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ABSTRACT
The analysis of protein-level multigene expression signa-
ture maps computed from the fusion of differently stained
immunohistochemistry images is an emerging tool in can-
cer management. Creating these maps requires registering
sets of histological images, a challenging task due to their
large size, the non-linear distortions existing between con-
secutive sections and to the fact that the images correspond
to different histological stains and thus, may have very dif-
ferent appearance. In this manuscript, we present a novel
segmentation-based registration algorithm that exploits a
multi-class pyramid and optimizes a fuzzy class assignment
specially designed for this task. Compared to a standard non-
rigid registration, the proposed method achieves an improved
matching on both synthetic as well as real histological images
of cancer lesions.

Index Terms— Non-rigid registration, superpixel, multi-
class matching, light microscopy images, lung cancer

1. INTRODUCTION

Molecular phenotyping of cancer lesions based on multi-gene
expression signature maps is increasingly being used for di-
agnosis, prognosis and personalized therapy planning. In
experimental settings, this is done by multivariate molecular
profiling, based on gene expression arrays. However, due to
cost and time constraints, immunohistochemistry (IHC) is
the method of choice in clinical settings. Metzger et al. [1]
recently developed a platform that computes multiple-gene
expression signature maps from consecutive IHC sections
digitized using a commercial whole-slide imaging system.
The critical step in this process is the correct assignment of
spatial correspondence between differently stained sections.
In their platform, the IHC images were aligned to a reference
Hematoxylin and Eosin (H&E) image through a two-step
process involving coarse manual alignment followed by an
automatic fine rigid registration using TurboReg 1. Nev-
ertheless, histological images often suffer from non-linear
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1http://bigwww.epfl.ch/thevenaz/turboreg/

distortions (i.e., missing sections, tissue folding, stretching
and tearing) that cannot be corrected for using a rigid trans-
formation. An elastic registration of histological sections was
introduced in [2]. Furthermore, other issues complicate the
registration process, such as the very different appearance and
local architecture of the sections and the considerable size of
the images. Aware of that, we previously implemented a
non-rigid intensity-based registration method initialized by
the matching of small salient anatomical features based on
ITK, Elastix 2 and OpenCV. Although it results in better reg-
istration quality than methods based on rigid registration, this
method is not able to fully capture local deformations.

In this paper, we present a novel non-rigid segmentation-
based registration algorithm based on a multi-class segmen-
tation pyramid. We demonstrate that this method improves
the results of the reference method on both synthetic and real
histological images of cancer lesions.

The structure of the paper is as follows. Section 2 de-
scribes the real and synthetic images. In Section 3, both
the intensity-based and the segmentation-based registration
methods are described. Section 4 presents the evaluation
results. The paper ends with the concluding remarks in Sec-
tion 5.

2. MATERIAL

In this section, the sample preparation and image acquisition
is described, together with the generation of the synthetic im-
age pairs.

2.1. Real images

We used lung tissue blocks from a long-term urethane-
induced lung cancer mouse model. Unstained adjacent 3µm
formalin-fixed paraffin-embedded sections were cut from the
blocks and stained with Hematoxylin and Eosin (H&E) or
by immunohistochemistry with a specific antibody for CD31,
proSPC, CC10 or Ki67 (see Figure 1). Images of two lesions
were acquired with a Zeiss Axio Imager M1 microscope (Carl
Zeiss, Jena, Germany) equipped with a dry Plan Apochromat
objective (numerical aperture NA = 0.95, magnification
40×, pixel size 0.174 µm/pixel, tile size 2080 × 1540 pix-
els). Lesion 1 (lesion 2) occupies 9 × 10 (9 × 9) tiles. The

2http://elastix.isi.uu.nl/
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Fig. 1. (Top row) Sample mosaic (18720 × 15400 pixels) showing a typical lung cancer lesion. (Bottom row) Zoomed area
showing the different appearance and local structure of the same area in consecutive slices. (a) H&E staining: nuclei are purple,
cytoplasm is pink and vessels are red; Immunochemistry stains: Negative nuclei and cytoplasm are colored in dark and light
blue, respectively. Positive content (nuclei/cytoplasm) is shown in dark brown. (b) CD31: stains the endothelial cells that form
blood vessels; (c) proSPC: type 2 pneumocytes forming the alveolar-capillary barrier; (d) CC10: clara cells found in the small
airways (bronchioles); (e) Ki67: nuclei of growing dividing cells. (f) Example of a synthetic reference and moving image pair.

Table 1. Generation of the synthetic images. The last column
refers to the maximal displacement of each control point in a
B-spline grid (of size 50 × 50 pixels). Percentages are given
with respect to the image size (1600× 1600 pixels).

