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Abstract

We address the problem of estimating the uncertainty of optical flow algorithm results. Our method estimates the error magnitude
at all points in the image. It can be used as a confidence measure. It is based on bootstrap resampling, which is a computational
statistical inference technique based on repeating the optical flow calculation several times for different randomly chosen subsets
of pixel contributions. As few as ten repetitions are enough to obtain useful estimates of geometrical and angular errors. For
demonstration, we use the combined local-global optical flow method (CLG) which generalizes both Lucas-Kanade and Horn-
Schunck type methods. However, the bootstrap method is very general and can be applied to almost any optical flow algorithm that
can be formulated as a pixel-based minimization problem. We show experimentally on synthetic as well as real video sequences
with known ground truth that the bootstrap method performs better than all other confidence measures tested.
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1. Introduction

Recovering optical flow (OF) from an image sequence is
one of the fundamental algorithms in computer vision [8, 15,
16], a crucial step in motion analysis which is important in
a variety of application domains including scene interpretation,
video compression and medical imaging. The problem is dif-
ficult, ill-posed, and inherently ambiguous because of appear-
ance and illumination changes, imaging system imperfections,
noise, lack of texture, and the aperture effect. Consequently,
optical flow can only be recovered approximately and the error
is spatially varying. However, standard OF algorithms do not
provide any estimate of this error.

The aim of this work is to provide an algorithm estimating
the uncertainty of the calculated OF. It does not require any
a priori knowledge or any other input besides the images being
registered. The method is applicable to sequences, although for
simplicity we consider here only the two-image case.

Let us emphasize that we are not providing a better OF al-
gorithm in the sense of providing a better flow estimate. In-
stead, we present a technique for estimating the flow accuracy
for a given OF algorithm. Our accuracy estimation method is
very general and can be applied to almost any OF algorithm that
can be formulated as a minimization problem. The method is
novel, based on statistical bootstrap resampling.

We have evaluated our method in the context of confidence
measures [2, 4] as this is where most of the prior art is. We show
that our method provides the best estimation of the OF accuracy
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from among a number of other accuracy estimation methods
and confidence measures that we have tested (Section 5).

1.1. Problem definition

Given two images g(x,y, t) with t ∈ {0,1}, an OF algorithm
calculates a flow field [u v](x,y), such that

g
(
x+u(x,y),y+ v(x,y), t +1

)
≈ g(x,y, t) (1)

with t = 0. At each pixel location i with given ground truth
flow, we evaluate two error measures. First, the geometric error
(also known as the warping index [39] or endpoint error [3])

εi =
∥∥[ui vi]− [u∗i v∗i ]

∥∥=√(ui−u∗i )2 +(vi− v∗i )2, (2)

where [ui vi] is the estimated flow and [u∗i v∗i ] the true motion
field. Second, we calculate the angular error [3, 4]

φi = angle
(
[ui vi], [u∗i v∗i ]

)
(3)

with angle
(
[u1 v1], [u2 v2]

)
=

180
π

arccos
u1u2 + v1v2 +1√(

u2
1 + v2

1 +1
)(

u2
2 + v2

2 +1
) [deg].

Our aim is to estimate εi and φi for all pixels i, solely from
the knowledge of the input g and the OF algorithm. A less
ambitious objective is to find an uncertainty measure ψi such
that the relative ordering of ψi is as similar as possible to the
ordering of εi or φi. Equivalently, −ψi is a confidence measure
as normally defined in the literature; higher value corresponds
to high confidence and low expected error.
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1.2. Proposed method

Our uncertainty measure is based on bootstrap resam-
pling [12]. The basic idea is as follows: If we had multiple
realizations of the given OF estimation problem, such as mul-
tiple recordings of the same sequence, we could solve all in-
stances and compare the solutions to estimate the variability of
the results. As we are only given one instance of the input data,
we will use bootstrap resampling to create a number of simi-
lar but slightly perturbed OF estimation problems and proceed
as before (see Section 3 for details). Our bootstrap resampling
works at a pixel level, the generated problems use different ran-
domly chosen subsets of pixel contributions that are assumed to
have the same statistics as the complete set. The interesting and
novel aspect is that instead of sampling from a set of values and
evaluating a function of these values as in standard bootstrap,
we sample from a set of functions and evaluate a functional of
these functions. This is a new paradigm which has not yet been
theoretically analyzed and it might even be too complicated for
a complete analysis ever to be performed, so we can only show
its usefulness experimentally.

We have chosen to demonstrate our technique on a com-
bined local-global OF method (CLG) [8] which generalizes
both Lucas-Kanade and Horn-Schunck type methods, the
archetypes of OF estimation. Following the very same proce-
dure, our estimation can be applied to any OF algorithm based
on minimizing a variational image similarity criterion which
is spatially decomposable, e.g. to pixel contributions. Most
OF estimation approaches can be cast into this framework.
For example, the two OF algorithms with the best results on
the Middlebury database2 [3] both minimize a criterion of this
type [41, 44]. On the other hand, our method would need to be
modified for the third best algorithm [28] which represents the
image as a tree of over-segmented regions.

This article extends our earlier work using bootstrap for
image registration accuracy estimation in the relatively simple
case of block matching [25], i.e. with only two degrees of free-
dom and no regularization. In the OF case described here, the
problem is much harder because the number of degrees of free-
dom is many orders of magnitude higher (there is one motion
vector calculated for each pixel), the unknowns are strongly
correlated, and regularization is essential, while we cannot af-
ford more than 10∼ 100 bootstrap iterations.

