
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science and Engineering

Platform for semantic extraction
of the web

Jakub Podlaha
Artificial Intelligence
podlajak@fel.cvut.cz

January 2015
Supervisor: Ing. Petr Křemen, Ph.D.

Acknowledgement / Declaration
I’d like to thank my parents and fam-

ily for enormous support, my supervisor
for endless patience and guidance and
my friends for not letting me go insane.

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré informační zdroje v souladu s
Metodickm pokynem o dodržování et-
ických principů při přípravě vysokoškol-
ských závěrečných prací.

V Praze dne 5.1.2015

iii

Abstrakt / Abstract
Tato diplomová práce zkoumá téma

semantické extrakce dat. Hlavním cí-
lem této práce je navrhnout nástroj
pro zjednodušení procesu anotování a
sbírání dat z webových stránek.

Nejdříve pro specifikaci řešeného pro-
blému a motivaci, definujeme několik
případů užití z reálného života týka-
jících se semantické extrakce dat. Pro
každý z těchto případů popíšeme v čem
tkví jeho náročnost. Ze všech případů
pak odvodíme souhrný vzor a určíme
požadovaný postup extrakce.

Následně stručně popíšeme základní
technologie používané při práce se
semantickými daty. Prozkoumáme exis-
tující nástroje a platformy pro auto-
matizovanou extrakci dat založené na
popsaných technologiích. Zaměříme se
zejména na ty, teré odpovídají požado-
vanému postupu extrakce.

Vybereme nejnadějnější nástroje a
provedeme detailní analýzu zvláštních
technik použitých při jejich implemen-
taci. Pro každý nástroj popíšeme hlavní
část našeho zájmu, spolu s přínosy a
nedostatky, které přináší. Během této
analýzy se obzvláště zaměříme na způ-
sob, jakým uživatel zadává pravidla
pro extakci dat a jakými nastavuje jeji
proces. Dále prozkoumáme knihovny a
platformy, semantické i nesemantické,
které by mohly sloužit jako základ pro
implementaci prototypu navrhovaného
designu.

Na základě zkoumaných postupů pro-
zkoumáme možnosti jejich kombinace
a jejich případných zdokonalení. Kon-
krétně definujeme formát scénáře pro
extraktor semantických dat a navrh-
neme nástroje pro tvorbu scénářů a pro
extrakci dat. Abychom návrh podpořili,
vytvoříme a popíšeme prototyp obou
nástrojů.

Překlad titulu: Platforma pro séman-
tickou extrakci webu

This diploma thesis investigates the
topic of semantic data extraction. Its
main goal is to design a tool that would
simplify the process of annotation and
scraping of data from pages on the web.

First, we define several real life use
cases of data extraction task as a prob-
lem specification and motivation. For
each use case we explain what is its ma-
jor challenge. From all the use cases, we
derive common pattern based on which
we define the desired workflow of the
data extraction.

Then we briefly describe underlying
technologies used for handling the se-
mantic data. We investigate existing
tools and platforms for automated data
extraction based on these technologies.
We focus on the tools which conform to
the defined workflow.

We then choose the most promising
tools and deeply analyse specific tech-
niques used in their implementation.
For each tool we describe in detail the
main part of our interest, its benefits
and drawbacks. During this analysis
we pay special attention to the form
in which user defines rules for data
extraction and configures the extrac-
tion process. Additionally, we examine
semantic and non-semantic libraries
and platforms that might serve as a
base technology for implementation of
a prototype of the proposed design.

Based on the analysed techniques
we research options for best combina-
tion and improvement of each of them.
Namely, we define format of scenario
for semantic data extractor and design
tools for scenario creation and for per-
forming the data extraction. To support
the design we implement and describe
prototypes of both tools.

iv

Contents /
1 Introduction .1
1.1 Problem Statement and Mo-

tivation .1
1.2 Use Cases .3

1.2.1 Use Case 1 – basic ex-
ample case.3

1.2.2 Use Case 2 – National
Heritage Institute4

1.2.3 Use Case 3 – Air Ac-
cidents Investigation
Institute .6

1.2.4 Use Case 4 – National
Transportation Safety
Board .8

1.3 Current solution crOWLer9
1.4 Proposed Solution and

Methodology 10
1.5 Specific goals of the thesis 10
1.6 Work structure 10

2 Principles and technologies 11
2.1 Technology of Semantic Web . . 11
2.2 Linked Data . 12
2.3 RDF and RDFS. 12

2.3.1 URI . 12
2.3.2 RDF and RDFS vo-

cabulary 13
2.4 OWL . 13
2.5 RDFa . 13
2.6 SPARQL . 13
2.7 RDF/XML syntax 14
2.8 Turtle syntax 14

3 Existing solutions 15
3.1 Semantic and non semantic

crawlers. 15
3.1.1 Advantages and pit-

falls of Semantic
crawlers 15

3.2 Analysis of crOWLer 16
3.2.1 Issues of crOWLer con-

figuration 17
3.2.2 Confrontation with use

cases – technical issues . . 18
3.2.3 Result form crOWLer

analysis 20
3.3 Strigil . 21

3.3.1 What problem does it
solve? . 21

3.3.2 Strigil vs crOWLer. 21
3.3.3 Confronting Strigil

with use cases 22
3.3.4 What inspiration it

brings for crOWLer 24
3.4 Finding platform for frontend . 24

3.4.1 InfoCram 6000 –
ExtBrain 24

3.4.2 Selenium 25
3.5 Libraries for SOWL. 27

3.5.1 jQuery . 27
3.5.2 jOWL. 28
3.5.3 rdfQuery 28
3.5.4 aardvark 28

4 Program design. 29
4.1 Workflow . 29

4.1.1 Main line 30
4.1.2 Scenario creation. 30
4.1.3 Additional branches to

Scenario Creation 30
4.1.4 crOWLer scraping 30

4.2 Designing scenario format 30
4.2.1 Strigil/XML. 31
4.2.2 Adaptation of Strig-

il/XML format 32
4.2.3 SOWL/JSON 32
4.2.4 Consequences of con-

version to JSON format . 33
4.3 JavaScript and events sup-

port . 33
4.4 User Interface 37

4.4.1 SOWL user interface. 37
4.4.2 crOWLer user interface . . 37

4.5 Model . 37
4.5.1 SOWL model. 37
4.5.2 crOWLer model 38

5 Program Implementation and
Specifications . 39

5.1 SOWL implementation 39
5.1.1 Parsing Ontologies in

JavaScript 39
5.1.2 Targeting elements on

webpage and generat-
ing selectors 40

v

5.2 crOWLer implementation 41
5.3 SOWL/JSON syntax 41

5.3.1 template 42
5.3.2 call-template 42
5.3.3 onto-elem 42
5.3.4 value-of 42
5.3.5 narrow . 42
5.3.6 function 43

6 Conclusion . 44
References . 46

A Assignment . 50
B Abbreviations . 51
C RDF and RDFS vocabulary 52
D Example of RDF/XML syntax . . 53
E Configuration component of

original crOWLer 54
F Selector component of original

crOWLer . 55
G crOWLer architecture 56
H Detailed architecture of Strigil

platform . 57
I SOWL/JSON scenario solving

Use Case 1 . 59
J Result of crOWLer run on UC1 . 61
K Example of JSON dump of

rdfquery datastore 63
L User manual for SOWL and

crOWLer . 65
L.1 SOWL . 65
L.2 crOWLer . 65

vi

Tables / Figures
C.1. RDF and RDFS vocabulary . . . 52 1.1. A screenshot of an example

main and detail page for the
basic use case .3

1.2. An activity diagram of the
general workflow of the stack4

1.3. Partial view at data on Na-
tional Heritage Institute web-
page .5

1.4. Preview of HTML analysis
on National Heritage Insti-
tute webpage .5

1.5. Partial view at data on Na-
tional Heritage Institute web-
page .6

1.6. View on list page on Air Ac-
cidents Investigation Institute . . .7

1.7. View on detail page on Air
Accidents Investigation Insti-
tute .8

2.1. Logo of Semantic Web 11
2.2. Linking Open Data cloud di-

agram . 12
3.1. General architecture of the

original crOWLer implemen-
tation . 16

3.2. Core classes of original
crOWLer implementation 17

3.3. Overall Architecture of Strigil . 21
3.4. Main Window of InfoCram

6000 . 25
3.5. Image of Selenium IDE 26
4.1. Diagram of the general work-

flow of the stack 29
4.2. Components structure of the

SOWL Firefox addon 38
4.3. A new overall architecture of

the crOWLer implementation . 38
5.1. Overview of the whole stack

and files exchanged. 39
5.2. Diagram of selector creation

algorithm . 40
5.3. The overall architecture of

new crOWLer implementa-
tion . 41

H.1. Components of Data Appli-
cation part of Strigil 57

vii

H.2. Components of Download
System part of Strigil 57

H.3. Example deployment struc-
ture of Strigil 58

viii

Chapter 1
Introduction

During past few years the Web has undergone several bigger or smaller revolutions..WEB 2.0 and tag cloud.HTML5 and semantic tags.Smart-phones, tablets, responsivity and mobile web everywhere.The run out of IPv4 addresses, nonexistent boom of IPv6.Cloud technologies and BigData.Bitcoin, Tor, anonymous internet.WikiLeaks, NSA, Heartbleed and security concerns.Google Knowledge Graph, Facebook Open Graph, ...

That is only several examples of some of the biggest recent technology booms and
issues on the global network. So little can mean so much in such a global environment.
The environment online is constantly changing, usually on a wave of some new, useful
or, sometimes, terrifying technology or with popularization of a new phenomena. The
Semantic Web technologies have been described, standardized and implemented for
several years now 1) and their tide seems to be near, though yet to come.

Semantic Web itself relates to several principles (along with their implementation)
that allow users to add meaning to their data. This meaning brings not only a stan-
dardized structure, but also, as a consequence, the possibility to query and reason on
data originating from multiple sources. Once given the structure, similar data can be
joined in a form of a bigger bulk. Presenting this data publicly creates a virtual cloud.
When put together this practices are called the Linked Data.

The intention of this work is to bring the Semantic Web technologies closer to users.
Specifically it focuses on the process of creation of semantic data. We will propose
a methodology for extracting and annotating data out of unstructured web content,
along with a design of a tool, to simplify the process. The design will be supported by
implementation of a prototype of the tool. Results will be confronted with real life use
cases.

1.1 Problem Statement and Motivation
Giving meaning, i.e. semantization of web pages, gets more popular. Probably the
most obvious example can be seen in the way the Google search engine serves its
results. When possible, Google presents not only the list of pages corresponding to
the searched term but also snippets of information scraped directly from the content
of the pages such as menu fields parsed from CSS annotation or HTML5 tags, contact
information or opening hours. When applicable Google also adds data from their own
internal ontology, the Knowledge Graph[2].

1) One of the most recent standards – OWL2 – was released in 2008 [1]

1

. 1.1 Problem Statement and Motivation

What options are there to bring real semantic into a webpage? One direction to go
is to annotate data on “the server side”, i.e. at the time it is being created and/or
published. When we are in position of owner of the data or server, we can help not
only Google or DuckDuckGo1) to understand our website. To avoid confusion, this
part is not focused on SEO – the search engine optimization[3], even though the topic
overlaps in many ways. SEO primarily focuses on increasing the ranking of a webpage
in the eyes of a search engine whereas pure semantization focuses on best describing
the meaning of the pages content no matter how good or bad it appeals to anyone as
long as it is valid according to standards of Semantic Web[4] and Linked Data[5].

In order to perform semantization on the server side, the person or engine creating
the data have to use the right tool and put some time and effort giving the data the
appropriate annotation. There are standards covering this use case.

In the simplest form the HTML5[6] brings in tags for clearer specification of the page
structure (such as nav, article, section, aside, and others).

Microformats[7] define specialized values for HTML class attribute to bring stan-
dardized patterns for several basic use cases with fixed structure, such as vCard or
Event. The microformat approach is easy to implement as it does not impose any extra
syntax an can simply embed an existing page source. As the community around micro-
formats states “(Microformats are) designed for humans first and machines second.”

Last but not least, we can use joined power of HTML and RDFa [8] to annotate data
on a webpage with an actual ontology. This technology is part of the Semantic Web
stack and we will describe it closer in next chapter 2.

Annotating data on the server side enables users to use tools to highlight data they are
specifically interested in, extract them and reason on them. Services can use annotated
data, combine them and offer new results based on merged knowledge obtained from
multiple sources. Providing data in such a form makes server a part of Linked Data
cloud. For completeness let us mention some examples of utilities for extracting and
testing or scraping structured data:.Google Structured Data Testing Tool (i.e. rich snippets) [9].RDFa Play – tool for visualisation and extraction of RDFa content [10].LDSpider – a semantic data crawler [11]

Unfortunately, it is not always possible or desired by the web owner to embed se-
mantics into their data and support it. Vast majority of the web holds plain text data
without any machine readable meaning given to it, leaving it on human readers to
understand it.

To bypass the gap between unstructured data present on the web on one side and
rich, linked, meaningful ontologies on the other, we can take the opposite direction to
the one described so far. We can take the unannotated data already present on the web
and retrieve them in a form, defined by some ontology structure.

In some use cases the ontology of the desired data is yet to be created and the user
is aware of the data structure and capable to manually spot and select the data on a
web page. Currently there are not many tools allowing this kind of operation. The
ideal implementation and the vision of result of this thesis will allow user to partially
identify the structure of a webpage while leaving the repetitive tedious work on crawler
following the same procedure repeatedly on all data of the page.

