
19th Computer Vision Winter Workshop
Zuzana Kúkelová and Jan Heller (eds.)
Křtiny, Czech Republic, February 3–5, 2014

jSLIC: superpixels in ImageJ

Jiří Borovec and Jan Kybic

Faculty of Electrical Engineering,
Czech Technical University in Prague, Czech republic

jiri.borovec@fel.cvut.cz
Abstract This paper presents the implementation and
particular improvements on the superpixel clustering
algorithm - SLIC (Simple Linear Iterative Clustering). The
main contribution of the jSLIC is a significant speed-up of
the original clustering method, transforming the compact-
ness parameter such that the value is image independent,
and a new post-processing step (after clustering) which now
gives more reliable superpixels - the newly established seg-
ments are more homogeneous. The improvements of speed
and quality are shown on real images. We implemented
the new jSLIC in Java and made the source code publicly
available. Also we created a plug-in in ImageJ/Fiji which is
commonly used as a research and development platform in
biology and medical imaging.

1 Introduction
The amount of data in medical imaging to be processed is
increasing - images in histology can easily have 50.000 ×
50.000 pixels or even more. The segmentation or registra-
tion of these large images is very demanding. The complex-
ity of segmentation and registration can be reduced by using
superpixels [7, 4].

In the past, several superpixel algorithms were introduced
which were based on, for example the watershed approach,
level-set based geometric flow, mode-seeking segmentation
scheme or graph-based (a comparison is presented in [2, 9]).
Recently, SLIC (Simple Linear Iterative Clustering) [2] was
introduced for general images and presented as a powerful
intermediate phase for further image segmentation, classi-
fication and registration.

We chose SLIC because of its universality and linear (and
low) complexity (see Sec. 1.1). This fact is important for
pre-processing large images. SLIC has a high rate in bound-
ary recall and a low rate of under-segmentation error [2].
Another benefit is the low number of parameters to be set
and an opportunity to influence the size and compactness of
the resulting superpixels.

The main contribution of this work is a significant speed-
up over the original clustering method and also providing
a multi-thread version. Moreover, the regularisation para-
meter is transformed into the range 〈0, 1〉 to be more image
independent. We also propose a new post-processing step
which gives more reasonable superpixel shapes even for lar-
ger superpixel grid spacing.
While ImageJ [1, 5, 11] (and Fiji, derivation of ImageJ) is
commonly used as a research and development platform in
medical imaging, there is no implementation of superpixels.
We decided to implement SLIC in Java and call it jSLIC.
The Java source code and a ready to install Fiji plug-in are
publicly available1.

In Sec. 1.1, we briefly introduce the general SLIC al-
gorithm. Then, we discuss the implementation and pro-
posed speeds-ups together with the explanation and gain of
each partial procedure in Sec. 2. Later in Sec. 3, we speak
about the post-processing phase where we define the prob-
lem, summarize the existing approach and introduce ours
and present the differences on the atcome using both meth-
ods.

1.1 SLIC superpixels
SLIC [2] is an adaptation of the k-means [6] algorithm for
superpixel generation with two important distinctions: (a)
the weighted distance measure

D =

√
d2
c +

(
ds
S

)2

m2 (1)

combines colour dc (using the CIELAB colour space, which
is widely considered as perceptually uniform for small col-
our distances) and spatial proximity ds and (b) the search
space is reduced by limiting to a region 2S × 2S, propor-
tional to the superpixel size S. The search space reduction
has a great impact on the speed of whole algorithm, res-
ulting on a complexity of only O(N) instead of O(NkI)
for standard k-means, where N is the number of pixels in a
image, k is the number of clusters and I is the number of
iterations [3].

2 Implementation and speed-ups
Several implementations of SLIC already exist. The author
of [2] provides a C source code2 which was wrapped into
Python3 (we use this code as the reference of SLIC). Other
implementations can be found also for Matlab (VLFeat4 lib-
rary). For real-time computer vision problems, SLIC has
been also transformed to be fully processed on graphic cards
with some minor improvements as gSLIC [10].