1.3. Related work

There have been many attempts to derive useful confidence
measures for OF methods, the main application being to iden-
tify unreliable flow vectors for error statistics reporting [4] and
weighting or pruning for subsequent processing steps [21, 22].

One class of the confidence measures is based on local anal-
ysis of the input images. The simplest one is the image gradi-
ent [4], justified by the assumptions that we expect a higher
accuracy in textured than in flat regions. Haussecker et al. [14]

2As of April 2010, using average endpoint error and not taking into account
unpublished work.

and Bigün [5] use the structure tensor [13] and propose sev-
eral confidence measures derived from its eigenvalues. Uras
et al. [40] propose to use the condition number of the spatial
Hessian H of the image; a related measure which seems to be
slightly more reliable is its determinant det(H) [4]. Anandan et
al. [1] evaluate the dependence of the sum of square differences
(SSD) criterion on the displacement and define a confidence cri-
terion as a function of principal curvatures of the SSD surface
and the SSD value at minimum. In a unifying way, the ‘surface
measures’ of Kondermann et al. [20] use principal curvatures to
analyze the intrinsic dimensions [43] of image invariance func-
tions based on brightness, SSD, gradient, and Hessian.

The second type of confidence measures looks at intermedi-
ate results or parameters of a particular OF estimation method.
For Lucas-Kanade type local methods [30], we can analyze
the conditioning of the system that we need to solve for each
pixel. We can use the trace [37], the determinant [4], minimum
eigenvalue [34], sum of eigenvalues, or the minimum eigen-
value weighted by the residual [17]. Sensitivity analysis can
give us an esimate of the flow error from the residuals [10], this
is similar to the FRAE method described in Section 4.1. Bruhn
et al. [6] use the local contribution to the total energy being min-
imized to identify locations where model assumptions are not
valid and assignes low confidence to them. Singh’s method [38]
calculates the local displacement as a mean of a probability dis-
tribution derived from the SSD criterion and uses an eigenvalue
of its covariance matrix as a confidence measure.

The final group of confidence measures is based on the
statistics of the calculated flow and their comparison with
a learned model, assigning low confidence to deviations from
the model. The linear subspace of the ‘correct’ flow can be
learnt by PCA [21]. Alternatively, the dependence of the flow
vectors in a patch on the central vector can be modeled as a mul-
tidimensional Gaussian [22].

The advantage of the first and third groups of confidence
measure is that they are completely independent of the OF esti-
mation algorithm. Besides an informal evaluation by Barron et
al. [4] and a brief one by Bainbridge et al. [2], comparison of
confidence measure results can be found for example in Koder-
mann et al. [22]. Several of the mentioned confidence measures
are defined in Section 4.

Bootstrap resampling was used in image processing for ex-
ample to evaluate the performance of detection algorithms [9,
18] and it was also used to assess the accuracy of a rigid mo-
tion estimation landmark-based algorithm [31, 32]. However,
as far as we know, bootstrap resampling has never been used in
the context of OF estimation and its only other application to
area-based image registration is our own work [25] discussed
above.

The basic idea of our bootstrap resampling is to run the
same algorithm many times on different variants of the input
data to analyze the variability. This is different from approaches
such as the FusionFlow [29] which apply different algorithms to
the same input images and combine the results to obtain a better
estimate of the flow.
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2. Combined local-global method revisited

We briefly present here the combined local-global optical
flow method (CLG) by Bruhn et al. [8] which we use to demon-
strate our bootstrap estimation technique. This method gener-
alizes both local (Lucas-Kanade) and global (Horn-Schunck)
methods. Note that for simplicity we are using neither the non-
linear, nor the spatiotemporal extension of the CLG method. In
order to apply the bootstrap estimation, the CLG method needs
to be reformulated using minimization completely in the dis-
crete domain, while the original description [8] is based on dis-
cretized Euler-Langrange equations for a criterion formulated
in the continuous domain. However, we show that the two for-
mulations are equivalent.

The continuous criterion to minimize ([8], Eq. 7) is

ECLG(w) =
∫

Ωc
wT Jρ(∇3 f )w+α‖∇w‖2 dxdy (4)

with w = [u v 1]T ,

‖∇w‖2 = ‖∇u‖2 +‖∇v‖2,

∇3 f = ( fx, fy, ft)T ,

Jρ(∇3 f ) = Kρ ∗
(
∇3 f ∇3 f T ),

f = Kσ ∗g,

where g(x,y, t) is the raw input sequence which is smoothed
with a spatial Gaussian filter Kσ with standard deviation σ ,
f (x,y, t) is the smoothed input image sequence, fx, fy, and ft
denote partial derivatives, Ωc is the continuous image domain,
u, v are the x and y components of the motion field to be found,
and Kρ is another Gaussian filter with standard deviation ρ . Us-
ing P0 (piecewise-constant) interpolation and replacing ∇w by
finite differences, Eq. (4) can be discretized as

ECLG ≈ E = ∑
i∈Ω

Ei (5)

with Ei = eD(i)+αeS(i)

and eD(i) = h2[ui vi 1]Ji [ui vi 1]T ,

eS(i) = ∑
j∈N(i)

(u j−ui)
2 +(v j− vi)

2,

where Ω is the discrete set of image pixels, h is the pixel
spacing, i denotes a pixel with coordinates (xi,yi), and N(i) is
a set of the four neighbors of i. A discretized version of u is
ui = u(xi,yi) and similarly for v→ vi and Jρ → Ji. The spatial
partial derivatives needed to calculate Jρ are evaluated using
a seven-point kernel3; temporal derivatives are calculated us-
ing first order finite differences, ft(x,y) = f (x,y,1)− f (x,y,0),
as we register only one pair of images. The discretization is
consistent, ECLG = limh→0 E.

