simply replies with the value. Another example would be the request for the list

of available user tasks.

5.3. Task declaration macros

One of the required features is the possibility for a programmer to define arbitrary tasks
and to be able to run or suspend these tasks from the PC application. To make the definition
of user tasks easier a macro has been written which serves as a sort of a task declaration API
which wraps the freeRTOS task declaration APl with additional code. This way the
programmer doesn’t need to understand exactly how the management of user tasks is

implemented.

To declare a user task the programmer has to look for a section bounded by /*- - --USER
TASK DECLARATION----*/ and /*----END OF USER TASK DECLARATION----*/., All the user

tasks are supposed to be declared within this area using the following macro:
DECLARE_TASK_MANAGER_TASK(function, name, stack, params, priority, handle)

The passed arguments are:

e Function — a pointer to a function which the task is going to perform. The
function must never exit.

e Name - const char * const type variable that is going to be displayed in the PC
application as the name of the task. The programmer must avoid using the ‘|’
character in the name since it is used as a separation character in the
communication protocol.

e Stack — A value that represents the size of the stack in words that the operating
system has to allocate for the task.

e Params — parameters that will be passed to the task

e Priority of the task — it is recommended to use 1 but if a higher number is
chosen, the programmer needs to make sure that the task either blocks or yields
often enough not to starve other tasks.

e Handle — here the programmer has to put in taskManager[x] Where X is the
index to the taskManager array. This value should be ascending for every

declared task going from 0 to SIZE_OF_TASK_MANAGER - 1.

24

Firmware

Here is an example of a correct user task declaration area:

uint32 ledTimeOne 1000;

uint32 ledTimeTwo 3000;

uint32 sciTime = 2000;

uint32 stack = configMINIMAL_STACK_SIZE;

/*----USER TASK DECLARATION----%*/
DECLARE_TASK_MANAGER_TASK(ledTask, "led_flash_one", stack, ledTimeOne, 1,
taskManager[Q])

DECLARE_TASK_MANAGER_TASK(ledTask, "led flash two", stack, ledTimeTwo, 1,
taskManager([1])

DECLARE_TASK_MANAGER_TASK(consoleTask, "console_ task", stack, sciTime, 1,
taskManager([2])

/*----END OF USER TASK DECLARATION----*/

When passing parameters to tasks it is the programmer’s responsibility to cast them

correctly in the task function since they are always being passed as pointers to the void type.

5.4. TCP server implementation

The server part of the system is implemented in the MCU. Upon power up or reset the
MCU initializes all necessary peripherals. This happens before starting the scheduler in all
cases except the EMAC. The initialization of EMAC and the IwlIP stack is performed by the
Lwip_server_task before entering the endless loop every freeRTOS task is required to have.
The last function called by this task is server_init which allocates the struct tcp_pcb
variable. After that it lowers its own priority to that of the idle task and enters an infinite loop.

Packet reception is then handled through callbacks.

It is done this way because all the components of the Iwip used in this project are
designed to pass around a pointer to the pcb. The pcb variable needs to be kept valid, which
means we cannot allow the stack space to be freed. It would require a lot of extra time and

effort to rewrite the lwip which also invites a number of potential errors.

Packet transmission is handled by a special task (tcpSenderTask). Whenever a task
wants to send data over the TCP it has to acquire the tcpSendProtection mutex which protects
access to the TX buffer. After writing the data into the buffer the task has to enqueue the data
length into tcpSendQueue. This causes the tcpSenderTask to immediately preempt any other
running task since it has the highest priority. And it writes the requested amount of data into

the EMAC buffers. Consequently, it releases the tcpSendProtection mutex. The queue can

25

Firmware

only hold one element at a time. There is no point making this queue any bigger because no
other task can acquire the tcpSendProtection mutex until the tcpSenderTask releases it.

5.5. EMIF

The External Memory Interface (EMIF) is a controller integrated in the
TMS570LS3137ZWT chip. The purpose of EMIF is to provide a means for the MCU's core to
connect to a variety of external devices including SDRAMs or asynchronous devices such as
NOR Flash and SRAM. In case of this project it is used to interface to the FPGA's registers.
The registers are mapped to CPU's address space and can be accessed simply by reading from
and writing to an address using pointers. The following macros are provided to facilitate the

access:

#tdefine READ_CONTROLLER_VALUE(BASE, CONTROLLER_INDEX, OFFSET) \

(*((volatile unsigned int *) ((BASE) + ((CONTROLLER_INDEX)*(FPGA_FR_CONTROLLER_LENGTH)) +
(OFFSET))))

#tdefine WRITE_CONTROLLER_VALUE(BASE, CONTROLLER_INDEX, OFFSET, VALUE) \

(*((volatile unsigned int *) ((BASE) + ((CONTROLLER_INDEX)*(FPGA_FR_CONTROLLER_LENGTH)) +
(OFFSET))) = (VALUE))

#define READ_VALUE_8BIT(BASE, OFFSET) \
(*((volatile unsigned char *) ((BASE) + (OFFSET))))

t#tdefine WRITE_VALUE_8BIT(BASE, OFFSET, VALUE) \
(*((volatile unsigned char *) ((BASE) + (OFFSET))) = (VALUE))

#define READ VALUE_32BIT(BASE, OFFSET) \
(*((volatile unsigned int *) ((BASE) + (OFFSET))))

t#tdefine WRITE_VALUE_32BIT(BASE, OFFSET, VALUE) \
(*((volatile unsigned int *) ((BASE) + (OFFSET))) = (VALUE))

It should be noted that tasks in freeRTOS normally only allow access to their own stack
and to the heap. Other memory regions are accessible according to the setting of MPU
regions. The MPU is not needed in this project so it is left uninitialized. Otherwise either the
memory region access right would have to be changed or a special restricted type of task
would have to be used instead (using xTaskCreateRestricted). Restricted tasks are an
unnecessary over complication. Leaving the MPU off allows for the use of regular tasks even

when accessing the EMIF memory regions.

Communication constants of the EMIF controller have to be set in mutual compliance
with the FPGA's EMIF module. It is configured for asynchronous access. Here are the

parameters used:

26

Firmware

— EMIF: ASYNCT Config

Select Strobe Mode Page Mode
MWOF Flash Page Delay: |p Cycles
Bdended Wait Page Size: 4 words |~

— EMIF: ASYMNC1 Timings

W_SETUF: |1 Cycles ASIZE: 16.bit -
W_STROBE: |10 Cycles ASYNCTWAIT [jng |-
W_HOLD: |1 Cycles
R_SETUP: |1 Cycles
R_STROBE: 9 Cycles
R_HOLD: |1 Cycles
TA: 1 Cycles

Figure 5-2: EMIF Settings

5.6. MCU state machines
All state machines in the MCU are event-driven. That means they can only perform

actions on edges i.e. while receiving a command.
5.6.1. MCU Connection state machine

This state machine is the simplest in the MCU. Its only purpose is to track the
connection state of the protocol. The state of the connection has three phases. First one is
IDLE, which is the initial state. Upon receiving a request for the number of FlexRay
controllers in the FPGA the dispatcher task sends the response and transitions to the
FPGA READOUT_SENT state. Here it remains until the PC application requests the
firmware version together with a list of supported commands. It then sends the needed answer
and finally transitions to the PAIRED state. At this point it is allowed to pass commands to

their respective FlexRay state machines.

27

Firmware

STATE MACHINE ERROR

J

CONFIG_READOUT_REQUEST received
and
CONFIG_READOUT_RESPOMNSE sent

FPGA
READCOUT d
SENT

SUPPORTED_COMMANDS_AMND_VERSION_RECQUEST
received and
SUPPORTED_COMMANDS_AND_VERSIOMN_RESPONSE
Sent

FAIRED d

Figure 5-3: MCU Connection state machine

28

Firmware

5.6.2. MCU FR state machine

M ‘

FR PARAQIS FAILURE

FR PARAMS SUCCESS

SLOT INF@ FAILURE

PARAMS

RECEIVED
STATE MACHINE ERROR

SLOT INFO SUCCESS

STATE MACHINE ERROR TX DATA DEF SUCCHSS

SLOT DEF
RECEIVED

FREEZE or HALT

GO TO READY

COLDSTART OR JOIN
FAIL

TX DATA UPDATE

COLDSTART or JOIN
SUCCESS

Y

ACTIVE

Figure 5-4: State machine for handling the MCU's FlexRay controller

State machine depicted in Figure 5-4 is responsible for implementing the parts of the
communication protocol that concern the FlexRay controller in the MCU. It starts with the
PAIRED state which is where the connection state machine left off and started passing
commands to FlexRay state machines. The states can be divided into two phases -
configuration and operation. Configuration includes the PAIRED, PARAMS_RECEIVED
and SLOT_DEF_RECEIVED states. Upon receiving the following constants:

29

Firmware

pKeySlotusedForStartup
pKeySlotUsedForSync
gColdStartAttempts
pAllowPassiveToActive
pWakeupChannel
pSingleSlotEnabled
pAllowHaltDueToClock

pChannels

pdListenTimeOut

gListenNoise
gMaxWithoutClockCorrectionPassive
gMaxWithoutClockCorrectionFatal
gNetworkManagementVectorLength
gdTSSTransmitter
gdCASRxLowMax
gdSampleClockPeriod
pSamplesPerMicrotick
gdWakeupSymbolRxWindow
pWakeupPattern
gdWakeupSymbolRxIdle
gdWakeupSymbolRxLow
gdWakeupSymbolTxIdle
gdWakeupSymbolTxLow
gPayloadLengthStatic

pLatestTx

pMicroPerCycle

gMacroPerCycle
gSyncNodeMax
pMicrolnitial Offset[A]
pMicrolnitial Offset[B]
pMacrolnitial Offset[A]
pMacrolnitial Offset[B]
gdNIT
gOffsetCorrectionStart
pDelayCompensation[A]
pDelayCompensation[B]
pClusterDriftDamping
pDecodingCorrection
pdAcceptedStartupRange
pdMaxDrift

gdStaticSlot
gNumberOfStaticSlots
gdMinislot
gNumberOfMinislots
gdActionPointOffset
gdMinislotActionPointOffset
gdDynamicSlotldlePhase
pOffsetCorrectionOut
pRateCorrectionOut
pExternOffsetCorrection
pExternRateCorrectio

Along with additional information about channel usage, startup and synchronization the
state machine writes them into the FlexRay controller. Subsequently, the state advances to
PARAMS_RECEIVED. In this state the information about RX and TX frames is expected.
The order of buffers is important. RX frames go first and TX frames second. This is necessary
to make the firmware much simpler and more elegant. This information is stored and the
firmware uses it to calculate pointers to the FlexRay message RAM for all the message
buffers. RX buffers are configured right away since they don't require any payload data.
Afterwards, the machine shifts to the SLOT_DEF_RECEIVED state. Here it receives the data
that is to be transmitted out of the TX buffers. The order of the buffers has to follow the same
order in which the frames were defined in the previous stage. For example if the following

four frames were defined:

e slotID =12, RX
e slotID =2, RX

30

Firmware

e slotID5, TX
e slotlD 23, TX

Then the first TX data must be for the frame transmitted in slot 5 and the second in slot
23. At the end of data definition a double acknowledge mechanism is used. See Figure 5-5 for

better descriptiveness.

PC BOARD

Figure 5-5: Details of message exchange at the end of data definition

When the MCU receives the MCU_GO_TO_READY command it can finally transition
to the READY state. Now, the FlexRay controller can optionally perform a cluster wakeup.
Other than that, it waits until it is instructed to either coldstart or to join a running network.
The startup procedure may fail. The result is reported to the PC application. In case of success
the controller now finds itself in the ACTIVE state. In case of failure it remains in the
READY state. Then a new startup command may be issued by the PC application. Details

about the message format can be found in section 7.4.

31

Firmware

5.6.3. FPGA FR state machine

FPGA_FR_CONFIG
RECEIVED

()
FPGA_RUMN_TEST FPGA_FR_CONFIG
RECEIVED RECEIVED

PARAMS
RECEIVED

HALT

FPGA_TX_FRAME_DATA_DEFINITION RECEIVED

RECEIVED

STARTUP
FAILED

|

FPGA_TX_FRAME_DATA_DEFIMITION
RECEIVED
CONFIGURED J
WITH

FRAMES

FPGA_COLDSTART or
FPGA_JOIN RECEIVED
AND STARTUP SUCCEEDED

ACTIVE

FPGA_TX_FRAME_DATA_UPDATE
RECEIVED

Figure 5-6: MCU FPGA State machine

Each Fpga_controller_task (section 4.2.1) manages a state machine shown in Figure

5-6. In addition to what can be seen in the figure each state also has an edge to the PAIRED

32

Firmware

state as a reaction an internal reset command which is issued every time a new configuration
is loaded into the FPGA. With the exception of this internal command the state machine takes
action exclusively in reaction to commands passed to it by the command dispatcher. When an
action is finished the task blocks on its receive queue waiting for a new command. This way it

doesn't consume any CPU time when it's not needed.

First the state machine expects cluster and node parameters in the format which is
detailed in section 7.4. After receiving the first definition of a TX frame it transitions to the
CONFIGURED WITH FRAMES state. Other TX frames sent by the client are processed in
this state. However, there is a limit to the number of TX frames that can be defined in a single
FPGA FlexRay controller. The current number is 4. This constant can be adjusted in the
VHDL code of the controller. If the client tries to define more frames than that the state

machine responds with an error message.

The PARAMS RECEIVED state is intended for the future implementation of running
tests. Configuring TX or RX buffers is usually included in the tests themselves. Only
FlexRay parameters need to be set. That is why PARAMS RECEIVED is the correct
launching state and not CONFIGURED WITH FRAMES.

33

PC Application

6. PC Application

6.1. State machines

Just like in the case of MCU the state machines in the PC application are edge oriented.
Only, in this case, they can react not only to received frames over TCP but also to user
interactions. In addition to what can be seen in the figures, each state possesses an edge to the
IDLE state in case of an unexpected action (state machine error). Those edges were left out to

keep the graphs neatly arranged.

The PC application manages only two state machines. The first one is solely responsible
for managing the connection to the board, keeping track whether the fibex file has been
loaded and the MCU's FlexRay controller itself. It also spawns the instances of state machines
responsible for the FPGA controllers. The decision to merge all these functions into one state

machine has been made for several reasons:

e |t saves lines of code
e It avoids having to coordinate more state machines with one another

e It makes it clearer (which might of course be subjective)

So the state machine contains all the functionality that could reasonably possible be fit
in. However, it was not feasible to include the FPGA state machines since there are multiple
instances of those and the number of them is not known beforehand. And even if it were the
resulting states would be a Cartesian product of all the states starting at a certain point. This

would unacceptably inflate the number of states.
6.1.1. General state machine

At the beginning the state machine splits into two branches (see Figure 6-1). One of
them is where the fibex file is loaded before connecting to the board and the other one after. A
fibex file is a compulsory input for this application. It has been chosen as the standard way of
describing FlexRay networks in the industry. However, the user is still allowed to edit the
parameters even after loading the fibex. This gives the user freedom to experiment without
having to edit the fibex file itself but it can also compromise the ability of controllers to
integrate into a cluster. There is no mechanism in place which would check whether the new
parameters are still compatible with the originally loaded fibex. A user with at least basic

knowledge of the FlexRay standard is assumed.

34

PC Application

FIBEX LOADED FPGA READOUT REQUEST SENT

AWAITING

FIBEX
FPGA

LOADED READOUT

FIBEX LOADED

FPGA READOUT REQUEST SENT
l

IBEX LOADED

COMMAND REQUEST SENT

AWAITING
FPGA CONF
+ FIBEX AWATTING
FIBEX LOADED

SUPPORTED
COMMANDS

COMMAND REQUEST SENT

FIBEX LOADED

I
SUFPPORTED COMMANDS RECEIVED

AWAITING
SUPPORTED
COMMANDS
+FIBEX

FIBEX LOADED

SUPPORTED COMMANDS RECEIVED FIBEX LOADED

PAIRED AND
FIBEX
LOADED

1
SPAWN FPGA STATE MACHINE
- —»

CONFIG CONFIRMATION RECEIVED

MCUFR
CONFIGURE
D

SLOT DEFINITON SENT AND
CONFIRMATION RECEIVED

AWAITING
PARTIAL
CONF

SENT TX DATA

RECEIVED PARTIAL
CONF (sends next b data)

NO TX FRAMES

HALT or FREEZE
RECEIVED FRAMES

DONE CONFIRMATION

WAKEUP
POSSIBLE

Y

STARTUP FAILED

COLDSTART or JOIN

STARTUP
SUCCESSFUL

Figure 6-1: PC application’s main state machine

35

PC Application

Once the machine reaches the PAIRED or the PAIRED AND FIBEX LOADED state
the "FPGA Status" window (see 6.2.5) can be opened. This spawns one FPGA state machine
(see 6.1.2) for each controller in the FPGA. These state machines are managed through the

Ul of this window.

Next comes the configuration phase which practically mirrors the state machine in
5.6.2. The MCU_FR_CONFIGURED state is entered once a confirmation from the MCU is
received that setting of the cluster constants is finished. Without any user interaction the state
machine then proceeds to send details about monitored frames followed by frames added in
the Message Editor tab. As mentioned previously, the order of frames matters! Then again
without any user interaction, provided no errors were detected, the state machine starts
sending data for the TX frames defined in the previous step (in the same order). This data is
stored in their corresponding message buffers in the FlexRay controller and will be scheduled
for transmission as soon as the node comes online. For the double acknowledgement

mechanism which follows this data exchange refer back to Figure 5-5.

Now the Ul enables the user to perform a wakeup of the cluster or select one of the
startup options. After sending a command to perform a coldstart or to integrate itself to a
running network the application waits for a confirmation from the MCU that the startup was
successful. Monitoring is automatically triggered in case of successful startup. Issuing a halt
or freeze command will set it back to PAIRED_AND_FIBEX_LOADED state and a new
configuration can be used. If the startup fails the state machine transitions back to
WAKEUP_POSSIBLE and the user can repeat the attempt.