1http://fiji.sc/CMP-BIA_tools
2http://ivrg.epfl.ch/research/superpixels
3https://github.com/amueller/slic-python
4http://www.vlfeat.org/

mailto:jiri.borovec@fel.cvut.cz
http://fiji.sc/CMP-BIA_tools
http://ivrg.epfl.ch/research/superpixels
https://github.com/amueller/slic-python
http://www.vlfeat.org/

jSLIC: superpixels in ImageJ

Figure 1: Sample image - Lena (image size 512 × 512 pixels) clustered by the original SLIC (middle) and our jSLIC (right) method. You
can see that most of the superpixels are equal except those around Lena’s eyes where jSLIC added extra superpixels for the white which we
consider as the right choice.
We implement the plug-in in Java with maximal focus on
compatibility with ImageJ. We used the ImageJ API and as
much as possible we had to use the native Java structures a
few times to keep the clustering process as fast as possible.

2.1 Regularisation constant
SLIC contains a regularisation parameter f which influ-
ences the compactness of clustered superpixels. This con-
stant f weights the space distance ds and it is expressed as
f =

(
m
S

)2
from eq. (1) where (according to the notation

in [2]) S is the initial superpixel size and m is a parameter
related to maximal colour distance Nc in the range (0,∞).
We propose instead to use a parameter r defined in the range
〈0, 1〉, where 0 means the minimal and 1 the maximal com-
pactness.

f = S · r2 (2)

In our experiments we found that the optimal default reg-
ularisation value r = 0.2 works well for most cases. It is a
good compromise between the superpixel compactness and
fitting boundaries of the expected object in image.

2.2 Using Look-Up Tables
We analysed the possibility of using precomputed Look-Up
Tables (LUTs) to avoid repetitive computing of the same dis-
tances ds in eq. (1) or converting the same colours again. We
found that we can achieve significant speed-up in specific
cases (especially for colour conversion) mentioned below.

Spatial distance in regular grid. The metric used in
SLIC clustering contains a proximity distance

ds =

√
(xj − xi)2

+ (yj − yi)2

where [xi, yi] and [xj , yj] are coordinates of the cluster
centre and a pixel respectively. In a regular image grid,
these distances are the same for all cluster centres and its
proportional subset of neighbouring pixels. Using this pre-
computed distance LUT, we gain a 5% speed-up.

Colour conversion. Most commonly used images are in
RGB colour space and we compute the colour distance in
CIELAB colour space (see Sec. 1.1). It means that each
method speed-up
original SLIC 0%
jSLIC initial 26.6%

spatial proximity LUT 33.7%
colour conversion LUT 217.3%
jSLIC fast (distance & colour) 264.9%
jSLIC parallel (4 threads) 495.4%

Table 1: Table presents the speed-ups of each proposed procedure.
All following ratios are mean speed-ups evaluated over several his-
tological images with different image size (see Fig. 5) and they ex-
press the relative speed-up to the original SLIC. On the beginning
the jSLIC (implementation according [2]) is about 27% faster then
the original SLIC implemented in C. Later the pre-computation of
distances and converting each colour just once brings 5% and 58%
speed-up respectively comparing to the initial jSLIC and about
64% both together. In the end, the parallelisation for 4-threads
gives another speed-up of 37% to the fast jSLIC.

image needs to be converted from RGB to CIELAB which
is quite time consuming. We found that the number of used
unique colours in images is usually smaller than the number
of pixels in the image. Average images has at maximum
50% of unique colours/pixels (e.g. Lena with size 512×512
pixels). For medical images, the ratio is even smaller. For
example, a common image of stained histological section
(see [4]) contains less than 5% of unique colours/pixels. So
we create the conversion LUT just when it is needed so each
used colour is computed just once. It gives us a speed-up of
about 60%.

2.3 Multi-threading

As the clustering is computed locally (for each superpixel
only its proportional 2S × 2S area, see Sec. 1.1), is quite
simple to split the process by subsets of superpixels and/or
image blocks into independent threads in both phases (as-
signment and update).

We apply the parallelism usually on the main loop in the
given phase - in the assignment phase each thread takes only
a subset of all superpixels/clusters, and the update is com-
puted per image blocks, such that each thread processes one
image block.

We perform this parallelisation on a computer with 8-

Jiří Borovec and Jan Kybic
1000 2000 3000 4000 5000 6000 7000 8000
average image size [px] - (w*h)^0.5

0

5

10

15

20

25

30

35

40

45

ti
m

e
 [

s]

jSLIC parallelisation

jSLIC 1 thread
jSLIC 2 thread
jSLIC 4 thread
jSLIC 8 thread

Figure 2: We ran a benchmark on several histological images with
different image size and parallelism on 1− 8 threads. You can see
that with the increasing number of used threads the processing time
also decrease. The most significant speed-up is between the single
and 4-thread version.

cores and the results are presented in Fig. 2. The most signi-
ficant speed-up is between the single and 4-thread version.
You can see that the 8-thread version for small images takes
even more time which is due to multi-threading overhead.