Dataset Transform. Rot. Translat. Disp.
1 Rigid ±10o ±5% -
2 Non-rigid ±10o ±5% ±5%
3 Rigid ±20o ±10% -
4 Non-rigid ±20o ±10% ±10%

mosaic images of the whole lesions were composed using Fiji
Stitcher tool 3.

2.2. Synthetic images

We generated four synthetic image datasets (each has 100
pairs) mimicking consecutive histological sections. Each im-
age pair is composed of a movingM and a reference imageR
(see Figure 1 (f)). To create each pair, first a segmentation of
a moving segmentation of size 1600 × 1600 pixels was gen-
erated containing four classes of symbolic structures (back-
ground, vessels and positive/negative content (either nuclei or
cytoplasm)). Next, the reference segmentation was obtained
by distorting the moving segmentation with one of the four
random transformations shown on Table 1. Each image was
randomly assigned to a different stain and the segmentation
classes colored accordingly. To get a textured pattern, 5%
white noise was added to the images.

3. METHODOLOGY

In this section, we describe the main functional blocks (Fig-
ure 2) of the two compared pairwise registration algorithms.

3http://fiji.sc/wiki/index.php/Stitching_2D/3D

Fig. 2. Flowchart of the compared algorithms: (Top) Refer-
ence method. (Bottom) Segmentation-based registration.

3.1. Reference method

Features are detected and extracted by the Speeded Up Ro-
bust Feature (SURF) method [3]. Then, on the feature pairs,
Random Sample Consensus (RANSAC) is used to eliminate
outliers. An initial, coarse affine transform is estimated by
least-squares error minimization on the feature set positions.

An affine transformation is estimated coarsely by least
squares fitting of the feature point positions. The affine
estimate is refined and a final elastic B-spline transforma-
tion is found using ITK/Elastix multi-resolution registration
implementation with Limited-memory Broyden-Fletcher-
Goldfard-Shanno (LBFGS) optimizer and mutual information
metric using a random coordinate sampling in every iteration.

3.2. Segmentation-based registration

Here, we propose a multi-scale non-rigid segmentation-based
registration algorithm maximizing a fuzzy class assignment.
Segmentation pyramids are independently constructed for the
two images to be registered (reference and moving image).
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Fig. 3. For a CD31 stained image sample (see Figure 1(b)):
(a) Detail of our superpixels segmentation; Illustration of the
multi-class pyramid: (b) Intermediate level. (c) Coarsest
level.

Each level of the pyramid contains a multi-class segmenta-
tion capturing image structures at a given scale. At each level
of the pyramid, the segmentation of the reference and moving
images needs to represent the same type of structures as the
registration similarity metric relies on the correct class assign-
ments. This is guaranteed through a combined class merg-
ing and matching mechanism. As in a conventional multi-
resolution registration, the transformation is estimated at the
coarsest level of the pyramid and then, sequentially propa-
gated to the next levels to refine the solution.

Notation. Let I : Ω → R3 be a continuous RGB image
defined over a 2-dimensional discrete image domain Ω =
[1, . . . , nx]× [1, . . . , ny] where nx and ny are the image size
in the x- and y-dimensions, respectively. We will index it
with a running index i as ordering is not relevant in our case.
The labeling function Y : Ω → L assigns to each pixel in Ω
a label from a set of labels L. The binary segmentation Ic(Y )
for a label c ∈ L is defined as

Ic(Y )(i) =
{

1 if Y (i) = c
0 elsewhere.

Namely, Ic(Y ) : Ω → {0, 1}. The transformation function g
maps the moving segmented image Y M to the reference one
Y R such as g : ΩM → ΩR.

Segmentation model. Here, we present the segmentation
pipeline summarized in Figure 2 (bottom). First, superpix-
els are computed using the Simple Linear Iterative Clustering
(SLIC) algorithm [4] (see Figure 3 (a)). Each superpixel is
described by the mean intensity of the pixels that belong to it.
This superpixel-based simplified representation of the image
is fed to an Expectation-Maximization (EM) algorithm that
estimates a four class Gaussian Mixture Model (GMM). From
the probability model, a compact 6-level multi-class segmen-
tation pyramid (see Figure 3 (b) and (c)) is computed using
Graph Cuts segmentation [5] with smoothness coefficients
logarithmically distributed in the range [1, 100000].