36

PC Application

6.1.2. FPGA State Machine

FP

FPGA TEST_FINISHED

GA_FR_CONFIG_CONFIRMATION
RECEIVED

RECEIVED

FPGA_TEST_STARTED

\

FPGA_FR_CONFIG_CONFIRMATION
RECEIVED

PARAMS

RECEIVED

COMNFIGURED

r

Figure 6-

This state machine is practically
It has a separate state for testing since

for the server to report that the test

FPGA_STARTUP_FAIL
RECEIVED

HALT SENT
FPGA_BUFF_CONFIG_COMNFR
RECEIVED
\
FPGA_BUFF_CONFIG_CONFR
RECEIVED

CONFIGURING
TX BUFFERS

FPGA_STARTUP_SUCCESS
RECEIVED

ACTIVE

2: PC FPGA State machine

a mirror copy to its MCU counterpart (see Figure 5-6).

it's not in charge of the test's execution and has to wait

is finished. In the meantime the state machine is not

allowed to do anything else. State transition with the exception of sending a halt command is

in all cases driven by receiving a confi

rmation for a successful transition on the server side.

37

PC Application

6.2. Features

6.2.1. Monitoring and frame transmission

The primary purpose of the platform is to monitor communication of a FlexRay bus and
to be able to transmit frames of its own. In order to monitor a frame it needs to be selected as

a monitored frame in the Cluster Setup tab as seen in Figure 6-3.

Cluster Setup | FPGA Tests | MessageEditor | Monitoring

+-33 Cluster
- MCU _
ﬂ FPGA Caortrallers Frame Monitored

— : Frames
. frame346_S[40]_B[0]_P[Z]

frame347_S[121]_B[3]_P[4] Short Name
frame348_S[121]_B[1]_P[4] frame346
----- frame345_S[121]_B[0]_P[Z]

Figure 6-3: How to select a frame to be monitored

The next step is to define the outgoing communication. In the Message Editor tab the
user can take advantage of the "Copy from Cluster Setup” button. In order to do that the user
must first setup controller mapping. In Cluster Setup in the "MCU—Local Settings" menu
choose one of the available ECUs in the "ECU Mapping" combo box. This also copies all the
parameters from the ECU to the Local Settings panel. The same kind of mapping can be
performed for the FPGA Controllers. Only the application must first be connected to the
board (Actions—Connect to Board). This is necessary because the application must first find
out how many FlexRay controllers are actually present in the FPGA. Once the mapping is
done the button "Copy from Cluster Setup™ will add all frames from the Cluster Setup, that
belong to ECUs to which a physical controller is mapped. This way is much preferable to

adding frames manually which is also supported.

The application distinguishes between two types of frames - MCU frames and FPGA
frames. The difference can be noticed when clicking on frames of both types in the Message
Editor tab. It is also shown in Figure 6-4.

38

PC Application

Transmit mode
Frame Name Startup/Sync Channel . .
Framel) T . T ” o Continuous Cycle Period Base Cycle
() One-shet 1 v |0

Slot ID Dynamic Length [B] Data [Hex]

i} No 2 ABCD
Trigger options
- Slot ID Frame Name Startup/Sync Channel
() Timestamp () Ewery Even Cycle /oyt
() Macrotick () Immediatefy 1 FrameT bio e Eal) he
(®) Macrotick and Cycle Dynamic Length [B] Data
) Every Cycle] Macratick |0 Cycle Ne 2 ABCD
() Every Odd Cycle Source Controller

FPGA - Mone]

Figure 6-4: Difference between FPGA and MCU frames

These differences are needed due to different capabilities of said controllers to trigger
frame's transmission. The FPGA controller offers more options. However, the MCU has the
upper hand when it comes to periodicity. The cycle code is capable of expressing periods
ranging from 1 to 64 cycles with offsets from 0 to 63. As opposed to the FPGA which can

only send ever cycle or every even cycle.

An important thing to note is that if the user wants to see the frames transmitted by the
MCU or one of the FPGA controllers he still needs to mark those frames as monitored.
Having them in Message Editor is not enough. Figure 6-5 shows an example of the Message
Editor tab with the MCU mapped to an ECU which transmits thirteen different frames and a
FPGA controller which only has one frame. In order to coldstart a network one of the frames
belonging to the coldstart node must be defined as "Startup & Sync". There may only be one
such or "Sync" frame per node. The application takes care of this and doesn't allow the user to
define more.

39

PC Application

Cluster Setup | FPGA Tests | MessageEditor | Monitoring

Transmit Frames

‘ "% | Copy from Cluster Setup l# Add & MCU Frame %" | Adda FPGA Frame K | Delete Selected Frame
Frame Mame Source Slot 1D Channel Base Cycle Cycle Period Startup/Sync Dynamic Length [B] Data
frame346_S[400_B[O] P[2] MCU 40 Bath 0 2 Mo Mo 2
frame347_S[121]_B[3]_P[4] MCU 121 Both 3 4 Mo Yes 2
frame348_S[121]_BI1_P[4] MCU 121 Both 1 4 Mo Yes 2
frame343_S[121]_B[O]_P[2] MCU 121 Both] 2 Mo Yes 2
frame358_S[1]_B0]_P[1] MCuU 1 Both] 1 Startup & Sync Mo 2
frame358_S[74]_B[O]_P[1] MCU 74 Both] 1 Mo Mo 2
frame€24_S[40]_B[1]_P[4] MCU 40 Both 1 4 Mo Mo 4
frame1000_S[224]_B[0]_P[8] MCU 224 Both] 2 Mo Yes 5
frameAB_S[13]_B[1]_P[4] MCU 13 Both 1 4 Mo Mo 5
frameA_S[12]_B[0]_P[2] MCU 13 Both] 2 Mo No 2
frameA_S[12]_B[3]_P[4] MCU 13 Both 3 4 Mo No 2
frame_25_5[2]_B[0]_P[1] MCU 2 Both] 1 Mo No 2
frame_25_S[75]_B[DL_P[1] MCU 7 Beth 0 1 No No 2z
frame397_S[88]_B[D]_P[1] FGPA_Cortroller] 88 Beth 0 1 No No 2z

Figure 6-5: Message Editor tab example

Monitoring is automatically activated by coldstarting a network or joining one. It can be
paused and started again at any time while the cluster is running. To change data being sent,
select a frame from the combo box in the bottom panel of the Monitoring tab. Now the data
can be adjusted. The controller is notified of the change by clicking on the green arrow. The
selection in the combo boxes is filled automatically by frames belonging to the MCU or the
FPGA. In case of the MCU frames this happens as it transitions into the
WAKEUP_POSSIBLE state. As for the FPGA frames, all frames belonging to a particular
FPGA controller are added to the selection when the application receives a confirmation of
the "Configure Frames" action in the "FPGA Status" window. Those frames are also removed

when the node leaves the active state.

40

PC Application

Cluster Setup | FPGA Tests | MessageEditor | Monitering

‘ Pause @ Absalute time K | Deleterecond 44| Resettime B | Save
Time [ms] Cycle Slot ID Channel Startup Sync Dynamic Length [B] Data [l

2 0 9 A Yes Yes No 32 d7692090d588 1b0d8166a637c3437200c0F 72 77002 4edeF7254b 6cechi22h)
3 0 8 A Yes Yes No 32 T34debladfefc2a8allc2b657d4466% cee 067c Tadedebl 94457 12050762 37

13 1 9 A Yes Yes No 32 d769a090d98281b0d8166a637c3437200cf 72 77c 00 2ededef 7254b6eech22b
13 1 8 A Yes Yes No 32 134ebladfefc?2a8allc2b657d4466% coe 067 7adedebf 94457 12090762 37

k1] 2 9 A Yes Yes No 32 d7695090d988 1b0d8166a637c3437200c0F 7 77c 00 2e 4edef 7254b6cec5225
3 2 8 A Yes Yes No 32 {34eb0adfefc2a8allc 2b657d4466% cee 0670 Tadedebf 944570 12090762 37

50 3 9 A Yes Yes No 32 d7692090d588 16048 166a637c3437200c U 72 77 M02e dedef 72540 6cech225
50 3 8 A Yes Yes No 32 T34ebladfefc2alallc 2b657d4466% cea 067c Taledebf 944570 12090762 37

62 4 5 A Yes Yes No 32 d7652050d588 1b0d8166a637c3437200c K 72 77c002e 4dedef 7254b 6oech225
62 4 8 A Yes Yes No 32 T34debladfefc2a8allc2b657d4466% cee 067c Tadedebl 94457 12050762 37

80 5 9 A Yes Yes No 2 d769a090d49881b0d8166a637c 34372000 72 77c 00 2e dedef 7254b6eech225
80 5 8 A Yes Yes No 32 134ebladfefc?2a8allc2b657d4466% coe 067 7adedebf 94457 12090762 37