For such a process we need to create tools that allow users to address previously
unstructured content, link it to resources of existing ontology and/or create these re-

1) An anonymous search alternative to Google http://duckduckgo.com

2

http://duckduckgo.com

. 1.2 Use Cases

sources on-the-go. By using existing ontologies we would not only give the meaning to
our data, but also create valuable connection to any other dataset annotated using the
same ontology.

1.2 Use Cases
In a general case our goal is to “obtain data from a webpage in a semantic form.” We
have a webpage and optionally an ontology as an input and annotated set of data as
an output.

For start, we will focus on data having a structure defined in HTML. The data might
be structured as a table or set of paragraphs or any other set of HTML tags, and we
will handle it on the level of these tags. Some text handling might be performed using
regular expressions but usually we will simply select a HTML tag and use its content
along with some annotation.

In the “friendliest” cases the data we want to scrape are formed in some repetitive
form, most often a table. This is the best case as we can simply define structure on
one row of the table and repeat the same pattern over and over. Sometimes the table
spreads over several pages, so we need to define a way of advancing to the next page
and start over.

Following sections contain description of several use cases that shall be solvable using
design proposed in this thesis.

1.2.1 Use Case 1 – basic example case
http://www.inventati.org/kub1x/t/

The first use case is the simplest task that will be covered by the implemented
prototype. As you can see on the picture 1.1 it consists of table holding values about
people, and link to a detail page for one of them. On the detail page there is a field
with “nickname”.

Figure 1.1. The example main page and detail page for the basic use case.

In order to fulfill this use case SOWL shall support following operation:.Load the FOAF ontology that contains resources to describe data about people..Create scenario with two templates: init and detail..Save this scenario to a file.

CrOWLer shall be able to to perform following tasks..Parse scenario created by SOWL and follow it while scraping data from the page..Store results into RDF files.

3

http://www.inventati.org/kub1x/t/

. 1.2 Use Cases

Figure 1.2. Diagram of general workflow as derived from presented use case

This use case defines the simplest functionality that have to be implemented by
both programs. It covers resources handling, scenario creation and running and finally
storage of the results. It helps to define the proper behavior of the program as it is
written in simple, valid HTML5 code without any JavaScript and all elements can be
simply targeted by CSS or XPath selectors.

1.2.2 Use Case 2 – National Heritage Institute
http://monumnet.npu.cz/pamfond/hledani.php

The webpage of National Heritage Institute of Czech Republic 1.3 gives a public
access to a table of damages of national monuments. This is of interest for project
MONDIS 1) partially developed on our school. Its main purpose is a documentation
and analysis of damages and failures of cultural heritage objects.

The data were successfully crawled by the original implementation of crOWLer. The
goal of following development is to replicate the behavior with new implementation
using scenario driven crawling process instead of process driven by hardcoded configu-
ration.

The main challenge of this use case lays in JavaScript. Each row of the data table has
the onclick attribute defined. Unlike the classical “link” (also known as the anchor

1) https://mondis.cz

4

http://monumnet.npu.cz/pamfond/hledani.php
https://mondis.cz

. 1.2 Use Cases

Figure 1.3. Partial view at data on National Heritage Institute webpage

or a tag) the onclick attribute does not contain URL, but rather a JavaScript function
content, that handles the click event. After closer investigation 1.4 we can observe that
in this case, the function advances to the detail page of the clicked record by modifying
a value of a hidden input tag and by submitting a form parametrized by the value.

Figure 1.4. A preview of HTML source analysis on National Heritage Institute webpage

If possible, we would simply simulate the user “click” action to advance to the de-
tail page and the “back” action (usually performed by the Back button of browser or
Alt+left keyboard shortcut) to get back and follow on next line. This approach will be
analyzed further in this work.

If the stated approach can not be implemented to give the expected results the
original approach will be simulated by the new scenario driven structure. This means
crOWLer will be getting the content of the onclick attribute, parsing it using regular
expression and combining it with a predefined pattern into an URL to be directly called
using call-template.

Additionally this use case hides one more pitfall that, this time, challenges the selector
creation. The web page uses JavaScript to colorize table rows when user hovers them
with mouse cursor. Using a deeper analysis, we can figure out, that table lines are given
additional CSS on certain mouse events. This is often a sign of poor web practices as
the same behavior can be achieved by :hover CSS selector without a need of additional
class, but it is an example of a challenge that our tool need to overcome. In this very
case, we probably will not be able to generate selectors using CSS classes and will rely
only on tag names, positions and other identifiers, if applicable.

Additional requirement on SOWL to those in Use Case 1 1.2.1:.allow manual resources creation. record the click event.OR.access the onclick attribute

5

. 1.2 Use Cases

Figure 1.5. View on detail page on National Heritage Institute webpage.

. enable string handling using regular expressions. record a call-template on the resulting URL

Additional requirements on crOWLer. simulate the click event.OR.handle the attribute according to the string filters.do call-template on the result as URL

The outcome of this use case and its analysis brings an important message. In many
cases we will have to dive into the implementation of the processed webpage to find
out how it behaves. In a vast majority of these cases it will require a web developer or
coder to correctly and exhaustively define the scraping scenario.

1.2.3 Use Case 3 – Air Accidents Investigation Institute
http://www.uzpln.cz/cs/ln_incident

This is basic use case with a table, a detail page and a pagination. Everything is
present in a clear HTML form without any interruption by JavaScript.

In this case we might consider replacing repetitive values by an object instance car-
rying the information. For example the table shows column “Event type” (in Czech
original: “Druh události”). It contains constant values of “Incident”, “Flight accident”
and several more. A resource can be created to denote these types of accidents. The
resource corresponding to the string scraped from table would than be used as a value
of object property instead of the original string literal. The original literal is assigned
to this resource as a “label”.

For example we can use (in turtle syntax 2.8):

6

http://www.uzpln.cz/cs/ln_incident

. 1.2 Use Cases

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
@prefix rlp: <http://kub1x.org/dip/rlp#>
<rlp:event-xFuHbjA5> a <rlp:event>;

<rlp:hasEventType> <rlp:flightAccident>.

<rlp:flightAccident> <rdfs:label> "Letecká nehoda"@cs.

Instead of:

@prefix rlp: <http://kub1x.org/dip/rlp#>
<rlp:event-xFuHbjA5> a <rlp:event>;

<rlp:hasEventType> "Letecká nehoda"@cs.

Motivation for the previous instantiation lays in the following use case. As it uses the
same domain – flight accidents – it might use some of the resources previously defined
here. For the event type it would probably use exactly the same instances, and would
only add the English label to them.

This should not be much of a problem as long as we can specify an URI identifier
when creating an instance of an ongological object. In the example above the identifier
is: <rlp:flightAccident>. Another identifier in the example is the URI of the event:
<rlp:event-xFuHbjA5>. This one was chosen from an URL of a PDF file on the page.

From previous paragraph, we define another useful functionality: conditioning on
string literals and specifying URIs of instances directly in the scenario either as a
constant string or obtained by combining other string values probably in a form of a
pattern.

Figure 1.6. View on list page on Air Accidents Investigation Institute

. specifying a pattern for creation of URI of each instance.adding language tag to all string values.possible usage of geographical ontology.possible usage of enumeration

7

. 1.2 Use Cases

Figure 1.7. View on detail page on Air Accidents Investigation Institute

1.2.4 Use Case 4 – National Transportation Safety Board
http://www.ntsb.gov/investigations/AccidentReports/Pages/aviation.aspx

This use case serves mainly to demonstrate usage of the same ontology vocabulary on
two different data sources. Additionally we might fill default values in place of missing
ones in this table. For example the country value isn’t specified for majority of the
event records, but we can determine by the “State” field, that they happened in United
States.

We will have to deal with JavaScript again. As we can see from the URL of the
site (having the “.aspx” suffix), we are dealing with Active Server Pages, created by
ASP.NET server. The whole table with all its sorting functionality and pagination is
generated by the server and defined by the framework used on the server side. The
pagination is of our consideration as it loads data into the table using AJAX call. This
means data are loaded dynamically and we do not have easy access to the low level
network communication happening in behind.

The options we have are analogical to those in second use case 1.2.2. We can either
simulate the user action of “clicking on the next page button” or deeply analyze the
JavaScript behind the pagination and perform the AJAX call manually.

The situation here is slightly different from the one in UC2 1.2.2 though. If we
successfully emulate the user action for both use cases, in UC2 we will have to perform
it for each line in the table (thus “during” creation of consistent ontological object and
within iterating the table) whereas in this use case, we only perform the “click” when we
need to load completely new set of data. The difference might not seem so essential at a
first glance but the devil is in the detail: user action modifies or replaces current DOM
object and the original information is lost. This does not apply to regular transfer to a
new page using URL because we can use completely separate REST call. Technically
it is identical to clicking a ling versus opening it in a new tab in your browser, only in
crOWLer these operations are performed internally on lower level..adding default value if no content is found

8

http://www.ntsb.gov/investigations/AccidentReports/Pages/aviation.aspx

. 1.3 Current solution crOWLer

Figure 1.8. View on list page on National Transportation Safety Board webpage.

Figure 1.9. View on detail page on National Transportation Safety Board webpage.

1.3 Current solution crOWLer
The suggested base-technology is being developed on our faculty. Crawler called
crOWLer serves the needs of extracting data from web. It follows the workflow of
scraping data using manually created scenario with given structure and user-defined
set of ontological resources.

In previous implementation, both, the scenario, followed by the crawler, and the
ontology structure/schema are hard-coded into the crOWLer code. This requires un-
necessary load of work for each particular use case, whilst in practice all the use cases
share the same workflow.

1. load the ontology
2. add selectors to specific resources from the ontology
3. implement the rules to follow another page
4. run the crawling process according the above

9

. 1.4 Proposed Solution and Methodology

In the original crOWLer implementation it was necessary to fulfill the first three
steps with an actual programming. In order to perform this task, we needed to have a
programmer with knowledge of Java programming language, and several technologies
used on the web. Moreover a knowledge of the domain of data being scraped is needed
in order to correctly choose appropriate resources for annotation. There is also a huge
overload in preparation of development environment and learning time of the crOWLer
implementation. The need of more elegant and generic solution is evident.

1.4 Proposed Solution and Methodology
To simplify the creation of guidelines – scenarios – for crOWLer, we will propose a
tool that allows user to select elements directly on the crawled web page, with all the
necessary settings, pass the scenario created to the crOWLer and obtain the results in
a form of an RDF graph.

1.5 Specific goals of the thesis
.define use-cases for the semantic data creation. create syntax for scenario used by crOWLer. implement a web browser extension for creating these scenarios. this extension shall. load and visualise ontology. join page structure and ontology resources in a form of scenario. serialize scenario and necessary ontological data.parse the scenario by crOWLer. run crOWLer following the scenario. store the extracted data

1.6 Work structure
Next part of this work 2 will cover tools and technologies (and the related lingo) used
in this work and in the field.

Chapter 3 will describe research on existing solutions and how they influenced results
of this work.

Chapter 4 is the main part and describes the proposed design.
Chapter 5 gives details about the prototype implemented according to proposed

design.
Both, design and implementation, will then be confronted against the real life use

cases1.2.

10

Chapter 2
Principles and technologies

In following chapter we will provide basic information about technologies of Semantic
Web and Knowledge Representation. The terminology often used in the field will be
defined to help full understanding before we proceed to the design and implementation.

2.1 Technology of Semantic Web

Figure 2.1. Logo of Semantic Web

Wikipedia defines Semantic Web as a collaborative movement led by international
standards body the World Wide Web Consortium (W3C) [4]. W3C itself defines Se-
mantic Web as a technology stack to support a “Web of data,” as opposed to “Web
of documents,” the web we commonly know and use [12]. Just like with “Cloud” or
“Big Data” the proper definition tends to vary, but the notion remains the same. It is
collaborative movement led by W3C and it does define a technology stack. It also in-
cludes users and companies using this technology and the data itself. Technologies and
languages of Semantic Web such as RDF, RDFa, OWL, SPARQL are well standardized
and will be described in following sections of this chapter.

As a general logical concept of the technology, languages of Semantic Web are de-
signed to describe data and metadata, give them unique identifiers – so that we can
address them – and form them into oriented graphs. The metadata part define a schema
of types (or classes) and properties that both can be assigned to data and also relations
between this types and properties themselves. Wrapped together this metainformation
is being presented in a form of ontology. When some data are annotated by resources
from such an ontology we gain power to reason on this data, i.e. resolve new relations
based on known ones, and also to query on our data along with any data annotated
using the same ontology.

On low level of the implementation we deal with simple oriented graph. The graph
structure is defined in a form of triples. Each triple consists of three parts: subject,
predicate and object, which all are simply resources listed by their identifiers (URIs). In
this very general form we can express basically any relationship between two resources.
On a level of classes and properties, we can define hierarchies, or set a class as a domain
of some property. On lower, more concrete level we can assign a type to an individual.
On a level of ontologies, in a way a “meta–meta” level, we can specify for instance an
author, description and date it was released. Each of the relations is described using
triples and together form one complex graph.

11

. 2.2 Linked Data

2.2 Linked Data
Wikipedia defines Linked Data as “a term used to describe a recommended best prac-
tice for exposing, sharing, and connecting pieces of data, information, and knowledge
on the Semantic Web using URIs and RDF.” Just like Semantic Web it is a phenom-
ena, a community, a set of standards created by this community, tools and programs
implementing these standards and people willing to use these tools and, of course, the
data being presented. Linked data effort strives to solve the problem of unreachability
of majority of the knowledge present on the web, as it is not accessible in machine
readable form, doing so by defining standards and supporting implementation of those
standards.