We find the minimum of the discretized energy

(û, v̂) = argmin
u,v

E (6)

3The kernel is [1 9 45 0 45 9 1]/60, as used by Bruhn et al. [8].

with respect to all ui and vi by setting the partial derivatives
∂E/∂ui, ∂E/∂vi to zero. This leads to the following linear
system of equations

0 =
1
h2 ∑

j∈N(i)
(u j−ui)−

1
α

(
J11

i ui + J12
i vi + J13

i
)
, (7)

0 =
1
h2 ∑

j∈N(i)
(v j− vi)−

1
α

(
J12

i ui + J22
i vi + J23

i
)

(8)

for all i ∈Ω and where the upper indices denote elements in J,
e.g. J12

i =
(
Kρ ∗ fx fy

)
(xi,yi). Note that we have multiplied the

equations by h−2 in order to get an identical set of equations
as (32–33) in [8]. The equations can be efficiently solved by
successive over-relaxation (SOR, see Section 3.3)

3. Bootstrap resampling

Bootstrap resampling [11, 12, 18, 45–47] is a computation-
ally based statistical inference technique. The idea is to cre-
ate B derived datasets by sampling with replacement from the
original dataset, apply the algorithm under test to each derived
dataset and analyze the B results using the desired statistics.

More formally, in bootstrap resampling we take N i.i.d.
samples X = {x1, . . . ,xN} of a random variable X . Let
θ = ϕ(X) be some function of interest, e.g. the sample mean
of X which approximates the true mean of the random variable
X . The task is to find some statistics of θ , denoted Φ(θ), e.g.
its variance. The bootstrap approach is to create B multisets4

X(b), b = 1 . . .B, each containing N elements from X chosen
randomly with replacement. We calculate θ (b) = ϕ(X(b)) for
all b and estimate Φ(θ) from the set {θ (b)}. We refer the reader
to a specialized literature for technical conditions of bootstrap
convergence [12, 23]. We remark here only that as long as ϕ(X)
is a “reasonable” estimator of some statistics of X which de-
pends continuously on the probability density of X , the boot-
strap can be expected to work. However, it turns out that so far
only relatively simple cases have been analysed theoretically,
such as bootstrap estimators of the mean, variance, and confi-
dence intervals. Our case is much more involved as for us the
samples xi are functions (see next section) and our operation of
interest ϕ is a functional. As far as we know, this case has not
yet been studied.

3.1. Application to optical flow
In our earlier work [25, 27] we have shown that bootstrap

resampling can be applied to estimate the image registration
accuracy in the case of block matching. Here we show how to
extend it to the OF case. The main idea is to use the individual
pixel contributions eD(i) of the data part of the criterion E given
by Eq. (5) as the data set X =

{
eD(i); i ∈ Ω

}
. The function ϕ

is defined by the minimization X→ (û, v̂) described by Eq. (6)
and Φ is the desired uncertainty measure, such as the geomet-
rical error ε defined in Eq. (2). In practical terms, we create B

4A multiset is a generalization of a set, which can contain each element
several times.
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Algorithm 1: Bootstrap resampling for single level opti-
cal flow uncertainty estimation

Input: Images g(x,y, t), t = {0,1}
Output: Flow field [û v̂],
confidence measures ψbootg(i), ψboota(i).
Calculate flow [û v̂] using the CLG algorithm, Eqs. (5–8)1

for b = 1 to B do2

βi← 0 for all i ∈Ω3

for j = 1 to |Ω| do4

βk← βk +1, choose k randomly from Ω5

Calculate flow [u(b) v(b)] using CLG with β ,77

Eqs. (9–11)
Calculate ψbootg(i), ψboota(i) using Eqs. (15,17).8

bootstrap energy functions E(b) and for each of them find the
flow estimate (û, v̂)(b) as a solution of Eqs. (6–8).

For each X(b), the corresponding energy function is

E(b) = ∑
i∈Ω

βieD(i)+αeS(i), (9)

where βi ∈Z+
0 is a multiplicity function5, representing the num-

ber of times a pixel i appears in the multiset X(b). Multiplicity
functions are generated randomly (see Algorithm 1). The boot-
strap energy functions are obtained by replacing contributions
from some pixels by others. Note that the bootstrap process is
applied only to the data part of the criterion eD, not the smooth-
ing part eS, because only the data (image) part is stochastic and
causes the variability; the smoothing part eS is identical for all
bootstrap realizations.

The modified bootstrap energy (Eq. 9) is minimized by
solving the following system of linear equations, which is
a simple modification of Eqs. (7–8):

0 =
1
h2 ∑

j∈N(i)
(u j−ui)−

βi

α

(
J11

i ui + J12
i vi + J13

i
)
, (10)

0 =
1
h2 ∑

j∈N(i)
(v j− vi)−

βi

α

(
J12

i ui + J22
i vi + J23

i
)
. (11)

3.2. Error estimation calculation
The system given by Eqs. (10,11) is solved B times for

randomly generated multisets X(b) (represented by multiplic-
ity functions βi), yielding B solutions6

[
u(b) v(b)

]
. We calculate

the directional variances at all positions:

σ
2
u (i) = varb{u

(b)
i }=

1
B

B

∑
b=1

(
u(b)i −u(∗)i

)2
, (12)

σ
2
v (i) = varb{v

(b)
i }=

1
B

B

∑
b=1

(
v(b)i − v(∗)i

)2
(13)

5a generalization of an indicator function
6For notational simplicity, we denote the partial bootstrap results as[

u(b) v(b)
]

instead of
[
û(b) v̂(b)

]
.

