
Czech Technical University in Prague

Faculty of Electrical Engineering

MASTER’S THESIS

Mobile iOS application for a non-profit TV

Prague, 2014 Author: Mikhail Sukhotin

Declaration

I hereby declare that I have completed this thesis independently and that I have
listed all the literature and publications used. I have no objection to usage of this
work in compliance with the act §60 Zakon c. 121/2000Sb. (copyright law), and
with the rights connected with the copyright act including the changes in the act.

In Prague on

signature

i

ii

Acknowledgement

I would like to thank my supervisor, Ing. Tomáš Vondra, for his help and support
with this thesis. I would also like to thank Mr. John Honner, founder and executive
director of the Czech-American TV, for his cooperation and consultations.

iii

iv

Abstract

The main goal of this work is to design and implement a mobile iOS application for
interacting with services of the american non-profit organization Czech-American
TV. The application is able to play video and audio streams, interact with points
of interest and provide an entertainment part in the form of quizzes about the
culture of the Czech Republic. The mobile application is accompanied by a web
application, which is implemented using Ruby on Rails framework. The mobile
application communicates with server application using REST API through HTTP
protocol. Web application supports HTTP Live Streaming and streams video and
audio content.

v

vi

Contents

1 Introduction 1

1.1 Problem description . 1

1.2 Functional requirements . 2

1.2.1 Video streaming . 2

1.2.2 Audio streaming . 2

1.2.3 Content limitation . 2

1.2.4 Map . 3

1.2.5 Quiz . 3

1.2.6 Social sharing . 3

1.2.7 Notifications . 4

1.2.8 Server side web application . 4

1.3 Non-functional requirements . 4

1.3.1 Platform . 4

1.4 Chosen technologies . 5

1.4.1 Platform . 5

1.4.2 Video streaming . 5

vii

1.4.3 Content limitation . 6

1.4.4 Map . 6

1.4.5 Social sharing . 7

1.4.6 Notifications . 7

1.4.7 Serverside web application . 8

2 Client iOS application 9

2.1 Application design . 9

2.1.1 UML diagrams . 9

2.1.2 Application prototypes. Initial design 13

2.1.3 Application prototypes. Redesign 18

2.2 Used technologies . 20

2.2.1 Development environment . 20

2.2.2 Design patterns . 21

2.2.3 Core Data . 23

2.2.4 Auto Layout . 24

3 Server application 25

3.1 Application design . 25

3.1.1 Database model . 25

3.1.2 Client-server interaction . 26

3.1.3 Administration . 27

3.2 Used technologies . 31

viii

3.2.1 Ruby on Rails . 32

3.2.2 RESTful web services . 33

3.2.3 Http Live Streaming . 35

4 Testing 37

4.1 Usability testing . 37

4.2 Beta testing . 38

5 Conclusion 40

5.1 Current progress . 40

5.2 Future plans . 42

5.3 Final words . 43

References 45

A Video adaptation manual I

B REST Service Interface III

C Application wireframes for tablets VII

ix

x

Chapter 1

Introduction

Czech-American TV is a non-profit charitable organization that have a mission to
support Czech cultural and educational programs via television and internet. The
main program themes are czech language classes, czech kitchen, traditions, re-
ports from Czech Republic, famous Czechs etc. Currently Czech-American TV
broadcast across the USA and worldwide via internet on website http://www.
catvusa.com and via cable TV every Wednesday in 60 U.S. cities. However nowa-
days usage of mobile devices intensively grows and mobile applications are now an
integral part of almost every business, irrespective of their size and industry.

1.1 Problem description

The main goal of this project is to develop a software product which contains a
client mobile iOS application and a server side web application for interacting with
content of the Czech-American TV service. The service content is various and is
regularly changed and updated. It is the reason why it is necessary to implement
a web server, which processes requests from the client application and sends re-
sponses with an appropriate data. Receiving and playing video and audio streams
is the main feature of the developing application. Video streaming in the Czech-
American TV is currently realized by using the custom scripts, that send data di-
rectly to JWPlayer, responsible for playing a content. Unfortunately, this way has
its problems with the implementation for the iOS platform, therefore it is necessary
to work it over.

1

http://www.catvusa.com
http://www.catvusa.com

2 CHAPTER 1. INTRODUCTION

1.2 Functional requirements

Functional requirements specify the behaviors the product will exhibit under spe-
cific conditions. They describe what the developers must implement to enable
users to accomplish their tasks.

1.2.1 Video streaming

A mobile application is required to display a list of available video categories (for
now there are main broadcast, czech language classes, czech kitchen) and a list
of all available for a current user videos in each category including archive (if
available). All lists need to be downloaded and cached from a web server and it is
required to be configurable through a web application.

After tapping on the video item application selected video stream starts. The appli-
cation should support streams of different quality and should be able to automat-
ically switch between the streams in case the available bandwidth changes. The
next requirements are to remember the last watched position and to be able to
resume the streaming in the future.

1.2.2 Audio streaming

The mobile application should display list of available radio streams (currently folk
and classical music). The list is required to be downloaded and cached from the
web server. By tapping on the radio stream item application starts to provide
audio stream. During a playback it shows a meta information, provided by the
server (currently a band name and an official website link). The radio stream list
and the meta information for each stream should be configurable through the web
application.

1.2.3 Content limitation

The application needs to support a membership system, which is implemented on
the Czech-American TV web service. For a service member there are no limits

1.2. FUNCTIONAL REQUIREMENTS 3

on a content consumption, while an unregistered user will have the following con-
straints:

• Only the last broadcasting video and currently promoted videos are available

• The radio stream is available only 15 minutes per day

• Only the most recent quiz is available

• The navigation option on a map is disabled

1.2.4 Map

The mobile application is required to be able to display a map with marked points
of interest (POI). The list of POI is downloaded and cached from the web server.
The map should not be limited by any territory - it displays points of interest world-
widely. By tapping on the POI mark on the map, the application displays detailed
information about this point. Also, the application is required to be able to navi-
gate a user to the selected points of interest. All the detailed information about the
points of interest should be available and configurable on the web server.

1.2.5 Quiz

The application needs to contain an interactive and entertaining content in the
form of a quiz. The list of available for a current user quizzes including an archive
should be downloaded and cached from the server. Quiz questions and answers
are configurable on the web server.

1.2.6 Social sharing

The main requirements on the social sharing is that the application has a possibility
to share the specific video, radio, quiz, POI and other content via email, SMS and
the most popular social networks: Facebook, Twitter, Google Plus etc. Also, the
application should contain links to Czech-American TV accounts in these social
networks.

4 CHAPTER 1. INTRODUCTION

1.2.7 Notifications

The application is required to be able to notify a user about updates in an applica-
tion content.

1.2.8 Server side web application

The server side application should be available through web. It should grant access
to the content configuration only after an authentication process. It is necessary
for the web application to have a convenient way to configure all the content infor-
mation: available video streams, a list of promoted videos, available radio streams,
points of interest, quizzes.

1.3 Non-functional requirements

Non-functional requirements might specify not what the system does, but rather
how well it does those things. They could describe important characteristics or
properties of the system. These include the system’s availability, usability, security,
performance, and many other characteristics.

1.3.1 Platform

The client application needs to run on the iOS platform, and support all iOS mobile
devices with different screen sizes and resolutions:

Device family Supported screen sizes Supported resolutions
iPhone/iPod 3.5 ”, 4 ”, 4.7 ”, 5.5 ” 320x480, 320x568, 375x667, 414x736
iPad 7.9 ” and 9.7 ” 1024x768 and 2048x1536

The application is required to support both the landscape and the portrait device
orientations for the iPad family. For the iPhone/iPad family of devices the main de-

1.4. CHOSEN TECHNOLOGIES 5

vice orientation is the portrait with the exception of a video player, which supports
all the possible orientations.

