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Abstract

The existing view on loopy belief propagation sees it as an algorithm to find a common zero of a
system of non-linear functions, not explicitly related to each other. We show that these functions
are in fact related – they are the partial derivatives of a single function of reparameterizations.
Thus, belief propagation searches for a zero gradient of a single function. We show that belief
propagation fixed points are in one-to-one correspondence with zero gradient points of this
function and that every such point is a saddle.
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1 Introduction

Loopy belief propagation (further only belief propagation, BP) [7] is a well-known algorithm to
approximate marginals and the partition function of the Gibbs probability distribution defined on
an undirected graphical model (a Markov random field). For trees it yields the exact result, for
graphs with cycles it often yields a surprisingly good approximation. A large literature exists on
BP and related topics and we refer the reader to the recent survey by Wainwright and Jordan [12].

Unfortunately, BP on cyclic graphs is not guaranteed to converge, which is indeed often ob-
served. A lot of effort has been invested to understanding this phenomenon (see [12, §4.1.3] for
references). Solid ground was provided by the discovery by Yedidia et al. [18, 17] that BP fixed
points coincide with the stationary points of the Bethe variational problem, long known in statistical
physics. This problem minimizes a non-convex function (the Bethe free energy) of beliefs subject
to the constraint that they satisfy the normalization and marginalization conditions. Heskes [3]
showed that every stable BP fixed point is a local optimum (rather than a saddle point) of this
problem, but not vice versa. Unfortunately, this did not entirely explain the BP algorithm itself
because it does not directly solve the Bethe variational problem – although BP is an algorithm to
solve the non-linear equation system describing the fixed points of the Bethe variational problem,
it does not provide a feasible solution to this problem before it has converged.

The basic operation in the BP algorithm is ‘passing a message’, which means sending a vector
of numbers between a node and an edge of the graph [7]. Messages turned out to be directly related
to the Lagrange multipliers of the Bethe variational problem [18, 17]. Later it became clear [10]
that passing a message corresponds to reparameterizing the distribution. In this view, BP tries to
reparameterize the distribution so that the corresponding beliefs have consistent marginals.

Though this is generally known, no existing theoretical analysis of BP fully utilizes the inter-
pretation of messages and the Lagrange multipliers of the Bethe variational problem as reparame-
terizations. As a minor contribution, we incorporate reparameterizations into variational inference
and BP in a principled way, which makes the picture of BP clearer and more complete.

The current view on BP sees it as an algorithm to find a common zero of a set of functions,
not explicitly related to each other. Our contribution is the observation that these functions are
strongly related – they are the partial derivatives of a single function of reparameterizations. Thus,
BP searches for a zero gradient of a single function. We show that BP fixed points are in one-to-one
correspondence with zero gradient points of this function and that every such point is a saddle1.

We follow the terminology and notation used by Wainwright et al. [12]. The text is organized
as follows. In §2 we review the exponential families of probability distributions and the variational
approach to approximative inference in graphical models. In §3 we revisit variational inference
with a simple concave entropy approximation, derive the dual problem, the optimality conditions,
and a coordinate descent algorithm to solve the dual – the finite-temperature version of max-sum
diffusion [6, 15]. We include this section in order to contrast it in §4 with the non-concave Bethe
entropy approximation. In §4, we recall the Bethe variational problem, show its dual has no explicit
form, and prove the result [17] that its stationary points correspond to BP fixed points. In §5 we
present our contribution, a function of reparameterization the zero gradients of which corresponds
to BP fixed points, and give detailed properties of this function. We conclude in §6.

§2–§4 are rather detailed and therefore they have also a certain tutorial value.

1These saddles should not be confused with the saddle points in the convergent double-loop algorithms to minimize
the Bethe free energy by Heskes [3, 4].
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2 Exponential family of probability distributions

Let X and I be finite sets and φ: X → RI . The discrete natural exponential family is a family of
probability distributions p(· |θ): X → R++ parameterized by canonical parameters2 θ ∈ RI , where

p(x |θ) = exp[θφ(x)− F (θ)] (1)

Here, θ is a row vector and φ(x) a column vector, so that θφ(x) =
∑

i∈I θiφi(x). The component
functions φi: X → R of φ are the basis functions of the family. The normalization term

F (θ) =
⊕
x∈X

θφ(x) (2)

is the convex log-partition function and a⊕ b = log(ea + eb) denotes the log-sum-exp operation.
Though it is not common, we find it convenient to use a special symbol for the log-sum-exp

operation. Let us recall its key properties. It is the convex conjugate of entropy. It is associative
and commutative and addition distributes over ⊕. It relates to addition the same way as addition
relates to multiplication – more precisely, (⊕,+) is a commutative semiring over R, isomorphic via
the exp function to semiring (+,×) over R++.

2.1 Reparameterizations

If the functions φi are affinely independent they form a minimal representation of the family,
otherwise they form an overcomplete representation. In the latter case, all affine dependencies
among φi can be written as

Aφ(x) = 0, Bφ(x) = 1 ∀x ∈ X (3)

for some matrices A and B, where 0 and 1 are column vectors of zeros and ones. Matrix A captures
homogeneous and matrix B inhomogeneous dependencies. If α and β are arbitrary row vectors and

θ′ = θ + αA+ βB (4)

then θ′φ(x) = θφ(x) + β1 and F (θ′) = F (θ) + β1, hence transformation (4) preserves distribution
(1). Therefore, (4) is a reparameterization of the distribution. We will refer to the subclass of
reparameterizations with β = 0 as homogeneous reparameterizations.