with the bootstrap estimates of the mean flow

u(∗)i =
1
B

B

∑
b=1

u(b)i and v(∗)i =
1
B

B

∑
b=1

v(b)i . (14)

The variances σ2
u , σ2

v can be calculated using a numerically sta-
ble single-pass algorithm [19, 42], so that the individual boot-
strap results

[
u(b) v(b)

]
do not have to be stored, making the

memory consumption independent of B. The total standard de-
viation at each pixel

ψbootg(i) =
√

σ2
u (i)+σ2

v (i) (15)

is a scalar quantity which estimates the geometrical error ε (2)
and can be used as an uncertainty measure. This method is
denoted bootg and it corresponds to a mean squared error. It is
also possible to calculate the mean geometric error

ψbootgM(i) =
1
B

B

∑
b=1

√
(ui−u(∗)i )2 +(vi− v(∗)i )2 (16)

but we found that the results are very similar to bootg and
a single-pass algorithm cannot be used, increasing memory
consumption. We will therefore use only bootg in the exper-
iments.

Bootstrap can also estimate the angular error φ (Eq. 3):

ψboota(i) =
1
B

B

∑
b=1

angle
(
[u(b)i v(b)i ], [ûi v̂i]

)
. (17)

Note that we have replaced the bootstrap mean [u(∗) v(∗)] by
the results

[
û v̂
]

of a normal run of the OF algorithm without
any resampling, again in order to avoid the need to store all B
calculated flow fields.

3.3. Implementation

The system given by Eqs. (10,11) is solved by the succes-
sive overrelaxation (SOR) method [8, 36] with a relaxation pa-
rameter ω = 1.95. Iteration is stopped after a fixed number of
iterations (typically 100 ∼ 1000), when the `2 norm of the dif-
ference between [u v] in two subsequent iterations is smaller
than a given threshold (10−3), or when the `2 norm of the resid-
ual in Eqs. (10,11) is smaller than another threshold (10−2).

The CLG optical flow method is applied in a multiresolution
fashion, as described in Bruhn et al. [8]. A multiresolution pyra-
mid consisting of images with progressively decreasing size is
created recursively from the input images by smoothing and
downsampling, as long as the images are bigger than a prede-
fined minimum size (32× 32 pixels). The CLG algorithm is
first applied on the coarsest level and the resulting motion field
is used to warp the images at the next finer level. This is re-
peated recursively until the finest level is reached. The final
motion field is obtained as a sum of the partial motion fields at
all levels of the pyramid. The regularization part of the criterion
eS(i) is calculated always on the total motion field. The set of
equations (10,11) is modified as follows:
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Algorithm 2: Multiresolution optical flow estimation.
The reduce operation stands for reducing an image size
by half, reducing its resolution, expand is the inverse op-
eration.

Input: Images g(x,y, t), t = {0,1}, multiplicities βi,
parameters α,σ ,ρ .

Output: Flow field [u v]
return loop([u v],0,{βi},σ ,ρ)1

function loop(g,[u− v−],{βi},σ ,ρ)2

if images are small enough then3

Calculate flow [u v] from g using the CLG algorithm,4

Eqs. (18–21)
else5

gR← reduce g6

{βi}R← reduce {βi}7

[u− v−]R← reduce [u− v−]/28

[u′ v′]R← loop
(
gR, [u− v−]R,{βi}R,σ/2,ρ/2

)
9

[u′ v′]← 2expand[u′ v′]R10

gW ← warp g(x,y,0) with [u′ v′]11

[u− v−]← [u− v−]+ [u′ v′]12

Calculate flow [u v] from gW and [u− v−] by solving13

Eqs. (18–21)
return [u v]14

0 =
1
h2

(
si + ∑

j∈N(i)
(u j−ui)

)
− βi

α

(
J11

i ui + J12
i vi + J13

i
)
, (18)

0 =
1
h2

(
ti + ∑

j∈N(i)
(v j− vi)

)
− βi

α

(
J12

i ui + J22
i vi + J23

i
)
, (19)

si = ∑
j∈N(i)

(u−j −u−i ), (20)

ti = ∑
j∈N(i)

(v−j − v−i ), (21)

where [u− v−] is the total accumulated flow from previous res-
olution levels and [u v] is the motion field increment being cal-
culated at the current level.

Bootstrap estimation is incorporated into the multiresolu-
tion framework. The coefficients βi are generated once at the
finest level and subsequently reduced along with the images.
Algorithm 2 summarizes the multiresolution procedure for find-
ing the motion field. It is called from Algorithm 1, line 7, to
obtain multiresolution bootstrap estimates.

All experiments were run with a very low number of boot-
strap repetitions, B = 10. This is enough to approximately cal-
culate a variance-type statistics [12, 25]. While a higher B im-
proves the results slightly, the improvement does not outweigh
the increased computation time [25].

4. Alternative uncertainty and confidence measures

Several alternative uncertainty measures were implemented
and used in the experiments for comparison with the bootstrap

method. Some of the measures could be simplified by an equiv-
alent monotonous transformation; however, we have preferred
to keep the original form as found in the literature, except for
changing the sign to convert a confidence measure into an un-
certainty measure, so that a low value of an ucertainty measure
ψ corresponds to high confidence and vice versa.