1.4 Chosen technologies

There are a lot of different tools and technologies that can be used in the imple-
mention the project design into real world. I tried to choose instruments that are
not only help me to fulfil the requirements of this project, but also will be valuable
for me in the long term. For instance, Ruby on Rails framework was released not so
long ago and now it is very popular and powerful tool for creating web applications.

1.4.1 Platform

The mobile iOS application is implemented in Objective-C language with the Cocoa
Touch framework. According to the official statistics from Apple, measured by
the App Store during a 7-day period ending November 24, 2014 there are 60% of
devices are using iOS 8, 35% of devices are using iOS 7 and 5% of devices are
using earlier versions [2]. Therefore the application implementation is directed on
the support of iOS 7 and iOS 8 versions, but also has a backward compatibility with
iOS 6.

A resolution and a screen size support are implemented using a new feature - Auto
Layout [3]. The Auto Layout is a system that lets lay out application user interface
by creating a mathematical description of the relationships between the elements.
Developer defines these relationships in terms of constraints either on individual
elements, or between sets of elements. Using Auto Layout, developer can create a
dynamic and versatile interface that responds appropriately to changes in screen
size, device orientation, and localization.

1.4.2 Video streaming

The video and audio streaming on the iOS platform can be implemented using
HTTP Live Streaming technology [4]. HTTP Live Streaming lets developer send

6 CHAPTER 1. INTRODUCTION

audio and video over HTTP from an ordinary web server for playback on differ-
ent kind of devices. On the server side there are scripts for creating necessary
streaming files. In the client iOS application interaction with streaming content
will be able through standard MPMoviePlayerController component from Medi-
aPlayer framework. MPMoviePlayerController manages the playback of a movie
from a file or a network stream.

1.4.3 Content limitation

The most convenient and Apple style implementation of the content limitation is
the Apple payment system In-App Purchase [7]. In-App Purchase allows developers
to sell a variety of items directly within its free or paid applications, including the
premium content, virtual goods, and subscriptions. But just like applications selling
on the App Store, developer receives 70% of the purchase price. It means 30% of a
donation goes to Apple and this is the first reason to decline this kind of realization.
The second reason is that we can’t grant access to the users, who made donations
through the website, because its not connected with the Apple in-app purchase
system.

Fortunately, the Czech-American TV introduces new membership program for their
service with a registration system. Application communicates with the Czech-
American TV membership realization through its application server. The content
limitation is implemented mostly on the server side and based on the data, obtained
from user.

The radio stream limitation is realized using the standard functionality of NSUserDe-
faults class from the Foundation Framework. The NSUserDefaults class provides a
programmatic interface for interacting with the defaults system. The defaults sys-
tem allows an application to customize its behavior to match a user’s preferences.
The application in an unregistered mode will measure the time, which user spends
on the radio streaming and when it exceeds 15 minutes its marked by a specific
value in the application defaults.

1.4.4 Map

The map is realized using the Map Kit framework [8], which provides an interface
for embedding maps directly into application views. This framework also provides

1.4. CHOSEN TECHNOLOGIES 7

support for annotating the map, adding overlays, and performing reverse geocod-
ing lookups to determine placemark information for a given map coordinate.

Routing in the application is implemented using the build-in function openMap-
sWithItems:launchOptions: in the class MKMapItem from the MapKit framework.
This redirects user to the iOS Maps application where the user can use available
routing features.

1.4.5 Social sharing

For the social sharing application UIActivityViewController from the UIKit frame-
work is used [9]. The UIActivityViewController class is a standard view controller
that developer can use to offer various services from its application. The system
provides several standard services, such as copying items to the pasteboard, post-
ing content to social media sites, sending items via email or SMS, and more. The
application can also define the custom services.

Links to the Czech-American TV accounts in social networks is implemented using
the basic functionality for opening URLs. For some services there are predefined
url schemes. For instance, Facebook has fb://, Twitter has twitter://, Google
Plus has gplus:// etc. If there is a corresponding application installed, it is directly
opened without using a browser.

1.4.6 Notifications

User notifications are implemented using local and push notifications. Local no-
tifications and push notifications are ways for an application that isn’t running in
the foreground to let its users know it has an information for them. The informa-
tion could be a message, an impending calendar event, or a new data on a remote
server. When presented by the operating system, the local and push notifications
look and sound the same. They can display an alert message or they can badge the
application icon. They can also play a sound when the alert or badge number is
shown.

The Apple Push Notification service (APNs for short) [13] is the centerpiece of the
push notifications feature. It is a robust and highly efficient service for propagating
information to iOS and OS X devices. Each device establishes an accredited and
encrypted IP connection with the service and receives notifications over this per-

fb://
twitter://
gplus://

8 CHAPTER 1. INTRODUCTION

sistent connection. If a notification for an application arrives when that application
is not running, the device alerts the user that the application has data waiting for
it.

1.4.7 Serverside web application

Communication with the web server is based on JSON messages exchange. JSON
is chosen since it is an open standard format that uses human-readable text. It is a
independent and compact language.

The web server is implemented using the Ruby on Rails Framework [10]. It is
an open source web application framework which runs on the Ruby programming
language. It is a full-stack framework: it allows creating pages and applications
that gather information from the web server, talk to or query the database, and
render templates out of the box. As a result, Rails features a routing system that is
independent of the web server.

For working with database during the development stage SQLite is used [11].
SQLite is a software library that implements a self-contained, serverless, zero-
configuration, transactional SQL database engine. It is free and there is almost
no need in configuration so it’s perfect for the development. However due to the
Ruby on Rails flexibility and easy customization, SQLite can be replaced with the
another database management system by changing one configuration file.

Chapter 2

Client iOS application

2.1 Application design

Application design is the most important part of the development process. Design-
ing, prototyping and wireframe creation can help to reveal possible weaknesses in
the project requirements. Also, it can prevent a lot of future implementation er-
rors, appearing due to developers misunderstanding of the project requirements.
UML diagrams and wireframe creation were chosen for the application design in
this project.

2.1.1 UML diagrams

UML (Unified Modeling Language) is a standardised modelling language enabling
to specify, visualize, construct and document artifacts of a software system [14].
During the design phase of the project development several UML diagrams were
created.

Use-case diagram

Use-case diagrams describe functionality of the system in terms of actors, goals
and dependencies among the use cases. In a project client side there is only one
actor - a mobile application. The mobile application provides four main functions:
watching video broadcasts, listening to the radio, looking for the points of interest

9

10 CHAPTER 2. CLIENT IOS APPLICATION

on the map and taking the quizzes on different subjects (Figure 2.1). Each of these
functions can be extended with function "share with friends". For instance, user
can share currently watched broadcasts with his friends through a social network.
Moreover user can send information about some point on the map to his friend via
email. Also, the mobile application is required to provide turn-by-turn navigation
directions to selected point of interest. That feature is delegated to the native
Apple iOS application "Maps".

Figure 2.1: Use-case diagram.

Class diagram

Class diagrams represent system classes, attributes and relationships among the
classes. The class diagram for this project is divided into two parts: the class dia-
gram for the controllers (Figure 2.2) and the class diagram for the model (Figure
2.3). All controllers in the Cocoa framework are subclasses of the UIViewCon-
troller class. Also, there is a very useful standard class UITableViewController,
which is very helpful for working with tables. In this project, there is one root
subclass of UITableViewController which is responsible for working with local data
storage - UICoreDataTableViewController. All communication with the database
and changes notifications are managed by this class. Some classes have the com-
position link to other "detailed" controllers. This kind of link in iOS development
represented by the hierarchical navigation style where user navigates by making
one choice per screen until he reaches his destination.