52 6 9 A Yes Yes No 32 d7695090d982 1b0d8166a637c3437200c0F 7 7700022 4edef 7254b6cech 225
52 6 8 A Yes Yes No 32 {34eb0adfefc2a8allc 2b657d4466% cee 0670 Tadedebf 944570 12090762 37
110 7 9 A Yes Yes No 32 d7692090d5988 1b0d8 1662637034 37200 72 77c002e 4edef 7254b 6cach225
110 7 8 A Yes Yes No 32 T34ebladiefc2aBallc2b657d4466% coa 067c Tadedebl 94457 1205076 37
122 8 5 A Yes Yes No 32 d76592050d5881b0d8166a637c 3437200 72 77 002e dede 7254b 6cec5225
122 8 8 A Yes Yes No 2 f34ebladfefc2a8allc2b657d4466 % cce 06 7c Tadedebf 94457 12090762 37
140 9 9 A Yes Yes No 32 d769a090d9881b0d8166a637c3437200cf 72 77c 00 2e dedelf 7254bboech225
140] 8 A Yes Yes No 32 f34ebladfefc2a8a00c2b657d4466 oo 067 Tadedebf 94457 12080762 37
158 0 8 A Yes Yes No 32 {34eb0adfefc2a8allc 2b657d4466% cee 0670 Tadedebf 944570 12090762 37
158 10 9 A Yes Yes No 32 76920904988 1b0d81662637c3437200c (X 72 77c 0022 4edelf 7254b6cach2?s v
< >

Figure 6-6: Monitoring example

Internally, the frame reception is handled by a combination of callbacks and a dedicated
thread. First a callback function of the TCP client is invoked upon frame reception. It then
calls the state machine which in the MCU_FR_ACTIVE state extracts the data from the
incoming packet and enqueues it in a buffer. While monitoring is active a dedicated thread
dequeues the data from the buffer and adds it into the monitoring Ul. It has to be done this
way because the Ul add method cannot keep up with the rate at which the data flows in.
Addition of new data can fail and most importantly the responsiveness of the application
suffers. A dedicated thread solves this problem by adding the messages at a pace the Ul can

handle.

41

PC Application

6.2.2. Remote reconfiguration of the FPGA

File | Actions | Help

Cluster Config Target |.P. and Port
1 Connect To Board

: : Show FPGA Manager 831

MCU - Task Manager 1- 6 [us] (Informative value. It's derived from other parameters in the devices)
MU - Cenfigure FlexRay Controller rCyc ointOf
MCU - Coldstart . . 5

i _ Sending File. Please Wait...

MCU - Join nsmiti

MCU - Halt
MCU - Freeze

~ . tk outClockuorrecuonrassive
MCU - Send Wakeup

FPGA - Send Config File
FPGA - Lead Config from Flash

M

pintC

Figure 6-7: Remote configuration

After power up or reset the board's firmware automatically configures the FPGA over
serial interface with a design stored in the MCU's flash memory. However, the FPGA can be
reconfigured using the PC application by selecting "Actions—FPGA - Send Config File".
This opens up a dialog window to select a .rbf file containing the FPGA's new configuration.
This file is then sent to the board and loaded into the FPGA.

The default configuration from MCU's flash can always be restored by selecting
"Actions—FPGA - Load Config from Flash". Every time a new design is loaded, the new
number of FlexRay controllers is read from the FPGA. Afterwards, all tasks in the firmware
managing those controllers are reset to their default state. PC application's Ul is also adjusted
to the new number and all its FPGA FlexRay state machines are reverted to their initial state.

6.2.3. Remote task control

One of the key features of the whole system is the ability to define and run custom user
tasks in the MCU. These tasks represent a flexible way for a programmer to expand the
functionality of the system without having to adjust the communication protocol and without
deeper understanding of the MCU's firmware. The macro API for the user task definition on
the MCU side is described in chapter 5.3.

Once the tasks are present in the MCU they will be reported to the application when
selecting "Actions — MCU - Task Manager". The Ul lists all available tasks as is shown in
Figure 6-8. Task is activated by selecting it in the list and clicking "Run". Only one task may

run at a time. In case another task had already been active it is now suspended and the

42

PC Application

selected task becomes the active one. The currently running task is highlighted in the Ul. A
task may also be suspended without having to run another task. When the active task is
selected the "Run" button becomes a "Suspend" button. The decision to only allow one active
user task was a design decision and can easily be changed by a small change to the firmware

if desired.

Even when this window is closed and reopened the request for available tasks is not

repeated. The same list of tasks will be presented again.

Example task 2
i Example tagk 3

Figure 6-8: Task manager window

6.2.4. Fibex parsing

A fibex file describing the target FlexRay cluster is required to use any functionality of
the platform. Fibex is a XML-based format and has been established in the industry as the
standard way of defining automotive networks. The application parses only the data that is
relevant for the purposes of its functionality with the exception of signals. The parsing is
conveniently designed to report any missing cluster parameters. The UML diagram for the

FlexRay fibex format can be seen in Figure 6-9.

43

PC Application

«cd Fibex4FlexRay p

L-TIMING

‘1,1

FRAME FRAME-

/

|- IDeNTIFER: int

1 CYCLIC-TIMING 1
- REPEATINGTIME-RANGE: int

- ESTARTING-TIME-RAMGE: int

PDUHNSTANCE 1

- BITPOSITION: int '
- PDUUPDATE-BITPOSITION: int

Requirements. {

DU-
é HTMING TRIGGERING

SiGNAL PORT-REQ

GENERIC-FINL- 1
INSTANCE .

1
EVENT-CONTROLLED-TIMING W
g — DEBOUNCETIMERANGE. int
1 Signal
1 /

FDU STANDARD-FDU SIGNAL-NS TANCE SIGNAL ORDERED- SIGNAL-GROUP

A - BITPOSITION: int T SIGNAL -
1 - SIGNAL-UPDATE-BIT-POSITION: int]

W

Figure 6-9: UML diagram of a FlexRay fibex file

Source: [10]

Figure 6-10 shows an example of Cluster Setup tab after parsing a fibex file. Each
frame displays its source ECU (this is important for the Message Editor) and signals it
contains. Also each signal shows all the frames in which it is transmitted (multiple may be
defined).

However, some of the fibex files available during the development didn't comply with
the UML diagram exactly. For instance one of them had placed SIGNAL-INSTANCES right
inside a FRAME. The correct way would be to have PDU-INSTANCES in a FRAME and
through a reference in a PDU-INSTACE it is possible to reach a PDU which contains the
SIGNAL-INSTANCES. Some files omitted certain important information about frames. This
situation is reported to the user to avoid confusion since default values are used instead. Other
files were missing entire sections like frames or signals altogether. This is not reported to the

user as their absence is obvious.

44

PC Application

All mentioned files were either examples distributed with the fibex standard (by the
BMW group) or generated by third party software (such as NI-XNET Database Editor from
National Instruments). Despite their incorrectness it is still useful to be able to parse them so

the parsing algorithm is designed to handle such cases.

X
File Actions Help

Cluster Setup | FPGA Tests | MessageEditor | Monitoring

=34 Cluster
General Settings .
4% Cycle Segments ‘ Frame [Monitored
Startup and Wakeup
el Mctcd Sestings Short Name Frame Type Byte Length
FIFO frame 357 APPLICATION 2
&8 FPGA Cortrollers
= Frames
frame346_spa0) BjoL P || SlotiD Source ECU Channel
frame347_S[121]_B[3]_P[4] a8 Recsive Both v

frame348_S[121]_B[1L_P[4]
- frame349_S[121_B[D]_P[2]
- frame398_S[1]_BIO]_P[1] Base cycle Cycle period
. frame398_S[741 BIO]_P[1] 0]
- frame624_S[400_B1L_P[4]
. frame1000_S[224]_B[0)_P[8

- frameAB_S[13]_B[1]_P[4] Signals
- frameA_S[13]_B[0]_P[2] = = =
. frameA_S[13] B[3] Pl4] Short Mame Bit Length Bit Position Coding

- frame_25_S[2] B[O]_P[1] SIG1 16 0 16bitLength
-5 frame_25_S[75]_B[O]_P[1] SIG10 16 16 16bitLength

el frsme397_S[88] BI0] P[1]

SEECUs

-Ed Send
-l Receive

Test Status: Mo Test Running MCU Status: Offline

Figure 6-10: Cluster Setup after loading a fibex file

Constants gdSymbolWindow and gdNIT in the "Cycle Segments™ section are parsed
from the fibex file. However, the MCU's FlexRay controller requires a value according to
Figure 6-11. That means that for the sake of setting it correctly a derived value of the gdNIT
parameter needs to be calculated. This value is displayed next to the regular one for
convenience and represents what is actually loaded into the MCU. Moreover, the application

checks for the correctness of all cycle parameters. Following equation must hold true:

gNumberOfStaticSlots * gdStaticSlot + dymanicSegmentOffset + gNumberOfMinislots
* gdMinislot — 1+ gdSymbolWindow + gdNIT = gMacroPerCycle

where dymanicSegmentOffset = gdActionPointOf fset — gdMinislotActionPointOf fset

or zero if the value is negative. The application lets the user know if this equation is

violated.

45

PC Application

0 n n+1 k k+1 m+1

GTUC2.MPC =m —T—1 | — | [
GTUC4NIT =k :
GTUC4.0CS = NIT+1

Static / Dynamic Segment Symbol Window NIT

Figure 6-11: Cycle settings in the MCU

6.2.5. FPGA FlexRay controller and Testing

FlexRay controllers of the FPGA are managed from the separate window. This window
can be opened after the connection with the target board has been established by selecting
"Action—Show FPGA Manager". Upon connecting to the board the FPGA controllers also
appear in the Cluster Setup. It is necessary to map a controller to an ECU in Cluster Setup
before trying to configure its parameters. Similarly, frames for transmission need to be
defined in the Message Editor before loading them into the controller (option Configure

Frames).