Label merging and matching. To properly compute the
registration similarity metric, the number of labels and their

order for both the reference and moving images need to be
the same. Label merging equates the number of labels. Be-
fore presenting the merging criterion, we need to define the
association metric Sc,d for labels c ∈ L and d ∈ L

Sc,d =
|(C ∪D) \ (C ∩D)|

|C ∪D|
·
(

1− |C|
|D|

)
with |D| ≥ |C| (1)

where C = Ic(Y A), D = Id(Y B), Y A and Y B repre-
sent the segmented image pair, | · | the non-zero pixel count,
∪ represents the union operator, ∩ the intersection and \ the
difference. We have Sc,d ∈ [0, 1] with a value close to zero
indicating a high overlap and a similar area extension of both
classes.

Let D be the binary segmentation D = Id1(Y B) ∪
Id2(Y B). The labels d1 ∈ L and d2 ∈ L in Y B are merged
iff minc Sc,d � η · minc min(Sc,d1 , Sc,d2), with c ∈ L and
η = 5.

Class matching is also based on the computation of the
association metric S and the best matching is found with the
Hungarian algorithm [6].

Registration. An affine transformation is computed and
further refined by a non-rigid B-spline transformation. To
avoid discontinuities in the optimization function, we work
with the fuzzy segmentations obtained by applying a Gaus-
sian filter H to the binary segmentation Y : Ic(Y )∗ =
H(Ic(Y )). The similarity metric is defined as

J =
∑

c∈L

∑
i∈Ω I∗c(Y R)(i) ·

(
g ◦ I∗c(Y M )(i)

)∑
c∈L

∑
i∈Ω(g ◦ I∗c(Y M )(i))

(2)

Finally, the transformation ĝ is estimated as the one max-
imizing the fuzzy class assignment as measured by J (i.e.,
ĝ = arg maxg J) using a gradient descent optimization. We
stop iterating when the increment of J is smaller than a given
threshold (ε = 10−4).

4. EXPERIMENTAL RESULTS

4.1. Synthetic images

The registration on synthetic images (see Figure 4 (a)-(c)) was
evaluated using the mean Euclidean distance between the po-
sitions of the contour points in the reference and the trans-
formed moving image. The results are shown in Table 2. We
observed that the proposed method was more robust to strong
deformations than the reference method.

4.2. Real images

For the evaluation of the registration results on real images
(see Figure 4 (d)-(f)), we used manually placed landmarks.
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Fig. 4. Visual estimation of the registration accuracy. The reference (moving) image is shown in green (red). (Left) Synthetic
images. (Right) Real images: (a) (d) Superposition of the input image pair. (b) (e) Reference registration output. (c) (f)
Segmentation-based registration output.

Table 2. Registration errors for the synthetic images mea-
sured as the mean Euclidean distance between the positions
of the contour points.

Methods
Error Dataset
(pixels) 1 2 3 4

Ref-Reg.
Mean 0.77 10.74 6.33 53.93
Std 0.38 5.87 22.09 49.82

Segm-Reg.
Mean 0.18 9.01 1.52 22.11
Std 0.09 7.69 12.09 16.25

Table 3. Registration errors for the real images measured
as the mean Euclidean distance between the positions of the
manually placed landmarks.

Methods
Error Lesion
(microns) 1 2

Ref-Reg.
Mean 22.39 38.67
Std 27.98 43.801

Segm-Reg.
Mean 15.66 20.25
Std 13.17 13.32

An expert located 90 landmarks uniformly spread in the refer-
ence and moving mosaics. The landmarks were placed in the
centroids of well-defined anatomical structures such as ves-
sels and bronchioles perpendicular to the sectioning plane.
The registration error was measured as the mean Euclidean
distance between the landmark positions. The mean registra-
tion error for the proposed method was 41.19% smaller in av-
erage than for the reference method and corresponds to 1− 2
cell diameters (see Table 3).

5. CONCLUDING REMARKS

In this manuscript, we have presented a segmentation-based
non-rigid registration method applied to the fusion of multiple
stained histological sections. The method compares favorably
with a state-of-the-art intensity-based non-rigid registration
algorithm.

The poorer performance of the reference method is likely
due to a relatively high similarity between the anatomical fea-

tures in the histological images and their dissimilar appear-
ance under different stains. Whereas the former limits the
matching confidence, the latter negatively affects the conver-
gence of intensity-based optimization algorithms.

The advantage of the proposed method is its robustness.
Thanks to the multi-resolution approach, it captures and
aligns the structures of interest at different scales. Further-
more, the merging and matching of the labels ensures that
the segmentation of the reference and moving images repre-
sent indeed the same type of structures. An effort has been
done to computationally optimize our method. Specifically,
our superpixel approximation decreases the dimensionality
of the subsequent segmentation and the simple similarity
metric used contributes to the efficiency of the registration
optimization.
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