2.1. APPLICATION DESIGN 11

Sequence diagram

Sequences diagrams represent communication between objects in terms of a se-
quence of messages. Requesting the list of the data (Figure 2.4) is the most often
operation in this project. Every controller in the application communicates with the
local application cache in the first place. This behaviour has two big advantages.
The first one is that the application is functional in the offline mode (except playing
streams and browsing the map). The second one is that this increases application
interface feedback to a user - he gets cached data almost instantly. At the same
time, the application sends asynchronous request for data to the application server.
If and only if there are any changes, the application updates the local cache and

Figure 2.2: Controller’s class diagram.

Figure 2.3: Model class diagram.

12 CHAPTER 2. CLIENT IOS APPLICATION

automatically notifies all the active corresponding controllers.

Figure 2.4: "Show list" sequence diagram.

The second diagram represents the sequence of actions which is performed when a
user starts playback of the media stream. First of all, the client application asks the
application server for the link to the stream playlist file. If the application server al-
ready has cached url to requested resource - it sends it back to the user. Otherwise,
the application server sends a request to the content server which is responsible
for the streaming media content. The content server generates a temporary url link
to the requested resource and sends it back to the application server, which passes
it next to the client application. Afterwards, the mobile application communicates
directly with the content server.

Figure 2.5: "Play stream" sequence diagram.

2.1. APPLICATION DESIGN 13

2.1.2 Application prototypes. Initial design

The next phase of the application design stage is a creation of the application pro-
totypes. These wireframes on the one hand show navigation inside the application
and on the other hand determine the way how this application looks like.

The first wireframe (Figure 2.6) shows the main navigation element of the appli-
cation - the application menu, which is presented by the navigation drawer design
pattern. The navigation drawer is a panel that transitions in from the left edge of
the screen and displays the application’s main navigation options [18]. The big
advantage of applying of this approach on mobile devices is that navigation in the
application is moved out from the main screen and there is more free space for
displaying the content.

Figure 2.6: Drawer menu

14 CHAPTER 2. CLIENT IOS APPLICATION

The navigation menu has a hierarchical structure and it is divided on several
blocks: video streams, radio streams, working with points of interest, quizzes,
information about organization, instructions for donating to the organization and
block with image links to the website of the organization and to the accounts on
three popular social networks. Tapping on any menu item replaces application
central view controller with the selected controller and automatically hides the
side navigation menu.

Figure 2.7: Resource list and detail controller.

The next wireframe demonstrates displaying the list of the data in the application
(Figure 2.7). Table view is a common way for representing a data in mobile devices.
Tapping on cell replaces the list controller with the detail controller which has more
particular information about the data item. There is a table with recent broadcasts

2.1. APPLICATION DESIGN 15

and broadcast’s detail controller here with detailed information about its content
with the button for playing video stream.

Figure 2.8: Another kind of lists representation

Displaying the list of czech language classes videos is slightly different from others
due to its hierarchical structure (Figure 2.8). The classes on the original website
are divided by several categories such as: lessons, verbs, nouns etc. At the begin-
ning, the list of all these categories is displayed on the screen. When a user tapped
on some category, it expands and shows a corresponding video lessons under the
selected category. This kind of list representation helps to organize data without
necessity to include another transition controller.

Currently, there are only two radio broadcasts in the Czech-American TV, so there
is no need in list representation of radio resources. The process of selecting radio

16 CHAPTER 2. CLIENT IOS APPLICATION

in the side menu directly opens the detail controller with the corresponding radio
information and the button for starting playback (Figure 2.9).

Figure 2.9: Radio controllers

Working with points of interest is realized using two controllers: MapViewCon-
troller and ListViewController (Figure 2.10). ListViewController looks the same
way as other table controllers. It displays all points of interest as a list. Tapping
on a table cell opens the controller with a detailed information about the point of
interest. The only difference is that this controller allows full text search through
the points of interest. MapViewController is represented by the map view. A user
can scale, move and rotate the map the same way as in other applications interact-
ing with maps. All the points of interest are located on the map as a place marks.
Selecting a mark displays its name and button, tapping on which leads to a more
detailed view of the point of interest.

2.1. APPLICATION DESIGN 17

The detailed controller displays an information about address, website, phone num-
ber, opening hours etc. Also, a user can ask for turn-by-turn directions to the se-
lected point of interests. The Maps is the preinstalled Apple application providing
turn-by-turn directions to other applications, which don’t have its own navigation
services.

Figure 2.10: POI controllers

The quizzes controller is another representation of the table view controller (Figure
2.11). It displays a name of quiz, creation date and a current user’s score for each
quiz. Tapping on a cell opens the detailed controller with the last unanswered
question (or with the first question in case of first opening). Selection of any answer
is immediately changes question. User knows his score only at the end of the quiz.
Also, there is a sharing button for posting the result to the social networks.

18 CHAPTER 2. CLIENT IOS APPLICATION

2.1.3 Application prototypes. Redesign

Application navigation in the new design based on the tab bar interface (Figure
2.12). Tab bars are used to organize information at the application level and repre-
sents the top level of the application hierarchy. Tab bars are widely used by Apple
itself in their own applications so users already used to them. The main advantage
of them in the user interaction sense is that user immediately see his location in
the application and all other possibilities there he can go from here. Also, tab bar
is located at the bottom of the mobile screen so it can be easily reached by a user
no matter how large the screen is.

The application is divided on five top level sections each of them is represented by
a single tab in the tab bar. These sections are video content, radio content, points
of the interest on the map, quizzes and application information screen. The first
tab contains video content that is organized with help of the UISegmentedControl
at the top of the screen. That control is quite similar to the tab bar and displays all
possible choices and highlight currently visible. Segmented control switches cur-
rently displayed video section between broadcast, kitchen, classes and favourites.

Information displayed differently on mobile phones and tablets. On the iPhones

Figure 2.11: Quizzes controllers

2.1. APPLICATION DESIGN 19

content displayed in the table view, whereas on the iPads it is displayed as a grid.
Tablets have much more space on the screen so application can also use horizontal
direction for the content layout. Both views support searching through the content
that can be reached by scrolling content down. Searching results filtered out in
the same view as unfiltered content and all standard actions are also available.

New design use video detail screen only for the broadcast videos, because there are
no additional information about videos in the kitchen and the classes categories.
Instead of displaying detail, tap on the video view immediately shows available
actions such as play, share and add to favourites. On the iPhone these actions
displayed as a list of actions that appears from the bottom of the screen, when on
the iPad this list is looks like context menu from the exact tap point. This difference
is based on the distinction between two form factors: tablets and mobile phones.
User mainly handle his mobile phone by one hand and operates with help of his

Figure 2.12: Redesign

20 CHAPTER 2. CLIENT IOS APPLICATION

thumb. Whereas on the tablets user handle the device by one hand and operate
with it with help of the other hand.

Video detail view remains almost the same as in the initial design. Additionally,
the chapters table were reorganized and supplemented with images. Also, there
is a favourite icon at the top toolbar, with help of which user can mark videos and
create his own list in the favourites tab.

Points of the interest on the iPhone are now displayed in the one combined tab that
contains segmented control at the top of the screen, with help of which user can
switch between the table view and the map view. On the iPad the table view and
the map are displayed together. Search through the points of the interest and add
to favourites action is also added for this section.