To imagine current state of the Linked Data we can take a look on the Linking
Open Data cloud diagram[13]. The visualisation 1) contains a node for each ontology
and shows known connections between ontologies. The data originate from http://
datahub.io, a popular web service for hosting semantic data. Current diagram visu-
alises the state of linked data cloud in April 2014. As we can see in the center, many
data resources are linked to DBpedia 2), the semantic data extracted from Wikipedia.
This best describes the notion of Linked data. When two datasets relate to the same
resource, they can be logically linked together through this connection, as this way they
state, they relate to the same thing.

Figure 2.2. The Linking Open Data cloud diagram

2.3 RDF and RDFS
RDF is a family of specifications for syntax notations and data serialization formats,
meta data modeling, and vocabulary used for it [14].

We will look closely on URI, the resource identifier, vocabularies and semantics de-
fined by RDF, RDFS, and OWL, and serialization into Turtle and RDF/XML formats.

2.3.1 URI
In order to give each resource an unique identifier a Uniform Resource Identifier is
used. This is mostly in a form of URL as we commonly know it as “web address” (e.g.
1) http://lod-cloud.net/versions/2014-08-30/lod-cloud_colored.svg
2) http://dbpedia.org

12

http://datahub.io
http://datahub.io
http://lod-cloud.net/versions/2014-08-30/lod-cloud_colored.svg
http://dbpedia.org

. 2.4 OWL

http://www.example.org/some/place#something). This literally specifies address of
resource and in many cases can be directly accessed in order to obtain the related
data. In some cases we can use URN as well. URN as opposed to URL allow us to
identify a resource without specifying its location. This way we can for example use
ISBN codes when working with books and records, or UUID1), a Universally Unique
Identifier widely used to identify data instances of any kind.

2.3.2 RDF and RDFS vocabulary
In order to work with data properly, RDF(S) vocabulary defines several basic resources
along with their semantics.

These are the basic building blocks of our future RDF graphs. The semantics defined
in the specification 2) allows us to specify class hierarchy, properties with domain and
range as well as use this structure on individuals and literals. This is the most general
standard that lays under every ontology out there.

2.4 OWL
Additionally to RDF and RDFS the OWL – Web Ontology Language, is a family of
languages for knowledge representation. OWL extends syntax and semantics of RDF,
brings in notion of subclasses and superclasses, distinction between datatype properties
and object properties, defines transitivity, symmetricity and other logical capabilities of
properties. When querying an OWL ontology, it allow us to use unions or intersections
of classes or cardinality of properties. All this capabilities come in with well defined
semantics. Usage of each feature brought in by OWL semantics extends requirements on
resolver being used for reasoning on our ontology and brings in necessary computational
complexity.

2.5 RDFa
RDFa technology defines a concept of embedding content of a web document defined
in HTML with resources from some ontology. Technically we create a invisible layer of
annotations over the data that turns our content into machine readable record. This is
accomplished by embedding the original HTML with custom attributes. Tools can be
used to visualise this data 3).

2.6 SPARQL
SPARQL is a semantic query language for data stored in RDF format [15]. Using
SPARQL syntax we define a pattern of the RDF graph using triples and as a result
we obtain such a nodes that form a subgraph of the original graph matching the given
pattern. So called SPARQL endpoints are the main entry points through which users
can obtain data from openly available datasets 4)5).

Below you can see a simple example of a SPARQL query that returns a list of all
resources from database that have a rdf:type associated to it.
1) https://en.wikipedia.org/wiki/Uniform_resource_identifier
2) Major part of the vocabulary is described in appendix C
3) http://rdfa.info/play/
4) http://dbpedia.org/sparql Dbpedia SPARQL endpoint
5) http://linkedgeodata.org/sparql LinkedGeoData SPARQL endpoint

13

https://en.wikipedia.org/wiki/Uniform_resource_identifier
http://rdfa.info/play/
http://dbpedia.org/sparql Dbpedia SPARQL endpoint
http://linkedgeodata.org/sparql LinkedGeoData SPARQL endpoint

. 2.7 RDF/XML syntax

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?target ?name
WHERE {

?target rdf:type foaf:Person;
OPTIONAL { ?target foaf:name ?name }

}

2.7 RDF/XML syntax
RDF/XML is one of formats into which we can serialize our RDF data [16]. It is a
regular XML document containing elements and attributes from the RDF(S) vocabu-
lary. RDF/XML is one of the most common formats for RDF data serialization. An
example from popular FOAF ontology can be found in appendix D.

2.8 Turtle syntax
Turtle syntax is another popular syntax for expressing RDF. It allows an RDF graph
to be completely written in a compact and natural text form, with abbreviations for
common usage patterns and datatypes [17]. Its syntax suits more naturally to RDF
data as it conforms the triple pattern. Follows an example about author of this work.

@base <http://kub1x.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<#me> a foaf:Person;
foaf:name "Jakub Podlaha".

14

Chapter 3
Existing solutions

In this chapter we will describe the research on existing solutions for given task (scraping
and annotating data from a web). The performed search was focused on tools directly
targeting the problem, as well as libraries and technologies that could be included in
the solution or existing open source programs we could build the solution on.

3.1 Semantic and non semantic crawlers
By researching existing solutions, there is currently no open source or openly available
solution that would directly follow the required workflow and fulfill the requirements.

Existing tools named as “Ontology-based Web Crawlers” refer mostly to crawlers
that rank pages being crawled by guess-matching them against some ontology. In those
programs user can not specify data that are being retrieved. Moreover, there is no way
to get involved in the crawling process. The tool is solely used to automatically rank
the relevance of documents which solves different set of problems.

In the case we are trying to solve, the input is one or more documents and one or
more ontologies. The result is data retrieved from the documents and annotated with
resources from the ontologies.

3.1.1 Advantages and pitfalls of Semantic crawlers
To properly target the benefits the semantification of the scraped data brings to the user,
let us quickly follow an evolution from the most primitive technologies for scraping data
to the advanced ones. The ultimate goal is to effectively search in data and maximally
utilize the knowledge it carries.

The simplest approach is manual searching for keywords, or even simple browsing
the web. That might be useful in some cases, but when there is a lot of data, it becomes
exhausting.

Crawling data using simple tools like wget --mirror allows us to load data and then
write a program or script to retrieve a relevant information. This approach takes a lot
of energy for one time only solution of a given problem.

By storing such crawled data into database we obtain persistent database, possibly
automatically obtained by the script from previous case. Such data is static, but can be
queried over and over and possibly re-retrieved when it becomes obsolete. Its structure
is, however, based on programmer’s imagination and needs to be described in order to
understand and handle the data properly.

When a triple store is used as the database in previous case we obtain one-time
solution to our problem. This is technically equal to original state of crOWLer.

When using Ontology-based solution, tailor made for crawling and annotating data
from web, we obtain several benefits “for free”. The tool designed specially for this
purpose makes it easy. Once the data is annotated, we can not only query on them, but
also automatically reason on them and obtain more or more specific/narrow results than
with general data. The attributes and relations within ontology that allow reasoning,

15

. 3.2 Analysis of crOWLer

are usually part of the ontology definition and as such comes in naturally without any
extra effort.

Last for benefits: using ontology from public resource as a schema for our data can
give us correct structure without need for building it from scratch. Also by using some
common ontology, we can join together any accessible data structured according to this
ontology and simply query on resulting super set.

However, semantic crawling is not a silver bullet yet. This technology is still finding
its place and uses and is constantly shaped by the needs of the users.

For instance there is always a threat of inconsistency of an ontology when some data
do not fit the rules or break structure of an ontology. In its state from April 2014
DBpedia states, there is 3.64 million resources, out of which 1.83 million are classified
in a consistent Ontology [18]. That is only half of the data being arguably consistent
with each other. This does not mean that the rest of the data is bad; however it might
cause a inconsistency and prevent us from reasoning on the data if we include a wrong
subset of the data.

Just like with hardcoded crawling technique, the semantic crawling is tightly bound
to the structure of the crawled web. The web is being matched against some pattern
described by selectors and the matching element, when found, is accepted for further
processing. Any change on a webpage structure can lead to broken selectors or links
during the crawling process and make the scenario partially or completely invalid.

Many web pages load their data dynamically using AJAX queries. Some pages simply
change their content frequently (e.g. news pages, forums, user content pages, like video
or music servers and social web applications). Crawling content on such servers would
require almost constant crawling and would cause growth into massive ontology of,
oftentimes, questionable quality.

The semantic crawling is an useful way to effectively obtain and query on data from
the web, but it still have its challenges to overcome.

3.2 Analysis of crOWLer
A thorough analysis of the current program shall precede creation of the final design.
We will focus on architecture, dependencies and components that will have to be reim-
plemented.

Figure 3.1. General architecture of the original crOWLer implementation

In original implementation crOWLer is a prototype of console Java application. It
uses Apache Jena library [19] for handling ontological data and JSOUP library [20] for

16

. 3.2 Analysis of crOWLer

accessing webpages and addressing elements. Instead of scenario file, crOWLer accepts
Java .class files containing an implementation of ConfigurationFactory class. This
factory class builds a Configuration object. In appendix E you can see definition
of classes defining the configuration component of crOWLer. The class diagram in
appendix F describes the InitialDefinition and the Selector classes that are main
building blocks of configuration. Configuration defined using this structure specifies all
the information needed for crawling process:.webpages to be crawled in a form of list or pagination description.way to address data on each page using JSOUP selectors.definition of ontology resources used to annotate the obtained data. setting of how URI will be created for each individual

Figure 3.2. Core classes of original crOWLer implementation

The main program flow of crOWLer lays upon few core classes. The pair
FullCrawler, Crowler (diagram 3.2) form the crawling process loop. In this loop
FullCrawler fetches the source web pages and passes them one by one to the Crowler.
The NextPageResolver, which defines list of pages to be crawled is structure imple-
mented within the configuration and thus is specific for given problem instance. Results
are stored in the outer loop after each scraped page. According to input parameters
data are uploaded into Sesame repository using JenaSesame library, or locally in an
RDF file.

The inner loop performed by Crowler finds a set of HTML elements as defined by
the InitialDefinition class. Each of these elements serve as a root for a tree of
ontological individuals linked by their properties. The tree is in configuration defined
using ClassSpec and PropertySpec classes that hold definition of type of the individual
and the assigned property respectively. The spec-classes also carry information about
selector, used to find the corresponding HTML element. A collection of Selector
classes is available and can be extended. JSOUP selector handling is implemented as
well as selector chaining or resolving data from a link target.

In Crowler an individual of an ontological object is created after all his defined
properties values are scraped within the inner loop, as the URI of the individual can
be formed using one or more of these values. This way we can refer to the same object
if we create individual of the same URI on two different pages for example.

3.2.1 Issues of crOWLer configuration
From deeper analysis of the original crOWLer source we can observe that the whole
scraping process relies on the configuration defining it – a set of Java classes, imple-
menting the predefined interfaces and using the API provided.

This reveals the issue being addressed. Writing a crOWLer configuration requires
knowledge of Java programming language along with knowledge of RDF technologies.

17

. 3.2 Analysis of crOWLer

Programmer also gets into the position of ontological engineer when designing ontolog-
ical resources used in the configuration. Knowledge of WEB technologies is needed in
order to properly target elements on the webpage using JSOUP selectors. This is one
of the hardest task as the selectors have to be manually extracted using for example
browser console.

The scenario based approach, focused in this thesis, will enable user to bypass the
Java programming and focus only on matching web structure with an ontology.

3.2.2 Confrontation with use cases – technical issues
In this section the capabilities of the original crOWLer implementation will be con-
fronted with use cases specified for this work 1.2.

For all use cases a separate configuration would have to be created. We will mainly
focus on problems specific for each case.

The first configuration of crOWLer was created for the Monumnet webpage of the
National Heritage Institute, the UC2 1.2.2. Stating that the UC2 can be and was solved
using the hardcoded configuration.

First we will focus on the structure of configuration. Following code is a simplified
snipped of actual configuration building code of original crOWLer implementation. It
uses NPU class as simple static storage for URIs used in our ontology. According to
this configuration a monumnetRecord object is created for each table row as defined by
the initialDefinition. The second part creates district object with its label (found
in third table column denoted by the td:eq(2) JSOUP selector) and assigns it to the
record using hasDistrict object property. The conf object holds the configuration being
passed to the actual crawler.

ClassSpec chObject = Factory.createClassSpec(NPU.monumnetRecord.getURI());
conf.addInitialDefinition(

Factory.createInitialDefinition(
chObject,
Factory.createJSoupSelector("table tbody tr.list")));

ClassSpec sDistrict = Factory.createClassSpec(NPU.district.getURI());
chObject.addSpec(

Factory.createOPSpec(
Factory.createJSoupSelector("td:eq(2)"),
NPU.hasDistrict.getURI(),
sDistrict));

sDistrict.addSpec(true, Factory.createDPSpec(Vocabulary.RDFS_LABEL));

This pattern is, with some variation, repeated for all data properties and object
properties. The interesting part is how crOWLer handles the detail page link. Just
to remind a situation in UC2 1.2.2, each table row of the page uses unique onclick
attribute in following form:

document.listpf.IdReg.value=’131164’; document.listpf.submit();

The numerical value IdReg corresponds to last column of the row and holds the
identification number of the national monument in the MonumNet system. As crOWLer
handles every page as a static HTML document, there is no way to execute this code as
a JavaScript handler. Instead it is being parsed by a regular expression and the result
is used to fill in a format-string creating a URL. This URL locates the detail page for
each table record.

