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Abstract

We present a new approach to matching graphs embed-

ded in R
2 or R

3. Unlike earlier methods, our approach

does not rely on the similarity of local appearance features,

does not require an initial alignment, can handle partial

matches, and can cope with non-linear deformations and

topological differences.

To handle arbitrary non-linear deformations, we repre-

sent them as Gaussian Processes. In the absence of appear-

ance information, we iteratively establish correspondences

between graph nodes, update the structure accordingly, and

use the current mapping estimate to find the most likely cor-

respondences that will be used in the next iteration. This

makes the computation tractable.

We demonstrate the effectiveness of our approach first

on synthetic cases and then on angiography data, retinal

fundus images, and microscopy image stacks acquired at

very different resolutions.

1. Introduction

Graph-like structures are pervasive in biomedical 2D

and 3D images. Examples are blood vessels, pulmonary

bronchi, or nerve fibers. They can be acquired at differ-

ent times and scales, or using different modalities, which

may result in vastly diverse image appearances. For ex-

ample, neuronal structures acquired using a light micro-

scope (LM) such as those on the left of Fig. 1 look radi-

cally different when imaged using an electron microscope

(EM), as shown on the right of Fig. 1. Nevertheless, reg-

istering them is desirable to combine the specific informa-

tion each modality provides, in this case large-scale connec-

tivity from the low-resolution data and fine details such as

dendritic spines from the high-resolution data. Such dras-

tic appearance changes make it impractical to use regis-

tration techniques that rely on maximizing image similar-

ity [26, 18], in particular when the images are very different

and when dealing with thin structures, such as blood ves-

Figure 1. Brain tissue at different resolutions. Top: Left) Image

stack acquired using a light microscope from live brain tissue at

the micron resolution. Right) A smaller area of the same tissue

imaged using an electron microscope after excision and fixation,

at a 20 nanometer resolution or 5 times that of the two-photon

microscope. Center: Left) Semi-automated delineation of some

dendrites overlaid in magenta. Right) Manual segmentation of an

axon overlaid in green and a dendrite in yellow. Down: The same

structures on a black background. Because the resolution is so

much higher in the EM data, dendritic spines and synapses are

clearly visible. This figure, as most others in this paper, is best

viewed in color.
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sels or neuronal fibers. The lack of distinguishing features

of individual branching points or edges makes the use of

feature-based correspondence techniques equally impracti-

cal. Since the graph geometrical and topological structure

may be the only property shared across modalities, graph

matching becomes the only effective registration means.

This also includes subgraph matching when the images have

been acquired at different resolutions.

Most existing techniques that attempt to do this rely on

matching Euclidean or Geodesic distance between graph

junction points [9, 24, 5], which is very sensitive to the

small length changes inherent to the biological structures

we consider. This may be valid for pulmonary vessels,

which just undergo smooth deformations, or retinal fundus

images that show slight non-linearities –due to the curved

surface of the retina– when viewed from different perspec-

tives. Yet, when dealing with images acquired using dis-

tinct modalities and at different resolutions, the structures to

match exhibit significant topology changes and large non-

linear deformations. Furthermore, we know of no current

method that can simultaneously handle non-linear deforma-

tion, unknown initial position and lack of distinguishing lo-

cal features.

We therefore propose a new approach for matching

graph structures embedded in either R2 or R3, which can

handle these cases while being robust to topological differ-

ences between the two graphs and even changes in the dis-

tances between vertices. It requires no initial pose estimate,

can handle non-linear deformations, and does not rely on

local appearance or global distance matrices. Instead, given

graphs in the two images or image-stacks to be registered,

we treat graph nodes as the features to be matched. We

model the geometric mapping from one data set to the other

as a Gaussian Process whose predictions are progressively

refined as more correspondences are added. These predic-

tions are in turn used to explore the set of all possible cor-

respondences starting with the most likely ones, which al-

lows convergence at an acceptable computational cost even

though no appearance information is available.

We demonstrate the effectiveness of our technique at reg-

istering angiography and retinal-fundus images acquired at

different times and different points of view, as well as neural

image-stacks acquired using different modalities.