The "FPGA Status" window lets the user select a FlexRay controller and execute
actions related to that controller. These include parameters configuration, frame configuration,
coldstarting, joining a running cluster, halting and running a test. The last option is out of the
scope of this thesis and will be supported in the future. Once a FPGA controller is in the
NORMAL_ACTIVE state it takes part in the communication according to the trigger settings
of its frames. The payload of the frames can be updates in the Monitoring tab of the main
window. Doing so also refreshes the flag which tells the FPGA's TX buffers to transmit the
frame. This is relevant for frames that are only sent once since their flags don't automatically

reset after transmission.

46

PC Application

Selected FPGA Controller FPGACortraller

Action Configure Parameters

Status Connected - Unconfigured

Figure 6-12: FGPA Status window

6.2.6. Target I.P. setting

Figure 6-13 shows the Ul responsible for setting the target IP address and port. Those
need to be input correctly before attempting to connect to the target board. The default values
match the values statically set in the MCU's firmware. The application checks for validity of

the input and won't allow for any violations of the IP address format.

Target Part: 40001

Figure 6-13: IP Address settings window

6.2.7. ECU Mapping

The mapping feature is a means of pairing a physical FlexRay controller with an ECU
defined by the fibex file. All the ECUs of a cluster will appear in the ECUs section of the
Cluster Setup tab as well as in the “ECU Mapping” combo boxes of the MCU and all FPGA
controllers. By selecting a mapping all the node-specific parameters are automatically copied
from the corresponding ECU to the controller's Ul. Not all required parameters may be
present in the ECUs section simply because they might not be defined by the fibex file. Those

are highlighted upon selection to notify the user that they need his attention and must be filled

47

PC Application

manually. There is no mechanism that would prevent the user from mapping two physical
controllers to the same ECU as this might be his intention.

Local Settings

Local Settings

pMicroPerCycle pMicroPerCycle
- 640000 [Microticks] 200000 A0 - 40000 [Microticks
ECU Mapping ECU Mapping
None v Send v
Inter&_ Interface Mapping
Receive - "
pAllowPassiveToActive pAllowPassiveToActive
31 1 0-31
pdListenTimeout pdListenTimeout
1284 - 1283846 [Microticks 2000 1284 - 1283846 [Microticks]
gdCASRxLowMax gdCASRxLowMax
67 - 99 [Bit times] 67 - 99 [Bit times]
ECU Parameters
pMicroPerCycle
200000 640 - 4000 [Microticks], (FPGA: 0 - 640000}
pAllowPassiveToActive
1 0- 3, (FPGA: 1-31)
pdListenTimeout
2000 1284 - 1283846 [Microticks]
pWakeupPattern
2 2 - 63 [Macraticks], (FPGA: 0 - 63)
platestTx
243 0- 7980 [Minislots], (MCL: 0 - 7981, FPGA: Not supp
Figure 6-14: ECU Mapping example
6.2.8. Saving and loading of Cluster and MCU parameters

Apart from loading the parameters of a cluster from a fibex file it is also possible to
save them into an xml file using serialization and load them when needed. Loading such a file
does not have the same effect as loading a fibex file. It doesn't add Frames, Signals and ECUs
defined in the network. It merely sets the values of the cluster parameters and settings for the
FlexRay controller in the MCU. This can be useful for instance when the user wants to
experiment with the cluster or node settings but wants to keep all the elements and parameters
defined by the fibex. In this case the fibex file would be loaded first and the xml file with the

alterations afterwards.

48

PC Application

File | Actions Help

| Load MCU Config |L|geEd'rtnr Menitaring

Save MCU Config

Load Fibex .

‘ General Settings
‘; Startup and Wakeup
= MCU M
e acroPerCycle
P Local Settings g y
LR FIFO 5000 10 - 1600
g8l FPGA Controllers _
- Frames EitRate
rr Signals 10 Mbps B
- ECUs

gdMacrotick
1 1-6us]

Figure 6-15: Load and Save menu options

6.2.9. Other useful features

The application offers a handful of other useful features for user convenience. Not all
are listed since some of the minor features will never be observed by the user because they

only manifest in special cases such as an incorrect input.
Relative and absolute time

This function belongs to the Monitoring interface. It simply switches between what kind
of a timestamp is displayed in the monitoring window. The resolution of time is in
milliseconds. It uses the stopwatch class of the .NET platform which is the most accurate way
of measuring time it offers. The time can either be absolute measured roughly from MCU's
successful integration into the cluster (or a coldstart) or from the last reset (using the Reset
time button). Or it can be relative. In which case, each frame gets a value relative to the
reception time of the previous frame. The timestamp marks the point in time when the frame
was processed by the application so there may be significant fluctuations and deviations from

cycle periodicity.

49

PC Application

Time [ms] Cycle Slat 1D Delta time [ms] Cycle Slat 1D
3 0 B 1 0 B
13 1 9 10 1 9
13 1 B 0 1 B
3 2 9 18 2 9
3 2 8 0 2 8
50 3 9 15 3 9
50 3 8 0 3 8
62 4 9 12 4 9
62 4 B 0 4 B

Figure 6-16: Absolute vs relative time

Saving of the monitoring log

Any software dealing with communication monitoring must have a feature to save the
communication log for future reference and offline inspection. The application offers to save
the records from the Monitoring tab to a CSV file. This simple format can easily be open by a
vast number of software tools and viewed in a table form. These tools can also effortlessly
convert it into different format of choice.

A B C D E F G H I] K
1 TIME[MS] DELTA TIME [MS] CYCLE SLOTID CHAMMEL STARTUP SYNC DYNAMIC LENGTH[B] DATA ECU
2 2 2 1] 9 A Yes Yes No 32 d769a090d9881b0d8166a637cI ECU4
3 3 1 4] 8 A Yes Yes No 32 f34e50adfefc2a8a00c2b657d44 ECU2
4 13 10 1 9 A Yes Yes No 32 d769a090d9881b0d8166a637c3 ECU4
5 13 0 1 a3 A Yes Yes No 32 f34e50adfefc2a8a00c2b657d44 ECU2
6 31 18 2 9 A Yes Yes No 32 d769a090d9881b0d8166a637cI ECU4
7 31 4] 2 8 A Yes Yes No 32 f34e50adfefc2a8a00c2b657d44 ECU2
8 50 19 3 9 A Yes Yes No 32 d769a090d9381b0dB166a637c3 ECU4
9 50] 3 8 A Yes Yes No 32 f34e50adfefc2a8a00c2b657d44 ECU2
10 62 12 4 9 A Yes Yes No 32 d769a090d9881b0d8166a637cI ECU4
11 62 0 4 8 A Yes Yes Mo 32 f34e50adfefc2aBal0c2bb57d4£ECU2
12 80 18 5 9 A Yes Yes No 32 d769a090d9881b0d8166a637cI ECU4
13 80 4] 5 8 A Yes Yes No 32 f34e50adfefc2a8a00c2b657d44 ECU2
14 92 12 7] 9 A Yes Yes No 32 d769a090d9881b0d8166a637cI ECU4
15 92 0 6 g A Yes Yes No 32 f34e50adfefc2a8a00c2b657d44 ECU2

Figure 6-17: Monitoring record from Figure 6-6 saved as CSV file and displayed in MS Excel

Resetting of monitoring time

As mentioned, the monitoring time-base can be manually reset by clicking on the "Reset
time" button of the top panel in the Monitoring tab. The time-base is also reset with each new

integration of the MCU FlexRay controller into a cluster.

50

PC Application

Resizing

The graphical user interface strives to accommodate users with various screen
resolutions. Therefore it is paramount that all the Ul elements resize correctly to maintain
their usefulness. This is ensured through a proper setting of anchors which are a feature
provided by the Windows Forms API of the .NET platform.

6.3. TCP client implementation

The PC application implements the client side of the platform. A combination of threads
and callbacks is used to provide a simple API to the rest of the application. Specifically, the
Client class is made up of two partial classes - the Receiver and the Sender along with a
method to register a callback. Instances of both of these classes are created while creating the
client Class instance.

The Sender class contains a thread which constantly checks for new data to send. It
provides the sendpata(byte[] data) method which is used by the state machine to send data.
Importantly, the Nagle algorithm is disabled in the client so the data is sent immediately.
Otherwise it would be buffered and sent only after filling the buffers to reduce network
traffic. This behavior is undesirable in case of our platform since it would disrupt the

communication protocol.

The receiver class also runs a thread. It continuously checks for incoming packets. Each
received frame is then converted into a small Command class instance which separates the
command type from the rest of the data. The received invokes the registered callback with the
command as an argument. The function registered as the callback then separates the only
state-machine-independent command AVAILABLE_TASK_RESPONSE from others and
forwards those to their intended destination which is either the main state machine or one of
the FPGA state machines.