18

. 3.2 Analysis of crOWLer

Factory.createNewDocumentSelector(
conf.getEncoding(),
Factory.createAttributePatternMatchingURLCreator(

"onclick",
".*([0-9]+).*",
MONUMNET_URL+"pamfond/list.php?IdReg=" + "{0}"));

Technically this is a form of a workaround, rather than systematic solution of the
given problem. We can not securely rely on JavaScript code within the attribute as a
part of data. It is important to realize, that the technique used on the webpage is rather
non-standard and can not be effectively covered with general purpose tool without a
need of problem specific solution.

Understanding the configuration implementation we will now briefly analyze the rest
of use cases. crOWLer would solve the UC1 1.2.1 with quite basic configuration. Here
we present a short example:

ClassSpec chObject = Factory.createClassSpec("foaf:Person");

conf.addInitialDefinition(
Factory.createInitialDefinition(

chObject,
Factory.createJSoupSelector("tr")));

// First name
chObject.addSpec(

Factory.createDPSpec(
Factory.createJSoupSelector("td:eq(0)"),
"foaf:firstName"));

// Analogically for the rest of properties

// Link to detail page
chObject.addSpec(

Factory.createDPSpec(
Factory.createChainedFirstElementSelector(

Factory.createNewDocumentSelector(
conf.getEncoding(),
Factory.createAttributePatternMatchingURLCreator(

"href", ".*", KUB1X_URL + "{0}")),
Factory.createJSoupSelector(".nick")),
"foaf:nickname"));

This example is using only classes from the original crOWLer. Note at the bottom
How we define following a link to the detail page. In proper implementation we would
probably simplify the new document selector creation by wrapping it in a single factory
method createLinkTargetSelector, which would internally create selector for the
address targeted by href attribute of the link tag either absolute or relative to current
document (so that we could avoid the explicit specification of URL using KUB1X URL
constant.

If we wanted to get more properties from the resulting page, we would reuse the
NewDocumentSelector in combination with selector targeting value of each property.
crOWLer always relates selectors to the document currently referenced by the outer

19

. 3.2 Analysis of crOWLer

loop in the FullCrawler. Whenever a selector containing NewDocumentSelector is
applied during the crawling process, a REST call is performed to fetch the targeted
document. On a MonumNet webpage this means hundreds of thousands of calls for
each run of the crOWLer (over 40 000 records each with 16 properties on detail page).
Caching system can be implemented to reduce this amount to the necessary minimum.
We are still bound by the double loop architecture though.

The UC3 1.2.3 is equal to UC1 according to configuration complexity. All links
are implicitly specified in a form of hyperlinks without any interruption or dynamic
content change. Moreover in crOWLer configuration we can specify what properties
will, combined together, form URI of ontological object we are building. This is exactly
the additional functionality required by UC3.

The specificity of fourth use case 1.2.4, as described, lays in AJAX driven pagination.
Every “page change” event dynamically updates the content of the webpage. In this
specific case we do not need to be alarmed as the pagination component is created
using jQuery DataTables plugin [21]. Using this plugin the pagination is built on top
of the data table after it has been completely loaded. In case of crOWLer, the plugin is
never executed and the table remains complete and unchanged over the whole scraping
process.

This is not always the case, though. Even the DataTables plugin itself supports load-
ing data through AJAX so the alertness is more than appropriate. In the hypothetical
situation when AJAX is used for data loading crOWLer would not be able to handle
the pagination and would only access the first page. The additional data would have to
be loaded using workaround similar to the one in UC2. And even if we successfully load
the data we still might be unable to handle them by crOWLer. The AJAX call typically
serves only the new chunk of data to be inserted into the page either in HTML or in
JSON format. When in HTML, we would have to extend the configuration to correctly
target elements in the reduced form of AJAX update. In case of JSON a completely
new selector system would have to be added to crOWLer.

The situation dramatically changes if we use full stack web environment with
JavaScript engine. In that case we would be able to ignore the background functional-
ity of pagination and simply simulate click on the “Next” button. Enabling JavaScript
has huge consequences and will be analyzed in a separate section 4.3.

3.2.3 Result form crOWLer analysis
The original implementation of crOWLer can solve tasks defined by specified use
cases 1.2. The requirements on users of crOWLer are too high and the usability is
very limited. The options of extending the configuration component will be examined
during the design part4. The configuration can be either generated using scenario
or completely replaced, if the scenario defines different crawling procedure (other
than current double loop). The option of incorporating JavaScript will get an extra
attention.

Previous section roughly define requirements on scenario for semantic crawler. To
fully satisfy all considered use cases in all settings, in addition to the functionality
implemented so far, we would have to cover the:. following hyperlinks on a page,.firing JavaScript and browser events,. functions of transforming scraped data using regular expressions or key–value map-

ping.

20

. 3.3 Strigil

3.3 Strigil
Strigil is an ontological scraping system developed at Faculty of Mathematics and
Physics of the Charles University in Prague 1). It represents an easily configurable
tool that enables users to retrieve data from textual or weak structured documents.
[22]

Figure 3.3. Overall Architecture of Strigil

It consists of Data Application in a form of webserver and backend service providing
Download System for the application. The webserver offers frontend for configuring the
crawling process. The application then follows the configuration scraping the data and
storing results while using the backend handle downloading. Strigil strongly focuses on
the download process. Components of the backend conform in a structure of Down-
loadManager, Downloaders and Proxy servers that help to distribute the load of data
being transfered.

The frontend part serves user interface for handling ontological data on top of a
web being scraped. It internally creates a scraping script (will be referred to as Strigil
Scraping Script or Strigil/XML) which strongly inspired format for scenario used in the
actual implementation later in this work and will be closely analyzed in chapter 4.

3.3.1 What problem does it solve?
The architecture of Strigil (more in H) is tailor made for parallel processing of doc-
uments. The installation of Strigil requires working Apache2 web server with PHP5,
Tomcat, PostgreSQL database, OpenMQ service and several other components before
the actual deployment of Strigil into the environment. The system is designed for pro-
cessing many requests on targeted server, heavy loads of data and long running tasks.
Its complicated architecture and installation process prevents it from being effectively
used in occasional simple, yet non trivial, scraping tasks.

Moreover its download system fetches only the raw HTML data (just like the orig-
inal crOWLer implementation) and treats it as static document. This way it can not
properly handle dynamic content and temporal changes in documents performed by
JavaScript for the exact same reasons that applied for crOWLer.

3.3.2 Strigil vs crOWLer
Because of the difference in complexity of Strigil and crOWLer, we can’t correctly
compare them one to one. But we might find a common subset of functionality. Strigil
is a server, with frontend, scraping unit and download system. crOWLer is a tool
without user interface and with download system reduced to simple REST calls. The
common part then is the scraping unit.

1) http://xrg.ksi.ms.mff.cuni.cz/software/ld/ldi.html#strigil

21

http://xrg.ksi.ms.mff.cuni.cz/software/ld/ldi.html#strigil

. 3.3 Strigil

The scraping algorithm of crOWLer has been described previously in section 3.2.
It consist of outer loop over documents, inner loop over initial definitions and tree of
recursive calls forming the ontological structure while scraping data from elements on
the page.

Strigil has a slightly different approach. Instead of configuration it is guided by a
scraping script. The script will be closely analyzed in the following chapter, but in
general it defines a set of templates where one template is called at the beginning and
each template can call any other template on some URL (i.e. on document located
by the URL). Unlike in crOWLer the processing of each template is performed inde-
pendently in Strigil. Each template call puts a request into the download system first.
The actual execution of each template is fired asynchronously, when download of the
targeted document is finished as notified by message from the Download System.

The inner part of a template conforms with structure inside crOWLer configura-
tions. It defines tree structure of ontological classes and properties along with selectors
specifying the position of targeted data. Resulting from different document resolving
system, there are no NewDocumentSelectors in Strigil. In place of this selector, we
would simply call another template on the new document. This approach is clearer
than using chained selector, especially if we handle two or more nested documents. It
is required though, to carry the ontological context from one template to another. This
behavior is unfortunately neither mentioned in Strigil documentation, nor in examples
examined.

3.3.3 Confronting Strigil with use cases
As a basic example UC11.2.1 can be solved by Strigil. We are presuming here that strigil
carries the ontological context through template calls. Notice in the following example
that the value-of tag in the template named “detail” does not have any onto-elem
defined above it. By carrying the ontological context we denote that every property
specified by the children nodes of the template will be assigned to individual created
by onto-elem containing the invoked call-template, i.e. the property assignment
will bubble through the template call until it finds an onto-elem node. Unfortunately
Strigil documentation does not state this clearly and the examples provided do not
contain the ontological context carrying structure.

<scr:template name="init">
<scr:onto-elem typeof="foaf:Person"

selector="tr">
<scr:call-template name="detail">

<scr:value-of selector=".detail @href" />
</scr:call-template>

</scr:onto-elem>
</scr:template>

<scr:template name="detail">
<scr:value-of property="foaf:nickname"

selector=".nick" />
</scr:template>

Also it is important to note, that strigil uses JSOUP selector system extended by the
attribute selector. In the example we target a value of a href attribute of elements with
class detail. The @ tag is probably taken from XPath[23]. This kind of extension is
rather unfortunate as it combines two different syntaxes. As we primarily use JSOUP,
the space in the selector sting denotes any descendant. In that case we would read the

22

. 3.3 Strigil

example selector as “any href attribute of any descendant of elements with class detail”
which probably is not the intended meaning. We would suggest adding attribute named
attribute to the value-of element rather then extending the JSOUP syntax.

Strigil Scraping Script also does not allow the selector attribute on the onto-elem
element. There seems to be no other option, even for repetitive patters on webpage such
as table row, but to define the script on each one of them. By allowing the selector
attribute we would bring in an intuitive structure meaning “create individual for each
matching element”.

For simplification we suggest implementation of these suggestions in following anal-
ysis.

Second use case 1.2.2 would be solved in similar manner as in the hardcoded crOWLer
solution, i.e. by extracting a value from onclick attribute and manually building the
target URL.

<scr:template name="init">
<scr:onto-elem typeof="npu:MonumnetRecord"

selector="tr">
<scr:call-template name="detail">

<scr:function name="conc">
<scr:with-param>

<scr:value-of text="http://monumnet.npu.cz/?idReg=" />
</scr:with-param>
<scr:with-param>

<scr:value-of selector="."
attribute="onclick"
regexp=".*(d+).*"
replace="{0}" />

</scr:with-param>
</scr:function>

</scr:call-template>
</scr:onto-elem>

</scr:template>

<scr:template name="init">
(...)

</scr:template>

In case of UC3 and UC4 the situation is practically identical for Strigil and for
crOWLer.

Just like crOWLer, Strigil natively supports setting of values used to create identifier
for an individual. In Strigil an URI of individual crated by onto-elem is specified by
the first value-of child node that returns a value (i.e. does not have the property
attribute specified). In crOWLer we can only specify what data properties will be
part of the generated identifier in Strigil we can create arbitrary URI using value-of
elements and functions provided.

Strigil does not handle AJAX calls and a workaroud would have to be implemented
for UC4. Just like crOWLer, Strigil downloads the raw HTML page and thus does not
even encounter the pagination widget present on the page.

23

. 3.4 Finding platform for frontend

3.3.4 What inspiration it brings for crOWLer

.The scraping script specifies the template system. Compared to loops in crOWLer
it appeals more natural and well structured. It also brings extra flexibility by calling
templates from within each other..The XML format is, however rather verbose. Other, less verbose syntax might serve
better while persisting most of the semantic..The system of functions provided, gives a good set of tools for string manipulation.
Sometimes we encounter a problem-specific notion (e.g. function for conversion of
Czech and English date formats, rather than general use date parser).. If the Strigil Scraping Script gets implemented in the crOWLer in some form, the
suggested improvements will be incorporated in the implementation as well.

3.4 Finding platform for frontend
In order to develop appropriate tool for generating scenarios, several similar tools were
inspected for best practices, libraries, and possible extension.

The resulted implementation is named SOWL (short for SelectOWL) and refers to
Firefox addon for creating scenarios for crOWLer. In following sections we will refer to
SOWL as set of requirements and a envisioned expected result of this work. The actual
implementation will be covered in later chapters.

3.4.1 InfoCram 6000 – ExtBrain
InfoCram 6000 is part of project ExtBrain 1) that is developed on Department of
Computer Science. This specific part was implemented by Jiří Mašek and is described
as “prototype of user interface for visual definition of extraction rules for ExtBrain
Extractor”. Its intended usage is very close to the usage of SOWL. It is an Firefox
extension that generates rules (scenario) for extractor implemented as another part of
the ExtBrain project.

The ExtBrain extractor is implemented in JavaScript as opposed to Java in case of
crOWLer. It extracts data according to definitions by InfoCram 6000. The result is
stored in JSON format thus not carrying semantic information, but only set of raw data
in some form.

Main part of the extension window shows a tree view with rules being edited. This
view corresponds to required structure of scenario for crOWLer.

Interesting part it an engine for selection elements of page. Its implementation is
based on Aardvark 2), a Firefox extension that addresses this issue using mouse selection
and several keyboard commands.

InfoCram does not use simple CSS or XPath selectors, but include Sizzle library to
handle selectors for it. Sizzle is very popular library for handling selectors, which also
defines its own selectors like :eq(), or :first. It is simpler and more expressive than
CSS. Its popularity is mainly based on its involvement in jQuery library.