3 Post-processing of outliers

The SLIC clustering generates a quite large number of un-
connected components (small regions which belong to a su-
perpixel but they are not connected to it). The number of un-
connected regions depends on superpixel compactness but in
average (for regularisation r = 0.2) there are about 3M un-
connected regions where M = w·h

S2 is number of expected
superpixels depending on image size and initial superpixel
size S.

At first, all connected components ci have to be found.
We use a region growing method to compute all independ-
ent components ci (assuming 4-neighbour). Then, for each
component ci we find a set of neighbouring components Ωi.
This early stage is the same for the original SLIC as it is for
jSLIC post-processing.

Original SLIC post-processing [2]. The authors meas-
ure the relative area csi = |ci|

S2 of each component and merge
small components if csi < 0.25. For relabelling they simply
use the label c∗i of the first component from Ωi such that c∗i
is the neighbouring component of the first pixel belonging
to ci.

We found out that this simple approach is not sufficient
(see Fig. 3), because some unconnected components are
merged to a superpixels even it would be more reasonable
to merge then into another neighbouring superpixel or intro-
duce them as new superpixels. The author deals with this
issue by estimating smaller superpixels [7] and setting the
superpixel size smaller than the smallest detail in the image
that they want to distinguish.
1000 2000 3000 4000 5000 6000 7000 8000
average image size [px] - (w*h)^0.5

0

20

40

60

80

100

120

140

160

ti
m

e
 [

s]

SLIC & jSLIC performances

SLIC
jSLIC raw
jSLIC dist. LUT
jSLIC color LUT
jSLIC fast
jSLIC parallel

Figure 5: The chart presents the time dependency of complete
superpixel clustering by SLIC and different variants of jSLIC de-
pending on the number of pixels in the image. In average, the
parallel jSLIC is 6 times faster than the original SLIC implement-
ation.

Proposed jSLIC post-processing. We propose a different
post-processing step which takes into account all surround-
ing components and their similarity by colour and area. We
compute mean colours clabi and relative area csi for all com-
ponents. Then, we find the most similar component c∗i by
computing the difference li (cj) between the colours of the
components (3) and choosing the closest component (4)
with minimal distance

li (cj) =
||clabi − clabj ||2

csj
(3)

c∗i = arg min
cj∈Ωi

(li (cj)) (4)

where the || · ||2 is the Euclidean distance.
We experimented with the SLIC relabelling condition for

unconnected components (see Fig. 3). We found the original
csi < ε condition insufficient even with various threshold
values ε, because it does not take into account the colour
similarity. We propose a condition which solves this prob-
lem - the unconnected regions are merged if(

csi
4

)2

· (1 + li (c∗i)) < ε (5)

where csi
4 expresses the relative superpixel size to the max-

imal superpixel size 2S × 2S. Experimentally, we set the
threshold ε = 0.25.

4 Comparison and discussion
We applied jSLIC on several histological images of various
image sizes, up to about 8.000 × 8.000 pixels, on a stand-
ard computer with a 4-core processor and 8Gb RAM. As a
reference we used the original SLIC implementation in C
and compared it to our jSLIC in Java. The time dependency
of all partial speed-ups on image size is presented in Fig. 5.
In average, we found the parallel jSLIC to be 6 times faster
than the original SLIC implementation.

The experiments with parallelism show that the jSLIC is
optimal when using up to 4-threads. Using more threads due

jSLIC: superpixels in ImageJ

(a) (b) (c)
Figure 3: We compared the original SLIC condition for merging unconnected components csi < ε applying two different thresholds - original
ε = 0.25 in (a) and decreased ε = 0.06 in (b). For all relabelling, we used our choosing of most similar neighbouring component c∗i defined
in eq. (4). In (c) we introduced also our condition for merging described in eq. (5). You can see that most of the superpixels in (a, ,b, c) are the
same. The difference can be seen in the right upper part of the image. Original SLIC (a) just holds one large superpixel comparing to (b, c)
which reasonably adds one more superpixel. On the other hand (b) adds some other small superpixels in nearly homogeneous areas, while (c)
holds still single superpixels.