4.1. Fast registration accuracy estimation (FRAE)
Fast registration accuracy estimation (FRAE) [24, 25] is

a simple and fast method based on well known quadratic sen-
sitivity analysis ideas, which we have modified for the CLG
method (see Section 2 for notation). First we estimate the vari-
ance of the criterion contributions Ei (Eq. 5) for each pixel.
Since only one pair of images is given, we use the spatially
smoothed version of Ei as an approximation of its mean:

σ
2
E(i) = Var{Ei} ≈ K′ρ ∗

(
Ei−Ei ∗K′ρ

)2
,

where K′ρ is a discretized and normalized version of an isotropic
Gaussian spatial filter with standard deviation ρ . Second, we
calculate the diagonal elements of the Hessian of E with respect
to ui, vi:

Hu
ii =

∂ 2E
∂u2

i
= 2h2J11

i +2(|Ni|+1)α,

Hv
ii =

∂ 2E
∂v2

i
= 2h2J22

i +2(|Ni|+1)α,

where |Ni| is the number of neighbors of each pixel (normally
|Ni| = 4). For computational tractability, we assume that off-
diagonal elements can be neglected. The FRAE estimate of the
variances of u and v are then

σ
2
u (i) = λσE(i)/Hu

ii ,

σ
2
v (i) = λσE(i)/Hv

ii,

where λ is a constant depending weakly on the approximations
in the chosen FRAE variant and its parameters, such as a confi-
dence level [24, 25]. We have used λ = 2. It has no effect on
the experimental evaluation since only relative values are used.
Using σ2

u (i), σ2
v (i) given above, the uncertainty measure is

ψfraeg =
√

σ2
u (i)+σ2

v (i), (22)

estimating the mean squared error similarly to bootg (Eq. 15)

ψfraeg ≈
√

Var[ui]+Var[vi].

FRAE can also be used to estimate the uncertainty with re-
spect to the angular error measure φ (Eq. 3) using a well-known
formula Var[ f (x)] ≈ f ′

(
E[x]

)2 Var[x]. Expanding with respect
to both u and v yields

ψfraea(i) =
180
π

√
u2

i σ2
u (i)+ v2

i σ2
v (i)

σ2
u (i)+σ2

v (i)
(23)

as an estimate of

ψfraea(i)≈
√

Var[φi].
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4.2. Compliance with a learned motion model (PcaPVal)
The measure PcaPVal was proposed by Kondermann et al.

[22]. It is generally applicable, which means that it can be used
to estimate the reliability of flow vectors computed by an arbi-
trary OF method. The basic idea is to estimate a local model of
the OF field based on training data. The derived model consists
of the first and second order moments of the flow field patch
distribution conditioned on the central vector. To obtain a con-
fidence value for each flow vector a hypothesis test is carried
out based on a suitable test statistic dM([ui vi]). We convert dM
into a corresponding p-value, obtaining the following uncer-
tainty measure:

ψPcaPVal =− inf
{

α;dM(~vi)> G−1(1−α)}, (24)

where G−1 : [0,1]→ R+ is the inverse of the empirical cumu-
lative distribution function computed from the training data.

4.3. Smallest eigenvalue of the structure tensor (StrEv3)
Let λ1≥ λ2≥ λ3 stand for the three eigenvalues of the struc-

ture tensor [13] of g(x,y, t) at a particular pixel. The measure
StrEv3 [14] is based on the following concept: The smaller the
λ3, the more likely g(x,y, t) is locally flat in some direction.
This is the case if the speed is zero, in case of an aperture prob-
lem or within homogeneous regions. The uncertainty measure
is

ψStrEv3 =
1

(1+λ3)2 . (25)

4.4. Structure tensor total coherence (StrCt)
StrCt stands for the total coherence measure of the struc-

ture tensor. It is based on the same idea as StrEv3 [14]. The
uncertainty function is defined as

ψStrCt =−
(

λ1−λ3

λ1 +λ3

)2

. (26)

The advantage of this measure compared to the StrEv3 is that
it takes into account the anisotropy of the structure tensor. The
measure is equal to -1 if λ1 � λ3 and it is equal to 0 if λ1 ≈
λ2 ≈ λ3 and no movement can be computed in case of noise or
homogeneous regions.

4.5. Structure tensor spatial coherence (StrCs)
StrCs stands for the spatial coherence measure of the struc-

ture tensor [14]. If we have an aperture problem and assuming
that the brightness constancy equation holds, then there are two
locally flat directions: the temporal direction and the direction
along the object that causes the aperture problem. Therefore,
the two smallest eigenvalues λ2 ≥ λ3 of the structure tensor are
nearly zero. This property can be measured by the spatial co-
herency measure StrCs:

ψStrCs =

(
λ1−λ2

λ1 +λ2

)2

. (27)

StrCs is high in case of an apperture problem and small other-
wise.

4.6. Structure tensor corner measure (StrCc)

StrCc stands for the corner measure of the structure ten-
sor [14]. It is defined as the difference between the total co-
herence measure (StrCt) and the spatial coherence measure
(StrCs).

ψStrCc =−
(

λ1−λ3

λ1 +λ3

)2

+

(
λ1−λ2

λ1 +λ2

)2

. (28)

In this way, StrCc returns low values in locations where StrCt
and StrCs are both small.

4.7. Gradient measure (Grad)

The idea behind the gradient measurement [4] is that the
displacement field can be computed the more reliably the more
texture is contained in the image. We use central differences7

to compute the image gradient ∇2g =
[
gx gy

]
.

ψgrad =
1

(1+‖∇2g‖)2 . (29)

4.8. Cost function based confidence measure (BWS)

Bruhn et al. [6, 8] propose to use directly the pixel contribu-
tions Ei from Eq. (5) at convergence as uncertainty measures.
This combines information from both image and the motion
field. The reasoning is that when the energy after registration
is high, either the difference between the registered images is
high or the deformation does not correspond to the smoothness
assumptions of the regularization term. In these cases the cor-
respondence is likely to be wrong. This method will be denoted
BWS:

ψBWS(i) = Ei. (30)

4.9. Ideal uncertainty measures

For comparison, we evaluate our criteria also using the true
geometrical and angular errors as uncertainty measures:

ψidealg(i) = εi, (31)
ψideala(i) = φi. (32)

This represents the best achievable results for ε and φ , respec-
tively.

