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Abstrakt 

Předmětem této disertační práce je užití polyharmonických signálů pro 

detekci kovů. Zásadním problémem všech běžných detektorů kovů pracujících na 

bázi vířivých proudů je omezená možnost identifikace detekovaných předmětů. 

To je způsobeno tím, že většina detektorů kovů s diskriminační schopností 

používá jako buzení pouze jeden kmitočet. Informace o detekovaném předmětu je 

tudíž obsažena jen v jedné frekvenci, respektive v její fázi. Vzhledem k tomu, že 

některé objekty mají podobnou odezvu, je diskriminační schopnost těchto 

detektorů omezena. Hledá-li operátor specifický materiál (např. zlato), může 

nastat situace, že tento může být zaměněn za materiál s podobnou odezvou (např. 

alobal). Další oblast, kde je třeba zlepšit schopnost diskriminace detektorů, jsou 

humanitární organizace zabývající se odminováváním oblastí. Detekci jedné miny 

předchází až tisíc falešných poplachů. 

Budicí signál a jeho zpracování detektorem by proto mělo být provedeno tak, 

aby lépe charakterizoval detekovaný objekt. Užití polyharmonických signálů a 

jejich pokročilé zpracování nabízí příležitost, jak zlepšit detekční schopnosti 

detektorů. Tato disertační práce se zabývá použitím těchto netradičních 

polyharmonických signálů jako budicích signálů pro detektory kovů pracujících 

na bázi vířivých proudů. V práci jsou popsány principy detektorů kovů, jak 

z fyzikálního, tak i z technologického hlediska. Uvedeny jsou dva základní typy 

aktivních detektorů kovů. Pozornost je věnována také běžným konfiguracím 

hledacích hlav detektorů. Chování elektromagnetické indukce je vysvětleno 

pomocí jednoduchého obvodového modelu. Odezva pro specifický tvar objektu – 

koule, pro oba typy materiálů – feromagnetických a neferomagnetických, je také 

prezentována v teoretické části práce. 

V praktické části práce jsou vyhodnoceny změřené výsledky tří různých 

budicích multifrekvenčních signálů. Tyto budicí signály jsou step sweep sine-

wave signál, chirp signál a sinc signál. Práce je orientována hlavně na signál sinc. 

Výsledky z experimentálního měření jsou zpracovány, jak v časové, tak ve 

frekvenční oblasti. V časové oblasti jsou prezentovány výsledky dosažené pomocí 

standardních integrálních parametrů signálu. Ve frekvenční oblasti jsou 

prezentovány amplitudová a fázová spektra spolu s polárními grafy. V rámci práce 

byla na základě experimentálních měření provedena klasifikace měřených 

objektů. Klasifikace, jak do tříd feromagnetických a neferomagnetických 

materiálů, tak do tříd jednotlivých testovaných materiálů. Závěrem byla 

provedena klasifikace odhadu velikosti objektu. Jako klasifikátor byl spolu 

s dalšími primárně použit ‘support vektor‘ klasifikátor. 

Díky použití více frekvencí je odezva detekovaného předmětu změřena 

v širším frekvenčním pásmu. V takovéto odezvě je informace o detekovaném 

předmětu nesena ve více frekvencích, respektive jejich amplitudách a fázích. To 

umožňuje lépe charakterizovat detekovaný předmět ve srovnání s klasickou 

metodou použití pouze jedné frekvence. Experimentální výsledky ukázaly, že 

použití vhodného polyharmonického signálu může zlepšit identifikaci předmětu, 

v porovnání s běžnými metodami, vyžívající pouze jednu frekvenci.  
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Abstract 

The dissertation concerns the application of polyharmonic signals in devices 

for metal object detection. A basic problem of conventional eddy current metal 

detectors (induction devices in general) lies in its limited possibilities of 

discrimination or identification of detected objects. It is due to the fact that most 

of eddy current metal detectors with some limited discrimination ability use only 

one frequency excitation signal. Therefore the information about detected object 

is carried only in one frequency, in its phase shift respectively. It leads to limited 

discrimination ability due to the fact that some of detected objects have similar 

response in this case. For example if an operator looks for a specific material 

(e.g. gold) the response can be misinterpreted for material which has similar one 

(e.g. tinfoil). Another area where improvement of detectors identification ability 

is useful is humanitarian demining. There is usually a great amount (in average 

about 1000) of false alarms to one detected mine. 
To better characterize the detected object, the excitation signal and the 

following signal processing in the detector should be done. Application of 

polyharmonic excitation signal and its processing could bring an opportunity to 

improve the determination ability. Therefore the dissertation deals with finding 

some suitable polyharmonic signals applicable for this purpose. The two types of 

active metal detectors using various types of their search head /coils 

configuration) were introduced. Behavior of electromagnetic induction is 

explained using a Simple circuit model. Response function for specific cases of 

the object`s shape (the homogenous sphere for two types of materials, 

ferromagnetic and non-ferromagnetic) is introduced. 

Three different excitation polyharmonic signals for an eddy currents metal 

detector were evaluated. Step sweep sine-wave signal, chirp signal, and a sine 

cardinal (sinc) signal were taken into account. The work was mainly focused to 

the modifying sinc signal.  Experimental measurements were processed in both 

time and frequency domain. Spheres of different diameters and from different 

ferrous and non-ferrous materials were used as specimens. In the time domain, 

standard integral parameters of the response (RMS and peak value and crest 

factor) were calculated. In the frequency domain amplitude and phase spectra 

were calculated and presented together with polar graphs. As part of the work, 

classifications of ferrous and non-ferrous materials were done based of measured 

data as well as classification of individual ferrous including non-ferrous materials 

and estimation of the size of the classified object. Support vector classifier was 

primarily used for data classification (together with other classifiers). 

Thanks to multiple frequencies a response of detected object is measured in 

a wide band. In the response, information about detected object is carried by 

multiple phases and amplitudes and one gets more detailed information about 

a detected object than by using classical single-tone methods. Experimental results 

verified that application of a suitable multifrequency signal can bring more 

accurate identification of property of detected metal object than by using classical 

single-tone methods.   
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1. Introduction 
Metal detectors are an important part of our lives in present time. There are 

used at the airports or in important buildings, where walk-through security metal 

detectors serve to improve the security. Amateur treasure hunters or 

archaeologists use detectors to detect ancient artefacts and old coins. Metal 

detection and classification is also widely used in pharmacy, food, beverage or 

chemical industries and military. Last but not least, metal detectors are used in 

humanitarian demining, where a handheld metal eddy current detectors plays 

a key role during land clearance from explosives remnants of wars.  

 

There are many methods to detect metal object or mine [1] but eddy current 

metal detectors are still the most popular detectors in humanitarian demining, for 

hobbyist treasure hunters and for archeologist because of their low cost. Ground 

penetrating radars (GPR), which are much better in detection and discrimination 

capabilities, are extremely expensive [2] and [3]. Metal detectors based on the 

eddy current principle typically convert the complex received signal into 

an acoustic signal. This acoustic output signal reports the presence of a metallic 

object to the user (treasure hunter, archeologist or deminer). Accurate locating in 

the two-dimensional positioning (pinpointing) of a detected buried metal object is 

easily possible for a qualified deminer [4]. 

 

Main problem remains in identifying of detected object. If the operator finds 

any object there is still doubt what kind of target is found. Even with 

discrimination ability, there is still a challenge to avoid undesirable metal 

materials. This is due to the fact that some of them have similar response 

(for example tinfoil and gold). Thus, improperly setting of discrimination ability 

of certain metal materials increases the risk of ignoring the objects. For this 

reason, better discrimination ability should be undertaken [5].  

 

1.1. Mine Clearance 

The World War and World War II had a significant impact on metal 

detectors. Many new types of metal detectors were further improved for military 

purposes, especially for land mine detection. After these wars detectors were used 

for humanitarian demining to clear unexploded buried land mines. 

 

Nowadays large numbers of land mines are buried in the soil. That causes 

significant problem across the world. They are placed manually or by special 

mining vehicles approximately 40 cm deep into the ground. The greatest danger 

they present is their invisibility not only for soldiers but also for civilians. 

Removal of the mines following a military conflict is a difficult task. Probably, 

the antipersonnel land mines are the biggest problem. There are about sixty to 

seventy billion antipersonnel mines buried in seventy countries [6] and [7]. There 



Jakub Svatoš  2015 

4 

 

are two types of land mines: antitank and antipersonnel (AP). Antitank mines are 

much larger and more powerful than AP mines. However, AP mines are the most 

common type of mines and also the most difficult to find. AP mines kill or cripple 

26 thousand people each year. The statistics say that half of these victims are 

civilians, mostly children younger than sixteen years of age. Effective demining 

of land mines means that close to 100 % of the mines in the demined area must be 

detected as fast as possible and with minimum number of false alarms (mistaking 

a different objects for a buried mine). Nowadays there is no existing land mine 

detection system which meets these criteria. Reasons for this failure are especially 

the variety of environments in which the mines are buried and the limits or flaws 

of current technology [8] and [9].  

 

Another obstacle in removing buried mines is nature itself. Even if accurate 

maps about distribution of mines can be made, they could not be taken for granted 

because of floods, quicksand, and other phenomena which can completely 

invalidate the contents of such records. This problem does not only concern mines 

but all unexploded ordnance (UXO). Detonation is typically triggered by pressure 

or in some cases by activating a tripwire or similar mechanisms. Therefore a land 

mine detector must work without physically contacting the mine. Also a detector 

must be able to locate all types of mines in different environments.  

 

1.2. Archeology and Treasure Hunting  

 In recent times, the development of archaeology brought a significant rise of 

treasure (or relic) hunting like "artifact seeking", "site looting", "coin shooting" or 

looking for valuable metals in their natural forms. Coin shooters are looking for 

present day coins which were lost after events where many people are involved, 

like festivals or concerto. Advanced “hunters” may look for any old coins, bullets, 

ancient weapons or conduct historical research to locate an archeological or 

historical site. This led to a large increase in use of metal detectors.  

 

The first recorded use of a metal detector by an archeologist is dated in 1958 

by military historian Don Rickey, who used metal detector to detect the firing lines 

at Little Big Horn [10]. Recently, cooperation between professional archeologists 

and metal detecting hobbyists have begun even though archaeologists oppose the 

use of metal detectors by hobbyists or "site looters" whose activities disrupt or 

even damage archaeological sites. Because treasure hunting, is becoming more 

and more popular in these days this result in more producers, who researching 

new technologies and methods in metal detection. Manufacturers generally try to 

put on additional features, such as discrimination - metal detector can be muted 

for a specific material and remain silent when situated upon it. Notching 

discrimination is another new feature which can distinguish between different 

objects. But these features are inaccurate. An attractive goal for manufacturers is 

to improve discrimination ability of detectors. 
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Another possible function is Ground Balancing which is either automatic or 

manually adjustable. This function is based on filtering the selected phase shift, 

which may have a negative effect - the loss of information on the searched subject 

[11]. 

1.3. Security  

Metal detectors are widely used as a security screening at the airports, in 

governor buildings or at important events or meetings, especially after recent 

increase of terrorist attacks. In common with the developments in mine clearance 

or treasure hunting uses of metal detectors, both pulse and continuous wave 

systems are used. Construction of these detectors can be handheld or walk-

through. Targeted objects, such as weapons (e.g. guns and knives), should be 

consistently and accurately detected, while personal items (e.g. keys, coins, belts) 

should pass through without causing an alarm. 

 

1.4. Summary 

Electromagnetic detectors remain the most commonly used type of metal 

detectors, though it has its shortcomings - detectors poorly recognize or 

discriminate specific materials or mines. For example in humanitarian demining, 

there is still done major detection and clearance work using manual methods. This 

method is accurate but very slow – the rate usually does not exceed 100 m2 per 

deminer per day [8]. After a war the soil is contaminated by large amounts of 

shrapnel, metal scraps, etc., and this leads to false alarms – depending on location 

between 100 and 1,000 false alarms for each real mine. The decrease of these false 

alarms is therefore desirable [12]. 

 

The excitation signal and signal processing in the detector should be done in 

a way to avoid false alarms. Also the detectors should be able to work properly in 

challenging conditions, but mainly they should detect any dangerous objects. Use 

of multi-tone excitation signal can be considered. Such signals should be 

composed of suitable frequencies and the resulting received signal spectrum can 

be evaluated.  
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2. State of the Art 
Currently, eddy current methods are still major techniques in detection. The 

available information indicates that the majority of producers of eddy current 

metal detectors use one frequency (about 10 kHz) in the cheaper (and thus more 

readily available) metal detectors and metallic objects are mainly recognized by 

phase shift. But this method has some disadvantages for example something that 

look like one large object could be several objects close to each other and even 

from different materials. 

 

In the more expensive models, manufacturers currently use multiple 

frequencies (most often two or three) and the user can switch between them 

depending on where and what objects is the user searching for. It is known that 

lower frequencies are less affected by ground effect, because metal detectors are 

dependent on the magnetic susceptibility of the soil. They also suppress skin effect 

of the material. These frequencies penetrate deeper into the soil, but on the other 

hand, higher frequencies have a higher resolution. Therefore, manufacturers must 

make a compromise between these frequencies or use multiple frequency systems. 

 

Recently Minelab came to the market with their new broadband technology, 

where the excitation signal range is composed of 28 frequencies from 1 kHz to 

100 kHz and full band technology with sweep signal from 1.5 kHz to 25.5 kHz 

[13] – [19]. 

 

2.1. Types of Metal Detectors 

Electromagnetic induction devices or metal detectors can be generally divided 

into passive and active metal detectors. Passive detectors trace the background 

and detect magnetic fields. Active detectors generate a time varying low frequency 

magnetic field which changes when a metallic objects is present. Active metal 

detectors can be also divided into two groups - frequency domain and time domain 

metal detectors [20]. 

 

2.1.1.  Time Domain Metal Detectors 

Time domain metal detectors or Pulse induction (PI) system usually use 

a single coil for transmitting and receiving or may have different coils for 

transmitting and receiving. This technology sends powerful, short repeated bursts 

(typically 1 kHz) of current pulses, taking care to minimize the current switch-off 

time. Duty cycle of current pulses is typically about 4% [21]. As the current pulse 

shuts off, due to rapid change of current, a very large voltage spike of opposite 

polarity is induces (counter EMF). An eddy currents are induced if a conductive 

object is present. These eddy currents generate a secondary magnetic field which 

is induced in the coil.  The exponential decay of the secondary field is slower than 
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that of the primary field. The time constant of eddy current decay depends on the 

object’s conductivity, permeability and size. The received pulses are measured by 

an integrator and after that are converted to an audio tone as an indication. 

 

Transmitting 
Coil

Receiving 
Coil

Pulse Generator

Time Controlled 
Receiver

Evaluation Unit Indication

 

Fig. 2.1: Simple block diagram of the PI system 

 

Since reflected pulses could have the same lengths for various metals, it is 

not easily distinguishable. In that case PI detectors are not good at discrimination.  

 

Amplitude

Tx Current

Tx Voltage

Rx Voltage

Sampled 

signal

t

t

t

t

 
Fig. 2.2: Transmitted and received signals of PI metal detector 
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By increasing the period between transmitter pulses shut-off and pulses 

delay, specific metal objects can be rejected. For example the first will be 

aluminum foil, followed by nickel and gold. There have been attempts to design 

PI detectors with better discrimination capabilities but with limited results [21]. 

Response of a Pulse Induction detector for a conductor present and without any 

target (no metal) is presented in Fig. 2.3. 

Voltage

Time

No target

Ferrous target

Non-Ferrous target

 
 

Fig. 2.3: Response of different targets 

 

PI detectors are useful in some areas which are strongly mineralized or near 

salt water. Also, PI detectors can often detect metal much deeper in the ground 

than other systems. 
 

2.1.2. Frequency Domain Metal Detectors 

Frequency domain metal detectors use single coil, or separate transmitting 

(TX) and receiving (RX) coils and usually operates at one or more sinusoidal 

signals, very often just one. Real and imaginary parts (or amplitude and phase) of 

the received signal contain information about detected objects when the detector 

passes near objects.  

 

Operating frequencies of the detectors are usually in the range from 1 kHz to 

120 kHz. The lowest possible frequency is determined by the size of the search 

coil (low energy of the emitted electromagnetic field). The amount of emitted 

energy is proportional to the third power of the frequency. The maximum usable 

frequency is determined by the properties of the soil. The penetration depth (skin 

depth) in case when of incident planar wave is given by formula: 
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𝛿 = √
2𝜌

𝜔𝜇0𝜇𝑟
= √

1

𝜋𝑓𝜇0𝜇𝑟𝜎
    (2.1) 

 

where ρ is resistivity, ω is angular frequency, µ0 is permeability of the vacuum 

(4π × 10−7 NA−2), µr is relative permeability, σ is conductivity and f is frequency. 