2. Related Work

Area-based registration techniques that maximize im-

age similarity criteria such as correlation or mutual-

information [26, 18] are not applicable in our context as

they are not designed to deal with truly different appear-

ances and limited capture ranges. We therefore consider

only techniques that match graph structures across images,

which can be divided into four main classes. In most cases

the branching points (nodes) are extracted and used for

matching, while the edges connecting them are often ig-

nored.

In the first class the graphs are assumed to be related

by a low-dimensional geometric transform, such as a rigid

one, which can be instantiated from very few –only 3 in

some cases– correspondences. It is therefore feasible to hy-

pothesize and test random correspondences, as it is done in

RANSAC [7] or its variants [4]. However, RANSAC-like

approaches quickly become impractical as the number of

transformation parameters or graph nodes increases.

The second class of approaches requires a good ini-

tial estimate of the transformation to establish an initial

estimate of the correspondences, which are then progres-

sively refined. For rigid transformations, one of the ear-

liest such algorithm is the Iterative Closest Point (ICP)

method [2], later extended to non-rigid transformations us-

ing techniques such as Non-Rigid ICP [1, 13], or Coherent

Point Drift (CPD) [16]. A good initial estimate is critical as

the algorithm will typically fall into a bad local minimum

without it.

The third class of methods relies on having a suffi-

ciently discriminative criterion for pairwise compatibility

between nodes, such as local appearance descriptors or

geometric compatibility between correspondence pairs [9,

11, 25, 6, 12, 3]. Global correspondences between nodes

are then estimated using multidimensional optimization

schemes such as graduated assignment [9], spectral tech-

niques [11, 25, 12] or considering the graphs as an absorb-

ing Markov chain [3]. Considering compatibilities as bi-

nary tests, the largest consistent set of matches corresponds

to the maximum weighted independent set or equivalently

the maximum weighted clique [6]. Due to its high compu-

tational cost, the method is only applicable to small graphs.

Within medical imaging, some authors have exploited the

graph matching formulation to register slightly deformed

images or volumes such as pulmonary vessels [24], or warp-

ing retinal fundus images [5]. While these methods allow a

non-parametric formulation of the problem, they cannot be

used when appearance information is unavailable and dis-

tances vary due to non-linear deformations, which is the

case we consider in this paper.

The final class of methods involves simultaneously

searching for correspondences and estimating the transfor-

mation parameters using a Kalman filter approach [14, 22,

20, 23, 21]. As soon as a few initial correspondences have

been established, the set of potential correspondences is

rapidly reduced, making the search complexity manageable.

However, these algorithms, like RANSAC, require an a pri-

ori parametric model whose parameters are computed using

the correspondences, and thus, cannot generalize to arbi-

trary deformations. Similar limitations are also shared by

methods relying on implicit shape models [17, 8]. In the

Gaussian Process framework we propose, we also progres-



sively reduce the number of potential correspondences but,

in contrast to these previous approaches, no parametric de-

formation model is required. Instead, the deformation is

completely defined by the correspondences and can there-

fore be completely generic. We will demonstrate that this

enlarges significantly the area of applicability and yields

better results.

3. Approach

In this work, we assume that we are provided with two

graphs GA = (XA,EA) and GB = (XB ,EB) extracted
from two images or image-stacks A and B, where the Es

represent the graphs’ edges and the Xs their nodes that can

be either 2D or 3D vertices. Our goal is to use them to find a

mappingm fromA toB such thatm(xA) is as close as pos-
sible to xB in the least-squares sense assuming that xA and

x
B are corresponding pixels or voxels. If correspondences

between points belonging to the two graphs were given, we

could directly use the Gaussian Process (GP) formalism to

compute the mapping as a non-linear regressor [19] that

yields a mean prediction m and its associated variance. In

our case, however, the correspondences are initially unavail-

able and cannot be established on the basis of local image

information because the A and B are too different in ap-

pearance. In short, this means that we must only rely on

geometrical properties to simultaneously establish the cor-

respondences and estimate the underlying non-linear trans-

form. To this end, our algorithm goes through the following

steps:

1. Coarse alignment: We begin by matching graph

nodes so that distances along the edges connecting cor-

responding nodes, which we will refer to as geodesic

distances, are changed as little as possible.