Being so close to required structure and workflow of SOWL, InfoCram 6000 served
as the base implementation for it in the early stages. As can be seen at the end of this
chapter, the first implementation named SelectOWL caries similar user interface and
make use of several modules of the InfoCram implementation.
1) http://www.extbrain.net
2) https://addons.mozilla.org/en-US/firefox/addon/aardvark/

24

http://www.extbrain.net
https://addons.mozilla.org/en-US/firefox/addon/aardvark/

. 3.4 Finding platform for frontend

Figure 3.4. Main window of InfoCram 6000

3.4.2 Selenium
Selenium is a collection of tools for automated testing of web pages. This tools include:.Selenium IDE – a Firefox plugin for creating test scenarios.WebDriver – a set of libraries for various languages capable of running tests generated

from Selenium scenarios

A user of Selenium, typically a web designer, programmer or coder, would create
a scenario using Selenium IDE, in order to test his web server. From this scenario
a unit test can be generated for desired programming language and in desired form
(e.g. JUnit test case). Such a test can be simply included it in a set of tests for
the web server project. WebDriver library needed for running these tests is available
through Maven. There is also a chance to use PhantomJs no-gui web browser for
running tests without a need for actual browser, for cases when tests are being executed
automatically in background or on server environment without X server or other form
of graphical interface. The capabilities of WebDriver make it one of the most popular
testing platforms for web servers nowadays.

Selenium IDE is a Firefox plugin that allow us to directly record user actions on
webpage such as following links, storing and comparing values, filling in and submitting
forms.

An attempt was made to implement SOWL as a plugin for Selenium IDE. This plugin
would have two parts:

1. an extension of graphical interface
2. a formatter that would generate scenarios for crOWLer in some desired form

25

. 3.4 Finding platform for frontend

Certain limitations were discovered during development of this plugin. Selenium
IDE, as being plugin itself, implements its own plugin system, through which it allows
other developers to extend its functionality. The Selenium IDE plugin API allows us
to use standard Firefox techniques along with predefined API, to extend the graphical
interface and the functionality of the IDE respectively.

Graphical interface is defined using XUL, the standard Mozilla XML format for
defining user interface. XUL defines an overlay system using which a new layer is defined
and layered over existing part of application layout while extending or modifying it.
The overlay system itself comes with Mozilla stack and can be used on IDE by default.

Figure 3.5. GUI of Selenium IDE showing the Command, Target and Value fields.

The functionality of IDE is, however, linked to its layout 3.5 and has to be taken
in account. Selenium IDE internally defines set of commands that can be used in
scenarios. List of default commands can be seen in dropdown on main screen of the
IDE. This list can be extended, but the use and structure of commands is implemented
internally in Selenium IDE. Addition of new commands is accomplished by extending
the Selenium.prototype object in registered plugin. After the extension is processed
through internal command loader, a new set of commands is added for user to use.

Commands in this system are recognized by their names as they are assigned on the
prototype object the prefixes used are:.do – the action commands – for performing user actions.get and is – the accessor commands – for testing and/or waiting for a values on page

and potentially storing it.assert – the assertion commands – for performing actual tests

26

. 3.5 Libraries for SOWL

When command is generated the prefix is being stripped and according to type,
multiple versions commands can be created. For example do commands have always
“immediate” and “patient” version and in this principle Selenium.prototype.doClick
will generate the click and clickAndWait command. Accessor commands are even
more complex and generate eight commands for every single method (positive and neg-
ative assertion, store method, waitFor, etc.). Implementation of the command method
defines how Selenium IDE would behave when “replying” the scenario recorded. Tech-
nically it is possible to leave the implementation empty in the IDE and use it only as
a command for WebDriver unit test.

None of the original command types corresponds to format of commands for handling
the semantic annotation, like adding URI to element, recording creation of individual,
assigning literal to its property etc. A new set of commands was suggested and partially
implemented having the prefix “owl”. This led to changes in core sources of Selenium
IDE, which by itself is not a good practice as it technically creates a new branch of
the program. CommandBuilder had to be extended directly in the Selenium code as it
is impossible to change its behavior through native Selenium IDE API. Unfortunately,
even though the new command type was implemented, it is not possible to change the
more general concept of all commands. Every command is stored as (name, target,
value) 1) triple and from this format everything is derived. It is technically impossible
to create command for example for a creation of an ontological literal along with its
language tag assignment as there is simply no field for it. For the same reason we cant
create a command to create an ontological object of some type as a property of another
object. These commands relate to each other, but such a behavior is not supported by
the scenario editor in its current architecture. There is also no way to alter editor GUI
for specific command. For instance, we can not offer autocomplete for input field when
user enters URI of ontological resource. Such a feature would be an essential part of
SOWLs workflow, and as a consequence these limitations are critical and disallow us
from properly implementing SOWL on top of the Selenium IDE.

3.5 Libraries for SOWL
Research on existing JavaScript libraries that handle RDF data resulted in two promis-
ing libraries: jOWL and rdfquery. Both are based on the jQuery library and both claim
to be capable to parse RDF files, which is the main requirement for us. Additionally
the library might be used in SOWL as a storage for the loaded RDF resources.

3.5.1 jQuery
jQuery[24] is a widely used JavaScript library that simplifies general tasks like DOM
manipulation or event handling. A simplified selectors can be used to target DOM
elements as jQuery internally uses Sizzle[25] library for selector handling. Compared
to Vanilla JavaScript[26], jQuery produces more compact and coherent code.

Developers can extend the jQuery library with their own plugins. This is the case for
two most promising JavaScript libraries handling RDF and OWL data, and so jQuery
will be necessary if we decide to use either jOWL3.5.2 or rdfQuery3.5.3.

1) https://code.google.com/p/selenium/source/browse/ide/main/src/content/commandBuilders.
js the CommandBuilder implementation

27

https://code.google.com/p/selenium/source/browse/ide/main/src/content/commandBuilders.js the CommandBuilder implementation
https://code.google.com/p/selenium/source/browse/ide/main/src/content/commandBuilders.js the CommandBuilder implementation

. 3.5 Libraries for SOWL

3.5.2 jOWL
The jOWL library is a jQuery plugin for navigating and visualising OWL-RDFS doc-
uments[27]. It can parse and handle RDF files, store them in its internal storage and
query on them using subset of QUERY-DL language[28]. The library was last updated
in 2008 1).

3.5.3 rdfQuery
rdfQuery[29] is a JavaScript library for RDF-related processing. It supports parsing
RDFa, RDF, OWL formats for loading data. It can dynamically embed HTML webpage
with RDFa data. rdfQuery is written as a jQuery plugin. The intended use of the
rdfQuery library is to write queries over data stored in rdfQuery internal datastore in
similar way as DOM objects are queried using jQuery. Moreover the whole concept is
based on SPARQL and design in a manner that make the resulting JavaScript code
look familiar when compared to native SPARQL query.

To better show the similarity, we are presenting a rdfquery code equivalent to this
SPARQL query 2.6 along with printing of its output.

\$.rdf()
.prefix(’foaf’, ’http://xmlns.com/foaf/0.1/’)
.where(’?person a foaf:Person’)
.optional(’?person foaf:name ?name’)
.each(function () {

var person = this.person.value,
name = this.name === undefined

? ’Anonymous’
: this.name.value;

console.log(person + " has name: " + name);
});

3.5.4 aardvark
Aardvark is a JavaScript engine for in-place modifications of a webpage. It allows user
to select, delete, or highlight part of HTML page. It has been released in two forms: as
a bookmarklet and a Firefox extension. The later was used in a modified form in the
InfoCram 60003.4.1 and later in one of SOWL (SelectOWL) prototypes??. This library
help to implement the selection and serves as a framework for the selector generating
algorithm.

1) https://code.google.com/p/jowl-plugin/

28

https://code.google.com/p/jowl-plugin/

Chapter 4
Program design

This chapter defines the overall behavior of the program stack derived from presented
use cases.

4.1 Workflow
From the use cases defined and from analysis performed on existing solution we can
derive the general workflow for both SOWL and crOWLer part of the implementation.

Figure 4.1. Diagram of the general workflow of the stack

29

. 4.2 Designing scenario format

4.1.1 Main line.user loads/creates ontology using SOWL.user opens webpage with data.user creates scenario using SOWL.user adds selectors to scenario steps.user adds resources to scenario steps.SOWL sends scenario to crOWLer. crOWLer crawls the web according to scenario and stores results in a file or repository

4.1.2 Scenario creation.user starts scenario creation in SOWL. loop until finished:.user creates a step in scenario.user selects an element on page, a selector is generated if applicable, on the step.user selects a resource, resource is updated on the appropriate field of the step, if
applicable

4.1.3 Additional branches to Scenario Creation.user can navigate through scenario by clicking scenario steps.user can navigate through scenario by clicking ontological context.user can navigate through scenario by clicking areas on webpage covered by scenario.when user clicks on a hyperlink:. existing template can be assigned to the action (no need to actually follow the
link).new template can be created for resulting action (resulting page loaded, new tem-
plate created)

4.1.4 crOWLer scraping.user runs crOWLer passing it the created scenario. crOWLer parses the scenario. crOWLer scrapes data from the webpage following the scenario. crOWLer stores the results in file or repository

4.2 Designing scenario format
One of main tasks of this work was to create format for scenario generated by SOWL
and consumed by crOWLer. This scenario will describe information necessary for the
crawling process: what operation to do (create ontological object, assign property to
such an object, perform task with webpage).

This task is closely related to implementation peculiarity of semantic crawler: we
are dealing with two separate contexts at the same time, the ontological and the web
context. Ontological context holds current object (individual) to which we assign prop-
erties, web context hold current webpage along with currently selected element on that
webpage. Scenario have to support operations to change each context separately and/or
both at the same time.

30

. 4.2 Designing scenario format

4.2.1 Strigil/XML
Strigil, the scraping platform in order to solve similar problem as crOWLer introduces
its own XML based Scraping Script format [30].

Basis of the whole script is system of templates. Each template has a name and
mime-type declaring type of document the template is designed for. This information
is needed as Strigil supports HTML and also Excel spreadsheet files. Templates call each
other using call-template command anywhere in the script. This command accepts
URL as an argument from its nested commands. Each template is called only with new
URL, thus on new document. Of course URL of current document can be passed as an
argument, but due to nature of Strigil, this would create completely separate context.

Strigil is tailor made for parallel processing. The architecture of the Strigil system
contains not only scraping processor, but also a layer for distributed download queue
processing and layer of proxy servers that can be used to spread the traffic and scale the
download process horizontally. As the downloads are performed asynchronously and
can be even delayed due to network lags and timeouts, there is no guaranteed order
in which documents will be scraped. Each of Strigil templates create its own context
when called. If we want to link data obtained from different template calls we have
to use some additional techniques. For example we can assign some properly defined,
non-random, unique identifiers to an object. This identifier have to be guaranteed to
be the same for the same object through different template calls and potentially on
different pages.

To handle ontological data manipulation the commands onto-elem and value-of
are used. First one creates an individual of given type and, if nested into different
onto-elem relates this new individual to its parent with some property. Literals are
assigned to properties of parent object using value-of command with property name
specified. This command is very powerful with usage regular expressions, selectors or
nested calls of itself it can create arbitrary values from constants and data obtained
from web page being processed.

Strigil also implements variety of functoins to help with processing of textual data.
Function addLanguageInfo, for example, is widely used in Strigil scraping scripts to
add language tags to string literals. The function call can be seen below.

<scr:function name="addLanguageInfo">
<scr:with-param>

<scr:value-of select="Hello World" />
</scr:with-param>
<scr:with-param>

<scr:value-of text="en" />
</scr:with-param>

</scr:function>

Similarly we can use function addDataTypeInfo to add datatype flag, function
generateUUID to obtain unique identifier or function convertDate to convert Czech
and English dates into a common xsd:date format and several others. Some functions,
like the last one mentioned, cover task-specific issues and Strigil does not define a way
to extend the list of functions.

In early stages of SOWL development an attempt was made to use original St-
rigil/XML as a format of choice. An appropriate, consistent subset was chosen that
would cover required use cases. Implementation of simple use cases revealed some pit-
falls of this decision and revealed several suggestions for improvements on the approach
and the format itself.

31

. 4.2 Designing scenario format

4.2.2 Adaptation of Strigil/XML format
Strigil creates its scraping script internally hidden under GUI and leaves user unaware
of its actual content. It might still serve well, at least for developers, to keep the script
compact and easily readable. Addition of language tag as seen in previous chapter,
is widely used pattern that polutes the resulting script with unnecessary overload.
Suggested improvement would separate this functionality into an extra attribute of the
value-of tag named lang.

The same suggestion can be applied to the data-type specification. Moreover implicit
parsing of known data types would not only simplify the scraping script, but also help
to clean and clear the resulting data.

Let us imagine hypothetical scenario of two similar tables on one page containing two
sets of data in the same format. For such a case we would need to define a template on
subset of DOM and call it twice with different root node. Creation of dom-template
and call-dom-template tags would solve this issue and would allow scenario cre-
ator to narrow down his focus to a subpart of the scraped webpage. This would be
particularly useful on complicated pages with a lot of nested HTML. dom-template
and call-dom-template would be defined within a single template tag and unlike
call-template, they would keep the ontological context co call of value-of within
dom-template would assign a property to individual created by onto-elem wrapping
the current call-dom-template call.

The architecture of Strigil (distributed downloader) suggests that it uses simple raw
HTML pages as they were downloaded and uses JSOUP to extract data from it as
JSOUP is the selector system of choice. Many webpages, or even web applications,
make use of dynamic AJAX calls to fetch additional data after the presentation layer
of the web is shown to the user. Strigil does not handle these cases by default. The
internal AJAX code could be analyzed and simulated using call-template call, but
this requires deep knowledge of the webpage being processed. In crOWLer we opted to
switch from JSOUP to WebDriver library and use PhantomJs, a no-GUI web browser.
This technology allow us to handle webpages the same way as user sees them.

Usage of actual full-stack web browser with JavaScript engine long with WebDriver
allows us to inject and execute arbitrary JavaScript code into the processed webpage.
In order to make full use of this feature we can define function-def tag which would
define JavaScript function with name and parameters and contain its code. To execute
this function we would call function-call and identify it by its name. Return value
of this function can be then used the same way as the one from value-of tag.