 

In accordance with this formula, depth of penetration into the ground 

decreases when frequency increases as well as the influence of the soil capacitance 

character. “From the point of view of sensitivity there is a tendency to move 

towards higher operating frequencies, which can be probably explained by 

thinking of the quality factor Q improvement of a resonant (LC) circuit, and also 

by the fact that the induced voltage U is proportional, according to Faraday’s 

law, to the rate of change of the magnetic flux Φ passing through the receiver 

coil” [22]. However it is also known (in accordance with formula (2.1) for skin 

depth δ) that lower frequencies penetrate better than higher frequencies and skin 

effect is reduced too. Also the ground effect is lesser. Therefore manufacturers are 

compelled to find a compromise between these frequencies. Some of them use 

multiple frequencies where the system can switch between different frequencies. 

At present, there is a trend to use multi-frequency technologies by manufacturers. 

 

Frequency change 

The simple system works on change of frequency principle. A single coil can 

be used in this system. The system is based on is oscillator with the operating 

frequency given by resonant circuit. Operating resonant frequency fR is given by 

well-known Thomson formula (2.2). 

 

𝑓𝑅 = 
1

2π√𝐿𝐶
 ,    (2.2) 

 

where L is inductance of the coil and C is capacitance of parallel capacitor.  

 

Coil Oscillator
Frequency 

counter

 
 

Fig. 2.4: Simple block diagram of Frequency change system 

 

When the detector passes near a metallic object the impedance of the coil is 

changed. It causes that the oscillator oscillates at slightly different frequency. 

Frequency of the oscillator can be either increased, which is usually caused by 

non-ferrous metals, or decreased by a presence of ferrous material. But it is not 
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possible to distinguish between different materials in practice. That is because 

metal objects of different shapes and sizes causing a different frequency changes. 

The inability to discriminate different metals is the reason this system is not 

commonly used. 

 

Beat-frequency Oscillator 

Another simple technology is based on beat-frequency oscillator (BFO). 

BFO system could work with one or two coils (separate TX and RX coil). The 

principle of BFO system is similar to well-known superheterodyn receivers 

i.e. mixing of the two slightly different frequencies. By this way small changes in 

frequency can be indicated. The system uses two identical oscillators which 

oscillate at the same frequency (kHz). One of the oscillators is coupled with the 

coil. Second oscillator which oscillates with constant frequency is used as 

a reference. Both oscillators are connected to a mixer. The mixer is basically 

multiplier in which signals from oscillators are multiplied resulting in difference 

of both frequencies. The result from this operation is an acoustic beat (Fig 2.5). 

 

Coil Oscillator 1

Mixer

Oscillator 2

Amplifier + Speaker

 
 

Fig. 2.5: Simple block diagram of BFO 

 

If the coil in the search head passes over a metal object, the object’s magnetic 

field changes the frequency of the oscillator. Ratio of the frequency change based 

on the change of self-inductance is given by formula (2.3). 

 
∆𝑓

𝑓0
=
1

2

∆𝐿

𝐿
,     (2.3) 

 

where Δf is frequency change, f0 is frequency of the oscillator, ΔL is inductance 

change and L is inductance of the coil. 

 

As the pickup frequency deviates from the reference oscillator frequency, the 

frequency of acoustic beats (tone) changes depending on the type of metal. 

Despite its simplicity this system is still used in some applications, for example in 

traffic light controls via a loop buried under the surface [22]. 
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Very Low Frequency 

Very low frequency (VLF) metal detectors (also known as induction balance) 

are the most widely used detector technology in use today. System can be divided 

into transmitting part and receiving part. These parts are connected only by mutual 

inductance M between TX and RX coils [Transmitter Receiver – Induction 

Balance system]. The system uses separate transmitting and receiving coils which 

operates at single frequency typically from range of 1 kHz to 50 kHz. The shape 

and position of the coils is arranged in a way to have as low mutual inductance as 

possible when a metal object is not present. This is the reason for the contrast 

between the presence and absence of an object. 

 

Transmitting 
Coil

Receiving 
Coil

Oscillator

Receiver
Synchronous 

Detector

Amplifier + 
Indication/

Speaker

Phase Shift

 
 

Fig. 2.6: Simple block diagram of VLF 

 

A block diagram of VLF metal detector is showed in Fig 2.6. The oscillator 

generates a signal with frequency f and excites the TX coil which generates time 

varying electromagnetic field. Phase shift block can be set to prevent false 

detection or discriminate specific type of metal. 

Voltage VT in TX coil can be described by formula 

 

𝑉𝑇 = 𝐼𝑇𝑒
𝑗𝜔𝑡,    (2.4) 

 

where IT is current driven through TX coil, ω is radian frequency (ω = 2πf), and 

t is time. 

 

Voltage VR inducted at RX coil is given by formula 

 

𝑉𝑅 = −𝑗𝜔𝑀𝐼𝑇𝑒
𝑗𝜔𝑡,   (2.5) 

 

where M is mutual inductance. 

 

When the receive coil passes over an object, this object thanks to the primary 

field, produce a secondary magnetic field (due to eddy currents induced in object 

by primary field) and it causes a change in the voltage VR induced in RX coil. The 

coils become unbalanced and it changes a mutual inductance M between the TX 

and the RX coils.  
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The received signal which corresponds to secondary magnetic field could be 

formulated as complex value. The received signal consists of a signal which is in 

phase with the transmitted one VReal (in-phase/resistive) and signal which is 

dephased by 90 degrees VImag (quadrature-phase/reactive) (Fig. 2.7).  

 

𝑉𝑅(𝑡) =  𝐴 ∙ sin(𝜔𝑡 + 𝜑) = 𝑉𝑅𝑒𝑎𝑙 sin(𝜔𝑡) + 𝑉𝐼𝑚𝑎𝑔cos (𝜔𝑡), (2.6) 

 

where 𝑉𝑅𝑒𝑎𝑙 = 𝐴 ∙ cos (φ), and 𝑉𝐼𝑚𝑎𝑔 = 𝐴 ∙ sin(φ), φ is phase shift between 

transmitted and received signal and A is amplitude, 

 

 

Resistive

Reactive

A

φ

VR=VReal+jVImag

VReal=Asinφ

VImag=Acosφ

 
Fig. 2.7: Transmitted and received signals waveform and phase vector of the received 

signal in the complex plane 

 

Separation of these two components of the signal is usually done by 

synchronous demodulator. The frequency and phase of reference signal for the 

synchronous demodulator must be controlled quite precisely – thermal stability 

and insignificant drift are required. 
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When the detector moves upon a target the amplitude A and the phase shift φ 

will vary. Therefore information about the object nature is contained in their 

changes. Based on the character of the secondary magnetic field, these metal 

detectors can approximately determine some information about the target, for 

example how deep the object of a specific size is. Because of the phase shift, VLF 

detectors can distinguish between different types of metal materials. The signal 

phase shift depends on the conductivity and permeability of an object. Basically 

objects with high conductivity have a larger phase shift. The signal phase shift 

depends on the conductivity and permeability of an object.  

 

Since most metals differ in conductivity and permeability and therefore have 

a different phase shift, VLF metal detectors provide the possibility to discriminate 

between them. Another discrimination feature of VLF detectors is called notching. 

A notch is a discrimination filter for a particular segment of the phase shift and in 

principle it is low-pass filter on the output of mixer. The discrimination and 

notching have one big disadvantage - the inability to distinguish between objects 

with similar conductivity and permeability or between objects which aren't similar 

in case of conductivity and permeability but have the same phase shift response 

[4], [8] and [23]. 

 

2.2. Search Head – Coil Basic 

2.2.1. Search Coil Size and Shapes 

The diameter of a coil can influence the detection depth and sensitivity of 

a detector. The signal from a larger coil covers wider area and penetrantes deeper, 

but with less sensitivity to small target. Also separation of multiple targets in its 

path is more difficult. Smaller diameter soil is more sensitive, but the detection 

depth is reduced. Small diameter coil allows to maneuver through common 

debries to locate desired targets. It is lighter in weight, easier to control and may 

be chosen for their ability to cope with difficult terrain or undergrowth. Small coils 

are considered those with diameter less than 150 mm, large ones with diameter 

greater than 250 mm.  

 

Generally, search coils are circular or elliptical in shape; exceptionally in 

a special 2-box shape configuration they could have square shape. This kind of 

configuration is used for detection of large, deeply buried targets. Elliptical shape 

concentrates the field towards the centre thus has good pinpointing ability. 

However, a circular search coil has slightly deeper detection depth and sensitivity 

in non-mineralized soil. It’s the most commonly used shape [24], [25] nad [26]. 
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2.2.2. Search Coils Configuration 

A search head consists of TX and RX coil(s). In addition to various search 

coil sizes and shapes, a variety of search coil configurations are available. Each of 

them provides different advantages for specific applications. 

 

Coaxial OrthogonalConcentric Double D 4B

 

 

Fig. 2.8: Some possible search head configurations 

 

The coil configuration is chosen according to size of objects and soil 

properties. There are basically three coplanar configurations (Concentric, Mono 

and Double-D) and two non-coplanar (Coaxial and Orthogonal). The majority of 

metal detectors used for mine detection use coplanar configuration. Coplanar 

searching heads have various shapes – elliptical, square coils or diferential setups 

(Double-D, 4B). 

 

Mono-coil  

A mono-coil or mono-loop configuration is used only in Pulse Induction 

detectors and is a one of the type of concentric configuration. This head can be 

made as a single coil acting both as TX and RX coil. The signal shape of the 

Mono-loop coil is cone thus is not good in precise localization (pinpoint) of the 

target. Mono-coil configuration and its signal shape is shown in Fig 2.9 (black 

color represents the search head while white color represents coil itself). 

 

 
 

Fig. 2.9: Mono-coil configuration field shape [25] 
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Concentric  

The concentric configuration consists of a transmitting coil and a receiving 

coil which are usually circular. A RX coil has usually smaller diameter than a TX 

coil. The signal is sent out from a transmitting coil in conical shape (Fig. 2.10). 

Concentric coils receive more interference from mineralized soil [25]. Advantage 

of this coil configuration is it provides the most symmetrical field allowing 

pinpointing an object easily. Concentric configuration has also better 

discrimination ability.  

 

 
 

Fig. 2.10: Concentric coils confuguration field shape [25] 

 

Double-D 

Double-D coils have two overlapping coils in the shape of two D’s 

(Fig. 2.11). This configuration is designed to significantly reduce mineralized soil 

effect and recover the performance lost by a concentric coil especially in 

mineralized soil.  

 

 
 

Fig. 2.11: Concentric coils confuguration field shape [25] 

 

Because of its small positive detection field, the Double-D is little bit less 

sensitive than a Concentric search head of the same size, over non-mineralized 

ground. Advantages of a Double-D coil are stability in mineralized ground, good 

depth, sensitivity and pinpointing of the target [24]. 
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The other two configurations belong to non-coplanar configurations – coaxial 

and orthogonal. A coaxial or imagining configuration of a search coil is 

an enhanced version of the concentric configuration with an additional RX coil(s) 

and is more complex. This extra coil(s) provides the detector with additional target 

information like object depth and object size but is also affected by mineralized 

soil and has small detection depth. Because of its specific design, this type is used 

only in the smallest coils [27]. 

 

The orthogonal or 2-Box setup  uses physically separated TX and RX. This 

setup is often used with larger coils for very deep detection of large objects. 

Disadvantage of this configuration is that because of its large detection field, it 

ignores objects smaller than about 60 mm in diameter. 

 

Some of the head configurations use a differential setup of the RX coils. 

A TX coil is located around the whole perimiter and the receive coils are located 

inside symetrically in form of Double-D. If a metal object is not present in the 

primary field, the differential setup causes that the votage induced in the coils has 

the same amplitude but the opposite polarity so it cancels out. Immediately after 

an object gets under the receiving coils a different voltage will be induced. In this 

case the differential voltage will not be zero and coils detect the object’s presence. 

The advantage of this setup is that it makes pinpointing much easier. 

Disadvantages are lowered sensitivity, due to RX coil being splited into two halfs, 

and strict mechanical tolerances on construction. Big disadvantage is also zero 

sensitivity in perpendicular direction because of dividing the signal equally from 

both coils.  

 

2.3. Ground Balancing 

Signal from soil itself could be appreciable when searching for objects is 

performed in highly mineralised soils. In this case a problem occurs with intrusive 

background signal. Other intrusive signals like electromagnetic background, drift 

effects can be eliminated by the design of a searching coils and electronics, 

eventually in advanced systems, by signal processing. The most important 

problem is the effect of soil itself especially in highly mineralized regions 

(bauxite, magnetite) or beaches (salt). Susceptibility, conductivity and 

permeability (magnetite has a relative permeability µr = 5) of the soil have 

influence on the signal and cause false alarms. It is known that some soil types 

can reduce sensitivity, generate false alarms or even render a detector unusable. 

Ground properties can change greatly from area to area even in relatively small 

areas. 

 

The interference of the signal could be significant if the soil is more 

conductive or permeable and the objects are small or deep, or are less conductive 

or permeable and in addition the soil is inhomogeneous. This signal from the soil 
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is small but in much larger volume in contrast to small metal objects. The resulting 

signal may not correspond with reality. For this case, modern metal detectors 

offers some form of background rejection. Manual ground balancing of metal 

detectors is becoming a thing of the past. The most of the present metal detectors 

have automatic ground balancing. As mentioned in [11] one of the most common 

way of implementing background rejection is to measure the ground signal alone 

and then suppress it. This method could be implemented by measuring the phase 

shifts related to the ground signal and shift from received signal related to 

presence of metal object using of a synchronous demodulator or advanced signal 

processing using digital signal processor. 

 

2.4. All Terrain Mine Detector 

The ATMID™ All Terrain Mine Detector is the mine clearance detector 

developed by Schiebel company, Austria. The ATMID is a military standard 

detector which can be used unaffected by climatic variations. It is designed to be 

highly effective in detecting minimum-metal-content objects in all areas, even in 

heavily mineralized soils. The ATMID can operate either in the continuous wave 

mode (8.17 kHz and 10 Vp-p of amplitude) or pulse mode depending on the type 

of search head. Both modes work combined with ground-compensating 

technology. 

 

 
 

Fig. 2.12: Search head of the ATMID 

 

As mentioned above, ATMID metal detector works on operating frequency 

f = 8.17 kHz. Therefore coil is balanced/tuned for this operating frequency by 

capacitor (0.47 µF) which is placed in electronic unit [28] and small ferromagnetic 

core placed in the search head (Fig 2.13). Number of turns of transmitting coil is 

17 and receiving coil is approx. 190 turns. 
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Fig. 2.13: Ferromagnetic core placed in head of the ATMID 

 

The coil is unbalanced for other frequencies and induced voltage has 

a nonzero value. This situation is describes in Fig. 2.14. When operating frequency 

at 8.17 kHz, the coil is balanced and the output voltage is minimal or zero. If the 

search head only without its electronic will be used and if operates on different 

frequencies, coils became unbalanced and the output voltage won’t be minimal. 

This effect can be used for comparing signal from a target with a signal without 

any target present. 

Balanced

Unbalanced

Amplitude

Position

 
Fig. 2.14: Unbalanced and balanced signal from Double-D head type 

 

As reported by Geneva International Centre for Humanitarian Demining, the 

ATMID detector has been used in service for more than 10 years and there are 
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now more than 4,000 in use worldwide, for example in  Cambodia, Croatia, 

Ecuador, Laos, Lebanon, Mozambique, Peru, Slovenia, Taiwan, the U.S. and 

Vietnam. They are being used by armed forces from a number of countries 

(Cambodia, Sweden, US, etc.), humanitarian demining organizations (CMAC, 

CROMAC, MAG, etc.) and commercial demining companies (SGS, RONCO, 

Milsearch, TADS, etc.) [29], [30] and [31]. 

 

2.5. Summary 

Eddy current metal detectors are still major devices used in detection. There 

are two types of active metal detectors; frequency domain and time domain eddy 

current metal detectors. Time domain metal detectors use pulse induction 

principles. Its advantages include large depth of detection and an ability to operate 

in strongly mineralized soils, but it is outweighed by inability of discrimination. 

Most capable frequency domain metal detectors are VLF detectors, which process 

real and imaginary part of the received signal to detect and discriminate objects. 

Their limitation is in ability to discriminate objects which have similar 

electromagnetic properties (conductivity and permeability) or objects which could 

have similar response. An inseparable part of a metal detector is also its search 

head. There are differenet coils sizes and coils configuration. Generally, 

configuration selection strongly depends on the main purpose of the detector. The 

ideal searching head should cover the largest ground area with the best pinpointing 

ability for all terrain situations with maximal sensitivity. The best compromise is 

offered by concentric or Double-D configuration. In addition, Double-D 

configuration offers the better functionality in mineralized ground. 
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3. Objectives 
The aim of this work is to improve discrimination or recognition of detected 

objects by eddy current metal detectors. Low frequency magnetic fields, which 

penetrate deeper into the ground, are less affected by magnetic or mineralized soils 

and also a skin effect is reduced. On the other hand high frequencies offer better 

resolution and sensitivity. The received signal could then be processed either 

separately for each individual frequency or as a whole spectrum - for the entire 

frequency range. These methods should be implemented in a way allowing to use 

them in real-time. It could be achieved by using of a microprocessor fast enough 

for a signal processing or a gate array. 