The separate tab dedicated to the About screen. It contains links to the Czech
American TV website and to the donation page. Also, there are links to the most
popular social networks where the organization has profiles.

2.2 Used technologies

On the client side technologies are chosen in favour of Apple products. Mainly
because of these products are very powerful and efficient and there is no reason to
choose alternatives.

2.2.1 Development environment

Xcode was chosen as the integrated development environment. It contains a suite
of software development tools, released by Apple for developing software for OS X
and iOS. Basically, there is only one alternative to Xcode - JetBrains’ AppCode [12].
But the AppCode has a very poor support of the CoreData and storyboards which
are heavily used in this project. The application was tested on an iOS simulator,
that is also provided by Apple as a part of the Xcode tools. It behaves like a standard
Mac application while simulating an iPhone or iPad environment. For this project
simulator covers all required functionality, thus there is no need for real iOS device
on the development stage. However, before production, testing on real devices
is necessary because of possible bugs and performance problems that cannot be

2.2. USED TECHNOLOGIES 21

caught during testing in the iOS simulator.

2.2.2 Design patterns

Design patterns are abstract solutions to common and well-known problems. Nowa-
days know patterns and know how to use them is almost mandatory for each soft-
ware developer. The most important patterns that are used in this project are
described in this chapter.

2.2.2.1 MVC

The Model/View/Controller (MVC) triad of classes is used to build user interfaces in
Smalltalk-80. MVC consists of three kinds of objects. The Model is the application
object, the View is its screen presentation, and the Controller defines the way the
user interface reacts to user input. Before MVC, user interface designs tended
to lump these objects together. MVC decouples them to increase flexibility and
reuse [15].

MVC pattern is widely used in developing iOS applications. The benefits of adopt-
ing this pattern are numerous. Many objects in these applications tend to be more
reusable, and their interfaces tend to be better defined. Applications having an
MVC design are also more easily extensible than other applications. Moreover,
many Cocoa technologies and architectures are based on MVC and require that
your custom objects play one of the MVC roles [16].

Model objects encapsulate the data, specific to an application and define the logic.
In this application, model is controlled by the Core Data framework and is rep-
resented by NSManagedObject subclasses: CATVPoi, CATVCategory, CATVMedia
etc.

A view object is an object in an application that users can see. A view object knows
how to draw itself and can respond to user actions. A major purpose of view objects
is to display data from the application’s model objects and to enable the editing of
that data. In this application the view is represented by different subclasses of
UIView class, mostly predefined by the built-in Cocoa framework.

A controller object acts as an intermediary between one or more of an application’s
view objects and one or more of its model objects. Controller objects are thus a
conduit through which view objects learn about changes in model objects and vice

22 CHAPTER 2. CLIENT IOS APPLICATION

versa. Controller objects can also perform setup and coordinating tasks for an ap-
plication and manage the life cycles of other objects. In the currently developing
application, controllers are represented by different subclasses of the UIViewCon-
troller class: MenuViewController, KitchenViewController etc. For instance, in the
developed application there is the controller BroadcastViewController which uses
UITableView as a view object to display an array of the CATVMedia model objects.

2.2.2.2 Singleton

Singleton pattern ensures a class that only has one instance and provides a global
point of access to it. Developer obtains the global instance from a singleton class
through a factory method. The class lazily creates its instance the first time it is
requested and thereafter ensures that no other instance can be created [15] [17].
Several Cocoa framework classes are singletons. They include NSFileManager,
NSWorkspace, and, in UIKit, UIApplication and UIAccelerometer. In this appli-
cation a singleton object is used for the DataStore class which is a global point
for accessing and manipulating with a data. It provides NSManagedObjectCon-
text which is used by the Core Data framework classes and receives requests from
a user to update and refresh an application data such as quiz questions, media
objects, points of interest and others.

2.2.2.3 Drawer

Navigation drawer is a panel that transitions in from the left edge of the screen
and displays the application main navigation options [18]. A user can bring the
navigation drawer onto the screen by swiping from the left edge of the screen or
by touching the application icon on the top bar. This is a relatively new design
pattern, main goal of which is to replace common tabs bar or navigation bar menus
in case of many menu items. In this application the navigation drawer pattern is
implemented using the open-source project MMDrawerController under the MIT
license. This library is designed to exclusively support side drawer navigation in
a light-weight, focused approach while exposing the ability to provide custom ani-
mations for presenting and dismissing the drawer [19].

2.2.2.4 Delegate

Delegation is a simple and powerful pattern in which one object in a program acts
on behalf of, or in coordination with, another object [20]. The delegating object

2.2. USED TECHNOLOGIES 23

keeps a reference to the other object - the delegate - and at the appropriate time
sends a message to it. The message informs the delegate of an event that the
delegating object is about to handle or has just handled. The delegate may respond
to the message by updating the appearance or state of itself or other objects in the
application, and in some cases it can return a value that affects how an impending
event is handled.

Delegation pattern is commonly used in Cocoa classes. One of the most using view
classes UITableView requires implementation of the UITableViewDataSource dele-
gate in which UITableView asks another object for number of the displaying rows
and the view for each row. In this project there is a PoiDetailViewControllerDele-
gate which has method showPoiOnMap using which the main class delegates dis-
playing point of interest to another class.

2.2.3 Core Data

The Core Data framework provides generalized and automated solutions to com-
mon tasks associated with object life-cycle and object graph management, includ-
ing persistence. In this project Core Data represents a model part of the Model-
View-Controller pattern. Core Data provides an infrastructure for change manage-
ment and for saving objects to and retrieving them from storage. It can use SQLite
as one of its persistent store types [21].

Important parts and classes of the Core Data framework, which are used in this
project:

• Managed object model

• Managed object

• Managed object context

• Persistent store

• Fetched results controller

A managed object model is an instance of the NSManagedObjectModel class. It
describes a schema, a collection of entities, that is shown in your application.

Managed objects are instances of the NSManagedObject class that represent in-
stances of an entity. NSManagedObject is a generic class that implements all the
basic behavior, required for a managed object.

24 CHAPTER 2. CLIENT IOS APPLICATION

An instance of NSManagedObjectContext represents a single "object space" or
scratch pad in the application. Its primary responsibility is to manage a collec-
tion of managed objects. A single managed object instance exists in one and only
one context, but multiple copies of an object can exist in different contexts.

Core Data provides three sorts of disk-based persistent store - XML, atomic, and
SQLite - and an in-memory store. SQLite persistent store is used in this project.

NSFetchedResultsController is used for efficiently manage the results returned
from a Core Data fetch request to provide a data for a UITableView object.

2.2.4 Auto Layout

Auto Layout technology was introduced at the Worldwide Developer Conference in
June 2012 together with the 6th version of the iOS [3]. It was a first step that Apple
did towards to mobile devices with various screen sizes (next ones were shift from
skeuomorphism to a more simplified design in iOS 7 and size classes in iOS 8). Auto
Layout describes location of the user interface elements in terms of constraints. In
this project Auto Layout used in all table cells and in the About screen, thats why
the application displayed correctly on all Apple devices.

Chapter 3

Server application

3.1 Application design

This chapter describes three most important problems in the server application
design: in what way the data will be stored, how the client application will commu-
nicate with the server application and how to manage the server content.

3.1.1 Database model

Relational database was chosen for this project due to its popularity and instal-
lation simplicity. Also, there is a default and easy to use the Ruby on Rails class
ActiveRecord, which represents the commonly used architectural pattern Active
Record. Seven relational tables were created for this project (Figure 3.1). These
tables can be divided on two main groups: categorized relations and quiz relations.