2.2 Mean parameters

The exponential family naturally arises as follows: find a distribution p(x) with maximum entropy
and prescribed mean values µ ∈ RI (a column vector) of the functions φ, i.e.,

∑
x∈X p(x)φ(x) =

µ. Solving this linearly constrained concave maximization task reveals that p(x) must have the
form (1), where θ appeared as Lagrange multipliers. Since entropy is strictly concave, µ determines
p(x) uniquely. The numbers µ are called the mean parameters (or moments). Thus, any distribution
from the family is uniquely given either by the canonical parameters θ or by the mean parameters
µ. Given θ, the corresponding µ can be explicitly computed as µ = m(θ) where m: RI → RI is the
map

m(θ) =
∑
x∈X

p(x |θ)φ(x) =
∑

x∈X φ(x) exp θφ(x)∑
x∈X exp θφ(x)

(5)

There is no explicit formula for the inverse of the map m. If φ is a minimal representation then for
any µ there is a single θ satisfying µ = m(θ). For an overcomplete representation the ambiguity

2We will call θ a vector , although strictly formally θ ∈ RI means that θ is a mapping from I to R. For a vector,
we should correctly write θ ∈ R|I|. This slight inaccuracy will cause no harm.
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θ1
θ2

µ1
µ2

F (θ) H(µ)

m
conv φ(X)

Figure 1: The plot of F (θ), m(θ) and H(µ) for a simple exponential family with I = {1, 2} and
|X| = 256. The the numbers φi(x) were i.i.d. drawn from the normal distribution N [0, 1].

in solving the equation µ = m(θ) is given exactly by reparameterizations, in particular we have
m(θ + αA+ βB) = m(θ).

What is the range m(RI) of the map m, that is, the set of vectors µ for all possible choices of
θ? Let φ(X) = {φ(x) | x ∈ X } denote the range of the mapping φ, a finite set of vectors from RI .
Obviously, the set of mean value vectors of φ realizable by all possible distributions p is the convex
hull of φ(X),

conv φ(X) =
{∑
x∈X

p(x)φ(x)
∣∣∣ p: X → R+,

∑
x∈X

p(x) = 1
}

(6)

Symbol p in (6) denotes all possible distributions over X, not necessarily from the family (1).
However, it turns out [12] that almost any element of (6) can be obtained also as the mean of φ
over a distribution from the family (1) – precisely, m(RI) is the (relative) interior of conv φ(X).
The polytope conv φ(X) is contained in the affine hull of φ(X), which, by (3), equals

aff φ(X) = {µ ∈ RI | Aµ = 0, Bµ = 1 } (7)

2.3 Entropy

It is easy to obtain by direct calculation that the entropy of distribution (1) as a function of θ is
F (θ)−θm(θ). Let H(µ) denote the entropy of the distribution from the family as a function of µ. It
is defined implicitly: to evaluate H(µ), we first take θ satisfying µ = m(θ) (in case of overcomplete
representation, any such θ can be taken) and then let H(µ) = F (θ)−θµ. The function H is positive
and concave and its domain is the relative interior of conv φ(X).

Theorem 1. Any µ from the relative interior of conv φ(X) and any θ satisfy

F (θ)−H(µ)− θµ ≥ 0 (8)

where equality holds if and only if µ = m(θ), that is, if the distribution defined by θ and the
distribution defined by µ are the same.

This theorem can be interpreted in two ways. First, the left-hand side of (8) is the relative
entropy (KL-divergence) from a distribution defined by θ to a (generally different) distribution de-
fined by µ. The relative entropy is always non-negative and becomes zero for identical distributions.
Second, the functions F and −H are related by convex conjugacy (Legendre-Fenchel transform) [1]
and (8) is Fenchel’s inequality.
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Theorem 1 is consistent with the equality

dF (θ)
dθ

= m(θ) (9)

which can be verified also by direct calculation. The minimum of (8) over θ is attained at the
stationary point satisfying dF (θ)/dθ = µ. But at minimum we also have µ = m(θ), which yields
(9). In case of minimal representation, minimizing (8) over µ yields also the dual equality

−dH(µ)
dµ

= m−1(µ) (10)

where m−1 denotes the inverse of the map m (which is unique in case of minimal representation).
Figure 1 illustrates the convex conjugacy relation on a simple example.

2.4 Gibbs distribution as an exponential family

Let (V,E) be an undirected graph, where V is a finite set of variables and E ⊆ (V2). In the sequel,
Nu = { v | {u, v} ∈ E } will denote the neighbors and nu = |Nu| the degree of variable u. Each
variable u ∈ V takes states xu from a finite domain Xu. Let X be the Cartesian product of the
variable domains Xu. Let

I = { (u, xu) | u ∈ V, xu ∈ Xu } ∪ { (uv, xuxv) | {u, v} ∈ E, xu ∈ Xu, xv ∈ Xv }

where (uv, xuxv) is the same element as (vu, xvxu). In accordance with this, the components of
vector θ will be denoted θu(xu) and θuv(xu, xv). Let φ: X → {0, 1}I be indicator functions chosen
such that

θφ(x) =
∑
u∈V

θu(xu) +
∑
{u,v}∈E

θuv(xu, xv) (11)

With this choice of (X, I, φ), distribution (1) is the pairwise Gibbs distribution. The parameters
µ = m(θ) are the marginals of p(x |θ) associated with variables V and variable pairs E. The
polytope conv φ(X) contains all realizable marginal vectors µ and is known as the marginal polytope.
Moreover, in this case we have {0, 1}I ∩ aff φ(X) = φ(X) (which is not true for a general map φ).