 

The main goal of the thesis is to analyze and verify possibilities of using 

a polyharmonic signal to improve the identification of located objects. To achieve 

it, it is necessary: 

 

 to analyze properties of system excited by a polyharmonic signals 

 to verify the system properties using an excitation by a multiple 

frequency signal 

 to measure experimental data for different objects  

 to process measured data in both time and frequency domains 

 to classify different measured objects into classes 

 to compare advantages and disadvantages of a polyharmonic 

excitation signals with standard methods 

 

The partial goals mentioned above enables an opportunity to explore 

polyharmonic signals, which cover large spectrum of frequencies. For their 

application in metal detectors there are three different ways how to generate such 

a signal with multiple frequencies. The first method uses step sweep signal which 

changes its frequency by defined steps. Parameters of the step sweep signal 

depend on the quality of the used generator and the lock-in amplifier. The 

possibility of using synchronous demodulator is the main advantage of the signal. 

Thanks to that the great sensitivity can be reached. Disadvantage is in the time 

demandingness of individual measurements. However this signal cannot be 

considered as polyharmonic. The second method uses chirp or linear frequency 

sweep signal. This type of signal is easily defined and covers wide spectrum of 

frequencies at once. The spectrum of such signal is a rectangular function. It can 

be an asset. A drawback is the inability to use synchronous detection. The last one 

uses a signal which is a combination of the both signals mentioned above. A signal 

consists of multiple harmonic frequencies, where each frequency is clearly 

defined, and all frequencies are applied ‘at once’. There are several waveforms 

which meet these criteria but signal described by cardinal sine function or sinc 

having the Fourier transform of rectangular shape   rect(f) enables to define easily 

the frequency range and number of individual frequencies.  
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All three methods of signal generation mentioned above offer possibilities of 

processing in both frequency and time domains. In the frequency domain a Fourier 

transform with amplitude and frequency spectrum can be done. For better 

interpretation polar graphs can be used. Along with Fourier transform another 

integral transformation come into consideration, the Hilbert transform. Data 

processing of polyharmonic continuous excitation signal in the time domain offers 

nontraditional methods used in metal detection such as standard integral 

parameters; RMS of the signal, maximal value of the signal or its relations such 

as Crest Factor. Main drawback of time domain methods is loss of information 

concerning individual frequencies. Therefore time domain methods can be 

considered as additional ones to frequency domain methods. Obtained results 

should be used for an object identification using selected classification method. 

Classification should be done in a way to utilize all used frequencies or relations 

between individual frequencies. 

 

All types of excitation signals mentioned above can be defined and 

programmed in mathematical software e.g. in MATLAB and can be generated by 

a common arbitrary generator which can generate very low frequencies 

(1 kHz – 50 kHz). The signal induced in the receiving coil will be digitized by 

a convenient digitizer for further processing. It can be performed either in gate 

array or digital signal processor, or in personal computer with a mathematical tool 

such as MATLAB. 

 

Last but not least is to consider the possibility using of existing metal detector 

or its search head. For example the All Terrain Mine Detector (ATMID) metal 

detector has been used in service for more than 10 years and there are now more 

than 4,000 in use worldwide. The search head of ATMID metal detector uses 

Double-D coil configuration. 
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4. Proposed Methods 

4.1. Theoretical Background 

Metal detectors - Electromagnetic induction devices - are systems generating 

a low frequency electromagnetic field. Any magnetic or electrically conductive 

object that enters this field will cause changes in the field strength around it. All 

metals have either one or both of these electromagnetic properties and will be 

detectable if the signal changes are large enough. 

 

The detectors usually consist of a search head containing one or more coils – 

TX and RX. TX coils carry a time varying electric current Iprim. This AC current 

generates a time varying magnetic field Bprim. The primary magnetic field interacts 

with the electromagnetic properties of metallic objects. This can be explained by 

Ampere’s Law (4.1).  

 

∮ 𝐵𝑝𝑟𝑖𝑚𝑑𝑙
 

𝛿𝑙
= 𝜇0𝐼𝑝𝑟𝑖𝑚,    (4.1) 

 
where µ0 is permeability of vacuum (4π10-7 Hm−1), l is length of closed curve. 

 

The object reacts by generating a secondary magnetic field Bsec. This process 

occurs because of eddy currents (Fig. 4.1) which are induced in metal objects 

affected by the primary magnetic field. The characteristic of the secondary 

magnetic field depends on various parameters. It depends on object’s orientation 

and distance from the source, on object’s properties – size, shape, conductivity 

and permeability, and also on the soil (if the soil is mineralized or not). 

 
 

Fig. 4.1: Eddy Currents 
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Eddy currents generate magnetic field opposed to the primary one. Low 

conductive metals (alloys, steel) are in principle more difficult to detect. However, 

for ferromagnetic objects, due to its high value of relative permeability µr, the 

response of the detector is magnified. Eddy currents circulate primarily on the 

surface of metallic objects - current density near the surface of the conductor is 

greater than at its core. This is called the Skin Effect. The electric current tends to 

flow at the "skin" of a conductor. The electromagnetic field in a conductor 

decreases exponentially with depth from the surface. The distance from surface 

(diameter), where density of current drops to 1/e, is called skin depth δ (2.1).  

 

Examples of skin depth of representative materials are presented in Table 4.1. 

 
Tab. 4.1. Skin depth of selected materials 

Material 
Conductivity    

σ (Sm-1) 

Relative 

permeability μr (-) 
Skin Depth δ (mm) 

at f = 1 kHz 

Skin Depth δ (mm) 

at f = 25 kHz 

brass 1,500 1 4,11 0,82 

bronze 0,740 1 5,85 1,17 

INOX AISI 316 0,137 1,02 13,46 2,69 

INOX AISI 420 0,139 600 0,55 0,11 

AISI 100Cr6 0,465 300 0,43 0,08 

 

Secondary magnetic field is detected by the RX coil(s) in the search head. 

This magnetic field induces a voltage in the RX coil(s) according to the 

Maxwell-Faraday equation 

∮ 𝐸𝑑𝑙
 

𝛿𝑙
= −

𝛿𝛷𝐵,𝑆

𝜕𝑡
,    (4.2) 

 

where E is intensity of electric field, Φ is a magnetic flux and t is time 

 

The equation of the Ampere’s Law for a circular coil with radius a can be 

reformulated using the Biot-Savart’s Law. This allows describing the magnetic 

field at a distance d along the axis of the coil. 

 

𝐵 =
𝜇0

4𝜋
∮
𝐼𝑑𝑙 𝑐𝑜𝑠𝜃

𝑎2
    (4.3) 

 

After solving the Biot-Savart’s Law the important equation is obtained (4.4), 

where N is the number of turns of the coil, MM is the magnetic moment and S is 

the area of the coil (MM = N·I·S). 

 

𝐵 =
𝑁𝜇0𝐼

2

𝑎2

(𝑟2+𝑑2)
3
2

=
𝜇0𝑀𝑀

2𝜋(𝑟2+𝑑2)
3
2

   (4.4) 
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𝐵(0) =
𝑁𝜇0𝐼

2𝑎
                        𝐵(𝑑) =

𝜇0𝑀𝑀

2𝜋𝑑3
   (4.5, 4.6) 

 

Equation (4.6) shows an important fact that magnetic field falls off rapidly 

with the cube of the distance d far away from the coil when d >> a. The far field 

does not depend on the shape of coil but only on its dipole moment MM. The 

magnetic field B(0) at distance d = 0, gets weaker as the coil gets larger but 

decreases less rapidly with the distance see Fig. 4.2, but smaller receiving coils 

pick up smaller secondary field. The magnetic field B was normalized to its 

maximal value and scaled for better comparison. Fig 4.2 also shows that smaller 

coils do not allow going as deep as larger coils but at closer ranges they have better 

sensitivity and area resolution.  

 
Fig. 4.2: Normalized relation between magnetic field, distance and diameter of the 

coil  

 

The secondary magnetic field depends on the distance and orientation of 

an object, its shape and size, conductivity and permeability. It is also influenced 

by EM background and soil mineralization properties. Various shapes and 

configuration of the searching head are used to suppress ground effect (see chapter 

2.1.) [8], [32], [33] and [34]. 

 

4.2. Modeling of Electromagnetic Induction 

Firstly the response of simple circuit model is presented because a simple 

circuit model helps to understand problems associated with modeling of 

electromagnetic induction. The electromagnetic field produced by an AC current 

flowing in a circular coil is generally quite complicated in the presence of 

a conducting material. 
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A conductive object is exposed to a time-varying magnetic field produced by 

a current-carrying transmitting coil.  The eddy currents that are induced in the 

metal object produce a secondary time-varying magnetic field which is detected 

by a receiving coil. 

 

At first, a simple circuit model is presented, it can helps to understand the 

behavior of a metal detector with an inductive response. The possibilities how to 

distinguish between different objects and identify an object by its characteristic 

phase response are presented in this chapter. A simple model consists of separated 

transmit and receive coils with operating frequency ω and a conductive object is 

used as a target (short circuit wire loop with the properties of a lumped resistance 

R and inductance L).  The transmit coil is driven by the current I. There are several 

ways how to describe quasimagnetostatic transfer function of a simple circuit 

model. The method described in [35] is used. Different approach with the same 

results can be found for example in [22]. The Voltage VTarget inducted in the loop 

is proportional to the magnetic flux passing through the loop and its frequency 

according to Faraday law (4.2). The magnetic flux is also proportional to the 

excitation current ITrans, which is driven through the transmitting coil. If a time 

differentiation is replaced by multiplication by jω in the frequency domain 

equation (4.7) is obtained. 

 

𝑉𝑇𝑎𝑟𝑔𝑒𝑡(𝑗𝜔) ~ 𝑗𝜔𝐼𝑇𝑟𝑎𝑛𝑠(𝑗𝜔)    (4.7) 

 

Conductive isolated object can be modeled for low frequencies by lumped 

resistance R and inductance L. Then the impedance ZTarget of the target is given by 

(4.8) 

 

𝐙𝑇𝑎𝑟𝑔𝑒𝑡 = 𝑅 +  𝑗𝜔𝐿    (4.8) 

 

and the current passing through the loop is according to Ohm’s law: 

 

𝐈𝑇𝑎𝑟𝑔𝑒𝑡  ~ 
𝑉𝑇𝑎𝑟𝑔𝑒𝑡(𝑗𝜔)

𝐙𝑇𝑎𝑟𝑔𝑒𝑡(𝑗𝜔)
= 

𝑗𝜔𝐼𝑇𝑟𝑎𝑛𝑠(𝑗𝜔)

𝒁𝑇𝑎𝑟𝑔𝑒𝑡(𝑗𝜔)
   (4.9) 

 

Voltage VReceive induced in the receiving coil is again according to Faraday 

law  

 

𝐕Receive(𝑗𝜔)~ 𝑗𝜔𝐈𝑇𝑎𝑟𝑔𝑒𝑡  =   
(𝑗𝜔)2𝐼𝑇𝑟𝑎𝑛𝑠(𝑗𝜔)

𝐙𝑇𝑎𝑟𝑔𝑒𝑡(𝑗𝜔)
   (4.10) 

 

In this case Loop Transfer Function G(jω) can be defined as the ratio of 

voltage VReceive induced in receiving coil to voltage VTarget induced in target. 

 

𝐺(𝑗𝜔) =   
𝐕𝑅𝑒𝑐𝑒𝑖𝑣𝑒(𝑗𝜔)

𝑉𝑇𝑎𝑟𝑔𝑒𝑡(𝑗𝜔)
~ 

𝑗𝜔

𝐙𝑇𝑎𝑟𝑔𝑒𝑡(𝑗𝜔)
=

𝑗𝜔

𝑅+ 𝑗𝜔𝐿
   (4.11) 
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Loop Transfer Function of Response Function G(jω) depends on the 

operating frequency f and lumped resistance R and inductance L. If parameter α is 

defined as α = ωL/R and then Response Function is defined by (4.12). 

 

𝐺(𝛼) =   
𝛼2+𝑗𝛼

1+  𝛼2
=

𝛼2

1+  𝛼2
+ 𝑗

𝛼

1+  𝛼2
    (4.12) 

 

Coefficient α is rewritten as a Response Function G(α) in [22] and is split 

into real and imaginary parts. Real part represents eddy currents and hysteresis 

losses and imaginary part represents the target’s susceptibility. 

 

 

 
Fig. 4.3: Response Function for a simple model 
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When α limits to infinity, real part of the Response Function goes to 1 and 

imaginary to 0. This is for highly conductive (low R) or inductive (high L) targets 

or if the detector operates at high frequencies – this case is called the Inductive 

limit. On the other hand when α goes to zero the Response Function is imaginary 

and this case is called the Resistive limit. The target conductivity is low or we are 

operating at a low frequency.  

 

When α is 1 the real and imaginary components are equal (1/2). This case 

is called crossover frequency fcross. Response Function phase is 45°. Thus phase 

goes from 90° to 0° as shown in Figure 4.3 and 4.4. 

 

 
Fig. 4.4: Detail of the Response Function with crossover frequency 

 

Simple circuit model showed a behavior of modeling of electromagnetic 

induction. Now a specific case of shape – homogenous sphere, which is more 

complicated, is presented. A homogenous sphere represents well 

an approximation of a common small object. Lots of studies of the response of 

homogenous sphere have been presented in many publications. Formulation from 

[36] is used. There are many possible scenarios of primary magnetic fields and 

surrounding medium. A sphere in a circular coil`s axis in full space (e.g. infinite 

external medium) is discussed in this case and quasi-static (low frequency) 

approximation will be considered. More details of quasi-static approximation can 

be found in [36] or [22], see section 3.4.  
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Fig. 4.5: Model of coaxial coils on the axis of a homogenous sphere 

 

Fig 4.5 shows separated TX and RX coils. Transmitting coil is circular with 

a radius RT and at a distance dT from the target. The transmitting coil operates at 

frequency ω and is driven by current I. The circular receiving coil has a radius RR 

and is at distance dR from the object. A target is a homogenous sphere with radius 

a conductivity σ and permeability µ. Sphere is placed in the axis of both coils. 

With these conditions we can determine the induced voltage VReceive. 
 

The transmitting magnetic field is represented by spherical harmonics, and 

each harmonic generates a spherical harmonic in the receiving field for the same 

index n [36]. Induced voltage VReceive is the sum of the product of infinite geometric 

series and frequency dependent terms of the induced receive field which are 

generated by the transmitted field (4.13 and 4.14). This equation consists of 

a geometry dependent term (real) and Response Function (complex).  

 

𝑉𝑅𝑒𝑐𝑒𝑖𝑣𝑒 = 2𝜋𝜇0𝑗𝜔𝐼
𝑅𝑅𝑅𝑇

(𝑑𝑇
2+𝑅𝑇

2)
1
2

∑
𝑎2𝑛−1

2𝑛(𝑛+1)

𝑃𝑛
1

(

 𝑑𝑇

[𝑑𝑇
2+𝑅𝑇

2]

1
2
)

 𝑃𝑛
1

(

 𝑑𝑅

[𝑑𝑅
2+𝑅𝑅

2 ]

1
2
)

 

(𝑑𝑇
2+𝑅𝑇

2)
𝑛
2(𝑑𝑅

2+𝑅𝑅
2)
(𝑛+1)
2

𝜒𝑛
∞
𝑛=1 (𝑘𝑎) (4.13) 

 

 

𝜒𝑛(𝑘𝑎) =
[(𝑛+1)𝜇𝑟+𝑛]𝐼𝑛+1

2

(𝑘𝑎)−𝑘𝑎𝐼𝑛−12(𝑘𝑎)

𝑛(𝜇𝑟−1)𝐼𝑛+1
2

(𝑘𝑎)−𝑘𝑎𝐼𝑛−12(𝑘𝑎)
= 𝑋𝑛(𝑘𝑎) + 𝑗𝑌𝑛(𝑘𝑎), (4.14) 
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where 𝑃𝑛
1 are associated Legendre polynomials and 𝐼

n±
1

2

 are modified Bessel 

functions of the first kind. 

 

The term χn(ka) depends on frequency as well as on target properties and it 

is similar to the Response Function G(α) of a simple model circuit. The response 

coefficient α can be determined for quasi-static approximation from (4.15) 

 

k2a2 = jωµσa2 = 2ja2/δ2 = jα.   (4.15) 

 

It shows that response coefficient is purely imaginary and depends not only 

on object parameters but also on skin depth. It is also evident that induced voltage 

grows linearly with frequency. 

 

The Dipole Approximation is investigated below. If the coil is at a larger 

distance from the sphere or the sphere is much smaller than the diameter of coils, 

the sphere acts like a magnetic dipole and only the first term (n = 1) is relevant. 

A magnetic dipole has a magnetic moment which is always aligned with the 

transmit field HT. The phase responses of the sphere depend on sphere 

electromagnetic parameters, radius of the sphere and frequency but not on 

geometry of the model. If the sphere is placed into a homogenous transmitting 

magnetic field, induced voltage VReceive using Dipole Approximation can be 

described by equation (4.16). 