The first group is represented by three tables: categories, media and POIs. Video
streams and radio streams are merge to one table because of theirs similarity. Each
media object has one category and may have one subcategory. There are no plans
in the Czech-American TV for supporting nested categorization so there is no need
in recursive associations. POIs table contains columns for address and coordinates
that may seem redundant, but geocoding services are still not so precise in many
countries so human readable and correct address is still needed. The media table
and the POIs table are in an one-to-many relationship with the category table.

The second group is represented by four tables: quizzes, questions, questions_quizzes

25

26 CHAPTER 3. SERVER APPLICATION

and answers. The quizzes table contains only one field (excluding indentifier) -
name, which simply represents the quiz name. The questions table also contains
only one text field for the question’s text. These two tables are connected by a
many-to-many relationship in table questions_quizzes, which contains primary keys
of each member of the relationship. This relationship allows to share questions be-
tween different quizzes. The answers table among with the answer text field also
contains a boolean flag that indicates wether it is a correct answer or not. Moving
information about the correct answer to the answer table allows to create multi-
ple answer questions. The answers table is in a one-to-many relationship with the
questions table.

Figure 3.1: Database model

3.1.2 Client-server interaction

The server side contains two main parts: the application server with the REST-
ful web service and the content server with the web application for delivering it
(Figure 3.2). Both applications are written using the Ruby on Rails framework.
Currently used database is SQLite, but it also can be easily replaced by any other
database management system like MySQL, PostgreSQL and others and moved out
to a separate server (during development SQLite database situated on the same
server as a web application).

3.1. APPLICATION DESIGN 27

Figure 3.2: Client-server interaction scheme

The application server is managed by the Ruby on Rails RESTful web service, which
is stateless and can be easily scalable to several instances behind a load balancer.
The main goal of this server is to provide all the necessary information for the
client application in a cross-platform format (json or xml) such as a list of available
broadcasts, list of points of interest, questions and answers for quizzes etc.

All requests for a video stream, such as request for playlist (.m3u8) or specific
media segment (.ts), are redirected by the application server to the content server.
The content server web application generates url for a request and can be based on
a user access permissions. The content server application generates url in the fol-
lowing format: http://server_address/hls/random_string/video.m3u8, where
random_string is generated randomly and can be associated with access permis-
sions of a requesting user. Also, this url has it’s own time-to-live which can prevent
from collecting permanent links to video streams by users.

3.1.3 Administration

The Czech-American TV regularly updates a video data such as broadcasts, czech
language classes, kitchen videos etc. Currently, data changes and new posts are
entering through a Joomla content management system. There is several reasons
to make a separate management system for this project. Firstly, Joomla’s system’s

http://server_address/hls/random_string/video.m3u8

28 CHAPTER 3. SERVER APPLICATION

interface is pretty standard and general so there is no individual interface solutions
for the current project. The second reason is that currently the Czech-American
TV doesn’t support points of interest and quizzes. And the third reason is that
implementing content management system on the Ruby on Rails technology stack
is quite easy for development and support and there is a chance, that the Czech-
American TV will migrate on this platform in the future.

Figure 3.3: Video administration wireframe

The new content management system contains three main parts. The top bar dis-
plays the logo of the organization and a currently logged-in administrator and can
have a set of an action buttons, which is depends on a context. The left bar repre-
sents menu of the CMS. It is divided on several sections: categories, video, radio,
POI’s and quizzes. Some sections can have a subsections which are simply different
filters for the current section. For instance, the video section can have a Kitchen
subsection which displays only kitchen related videos. Also, each section has an
"archived" subsection which contains all deleted entities. And the third one part is
a content part.

The first administration wireframe represents the video section (Figure 3.3). All
videos are displayed as a table and each row can be edited or removed. Removing
entity moves it to the archived subsection. Also, there is a checkbox "Is free" which
indicates wether this video is available for an unregistered user or not. In the top
bar of the screen there is an action button "Add" which is used for creating a new
table item. The detailed view of the video entity is represented on the Figure 3.4.
Category and subcategory fields are represented by the combo boxes which are
eliminate the possibility of misprinting.

3.1. APPLICATION DESIGN 29

Figure 3.4: Detailed video view

Figure 3.5: Points of interest

The table of points of interest looks almost the same way as the video table (Figure
3.5). The main difference is in the detailed view of the point of interest (Figure 3.6).
There are several simple input elements such as the name field, the description
field and the category combo box. And there is a one complex location input view.
It contains address text field, coordinates text field and a map view. All three of
these inputs are linked and can fill each other.

For instance, an administrator can input an address of the point of interest and us-
ing the "Get coordinates" button receive coordinates from a geocoding service and

30 CHAPTER 3. SERVER APPLICATION

Figure 3.6: Detailed POI view

displays this point on the map view. Using the "Get address" button and the coordi-
nates text field an administrator can receive an address from a reverse geocoding
service and also displays it on the map. And there is the third option - locate the
point on the map and get an address and coordinates. An administrator can edit
received location information due to an imperfection of the geocoding services in
different countries and, sometimes, not very clean and pretty address detection.
The address can be easily edited in its text field and coordinates can be changed
either through the coordinates text field or directly on the map.

The table of quizzes also looks like all other common tables (Figure 3.7). Creating
a new quiz or editing an existing quiz redirects administrator to the detailed quiz
view (Figure 3.8). Here there is a text field for the quiz name and the list of
questions. Questions can be created (button "Create new question") or can be
chosen from already existing questions from the database (button "Select from
DB", Figure 3.9). Each question row displays question’s text, answer alternatives
(correct ones selected with a different color) and action buttons. Each question can
be edited or removed from this quiz. Also, there is a buttons for ordering questions.

3.2. USED TECHNOLOGIES 31

Figure 3.7: All quizzes

Figure 3.8: Detailed quiz view

3.2 Used technologies

Modern and powerful technologies are used in this project. RESTful web service
that based on the Ruby on Rails framework that can stream video content through
the HTTP protocol is very powerful and efficient combination of technologies for
this project.

32 CHAPTER 3. SERVER APPLICATION

Figure 3.9: Questions management

3.2.1 Ruby on Rails

Ruby on Rails [10] is an open source full-stack web application framework, which
means that all layers are built to work seamlessly together. Developer can use a
single language (in this case Ruby) from view templates to a business logic. Ruby
on Rails provide the library WEBrick for creating simple HTTP web server service,
which is used in this project on the development stage. However using different
gems developer can easily deploys a Ruby on Rails application on different oth-
ers web servers such as Apache, nginx, Glassfish, Jetty and many more. Gems is
another significant part of Ruby environment. Gem is a self-contained format for
distributed ruby programs and libraries, which is managed by RubyGems package
manager. For instance, current project uses the gem named "sqlite3" and can be
replaced by the gem "pg", which is responsible for using the PostgreSQL database.

Ruby on Rails also uses the Model-View-Controller [22] design pattern to organize
application programming. View part in Ruby on Rails is represented by Action View
templates which are written using embedded Ruby in tags mingled with HTML.
Controller part is represented by the Action Controller which is responsible for
making sense of the request and producing the appropriate output. And finally, the
Model part is represented by the Active Record design pattern. Active record is
an architectural pattern that was named by Martin Fowler in his book Patterns of
Enterprise Application Architecture. Active record object is an object that wraps
a row in a database table or view, encapsulates the database access, and adds

3.2. USED TECHNOLOGIES 33

domain logic on that data. An object carries both data and behavior. Much of this
data is persistent and needs to be stored in a database. Active Record uses the
most obvious approach, putting data access logic in the domain object. In this
project this pattern is used in the server-side Ruby on Rails application as a part of
the Object Relational Mapping system.