We initialize the process by randomly picking two cor-

respondences, which roughly fixes relative scale and

orientation, and use them to instantiate a GP. We then

refine it using the recursive procedure described be-

low. If this procedure fails, we pick another random

pair until it succeeds.

Given some correspondences between GA and GB

nodes, the GP serves to predict where other GA nodes

should map and restricts the set of potential corre-

spondences, especially given the fact that geodesic dis-

tances must be preserved. Among these possibilities,

we select the most likely one, use it to refine the GP,

and iterate. Repeating this procedure recursively un-

til enough mutually consistent correspondences have

been established and backtracking when necessary lets

us quickly explore the set of potential correspondences

and recover a rough mapping.

2. Fine alignment: The mapping discussed above has

been learned only from the graph nodes (branching

points), and is therefore coarse. To refine it, we also es-

tablish correspondences between points lying on edges

connecting graph nodes. Because there are many more

of those than they were nodes, this would be combi-

natorially explosive if we did it from scratch as done

previously. Instead, we constrain the correspondences

to be between samples belonging to edges of already

connected corresponding nodes and rely on a Hungar-

ian algorithm [15] to perform the optimal assignment

quickly.

In the remainder of this section, we first outline the GP for-

malism that we use. We then discuss our procedures for

coarse and fine alignments.

3.1. NonLinear Regression

Consider the case where we are given N correspon-

dences (xA
i ,x

B
i )1≤i≤N between 2D or 3D points from A

and B respectively. Using the GP approach to non-linear

regression and assuming Gaussian i.i.d. noise of precision

β−1 in the coordinate values, these correspondences can be

used to predict that the point xB in B corresponding to x
A

in A can be expected to be found at a location whose mean

mN and variance σN can be computed as

mN (xA) = k
T
C

−1

N X
B
N , (1)

σ2

N (xA) = k(xA,xA) + β−1 − k
T
C

−1

N k , (2)

where k is a kernel function, β is proportional to the ex-

pected noise-level in the data,CN is theN ×N symmetric

matrix with elements Ci,j = k(xA
i ,x

A
j ) + β−1δi,j , k is the

vector [k(xA
1
,xA), . . . , k(xA

N ,xA)]T , andXB
N is the vector

[xB
1
, . . . ,xB

N ]T .
Among the different types of kernel functions [19] we

chose the widely used summation of a squared-exponential,
a constant term, and a linear one

k(xi,xj) = θ0 + θ1x
T
i xj + θ2 exp

{

−
θ3

2
||xi − xj ||

2

}

. (3)

We found this kernel to be the most appropriate for our

purposes, because it implicitly defines a mapping function

composed of an affine plus a non-linear transformation.

This accounts for most of the warps appearing in biomedi-

cal imaging.

Given this expression for k, the mean prediction of Eq. 1

can now be rewritten as

mN (xA) =

N
∑

i=1

aik(x
A
i ,x

A)

=
N
∑

i=1

ai(θ0 + θ1(x
A
i )

T
x
A) +

N
∑

i=1

aiθ2exp

{

−
θ3

2
||xA

i − x
A||2

}

, (4)
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Figure 2. Coarse alignment steps. The initial graph structures are depicted in the left-most figure, the model graph in red and the target in

blue. Exploration of the search space starts by picking randomly two correspondences, highlighted in green, thus roughly fixing scale and

orientation. Then, the next match candidate is chosen among the nodes located inside the bounded regions, which are a function of the GP

predicted covariances, shown as black ellipses. Every correspondence added to the hypotheses set helps refining the mapping uncertainty.

The final correspondence set, defines a coarse alignment of the graphs, overlaid in magenta. Best viewed in color.

where ai is the i
th element of the vectorC−1

N X
B
N . The first

term of Eq. 4, containing the θ0 and θ1 hyperparameters,

is a linear function of the input variables while the second

one, involving the θ2 and θ3 hyperparameters and an expo-

nential, allows for additional non-linear deformations.

3.2. Coarse Alignment

Let XA =
{

x
A
1
, . . . ,xA

nA

}

and X
B =

{

x
B
1
, . . . ,xB

nB

}

be the nodes of our two graphs. As discussed at the be-

ginning of this section, our first goal is to simultaneously

retrieve as many correspondences {xA ↔ x
B} as possible

and the underlying non-linear mapping x
B = m(xA) that

best aligns them.