 

𝑉𝑠 = 2𝜋𝜇0𝑗𝜔𝐼
𝑎3

4

𝑅𝑇
2

(𝑑𝑇
2+𝑅𝑇

2)
3
2

𝑅𝑅
2

(𝑑𝑅
2+𝑅𝑅

2)
3
2

 𝑋1(𝑘𝑎) + 𝑗𝑌1(𝑘𝑎)  (4.16) 

 

The Response Function of the sphere (in Dipole Approximation) placed in 

full space is then given by (4.17) (see [37]) and it is evident that it is independent 

of the system position, for more details see [38].  

 

𝜒𝑛(𝑘𝑎) = 𝑋1(𝑘𝑎) + 𝑗𝑌1(𝑘𝑎) =
[𝜇0(1+𝑘

2𝑎2)+2𝜇] sinh(𝑘𝑎)−(2𝜇+𝜇0)𝑘𝑎𝑐𝑜𝑠ℎ(𝑘𝑎)

[𝜇0(1+𝑘
2𝑎2)−𝜇] sinh(𝑘𝑎)+(𝜇−𝜇0)𝑘𝑎𝑐𝑜𝑠ℎ(𝑘𝑎)  

 (4.17) 

 

If non-ferromagnetic object (µr = 1) is taken into account the Response 

Function (4.17) will be simplified to (4.18) and its plot is quantitatively similar to 

the simple circuit model (Fig. 4.3). 

 

𝜒𝑛(𝑘𝑎) = 3 [
1

𝑘2𝑎2
+
1

3
−

𝑐𝑜𝑠ℎ (𝑘𝑎)

𝑘𝑎 𝑠𝑖𝑛ℎ (𝑘𝑎)
] ,  for µr = 1 (4.18) 

 

The Response Function for ferromagnetic material in Dipole Approximation 

is derived from equation (4.13). Since relative permeability of ferromagnetic 

material is µr > 1 the Response Function is dependent also on it. The case for n = 1 

is depicted in Figure 4.7. Figs 4.6 and 4.7 shows that for α limiting to infinity the 
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absolute value of the response coefficient α of non-ferromagnetic objects saturates 

and the phase goes to -90° for both non-ferromagnetic and ferromagnetic objects. 

 

 
 

Fig. 4.6: Response Function of a non-ferromagnetic material 

 

To be possible to recognize if the object (with negative phase response) is 

ferromagnetic or not, multiple frequencies have to be used. However, only 

ferromagnetic objects show a positive phase response. 
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Figure 4.7: Comparison of Response Functions of a ferromagnetic material (µr = 10) 

and non-ferromagnetic material (µr = 1) 

 

Electromagnetic induction modeling of simple phenomenological models 

(based on analytic solution for spheres) of different objects is described in [39]. 

 

4.3. All Terrain Mine Detector Searching Head 

As mentioned above (the chapter 3) it would be advantageous to use the 

existing metal detector. One of the suitable detectors is All Terrain Metal Detector 

by Schiebel company [40]. In this case search head of the ATMID metal detector 
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is used only. The electronic unit of the detector is not used and should be replaced 

by a different measuring circuit which can process polyharmonic signals.  

 

Following experiments only the search head of the ATMID detector (without 

the electronic unit) is used (Fig 2.12). The ATMID search head uses a Double-D 

coil configuration with a diameter of 260 mm and in can be used either in pulse 

mode or for continuous wave (CW) mode. Connection of the connector depends 

on the mode of the detector.  Configuration of the ATMID search head connector 

is shown in Fig 4.8. All measurement with polyharmonic signals has been realized 

in CW configuration (Fig 4.9) [41].  

 

 

A

B

C

D

E

F

Pulse 
Tx

CW Tx

CW Rx

Pulse 
Rx

 
 

Fig. 4.8: ATMID connector of the searching head 

 

If a CW mode is used pins D and E only are used for TX coil and pins A and 

C only are used for RX coil. 

 

A

B

C

D

E

F

CW Tx

CW Rx

 
 

Fig. 4.9: Connection of the connector for CW configuration 
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The electrical equivalent circuit diagram of the Double-D coil in CW 

connection mode is presented in Fig. 4.10. 

 

 
Fig. 4.10: Equivalent circuit diagram of the ATMID coil 

 

R1 is ohmic resistance and L1 is inductance of TX coil, R2 is ohmic resistance, L2 is 

inductance of RX coil and L1-2 corresponds to the mutual inductance between 

coils. T–shape configuration of inductances on Fig. 4.10 corresponds to 

transformer with inductances L1 of primary and L2 of secondary winding and 

mutual inductance M between both windings. Measured parameters for operating 

frequency of 8.17 kHz are listed in table 4.2. These parameter corresponds with 

parameters given by producer [28].  

 
Tab. 4.2: Double-D coil parameters for operating frequency of 8.170 kHz 

R1 (Ω) L1 (mH) R2 (Ω) L2 (mH) M (µH) 

1.2 0.774 182 3.35 0.1 

 

Frequency characteristics of TX and RX coils including mutual impedance 

are published following figures (Figs. 4.11 – 4.14). 

 

  
 

Fig. 4.11: Resistance frequency dependence of the transmitting and receiving coils 
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Fig. 4.12: Inductance frequency dependence of the transmitting and receiving coils 

 

  
 

Fig. 4.13: Quality factor frequency dependence of the transmitting and receiving 

coils 

 

 
 

Fig. 4.14: Mutual inductance frequency dependence 
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How it follows from the frequency characteristic, usable frequency range for 

polyharmonic signals can be used at a range of 1 kHz to 30 kHz. The upper limit 

is given by resonant frequency of the receive coil which is about 45 kHz. 

 

The behavior of the coil with small ferromagnetic core (as described in 

chapter 2.4) were verified on coil with similar parameters (number of turns of 

transmitting and receiving coils, diameters and coil configuration) the same results 

were achieved. The coil was excited by the same excitation signals as search head 

of ATMID.  

 

4.4. Polyharmonic Signal Limitations 

Inability to use analog switching synchronous demodulator is a main 

drawback of polyharmonic signals. Common analog switching synchronous 

demodulator allows to measure the periodic harmonic signal, which is drowned in 

noise with SNR = −100 dB [42]. Special synchronous demodulators offer even 

better SNR up to −120 dB. In this case sensitivity of a metal detector is reduced 

and is given by the quality of the used analogue to digital converter (ADC). Used 

ADC is always a compromise between number of bits N and sampling speed. 

 

To achieve an identical result, a digitizer with Effective number of bits 

19.6 bits should be used. Signal-to-noise and distortion ratio (SINAD) for N bit 

analogue to digital converter (ADC) is given by well-known formula (4.19). 

 

𝐸𝑁𝑂𝐵 =
𝑆𝐼𝑁𝐴𝐷−1.76

6.02
[bit]     (4.19) 

 

Successive approximation ADC with a resolution of N = 18 bits and maximal 

sampling frequency of 1Msample/s achieve SINAD = 97 dB, sigma-delta ADC 

with N = 24 bit and maximal sampling frequency of 627 ksample/s achieve 

SINAD = 109 dB at 256 oversampling. In real measuring chain consisting of ADC 

and preamplifier even less SINAD need to be considered. 

 

For example 24-bit sigma delta ADC AD7762 (SINAD = 109 dB) with 

suggested preamplifier AD8021 (spectral noise density 2.1 nV/√𝐻𝑧) has 

SNR ≈ 90 dB.  

 

Band width BW of the input signal corresponds to BW = 20 kHz this give input 

noise UAin = 297 nV. Since the input range of the ADC is 2.5 V and measured 

signal from the receiving coil is in range of tens of millivolts signal has to be 

multiplied by gain of 250. It means that UAout = 74.2 μV. Noise of the ADC 

(SINAD = 109 dB) for 2.5 V on its input is UADCin = 8.9 μV. From this, total 

SNR [dB] of the measure chain can be computed using formula (4.20). 
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𝑈𝑐ℎ𝑎𝑖𝑛 = √𝑈𝐴𝑜𝑢𝑡
2 + 𝑈𝐴𝐷𝐶𝑖𝑛

2    (4.20) 

 

For Uchain = 75 μV and input voltage of 2.5 V the SNR ≈ 90 dB. From this 

analysis is clear that the major effect on the SNR of the measure chain has a noise 

of the preamplifier and its amplification, in comparison with the LeCroy 

HDO6104 Oscilloscope with its 15-bit ADC, which have SNR up to 80 dB. 

Although the achievable SNR is lower than SNR of the synchronous demodulator 

using a sinc signal as an excitation signal is favorable in terms of identifying of 

detected object. 

 

4.5. Summary 

The Simple circuit model helps to explain the behavior of electromagnetic 

induction. Loop Response Function of a target using simple circuit model has been 

defined. Model showed that Response Function depends on the electromagnetic 

properties of the target and on frequency. A model using a homogenous sphere 

can be used for approximation of a common small object. For a quasi-static 

an approximation the Response Function G(α) depends only on objects properties 

(µ, σ, a) and on operating frequency f. Behavior of Response Function of non-

ferromagnetic objects is similar to the Response Function  of any target using 

simple circuit model. Non-ferromagnetic material shifts the phase of the received 

signal to negative values only (from 0° to ˗90°) in contrast to ferromagnetic 

materials which shifts the phase of the received signal from +90° to ̠ 90°. Inducted 

voltage is defined as a sum of product of infinite geometry series, but for a Dipole 

Approximation higher order can be neglected and only the 1st term is relevant. 

Measurement of the parameters of ATMID search head shown that can be used 

for experiments at frequency range from 1 kHz to 30 kHz. 
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5. Measured and Processed Data 
To verify the presumption and methods discussed in chapter 4 the numbers 

of experiments were executed. The metal detector ATMID was used for all 

experiments. The frequency range of all measurements was below the resonant 

frequency of the coils (transmitting coil about 90 kHz receiving coil about 

45 kHz). Homogenous spheres of different sizes from non-ferromagnetic or 

ferromagnetic materials were used as a test targets. Targets were placed on the 

axis of the greatest sensitivity (see Fig. 2.11 and Fig. 5.1) of the search head in 

open air. The targets were not placed into the ground to avoid the ground effect. 

The excitation signal was driven through the transmitting coil of ATMID metal 

detector. Measured data were mostly processed in MATLAB. 

 

Target

Excitation 

signal

Received 

signal

RX coil TX coil

 

 

Fig. 5.1: Position of the target 

 

5.1. Step Sweep Sine-wave Signal 

The first verification of the behavior of the detector was done for individual 

frequencies in the desired frequency band. This should verify Models of 

Electromagnetic Induction described in chapter 4.2. Frequency step sweep signal 

which consists of multiple frequencies equally stepped from lower to higher 

frequencies can be used to measure the Response Function of the object. Through 

this way of excitation, a response over a wide frequency range can be obtained in 

comparison with the classical single frequency methods and also synchronous 

demodulation for each frequency step can be used. This means that the obtained 

results can be compared with the Response Function model. 

 

Due to the resonant frequency of the receiving coil, a frequency range from 

3 kHz to 25 kHz was chosen. This frequency range covers one decade of the 

Response Function for each target (see Fig. 4.6 for non-ferrous materials and 
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Fig 4.7 for ferrous materials). Measurement setup of the experiment is shown in 

Fig. 5.2. 

 

ATMID metal detector

Search Head

Generator 

AFG 3102
 

Primary Coil Secondary Coil

Lock-in Signal 

Recovery 7265Reference 

signal

 
 

Fig. 5.2: Block diagram of the measurement setup 

 
The transmitting coil is excited by a step sweep sinus signal of chosen range 

of frequencies (3 kHz – 25 kHz) with a step of 2 kHz and amplitude of 10 V 

generated by an AFG 3102 generator. AFG 3102 generator offers two outputs 

where the second one can be used as a reference signal for a lock-in amplifier. The 

same signal as a excitation signal but with amplitude of 1 V is connected to the 

reference input of the lock-in amplifier. The amplitude was lowered because of 

input requirement of the lock-in. Both amplitude and phase of the signal from the 

receiving coil were measured by the lock-in amplifier.  

 

Target spheres of different diameters and from different materials were used. 

Four different materials and two different sizes of the spheres were chosen. Two 

non-ferromagnetic and two ferromagnetic materials – bronze and brass as non-

ferromagnetic and stainless steel AISI 420 and chrome steel AISI 52100 100Cr6 

as ferromagnetic material were presented. All materials were measured for two 

different diameters of spheres (diameter of 10 mm and 20 mm). Frequency 

dependency of the amplitude and phase are presented in next figures. These results 

can be compared with the Response Functions G(α) (chapter 4.2) of non-ferrous 

and ferrous materials. Experimental data and results were published in [43]. 
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Results measured on spheres from chrome steel AISI 52100 100Cr6 with 

diameter of 10 mm and 20 mm is shown in Fig. 5.3. In the magnitude chart it is 

evident that induced voltage increases with increasing frequency and 

size/diameter of the spheres equally. The larger differences between induced 

voltages are noticeable on higher frequencies. The phase chart of the chrome steel 

AISI 52100 100Cr6 shows expected results. Absolute phase shift increases with 

the diameter of the target and it confirms that chrome steel sphere as ferrous 

material can shifts phase from positive values to negative if the sufficient range of 

Response coefficient α is measured (see Fig. 4.7).  

 

 

 
 

Fig. 5.3:  Magnitude and phase of AISI 52100 100Cr6 spheres with diameters of 

10 mm and 20 mm 
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A polar graph is presented for a better presentation and comparison of both 

sizes. Using a polar graph magnitude and phase dependency and differences 

between materials and diameters are better observable.  

 

 
 

Fig. 5.4:  Polar graph of AISI 52100 100Cr6 spheres with diameters of 10 mm and 

20 mm 

 

Spheres from ferromagnetic stainless steel INOX AISI 420 is presented here 

as a next example. The very same diameters of the spheres were measured and 

presented. AISI 420 spheres give similar charts as spheres from the material 

AISI 52100 100Cr6. Stainless steel AISI 420 has lower conductivity but higher 

relative permeability (see Tab. 1 in chapter 4.1) and the order of the Response 

coefficient α is similar.  Measured results are presented in Figs 5.5 and 5.6. 
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Fig. 5.5:  Magnitude and phase of INOX AISI 420 spheres with diameters of 

10 mm and 20 mm 
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Induced voltage has similar trend as for chrome steel and same trend for the 

phase which changes more with increasing greater diameter. The phase of the 

signal from stainless steel in comparison with chrome steel is similar. Differences 

are in units of degrees, which can be explained due to Response coefficient α, 

which has lower value thanks to the lower conductivity, for this material. The 

polar graph for spheres of two different diameters (d = 10 mm and d = 20 mm) is 

presented in Fig. 5.6. 
 

 
 

Fig. 5.6:  Polar graph of INOX AISI 420 spheres with diameters of 10 mm and 

20 mm 
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As non-ferromagnetic material representative, bronze spheres of diameters 

10 mm and 20 mm were measured. Obtained results are presented in Fig. 5.7 and 

Fig. 5.8.  

 

 

 
 

Fig. 5.7:  Magnitude and phase of bronze spheres with diameters of 10 mm and 

20 mm 
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An induced voltage is increasing with increasing frequency. Phase shift of 

bronze spheres goes to negative values unlike that of ferrous steels. It corresponds 

with the theory concerning ferrous and non-ferrous materials. Phase shift 

increases with diameter more at lower frequencies but decreases with increasing 

frequency. It can be explained due to Response coefficient α which is approaching 

to inductive limit and changes less significantly. Fig. 4.6 (chapter 4.2) shows that 

for higher values of Response coefficient α, the phase shift decreases. There is 

also a polar graph presented in Fig. 5.8. 

 

 
 

Fig. 5.8:  Polar graph of bronze spheres with diameters of 10 mm and 20 mm 
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The second non-ferromagnetic material which was investigated is brass. 

Results concerning brass spheres of diameter 12 mm and 20 mm are presented in 

Figs. 5.9 and 5.10. Due to higher conductivity of the brass, induced voltage is also 

higher. The phase of bronze is decreasing with increasing frequency and diameter, 

which is similar to previous materials. The phase shift of brass sphere is also 

higher than that of bronze because of higher Response coefficient α.  

 

 

 
 

Fig. 5.9:  Magnitude and phase of brass spheres with diameters of 10 mm and 

20 mm 
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Fig. 5.10:  Polar graph of brass spheres with diameters of 10 mm and 20 mm 

 

Comparisons of all materials for spheres of diameters of 10 mm (12 mm) and 

20 mm are presented in Figs 5.11 and 5.12. From these polar graphs it is evident 

that frequency dependencies of different ferromagnetic materials are similar but 

there are small differences in its Response Function through measured frequency. 

This can be also applied for non-ferromagnetic materials. Comparisons of all 

materials and both sizes of spheres are presented in polar graphs (Figs. 5.11 and 

5.12). 

 

 
 

Fig. 5.11:  Polar graph of all measured spheres with diameters of 10 mm 
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Fig. 5.12:  Polar graph of all measured spheres with diameters of 20 mm 

 

Frequency step sweep signal confirms the behavior of ferromagnetic and 

non-ferromagnetic materials for different materials and frequencies. Differences 

from theoretical models can be explained by using simplified functions (chapter 

4.2.) in modelling of the Response Function. Since the frequency step sweep 

signal cannot be considered as polyharmonic, different excitation signals will be 

considered.  