There are many affine dependencies among functions φ. We define matrices A and B indirectly
by instantiating expressions (3) and (4). Thus, if we write the homogeneous dependencies Aµ = 0
as a set of scalar equalities, we obtain the marginalization conditions∑

xv

µuv(xu, xv)− µu(xu) = 0 ∀u ∈ V, v ∈ Nu, xu ∈ Xu (12)

Similarly, the inhomogeneous dependencies Bµ = 1 turn out to be the normalization conditions∑
xu

µu(xu) = 1 ∀u ∈ V (13a)∑
xu,xv

µuv(xu, xv) = 1 ∀{u, v} ∈ E (13b)

where µu(xu) and µuv(xu, xv) denote the components of vector µ.
Reparameterization θ′ = θ + αA+ βB is in components given by

θ′u(xu) = θu(xu) −
∑
v∈Nu

αuv(xu) + βu (14a)

θ′uv(xu, xv) = θuv(xu, xv) + αuv(xu) + αvu(xv) + βuv (14b)
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Figure 2: Illustration of a pairwise graphical model with |Xv| = 3 states on the 3 × 4 grid graph
(V,E). The grey boxes depict variables and the circles inside them variable states. Set I is formed
by all the circles and edges in the figure. Given an assignment x ∈ X, active indicator functions
φi(x) are the green nodes and edges and θφ(x) is equal to the sum of numbers θi sitting on these
green nodes and edges. Set φ(X) contains all consistent collections of such green nodes and edges.

v

θv(xv)

u

θuv(xu, xv)
θu(xu) µuv(xu, xv)
µu(xu)

µv(xv)

xv

xu

vu

θu(xu)− αuv(xu)

θuv(xu, xv) + αuv(xu)

xu

Figure 3: Left: The variables assigned to the nodes end edges of Figure 2. Right: Illustration of
homogeneous reparameterization for a single directed edge (u, v) and state xu.

Let us interpret (14). Homogeneous reparameterization θ′ = θ+ αA can be understood as follows.
Suppose we pick a directed edge (u, v) and subtract a unary function αuv(·) from the function
θuv(·, ·) and add the same function to θu(·), that is, we do the transformation

θu(xu) ← θu(xu) − αuv(xu) (15a)

θuv(xu, xv)← θuv(xu, xv) + αuv(xu) (15b)

Clearly, this preserves function (11) no matter what αuv(·) is. Composing the elementary repa-
rameterizations (15) for all directed edges explains the terms with α in (14). Pure inhomogeneous
reparamerization θ′ = θ + βB means simply adding a constant to each function θu(·) and θuv(·, ·).
In conclusion, function (11) is changed by (14) only by the constant β1.

Notice that marginalization+normalization conditions (12)+(13) and reparameterization (14)
are ‘dual’ to each other, via transposing matrices A and B. This was first observed by Schlesinger
[9] in LP relaxation of the problem maxx θφ(x) (see modern revisions [15, 14] of this approach).

The key concepts of this section §2.4 are illustrated in Figures 2 and 3.

2.5 Variational inference

It is of interest in applications to compute the log-partition function F (θ) and the marginals m(θ)
from given canonical parameters θ. These are examples of inference task. These tasks are in-
tractable for Gibbs distribution because the set X is combinatorially large, thus one has to recourse
to approximative methods. One of such methods is variational inference. It is based on the fact
that minimizing (8) over µ allows us to express F (θ) and H(µ) of a single distribution in terms of
each other,

F (θ) = max{ θµ+H(µ) | µ > 0, µ ∈ conv φ(X) } (16)

6



This concave maximization problem attains its optimum at a single vector µ = m(θ). Thus, rather
than calculating F (θ) and m(θ) directly, they are evaluated indirectly by solving (16). So far
this provides no advantage because both the feasible set conv φ(X) and the entropy function H are
defined in a combinatorial way. However, it allows us to design methods for approximative inference,
by replacing conv φ(X) and H with their approximations that have tractable descriptions.

We remark that in statistical mechanics, −θφ(x) resp. −θµ is often refered to as the Gibbs
energy and −θµ−H(µ) as Gibbs free energy [17].

The marginal polytope conv φ(X) is typically approximated by the local polytope [12]

[0, 1]I ∩ aff φ(X) = {µ ≥ 0 | Aµ = 0, Bµ = 1 } (17)

Clearly, any φ: X → [0, 1]I satisfies the inclusion conv φ(X) ⊆ [0, 1]I ∩ aff φ(X), hence the local
polytope is an outer bound of the marginal polytope. If graph (V,E) is a tree the inclusion
becomes equality, for graphs with cycles the inclusion is strict. Therefore, the resulting approximate
marginals need not belong to the marginal polytope and they are called pseudomarginals or beliefs.

Now, instead of (16) we solve the problem

max{ θµ+Happrox(µ) | µ > 0, Aµ = 0, Bµ = 1 } (18)

Its optimal argument and value is an approximation of m(θ) and F (θ), respectively.

3 Concave entropy approximation

In this section we revisit variational inference with a concave entropy approximation. Its advantage
is that the resulting variational problem (18) is easy to understand using convexity arguments.
The reason why we include this section is to contrast it later with the non-concave Bethe entropy
approximation.

A number of concave entropy approximations have been proposed [11, 13, 2]. We consider a
very simple concave entropy, which on the one hand yields a particularly poor approximation but
on the other hand it is easy to deal with and has the same spirit as more complex concave entropies.
For this approximation, problem (18) becomes

max{ θµ+Hc(µ) | µ > 0, Aµ = 0, Bµ = 1 } (19)

where
Hc(µ) = −

∑
u

∑
xu

µu(xu) logµu(xu)−
∑
{u,v}

∑
xu,xv

µuv(xu, xv) logµuv(xu, xv) (20)

is simply the sum of independent node and edge entropies. The function Hc is strictly concave on
RI

++ and it is an upper bound on the true entropy H.

3.1 Dual problem

Let us write the Lagrange dual problem to (19). We form the Lagrangian

L(µ, α) = θµ+Hc(µ) + αAµ

= (θ + αA)µ+Hc(µ)

The Lagrangian includes the constraint Aµ = 0 but not µ > 0 and Bµ = 1. Notice that θ+αA is a
homogeneous reparameterization of θ. The dual problem is obtained from the minimax inequality

max
µ>0|Bµ=1

min
α
L(µ, α) ≤ min

α
max

µ>0|Bµ=1
L(µ, α) (21)

where the left-hand side is equivalent to problem (19) and the right-hand side is the desired dual
problem. The dual problem can be written as

min
α
Fc(θ + αA) (22)

7



where
Fc(θ) = max

µ>0|Bµ=1
[θµ+Hc(µ)] (23)

Problem (23) can be easily solved, resulting in

Fc(θ) =
∑
u

⊕
xu

θv(xv) +
∑
{u,v}

⊕
xu,xv

θuv(xu, xv) (24)

The function Fc is obviously convex. It can be shown [16] that it is an upper bound on the true
log-partition function F . The dual problem (22) can be interpreted as minimizing the function
Fc(θ) over homogeneous reparameterizations of the original vector θ.