5. Experiments

We have used 58 standard and freely available OF test se-
quences [3, 33]. Due to space limitations only a part of the
experimental results can be shown here, see our technical rap-
port [26] for a more complete version. We want to empha-
size that the purpose of our experiments is to compare the
confidence measures between themselves rather than to test
the motion estimation algorithm per se. For this reason, we

7The kernel is [−0.5 0 0.5], for compatibility with Barron et al. [4].
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have not performed any extensive parameter tuning, for all se-
quences we have used the parameters α = 100∼ 200, σ = 1.77,
ρ = 2∼ 4.55.

We are aware that state-of-the art algorithms can be tuned
to produce a truly negligible error on standard synthetic se-
quences, e.g. 1.02◦ error on the Yosemite sequence for the non-
linear 3D multiresolution variant of the CLG method [8]. How-
ever, this is not very useful for confidence measure testing,
since in this case the error is small everywhere and the confi-
dence measure is not needed. For more challenging sequences,
reliable ground truth is usually not available.

Figure 1 shows example results of the linear 2D CLG
method for the first two frames of the Office sequence [33]. The
mean geometrical error is ε̄ = 0.1pixels, mean angular error
φ̄ = 5.5◦; errors occur because of aliasing (computer screen),
shadows (on the table), occlusions (top of the chair) and in tex-
tureless regions with motion discontinuities (window). Note
that the bootstrap method identifies the suspect regions very
well, whereas the BWS (energy) method fails. The mean errors
are evaluated over the whole image:

ε̄ = meani εi =
1
|Ω| ∑i∈Ω

εi, (33)

φ̄ = meani φi =
1
|Ω| ∑i∈Ω

φi. (34)

5.1. Sparsification tests

A common approach for confidence measure evaluation is
based on sparsification [8, 22], where pixelwise errors are or-
dered according to the confidence measure being tested and the
mean error is calculated only using a given percentile of the
best values. The idea is that we evaluate how successful a con-
fidence measure is in identifying pixels with large motion es-
timation error. More formally, for the geometrical error ε we
define a function ε̂(ξ ) with 0≤ ξ ≤ 1 as the mean geometrical
error of the best ξ |Ω| pixels according to a given confidence
measure and similarly for the angular error φ . If a mask is pro-
vided, masked pixels are ignored. The values ε̂(ξ ) and φ̂(ξ )
are averaged over all frames in a sequence. Lower values for
the same ξ mean a better confidence measure.

Figures 2–5 show results of the sparsification tests based
on CLG flow fields for several synthetic and real test se-
quences [3, 33]. The middle and right columns show the results
for the geometrical error ε̂(ξ ) and the angular error φ̂(ξ ), re-
spectively. We see that the bootstrap methods, boota and bootg,
are almost always the best methods, leading to the lowest er-
ror at any relative number of retained pixel ξ , surpassed only
by the ideal confidence measures ideala and idealg (in green).
The PcaPVal method (dark green) is very good for sequences
with motion field corresponding to the learnt model (such as
the Street sequence) but fails for less common motion patterns
(such as the Sphere sequence). Note also that sparsification us-
ing some methods can actually make the average error increase.

It is not possible to report the complete sparsification results
here for all sequences, because of space limitations. Instead,
we have ranked all confidence measures ψ for both angular

Table 1: Mean ranks with standard deviations for each confidence measure
over all sequences and all fractions ξ of retained pixels, for the geometrical and
angular errors. The rank within each column is given in parentheses.

mean rank
Method geometrical error angular error
ideala 3.134±1.23 (2) 1.545±1.72 (1)
idealg 1.545±1.72 (1) 2.553±1.42 (2)
boota 5.245±0.56 (4) 4.306±0.86 (3)
bootg 3.356±1.16 (3) 4.763±0.74 (4)
fraea 8.163±0.65 (8) 8.008±0.36 (7)
fraeg 8.120±0.44 (7) 7.915±0.31 (6)
bws 8.758±0.67 (10) 9.172±0.74 (9)
grad 7.841±0.58 (6) 9.295±0.83 (10)
pcaPVal 6.497±0.37 (5) 5.720±0.74 (5)
strCc 8.692±0.65 (9) 8.120±0.43 (8)
strCs 9.465±0.81 (11) 10.399±1.08 (13)
strCt 9.654±0.87 (12) 9.614±0.84 (12)
strEv3 10.530±1.13 (13) 9.591±0.88 (11)

and geometrical errors, for each sequence, and for 10 values
of the fraction ξ of retained pixels ξ ∈ {0.1,0.2, . . .1.0}. We
are reporting the mean values over all sequences and over all
ξ in Table 1. We have observed (see our technical report [26]
that contains a more detailed breakdown of the results) that the
bootstrap method bootg had the smallest geometric error ε̂(ξ )
and the bootstrap method boota had the smallest angular error
φ̂(ξ ), not counting the “ideal” confidence measures. The best
non-bootstrap method in both cases was pcaPVal.

5.2. Average correctness

Another way of evaluating the performance of confidence
measures is to calculate the average correctness, which is de-
fined as the relative number of cases in which the comparison
ψi < ψ j between uncertainty measures for two pixels i, j gives
the same results as a comparison between the true errors εi < ε j
or φi < φ j, respectively. We use 106 randomly chosen pixel
pairs.