 

5.2. Linear Frequency Sweep - Chirp Signal  

Frequency sweep signal or in short chirp signal is one of the common 

polyharmonic signals. Chirp signal is commonly used in many areas for example 

in audio applications, radar and sonar systems or communication. Its advantage, 

as all polyharmonic signals, is that can cover wide frequency range. Therefore 

there is an opportunity to use chirp signal as an excitation signal for metal detector 

to measure a Response Function (response coefficient α respectively) of detected 

object. As a disadvantage the impossibility of using synchronous demodulation 

have to be considered. Inability of using synchronous demodulation is drawback 

of all polyharmonic signals. Signals which are composed of multiple frequencies 

data must be digitized first and then processed using advanced signal processing. 

 

Frequency of increasing linear frequency sweep signal varies linearly with 

the time  

𝑓(𝑡) =  𝑓0 + 𝑘𝑡  and   𝑘 =  
𝑓1−𝑓0

𝑇
,   (5.1) 
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where f0 is starting (initial) frequency, f1 is final frequency, T is sweep time, k is 

a sweep rate and t is the time. 

 

 The time domain function is defined (5.2), is shown in Fig. 5.13. The 

spectrum of chirp signal is rectangular function from frequency f0 to f1. 

 

𝑢(𝑡) = 𝑠𝑖𝑛 [2𝜋 (𝑓0 +
𝑘

2
𝑡) 𝑡],   (5.2) 

 

 

Figure 5.13: Linear frequency sweep 

 

Several experiments using chirp excitation signal were done. These 

experiments were presented in [44] and [45]. However author of this work found 

out, that chirp signal has been already used by Minelab company, during these 

experiments [14]. Therefore all additional experiments have been discontinued. 

Experiments already done by the author are presented in [44]. Author no longer 

processed measured data and only basic signal processing has been done. The 

results below are demonstration only and were not been analyzed in depth. 

 

Presented experiment were measured using AFG 3102 generator which das 

a resolution of 14-bit and oscilloscope MSO 4034 in hi-res mode (12-bit). 

Measurement setup is presented in Fig. 5.14. Sampling frequency of the digitizer 

was 1MSample per second. Following parameters of the excitation chirp signal 

generated by the formula (5.2) were used: frequency range of 1 kHz to 25 kHz, 

sweep time 10 ms and amplitude of 10 Vp-p.  
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ATMID metal detector

Search Head

Generator 
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Primary Coil Secondary Coil
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4034Transmited 
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Received 

signal

 
 

Fig. 5.14: Block diagram of the measurement setup 

 

As targets the same spheres were used. Targets were placed in open air on 

the axis of the greatest sensitivity (Fig. 5.1) of the search head in distance 

d = 50 mm. Received signal was digitized and processed in MATLAB software. 

The measured spheres from bronze and ferromagnetic stainless steel AISI 52100 

100Cr6 with the diameter of 10 mm are presented here only. The first one, as 

a specimen of non-ferromagnetic material and the second one, as a specimen of 

ferromagnetic material. 

 

Measured data were filtered by band pass FIR filter of 300th order and 

Blackman-Harris window has been used. Lower frequency of the band pass filter 

was fd = 1 kHz and upper frequency fh = 30 kHz. Discrete Fourier Transformation 

(DFT) computed with a fast Fourier transform (FFT) algorithm from filtered 

signals was computed.  

 

𝑋(𝑘) =  ∑ 𝑥(𝑖)𝜔𝑁
(𝑖−1)(𝑘−1)𝑁

𝑖=1    (5.3) 

 

   𝜔𝑁 = 𝑒
(−2𝜋𝑗)/𝑁,     (5.4) 

 

where x(i) is sampled signal and N is number of samples. 
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FFT was computed for N = 1048578, which is nearest powers of two from 

1M samples. Although the coherent sampling cannot be done the results is 

relevant because of the large number of samples N usage in signal processing. 

 

 Amplitude and phase spectra are presented. The presented phase spectra 

were computed and corrected as a difference between phase spectra of transmitted 

signal and received signal with the object. Figs. 5.15 and 5.16 show the amplitude 

and phase spectra as well as polar graphs of these two materials. They show 

processed data of AISI 52100 100Cr6 sphere and bronze sphere respectively.  

 

 

 

 

Fig. 5.15: Amplitude spectra and Phase spectra and polar graph of AISI 52100 

100Cr6 sphere with diameters of 10 mm  

 

  

 

Fig. 5.16: Amplitude spectra and Phase spectra and polar graph of bronze sphere 

with diameters of 10 mm 
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The shape of amplitude spectra for both materials shows that material with 

higher relative permeability induced higher voltage at higher frequencies 

especially. It corresponds with step sweep sine-wave results and although with 

theory. However, noticeable difference is visible for measured data of bronze 

sphere where magnitude for higher frequencies (greater than 10 kHz) does not 

increase. This can be explained by very low level of the received signal or that the 

induced voltage reached the inductive limit. 

 

Polar graph presented in Fig. 5.17 show comparisons of both materials. 
 

 

Fig. 5.17: Polar graph of both measured spheres 

 

Phase spectra of both materials confirm what is to be expected; ferromagnetic 

materials has phase shift from positive values to negative and non-ferromagnetic 

materials (in this case bronze) have negative values phase shift only. 

 

Experiment confirmed that materials with relative permeability higher than 

one changes their phase to positive values unlike materials with relative 

permeability equal to one. As mentioned above, no further verification 

measurement and advanced signal processing were done because of usage of this 

excitation signal by Minelab company. These results are not presented as 

meaningful and provide possibilities how to process a polyharmonic signal only. 

 

The advantage of chirp signal or another similar polyharmonic signal lies in 

its ability to coverage of part of the detected objects Response Function. Since the 

similar excitation signal has been used by Minelab company already, all the entire 

future work is focused on other polyharmonic signal which have similar 

characteristic. As one of the suitable excitation signal sinc signal is offered. 
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5.3. Sinc Signal 

The sine cardinal signal or commonly referred function sinc is one of 

polyharmonic signals which can be suitable for metal detector excitation to cover 

a wide range of the Response Function of the detected object. Recently, sinc signal 

is widely used in many areas, for example in analogue to digital converters testing 

[46] or high-impedance spectroscopy [47] and it is very perspective signal thanks 

to its spectrum. Also the spectrum of the sinc signal is similar to the spectrum of 

the chirp signal. The spectrum of the sinc function is appropriate for further 

spectral analysis of the Response Function of the detected object. The number and 

position of the spectral lines could be easily set and defined. Another advantage 

is that all frequencies are applied at once. 

 

In digital signal processing normalized sinc function is defined by equation 

 

𝑠𝑖𝑛𝑐(𝑥) =  
sin (𝜋𝑡)

𝜋𝑡
,    (5.5) 

where sinc(0) = 1. 

 

A modified sinc signal, which is used for next experiments, is composed of 

two sinc signals with the same parameters where the second half of the period is 

inverted (Fig 5.18). One period of the signal is described by the formula:  

 

𝑢(𝑡) = 𝐻 (𝑡 +
𝑇1

2
) [

𝑠𝑖𝑛(
2·π·𝑡

𝑇2
)

2·π·𝑡

𝑇2

] − 𝐻 (𝑡 −
𝑇1

2
) [

𝑠𝑖𝑛(
2·π·𝑡

𝑇2
)

2·π·𝑡

𝑇2

],  (5.6) 

 

where H is Heaviside function, which chops the segment of the sinc function in 

time range < -T1/2, T1/2). The anti-symmetrical signal covers full scale of digitizer 

and allows to continuous crossing between periods. 

 

 
 

Fig. 5.18: Time plot of the modified sinc signal 
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Since the coil is excited by current iL, its voltage uL correspond to the first 

derivative (5.7). 

𝑢𝐿 = 𝐿
𝑑𝑖𝐿

𝑑𝑡
,     (5.7) 

 

First derivative of the sinc signal is defined: 

 
𝑑

𝑑𝑡
𝑠𝑖𝑛𝑐(𝜋𝑡) =  

𝜋𝑡∙cos(𝜋𝑡)−sin (𝜋𝑡)

(𝜋𝑡)2
,   (5.8) 

 

In this case time plots of sinc signals and its derivative normalized to its 

maximal value is shown in Fig. 5.19 (top) and time plots of the modified sinc 

signal (bottom). 

 
Fig. 5.19: Normalized time plot of the sinc signal and its derivative 

 

Since the sinc signal is composed of all frequencies equally its spectrum has 

rectangular shape with equidistantly distributed frequencies. The number of 

spectral lines is given by ratio of the T1 and T2 (Fig 5.20). The first spectral line is 

at frequency f1 = 1/T1 and the last is at f2 = 1/T2. The spectrum of its derivative has 

an ascending shape which follows the derivative of the function, but the character 

of the spectrum is unchanged. I has been advantageous to use integral of sinc 

function. Antiderivative of sinc function is Sine Integral function Si(x). Since the 
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definition and generation of Si(x) is not simple modified sinc function has been 

used. 

 
 

Fig. 5.20: Amplitude spectra of the sinc signal (top) and its derivative (bottom) 

 

The measurement setup consisted of 14-bit programmable function generator 

AFG 3102 and Teledyne LeCroy HDO6104 High Definition Oscilloscope (15-bit 

digitizer) connected to PC. The generator used external synchronization from the 

oscilloscope. Trigger and Interpolator Jitter of the horizontal system was set less 

than 4 ps [48]. It means that the time uncertainty of the sample is ∆T = 4·10-12 s. 

Digitized signal had maximum frequency of fmax = 21 kHz. Using formula (5.9), 

the phase error in degree is obtained. 

 

𝑃ℎ𝑎𝑠𝑒 𝐸𝑟𝑟𝑜𝑟 =  ∆𝑇 · 𝑓𝑚𝑎𝑥 · 360     (°)   (5.9) 

 

After expressing the jitter and maximal frequency into (5.9), phase error had 

been calculated to ≈ 3·10-5 degree. Thanks to this satisfactory phase resolution is 

ensured. 

 

The detector operates on a non-magnetic construction in laboratory 

conditions and was excited by current sinc signal. Non-magnetic construction 

consists of platform where test targets were placed and adjustable arm with 

ATMID search head. Several experiments were done using the sinc signal on 

ATMID metal detector search head. Results were presented in [49] and [50]. 

Experiments showed that phase shift without using of lock-in amplifier is difficult 

to determine as a difference between transmitted and received signal. The 

possibility to measure phase shift between the background signal (measure 

without any object present) and signal measured with testing target present is 

offered. It was stated above (chapter 2.3), ATMID metal detector have small 
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ferromagnetic core placed in the search head (Fig 2.14). Thanks to that the 

reference signal can be obtained. Measured signals from testing targets can be 

than compared with it. 

 

Evaluation of the received signal can be done both in time and frequency 

domains. Time domain evaluation offers nontraditional methods used in metal 

detection, such as correlation methods or fitting methods. Author of this work has 

an experience with fitting methods from previous research of analogue to digital 

converters testing, for example in [51], [52] and [53]. In the frequency domain an 

evaluation using Fourier transform (amplitude and frequency spectrum) will be 

done. As other integral transformations the Hilbert transform analysis come into 

consideration. Experimental results obtained with the sinc signal have been 

already presented in [54] and [55]. 

 

Block diagram of the measurement setup is in Fig 5.21. 

 

d ≤ 50 mm 

ATMID metal detector

Search Head

Generator

AFG 3102
 

Primary Coil Secondary Coil

Oscilloscope LeCroy 

HD6104HD

Synchronization

TTL

 
 

Fig. 5.21:  Block diagram of the measurement setup 

 

The generator was externally synchronized from the synchronization output 

of the oscilloscope. The digitizer was triggered by TTL signal from the generator. 

This is done to ensure the repeatability of the sinc signal generation. 
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As targets spheres of different diameters and materials were used. Five 

different materials, each with different sizes of the spheres diameters where 

chosen, three non-ferromagnetic and two ferromagnetic materials – bronze, brass 

and stainless steel AISI 316 spheres for non-ferromagnetic and stainless steel 

AISI 420 and chrome steel AISI 52100 100Cr6 spheres as a representatives of 

ferromagnetic materials. Stainless steel AISI 316 spheres represents material with 

relative permeability slightly larger than one; μr = 1.02. All materials were 

measured for at least three different diameters of spheres (diameter from 10 mm 

to 25 mm). Spheres were placed to maximal distance of 50 mm from the coil in 

the axis of greatest sensitivity. 

 

 The following parameters describe the used modified sinc signal, frequency 

f1 = 1/T1 = 0.5 kHz, f2 = 1/T2 = 10 kHz, 10 significant carrier frequencies, and 

amplitude of 10 V. From this parameters repeating frequency of fR = 1 kHz follows 

and significant frequencies at each 2 kHz.  

 

5.3.1. Signal Processing in Time Domain 

As written above (chapter 3), in the time domain signal processing offers 

methods that are non-traditional in metal object detection. Significant drawback 

of time domain methods lies in loss of the information from individual 

frequencies; the signal has to be examined as a whole. Therefore the processing 

of the signal in time domain is not advantageous in comparison with frequency 

domain methods. But it can be used as a complement to frequency domain 

methods or as very simple methods which are not demanding for computation. 

After several experiments using correlation functions, only standard integral 

parameters of the signal such as RMS value and peak values of the signal and 

Crest Factor (5.10) were applied. 

 

𝐶𝐹 = 
𝑢𝑀𝐴𝑋

√
1

𝑇
∫ 𝑢2(𝑡)𝑑𝑡
0+𝑇

0

,    (5.10) 

 

 where u is the signal and T is period. 

 

Experimental data, measured on measurement setup presented in Fig. 5.21, 

from different targets, as stated above, had to be preprocessed. Firstly signal was 

filtered by designed band pass FIR filter of 300th order and Blackman-Harris 

window with lower filtered frequency fd = 1 kHz and upper frequency fh = 22 kHz. 

Moreover the one period of the signal was averaged from 1000 periods which 

corresponds to measurement time of one second. Time plot of the induced voltage 

without any metal object is shown in Fig 5.22. 
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As it was stated in chapter 2.4 and presented in Fig. 2.14, the output signal 

waveform from the receiving coil is not equaled to zero. This is caused by the 

ferromagnetic core. The coil is unbalanced. 

 

 
 

Fig. 5.22: Time plot of received signal without any object present  

 

Waveforms of signal which corresponds to ferromagnetic and non-

ferromagnetic object response is presented in Fig. 5.23. 

 

  
 

Fig. 5.23: Time plot of received signal from a ferromagnetic object and non-

ferromagnetic object 
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Fig.5.23 shows signal waveforms correspond to ferrous chrome steel 

AISI 52100 100Cr6 sphere with diameter of 25 mm and signal correspond to non-

ferrous Bronze sphere with the same diameter. These materials were chosen for 

demonstration of induced voltage behavior for the both types of materials (ferrous 

x non-ferrous). A ferrous material increases the value of induced voltage, which 

also corresponds to theory. A different situation occurs in the case of a non-ferrous 

material. The shape of the signal waveform is different. It is due to the opposite 

phase shift which is caused by non-ferromagnetic target. The induced voltage is 

smaller. Thanks to that the signal waveform of a non-ferrous material has 

a different shape.  

 

Comparison of two different diameters of both ferrous and non-ferrous 

materials is presented in Figs. 5.24 and 5.25.  

 

 
 

Fig. 5.24: Time plot of received signal from different sizes of AISI 52100 100Cr6 

spheres  
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Fig. 5.25: Time plot of received signal from different sizes of bronze spheres 

 

The value of induced voltage is proportional to the excitation frequency, the 

size and electromagnetic properties of the object. Therefore it can be seen the 

biggest increase of induced voltage on high frequencies is noticeable.  From the 

both figures (5.24 and 5.25) it is clear that the shape of the waveform changes also 

with the sizes. 

 

This can be used in determining the standard integral parameters of the 

induced signal. On the next two figures (Figs. 5.26 and 5.27) are shown effective 

and maximal values of various ferrous and non-ferrous materials of various sizes 

for two different distances l (l = 10 mm and l = 30 mm) from the coil compared 

with values if no object is present. Measured RMS, MAX, and Crest factor values 

corresponds to target spheres, are named after the material which is made of and 

the sphere diameter (e.g. bronze sphere of diameter d = 10 mm is named 

Bronze10).  
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Fig. 5.26: RMS value corresponds to different materials, sizes (in mm) and 

distances 

 

 

Fig. 5.27: MAX value corresponds to different materials, sizes (in mm) and 

distances 

 

The change of the both RMS and maximal values can be observed from 

figures. Presence of ferrous materials increases the both values with increasing 

diameter of spheres. In contrast to non-ferrous materials, which decrease the both 

values with increasing diameter of the sphere. This only applies to the targets in 

close distances. For small diameters in larger distance non-ferrous materials 

behave like ferrous. Figures (5.26 and 5.27) also shows that with increasing 
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distance from the coil both RMS and MAX values of the measured objects are 

approaching evenly to the values of signal without measure object. Fig. 5.28 

shows dependency of Crest Factors difference with and without measured metal 

object.  