Since the primal problem (19) is concave, (21) holds with equality and we have strong duality.

3.2 Optimality condition

We want to find conditions on which problems (19) and (22) are jointly optimal. Before doing that,
we state in Lemma 1 a property of functions Fc and Hc somewhat analogical to Theorem 1.

We define the map mc: RI → RI by mc(θ) = µ where

µu(xu) = exp
[
θu(xu)−

⊕
xu

θu(xu)
]

(25a)

µuv(xu, xv) = exp
[
θuv(xu, xv)−

⊕
xu,xv

θuv(xu, xv)
]

(25b)

Functions µu(·) and µuv(·, ·) are positive and normalized, that is, mc(θ) > 0 and Bmc(θ) = 1.
In fact, they are Gibbs distributions (1) on trivial graphs formed by single node u and single
edge {u, v}, respectively. The numbers µ are often called pseudomarginals or beliefs. Obviously,
m(θ + βB) = m(θ).

Lemma 1. For any θ and any µ > 0 satisfying Bµ = 1 we have

Fc(θ)−Hc(µ)− θµ ≥ 0 (26)

where the equality holds if and only if µ = mc(θ).

Proof. It is easy to show that the corresponding node and edge terms in (20) and (24) are individ-
ually related by convex conjugacy. Then (26) is Fenchel’s inequality.

Note that convex conjugacy between Fc and −Hc implies that

dFc(θ)
dθ

= mc(θ) (27)

Theorem 2. Problems (19) and (22) are jointly optimal if and only if Aµ = 0 and µ = mc(θ+αA).

Proof. Since tasks (19) and (22) are related by strong duality, at their joint optimum their objectives
meet. This happens for µ > 0 and θ satisfying Aµ = 0, Bµ = 1, and Hc(µ) + θµ = Fc(θ + αA).
Condition Aµ = 0 implies that θµ = (θ + αA)µ, and thus the last equality is the same as

Fc(θ + αA)−Hc(µ)− (θ + αA)µ = 0

But this is (26) written for reparameterized θ. The rest follows from Lemma 1.

Eliminating µ from the equations µ = mc(θ + αA) and Aµ = 0 yields

Amc(θ + αA) = 0 (28)

8



Since it no longer involves µ, (28) is the optimality condition for the dual problem (22) only. This
result can be obtained in a more direct way, by finding the zero gradient of the dual objective
Fc(θ + αA) with respect to reparameterizations α,

dFc(θ + αA)
dα

= A
dFc(θ + αA)
d(θ + αA)

= 0 (29)

where the equality in (29) follows from the chain rule. Plugging (27) into (29) yields (28).
Since θ+αA is a reparameterization of θ, condition (28) has a clear interpretation: to solve the

dual problem (22), we need to reparameterize the original vector θ such that Amc(θ) = 0.

3.3 Sum-product diffusion

The obtained optimality condition is the fixed point of an algorithm to solve the dual problem (22).
This algorithm [16] is more known in its zero-temperature version as max-sum diffusion [6, 15],
which solves the LP-relaxation of the problem of finding modes of Gibbs distribution (MAP-MRF)
and yields the same bound as several other recent algorithms, most notably TRW-S [5]. Its finite-
temperature version is obtained by replacing the operation max with ⊕, hence can be called ⊕-sum
diffusion. We can pass to exponential domain, i.e. replace operations (⊕,+) with (+,×) and
exponentiate all quantities, which yields sum-product diffusion. All these ‘diffusion’ algorithms can
be seen as special cases of the marginal consistency algorithm on a commutative semiring [8].

Note that reparameterizations can be done in two ways: either θ is fixed and only α is changed
(then the current canonical parameters are θ + αA) or θ itself is changed – we use the latter way.

Definition 1. A vector θ is a fixed point of ⊕-sum diffusion if Amc(θ) = 0.

Let us make the fixed point condition more explicit. Plugging (25) and (12) into Amc(θ) = 0
yields

θu(xu)−
⊕
xu

θu(xu) =
⊕
xv

θuv(xu, xv)−
⊕
xu,xv

θuv(xu, xv) ∀u ∈ V, v ∈ Nu, xu ∈ Xu (30)

If the graph (V,E) is connected, by a homogeneous reparameterization it can be always achieved
that

⊕
xu
θu(xu) =

⊕
xu,xv

θuv(xu, xv) holds for every every (u, v), thus these terms cancel out in
(30) and we are left with

θu(xu) =
⊕
xv

θuv(xu, xv) ∀u ∈ V, v ∈ Nu, xu ∈ Xu (31)

This condition says that for every {u, v}, θu(xu) and θv(xv) have to be ⊕-marginals of θuv(xu, xv).
The ⊕-sum diffusion update (Algorithm 1) enforces equality (31) on a single directed edge

(u, v) by applying homogeneous reparameterization (15) on (u, v). This determines αuv(·) in (15)
uniquely. The update is iterated for all directed edges in an arbitrary order. This converges to
a state when (31) holds globally. Every update decreases the dual objective Fc(θ), therefore the
algorithm is a block-coordinate descent to minimize Fc(θ) over homogeneous reparameterizations.
Convexity and smoothness of Fc guarantees convergence to the global minimum.

Algorithm 1 Update of ⊕-sum diffusion on directed edge (u, v).