From the experience with development on Strigil/XML we can derive, that it is
tied with its intended use for distributed downloader and it lacks some functionality.
In SOWL we would almost necessarily modify its formal definition and thus it is of
consideration if we can not make use of more appropriate format.

4.2.3 SOWL/JSON
As all Firefox extensions, SOWL is written entirely using JavaScript with additional
HTML defining the graphical layout. Early stages of implementation generated XML
based on Strigi/XML format using hardcoded XML snippets and string formating –
approach often used on webpages with dynamically loaded content. A string holds a
snippet of HTML or XML structure with placeholder. This placeholder is replaced by
either a value or by another already processed snippet. This way piece by piece the
whole scenario is generated. This solution is not hard to implement, but brings in poor

32

. 4.3 JavaScript and events support

maintainability and with additional complexity it looses elegance, readability and can
even cause performance issues.

Original data of the scenario created by SOWL are stored naturally in JavaScript
object. Using standard JavaScript method JSON.stringify() we can immediately
generate JSON serialization of such object. This way we have structure similar to the
original defined by Strigil/XML, but in flexible structure. Obviously some adaptations
are necessary. Nesting is recorded using the steps, the header section is redesigned for
the JSON structure. For example instead of listing prefixes in a single string of XML
attribute, we define object ontology with a map of prefix–URI pairs.

The original semantics of onto-elem and value-of was preserved, only limited to
its basic use. value-of serves to assign literal properties or to retrieve textual values
for its parent scenario step.

An example of the scraping script can be found in appendix I.

4.2.4 Consequences of conversion to JSON format
According to difference in syntax between XML and JSON do not have text content
of elements like XML elements can. In JSON we simply reserve a property for a value
that would be otherwise specified this way in corresponding XML. Strigil, however,
does not explicitly use the textual values and everything is specified using attributes.
Some elements return textual values to their parents to handle, and in these cases it
might be suitable to enable textual values as constants instead of the required element.

Another syntactical distinction is that JSON does not explicitly define child nodes.
Everything is property in JSON object, so we, again, assign a property to store the
child nodes. Child nodes are held in ordered list which in JavaScript corresponds to an
array. As we build a structure of scenario steps, the reserved property will be simply
called steps for every element that allows child nodes (e.g. onto-elem or template).

Technically each JSON object quacks like a hash map 1) with a string keys and value
of any JavaScript type. We can benefit from this loose structure. For example we can
use any key to store a substep, not only the steps array.

The onto-elem command benefits exactly from this difference between XML and
JSON. In original Strigil/XML the onto-elem tag allow us to specify URI of the re-
sulting individual (as commonly denoted by the about property), by taking it from from
its first child which is expected to be value-of tag. Needles to say, this specification
lowers robustness as the position in the XML file is not enforced by the syntax and can
be easily unintentionally broken by accidental swap of two elements, although it would
not invalidate the files syntax and thus would not be captured by the script parser as
an error. In the JSON format we lack the notion of child elements. Even when we
simulate it as mentioned before, we would only cause the same indetermination. So
instead, we simply reserve a property named about exactly for the described use.

4.3 JavaScript and events support
Special attention have to be payed when dealing with direct interaction with DOM ele-
ments and script execution. WebDriver supports injection and execution of JavaScript
as well as simulation of user interactions like click on element or back and forward navi-
gation. Even though it brings great power there are considerations and great limitations
to be taken in account.
1) https://en.wikipedia.org/wiki/Duck_typing

33

https://en.wikipedia.org/wiki/Duck_typing

. 4.3 JavaScript and events support

WebDriver supports execution of JavaScript directly on webpage loaded in the driver.
This is done by calling executeScript or executeAsyncScript function on the driver
object. First argument of these functions is string defining content of JavaScript func-
tion we want to execute. Header and actual call of this function will be added for us
before it gets attached to the webpage. We can pass any number of accepted arguments
to these functions and they will be accessible through standard arguments object in on
the JavaScript side. Types, corresponding to standard JavaScript types are supported
as arguments: number, boolean, String, WebElement or List of any combination of the
previous 1). The second – asynchronous version returns immediately with a response
object. It provides callback as additional argument to the JavaScript call. This callback
is used for synchronization when accessing the result on the response object from Java.

JavaScriptExecutor exec = (JavaScriptExecutor)driver;
List<WebElement> labels = driver.findElements(By.tagName("label"));
List<WebElement> inputs = (List<WebElement>) exec.executeScript(

"var labels = arguments[0]," +
" inputs = [];" +
"for (var i = 0; i < labels.length; i++) {" +
" var name = labels[i].getAttribute(’for’);" +
" inputs.push(document.getElementById(name));" +
"} return inputs;", labels);

In simple cases we can use JavaScript to extend functionality of crOWLer. It might
be used as a complex string formatter, parser for nontrivial values etc. In following
example it is used to condition on attribute value of an anchor tag. A document
location if the href tag contains a hash symbol # (often used when the link is handled
by JavaScript function.

JavaScriptExecutor exec = (JavaScriptExecutor)driver;
WebElement el = driver.findElement(By.cssSelector(’a.detail’));
String result = (String) exec.executeScript(
"var elem = arguments[0];"+
"var href = elem.getAttribute(’href’);" +
"return (href ===’#’ ? window.location.href : href);", el);

Previous example is simple, yet if we wanted to cover it with our scenario imple-
mentation we would bring a lot of single-problem-specific syntax into the scenario. We
would have to use special notation for obtaining current URL and for conditioning on
values. Following code demonstrates how this functionality might look like if it was cov-
ered only by scenario syntax without usage of JavaScript. The getCurrentUrl function
is inspired by Strigil.

{
command: "condition",
condition: "ne",
param: "#",
value: {

commad: "value-of",
selector: "a.detail", }

onfalse: {
command: "function",
value: "getCurrentUrl", }

}

1) http://goo.gl/Hhwq3l Selenium JavaScriptExecutor documentation

34

http://goo.gl/Hhwq3l Selenium JavaScriptExecutor documentation

. 4.3 JavaScript and events support

We have declared the condition command with implementation of ne the “not
equal” operator (and for completeness we would implement all the other un/equality
operators) and the function command with implementation of getCurrentUrl which,
again, probably is not the last function to be implemented. All this would require
update of the scenario parser, the implementation for commands and all their attributes
and thus update of the whole backend every single time, new functionality is needed.
The advantage of this approach is that user does not have to know JavaScript and
understand how it is called in WebDriver in order to use advanced conditioning and/or
value formating.

It is disputable if a set of extra commands in scenario syntax and hence extra con-
trols in scenario editor would be more understandable than a single field for JavaScript
function. Technically by adding conditioning and function commands, we are inclining
towards building a new programming language. To offer the best for the user, imple-
menting both is the option: basic conditioning to easily direct the scenario flow along
with a set of functions to format and modify string and other values as well as enabling
JavaScript execution for complex problems.

With use of JavaScript the same scenario step as in previous example would look as
follows:

{
command: "value-of",
selector: "a.detail",
exec: "var href = elem.getAttribute(’href’);" +

"return (href ===’#’ ? window.location.href : href);"
}

In this case we embedded only the value-of with a single attribute that takes
JavaScript function body. From there we have technically unlimited power for extending
the functionality of the crOWLer without need of changing the Java implementation.

Note that compared to example in Java the first line of the original JavaScript was
omitted:

var elem = arguments[0];
It will be automatically prepended every time, we exec JavaScript on a single DOM

element. It is a simple helper and does not invalidate any users input (as in JavaScript
we can redefine variable as many times as we want). Similarly we will predefine variable
elems when a list of elements is passed, value when passing a string or number to a
JavaScript function.

But with great power comes a great current squared times resistance 1). With usage
of JavaScript as suggested in previous paragraphs we have to take in account two major
considerations.

Firstly, JavaScript function can accept any number of parameters and return an
arbitrary value. In both cases, the parameters and the return value can be of any of the
allowed types (as JavaScript is not strongly typed language). We thus have to specify
what exact parameters are being passed to a function and what result of what type is
expected. We also have to implement a robust way of controlling this specification and
properly define a fallback-on-error behavior. This is especially important as we might
want to use JavaScript function not only as a string filter, but also for example as a
universal selector where we struggle with classical selectors. Any additional use have
to be described separately before it can be universally used.

1) http://www.xkcd.com/643/

35

http://www.xkcd.com/643/

. 4.3 JavaScript and events support

More importantly, there is the second consideration. Any DOM element is accessible
from any JavaScript function using for example the document.getElementByTagName
method. When an element is replaced or even removed, it becomes invalid from the Java
context. Modification to an element can cause unexpected behavior of its reference in
Java too. The same applies for operations on the whole page. When a link is followed,
the original DOM tree is dropped and all references are lost.

To better describe the underlying behavior during this issue, below you can see a
simple test. When link is clicked, the WebDriver follows the link in current window
and the reference to the original DOM is lost.

WebDriver wd = new FirefoxDriver();
wd.navigate().to("http://www.inventati.org/kub1x/t/");
WebElement a = wd.findElement(By.cssSelector("a"));
System.out.println(a.getText()); // Prints "detail"
a.click();
System.out.println(a.getText());
// throws org.openqa.selenium.StaleElementReferenceException:
// { "errorMessage":"Element does not exist in cache", ... }

The previous can be partially solved by sandboxing the code in a closure. By doing
so we can hide some essential object in global scope like window or document and make
it harder to do inappropriate operations on the DOM. In following example we create
the described partial sandbox:

JavaScriptExecutor exec = (JavaScriptExecutor)driver;
WebElement elem = driver.findElement(By.css("div.wewant"));
exec.executeScript(
"return (function(elem, window, document) {" +
funStr +
"})(arguments[0])", elem);

This technique is not completely secure (for example the element passed as an ar-
gument does have reference to its parent which is already leak of intended sandbox).
Proper sandboxing would require implementing whole JavaScript engine in JavaScript
[31] which is probably too much for our intentions.

In crOWLer, we can now distinguish between two ways of ascending to another
HTML page:

1. using call-template command
2. using JavaScript or user event such as “click” or “back”

The call-template is always called on an URL and always creates new web context,
keeping the original one untouched. It actually behaves like call stack, so when we
return from the template call, we can follow on the original DOM tree. Just to note:
compared to corresponding Strigil command, crOWLer persists the ontological context
throughout this call, and so we can relate to it when assigning properties.

Direct interaction with current window in any way that changes page location will,
however, irreversibly invalidate all the elements of current DOM. This does not have
to mean we can not use this functionality all together. Probably the best solution
would be to only allow DOM modifying operations on the bottom level of templates
(i.e. within the steps property of the template command in scenario). At this place
we only hold the body of current document and as such we can simply replace it with

36

. 4.4 User Interface

the newly loaded content. In the original crOWLer implementation, this would be the
spot between two “Initial Definitions”.

Even thought the JavaScript is sandboxed in WebDriver, it is still running in a
browser in your computer and could technically submit some data on a web. Security
issues have not been considered so far, but might become a point of interest when we
take in account an option of obtaining and executing scenarios from unknown sources.

4.4 User Interface
Here the required structure of user interface is described.

4.4.1 SOWL user interface
The user interface of SOWL shall be presented in a form of sidebar. The sidebar shall
have two parts: a scenario editor and resources list. Scenario editor shall contain a tree
shaped structure of steps of the scenario being created along with panel for editing the
general settings of the scenario. The resources list shall accept dropping of ontology
files which would load it into current dataset. Addition of resources manually shall be
possible using a button. The list shall show all currently loaded resources and allow
textual filtering.

SOWL shall enable tag selection on the webpage being processed by clicking or other
user action.

4.4.2 crOWLer user interface
CrOWLer is a console application. It shall accept scenario as one of its parameters.
Following settings shall be enabled using parameters as well:. setting of target directory for RDF files. setting of sesame repository for the result storage

4.5 Model
Presenting proposed design of the two programs the SOWL Firefox addon and the
crOWLer Java application.

4.5.1 SOWL model
Current recommendation of Mozilla Developer Network suggests developing new addons
using their native SDK. It allows creation of restartless addons, uses new API and limits
usage of older libraries or low level calls by wrapping it in consistent API.

The SDK based addons have partially predefined structure. The background script
runs in its own scope and uses the SDK API to control the addons behavior. The
content script is a JavaScript code that is injected into a webpage but runs in its
own sandboxed overlay, while having access to pages DOM and JavaScript content.
In SOWL, the scenario editor will be placed into a sidebar. Sidebar holds standard
HTML window object in which the JavaScript code is running. All three components
communicate via textual messages using port object offered internally by by Firefox.

37

. 4.5 Model

Figure 4.2. Components structure of the SOWL Firefox addon

4.5.2 crOWLer model
In the new implementation of the scraping backend the original JSOUP component
will be replaced by WebDriver. WebDriver, with its support for JavaScript, will help
to handle dynamic content and brings in new possibilities for the crOWLer itself. The
original configuration component is replaced by parser for the SOWL/JSON scenario
format. The core crOWLer is also reimplemented according to new set of instructions
(i.e. commands in the scenario) and the new web interface (i.e. the WebDriver instead
of the native Java Jsoup library).

The overall architecture then looks as follows:

Figure 4.3. A new overall architecture of the crOWLer implementation

38

Chapter 5
Program Implementation and Specifications

This chapter describes the implemented prototype of SOWL–crOWLer tool stack. The
relation between tools can be seen on diagram 5.1.