 

Crest factor difference were computed as a difference of crest factor of 

signals which corresponds to measured objects and crest factor when no object is 

present. Crest factors bar shows that if the signal from the detected object is strong 

enough (i.e. detected object is large enough or the distance from the coil is not 

large) differentiation between ferrous and non-ferrous materials can be done very 

simply and easily. On the other hand if the object is small and is not close to the 

coil non-ferrous materials act like ferrous. 

 

 

Fig. 5.28: Crest Factor value corresponds to different materials, sizes (in mm) and 

distances 

 

Fig 5.29 shows crest factors from 5 different measurements of same objects 

which were placed into the same distance and pinpointed by the same way. The 

variances between individual measurements were minimal. 
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Fig. 5.29: Signal Crest Factor of different materials in the distance of l = 10 mm for 

5 measurement under same conditions 

 

Standard integral parameters offer a very simple and undemanding method 

how to distinguish ferrous and non-ferrous materials under specific conditions, 

however differentiation between individual materials cannot be done. Time 

domain does not offer any attractive options of signal processing, therefore the 

following work was dedicated to frequency domain processing. 

 

5.3.2. Signal Processing in Frequency Domain 

It was written at the beginning of chapter 5.3, processing in frequency domain 

offers FFT primarily. The procedure was similar to the previous experiment. First, 

a background signal without the presence of any tested objects is measured. Then, 

this signal is compared with the signals corresponding to the tested spheres. 

Presented results obtained using the Fourier transform are presented in Figures 

5.30 – 5.40. Sampling frequency of the digitizer was 1MSample per second, the 

record was one second long. 

 

Firstly the signal was filtered by the same FIR filter as using time domain 

processing. These filtered signals were after processed by DFT using a FFT 

algorithm (5.3) and (5.4), and were computed from number of samples 

N = 1048578, which is nearest powers of two from 1 Msamples. The phase spectra 

were calculated from a complex variable definition. All presented phase spectra 

were computed as a difference between the phase spectrum of the signal which 

corresponds to measurement without any target (background, no object) and the 

phase spectrum of the signal which correspond to measurement with a testing 
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target. For better presentation and comparison, the spectra of comparing signals 

which are presented are shifted by ±100 Hz. This is done for better presentation 

only. 

 

Figures 5.30 and 5.31 shows the measured amplitude and phase spectra, 

together with polar graph, of the ferromagnetic AISI 52100 100Cr6 testing spheres 

of two different sizes (diameter of 10 mm and 20 mm). In the case of the multiple 

carriers, the frequency characteristic covers a wide range of Response Function in 

the same way as at chirp signal. Amplitude spectra which correspond to this 

material is greater at all frequencies than amplitude spectra of signal which 

correspond to no object present. This is caused by ferromagnetic material 

permeability which is much greater than one. In general, magnitude spectra are 

getting higher for all ferrous materials with increasing diameter of the sphere. 

Magnitudes on low frequencies increase more significantly than at higher 

frequencies witch can be caused by character of the Response Function and goes 

to its inductive limit. Phase shift difference shows that ferrous material shift the 

phase from positive values to negative. For greater diameter, absolute phase shift 

increasing but relative phase shift due to getting closer to inductive limit 

decreasing apparently. The difference between measured diameters of 10 mm and 

20 mm is also in amplitude and phase spectra trend. 

 

  
 

Fig. 5.30: Amplitude spectra, Phase spectra and polar graph corresponding to 

AISI 52100 100Cr6 sphere with diameters of 10 mm and 20 mm 
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Next presented ferromagnetic object (Fig. 5.31) is stainless steel AISI 420 

which has similar electromagnetic properties as chrome steel 100Cr6 

(see Tab 4.1). Amplitude and phase spectra are similar too. Unsurprisingly, in 

lower frequencies the signal amplitude spectrum of signal corresponding to the 

AISI 420 sphere increasing more than at higher frequencies similarly as for 

a 100Cr6 chrome steel sphere. A phase difference spectrum shows also the same 

trend. 

 

  
 

Fig. 5.31: Amplitude spectra, Phase spectra and polar graph corresponding to 

AISI 420 sphere with diameters of 10 mm and 20 mm 

 

Amplitude spectra of both materials show noticeable increases at lower 

frequencies – this can be explained due to the small ferrous core which is inside 

the ATMID metal detector search head. Measurements confirm that the distinction 

between different similar ferromagnetic objects cannot be done easily. 

Comparison of both materials will be done in next section. 

 

The first presented non-ferromagnetic material is brass. Brass spheres with 

diameter of 12 mm and 20 mm is presented in Fig. 5.32. An amplitude spectrum 

show essential difference from ferrous materials. At lower frequencies amplitude 

spectra rises with diameter of the target. This is due to the influence of the 

ferromagnetic core inside of the search head. However at higher frequencies 

(approx. 8 kHz) a different situation occurs. Non-ferromagnetic material begins 

to dominate. At higher frequencies the phase shift of the signal is larger and causes 

the suppression of the induced voltage. This causes drop of spectral lines at higher 

frequencies.  
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Fig. 5.32: Amplitude spectra, Phase spectra and polar graph corresponding to Brass 

sphere with diameters of 12 mm and 20 mm 

 

Similar situation shows also the difference of phase spectra. As expected 

phase shift caused by non-ferromagnetic objects goes to negative values. At lower 

frequencies the phase difference between the signal which corresponds to non-

ferrous material and signal which corresponds to the measurement without any 

target present is bigger as diameter of the sphere getting larger. At higher 

frequencies similar situation as for ferromagnetic material occurs; relative phase 

shift decreases and absolute phase shift gets bigger with larger diameter of 

spheres. 

 

In Fig. 5.33 another non ferromagnetic material is presented. The results 

resemble situation between different ferrous materials, response of non-ferrous 

materials is similar to each other. Behavior of amplitude and even phase spectra 

is similar, which was expected. The Response Function changed minimally – the 

difference between response parameters α of the both materials is (thanks to 

similar conductivity, see Table 4.1), minimal. Comparison of all nonferrous 

materials together with ferrous materials is be presented in next section. 
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Fig. 5.33: Amplitude spectra, Phase spectra and polar graph corresponding to 

Bronze sphere with diameters of 10 mm and 20 mm 

 

The last presented material is non-ferromagnetic stainless steel INOX 316. 

Behavior of the signal which corresponds to testing sphere with greater diameter 

is similar to other non-ferrous materials presented above. The amplitude of the 

received signal (induced voltage) is suppressed and the signal phase is shifted to 

the negative values. Sphere with smaller diameter has a minor response.  

 

  
 

Fig. 5.34: Amplitude spectra, Phase spectra and polar graph corresponding to 

AISI 316 sphere with diameters of 10 mm and 20 mm 

 

At lower frequencies the ferrous core dominates and induced voltage is 

greater than induced voltage without any object present. This is due to the low 

conductivity of INOX 316. At higher frequencies the influence of INOX 316 gets 

bigger. The phase shift has similar trend like all other non-ferrous materials. The 
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absolute phase shift in comparison to other two non-ferrous materials is due to 

lower conductivity smaller. It indicates lower sensitivity on small objects with low 

conductivity. 

 

The measurement proves an apparent difference between ferromagnetic and 

non-ferromagnetic materials as it was expected. Ferromagnetic materials cause 

phase shift from positive to negative values and significant signal magnification 

at all carrier frequencies. Non-ferromagnetic objects cause negative phase shift 

and signal diminution at higher frequencies. The Ferromagnetic core in the search 

head predominate at lower frequencies over a low conductive non-ferromagnetic 

materials and it causes increasing of magnitudes of amplitude spectrum. At higher 

frequencies negative phase shift which is caused by non-ferromagnetic materials 

cause suppression of the transmitted field. It affects the shape of amplitude 

spectra.  

 

Experiments show an applicability of the modified sinc signal and its benefit 

to apply all frequencies at once. It is possible to define the number of carrier 

frequencies and their position easily. Results of the measurement also showed 

lower sensitivity on low conducted materials.   

 

By comparing of four different specimen with different diameters 

(d = 10 mm, 15 mm 20 mm and 25 mm) from ferrous chrome steel 100Cr6 it is 

evident that with increasing diameter the induced voltage increases uniformly. 

Differences between induced voltages getting smaller on higher frequencies this 

can be explained by approaching the Inductive limit of the Response Function. 

Phase spectra show differences in phases for individual the spheres. The 

difference increases with various diameters at higher frequencies especially. 

Spheres of larger diameter changes phase more than those of smaller diameter. 

Unforeseen phenomena occurs for diameter d = 10 mm. At low frequencies phase 

shift is greater than for all the larger spheres. Since the trend of its phase shift is 

different, at higher frequencies the phase shift, as would be expected, is lower. 

This phenomenon occurred even with repeated measurements and for similar 

ferrous materials.  
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Fig. 5.35: Amplitude spectra and Phase spectra corresponding to AISI 52100 

100Cr6 with diameters of 10 mm, 15 mm, 20 mm and 25 mm 

 

The results of comparison of four different bronze spheres (diameters 

d = 10 mm, 13 mm, 20 mm and 22 mm) from a non-ferrous material is shown in 

Fig 5.35. The change of induced voltage has opposite trend, with increasing 

diameter of the sphere induced voltage decreases uniformly. It can be explained 

by negative phase shift. As already has been proven, non-ferrous materials change 

phase to negative values. Therefore the induced voltage which is induced when 

the coil is unbalanced is shifted and it cause drop in amplitude (chapter 2, 

Fig. 2.15). At lower frequencies absolute phase shift difference increasing greatly 

with diameter and getting smaller at higher frequencies thanks to character of the 

Response Function. This phase shift caused by non-ferrous is in contrast with 

ferrous materials. Phase shift, caused by different sizes of ferrous material, 

changes a little at lower frequencies. 

 

From comparison (Figs 5.35 and 5.36) of different diameter sizes of ferrous 

and non-ferrous materials it follows that differentiation between ferrous and non-

ferrous materials can be done. In addition thanks to the phase response and its 

trend object size estimation could also be done. 
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Fig. 5.36: Amplitude spectra and Phase spectra corresponding to bronze sphere 

with diameters of 10 mm, 15 mm, 20 mm and 25 mm 

 

A closer comparison of similar materials is presented on the next two figures 

(Figs. 5.37 and 5.38). Since induced voltage is highly dependent on the position 

of the target, it is important for comparison of similar materials to keep the 

position of targets at the same position. All compared results were measured in 

the same position; exactly defined – in highest axis of sensitivity of the detector 

head at a distance of 50 mm from the detector. Presented results are processed 

using the same by from 1 Msamples/s. Spectra were computed from 1000 periods 

of the signal. 

 

Fig 5.37 shows amplitude and phase spectra concerning two specimen from 

similar materials; INOX AISI 420 and AISI 52100 100Cr6 sphere with diameters 

of 20 mm. Phase difference corresponding to these materials is slightly larger than 

1 degree at lower frequencies and slightly smaller than 1 degree at higher 

frequencies; difference between both materials is in the trend of the phase 

spectrum. Difference between the amplitude spectra is also minimal. The biggest 

difference is at the 10th harmonic; at highest frequency. For better viewing X-Y 

chart is also presented (x-axis ~ magnitude, y-axis ~ phase). 
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Fig. 5.37: Amplitude spectra, Phase spectra and X-Y chart corresponding to 

AISI 420 and AISI 52100 100Cr6 sphere with diameters of 20 mm 

 

  
 

Fig. 5.38: Amplitude spectra, Phase spectra and X-Y chart corresponding to 

AISI 420 and AISI 52100 100Cr6 sphere with diameters of 15 mm 

 

Fig 5.38 shows comparison of same two materials mentioned above but of 

different diameters, d = 15 mm. For smaller diameter phase shift difference 

between both materials decreasing. Phase shift of diameter d = 15 mm is halved 

in comparison with diameter d = 20 mm phase for both lower and higher 

frequencies. Phase difference is about 0.7 degree at lower frequencies and about 

0.5 degree at higher frequencies. As in the previous case, the difference is in the 

trend of the phase spectrum. Amplitude spectra difference is bigger with 

increasing frequency. 
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A similar trend of difference between phase spectra is shown in Fig. 5.39 for 

spheres with diameter d = 10 mm.  Phase difference is about 0.4 degree for lower 

frequencies and about 0.2 degree for higher frequencies.  

 

  
 

Fig. 5.39: Amplitude spectra and Phase spectra and X-Y chart of AISI 420 and 

AISI 52100 100Cr6 sphere with diameters of 10 mm 

 

This results show that the differentiation between similar materials is more 

difficult when the size of the object become smaller. 

 

When comparing non-ferromagnetic materials with similar electromagnetic 

properties (brass and bronze) similar situation occurs. Comparison of brass and 

bronze spheres with diameter of d = 20 mm is shown in Fig 5.40. The difference 

in the amplitude spectrum increases with increasing frequency. The phase spectra 

difference decreases with increasing frequency.  

 

Phase difference at lower frequencies is about 1.5 degree for lower 

frequencies and only about 0.2 degree for higher frequencies. The trend of the 

phase shift depends on response parameter α. Response parameter α of brass is 

approx. twice as bigger as of bronze. It leads to a smaller change in phase. The 

change of the phase shift between materials with similar properties is decreasing 

with the smaller diameter similarly like for ferromagnetic materials. 
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Fig. 5.40: Amplitude spectra and Phase spectra and X-Y chart of brass and bronze 

sphere with diameters of 20 mm 

 

In general, experiment shows that the phase difference between similar 

ferromagnetic or non-ferromagnetic materials decreases with diameter. 

In addition at higher frequencies the difference between amplitude spectra of 

similar materials gets bigger in contrast to phase spectra difference. Phase 

difference between similar materials gets smaller with increasing frequency. 

 

Based on the experimental results, use of sinc excitation signals allows 

possible identification and discrimination of the detected objects. The application 

of polyharmonic excitation signals bring an opportunity for better response in 

a wide range of frequencies, and therefore more extensive and complex set of data 

for the signal analysis is available. It is evident that thanks to the Response 

Function the discrimination between different materials by means of classifier can 

be done. Possible problems with the classification are represented by the stability 

of the chosen features, and the presence of unknown targets. 

 

5.4. Summary 

In this chapter an application of polyharmonic signal for metal detection and 

classification is presented. Step sweep sine-wave signal, chirp signal and sinc 

signal were investigated. Step sweep sine-wave signal confirms behavior of 

ferromagnetic and non-ferromagnetic materials for different frequencies which 

were presented in chapter 4.2. Chirp signal showed possibilities to apply 

a polyharmonic signal for metal detection. Several experiments were done and 

presented ([43] and [44]) before the author left this excitation signal due to usage 

of similar signal by Minelab company. Sinc signal thanks to its spectrum comes 

into consideration finally.  
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Since the signal can be generated by generator with DDS and its parameters 

can be easily defined it appeared as an ideal polyharmonic signal used for metal 

objects identification. Experiments showed that processing in the time domain 

standard integral parameters offer a simple method how to distinguish between 

ferrous and non-ferrous materials. It can be done if the induced voltage which 

corresponds to a detected object is strong enough. Therefore time domain does 

not offer any attractive methods for advanced identification of objects. Processing 

in frequency domain using FFT amplitude and phase spectra with multiple 

frequencies is obtained. It can be used for object identification and classification. 

Experiments showed that thanks to multiple frequencies, differentiation between 

even similar objects (in a way of electromagnetic response) can be done. 
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6. Data Classification 
Pattern classification or in short classification tries to solve a problem of 

identifying and assigning examined data to set of categories a new observation 

belongs. Assigning of examined data depends on the basis of a training data set 

containing observations whose category membership is known. An algorithm that 

implements identifying and assigning of examined data is known as a classifier. 

An algorithm should be robust to differences between examined and trained data. 

The term "classifier" sometimes also refers to the mathematical function, 

implemented by a classification algorithm that maps input data to a category [56]. 

Classifier assigns a class label to examined data based on measurements that are 

obtained from previous observations. 

 

 
 

Fig. 6.1: Pattern classification [57] 

 

There are two basic groups of classification methods; syntactic method and 

feature method. Syntactic methods are used in computer vision. Feature methods 

use a vector of features which characterize the properties of an object. Vector of 

features is usually represented by measured data or significant characteristics 

computed from measured data. Features can be of continuous or discrete value. 

Algorithm of pattern recognition can be defined on the basis of analyses of process 

(or its model) or can be trained – supervised learning [58].  

 

Supervised learning is a learning task algorithm where the function is inferred 

from labeled training data (vector of features). The labels determine to which class 

the training data belong. A supervised learning algorithm analyzes the training 

data vector of features and creates a function, which can be used for mapping new 

measured data. An optimal function will allow the algorithm to correctly 

determine the class labels for the testing data [59]. 

 

Machine learning can be achieved by using various advanced statistical 

methods for classification tasks. These methods include Naive Bayes, k-Nearest 

Neighbors (KNN) and Support Vector Machines (SVM). More details about all 

methods can be found in [60].  
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Naive Bayes methods are based on Bayesian theorem (6.1) and are 

particularly appropriate when the dimensionality of the inputs is high. The Naive 

Bayes Classifier estimates for every class and every feature separately. Naive 

Bayes method is simple, but despite its simplicity can often outperform other 

sophisticated classification methods.  