We take m to be a GP written using the formalism of

Section 3.1, which we instantiate by first randomly select-

ing only two matches. This gives us an initial correspon-

dence set H0, enough to roughly fix the global scale and

rotation, and then we recursively add new correspondences

as follows.

1. Given k correspondences, we compute the mapping

mk(.) and covariance estimator σ2

k(.) of Eqs. 1 and 2.

2. For each unmatched node x
A
i ∈ X

A, we search for

potential correspondences xB
j ∈ X

B in the bounded

region defined by the predicted covariance σ2

k(x
A
i ).

3. We choose the node x
A
i with the smallest number of

potential correspondences, and randomly pick one of

them to define the match x
A
i ↔ x

B
j , which we add to

the correspondence set H0.

This iterative process is repeated until a large enough H0 is

found, as is done in RANSAC. If that does not happen, the

algorithm backtracks and selects different correspondences

using a depth-first search strategy. This is depicted in Fig. 2.

The process is controlled by the vector Θ =
{θ0,θ1,θ2,θ3} containing the kernel hyperparameters of

Eq. 3 and the noise parameter β of Eq. 2. To avoid hav-

ing to tune these parameters for each new dataset, we center

and scale the XA and X
B coordinates so that their average

distances to the origin is one and perform the computation

on the scaled versions. As a result, we were able to use the

sameΘ and β for all experiments described in Section 4.

To speed up the computation, we reject correspondences

that would produce overly large changes in geodesic dis-

tances, which we define as the length γij of a path connect-

ing the edges between two graph nodes xi and xj . Given

N already established correspondences between graphs, for

each new potential match, the geodesic distances connect-

ing the new corresponding points to the nodes in both

graphs have to be proportional. We set the tolerance to

geodesic distance variations depending on the level of de-

formations we expect to recover. Proceeding in this way, the

algorithm gains robustness against outliers, while it avoids

unnecessary checks, thus keeping a low complexity. Note

that geodesic distances are invariant to rotations, to the

bending of the branches, and to isometric changes.

3.3. Fine Alignment

Having performed the rough alignment as described

above, we now have an initial set of N correspondences

H0 between graph nodes, as well as the corresponding GP

mapping mN (.) and covariance estimator σ2

N (.). Since the
graph nodes are connected by paths, we can refine the map-

ping by also establishing correspondences between points

that lie on these paths.Since allowing any point to poten-

tially be matched to any other would be prohibitively ex-

pensive, we assume the correspondences between nodes to

be correct and only establish new ones between points ly-

ing on paths linking matching vertices. We again do this

iteratively using the following two steps:

1. For each pair of paths connecting pairs of correspond-

ing vertices, we use the Hungarian algorithm [15]

to establish matches between the points forming the

path. To this end, we use the Mahalanobis distance be-

tween potential assignments computed using the cur-

rent mappingm(.) and covariance estimator σ2(.). All
the matches need to have consistent geodesic distances

to the nodes in their respective graphs.

2. Given these new correspondences, we reestimatem(.)
and σ2(.) and iterate.
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Figure 3. Fine alignment steps. Once a coarse alignment of the two graphs (model in red and target in blue) has been found, the algorithm

starts to match points lying on the edges. The assignments (depicted in green) are computed using the Hungarian algorithm and constrained

by the graph topology and GP predictions. After a few iterations, the warped structure (magenta) is completely aligned to the target graph.

For each successive plot, we zoom to a smaller region to better show the algorithm at work. Best viewed in color.

Eventually, the distance error between both graphs can not

be further minimized and the process ends. This yields a

final expanded set of correspondences HR and correspond-

ing mR(.) and covariance estimator σ2

R(.). Note that we

use the same GP parameters Θ and β as before. The whole

process is illustrated by Fig. 3.

4. Experiments

We now present the results on both synthetic and real

data, by first extensively evaluating our algorithm in con-

trolled experiments with known ground truth and then

showing the results in registering real 2D and 3D biomedi-

cal images. For the synthetic experiments we compare our

approach (denoted Non-Linear GP) to the Coherent Point

Drift (CPD) [16], which is a representative example of the

state-of-the-art in non-rigid point matching and shape re-

covery. We also compare it against [21], which uses a

Kalman filter based approach to learn an initial affine trans-

form and refines the output with a local non-linear warping.