1: ∀xu: αuv(xu)← 1
2

[
θu(xu)−

⊕
xv

θuv(xu, xv)
]
;

2: ∀xu: θu(xu)← θu(xu)− αuv(xu);
3: ∀xu, xv: θuv(xu, xv)← θuv(xu, xv) + αuv(xu);
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4 Bethe entropy approximation

In this section we revisit the Bethe variational problem

max{ θµ+Hb(µ) | µ > 0, Aµ = 0, Bµ = 1 } (32)

where
Hb(µ) = −

∑
u

∑
xu

µu(xu) logµu(xu)−
∑
{u,v}

∑
xu,xv

µuv(xu, xv) log
µuv(xu, xv)
µu(xu)µv(xv)

(33)

is the Bethe approximation of the true entropy function H. The negative objective −θµ−Hb(µ) is
known as the Bethe free energy. As pointed out in [12], in the works by Yedidia et al. [18] function
Hb is used in the alternative form

−
∑
u

(1− nu)
∑
xu

µu(xu) logµu(xu)−
∑
{u,v}

∑
xu,xv

µuv(xu, xv) logµuv(xu, xv) (34)

Functions (33) and (34) are equal but only on condition Aµ = 0. We will further use only the
form (33). Unlike convex entropy approximations, Hb is neither a lower nor an upper bound on H.
In general, function Hb is non-concave. If the graph (V,E) is a tree, the Bethe approximation is
exact, Hb = H, and Hb is concave on the set {µ > 0 | Aµ = 0, Bµ = 1 } but remains non-concave
on {µ > 0 | Bµ = 1 }.

For trees, the local polytope is the marginal polytope and thus (32) exactly equals F (θ).

4.1 Dual problem

Let us try forming the dual to problem (32). We proceed exactly as in §3.1. The Lagrangian is

L(µ, α) = (θ + αA)µ+Hb(µ)

The dual problem is the right-hand side of the minimax inequality

max
µ>0|Bµ=1

min
α
L(µ, α) ≤ min

α
max

µ>0|Bµ=1
L(µ, α) (35)

and can be written as
min
α
F̃b(θ + αA) (36)

where
F̃b(θ) = max

µ>0|Bµ=1
[θµ+Hb(µ)] (37)

To tackle problem (37) we again use Lagrange multipliers. The solution of (37) must make the
derivatives of its Lagrangian L(µ, β) = (θ+βB)µ−β1 +Hb(µ) vanish, that is, we solve the system

θ + βB +
dHb(µ)

dµ
= 0 (38a)

Bµ = 1 (38b)

for µ and β. The components of the row vector dHb(µ)/dµ are
∂Hb(µ)
∂µu(xu)

= − logµu(xu)− 1 +
1

µu(xu)

∑
v∈Nu

∑
xv

µuv(xu, xv) (39a)

∂Hb(µ)
∂µuv(xu, xv)

= − log
µuv(xu, xv)
µu(xu)µv(xv)

− 1 (39b)

Plugging this into (38) shows that system (38) has no explicit solution and thus function F̃b does
not have a closed form. Therefore, we have to give up forming an explicit dual to the Bethe
variational problem (32).

Even though the dual does not possess an explicit form, one can ask whether strong duality
holds. Of course not, because the function Hc is non-concave. Does strong duality hold at least for
tree-structured problems? No, because for the minimax inequality (35) to hold with equality, Hb

would have to be concave on the set {µ > 0 | Bµ = 1 } and not only on {µ > 0 | Aµ = 0, Bµ = 1 }.
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4.2 Optimality condition

Given the non-existence of an explicit dual to the Bethe variational problem and the absence of
strong duality, we will not form the analogy of Theorem 2 for the Bethe entropy approximation.
However, a close counterpart to Theorem 2 is the result [18, 17] relating belief propagation fixed
points and the Bethe variational problem. We state this result in Theorem 3.

We define the map mb: RI → RI by mb(θ) = µ where

µu(xu) = exp
[
θu(xu)−

⊕
xu

θu(xu)
]

(40a)

µuv(xu, xv) = exp
[
θuv(xu, xv) + θu(xu) + θv(xv)−

⊕
xu,xv

[θuv(xu, xv) + θu(xu) + θv(xv)]
]

(40b)

Again, the numbers µ are positive and normalized, mb(θ) > 0 and Bmb(θ) = 1. We have also
m(θ + βB) = m(θ).

Theorem 3. µ is a stationary point of problem (32) if and only if there is α such that µ =
mb(θ + αA) and Aµ = 0.

Proof. The Lagrangian of problem (32) reads

L(µ, α, β) = θµ+Hb(µ) + αAµ+ β(Bµ− 1)

We shall show that (µ, α, β) is a stationary point of L(µ, α, β) for some β if and only if µ =
mb(θ + αA) and Aµ = 0. We solve the system

∂L(µ, α, β)
∂µ

= θ + αA+ βB +
dHb(µ)

dµ
= 0 (41)

Because Aµ = 0, in other words
∑

xv
µuv(xu, xv) = µu(xu), the unpleasant expression (39a) sim-

plifies to
∂Hb(µ)
∂µu(xu)

= − logµu(xu)− 1 + nu (42)

Now we substitute (42) and (39b) into (41), and then substitute µ = mb(θ + αA) into the result.
This leaves us only with terms that do not depend on states. Hence equality (41) can be satisfied
by choosing numbers βu and βuv.

Eliminating µ from µ = mb(θ + αA) and Aµ = 0 yields

Amb(θ + αA) = 0 (43)

This shows that to find a stationary point of the Lagrangian of the Bethe variational problem, we
need to reparameterize the original vector θ such that Amb(θ) = 0.

Suppose that Amb(θ) = 0. If our graph is a tree, mb(θ) are the exact marginals. If it is a graph
with cycles, it trivially follows that mb(θ) restricted on any subtree are the exact marginals for this
subtree [10].

4.3 Loopy belief propagation

The obtained optimality condition is the fixed point condition of BP. We again assume that repa-
rameterizations are done by changing θ itself rather than α.