 

𝑃(𝐴/𝐵) =  
𝑃(𝐵/𝐴)𝑃(𝐴)

𝑃(𝐵)
,    (6.1) 

 

where P(A), P(B) is prior probability of A, B respectively and P(B/A) is the 

conditional probability, the probability of A given that B is true. 

 

KNN method is a non-parametric method which can work without training. 
It is based on the intuitive idea that close objects are more likely to be in the same 

category. The KNN algorithm is among the simplest of all classifying algorithms. 

The input consists of the k closest training examples in the feature space. The 

output is a class membership. The neighbors are taken from a data set for which 

the class of the data is known. This can be thought of as a training set for the 

algorithm, though no explicit training step is required. A shortcoming of the KNN 

algorithm is its sensitivity to the local structure of the data [61]. 

 

SVM method works based on construction of nonlinear decision boundaries. 

SVM creates decision plane (Hyperplane) which, in Feature space, separate 

training data optimally. Decision plane then separates sets of objects which have 

different class memberships. Because of the nature of the Feature space (Fig 6.2) 

in which these boundaries are found, SVM can exhibit a large degree of flexibility 

in handling classification [62]. Outline shows principle of SMV algorithm. Input 

data are transformed (mapped) to Feature space using mathematical function 

known as kernel. 

 

 
 

Fig. 6.2: Pattern classification [62] 

 

Support vector models can be linear, polynomial, sigmoidal and radial basis 

function. Advantage of classifying the detected objects may be in the creation of 

database of patterns (different materials or even specific objects). This could help 

in discrimination or in identification of examined objects. The disadvantage of 
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using classification methods in metal detection and identification can be found in 

stability of the chosen features (multi frequency approach), in presence of 

untrained data/objects or in correct pinpointing of examined object – in a proper 

location of the highest axis of sensitivity in the middle of the detector head. 

 

6.1. Data Preprocessing 

Behavior of electromagnetic response for polyharmonic sinc signal, which 

consists of 10 significant frequencies, has been shown in chapter 5.3. Experiments 

with different ferromagnetic and non-ferromagnetic materials were done. In the 

case that Signal to Noise ratio is strong enough, a classification or an identification 

of examined objects can be done. Thanks to Response Function of each object 

there is a chance to distinguish ferromagnetic and non-ferromagnetic materials, 

small objects and large objects and even, with certain probability, different types 

of materials. 

 

All data processing and classification was done using Matlab software with 

classification pattern recognition PRTools ver. 5. PRTools offers more than 

300 user routines for traditional statistical pattern recognition tasks. It includes 

procedures for data generation, training classifiers, combining classifiers, features 

selection, linear and non-linear feature extraction, density estimation, cluster 

analysis, evaluation and visualization. PRTools works with three specific 

programming classes [63]: 

 

 Dataset: is defined as a set of objects which are represented by vectors. 

Together with these vectors, additional information about individual 

objects, features, classes and the entire dataset is stored. 

 Datafile: defines the way how to specific sets of raw objects can be 

transformed into a dataset. 

 Mapping: stores the names of the routines that define the transformation of 

objects from one space to another. Moreover it stores the parameter values 

or information about space dimensions and class names. 

 

Various designed procedures can be used with these specific classes to 

perform a pattern recognition and classification. The list of the most important 

procedures is introduced. 

 

 Preprocessing: together with Matlab and various public open Matlab 

toolboxes, PRTools toolbox offer an extensive set of routines for raw data 

processing. 

 Feature extraction: PRTools offers various routines such as Patch statistics, 

blob dimensions, various moments, histograms, 1-D and 2-D spectra and 

Harris points. 



Jakub Svatoš  2015 

82 

 

 Feature spaces: routines for scaling, feature selection (individual, forward, 

backward, floating, branch and bound), principal component analysis - 

PCA, linear discriminant analysis - LDA, Fisher mapping and more. 

 Density estimation: various Gaussian models, mixture of Gaussians, Parzen 

and nearest neighbor density estimation. 

 Classifiers: PRTools offers s large number of classifiers such as kNN, 

Gaussian models, nearest mean, SVM, adaboost, decision trees, feed-

forward neural network and many others. PRTools offers combining 

classifiers also. 

 Evaluation: In addition PRTools offers automatic cross validation based 

optimization of classifier parameters, learning curves, rejects options and 

many others. 

 

 
 

Fig. 6.3: PRTools toolbox [63] 
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Measured raw data must be preprocessed before a classification can be 

performed. The raw data obtained from individual experiments were digitized and 

stored at datasets. These datasets were used for further classification process. One 

dataset contains 20 individual measurements. Each measurement represents 

different size and materials. Measured materials are Brass, Bronze, 

INOX AISI 316 and AISI 420 and 52100 100Cr6. These materials were selected 

because of their use in other experiments made in Department of Measurement 

[63]. Spheres with diameter d = 10 mm, 12 mm, 13 mm, 15 mm, 20 mm, 22 mm 

and 25 mm were used together with testing piece (Fig. 6.4) from 52100 100Cr6 

material which is used as testing object by Schiebel company. 

 

 
 

Fig. 6.4: Testing piece from 52100 100Cr6 

 

To ensure that the data classification is done correctly, great amount of data 

must be collected and processed. To reduce amount of data and computing 

demands primarily, the decision has been made that the length of one 

measurement is 250000 samples. Sample rate 1Msamples/s has been used, i.e. one 

measurement has taken 250 ms and has consisted of 250 periods 

(1000 samples/period) for each individual target. 

 

Total of 20 sets of measurements for classification were taken. Measurement 

of one set has been done as follows; target was placed under the coil in the distance 

of maximum 50 mm. Coil was placed to position where the signal of induced 

voltage was maximal. Target was pinpointed. Thereafter signal from the 

pinpointed target was measured four times. One set consists of 20 different 

materials and diameters described above. All targets were measured four times 

each. By following this measurement process 20 sets of raw data from 20 targets, 

where each target is measured four times, were obtained. The best way how to 

arrange all measurements in Matlab for future processing and classification is to 

save all measurements into a Nested structure. 

 

At first, raw data have to be filtered. Since the frequency of measured data 

was from fd = 1 kHz to fh = 21 kHz a band pass digital filter has been used. Whereas 

a measured data from specific object were compared to data without object, 

a background (i.e. signal without any object present) signal was measured before 

every single set of measurement. Thereafter a discrete Fourier transform was 

computed from filtered raw data of each set and all targets. 
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As only amplitude and phase spectra at desired frequencies are relevant, the 

algorithm for maximum peak detection near significant frequencies was applied. 

The algorithm finds relevant spectral lines in amplitude spectrum and its 

corresponding phases. Thanks to that a set of 10 desired frequencies and 

corresponding 10 values of amplitude spectra and 10 values of phase spectra for 

each target and every measurement is obtained.  

 

Preprocessed data was stored in nested structure (Fig. 6.5) for further 

processing and classification. Nested structure consist of N sets of measurement, 

where one set of measurement contains M numbers of measured samples where 

every sample was measured K-times. Every sample was stored in arrays of 

frequencies, magnitudes and phases at the end. 

 

Nested 
Structure

1st set of 
measurement

2nd set of 
measurement

Nth set of 
measurement...

1st sample 2nd sample Mth sample... 1st sample 2nd sample Mth sample...

...

Array of 
frequencies

(K x 11)

Array of 
magnitudes

(K x 11)

Array of 
phases 
(K x 11)

Array of 
frequencies

(K x 11)

Array of 
magnitudes

(K x 11)

Array of 
phases 
(K x 11)

 

Fig. 6.5: Nested structure 

 

As mentioned above, phase spectra were computed as the difference between 

signal with and without target. To suppress any interferences amplitude spectra 

were computed in a same way as a phase spectra, as a difference between signal 

with and without target. This way of approach is advantageous in areas where the 

background signal can change (for example in mineralized soils). 

 

Data preprocessed and stored this way can be used for further classification 

of metal objects. Therefore all raw signals from detected/pinpointed object could 

be processed using the same method. Flow chart of preprocessing part of program 

is presented in Fig. 6.6. 
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Fig. 6.6: Preprocessing flowchart 

 

6.2. Support Vector Machines Classifier 

At the beginning of this chapter several types of classifiers were outlined. 

Based on consultations and available literature, for example [57], [63] and [65], 

a decision has been made to use primarily Support Vector Machines (SVM) 

classifier. SVM classifier belongs to the category that learns from examples. The 

learning problem of classifiers can be defined as supervised or unsupervised; it 

means that the true class of the sample is known or unknown. Since the class of 

the samples is known, supervised learning is discussed only. As with any 

supervised learning model, a SVM must be learned firstly and then cross validated 

as a classifier. In this case it is assumed that a large number of examined data is 

available. Some part of the available data is selected from the group. These 

selected data are called training samples. Each sample is presented to the sensory 
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system which returns the measurement vector associated with that sample. The 

purpose of supervised learning is to use these measurement vectors of the samples 

to build a classifier [57]. 

 

There is one main method of representing data sets in PRTools. Let Ns be the 

number of samples in training set. Then each object of the sample is enumerated 

by n = 1, 2, …, Ns and have a measurement vector zn. The class of the nth object is 

denoted by θn. The labeled training data Ts consist from a measurement vector and 

its class: 

 

𝑇𝑠 = {(𝑧𝑛, θ𝑛)}   (6.2) 

 

SVM classifier works based on construction of decision hyperplane as 

described at the beginning of this chapter. The best hyperplane means the one with 

the maximal margin between two classes. Margin means the maximal width of the 

borders parallel to the hyperplane that does not contain samples data. In contrast 

to other linear classifiers, which separates data based on findings one solution 

arbitrary selected from an ‘infinite’ set on solutions. 

 

If the training data are linearly separable SVM can be expressed as follows. 

The equation of the hyperplane is defined by (6.3). 

 

𝑔(𝒛) = 𝒘 ∙ 𝒛 + 𝑏     (6.3) 

 

Defined in [65] (6.3) can be rewritten for training data zn labeled by cn into 

two constraint hyperplanes (6.4) and subsequently into (6.5): 

  

𝒘 ∙ 𝒛𝑛 + 𝑏 ≥  1 for  cn = 1 

         (6.4) 

𝒘 ∙ 𝒛𝑛 + 𝑏 ≤  1 for  cn = -1 

  

 

𝒄𝒏(𝒘 ∙ 𝒛𝑛 + 𝑏)  ≥  1,   (6.5) 

 

where zn is training samples and are labeled by cn = ±1, algorithm defines best 

separating hyperplane by finding  w and b that minimize ||w|| such that for all 

data samples. 
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Fig. 6.7: Linear support vector classifier 

 

Using Lagrange multipliers αn, by multiplying each constraint in (6.5) 

equation for minimization is obtained (6.6) which is computationally simpler to 

solve. 

 

𝐿 =  
1

2
||𝑤|| − ∑ 𝛼𝑛(𝑐𝑛[𝒘𝒛𝑛 + 𝑏] − 1)

𝑁𝑠
𝑛   (6.6) 

 

Equation 4.32 should be minimized for w and b and maximized for Lagrange 

multipliers αn. Computing partial derivative (6.7) and substituting into (6.6) one 

gets dual form (6.8). 

 

𝒘 = ∑ 𝛼𝑛𝑐𝑛𝒛𝑛
𝑁𝑠
𝑛=1   and   ∑ 𝛼𝑛𝒛𝑛 = 0

𝑁𝑠
𝑛=1   (6.7) 

 

𝐿 =  ∑ 𝛼𝑛
𝑁𝑠
𝑛=1 −

1

2
∑ ∑ 𝛼𝑛𝑐𝑛𝒛𝑛𝛼𝑚𝑐𝑚𝒛𝑚

𝑁𝑠
𝑚=1

𝑁𝑠
𝑛=1 ,  (6.8) 

 

for αn ≥ 0. This is a quadratic optimization problem, for which standard software 

packages are available. Only a few samples will have αn > 0 and the corresponding 

zn are called support vector which lie on the margin and satisfy (6.5).  

 

6.3. Data Classification 

As data are preprocessed, optimal features and classification method must be 

chosen. At first 10 magnitudes and 10 phases at specific significant frequency 

obtained from FFT, are considered as features. This gives a 20-dimensional space 

for classification. 

 

Features
Classification Classes

Magnitudes

Phases
Features
selection

 
 

Fig. 6.8: Classification 
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Before the classification, it is necessary to determine into which classes to 

classify the measured data. From the experimental result presented in 5.3 it is 

evident, that an investigation of the object being ferromagnetic or not can be done. 

Therefore this classification should divide objects into two classes – ferrous and 

non-ferrous materials. Multiple frequencies and the fact that ferrous materials 

increase induced voltages and non-ferrous at higher frequencies decrease them, 

together with induced voltage phase change lead to the outcome that the 

classification can be done only by using elemental features (10 magnitudes and 

10 phases; i.e. 20 dimensional problem).  

 

To classify in individual materials classes, more complex approach and 

additional features must be considered. Experimental measured data shows that 

under ideal condition there is a chance to differentiate between different materials. 

Ideal conditions mean that the target is pinpointed accurately and induced voltage, 

which corresponds to detected target, has to be strong enough to be digitized 

properly. Magnitudes and phases together with additional features based on 

relations between magnitudes and phases should be used as features. 

 

Dataset

Ferrous x non-
ferrous

Type of material

Estimation of 
size

Results 
visualization

 
 

Fig. 6.9: Classification process 
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A size estimation of detected object should be considered as another possible 

classification. To identify the exact size of a target is almost impossible, but to 

estimate a size roughly, is possible thanks to different trends of magnitudes and 

phases spectra. As the classification has been done mainly by support vectors, 

following text will be focused mostly on it. However, the classifier is compared 

to other used classifiers. 

 

Since classifiers with supervised learning are used, experimental data 

arranged in nested structure (Fig 6.5) must be separated into two groups. First 

group contained the training data and second group was used for testing data. 

There are many articles which deal with optimal number of training data. One of 

the proposed methods is the use of Learning curve. Use of Learning curves for 

optimal size of training data is described in [67]. Learning curve shows 

dependency of the model performance on the training data size. It depends on 

classification method, complexity of the classifier or how well can be the classes 

separated.  

 

Learning curve in Fig. 6.10 shows optimal number of used training data in 

relation to the whole measured experimental data. This Learning curve shows 

dependency of classification success on training data size (classifying of non-

ferrous object to its classes – materials). 

 

 
 

Fig. 6.10: Learning Curve 

 

Optimal size of training data can be determined from the maximum of the 

Learning curve. For this case the number of training data is optimal for 24 sets. 
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Together with the size of training set, features for data classification must be 

determined. From the experimental results it is clear that differences between two 

classes (ferrous and non-ferrous material) are significant thus no more features for 

classification are needed. For classifying individual materials different approach 

must be used. Thanks to similar responses new features have to be found. These 

new features can be defined as certain relations between elemental features 

(10 magnitudes and 10 phases). When training the classifier only some of the most 

significant features can be taken for the training and testing to reduce the 

dimensionality. This is due to experimenting with these features, due to 

understanding features impact on classifying.  

 

To reduce the dimensionality and to use most relevant features, Feature 

selection can be done. Feature selection decreases the dimensionality of data set 

by selecting only a subset of features. If the dimensionality is too large it may 

causes a decrease of performance. This is because some features may be irrelevant 

or redundant with respect to the classification process. Redundant features are 

those which provide no more information than the currently selected features, and 

irrelevant features provide no useful information in any context. Algorithms 

search for a subset of predictors that optimally model measured responses, subject 

to constraints, such as required or excluded features, and the size of the subset 

[68]. 

 

Algorithm combines a search technique for proposing a new feature subsets, 

together with an evaluation measure, which scores the different feature subsets. 

Advantage of Feature selection is to improve interpretability or shorter training 

times. It’s also useful when datasets analysis is done, because Feature selection 

shows which features are important for a classification, and how are these features 

related. 

 

Several feature selection algorithm like as Branch and Bound or Pudil’s 

floating feature selection [57] are trying to solve the problem of selecting a subset 

from the N-dimensional measurement vector. Number of selected features can be 

defined by user. Optimal number of selected features has a positive effect on 

resulting classification. Various criteria can be used as a measure of the 

performance for evaluation of feature selection. These criteria are for example 

inter-intra distance, Mahalanobis distances or 1-Nearest Neighbor leave-one-out 

classification performance. These criteria are described in many literatures for 

example in [57]. PRTools offers a large range of feature selection methods. Even 

the various evaluation criteria are implemented. 

 

 



Advanced Instrumentation for Polyharmonic Metal Detectors 

91 

 

6.3.1. Classification of Ferrous and Non-ferrous Materials 

Significant differences between ferrous and non-ferrous materials have been 

shown in chapter 5.3. Therefore classifier can be trained with corresponding 

magnitudes and phases from 24 training datasets. The values of phases in degrees 

are in different order than the values of magnitudes. This case, where features 

have different values, is not suitable for classification. Therefore values of 

magnitudes are multiplied by constant to get the values of magnitudes to the same 

order as values of phases. 