6.4. Database

The WPF graphical subsystem natively supports the separation of data and presentation.
This is not the case with Windows Forms used in this project. That's why a database has to be
used in order to provide a similar experience. Windows Forms were selected as an already
familiar technology. WPF have a rather steep learning curve and having to get familiar with it
would delay the project. Nevertheless, Windows Forms combined with a database provide a

completely sufficient solution for the purposes of this platform. The database is contained in a

51

PC Application

MDF file which basically is a SQL server data file. It is named FlexRayDB.mdf and has to be
distributed with the binary of the application. It holds the following tables:

ECUs
Name Data Type | Allow Nulls | Default
Id int no none
pMicroPerCycle int no none
pAllowPassiveToActive int no none
pdListenTimeout int no none
pWakeupPattern int no none
pMicrolnitial OffsetA int no none
pMicroinitial OffsetB int no none
pMacrolnitialOffsetA int no none
pMacrolnitialOffsetB int no none
pOffsetCorrectionOut int no none
pRateCorrectionOut int no none
pExternOffsetCorrection int no none
pExternRateCorrection int no none
pClusterDriftDamping int no none
pDecodingCorrection int no none
pdAcceptedStartupRange int no none
pdMaxDrift int no none
pDelayCompensationA int no none
pDelayCompensationB int no none
pLatestTx int no none

Table 6-1: Contents of the ECUs table

This table is responsible for storing the values of node constants for all ECUs. It is first

loaded with values parsed from the fibex file. Changes made through the GUI are also saved.

FPGAs
Name Data Type | Allow Nulls | Default
Id int no none
pMicroPerCycle int no none
InterfaceMapping int no none
pAllowPassiveToActive int no none

52

PC Application

pdListenTimeout int no none
pdCASRxLowMax int no none
pWakeupPattern int no none
pMicrolnitial OffsetA int no none
pMicroinitialOffsetB int no none
pMacrolnitialOffsetA int no none
pMacrolnitialOffsetB int no none
pOffsetCorrectionOut int no none
pRateCorrectionOut int no none
pExternOffsetCorrection int no none
pExternRateCorrection int no none
pClusterDriftDamping int no none
pDecodingCorrection int no none
pdAcceptedStartupRange int no none
pdMaxDrift int no none
pDelayCompensationA int no none
pDelayCompensationB int no none

Table 6-2: Contents of the FPGAs table
This table contains all the information about parameter values for every FPGA FlexRay
controller. When selecting a FPGA controller the data is fetched from the table and filled into
the UI.

53

PC Application

Frames
Name Data Type | Allow Nulls | Default
Id int no none
ShortName nvarchar(50) no none
FrameType nvarchar(50) no none
ByteLength int no none
Slotid int no none
SourceECU nvarchar(50) no none
CyclePeriod int no none
BaseCycle int no none
Mapping nvarchar(50) no “None"
MappingType | nvarchar(50) no none
Monitored nvarchar(50) no "No"
ExtendedFrame | nvarchar(50) no none
Channel nvarchar(50) no none

Table 6-3: Contents of the Frames table

The Frames table is filled by values parsed from the fibex file. Additional parameters

are set from the Ul such as Mapping, MappingType and Monitored.

Signals

Name Data Type | Allow Nulls | Default

Id int no none

ShortName | nvarchar(50) no none

FrameName | nvarchar(50) no none

BitLength int no none

BitPosition int no none

Coding nvarchar(50) no none

Table 6-4: Contents of the Signals table

The FrameName value from the Signals table is used to identify all signals belonging to

a certain frame.

54

Communication protocol

Triggers

Name Data Type | Allow Nulls | Default

Id int no none

FrameName | nvarchar(50) no none

TriggerType | nvarchar(50) no none

Timestamp bigint yes none

Macrotick int yes none

Cycle int yes none

Table 6-5: Contents of the Triggers table

The Triggers table specifically relates to the FPGA TX frames. The decision to store
this information in a database rather than in the Message Editor table was made to keep the
Message Editor neatly arranged. Including this information would require the addition of
extra columns that would be irrelevant for MCU frames. The Timestamp entry necessitates
the use of bigint due to its size (64 bits).

7. Communication protocol

7.1. Purpose of the protocol

Since the testing platform is composed of a target board and a PC application it is
essential to have a form of communication in place between the two parts. All of the
platform’s functions are controlled from the PC application which then manages the platform

using the communication protocol.

7.2. Requirements

First and foremost the protocol must be based on a standard capable of a throughput
high enough to handle reporting of FlexRay frames in real-time. The maximum throughput of
FlexRay is 20 Mbit/s taking into consideration the two independent channels (10 Mbit/s per
channel). This basically leaves two interfaces that a standard PC has - USB and Ethernet.
TCP/IP has been opted for due to previous experience with a high-quality, lightweight open-
source TCP/IP stack for embedded systems - the IwlIP stack. This choice also opens a lot of

potential options to choose from in the area of RPC protocols.

The architecture dictates that the MCU assumes the role of a server and the application
acts as a client. Only a single client is required. The protocol is responsible for configuring

55

Communication protocol

MCU's peripherals, managing user tasks, reporting received frames etc. A new FPGA design
can be loaded into the FPGA from the application through the MCU.

Taking into account that the frequency of the MCU's core is rather low (160MHz) a
protocol with an overhead as little as possible is preferred. Bearing in mind that the system is
likely to be extended in the future, all of the RCP protocols were rejected. Protocols such as
SOAP bring too much of a parsing overhead. JSON-RPC was a serious candidate but no good
open-source embedded server implementation was found. Another downside of JSON-RPC is
that the communication is always initiated by the client. This presents an issue since in case of
this platform the server needs to retransmit the FlexRay frames as they come. To work around
this the server would have to be regularly polled by the client. Such a solution is clumsy at
best. This leaves binary-based alternatives. Since the protocol has to be binary anyway a
decision has been made to design a custom protocol instead of using an existing standard

which would require porting of a third-party code.

A vital point is to design the protocol as simple as possible while keeping it extensible.
A compromise has been found between the simplicity of parsing and the efficiency of channel
utilization. To keep the protocol extensible the command type is coded into one byte which
leaves a plenty of free values to use in the future. Extensibility is also considered in the sense
of adding support for other interfaces than FlexRay. This can easily be achieved in the same
way that the FPGA FlexRay controllers are differentiated from the MCU FlexRay controllers
by spawning separate state machines in the PAIRED_AND FIBEX_LOADED state.

7.3. Negotiation of supported functions

It has been requested that the protocol should be capable of enabling the server to report
its release version and also its supported functionality. This is implemented by the
SUPPORTED_COMMANDS_AND_VERSION_REQUEST ~ and SUPPORTED_COMMANDS_AND_VERSION_RESPONSE

commands during pairing of the devices. See 7.4 Message format section for details.

7.4. Message format

This section describes the message format of the communication protocol in detail. The
endianness of the two platform’s parts needs to be taken into account. The PC application uses
little endian and the MCU uses big endian. This is irrelevant when assembling the commands
byte by byte but it comes into effect when examining any larger data types by bytes. An

example of this would be the mcu_FR_conFIG message.

56

Communication protocol

Each command starts with a command type coded in the first byte. This first byte is
implicit and won't be depicted. Table 7-1 shows all command codes and Table 7-5 all
response codes. Some commands and responses contain only the first byte which codes the
meaning of it. Others have data following after. This is expressed in the table. Only

commands and responses with additional data are described in the following section in detail.

74.1. PCtoMCU

Command type Code value | Contains Data
CONFIG_READOUT_REQUEST 0x01 No
SUPPORTED_COMMANDS_AND_VERSION_REQUEST 0x02 No
MCU_FR_CONFIG 0x03 Yes
MCU_SLOT_DEFINITION 0x04 Yes
MCU_TX_DATA_DEFINITION 0x05 Yes
MCU_TX_DATA_DEFINITION_DONE 0x06 No
MCU_GO_TO_READY 0x07 No
MCU_SEND_WAKEUP 0x08 No
MCU_TX_FRAME_DATA_UPDATE 0x09 Yes
MCU_COLDSTART O0x0A No
MCU_JOIN 0x0B No
MCU_HALT 0x0C No
MCU_FREEZE 0x0D No
FPGA_FR_CONFIG OxOE Yes
FPGA_TX_FRAME_DATA_DEFINITION OXOF Yes
FPGA_TX_FRAME_DATA_UPDATE 0x10 Yes
FPGA_COLDSTART 0x11 Yes
FPGA_JOIN 0x12 Yes
FPGA_HALT 0x13 Yes
FPGA_RUN_TEST 0x14 Yes
AVAILABLE_TASKS_REQUEST 0x15 No
RUN_TASK 0x16 Yes
SUSPEND_TASK 0x17 Yes
SEND_FPGA_DESIGN 0x18 Yes
LOAD_FPGA DESIGN_FROM_FLASH 0x19 No

Table 7-1: PC to MCU command table

57

Communication protocol

MCU_FR_CONFIG

Parameter Bit field Bit position Range Units
pKeySlotusedForStartup SUCC1.TXST 8 0/1 -
pKeySlotUsedForSync SUCC1.TXSY 9 0/1 -
gColdStartAttempts SUCC1.CSA(4-0) 15.11 231 -
pAllowPassiveToActive SUCC1.PTA(4-0) 20-16 0-31 -
pChannels SUCC1.CCHA 26 0/1 -