Definition 2. A vector θ is a fixed point of belief propagation if Amb(θ) = 0.

11



Again, the condition Amb(θ) = 0 can be made more explicit. Inserting (40) and (12) into it
yields ⊕

xv

[θuv(xu, xv) + θv(xv)] = auv ∀u ∈ V, v ∈ Nu, xu ∈ Xu (44)

where auv =
⊕

xu,xv
[θuv(xu, xv) + θu(xu) + θv(xv)]−

⊕
xu
θu(xu) are constants independent on xu.

Thus, the condition says that for every directed edge (u, v), the left-hand side of (44) has to be
independent on xu.

There are two versions of belief propagation, with parallel or serial updates – we consider the
latter version. Its update, Algorithm 2, enforces equality (44) on a single directed edge (u, v) by
applying homogeneous reparameterization (15) on (u, v). This determines αuv(·) in (15) uniquely
up to an additive constant. This constant is chosen (on line 2 of the algorithm) so that the
values θ stay bounded during the algorithm. The update is iterated for all directed edges in an
arbitrary order. Typically this converges to a state when (44) holds globally – however, unlike for
⊕-sum diffusion, the convergence is not guaranteed and no quantity is monotonically decreasing or
increasing.

Algorithm 2 BP update on directed edge (u, v).

1: ∀xu: αuv(xu)← −
⊕
xv

[θuv(xu, xv) + θv(xv)];

2: ν ←
⊕
xu

αuv(xu)−
⊕
xu

0; ∀xu: αuv(xu)← αuv(xu)− ν;

3: ∀xu: θu(xu)← θu(xu)− αuv(xu);
4: ∀xu, xv: θuv(xu, xv)← θuv(xu, xv) + αuv(xu);

Let us remark that the zero-temperature version of BP is obtained by replacing ⊕ with max in
Algorithm 2. Note, then the normalization term

⊕
xu

0 = log |Xu| on line 2 becomes maxxu 0 = 0.

5 New view on belief propagation fixed points

In case of concave entropy approximation, the ⊕-sum diffusion algorithm monotonically decreases
the smooth convex function Fc(θ + αA) over reparameterizations α, which guarantees global op-
timality and convergence. Setting the gradient of this function to zero yields the fixed point
conditions of the algorithm, Amc(θ + αA) = 0.

In contrast, there is no function that would monotonically decrease or increase during the BP
algorithm. One could object that this is not true because we have the Bethe variational problem
(32), in which we maximize the function θµ + Hb(µ). But this is of no help because BP does
not directly solve problem (32). From the point of view of problem (32), the BP algorithm keeps
µ = mb(θ) all the time, which ensures µ > 0 and Bµ = 1, and tries to reparameterize θ such that
Aµ = 0. Therefore, µ is infeasible to (32) until BP has converged and we cannot infer that, for
example, the primal objective θµ+Hb(µ) increases as the BP algorithm proceeds. Of course, the
same is true about ⊕-sum diffusion.

Seemingly, nothing more can be said about the BP algorithm than it tries to solve the equation
system Amb(θ + αA) = 0 for α. Can we interpret this system as the zero gradient condition of
some function of reparameterizations α? In analogy with the equality Fc(θ) = θmc(θ) +Hc[mc(θ)],
which follows from Lemma 1, we can try to obtain such a function as

Fb(θ) = θmb(θ) +Hb[mb(θ)] (45)

Plugging (40) and (33) into (45) and simplifying yields

Fb(θ) =
∑
u

(1− nu)
⊕
xu

θu(xu) +
∑
{u,v}

⊕
xu,xv

[θuv(xu, xv) + θu(xu) + θv(xv)] (46)
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Our main contribution is the observation (in Theorem 4 below) that zero gradients of function Fb

with respect to homogeneous reparameterizations are in one-to-one correspondence with BP fixed
points. Further in this section we examine the function Fb in detail.

Recalling that there are two forms of the Bethe entropy approximation, (33) and (34), substi-
tuting (34) instead of (33) into (45) does not work – zero gradients of the resulting function do not
correspond to BP fixed points.

Function Fb is non-convex, due to the negative factors 1− nu. It is no longer convex conjugate
with Hb, in particular it is not true that all θ and µ > 0 such that Aµ = 0 and Bµ = 1 satisfy
Fb(θ)−Hb(µ)− θµ ≥ 0.

5.1 First-order properties

Let us form the derivative dFb(θ)/dθ. It needs some work to obtain its components as

∂Fb(θ)
∂θu(xu)

= µu(xu) +
∑
v∈Nu

γuv(xu) (47a)

∂Fb(θ)
∂θuv(xu, xv)

= µuv(xu, xv) (47b)

where µ = mb(θ) and γ = Aµ, that is,

γuv(xu) =
∑
xv

µuv(xu, xv)− µu(xu)

Note, comparing this with dFc(θ)/dθ given by (27) we see there is an extra term
∑

v∈Nu
γuv(xu).

Next we compute the derivative of Fb(θ+αA) with respect to homogeneous reparameterizations
α. It can be conveniently computed at point α = 0, which is without any loss of generality because
the derivative at α 6= 0 can be recovered by replacing θ with θ + αA. By the chain rule, we have

dFb(θ + αA)
dα

∣∣∣∣
α=0

= A
dFb(θ)

dθ

which, by (12), means

∂Fb(θ + αA)
∂αuv(xu)

∣∣∣∣
α=0

=
∑
xv

∂Fb(θ)
∂θuv(xu, xv)

− ∂Fb(θ)
∂θu(xu)

(48)

Substituting (47) into (48) yields

∂Fb(θ + αA)
∂αuv(xu)

∣∣∣∣
α=0

= −
∑

w∈Nu\v

γuw(xu) (49)

Theorem 4. θ is a BP fixed point if and only if the gradient of Fb(θ) with respect to homogeneous
reparameterizations vanishes.