We refer this approach as Affine Kalman.

4.1. Synthetic Data

We applied all algorithms to synthetic 3D structures with

increasing levels of deformation and amount of outliers.

We used Vascusynth[10] to synthesize several 3D trees of

25 nodes each within a volume of 100×100×100 voxels,

such as the one shown in Fig. 4. We simulated the dif-

ficulties encountered with real data, by adding increasing

levels of noise σn to the tree node locations, bending the

branches and introducing spurious nodes and correspond-

ing branches, which we will refer to as outliers. The magni-

tude of the bending was controlled through a parameter pb,

which establishes the length ratio between the original edge

and the deformed one. The percentage of outliers po refers

to the number of introduced non-corresponding nodes with

respect to the original number in the rigid tree. We then

registered the original reference shape and the synthetic de-

formed graphs using each of the algorithms.

Two different types of experiments were performed. We

first evaluated the amount of deformation each algorithm

was able to recover by sweeping the variances of the accu-

mulative joint noise within the range σn ∈ [0 − 1] voxels,
and fixing pb = 25% and po = 30%. To give significance

to these levels of deformation and reconstruction errors,

Fig. 4-right depicts different deformations of the reference

model corresponding to specific values of σn and pb. In a

second experiment we computed the robustness to outliers

by synthetically introducing random nodes –which turned

to outlier tree branches– within the range po ∈ [0− 100]%,

and setting σn = 0.3 voxels and pb = 25%.

For each set of experimental parameters, we performed

10 trials and compared our approach to the Affine Kalman,

and to the CPD both in its affine and non-linear versions.

For a fair comparison, since the CPD allows for control of

the amount of non-linearity by tuning some internal param-

eters, we tried several configurations and retained the solu-

tion yielding the best results. The graphs on Fig. 4 depict

the mean 3D reconstruction error, expressed in voxels, both

for increasing deformation levels, and increasing number

of outliers. Observe that our algorithm consistently out-

performs CPD in all experiments. This demonstrates the

advantage of using the geodesic distance compatibility be-

tween points, which is inherently used in our approach.

We also clearly outperform [21], mainly for large lev-

els of deformation. While our non-linear algorithm is able

to warp the graph while searching for matching nodes, the

affine search of [21] only yields reasonable results for low

levels of deformation. In addition, observe that the mag-

nitudes of error obtained by our approach are in fact very

good approximations.

Finally, we compared against [12], which is representa-

tive of the graph matching algorithms. Note that these kind

of approaches only tackle the problem of assigning the cor-

respondences, but are not specifically designed for recov-

ering the underlying transformation. We therefore focused

only on the retrieved matches. We observed that [12] is

only effective when all inlier correspondences show a simi-

lar pattern, but has more difficulties under non-linear defor-

mations, as shown in Fig. 5.
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Figure 4. Synthetic experiments. Left: RMS error for 3D reconstruction for each experiment. The plot compares the median of the result

for each algorithm. Right: Synthetic samples generated using different configurations of the control parameters.

Figure 5. Search for correspondences. Graph matching methods are a common technique to find correspondences. Left: In the retinal

fundus images were the deformation is quasi-affine, both the graph matching algorithm [12] (top) and our method (down) were able to

recover the correct matching. Right: However, when the structures to register present a too large deformation, the graph matching method

(left) missed most of the correct assignments, while our method is still successful (right). Best viewed in color: the correct correspondences

are painted in green and the outlier ones in red.

4.2. Real Data

We next present some real examples of the results ob-

tained by our algorithm on several biomedical datasets. The

graphs were extracted semi-automatically using the Fiji 1

platform and its plugins.

In Fig. 6 we show registration results for retinal fundus

vascular graphs that are deformed from one image to the

next because the camera is looking from different points

of view. This results in apparent distortions of the curved

retinal surface’s projection, which are well modeled by an

affine transform. Because there is very little non-linearity

in the deformation, these results are similar to those of [5],

even though the trees only partially overlap. However, as

the amount of spurious branches is quite large, CPD fails to

recover the correct shape. In contrast, our Non-Linear GP

can naturally handle such artifacts.