3.2.2 RESTful web services

Representational State Transfer (REST) is a coordinated set of architectural con-
straints that attempts to minimize latency and network communication, while at the
same time maximizing the independence and scalability of component implementa-
tions. REST enables the caching and reuse of interactions, dynamic substitutability
of components, and processing of actions by intermediaries, in order to meet the
needs of an Internet-scale distributed hypermedia system [23] [24].

3.2.2.1 Client-Server

The first constraint is a separation of the user interface from the data storage con-
cerns, which is improve the portability of the user interface across multiple plat-
forms and improve scalability by simplifying the server components. This project
holds this constraint by design.

3.2.2.2 Stateless

The next constraint is that a communication must be stateless in nature, such that
each request from client to server must contains all of the information necessary
to understand the request, and cannot take advantage of any stored context on
the server. Session state is therefore kept entirely on the client. This constraint is
also valid for this project. In the first phase of the development there is no user
authentication, so each request is fully stateless. But in the future, user access
also will be implemented in a stateless mode using the basic authentication or
using authentication tokens.

34 CHAPTER 3. SERVER APPLICATION

3.2.2.3 Cache

The cache constraint requires that the data within a response to a request be
implicitly or explicitly labeled as cacheable or non-cacheable. If a response is
cacheable, then a client cache is given the right to reuse that response data for
later, equivalent requests. The advantage of adding cache constraints is that they
have the potential to partially or completely eliminate some interactions, improv-
ing efficiency, scalability, and user-perceived performance by reducing the average
latency of a series of interactions.

In this project cache is implemented using the request header "if-modified-since".
The client application can add this header with a date of the last update into the
request and get data, that changed since that date. In addition the Ruby on Rails
on the server side automatically adds the field "updated_at" in each data entity and
that is also ease a cache support.

3.2.2.4 Uniform interface

The central feature that distinguishes the REST architectural style from other
network-based styles is its emphasis on a uniform interface between components.
REST is defined by four interface constraints: identification of resources; manipu-
lation of resources through representations; self-descriptive messages; and, hyper-
media as the engine of application state.

3.2.2.5 Layered system

Layered system style allows an architecture to be composed of hierarchical lay-
ers by constraining component behavior such that each component cannot "see"
beyond the immediate layer with which they are interacting. By restricting knowl-
edge of the system to a single layer, we place a bound on the overall system com-
plexity and promote substrate independence. In this project the client application
interacts only with the application server which can be easily moved behind a load
balancer. The database can be also detached on the separate server, but this will
have no influence on the client applications.

3.2. USED TECHNOLOGIES 35

3.2.3 Http Live Streaming

HTTP Live Streaming lets send audio and video over HTTP from an ordinary web
server for playback on iOS-based devices - including iPhone, iPad, iPod touch,
and Apple TV - and on desktop computers (Mac OS X). Also HTTP Live Stream-
ing supported on other different platforms including Android and Windows Phone
devices. HTTP Live Streaming supports both live broadcasts and prerecorded con-
tent (video on demand). HTTP Live Streaming supports multiple alternate streams
at different bit rates, and the client software can switch streams intelligently as
network bandwidth changes. HTTP Live Streaming also provides for media en-
cryption and user authentication over HTTPS, allowing publishers to protect their
work [4].

The HTTP Live Streaming supported not only by Apple devices. Android devices
natively supports the HTTP Live Streaming from the Ice Cream Sandwich release
(4.0) which is 90% of all devices [5]. Windows Phone devices can play HLS streams
using 3rd party video players [6]. Among browsers only Safari natively supports
HLS. Other browsers can play HLS throught the various 3rd party web players
such as JWPlayer, which is currently used in the Czech American TV.

Main idea of HLS is a dividing video file on a series of small files, typically about
10 seconds duration, called media segment files. An index file, or playlist, gives
the clients the URLs of the media segment files. Videos in the Czech-American
TV are encoded using the H.264 video compression and use the AAC codec for
audio. This encoders were chosen because of its support on the Apple devices and
only that encoders are supported in the HTTP Live Streaming. So in this project
there is no need to decode video. The simple script was created for segmentation
video files. It uses the ffmpeg utility, that provides a set of portable, functional and
high-performance libraries for dealing with multimedia formats of all sorts [26].

The HTTP Live Streaming has several advantages over progressive download.

• The first one is that HLS saves the video publisher and the viewer’s data
plan money. The HTTP Live Streaming delivers only a few segments of the
video which can leads to decreasing outgoing traffic and bandwidth load in
the Czech American TV.

• Another advantage is that HTTP Live Streaming can switch between streams
of different bitrates in response to changing connection speeds. Which means
that on the cellular connection the mobile application can switch to the stream
with low bitrate. That allows smooth playing of the video and also decreasing
outgoing traffic from the server.

36 CHAPTER 3. SERVER APPLICATION

• The HTTP Live Streaming specification has provisions to ensure security of
the stream. That will be very useful in the future for the Czech American TV
membership program. Each media segment can be encrypted so the whole
video stream is protected.

Chapter 4

Testing

Each product should be properly tested before the public release. For this projects
two types of testing were chosen: usability testing with small group of people and
more extensive beta testing with a lot of people.

4.1 Usability testing

Usability testing is used for detect any problems in the interaction between the user
and the application. It allows developer to see weaknesses of the user interface on
the early stages of the development. The usability testing for this project was made
when the first design was implemented. Five people took part in it with different
mobile using experience: 3 of them are Apple device users, 2 of them - Android
device users.

There are several problems were discovered during testing and the main one is the
drawer navigation. One of the iOS users had a problem with locating menu and at
the beginning he thought that there is nothing in the application but the list of the
videos on the main screen. Also, it took quite a significant amount of time for users
to find a required section and often it leads to starting to scroll menu in an attempt
to find it there.

Two testing users are developers and they both recommend to get rid of the drawer
navigation. Also, in June were the Worldwide Developer Conference organized
each year by Apple. In the session "Designing Intuitive User Experiences" User Ex-

37

38 CHAPTER 4. TESTING

perience evangelist Mike Stern talks about drawer navigation and its weaknesses.
The first one is that menu is not visible on the screen at all. People that use ap-
plications with this pattern don’t switch to different sections very frequently. And
the main reason is that they can’t see the options, or maybe they saw it at one
point in time, but they have since forgotten. The next weakness is the speed and
convenience in the section switching. Each time user should tap on the button in
the corner, wait for the menu to open, find required section, tap on it. Also, menu
button is located in the top left corner and on the mobile phones it is very hard to
reach it using hand that handle the phone. Especially now, when Apple introduce
the new iPhone with big screen size.

The most appropriate replacement for the drawer navigation is the tab bar. First
of all, user always see what section is selected right now together with all other
options to select. It is immediately clear, that the application has another features
that can be selected. Which, is by the way, solves another problem of the drawer
navigation - control reachability. Tab bars are located at the bottom of the screen
so it can be easily reached. Switching between sections is fast and user has an
immediate switch feedback from the application.

Another problem that was discovered during the testing is connected to the fact
that Czech American TV service do not provide any additional information to the
kitchen and classes videos. So in the detail view there are a lot of free space and
users sometimes thought that the application didn’t received the data yet.

These discovered problems lead to the big redesign of the application. Two test
users from the first usability testing take part in the second testing with the new
design and confirm that the application became much more simple and understand-
able.

4.2 Beta testing

The beta testing is the process of releasing the beta version of the product to the
limited audience outside the programming team. In this project beta testing is
combined with the term minimum viable product. The first release version of the
project contains only core features that allow the product to be deployed. These
core features here are downloading the list of the videos of all categories and their
playback.