SUCC1.CCHB 27 0/1 -
pdListenTimeOut SUCC2.LT(20-0) 20-0 1284- 1283846 uT
gListenNoise SUCC2.LTN(3-0) 27-24 2.15 uT
gMaxWithoutClockCorrectionPassive SUCC3.WCP(3-0) 3-0 1.15 -
gMaxWithoutClockCorrectionFatal SUCC3.WCF(3-0) 7.4 1.15 -
gNetworkManagementVectorLength NEMC.NML(3-0) 3-0 0-12 Bytes
gdTSSTransmitter PRTC1.TSST(3-0) 3-0 3.15 Bit times
gdCASRxLowMax PRTC1.CASM(6-0) 104 67-99 Bit times
gdSampleClockPeriod PRTC1.BRP(1-0) 15-14 0-3 -
pSamplesPerMicrotick PRTC1.BRP(1-0) 0-3 -
gdWakeupSymbolRxWindow PRTC1.RXW(8-0) 24-16 76-301 Bit times
pWakeupPattern PRTC1.RWP(5-0) 31-26 2.63 -
gdWakeupSymbolRxIdle PRTC2.RXI(5-0) 5-0 14-55 Bit times
gdWakeupSymbolRxLow PRTC2.RXL(5-0) 13.8 10.55 Bit times
gdWakeupSymbolTxidle PRTC2.TXI(7-0) 23-16 45-180 Bit times
gdWakeupSymbolTxLow PRTC2.TXL(5-0) 29-24 15-60 Bit times
gPayloadLengthStatic MHDC.SFDL(6-0) 6-0 0-127 16bit
pLatestTx MHDC.SLT(12-0) 28-16 0-7981 minislots
pMicroPerCycle GTUC1.UT(19-0) 19-0 640- 640000 uT
gMacroPerCycle GTUC2.MPC(13-0) 13-0 10-16000 MT
gSyncNodeMax GTUC2.SNM(3-0) 19-16 2.15 Frames
pMicrolnitialOffset[A] GTUC3.UIOA(7-0) 7-0 0-240 uT
pMicrolnitialOffset[B] GTUC3.UIOB(7-0) 15.8 0-240 uT
pMacrolnitialOffset[A] GTUC3.MIOA(6-0) 22-16 2.72 MT
pMacrolnitialOffset[B] GTUC3.MIOB(6-0) 30-24 2.72 MT
gdNIT GTUC4.NIT(13-0) 13-0 7- 15997 MT
gOffsetCorrectionStart GTUC4.0CS(13-0) 29-16 8- 15998 MT
pDelayCompensation[A] GTUCS5.DCA(7-0) 7-0 0-200 uT
pDelayCompensation[B] GTUCS5.DCB(7-0) 15.8 0-200 uT
pClusterDriftDamping GTUC5.CDD(4-0) 20-16 0-20 uT
pDecodingCorrection GTUCS5.DEC(7-0) 31-24 14-143 uT
pdAcceptedStartupRange GTUCG6.ASR(10-0) 10-0 0-1875 uT
pdMaxDrift GTUC6.MOD(10-0) 26-16 2.23 uT

58

Communication protocol

gdStaticSlot GTUC7.SSL(9-0) 9-0 4-659 MT
gNumberOfStaticSlots GTUC7.NSS(9-0) 25-16 2-1023
gdMinislot GTUCB8.MSL(5-0) 5-0 2.63 MT
gNumberOfMinislots GTUC8.NMS(12-0) 28-16 0- 7986
gdActionPointOffset GTUC9.APO(5-0) 5-0 1.63 MT
gdMinislotActionPointOffset GTUC9.MAPO(4-0) 12.8 1.31 MT
gdDynamicSlotldlePhase GTUC9.DSI(1-0) 17-16 0-2 minislots
pOffsetCorrectionOut GTUC10.MOC(13-0) 13-0 5-15266 uT
pRateCorrectionOut GTUC10.MRC(10-0) 26-16 2.23 uT
pExternOffsetCorrection GTUC11.EOC(2-0) 18-16 0-7 uT
pExternRateCorrection GTUC11.ERC(2-0) 26-24 0-7 uT
Segment borders MRC.FDB(7-0) 0-7 0-128+

MRC.FFB(7-0) 15.8 0-128+

MRC.LCB(7-0) 23-16 0-128+
FIFO Settings FRF.CH(1-0) 1-0 0-3

FRF.FID(10-0) 12.2 0-2047

FRF.CYF(6-0) 22-16

FRF.RSS 23 0/1

FRF.RNF 24 0/1

FRFM.MFID(10-0) 12.2 0-2047

Table 7-2: MCU FlexRay parameters

Table 7-2 shows the parameters sent in this command type. The "Bit field" column tells
us where in the controller's registers are the parameters saved. The format of this message is

these 21 32-bit registers put in sequence in the same order as in the table.
MCU_SLOT_DEFINITION

The slot definition command has two types of words. The first one is in Figure 7-1 and
appears only once at the beginning (right after the command code). The second word (Figure
7-2) is repeated as many times as there are slots to be defined. RX slots have to go first
followed by TX slots. The order of TX slots is also important and must be kept exactly in the
MCU_TX_DATA_DEFINITION.

| Rezerved

15 37 1]
[Mapping | Number of Slots

Figure 7-1: MCU slot definition message format - first word

59

Communication protocol

” 29 28 27 26 2019 18 17
| Reserved | Coldstare?] /R | Cycle code Channel

15 11 10 o
| Payload lensth [16b] | SlotID

Figure 7-2: MCU slot definition message format - second word

MCU_TX_DATA_DEFINITION
1 = Periodic, 0 = Single

The two bytes are followed by the payload data as an array of bytes.

15 9 a 7 0
Reserved | Periodic/Single | Payload length [bytes]

Figure 7-3: MCU Tx Data Definition Message Format

MCU_TX_FRAME_DATA UPDATE

The Slot ID and Cycle code are necessary to identify the exact frame to update because
there may be multiple frames with the same Slot 1D but different Cycle codes.

T 25 24 18 17
| Reserved Mew Payload lenzth [16bit]

15 1110 h
| Cycle code | Slot 1D

Figure 7-4: MCU Tx Data Update Message Format

FPGA_FR_CONFIG

Parameter Offset Value Range
gdActionPointOffset 0x02 0to 63
gdStaticSlot 0x06 0to 661
gMacroPerCycle O0x0A 0 to 16000
gNumberOfStaticSlots OxO0E 0to 1023
gOffsetCorrectionStart 0x13 0 to 15999
pDecodingCorrection 0x17 0to 143
pdMaxDrift 0x1B 010 1923
pMacrolnitialOffsetA Ox1F 0 to 68
pMacrolnitialOffsetB 0x24 0 to 68
pMicroPerCycle 0x28 0 to 640000
pOffsetCorrectionOut 0x2C 0 to 15567
pRateCorrectionOut 0x31 0to 1923
gdSampleClockPeriod 0x35 Oto7
pClusterDriftDamping 0x39 0to 20

60

Communication protocol

gdTssTransmitter 0x3D 0to 15
pMicrolnitialOffsetA 0x42 0to 239
pMicrolnitialOffsetB 0x46 0to 239

pdAcceptedStartupRange 0x4A 0to 1875
pDelayCompensationA 0x4E 0 to 200
pDelayCompensationB 0x53 0 to 200
pSamplesPerMacrotick 0x57 lto7

gdCasrxLowMax 0x5B 0to 99

gdWakeupSymbolTxLow O0x5F 0to6

gdWakeupSymbolTxIdle 0x64 0to 180
gdWakeupSymbolRxLow 0x68 0 to 60
gdWakeupSymbolRxIdle 0x6C 0to 180
gdWakeupSymbolRxWindow 0x71 0to 301

pWakeupPattern 0x75 0to 63

pdListenTimeout 0x79 | 1284 to 1283846
vColdstartAttempts 0x7D 21031

gMaxWithoutClockCorrectionPassive | 0x82 1to 15
gMaxWithoutClockCorrectionFatal 0x86 1to 15
pAllowPassiveToActive 0x8A 1to31

externRateControl Ox8E 0 to 15567
externOffsetControl 0x93 0to 1923

Table 7-3: FPGA FlexRay parameters

All commands related to the FPGA FlexRay controllers begin with the
command code in the first byte followed by the controller index in the second byte. Table 7-3

shows how the parameters are put into the packet following the index. Each parameter is sent

as a 4-byte word.

FPGA_TX_FRAME_DATA_DEFINITION

A command of this type is sent for each frame that a FPGA controller is supposed to

transmit. In every case such a command starts with the word (first after command type and

controller index) in Figure 7-5.

31 30 28 27 26 23 24 23

| Reservad | Trigzer Tvpal _il E | E.vnclE-ta.ftupl Pavload Length [byvtes]
is

| Slot ID

Figure 7-5: FPGA TX frame data definition message format - first word

The value of the Trigger Type field determines the format of the rest of the frame

according to this table:

61

Communication protocol

Trigger Type value Meaning Followed by

0 Single message Data

1 Every Cycle Data

2 Every Odd Cycle Data

3 Every Even Cycle Data

4 Timestamp Timestamp low and high (Figure 7-6)
and then data

5 Macrotick Macrotick word (Figure 7-7)
and then data

6 Macrotick and cycle | Macrotick and cycle word (Figure 7-8)
and then data

Table 7-4: Trigger Type values

3l - 0
| Timestamp Low |
31 0
[Timestamp High]

Figure 7-6: FPGA TX frame data definition message format - Timestamp - second and third word

31 16 13 0
| Reserved | Macrotick

Figure 7-7: FPGA TX frame data definition message format - Macrotick - second word

31 1615 0
| Cyele | Macrotick

Figure 7-8: FPGA TX frame data definition message format - Macrotick and Cycle - second word

FPGA_TX_FRAME_DATA_UPDATE

The Slot ID is needed to identify the TX buffer in the FPGA in which we want to
update the data

31 19 18 1110 0
| Fazarved | New Pavload Lensth | Slot ID}

Figure 7-9: FPGA TX frame data update message format

FPGA_COLDSTART, FPGA_JOIN and FPGA_FREEZE

All of these commands only have one other index byte which identifies the target FPGA

controller.