References
[1] M.D. Abramoff, P.J. Magalhães, and S.J. Ram. Image

processing with ImageJ. Biophotonics international,
11(7):36–42, 2004.

[2] R. Achanta and A. Shaji. SLIC Superpixels Compared
to State-of-the-art Superpixel Methods. Pattern Analysis

and Machine Intelligence, IEEE, 34(11):2274 – 2282, 2012.
[3] R. Achanta, A. Shaji, K. Smith, and A. Lucchi. Slic

superpixels. Technical report, 2010.
[4] J. Borovec. Fully automatic segmentation of stained

histological cuts. In Libor Husník, editor, 17th

International Student Conference on Electrical Engineering,
pages 1–7, Prague, 2013. CTU in Prague.

[5] T.J. Collins. ImageJ for microscopy. Biotechniques,
43(S1):S25–S30, July 2007.

[6] J.A. Hartigan and M.A. Wong. Algorithm AS 136: A
K-means clustering algorithm. Journal of the Royal

Statistical Society. Series C (Applied Statistics), 28(1):100–108,
Oct. 1979.

[7] A. Lucchi, K. Smith, and R. Achanta.
Supervoxel-Based Segmentation of Mitochondria in
EM Image Stacks With Learned Shape Features.
Medical Imaging, IEEE, 31(2):474 – 486, 2012.

[8] D. Martin and C. Fowlkes. A database of human
segmented natural images and its application to
evaluating segmentation algorithms and measuring
ecological statistics. In International Conference on

Computer Vision, IEEE, number July, 2001.
[9] P. Neubert and P. Protzel. Superpixel Benchmark and

Comparison. Technical report, 2012.
[10] C.Y. Ren and I. Reid. gSLIC: a real-time

implementation of SLIC superpixel segmentation.
Technical report, 2011.

[11] C. Schneider, W.S. Rasband, and K.W. Eliceiri. NIH
Image to ImageJ: 25 years of image analysis. Nature

Methods, 9(7):671–675, June 2012.
to the threading overhead, does not brings bigger improve-
ments in performance.

For the evaluation of the proposed post-processing step,
we used a few images from the Berkeley Segmentation
Dataset [8] and some stained histological images (see
Fig. 4). We made a visual evaluation of segmented su-
perpixels with respect to the amount of detail extracted
from a given image. For both methods we set the same
configuration - the same initial superpixel size S = 30
and regularisation constant r = 0.2. To present the
differences, we chose a detail in each image where the
improvements can be easily seen (the rest of the image is
usually segmented equally).

The advantage of the jSLIC post-processing is the abil-
ity to segment also smaller details than the initial superpixel
size S in region it is needed and the ability to keep lar-
ger superpixels in more uniform image parts (see Sec. 3).
We benefit from this fact when segmenting large histolo-
gical images, where a big reduction of problem complexity
is needed. For instance, have a look at the sample of his-
tological image (Fig. 4 bottom), where the jSLIC is clearly
capable of estimating the hole in the tissue comparing to ori-
ginal SLIC method.

5 Conclusion
We presented a Java-based open source implementation of
jSLIC superpixel clustering with better performance than
the original SLIC. Moreover, we proposed a different reg-
ularisation parameter, which influences the compactness of
resulting superpixels and propose a default value r = 0.2.
The new post-processing step gives more reliable super-
pixels shapes, with no need of decreasing superpixel size.

Acknowledgement
The authors were supported by The Czech Science Founda-
tion under project P202/11/0111 and by The Grant Agency
of the CTU Prague under project SGS12/190/OHK3/3T/13.

Original SLIC jSLIC

Figure 4: We run the original SLIC (middle) and jSLIC (right) on the Berkeley Segmentation Dataset [8] and some stained histological
images using the same configuration for both. To present the differences we chose from each image only a part/detail where improvements
can be easily seen (the rest of the image is usually segmented equally). The reason for more reliable superpixels by jSLIC is, because it takes
into account all neighbouring connected components and their similarity by colour.

	Introduction
	SLIC superpixels

	Implementation and speed-ups
	Regularisation constant
	Using Look-Up Tables
	Multi-threading

	Post-processing of outliers
	Comparison and discussion
	Conclusion
	Acknowledgement
	References