For collecting the information about the application installations Crashlytics ser-

4.2. BETA TESTING 39

vice was chosen. Crashlytics is powerful and lightweight crash reporting solution
that also contains tools for the application analytics. It shows different perfor-
mance metrics such as daily active users, average session length, crash-free users
and more.

The beta version of the application was uploaded to the App Store and after 10
days was available for public. Basically, this step also includes some kind of test-
ing, because all applications should pass a review by the Apple review team. First
of all, reviewers control general stability and functionality: possible crashes, bro-
ken links, placeholder content and more. Besides review includes basic check of
the application description page such as inaccurate description or incomplete in-
formation. Also, it verifies if the application follows Apple design guidelines, has
clean, refined user-friendly interface.

The first beta testers were volunteers from the Czech American TV. About 10 people
participate in the first phase of the testing and during first two weeks no crashes
or some other serious problems have been detected. Which means that the core
functionality such as video playback works fine.

Chapter 5

Conclusion

5.1 Current progress

The mobile iOS application project for the Czech-American TV is still in a progress
and will be also develops after the presentation of this thesis.

Figure 5.1: The iOS application: the tab bar with the segmented con-
trol (on the left) and the detail view (on the right)

40

5.1. CURRENT PROGRESS 41

The first public release of the iOS application is implemented according to re-
designed application wireframes and shipped to the App Store. It includes only
core video playback functionality, but all fundamental components of the applica-
tion are almost ready for use and soon will be added to the application (Figure
5.2):

• The navigation in the application is realized with the tab bar pattern (Figure
5.1)

• The application use the Core Data stack and the local SQLite database as an
application cache

• The application communicates with the server REST API through the HTTP
protocol

• The application can play video streams from the server using the Http Live
Streaming technology

• Points of interest can be displayed as a list or directly on the map

• A user can use the embedded Apple application Maps for turn-by-turn direc-
tions to the selected point of interest

• Quizzes and interaction with them are implemented

The server side application was implemented on the Ruby on Rails stack technology
and now represented by the one web application:

• The server web application runs on the CTU’s Openstack server and on the
Heroku - cloud application platform

• The server uses the SQLite database as a data storage

• The application has the REST API for communicating with clients through the
HTTP protocol

• The application API has a versioning support through the HTTP request’s
header "Accept". By default, the last version is available

• The application supports the HTTP Live Streaming including the client’s au-
thentication access permissions

• The content management system is implemented using the ActiveAdmin ad-
ministration framework [25]

42 CHAPTER 5. CONCLUSION

5.2 Future plans

The current project became quite large and needed a lot of implementation de-
tails for both sides - the client iOS application side and the server side. Although
all project’s fundamental parts were implemented, there are still a lot of work to
do. First of all, the application should obtain all required functionality. It will be
reached during the iterative process that includes following steps:

• Add an iPad support including platform-dependent distinctions

• Release in the AppStore version with integrated support of the points of in-
terest

• Release in the AppStore version with integrated quiz support

• Implement radio playback support

Each step will go together with another public App Store release.

Figure 5.2: The iOS application: actions (on the left) and the kitchen
view (on the right)

5.3. FINAL WORDS 43

As regards the server side application, it is necessary to separate the database and
the content server from the application server. Currently, in the Czech-American
TV there is no authentication but they working on the new partnership system,
where a user, that made a donation will get a full access to the content. As for
the content management system, it needs to be customized for the current project,
because now it is quite general and not so user-friendly and easy to use.

5.3 Final words

The mobile iOS application and the server application were implemented as a re-
sult of this project. In spite of the incompletenesses in both sides, the application’s
core functionality is complete. Two testing phases were accomplished during which
some serious problems were discovered and fixed. The big redesign of the appli-
cation was realized and led to much simpler and user-oriented design. And finally,
as a big step from the development environment to the production - there was a
public release in the App Store. Approve from the Apple reviewers to public the
application can be considered as some kind of quality assurance.

In my opinion, current project will help the Czech-American TV in a popularization
of the Czech culture not only in the USA but also all over the world. And due to the
popularity of the Apple’s online application store Appstore there is a high probabil-
ity of the increasing Czech-American TV users and members and, as a result, more
resources and opportunities for the project’s development and evolution.

References

[1] J. Conway and A. Hillegass. iOS Programming: The Big Nerd Ranch Guide.
Big Nerd Ranch Guides; 4 edition (February 21, 2014).

[2] Apple devices statistics. URL: https://developer.apple.com/support/
appstore/

[3] Auto Layout Guide URL: https://developer.apple.com/library/
ios/documentation/userexperience/conceptual/AutolayoutPG/
Introduction/Introduction.html

[4] HTTP Live Streaming URL: https://developer.apple.com/streaming/

[5] Android Platform Versions URL: http://developer.android.com/about/
dashboards/index.html

[6] HTTP Live Streaming Client SDK for Windows 8 and Windows Phone 8 URL:
http://www.3ivx.com/technology/windows/metro/http_live_streaming.
html

[7] In-App Purchase for Developers URL: https://developer.apple.com/
in-app-purchase/

[8] Map Kit Framework URL: https://developer.apple.com/library/
ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/
MapKit/MapKit.html

[9] Matt Thompson UIActivityViewController. URL: http://nshipster.com/
uiactivityviewcontroller/

[10] Ruby on Rails URL: http://rubyonrails.org/

[11] SQLite URL: https://sqlite.org/

[12] JetBrains AppCode URL: https://www.jetbrains.com/objc/

44

https://developer.apple.com/support/appstore/
https://developer.apple.com/support/appstore/
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/AutolayoutPG/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/AutolayoutPG/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/AutolayoutPG/Introduction/Introduction.html
https://developer.apple.com/streaming/
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
http://www.3ivx.com/technology/windows/metro/http_live_streaming.html
http://www.3ivx.com/technology/windows/metro/http_live_streaming.html
https://developer.apple.com/in-app-purchase/
https://developer.apple.com/in-app-purchase/
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/MapKit/MapKit.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/MapKit/MapKit.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/MapKit/MapKit.html
http://nshipster.com/uiactivityviewcontroller/
http://nshipster.com/uiactivityviewcontroller/
http://rubyonrails.org/
https://sqlite.org/
https://www.jetbrains.com/objc/

REFERENCES 45

[13] Apple Push Notification Service URL: https://developer.apple.
com/library/ios/documentation/NetworkingInternet/Conceptual/
RemoteNotificationsPG/Chapters/ApplePushService.html

[14] UML, Technopedia URL: http://www.techopedia.com/definition/3243/
unified-modeling-language-uml

[15] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1994.