Figure 5.1. Overview of the whole stack and files exchanged

5.1 SOWL implementation
During testing of various technologies and frameworks several prototypes of the scenario
creator was built. The first one called SelectOWL was native Firefox addon build on
XUL and calls to Firefox low level API. Development of SelectOWL was discontinued
in favour of new addon with shortened name SOWL. The new addon is based on Firefox
addon SDK. The structure of the addon is completely different from the original one
and the JavaScript of the addon runs in different context too. The new SDK is the
recommended approach now and offers more flexible functionality and more intuitive
code structure as the user interface is defined using classical HTML instead of XUL.
The original version is kept in the repository for reference 1).

5.1.1 Parsing Ontologies in JavaScript
Both jOWL vs rdfQuery were tested on common ontologies (FOAF, Dublin Core, Good
Relations). Results shown that the newer rdfQuery library more accurately implements
the standard behavior for handling RDF resources.
1) https://github.com/kub1x/selectowl/tree/master/ff-extension

39

https://github.com/kub1x/selectowl/tree/master/ff-extension

. 5.1 SOWL implementation

Specifically in jOWL all resources have only one type. This type is determined when
parsing input XML fileby a lookup cascade: if the type is not determined by the explicit
RDF type property, the parser would look into the overlying tag name.

rdfQuery, on the other hand, properly stores all the data in form of triples in its
internal dataset implementation. By using this approach it offers correct results and is
our library of choice.

Even though rdfQuery currently serves for parsing of input files only, we might con-
sider utilizing its reasoning capabilities in future development.

5.1.2 Targeting elements on webpage and generating selectors

Figure 5.2. Diagram of selector creation algorithm

Inspired by the InfoCram project we decided to use Aardvark code in order to target
elements on webpage and obtain their selectors.

In early stages the native addon code for Aardvark was used. Unfortunately this
code uses some internal Firefox API and had to be replaced when new Firefox SDK
was used for the SOWL development.

In current Implementation of SOWL we create different type of Firofox extension
using new SDK. Moreover the aardvark code is injected directly into the webpage
using the Content Script feature of the Firefox SDK. According to these differences the
bookmarklet version better fits the needs and is used. The aardvark code is included in

40

. 5.2 crOWLer implementation

the addon files extended with features necessary for SOWL. Namely the event handling
was extended by drag/drop events and selector creation algorithm was added.

Even though it was rewritten it behaves almost identically as in InfoCram. We simply
bubble up the DOM tree until we meet our context. On each element we try to generate
unique selector according to the elements parent element. The last method to try is
the :nth-child() selector which always exists and targets the correct element, but is
also most prone to failures due tu structure changes. If possible ID or class attributes
are used to target the element.

As use case 2 1.2.2 shown we can not always rely on class selectors as they are often
dynamically modified by pages JavaScript. For this reason the class selector are disabled
by default, but they are supported by crOWLer and can be manually specified in the
selector field. Aardvark shows the class of a hovered element on its label to simplify
this task.

5.2 crOWLer implementation
The current implementation of crOWLer forms the architecture on picture 5.3. Even
though the overall architecture holds visually the similar structure as the original im-
plementation, the result is technically brand new program. Change from configuration
system to scenario changed the input handling and influenced structure of the core al-
gorithm from loop-based to template-based. The main library for web communication
was changed from JSOUP to WebDriver which combined with scenario led to com-
plete reimplementation of the core. The only part derived from original crOWLer are
the Jena and JenaSesame libraries for handling the ontological models and storage of
RDF data. The complete architecture can be better seen on the component model in
appendix .

Figure 5.3. The overall architecture of new crOWLer implementation

A new structure was implemented holding a Scenario object with its steps. In this
form the Scenario is passed to main loop. Instead of FullCrawler based on JSOUP we
created WebDriver based solution, the WebDriverCrawler.

5.3 SOWL/JSON syntax
Following is the final list of commands proposed for crOWLer implementation. Only a
subset is implemented in the prototype. Each command is described and its attributes
are listed (also with description).

41

. 5.3 SOWL/JSON syntax

5.3.1 template
Command defining a list of steps to be performed on document passed to it..name – name identifying the template (referenced by call-template command). steps – list of steps of the template

5.3.2 call-template
Command used to call a template. If no URL is specified template shall be called on
current context..name – name identifying the template to be called.values – defines list of commands; every command returns an URL; the targeted

template will be called on each URL.value – same as previous, only contains a single command. selector – URL will be taken from text of elements matched by this selector.attribute – URL will be taken from this attribute of elements matched by previous
selector.url – default URL if one of the previous returns a value

5.3.3 onto-elem
Creates an ontological individual..about – contains a command returning URI identifying the newly created individual. typeof – contains the rdf:type of the individual. rel – contains an URI of Object Property; the individual is assigned to this property

of his parent. selector – the individual is created for each element matching this selector. steps – list of subcommands; they will be executed in context of this individual and
the selected HTML element

5.3.4 value-of
Returns a string value or assigns it to a data property.. selector – returns a value of text content of the first element specified by this attribute.attribute – if specified a value of this attribute of the selected element is specified. text – a constant string; is returned if none of the previous targets a non-null value.property – the resulting value is assigned to this property of parent individual, rather

than returned; in combination with selector the values of all targeted elements are
assigned. lang – a language tag appended to the string before assigned as a property. type – a datatype appended to the string before assigned as a property. exec – a JavaScript function applied to the string before it is returned

5.3.5 narrow
This tag only narrows the HTML context to simplify selectors in child steps.. steps – set of steps to be called on narrowed context. select – inner steps will be called on each of these elements. exec – call JavaScript function on a set of elements to filter them

42

. 5.3 SOWL/JSON syntax

5.3.6 function
Calls a predefined function.name – name of the called function one of following:. conc – concatenate all strings into one. join – similar to previous; inserts the first string between all the other ones when

connecting.parseDate – takes date format string as a first parameter and date to be parsed as
second; it returns the parsed date in xsd:Date or null.uuid – takes no parameters, returns a new UUID. currentUrl – takes no parameters, returns a URL of current document.params – an array of commands returning values used as parameters for the function

call

43

Chapter 6
Conclusion

This diploma thesis investigates current situation in the field of Semantic Web. It
specifically focuses on automated semantic data extraction.

At first available tools were researched. Deeper analysis revealed useful patterns
and techniques as well as weaknesses in some of the examined tools and platforms.
Especially an implementation of prototype of lightweight semantic crawler crOWLer was
examined and documented. The research was focused on improvement of configuration
of scraping process.

By examining Strigil, the scraping system, a new template-based approach in scrap-
ing of the semantical data was revealed. The functionality of Strigil and crOWLer was
compared on real life use cases. The Strigil/XML syntax for scraping scripts was exam-
ined and several possibilities for improvements were described. According to original
XML syntax a new JSON based syntax was derived and documented.

Open source Firefox addons InfoCram 6000 and Selenium IDE were chosen as poten-
tial bases for future frontend implementation. Neither of them showed to be suitable
for the intended use, but each brought a new knowledge. Algorithm for selector gener-
ation and aardvark, the element selection engine, later used in SOWL originate in the
InfoCram 6000. Selenium IDE relates to WebDriver engine which was later included in
the final crOWLer prototype.

Options to use JavaScript as a language for extending the scraping script functionality
were thoroughly researched. Several useful patterns for JavaScript usage were revealed
and the results documented together with examples of JavaScript and Java code.

A prototype Firefox addon named SOWL was created as a tool for generating sce-
narios in the proposed JSON syntax. Subset of the syntax necessary to cover example
use case was involved in the implementation.

The crOWLer tool was newly implemented. Support of the new scenario syntax
was added and replaced the original hardcoded configuration. A subset of the scenario
commands was fully implemented and tested using sample use case. The template based
approach was implemented instead of loop based. The JSOUP library was replaced by
WebDriver and PhantomJs in order to enable JavaScript.

The prototype of the semantic crawler was successfully created as a pair of tools
SOWL – crOWLer. The rdfquery library used in SOWL enables it to bring in power
to handle semantical structures before we start crOWLer or after, in a form of visual
feedback using RDFa. The new architecture of crOWLer along with WebDriver opens
possibilities for future extension and utilisation of JavaScript.

But mainly, a tool was created that simplifies the process of description of semantical
content of web for users.

It is suitable to notice, that in many cases the intentions and activities of semantic
web community focus on government data [32]. The common goal leads us to turn the
web into an open, accessible source of knowledge and data of all kinds, linking the data
together where possible. Naturally, the governmental data and statistics get the most
attention. Government handles, collects and is often obliged to publish in some form

44

. .
a lot of data and statistics. Not always this form complies with standards of semantic
web. Sometimes it might even be the case of intentional presenting of malformed data
or obfuscation. In the big picture, misinformation of people seems to be the major
thread to democracy as we usually envision it. By supporting the creation of semantic
data we are naturally taking part in this movement. The hope is to bring government
data closer to people to help overcome the information gap that prevents each of us
from being adequately informed about how our resources are being spent and how our
countries are truly led and offices driven. I hope this and any follow-up work will serve
to support this common vision.

45

References
[1] Web Ontology Language – Wikipedia.

https://en.wikipedia.org/wiki/Web_Ontology_Language.
[2] Google Knowledge Graph – Wikipedia.

https://en.wikipedia.org/wiki/Google_Knowledge_Graph.
[3] Search Engine Optimization – Wikipedia.

https://en.wikipedia.org/wiki/Search_engine_optimization.
[4] Semantic Web – Wikipedia.

https://en.wikipedia.org/wiki/Semantic_Web.
[5] Linked Data – Connect Distributed Data Across Web.

http://linkeddata.org/.
[6] HTML5 – Wikipedia.

https://en.wikipedia.org/wiki/HTML5.
[7] Microformats.

http://microformats.org/.
[8] HTML + RDFa 1.1 – Support for RDFa in HTML4 and HTML5 .

http://dev.w3.org/html5/rdfa/.
[9] Google Structured Data Testing Tool.

http://www.google.com/webmasters/tools/richsnippets.
[10] RDFa Play – the RDFa data visualisation tool.

http://rdfa.info/play/.
[11] Robert Isele, Jürgen Umbrich, Chris Bizer, and Andreas Harth. LDSpider: An

open-source crawling framework for the Web of Linked Data. In: Proceedings of
9th International Semantic Web Conference (ISWC 2010) Posters and Demos.
2010 .

http://iswc2010.semanticweb.org/pdf/495.pdf .
[12] Semantic Web – W3C .

http://www.w3.org/standards/semanticweb/.
[13] Linking Open Data diagram.

http://lod-cloud.net.
[14] Resource Description Framework – Wikipedia.

https://en.wikipedia.org/wiki/Resource_Description_Framework.
[15] SPARQL Protocol and RDF Query Language – Wikipedia.

https://en.wikipedia.org/wiki/SPARQL.
[16] RDF/XML – Wikipedia.

https://en.wikipedia.org/wiki/RDF/XML.
[17] Turtle – Terse RDF Triple Language – W3C .
[18] DBpedia – the Datahub.

http://datahub.io/dataset/dbpedia.

46

https://en.wikipedia.org/wiki/Web_Ontology_Language
https://en.wikipedia.org/wiki/Google_Knowledge_Graph
https://en.wikipedia.org/wiki/Search_engine_optimization
https://en.wikipedia.org/wiki/Semantic_Web
http://linkeddata.org/
https://en.wikipedia.org/wiki/HTML5
http://microformats.org/
http://dev.w3.org/html5/rdfa/
http://www.google.com/webmasters/tools/richsnippets
http://rdfa.info/play/
 http://iswc2010.semanticweb.org/pdf/495.pdf
http://www.w3.org/standards/semanticweb/
http://lod-cloud.net
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/SPARQL
https://en.wikipedia.org/wiki/RDF/XML
http://datahub.io/dataset/dbpedia

. .
[19] Apache Jena.

http://jena.apache.org/.
[20] JSOUP – Java HTML parser .

http://jsoup.org.
[21] DataTables – Table plug-in for jQuery.

http://www.datatables.net.
[22] Nečaský M. Stárka J., Holubová I.. Strigil: A Framework for Data Extraction

in Semi-Structured Web Documents. 2013, paper submitted to 15th International
Conference on Information Integration and Web-based Applications & Services,
Vienna, Austria, 2013..

[23] XPath – XML Path Language.
http://www.w3.org/TR/xpath.

[24] jQuery.
http://jquery.com.

[25] Sizzle JavaScript selector library.
http://sizzlejs.com.

[26] Vanilla JS .
http://vanilla-js.com.

[27] jOWL – Ontology Online.
http://jowl.ontologyonline.org.

[28] Petr Kremen. Towards SPARQL-DL Evaluation in Pellet. 2007.
http://weblog.clarkparsia.com/2007/10/26/towards-sparql-dl-evaluation-in-pellet.

[29] rdfQuery – RDF processing in your browser .
https://code.google.com/p/rdfquery.

[30] Scraping script documentation.
https://drive.google.com/file/d/0B4On-lGb38CgWlAyZDhGbDV2TFk/edit.

[31] JavaScript in JavaScript (js.js): Sandboxing Third-Party Scripts.
http://goo.gl/RJE5QE.

[32] Open Government Data.
http://opengovernmentdata.org/.

47

http://jena.apache.org/
http://jsoup.org
http://www.datatables.net
http://www.w3.org/TR/xpath
http://jquery.com
http://sizzlejs.com
http://vanilla-js.com
http://jowl.ontologyonline.org
http://weblog.clarkparsia.com/2007/10/26/towards-sparql-dl-evaluation-in-pellet
https://code.google.com/p/rdfquery
https://drive.google.com/file/d/0B4On-lGb38CgWlAyZDhGbDV2TFk/edit
http://goo.gl/RJE5QE
http://opengovernmentdata.org/

49

. .