62

Communication protocol

FPGA_RUN_TEST

This feature is not yet supported. The platform is prepared for this feature to be

implemented in the future.
RUN_TASK and SUSPEND_TASK

Either command carries only one byte with the index of the task to run or suspend.

SEND_FPGA_DESIGN_START

By sending this command the application signalizes the start of sending a new FPGA
configuration. First the command type is followed by a uint32 value of the design's total
length in bytes. Afterwards comes the number of packets in which is the data going to be

fragmented.

3l
| Total Lansth [betas]

Figure 7-10: Send FPGA design message format - bytes 0 to 3

15 0
| Number of Data pacleats

Figure 7-11: Send FPGA design message format - bytes 4 to 5

SEND_FPGA_DESIGN_DATA

The command code is followed by a uintl6 value of an ordinal number. The MCU
checks this number upon reception whether it is equal to the previous one increased by one.

The data as an array of bytes comes after.

15 0
| Otrdinal Mumbar

Figure 7-12: Send FPGA design data message format

63

Communication protocol

742. MCUtoPC

Response type Code value | Contains
Data
CONFIG_READOUT_RESPONSE 0x01 Yes
SUPPORTED_COMMANDS_AND_VERSION_RESPONSE 0x02 Yes
MCU_FR_CONFIG_FAIL 0x03 No
MCU_FR_PARAM_CONFIRMATION 0x04 No
MCU_FR_SLOT_INFO_CONFIRMATION 0x05 No
MCU_FR_FRAMES_PARTIAL_CONFIRMATION 0x06 No
MCU_FR_FRAMES_DONE_CONFIRMATION 0x07 No
FPGA_FR_CONFIG_CONFIRMATION 0x08 Yes
AVAILABLE_TASKS_RESPONSE 0x09 Yes
FPGA_DESIGN_CONFIRMATION O0X0A No
FPGA_DESIGN_FROM_FLASH_CONFIRMATION 0x0B No
FR_DATA 0x0C Yes
STATE_MACHINE_ERROR 0x0D No
CONSOLE_DATA 0x0E Yes
FPGA_TEST_FINISHED O0x0F Yes
MCU_STARTUP_SUCCESS 0x10 No
MCU_STARTUP_FAIL 0x11 No
FPGA_STARTUP_SUCCESS 0x12 Yes
FPGA_STARTUP_FAIL 0x13 Yes
FPGA_TEST_STARTED 0x14 Yes
FPGA_DESIGN_FAILED 0x15 No
FPGA_NEW_READOUT 0x16 Yes
FPGA_BUFF_CONFIG_CONF 0x17 Yes

Table 7-5: MCU to PC response table

CONFIG_READOUT_RESPONSE
The response has only one byte with the number of FlexRay controllers in the FPGA.
SUPPORTED_COMMANDS_AND_VERSION_RESPONSE

The three bytes in Figure 7-13 are followed by a number of bytes defined in the
"Number of commands" section. Each byte contains a supported command code from Table
7-6.

64

Communication protocol

23 16
| MNumber of commands

15 87 0
Subversion | Version

Figure 7-13: Supported Commands and Version Response message format

AVAILABLE_TASKS_RESPONSE

This response contains a list of available tasks as an array of characters. Tasks are
separated by the ' character. It is therefore forbidden from being used in task's name. Here is
an example with three tasks:

"Taskl|Task2|Task3|"
Each character is ASCII coded in one byte.

FR_DATA

The word in Figure 7-14 is followed by ceiling (%) bytes of data. This message

reports received FlexRay frames to the application.

31 3029 23 22 21 20 19 18
| | PIR 18] Svne |Startup [A |B |

is g 7 1]
| 8ot ID | RCC

Figure 7-14: FlexRay Data Message Format

CONSOLE_DATA

This feature is not yet supported. The platform is prepared for this feature to be

implemented in the future to display the messages during testing.
FPGA_NEW_READOUT

A message with the new number of FlexRay controllers in the FPGA is sent right after
the last FPGA_FR_CONFIG_CONFIRMATION. The new number of the only payload byte.

65

Conclusion

FPGA Responses
All these commands contain only one byte identifying the source FPGA controller:

e FPGA_TEST_FINISHED

e FPGA_TEST_STARTED

e FPGA STARTUP_SUCCESS

e FPGA_STARTUP_FAIL

e FPGA_FR_CONFIG_CONFIRMATION
e FPGA_BUFF_CONFIG_CONF

8. Conclusion

The objective of this thesis was to develop firmware and software for a platform custom
designed for the testing of automotive communication networks. Specifically, this thesis only
focuses on the FlexRay standard. From a hardware perspective the platform is, however,
capable of communicating over CAN and LIN as well.

The system as a whole had to enable a remote management of tasks. Additionally, the
possibility to remotely reconfigure the FPGA’s design was required. The target platform of
the control application is MS Windows. The application is responsible for managing the
functionality of the whole platform. This includes the ability to monitor communication in a
FlexRay cluster as well as to transmit arbitrary frames of data. Moreover, it was required that

the application could manage FlexRay controllers in the FPGA.

On the firmware side a real-time operating system was to be used. The firmware had to
be designed to support all the platform’s features and acted as a server for the client Windows

application.

All the components from various projects were successfully integrated into the
platform. Namely, the FlexRay controllers from [14] wrapped in a design from [16].
Hardware of the platform [12] has proven to be fully functional. Performance of the entire
system met expectations. However, shortcomings of the TMS570 microcontroller were
discovered during the development of this thesis. Its extreme sensitivity caused multiple
samples to malfunction. It would therefore be advisable not to use this particular

microcontroller in the future.

66

References

FreeRTOS was chosen as the real-time operating system for this project. Ultimately,
this was a satisfactory choice. FreeRTOS was capable of providing the exact set of features to

fulfill the platform’s needs. It also met all requirements performance-wise.

A decision was made to use TCP as the basis for communication between the server
(firmware) and the client (Windows application) of the system. TCP was selected for its
throughput, reliability and simplicity. The open-source IwIP stack used in this thesis was
successfully ported for this purpose and met our requirements. A custom binary-based

communication protocol was designed between the server and the client.

The Windows application offered a number of additional features for user’s
convenience. It utilized the .NET platform which limited the portability of the code.
Nevertheless, it offered a rich API that facilitated the parsing of fibex files and provided an

easy access to the local database file.

During the development of this thesis a couple of ideas for future improvement
presented themselves. First of all, it was found that the platform could be ready for the
implementation of testing sequences for which the FlexRay controllers in the FPGA were
specifically designed. The tests were, however, out of the scope of this thesis. Moreover, the
option to trigger on certain conditions could be added Monitoring tab. The task management
feature could be expanded by adding configurable priorities and by the possibility to pass user

data to the tasks through queues.

References

[1] Malinsky, J.: Intrusive Tests in FlexRay Standard, doktorska diserta¢ni prace CVUT
2009

[2] FlexRay Consortium, FlexRay Protocol Specification V2.1 Rev. A, 2005

[3] IEEE standard 802.3 — 2008

[4] Texas Instruments Inc., TMS570LS31x/21x 16/32-Bit RISC Flash Microcontroller,
Technical Reference Manual, 2011

[5] Robert Bosch GmbH, E-Ray FlexRay IP Module, Application Note AN002 Startup,
2007

[6] FlexRay Consortium, FlexRay Protocol Specification V2.1 — errata sheet, 2005

[7] FlexRay Consortium, FlexRay Electrical Physical Layer Specification V2.1, 2005

67

References

[8] Pokorny V.: Metody méteni vybranych parametrd komunikac¢niho standardu FlexRay a
jejich implementace, diplomova prace CVUT 2007

[9] Richard Barry, Using The freeRTOS Real Time Kernel, A practical guide, PIC32
Edition, 2009

[10] Association for Standardisation of Automation and Measuring Systems, Field Bus
Exchange Format, Version 3.0, 2008

[11] Zeman M.: Firmware of Ethernet/FlexRay Gateway ,bachelor's thesis CTU Faculty of
Electrical Engineering 2012

[12] Blecha J.: Programmable test platform, master's thesis CTU 2014

[13] IwlIP stack documentation, http://lwip.wikia.com/wiki/LwIP_Wiki

[14] Patak M.: Methods for Testing of the FlexRay Startup Mechanism, master's thesis CTU
Faculty of Electrical Engineering 2012

[15] Schéauffele, J., Zurawka, T.: Automotive Software Engineering, SAE International 2005,
ISBN 0-7680-1490-5

[16] Ille, O.: Programové vybavenie testovacej platformy, bakalaiska prace CTU Faculty of
Electrical Engineering, 2014

68