The results in Table 2 show that on the average, bootg and
boota are the most correct method (not counting the “ideal”
methods) for the geometrical and angular errors, respectively.
In both cases, pcaPVal is the next best method. See our techni-
cal report [26] for more details.

5.3. Reliable pixel selection

The uncertainty information can be used to improve the fi-
nal quality of the optical flow estimation by masking locations
where the movement estimate is unreliable. Unreliable loca-
tions (outliers) are found by thresholding the confidence mea-
sure, where a suitable threshold can be determined statistically.
Then an improved optical flow can be found by motion inpaint-
ing [20], or, as we have done here, by rerunning the optical flow
computation given by Eqs. (9–11) with βi = 1 for pixels to be
kept and βi = 0 for pixels to be ignored.
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Figure 1: The Office sequence: (a) true x displacement, (b) true y displacement, (c) true displacement shown as a vector field, (d) calculated x displacement,
(e) calculated y displacement, (f) calculated displacement shown as a vector field, (g) true geometrical error, (h) geometrical error estimated using bootstrap, (i)
geometrical error estimated using the BWS method. In the color images, blue corresponds to low value and red to high values. The first frame of the sequence can
be seen in the top left of Fig. 3.
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Figure 2: Sparsification tests for the geometrical error (middle row) and angular error (bottom row) for synthetic sequences Street and Sphere (from left to right) [33].
Each line in the graphs corresponds to one confidence measure and shows the mean erors ε(ξ ) and φ(ξ ) with respect to a fraction ξ of retained pixels. The first
row shows the first images of the sequences.
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Figure 3: Sparsification tests for the geometrical error (middle row) and angular error (bottom row) for synthetic sequences Office and Medium-complex-complex
(from left to right) [3, 33]. Each line in the graphs corresponds to one confidence measure and shows the mean erors ε(ξ ) and φ(ξ ) with respect to a fraction ξ of
retained pixels. The first row shows the first images of the sequences.
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Figure 4: Sparsification tests for the geometrical error (middle row) and angular error (bottom row) for real sequences Blocks and Vcbox (from left to right) [33].
Each line in the graphs corresponds to one confidence measure and shows the mean erors ε(ξ ) and φ(ξ ) with respect to a fraction ξ of retained pixels. The first
row shows the first images of the sequences.
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Figure 5: Sparsification tests for the geometrical error (middle row) and angular error (bottom row) for real sequences Rubber Whale and Dimetrodon (from left to
right) [3]. Each line in the graphs corresponds to one confidence measure and shows the mean erors ε(ξ ) and φ(ξ ) with respect to a fraction ξ of retained pixels.
The first row shows the first images of the sequences.
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Table 2: Average correctness for the geometrical and angular errors averaged over all sequences for all confidence measures. We have also ranked the confidence
measures for each sequence and we report the average ranks. The numbers in parentheses are the ranks within each column.

geometrical error angular error
Method correctness rank correctness rank
ideala 0.810 (2) 2.167 (2) 1.000 (1) 1.000 (1)
idealg 1.000 (1) 1.000 (1) 0.810 (2) 2.000 (2)
boota 0.648 (4) 4.694 (4) 0.645 (3) 3.806 (3)
bootg 0.703 (3) 3.111 (3) 0.619 (4) 4.444 (4)
fraea 0.523 (7) 8.306 (7) 0.509 (8) 8.528 (8)
fraeg 0.523 (8) 8.639 (8) 0.509 (9) 8.583 (9)
bws 0.505 (10) 9.500 (11) 0.492 (11) 9.889 (11)
grad 0.546 (6) 7.556 (6) 0.525 (7) 8.444 (7)
pcaPVal 0.579 (5) 6.222 (5) 0.572 (5) 5.417 (5)
strCc 0.508 (9) 9.444 (9) 0.531 (6) 7.667 (6)
strCs 0.500 (11) 9.500 (11) 0.483 (12) 10.778 (13)
strCt 0.491 (12) 9.500 (11) 0.494 (10) 9.778 (10)
strEv3 0.447 (13) 11.361 (13) 0.467 (13) 10.667 (12)

In Table 3 we show the relative improvement of the mean
geometrical error (2) thanks to masking unreliable pixels in four
sequences. To allow for a direct comparison between differ-
ent confidence measures, the percentage of retained pixels was
fixed to 95% and 90%. We can see that confidence measures
lead to an improvement of the geometric error and the improve-
ment is often substantial (e.g. the Yossemite or Office sequence).
The largest improvement is in all cases but one obtained by the
bootstrap bootg method.

5.4. Sequence registration

We address the task of robust finding of point trajectories
from a video sequence (Fig. 6), in our case a 2D ultrasound
sequence of a breast phantom for elastography [35]. It con-
tains 48 frames representing about 5 s; the tissue is periodically
compressed by a hand-held ultrasound probe. Recovering the
trajectory of all points is a first step in estimating the strain and
mechanical properties such as the Young modulus, which has
high diagnostic value for identifying hard lesions, which are
likely to be tumors.

The two standard approaches for image sequence registra-
tion are either (i) to register pairs of consecutive images and
then accumulate the movement, or (ii) to choose one of the
images as a reference and to register the remaining ones with
respect to the reference, using displacement from neighboring
frames for initialization. The first approach suffers from accu-
mulation of registration errors; in the second case the registra-
tion is difficult because of important geometrical and appear-
ance differences between the images being registered. These
approaches use either none or all of the intermediate frames be-
tween the two frames of interest. Instead, in a novel approach
we propose here, we select a suitable subset of intermediate
frames, thus generalizing the previous approaches. The selec-
tion will be guided by the bootstrap uncertainty estimation.