In the 2D X-ray angiography images of Fig. 7 the de-

formations are much more non-linear. As shown on the

zoomed area, our algorithm nevertheless does a good job of

recovering this more complex deformation and aligning the

trees. Again, we assessed the performance of the CPD on

1http://pacific.mpi-cbg.de

Image (Fig.#) Image Size Error NLGP Error CPD

Angio. ( 7 a) 512x512 pix 1.1969 pix 3.1633 pix

Angio. ( 7 b) 512x512 pix 1.8080 pix 3.4183 pix

Ret. ( 6 a) 1548x1260 pix 2.6757 pix 20.6653 pix

Ret. ( 6 b) 1548x1260 pix 2.5109 pix 20.4496 pix

Neuronal ( 8) 4.4x5.7x6.0 µm 0.0702 µm 0.2628 µm

Table 1. Comparison of our Non-Linear GP (NLGP) and the Co-

herent Point Drift (CPD) for real data.

these images and observed that it could not retrieve a correct

solution unless a relatively accurate initialization was pro-

vided. And even when we supplied our affine estimate, CPD

only succeeded when dealing with small non-linearities, but

not otherwise, as shown in Fig. 7.

Finally, we register the 3D neuronal stacks extracted

from the brain tissue of Fig. 1 using two different modal-

ities. Even though the two images look extremely differ-

ent, our algorithm returns a valid deformation as shown in

Fig. 8. Neither CPD nor Affine Kalman were able to recover

the correct alignment.

In order to quantitatively compare the CPD accuracy

against ours in the absence of ground truth, we computed an

optimal assignment for each node in the deformed graphs
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Figure 6. Retinal fundus images used in [5]. (a,b) Two images of the same retina taken from different viewpoints, with the vascular trees

overlaid in red and blue. (c) The first tree is overlaid in red over the second image after non-linear transformation, which corresponds to

the output of the coarse alignment. (d) Final result of our non-rigid registration: the graph from the first image is overlaid in red over the

second image. (e,f) Our result is superposed with the Coherent Point Drift alignment. In this dataset, our algorithm behave well, but CPD

fails to recover the correct shape because of there are too many non-correponding branches. Best viewed in color.

(a) (b) (c) (d) (e) (f)

Figure 7.Angiography images from a beating heart. (a) Two different images with extracted vascular trees overlaid in red. (b) Two other

images taken later in the heart cycle with extracted vascular trees overlaid in blue. (c) The original red trees are shown after the non-linear

coarse alignment of the tree nodes. (d) The resulting warped trees are overlaid in red after non-linear registration. Note that the trees -in

particular in the first example- have distinctly different topologies, which affects our algorithm very little. (e) Comparison with the result

obtained using non-linear Coherent Point Drift, in yellow. (f) A zoom of a region of interest. Using the graph intrinsic geometry grants us

robustnees against vessel bendings and outliers, achieving a better registration of the two shapes. Best viewed in color.

– overlaid in red for our method and yellow for CPD on

Figs. 6 and 7 (d,e,f) – to its nearest neighbor in the corre-

sponding graph overlaid in blue. We report the results of

this approximate error in table 1.

5. Conclusion

We have shown that our algorithm can match graphs with

neither appearance information nor initial pose estimate,

while allowing for partial matches and non-linear deforma-

tions. This is made possible by using Gaussian Processes

to model the mapping from one graph to another and using

this mapping to progressively constrain the search area for

correspondences between graph nodes.

We have demonstrated our algorithm on graphs contain-

ing up to 100 nodes, for which the computation takes ap-

proximately 500 seconds in MATLAB on a 8 Core 1.6GHz

64-bit Processor. A C implementation would produce a sig-

nificant speedup. A further one will result from refining the

strategy we currently use to explore the set of possible cor-

respondences, which is what we are currently working on.
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Figure 8. Neuronal image stacks: multimodal registration. (a) Graph structure extracted from the EM image stack, in red. (b) The

segmented graph structure in green, overlaid over the LM image stack. (c) After the non-linear registration process, the EM segmented

neuron is deformed and aligned over the LM extracted neuron. (d) A zoom over the region where the EM stack has been extracted. The

two neurons have been completely aligned. (e) The EM neuron, embedded in the LM image stack. Best viewed in color.
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