[16] Apple Model-View-Controller Design Pattern URL: https://developer.
apple.com/library/ios/documentation/general/conceptual/
devpedia-cocoacore/MVC.html

[17] Apple Singleton Design Pattern URL: https://developer.apple.com/
library/mac/documentation/general/conceptual/devpedia-cocoacore/
Singleton.html

[18] Android Navigation Drawer Design Pattern URL: https://developer.
android.com/design/patterns/navigation-drawer.html

[19] G itHub MMDrawerController project URL: https://github.com/
mutualmobile/MMDrawerController

[20] Apple Delegate Design Pattern URL: https://developer.apple.com/
library/mac/documentation/general/conceptual/devpedia-cocoacore/
Delegation.html

[21] Apple Core Data Programming Guide URL: https://developer.
apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/
cdProgrammingGuide.html

[22] Ruby on Rails MVC Principles URL: http://guides.rubyonrails.org/
getting_started.html

[23] Roy Fielding (2000). Architectural Styles and the Design of Network-based
Software Architectures. URL:http://www.ics.uci.edu/~{}fielding/pubs/
dissertation/top.htm

[24] Roy Fielding, Richard Taylor Principled Design of the Modern Web Architec-
ture URL: http://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.
pdf

[25] ActiveAdmin administration framework URL: http://activeadmin.info/

[26] FFmpeg URL: https://www.ffmpeg.org/

[27] Appropriate Uses For SQLite URL: http://www.sqlite.org/whentouse.
html

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
http://www.techopedia.com/definition/3243/unified-modeling-language-uml
http://www.techopedia.com/definition/3243/unified-modeling-language-uml
https://developer.apple.com/library/ios/documentation/general/conceptual/devpedia-cocoacore/MVC.html
https://developer.apple.com/library/ios/documentation/general/conceptual/devpedia-cocoacore/MVC.html
https://developer.apple.com/library/ios/documentation/general/conceptual/devpedia-cocoacore/MVC.html
https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/Singleton.html
https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/Singleton.html
https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/Singleton.html
https://developer.android.com/design/patterns/navigation-drawer.html
https://developer.android.com/design/patterns/navigation-drawer.html
https://github.com/mutualmobile/MMDrawerController
https://github.com/mutualmobile/MMDrawerController
https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/Delegation.html
https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/Delegation.html
https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/Delegation.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/cdProgrammingGuide.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/cdProgrammingGuide.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/cdProgrammingGuide.html
http://guides.rubyonrails.org/getting_started.html
http://guides.rubyonrails.org/getting_started.html
http://www.ics.uci.edu/~{}fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~{}fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf
http://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf
http://activeadmin.info/
https://www.ffmpeg.org/
http://www.sqlite.org/whentouse.html
http://www.sqlite.org/whentouse.html

46 REFERENCES

Appendixs A

Video adaptation manual

The Http Live Streaming technology has following requirements [4] for the video
files:

• Video should be encoded using the H.264 compression

• Audio tracks should be encoded either HE-AAC, AAC-LC or MP3

Currently, all video files in the Czech American TV answer these requirements.
Next, all video files should be divided into segments. This can be reached with
help of the FFmpeg utility [26]. It is free and cross-platform, but in case of compil-
ing from the source code it should be configured with flags "–enable-gpl –enable-
libx264". For instance, we have a video file with name "video.mp4" and we want
to create a HLS playlist with name "hls.m3u8". The following command split video
file into several segment files (hls0.ts, hls1.ts, etc.) and create the playlist file
(hls.m3u8):

ffmpeg −i video .mp4 −str ic t −2 hls .m3u8

The AAC encoder is still experimental so the command should contains flag "-strict
-2".

Now the video is ready for streaming. The HTTP Live Streaming can be served from
any web server so no special configuration is necessary except the MIME types of
the streaming files that will be served. For the playlists *.m3u8 files MIME Type
should be "application/x-mpegURL" or "vnd.apple.mpegURL". For the segment *.ts
files it should be "video/MP2T". Because m3u8 files are simple text files they can be
compressed with the gzip compression - the mobile application can automatically
unzip them.

I

II APPENDIXS A. VIDEO ADAPTATION MANUAL

For the mobile application is enough to send a link to the m3u8 playlist file of the
video instead of the link to the original mp4 file. But due to advantages of the HLS
it can be also integrated into the current website.

<video
src="http : / / path / hls .m3u8"
height="300" width="400"

>
<!−− fallback block −−>
</ video>

This code snippet add the HTML5 tag "video" with the link to the m3u8 playlist.
In case that browser don’t support the video tag or don’t support the HTTP Live
Streaming fallback block can be included between <video> and </video> tags.

Appendixs B

REST Service Interface

1

2 Resource: Videos
3

4 GET /videos/ // return all videos
5 Response format: [
6 {
7 "video_id" : 1,
8 "category_id" : 1,
9 "url" : "http://URL/playlist.m3u",

10 "name" : "Video name",
11 "description" : "Video description",
12 "date" : 1394478580
13 },
14 ...
15]
16

17

18 GET /videos/categories /// return all video categories
19 Response format: [
20 {
21 "category_id" : 1,
22 "name" : "Category name",
23 "kind" : "video",
24 "level" : 0
25 },
26 ...
27]
28

III

IV APPENDIXS B. REST SERVICE INTERFACE

29 GET /videos/categories/1/videos /// all videos in category
30 Response format: same as "GET /videos"
31

32

33 GET /videos/categories/:category_id /// return category by id
34 Response format: one category
35

36 GET /video/:video_id /// return video by id
37 Response format: {
38 "video_id" : 1,
39 "category_id" : 1,
40 "url" : "http://URL/playlist.m3u",
41 "name" : "Video name",
42 "description" : "Video description",
43 "date" : 1394478580
44 }
45

46

47 GET /video?search="search_term" /// search in all videos
48 Response format: same as "GET /video"
49

50

51 Resource: Radio
52

53 GET /radios /// return all radio streams
54 Response format: [
55 {
56 "radio_id" : 1,
57 "url" : "http://URL/radio.m3u",
58 "name" : "Radio stream name",
59 "description" : "Radio stream description",
60 "date" : 1394478580
61 },
62 ...
63]
64

65 GET /radios/:radio_id /// return radio stream by id
66 Response format: {
67 "radio_id" : 1,
68 "url" : "http://URL/radio.m3u",
69 "name" : "Radio stream name",
70 "description" : "Radio stream description",
71 "date" : 1394478580

V

72 }
73

74

75 Resource: POI
76

77 GET /pois /// return all pois
78 Response format: [
79 {
80 "poi_id" : 1,
81 "category_id" : 1,
82 "latitude" : 50.083333,
83 "longitude" : 14.416667,
84 "name" : "POI name",
85 "description" : "POI description"
86 "address" : "Tr i t? 365/15 118 00 Praha 1-Mal Strana Czech

Republic"
87 },
88 ...
89]
90

91 GET /pois/categories /// return all POI categories
92 Response format: [
93 {
94 "category_id" : 1,
95 "name" : "Category name"
96 },
97 ...
98]
99

100 GET /pois/categories/:category_id /// return category by id
101 Response format: same as "GET /poi"
102

103 GET /pois/:poi_id /// return POI by id
104 Response format: {
105 "poi_id" : 1,
106 "category_id" : 1,
107 "latitude" : 50.083333,
108 "longitude" : 14.416667,
109 "name" : "POI name",
110 "description" : "POI description"
111 "address" : "Address"
112 }
113

VI APPENDIXS B. REST SERVICE INTERFACE

114

115 Resource: Quizzes
116

117 GET /quizzes /// return all quizzes
118 Response format: [
119 {
120 "qiuz_id" : 1,
121 "name" : "Quiz name",
122 "date" : 1394478580
123 },
124 ...
125]
126

127

128 GET /quizzes/:quiz_id /// return quiz by id
129 Response format: [
130 {
131 "question" : "Questions text",
132 "answers" : [
133 {
134 "answer_id" : 1,
135 "text" : "answer text",
136 "isCorrect" : 0
137 },
138 {
139 "answer_id" : 2,
140 "text" : "answer text",
141 "isCorrect" : 1
142 },
143 ...
144]
145 },
146 ...
147]

Appendixs C

Application wireframes for tablets

Figure C.1: Tablet wireframes: video controllers

VII

VIII APPENDIXS C. APPLICATION WIREFRAMES FOR TABLETS

Figure C.2: Tablet wireframes: radio controller

Figure C.3: Tablet wireframes: POI controllers