Given a sequence of N frames, we apply the previously de-
scribed optical flow algorithm with bootstrap uncertainty es-

Table 3: Mean geometrical error of OF estimation with 5% and 10% percent
of pixels masked out. The pixels to retain were determined according to five
different uncertainty measures (denoted ‘method’). The error is reported rel-
ative to the original OF estimation geometric error (with no pixels removed).
The number in parentheses are ranks within each column, for each sequence
separately.

sequence method Retained pixels (relative)
0.95 0.90

street bws 0.941 (3) 0.919 (1)
street grad 0.998 (5) 0.995 (5)
street pcaPVal 0.983 (4) 0.990 (4)
street fraeg 0.931 (2) 0.923 (3)
street bootg 0.913 (1) 0.920 (2)
office bws 0.777 (3) 0.738 (3)
office grad 0.999 (5) 0.989 (5)
office pcaPVal 0.930 (4) 0.897 (4)
office fraeg 0.745 (2) 0.708 (2)
office bootg 0.632 (1) 0.595 (1)
blocks bws 0.989 (2) 0.987 (3)
blocks grad 0.998 (5) 0.995 (5)
blocks pcaPVal 0.991 (3) 0.984 (2)
blocks fraeg 0.993 (4) 0.989 (4)
blocks bootg 0.988 (1) 0.978 (1)
yosemite bws 0.751 (2) 0.660 (2)
yosemite grad 0.992 (5) 0.986 (5)
yosemite pcaPVal 0.951 (4) 0.898 (4)
yosemite fraeg 0.757 (3) 0.680 (3)
yosemite bootg 0.706 (1) 0.638 (1)
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timation (Section 3.1) on each pair of frames (i, j) such that
|i− j| ∈ {1,2,4,8,16 . . .}. This increases the computational
complexity only by a factor log2 N. For each point that needs
to be tracked, we recursively build a graph starting with a cho-
sen reference frame, with nodes corresponding to intermedi-
ate frames and edge weights being the estimated variances
ψ2

bootg = σ2
u +σ2

v (Eq. 15) at that point. The final displacement
is calculated by accumulating the partial displacements along
the path with the smallest total variance.

The improvement brought by this technique is spectacular
(Fig. 6). The consecutive registration seriously underestimates
the movement for three points out of four. The reference-based
registration mostly underestimates less (except for point 1) but
is less robust, giving incorrect results on several frames. In con-
trast, the bootstrap based graph technique successfully tracks all
points with a good accuracy. Visual observation suggests that
the tracking is often even better than the manual one. Numeri-
cally, the mean geometrical error with respect to the consecutive
registration has been reduced 2 ∼ 8 times for each individual
point, the mean error over all points decreased from 45.9 pixels
to 10.4 pixels.

6. Conclusions and discussion

We have shown how to apply the bootstrap resampling
method to estimate pixelwise the geometrical and angular er-
ror for optical flow algorithms. The method is applicable to any
motion estimation technique that can be formulated in a vari-
ational setting, as a minimization of a criterion which can be
decomposed as a set of pixel contributions. The only input to
the method is the pair of images being registered and the regis-
tration algorithm itself.

No confidence measure we have tested is perfect. Even
the best ones are relatively far from the best achievable solu-
tion. This shows that estimating accuracy from the input im-
ages alone without additional information about the underlying
physical reality is a hard problem.

The major shortcoming of the bootstrap method is that it
can only estimate the variance part of the error, not the bias. So
if all bootstrap OF calculations fail in the same way, we will be
mislead to believing that the results are accurate. However, this
problem is not specific to bootstrap—if a model does not cor-
respond to the reality, all methods will fail. On the other hand,
bootstrap can predict well problems due to occlusions, motion
discontinuities, as well as texture-less regions. In the last case,
however, the image must either contain some sensor noise or we
must add noise corresponding to the measurement uncertainty
during the bootstrap process, otherwise in completely homoge-
neous regions the variance estimate would be zero. The boot-
strap estimates are relatively well correlated with the true errors
but the absolute values are not yet very reliable.

Another missing piece is the theoretical justification that the
bootstrap estimate will converge, under what assumptions, and
how fast. Alas, the idea of doing bootstrap on functions instead
of values is very new and we know of no theory covering it.
We have found experimentally on our data that the bootstrap

samples are only weakly correlated and locally identically dis-
tributed. This is reassuring as the standard bootstrap assumes
i.i.d. samples. The weak correlation and independence can be
explained by the fact that after convergence of the OF estima-
tions the residuals are only due to the measurement noise.

We have shown experimentally that for CLG flow fields the
bootstrap technique leads to a better confidence measure than
all other confidence measures tested. It is true that bootstrap
typically increases the computational complexity by a factor of
B = 10. However, we do not believe this to be a serious prob-
lem nowadays. Already in 2003, Bruhn et al. reported [7] that
multigrid techniques allow for real time calculation of the OF
by the CLG method on which we are based. Second, multicore
machines are becoming the norm and bootstrap is trivially par-
allelisable. As an illustration, the 2× 4 core machine we are
now using can perform 10 OF calculations in about the same
time that the computer we were using 2.5 years ago when this
technique was originally developed needed to calculate one OF.

We believe that bootstrap image registration and optical
flow accuracy estimation is an extremely general and revolu-
tionary technique which will find many uses in practice.
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Figure 6: First image from an ultrasound elastography sequence of a breast phantom (a) with four landmarks and a corresponding recovered vertical flow (b).
Graphs (c–f) show the vertical displacement of the four points recovered manually, by accumulating consecutive pairwise displacements, by direct registration of
each frame with the first frame and by combining displacements selected using the bootstrap method.
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