 

To display the relation between selected classes a 2D scatterplot (Fig. 6.11) 

of the selected two features from the dataset can be used. Two features are selected 

for displaying the results of classifying. The Figure 2D scatterplot shows two 

features of two classes (ferrous – red and non-ferrous – blue) selected by Branch 

and Bound algorithm that uses inter-intra distance criteria. The displayed features 

are separated/classified with SVM classifier with linear kernel (red line). Same 

results can be obtained while using another algorithm (Pudil's floating feature) for 

the two selected features.  

 

2D scatterplot helps to understand the relation between two (or more) classes 

and is used for better understandings of connection between assorted features.  

 
 

Fig. 6.11: 2D scatterplot of two selected features 

  

All classifiers were trained from 6 measurements (i.e. 24 datasets) and tested 

on the different 14 measurements (i.e. rest of 80 datasets – 56 datasets). Compared 

classifiers are support vector classifier (SVC), k-Nearest Neighbors Classifier 

(KNNC) with optimized number of neighbors using the leave-one-out error, 

Linear Nearest Mean Classifier (NMC) and Naive Bayes classifier (naivebc). The 
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other classifiers are presented for comparison. Naive Bayes together with KNNC 

classifier, which were briefly described at the beginning of the chapter 5.4, are 

presented as an example of simple classifiers. KNNC gives good results for 

similar measured data but from its principle it isn’t robust. Nearest Mean 

Classifier is standardly used classifier and it is used for comparison. 

 

Results for experimental measures and datasets (as describes in 6.1.1) are 

displayed in Table 6.1. 

 
Tab. 6.1: Comparison of various classifiers and its success rate in % for 

ferrous x nonferrous classes 

Classifier SVC KNNC NMC naivebc 

All features 100% 100% 94.44% 97.32% 

Branch and Bound 

selected 2 features 
97.92% 98.51% 94.74% 95.73% 

 

From these classifying results it is evident that if the induced voltage, which 

corresponds to detected target, is strong enough and target is pinpointed correctly, 

thanks to multiple frequency approach, there is 100% chance to differentiate 

between ferrous and non-ferrous materials. If Pudil’s floating feature selection 

algorithm is used to select optimal number of features, algorithm selects all 

20 used features.  

 

6.3.2. Classification of Individual Non-ferrous Materials 

Classification of non-ferrous materials has to be done using different 

approach. Differences between individual measured non-ferrous materials are 

slight, especially for small diameters. Therefore to improve classification process 

additional features should be added. Added features do not need to have any 

physical nature and it can be defined using existing features. To improve the 

classification, ratio of magnitudes and phases of each 10 investigating frequency 

were added together with the differences between two subsequent values of phases 

(9 features). These features were selected based on results in chapter 5.3. 

 

This adds 19 new features that can improve the separation of individual non-

ferrous objects. Values of magnitudes as well as in previous case are multiplied 

by constant to get to the same order as values of phases. Classifiers were trained 

from non-ferrous object of the 6 measurements and tested on the different non-

ferrous objects from 14 measurements. 

 

2D scatterplot (Fig. 6.12) is used to display the relation between all three 

classes of the selected two features from the dataset together with a SVM 

classifier.  
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Fig. 6.12: 2D scatterplot of two selected features 

 

Table 6.2 shows comparison of results for various numbers of features and 

for used classifiers. 
 

Tab. 6.2: Comparison of various classifiers and its success rate in % for 

non−ferrous classes 

Classifier SVC KNNC NMC naivebc 

20 elemental 

features 
89.46% 99.29% 50% 90% 

All features 91.25% 99.29% 50% 90% 

Branch and Bound 

selected 2 features 
68.21% 91.61% 70.54% 86.25% 

 

From Table 6.2 is evident that if only two features are used, classifying 

success of SVC is less than 70%. If 20 elemental features of all 10 investigated 

frequencies are used, classification success increases to 89.46%. Classification 

success increases again to 91.07% when all 39 features are used. However this 

does not mean that the increasing number of features (dimensionality) the error 

rate will decrease. With overall increase of dimensionality the error rate could be 

increasing again. The error rate’s dependency on number of used features of 

individual non-ferrous materials is shown in Fig. 6.13. 
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Fig. 6.13: Error rates versus dimension of measurement space 

 

It is worth mentioning that KNNC has more than 99% success rate. This 

classifier gives good results for similar data i.e. when the target is in similar 

distance as data in training set and testing set is pinpointed in the same method. 

But it is known that this classifier gives worse results for various data, because it 

works on very simple learning algorithm.  

 

6.3.3. Classification of Individual Ferrous Materials 

Classification of individual ferrous materials must be done using similar or 

even the same approach as classification of non-ferrous materials. Thanks to small 

differences between individual materials, additional features should be also added. 

As the features, added in classification of non-ferrous materials, have been proven, 

the same features have been added for this classification. Therefore the 

classification has been done under the same conditions as classification of 

Individual Non-ferrous materials. 

 

Fig 6.14 shows the relation between two ferrous materials using selected two 

features from the data set together with a SVM classifier. 
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Fig. 6.14: 2D scatterplot of two selected features 

 

Table 6.3 shows results for all tested classifiers and for various numbers of 

features. Results show similar trend as classifying non-ferrous materials. 

 
Tab. 6.3: Comparison of various classifiers and its success rate in % for 

ferrous classes 

Classifier SVC KNNC NMC naivebc 

20 elemental 

features 
94.42% 100% 50% 85.94% 

All features 97.32% 99.33% 54.46% 86.16% 

Branch and Bound 

selected 2 features 
66.96% 86.16% 75% 78.35% 

 

If only two features selected by Branch and Bound algorithm were used, SVC 

success rate was only 66.96%. The success rate increased to 94.42%, when 

20 elemental features of 10 investigating frequency were used for classification. 

This confirms previous results that if multiple frequencies are used, there are more 

features for classification available and therefor better results can be achieved. 

Classification success increased to 97.32% if all defined features (39) were used.  

 

KNNC shows that increasing number of features does not decrease error rate. 

Success rate is 100% for 20 features and 99.33% for 39 features. For comparison 

results of others classifiers are presented also. 
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For comprehensive overview of the error rates’ dependency on number of 

selected features of individual ferrous materials is shown in Fig. 6.15. 

 

 
Fig. 6.15: Error rates versus dimension of measurement space 

 

6.3.4. Objects Sizes Classification 

The last classification which is presented is object size estimation. However 

the object size estimation can be done under specific condition. To determine the 

approximate size, rough distance from the located object should be known. How 

to estimate the depth of the located object is presented in [69] or [70]. Results 

presented here are about the same distance from the detector head.  

 

As spheres with diameter from 10 mm to 25 mm and testing object (Fig. 6.4) 

were measured, classification into the three classes was chosen. The 1st class 

includes object sizes to 10 mm, the 2nd class includes object sizes from 11 mm to 

20 mm and last class includes objects larger than 21 mm. Results presented in 

Table 6.4 confirm results obtained in previous subsections.  
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Tab. 6.4: Comparison of various classifiers and its success rate in % for 

different sizes of materials 

Classifier SVC KNNC NMC naivebc 
N

o
n

-f
er

ro
u

s 

All features 100% 100% 85.94% 100% 

Branch and Bound 

selected 2 features 
100% 100% 87.5% 100% 

Pudil's floating 

optimum number of 

features 

100% 100% 96.87% 100% 

F
er

ro
u
s 

All features 99.55% 99.55% 88.84% 100% 

Branch and Bound 

selected 2 features 
99.33% 100% 97.54% 98.88% 

Pudil's floating 

optimum number of 

features 

99.78% 99.55% 88.84% 100% 

 

There is possibility, thanks to multiple frequencies, to distinguish between 

different sizes of located ferrous and non-ferrous objects in given condition. 

As approximate depth of the object is not always known, it can be used only in 

specific cases. 

 
Fig. 6.16: 2D scatterplot of two selected features of non-ferrous materials 

 

Fig 6.16 shows the relation between all three size classes of non-ferrous 

materials using selected two features from the dataset together with a SVM 

classifier. It is evident that even using only two features (selected by Branch and 

Bound algorithm), classification can be done successfully. This is shown also in 

Fig. 5.36. Differences between individual sizes are significant due to significant 

phase difference of the response. 
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Fig. 6.17 shows the same relation but for ferrous materials. Situation for 

ferrous materials is little different. As shown in Fig. 5.35 the differences between 

individual materials were not significant, especially in phase response. The values 

for diameters from 10 mm to 20 mm are similar. Apparent difference was in their 

trends. Due to added features (see 2D scatterplot, x-axis - difference between two 

subsequent values of phases and y-axis - ratio of magnitude and phase) 

classification by SVC (red line) is done adequately.  

 
Fig. 6.17: 2D scatterplot of two selected features of ferrous materials 

 

6.4. Summary 

Support vector classifier was used for a measured data classification 

primarily together with other classifiers. Classifications of measured materials 

into ferromagnetic and non-ferromagnetic classes has been done as well as 

classification into individual materials. Classification into the object sizes also has 

been done. Experiments showed that if multiple frequencies – their magnitudes 

and phases are used as features for classification and new features (relations 

between existing ones) are added, successfully classification can be. 
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7. Conclusion 
The main goal of this dissertation was to analyze and to verify possibilities 

of using polyharmonic excitation signals to improve the identification of located 

metal objects. Since the eddy current metal detectors remain the most commonly 

used type of metal detectors in archeology, treasure hunting, mine clearance or in 

security, all the experiments were done on this type of detector only. Although 

eddy current metal detectors have discrimination ability, thanks to different phase 

shifts of induced voltage which corresponds to detected metal materials, there is 

still an uncertainty how to avoid undesirable metal materials or what kind of target 

has been found.  This is due to the fact that some of them causes similar phase 

shift of the induced voltage. For this reason the dissertation was focused to 

improve their identification ability. 

 

The main shortcoming of present day detectors and their discrimination 

ability lies in the fact that the majority of them use only one frequency excitation 

signal for detecting and identifying objects. Thus the information about the 

detected object is contained in one frequency. However, the operator needs more 

information to detect and identify object. This led the author of this dissertation to 

an idea to use multifrequency signals. 

 

Considering the partial list of the dissertation objectives each part of it is 

fulfiled. 

 

 Analysis of the system properties excited by a polyharmonic signals (see 

chapter 4.2 for details) 

 

Behavior of electromagnetic induction has been explained by a Simple 

circuit model. Response Function G(α) has been defined. It has been shown 

that in Simple circuit model Response Function of the object/target depends on 

its electromagnetic properties and frequency. Theoretical analysis for 

a homogenous sphere, which represents well a common small object, has been 

studied in more detail. It has been shown that induced voltage can be expressed 

as a sum of infinite geometric series and frequency dependent terms. This 

expression can be divided into its real and imaginary part; Geometry dependent 

term - real part and Response Function – complex part. Under certain 

conditions and for a Dipole Approximation higher orders can be neglected and 

only the first term is relevant. Furthermore in a quasi-static approximation the 

Response Function depends only on objects properties (µ, σ, a) and on 

operating frequency f of the detector but not on its position.  Response Function 

of non-ferromagnetic objects is similar to the simple circuit model. Non-

ferromagnetic materials shift the phase to negative values only (from 0° to 

−90°) in contrast to ferromagnetic materials which have phase shift to positive 

values as well (from +90° to −90°). Therefore differentiation between ferrous 
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and non-ferrous objects can be done thanks to its phase response but not by 

using one frequency. Measuring by one frequency only may result in a negative 

value for some frequencies for both types of materials.  However, the phase of 

the Response Function depends as on objects properties and also on operating 

frequency. Thanks to the multiple frequencies, which polyharmonic signal 

contains, there is an opportunity to measure a wide band of the Response 

Function and better characterize the detected object. 

 

 Verification of the system properties using an excitation by a multiple 

frequency signals (see chapter 5.1 for details) 

 

For all experiments ATMID metal detector search head has been used. 

The behavior of the ATMID search head configuration was verified on the 

experimental coil. Due to ATMID coil parameters, operating frequencies of 

the detector were at frequency range from 1 kHz to 25 kHz. Parameters of the 

coil were described in detail in chapter 4.3. For Response Function verification 

a multifrequency step sweep sine-wave signal and polyharmonic chirp signal 

were used. Step sweep sine-wave signal confirms expected response of 

ferromagnetic and non-ferromagnetic materials for different frequencies which 

were described. Experiments showed differences between ferrous and non-

ferrous materials and its sizes not only in their phase shift but also in amplitude 

of induced voltage. Chirp signal and its signal processing in frequency domain 

showed possibilities how to use of polyharmonic signal for metal detection. 

Thanks to amplitude and phase spectra one gets response of the target in a wide 

band. More experiments with the chirp signal were not conducted because of 

usage of similar technique by Minelab company. Another polyharmonic signal 

which comes into consideration was sinc signal. 

 

 Experimental measured data processing in time and frequency domain (see 

chapter 5.3 for details) 

 

All experimental data were measured using the sinc signal as the 

excitation signal. The sinc signal thanks to its spectrum with easily defined 

numbers and positions of individual frequencies, which are appropriate for 

further spectral analysis of the Response Function, was shown to be as 

a perspective excitation polyharmonic signal. Another advantage of the sinc 

signal lies in a possibility to generate it by any generator with DDS. Thanks to 

that it appeared as an ideal polyharmonic signal used for metal objects 

identification. Several experiments have been done using such excitation 

signal. Results were processed in both time and frequency domain. Spheres of 

different diameters and from different ferrous and non-ferrous materials were 

used as specimens. In time domain the sinc signal does not offer any attractive 

methods for advanced identification of objects. This is due to the fact that in 
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time domain individual frequencies cannot be examined separately but only 

the signal as a whole. Experiments showed that Crest factor can be used as 

a simple method how to distinguish between ferrous and non-ferrous materials. 

However, this method can be used only if the response from the detected object 

was strong enough. The capability of differentiation of objects is decreasing 

with increasing of distance or with decreasing of diameter. In frequency 

domain signal processing by means of DFT using FFT algorithm were done. 

Thanks to that amplitude and phase spectra with multiple frequencies are 

obtained. The Response Function of the detected object over a wide band of 

frequencies. This response has been used for further object identification. 

Experiments show that thanks to multiple frequencies approach, differentiation 

between even similar objects (in a way of electromagnetic response) can be 

done. 

 

 Classification of measured data into classes (see chapter 6.3 for details) 

 

As part of the work, classifications of ferromagnetic and non-

ferromagnetic materials were done based on experimental measured data as 

well as classification of individual ferrous and non-ferrous materials and 

estimation of the size of the classified object. For data classification support 

vector classifier was used primarily together with other classifiers. Measured 

data showed that if multiple frequencies (its magnitudes and phases) are used 

as features and new features (relations between existing ones) are added, the 

classification can be done successfully. Efficiency of the classification 

decreases with increasing distance between the detector and target and if the 

size of the targets is getting smaller. 

 

 

A standard single tone method offers the greatest sensitivity thanks to 

possibility of using a synchronous demodulator. Special synchronous 

demodulators offer signal to noise ratio up to 120 dB, compared with 

polyharmonic signal method where synchronous demodulation cannot be done. 

Polyharmonic signals have to be digitized. Signal to noise ratio of such measure 

chain, which is composed of preamplifier and analogue to digital converter, does 

not reach usually more than 90 dB. Detailed analysis is presented at the 

chapter 5.4.  

 

Single tone methods shortcoming is in that an information about detected 

object is contained only in phase shift. Therefore single phase measure itself is not 

sufficient to state whether the object is ferromagnetic or non-ferromagnetic or 

even what type of material is made of. Advantage of polyharmonic methods is 

based on multiple frequencies approach. Thanks to multiple frequencies a 

response of detected object is a wide band. In this case the information about 
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detected object is contained in phase and amplitude spectra. It enables better 

identification of detected object. 

 

Together with presented methods several other methods were examined. In 

time domain it was correlation methods and fitting methods. In frequency domain 

Hilbert transformation method was tested. All of these methods didn’t give any 

relevant results. Finally, it must be noted, that although in general, classification 

or identification of an object cannot be done successfully, it still might be possible 

to extract some valuable additional information from the response of the detected 

object for the operator, such as if detected object is ferromagnetic or non-

ferromagnetic. 

 

7.1. Future Research 

There were new multi-frequency methods and processing algorithms being 

developed. The next step, experimental measurement in order to acquire data 

under realistic conditions, should be accomplish.  

 

At first, measurement under a different ground conditions can be done to 

verify usage of polyharmonic signal sinc to detect buried objects in various 

environments. The focus should be put on some specific objects such as mines. 

Based on these measurements a database of templates can be created to provide 

objects classification (for example mine or debris) or identification (mine type). 

From this database there should be enable to collect a useful characterization of 

the detected object (mine).  

 

Secondly, the classification by support vector machine classifier can be done 

using other nonlinear kernels such as polynomial. Together with nonlinear kernel, 

adding another new features to improve the classification ability of the classifier 

can be considered.  
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