Proof. By Theorem 3, BP fixed point is characterized by system (50a). By (49), zero gradient of
Fb(θ + αA) is characterized by system (50b).

γuv(xu) = 0 ∀u ∈ V, v ∈ Nu, xu ∈ Xu (50a)∑
w∈Nu\v

γuw(xu) = 0 ∀u ∈ V, v ∈ Nu, xu ∈ Xu (50b)

We need to show that these two systems are equivalent. Pick (u, xu) and write γv instead of γuv(xu)
for simplicity. Then we need to show that

[γv = 0 ∀v ∈ Nu]⇐⇒
[ ∑
w∈Nu\v

γw = 0 ∀v ∈ Nu

]
One direction is obvious, the other is easily verified.
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The current understanding of BP sees it as an iterative algorithm to solve the equation system
(50a). Now we have the additional knowledge that the solutions of (50a) are in one-to-one cor-
respondence to zero gradient points of a single function. This zero gradient condition is given by
system (50b). In this new view, BP is seen as a block-coordinate search to find a zero gradient
point.

Note a subtlety: for solving (50b) we need a slightly different schedule of updates than for
solving (50a). To solve system (50a), in each iteration we pick a single directed edge (u, v) and run
Algorithm 2 on it. This solves a subset of equations (50a) for the coordinate block {αuv(xu) | xu ∈
Xu }. However, it does not solve any subset of equations (50b). To solve (50b), in each iteration
we need to pick a single node u and run Algorithm 2 on directed edges { (u, v) | v ∈ Nu }. This
solves a subset of equations (50b) for the coordinate block {αuv(xu) | v ∈ Nu, xu ∈ Xu }.

5.2 Second-order properties

We form the second derivative (Hessian) of Fb with respect to reparameterizations, i.e., the matrix

d2Fb(θ + αA)
dα2

We give the Hessian only on the assumption that θ + αA is a BP fixed point, where it takes a
simpler form. After certain effort (see the appendix), we obtain the elements of the Hessian

∂2Fb(θ + αA)
∂αuv(xu) ∂αu′v′(x′u′)

=


[µu(xu)− 1]µu(xu) if u′ = u, v′ 6= v, xu = x′u
µu(xu)µu(x′u) if u′ = u, v′ 6= v, xu 6= x′u
µuu′(xu, x′u′)− µu(xu)µu′(x′u′) if {u, u′} ∈ E, v′ 6= u, u′ 6= v
0 otherwise

(51)

where µ = mb(θ + αA).

Theorem 5. Every zero gradient point of Fb(θ + αA) as a function of α is a saddle point.

Proof. A saddle point means that the Hessian is indefinite at that point. We show that a submatrix
of the Hessian is indefinite. Let this submatrix be given by picking u and xu and setting u = u′

and xu = x′u in (51). We are left with the matrix with coordinates v and v′ with elements

∂2Fb(θ + αA)
∂αuv(xu) ∂αuv′(xu)

=
{

0 if v = v′

[µu(xu)− 1]µu(xu) if v 6= v′
(52)

Expression (52) takes only two values, depending on whether v = v′ or v 6= v′. Hence the diagonal
elements of the submatrix are zero and all the remaining elements are equal. Such a matrix is
inevitably indefinite.

5.3 Invariance properties

Is function Fb invariant to any subclass of reparameterizations? Obviously, Fb(θ+βB) = Fb(θ)+β1,
hence adding constants βu and βuv to nodes and edges leaves the function unchanged if β1 = 0.

Less obviously, at a BP fixed point the function Fb is invariant to reparameterization on any
single directed edge (u, v), as stated by the following theorem.

Theorem 6. Let θ be a BP fixed point. Let α be such that all its components are zero except the
components {αuv(xu) | xu ∈ Xu } for a single directed edge (u, v). Then Fb(θ) = Fb(θ + αA).

Proof. The described reparameterization affects only node u and edges { {u,w} | w ∈ Nu \ v }.
Their contribution of this node and these edges to Fb(θ) is

(1− nu)
⊕
xu

θu(xu) +
∑

w∈Nu\v

⊕
xu

[
θu(xu) +

⊕
xw

[θuw(xu, xw) + θw(xw)]︸ ︷︷ ︸
auw

]
=

∑
w∈Nu\v

auw (53)
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where the underlined expression equals a constant auw because θ is a BP fixed point, see (44). The
terms

⊕
xu
θu(xu) cancel out.

The contribution of the above node and edges to Fb(θ + αA) is the expression (53) in which
θu(xu) is replaced with θu(xu) + αuv(xu). The terms

⊕
xu

[θu(xu) + αuv(xu)] cancel out exactly as
in (53) and we are left with the same result.

Thus, at a BP fixed point the function Fb(θ+αA) is constant along each coordinate block αuv.
In fact, it is constant even in several such blocks simultaneously on condition that they do not
‘interact’.

6 Discussion

Currently, new insights into BP can be gained either by better understanding BP fixed point
equations or by better understanding the Bethe variational problem. We have offered another
direction by showing that BP searches for a zero gradient of a single function of reparameterizations,
without any constraints.

Our result is elementary – in fact, we merely substituted (40) and (33) into θµ+Hb(µ). However,
this has a clear meaning only via to the link with reparameterizations. To the best of our knowledge,
this simple observation was not made before.

On the negative side, all zero gradient points of our function are saddles. One would say that
finding a zero gradient point of a single function must be easier than solving a set of equations.
But this is not so obvious because finding a saddle point can be much harder than finding a local
extreme – especially in our case when we have many variables, in general multiple saddles, and we
do not know the shape of the saddles a priori .

To be more precise, suppose we have n analytic functions g1, . . . , gn: Rn → R and want to find
at least one common zero of these functions over Rn. Let us distinguish three cases:

1. The functions gi are unrelated to each other.

2. The functions gi are the partial derivatives of some function f : Rn → R such that

(a) all zero gradient points of f are saddle points.
(b) f is bounded from below and it has at least one local minimum.