Appendix A
Assignment

50

Appendix B
Abbreviations

MDN Mozilla Developers Network
URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name
RDF Resource Description Framework

RDFS RDF Schema - set of classes and properties providing basic elements for the description
of ontologies

OWL Web Ontology Language
SPARQL SPARQL Protocol and RDF Query Language - query language for semantic

databases/triplestores
foaf friend of a friend - a popular ontology for describing personal information and relation-

ships

51

Appendix C
RDF and RDFS vocabulary

resource description
rdf:type a property used to state that a resource is an instance of a class

a commonly accepted qname for this property is a
rdfs:Resource the class of everything; all things described by RDF are resources

rdfs:Class declares a resource as a class for other resources
rdfs:Literal literal values such as strings and integers

property values such as textual strings are examples of RDF literals
literals may be plain or typed

rdfs:Datatype the class of datatypes
rdfs:Datatype is both an instance of and a subclass of rdfs:Clas
each instance of rdfs:Datatype is a subclass of rdfs:Literal

rdf:XMLLiteral the class of XML literal values; rdf:XMLLiteral is an instance
of rdfs:Datatype (and thus a subclass of rdfs:Literal)

rdf:Property the class of properties
rdfs:domain (of an rdf:predicate) declares the class of the subject in a triple

whose second component is the predicate
rdfs:range (of an rdf:predicate) declares the class or datatype of the object in a triple

whose second component is the predicate
rdfs:subClassOf allows to declare hierarchies of classes

rdfs:subPropertyOf an instance of rdf:Property that is used to state
that all resources related by one property are also related by another

rdfs:label rdf:Property used to provide a human-readable version of a resource’s name
rdfs:comment rdf:Property used to provide a human-readable description of a resource

Table C.1. RDF and RDFS vocabulary

52

Appendix D
Example of RDF/XML syntax

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:vs="http://www.w3.org/2003/06/sw-vocab-status/ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<!-- Here we describe general characteristics
of the FOAF vocabulary (’ontology’). -->

<owl:Ontology rdf:about="http://xmlns.com/foaf/0.1/"
dc:title="Friend of a Friend (FOAF) vocabulary"
dc:description="The Friend of a Friend (FOAF) RDF

vocabulary, described using
W3C RDF Schema and OWL the Web
Ontology Language." >

</owl:Ontology>
<rdfs:Class rdf:about="http://xmlns.com/foaf/0.1/Person"

rdfs:label="Person"
rdfs:comment="A person."
vs:term_status="stable">

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
<owl:equivalentClass

rdf:resource="http://schema.org/Person" />
<owl:equivalentClass

rdf:resource="http://www.w3.org/2000/10/swap/pim/contact#Person"/>
<rdfs:subClassOf>

<owl:Class rdf:about="http://xmlns.com/foaf/0.1/Agent"/>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Class
rdf:about="http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing"
rdfs:label="Spatial Thing"/>

</rdfs:subClassOf>
<rdfs:isDefinedBy

rdf:resource="http://xmlns.com/foaf/0.1/"/>
<owl:disjointWith

rdf:resource="http://xmlns.com/foaf/0.1/Organization"/>
<owl:disjointWith

rdf:resource="http://xmlns.com/foaf/0.1/Project"/>
</rdfs:Class>
<!-- (...) -->

</rdf:RDF>

53

Appendix E
Configuration component of original crOWLer

54

Appendix F
Selector component of original crOWLer

55

Appendix G
crOWLer architecture

56

Appendix H
Detailed architecture of Strigil platform

Figure H.1. Components of Data Application part of Strigil

Figure H.2. Components of Download System part of Strigil

57

. .

Figure H.3. Example deployment structure of Strigil

58

Appendix I
SOWL/JSON scenario solving Use Case 1

{
type: "scenario",
name: "scenario",
ontology: {

base: "http://kub1x.org/onto/dip/t/",
imports : [

{
prefix: "foaf",
uri: "http://xmlns.com/foaf/0.1/",

},
{

prefix: "kbx",
uri: "http://kub1x.org/onto/dip/t/",

},
],

},
creation-date: "2014-11-30 12:40",
call-template: {

command: "call-template",
name: "init",
url: "http://www.inventati.org/kub1x/t/",

},
templates: [

{
name: "init",
steps: [

{
command: "onto-elem",
typeof: "http://xmlns.com/foaf/0.1/Person",
selector: {

value: "tr",
type: "css",

},
steps: [

{
command: "value-of",
property: "http://xmlns.com/foaf/0.1/firstName",
selector: {

value: "td:nth-child(1)",
type: "css",

},
},
{

command: "value-of",

59

. .
property: "http://xmlns.com/foaf/0.1/lastName",
selector: {

value: "td:nth-child(2)",
type: "css",

},
},
{

command: "value-of",
property: "http://xmlns.com/foaf/0.1/phone",
selector: {

value: "td:nth-child(3)",
type: "css",

},
},
{

command: "call-template",
name: "detail",
selector: {

value: [
{

value: "td.detail a",
type: "css",

},
{

value: "@href",
type: "xpath",

},
],
type: "chained",

},
},

],
},

],
},
{

name: "detail",
steps: [

{
command: "value-of",
property: "http://xmlns.com/foaf/0.1/nickname",
selector: {

value: ".nick",
type: "css",

},
},

],
},

],
}

60

Appendix J
Result of crOWLer run on UC1

URIs in attributes were prefixified for compactness.

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:kbx="http://kub1x.org/onto/dip/t/"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >

<rdf:Description rdf:about="kbx:scenario-201412060213045124">
<rdf:type rdf:resource="owl:Ontology"/>
<owl:imports rdf:resource="kbx:"/>
<owl:imports rdf:resource="foaf:"/>

</rdf:Description>
<rdf:Description rdf:about="kbx:scenario-201412060213045124/indiv-

201412060213050157">
<rdf:type rdf:resource="foaf:Person"/>
<foaf:firstName rdf:datatype="xsd:string">Jack</foaf:firstName>
<foaf:lastName rdf:datatype="xsd:string">Black</foaf:lastName>
<foaf:phone rdf:datatype="xsd:string">603123123</foaf:phone>
<foaf:nickname rdf:datatype="xsd:string">Jackie</foaf:nickname>

</rdf:Description>
<rdf:Description rdf:about="foaf:firstName">

<rdf:type rdf:resource="owl:DatatypeProperty"/>
</rdf:Description>
<rdf:Description rdf:about="foaf:Person">

<rdf:type rdf:resource="owl:Class"/>
</rdf:Description>
<rdf:Description rdf:about="foaf:nickname">

<rdf:type rdf:resource="owl:DatatypeProperty"/>
</rdf:Description>
<rdf:Description rdf:about="kbx:scenario-201412060213045124/indiv-

201412060213058113">
<rdf:type rdf:resource="foaf:Person"/>
<foaf:firstName rdf:datatype="xsd:string">Foo</foaf:firstName>
<foaf:lastName rdf:datatype="xsd:string">Bar</foaf:lastName>
<foaf:phone rdf:datatype="xsd:string">0x1AF49C70</foaf:phone>

</rdf:Description>
<rdf:Description rdf:about="kbx:scenario-201412060213045124/indiv-

201412060213057696">
<rdf:type rdf:resource="foaf:Person"/>
<foaf:firstName rdf:datatype="xsd:string">John</foaf:firstName>
<foaf:lastName rdf:datatype="xsd:string">Doe</foaf:lastName>
<foaf:phone rdf:datatype="xsd:string">0x1AF49B01</foaf:phone>

</rdf:Description>

61

. .
<rdf:Description rdf:about="foaf:phone">

<rdf:type rdf:resource="owl:DatatypeProperty"/>
</rdf:Description>
<rdf:Description rdf:about="foaf:lastName">

<rdf:type rdf:resource="owl:DatatypeProperty"/>
</rdf:Description>
<rdf:Description rdf:about="kbx:scenario-201412060213045124/indiv-

201412060213057200">
<rdf:type rdf:resource="foaf:Person"/>
<foaf:firstName rdf:datatype="xsd:string">Meg</foaf:firstName>
<foaf:lastName rdf:datatype="xsd:string">White</foaf:lastName>
<foaf:phone rdf:datatype="xsd:string">603123321</foaf:phone>

</rdf:Description>
</rdf:RDF>

62

Appendix K
Example of JSON dump of rdfquery datastore

{
"http://xmlns.com/foaf/0.1/Person": {

"http://www.w3.org/1999/02/22-rdf-syntax-ns#type": [
{

"type": "uri",
"value": "http://www.w3.org/2000/01/rdf-schema#Class"

},
{

"type": "uri",
"value": "http://www.w3.org/2002/07/owl#Class"

}
],
"http://www.w3.org/2000/01/rdf-schema#label": [

{
"type": "literal",
"value": "Person"

}
],
"http://www.w3.org/2000/01/rdf-schema#comment": [

{
"type": "literal",
"value": "A person."

}
],
"http://www.w3.org/2003/06/sw-vocab-status/ns#term_status": [

{
"type": "literal",
"value": "stable"

}
],
"http://www.w3.org/2002/07/owl#equivalentClass": [

{
"type": "uri",
"value": "http://schema.org/Person"

},
{

"type": "uri",
"value": "http://www.w3.org/2000/10/swap/pim/contact#Person"

}
],
"http://www.w3.org/2000/01/rdf-schema#subClassOf": [

{
"type": "uri",
"value": "http://xmlns.com/foaf/0.1/Agent"

63

. .
},
{

"type": "uri",
"value": "http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing"

}
],
"http://www.w3.org/2000/01/rdf-schema#isDefinedBy": [

{
"type": "uri",
"value": "http://xmlns.com/foaf/0.1/"

}
],
"http://www.w3.org/2002/07/owl#disjointWith": [

{
"type": "uri",
"value": "http://xmlns.com/foaf/0.1/Organization"

},
{

"type": "uri",
"value": "http://xmlns.com/foaf/0.1/Project"

}
]

}
}

64

Appendix L
User manual for SOWL and crOWLer

L.1 SOWL
1. SOWL is installed from XPI file as a regular Firefox extension. After installation an

icon will show next to the addressbar which opens sidebar with SOWL.
2. The user interface divides into two parts: the scenario editor (top half) and the

resources list (bottom half).
3. Keyboar shortcuts and mouse controls are used to navigate through the scenario

editor..arrows or h,j,k,l – navigate parent, down, up, child.Ctrl + Enter – toggle editing.A – append step as a child.a – append step as a sibling. I – prepend step as a parent. i – prepend step as a sibling

4. To load an ontology from file, simply drop the file onto the resources list.
5. To assign a selector to a step, drag the element from webpage and drop it onto

the step (selection have to be started as denoted by red border around the hovered
element)..press n,w to narrow or wider the selected element (webpage have to be focused).

6. To assign a resource to a step, drag it from resources list and drop it onto the step.

L.2 crOWLer

1. crOWLer depends on an instance of PhantomJS 1) running in the background.
2. crOWLer is distributed in a form of jarball. A run.sh script can be used to run it.
3. crOWLer accepts several command line attributes.--scenario <file> – the scenario file (required).--rdfDir <path> – the path to directory for storing RDF files.--phantom <path> – the path to phantomjs.exe.--sesameUrl <url> – an addres of sesame server (when specified, rdfDir will be

ignored).--repositoryId <repo> – an identifier of the sesame repository

1) http://phantomjs.org

65

http://phantomjs.org

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction
	Problem Statement and Motivation
	Use Cases
	Use Case 1 -- basic example case
	Use Case 2 -- National Heritage Institute
	Use Case 3 -- Air Accidents Investigation Institute
	Use Case 4 -- National Transportation Safety Board

	Current solution crOWLer
	Proposed Solution and Methodology
	Specific goals of the thesis
	Work structure

	Principles and technologies
	Technology of Semantic Web
	Linked Data
	RDF and RDFS
	URI
	RDF and RDFS vocabulary

	OWL
	RDFa
	SPARQL
	RDF/XML syntax
	Turtle syntax

	Existing solutions
	Semantic and non semantic crawlers
	Advantages and pitfalls of Semantic crawlers

	Analysis of crOWLer
	Issues of crOWLer configuration
	Confrontation with use cases -- technical issues
	Result form crOWLer analysis

	Strigil
	What problem does it solve?
	Strigil vs crOWLer
	Confronting Strigil with use cases
	What inspiration it brings for crOWLer

	Finding platform for frontend
	InfoCram 6000 -- ExtBrain
	Selenium

	Libraries for SOWL
	jQuery
	jOWL
	rdfQuery
	aardvark

	Program design
	Workflow
	Main line
	Scenario creation
	Additional branches to Scenario Creation
	crOWLer scraping

	Designing scenario format
	Strigil/XML
	Adaptation of Strigil/XML format
	SOWL/JSON
	Consequences of conversion to JSON format

	JavaScript and events support
	User Interface
	SOWL user interface
	crOWLer user interface

	Model
	SOWL model
	crOWLer model

	Program Implementation and Specifications
	SOWL implementation
	Parsing Ontologies in JavaScript
	Targeting elements on webpage and generating selectors

	crOWLer implementation
	SOWL/JSON syntax
	template
	call-template
	onto-elem
	value-of
	narrow
	function

	Conclusion
	References
	Assignment
	Abbreviations
	RDF and RDFS vocabulary
	Example of RDF/XML syntax
	Configuration component of original crOWLer
	Selector component of original crOWLer
	crOWLer architecture
	Detailed architecture of Strigil platform
	SOWL/JSON scenario solving Use Case 1
	Result of crOWLer run on UC1
	Example of JSON dump of rdfquery datastore
	User manual for SOWL and crOWLer
	SOWL
	crOWLer