Case 2b is clearly easier than case 1 because there are provably convergent algorithms able to find
a local minimum. This is indeed the case of concave entropy approximations. We find the following
question fundamental: Is case 2a easier than case 1? Our preliminary attempts to answer this
question are inconclusive.

Though we consider only pairwise Gibbs distributions, we believe the result could be generalized
to higher-order versions of loopy BP and cluster variation methods [17]. One could also investi-
gate the meaning of the zero-temperature (max-sum) version of the result, obtained by replacing
operation ⊕ with max in (44) and (46).
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A Second derivative of Fb

Here we derive the elements of the Hessian (51). We do it by taking the derivative of expression
(49) with respect to αu′v′(x′u′). In the following expressions we assume that µ = mb(θ + αA) and
that all the derivatives are evaluated at α = 0.
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The derivatives of µu(xu):

∂µu(xu)
∂αuv(xu)

= −[1− µu(xu)]µu(xu)

∂µu(xu)
∂αu′v(xu′)

= 0 if u 6= u′

∂µu(xu)
∂αuv(x′u)

= µu(x′u)µu(xu) if xu 6= x′u

The derivatives not shown are zero. The derivative of µuv(xu, xv):

∂µuv(xu, xv)
∂αuv(x′u)

= 0

∂µuv(xu, xv)
∂αuv′(xu)

= −[1− µuv(xu)]µuv(xu, xv) if v 6= v′

∂µuv(xu, xv)
∂αuv′(x′u)

= µuv(x′u)µuv(xu, xv) if v 6= v′, xu 6= x′u

where we use the abbreviation µuv(xu) =
∑

xv
µuv(xu, xv). The remaining derivatives are obtained

by realizing that µuv(xu, xv) = µvu(xv, xu).
The derivative of γuv(xu):

∂γuv(xu)
∂αuv(xu)

=
∑
xv

∂µuv(xu, xv)
∂αuv(xu)

− ∂µu(xu)
∂αuv(xu)

= [1− µu(xu)]µu(xu)

∂γuv(xu)
∂αuv(x′u)

=
∑
xv

∂µuv(xu, xv)
∂αuv(x′u)

− ∂µu(xu)
∂αuv(x′u)

= −µu(xu)µu(x′u) if xu 6= x′u

∂γuv(xu)
∂αuv′(xu)

=
∑
xv

∂µuv(xu, xv)
∂αuv′(xu)

− ∂µu(xu)
∂αuv′(xu)

= [1− µu(xu)]µu(xu)− [1− µuv(xu)]µuv(xu) if v 6= v′

∂γuv(xu)
∂αuv′(x′u)

=
∑
xv

∂µuv(xu, xv)
∂αuv′(x′u)

− ∂µu(xu)
∂αuv′(x′u)

= µu(xu)µu(x′u)− µuv(xu)µuv(x′u) if v 6= v′, xu 6= x′u

∂γuv(xu)
∂αvu(xv)

=
∑
xv

∂µuv(xu, xv)
∂αvu(xv)

− ∂µu(xu)
∂αvu(xv)

= 0

∂γuv(xu)
∂αvu′(xv)

=
∑
x′v

∂µuv(xu, x′v)
∂αvu′(xv)

− ∂µu(xu)
∂αvu′(xv)

= µuv(xu, xv)− µuv(xu)µvu(xv) if u 6= u′

If θ is a BP fixed point, we have µuv(xu) = µu(xu) and this simplifies to

∂γuv(xu)
∂αuv(xu)

= [1− µu(xu)]µu(xu)

∂γuv(xu)
∂αuv(x′u)

= −µu(xu)µu(x′u) if xu 6= x′u

∂γuv(xu)
∂αuv′(xu)

= 0 if v 6= v′

∂γuv(xu)
∂αuv′(x′u)

= 0 if v 6= v′, xu 6= x′u

∂γuv(xu)
∂αvu(xv)

= 0

∂γuv(xu)
∂αvu′(xv)

= µuv(xu, xv)− µu(xu)µv(xv) if u 6= u′
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Finally, the derivative of Fb with respect to reparameterizations (at a BP fixed point) is given by

∂2Fb(θ + αA)
∂αuv(xu)2

= −
∑

w∈Nu\v

∂γuw(xu)
∂αuv(xu)

= 0

∂2Fb(θ + αA)
∂αuv(xu) ∂αuv(x′u)

= −
∑

w∈Nu\v

∂γuw(xu)
∂αuv(x′u)

= 0 if xu 6= x′u

∂2Fb(θ + αA)
∂αuv(xu) ∂αuv′(xu)

= −
∑

w∈Nu\v

∂γuw(xu)
∂αuv′(xu)

= −[1− µu(xu)]µu(xu) if v 6= v′

∂2Fb(θ + αA)
∂αuv(xu) ∂αuv′(x′u)

= −
∑

w∈Nu\v

∂γuw(xu)
∂αuv′(x′u)

= µu(xu)µu(x′u) if v 6= v′, xu 6= x′u

∂2Fb(θ + αA)
∂αuv(xu) ∂αvu(xv)

= −
∑

w∈Nu\v

∂γuw(xu)
∂αvu(xv)

= 0

∂2Fb(θ + αA)
∂αuv(xu) ∂αvu′(xv)

= −
∑

w∈Nu\v

∂γuw(xu)
∂αvu′(xv)

= 0 if u 6= u′

∂2Fb(θ + αA)
∂αuv(xu) ∂αv′u(xv′)

= −
∑

w∈Nu\v

∂γuw(xu)
∂αv′u(xv′)

= 0 if v′ ∈ Nu

∂2Fb(θ + αA)
∂αuv(xu) ∂αv′u′(xv′)

= −
∑

w∈Nu\v

∂γuw(xu)
∂αv′u′(xv′)

= −µu(xu)µv′(xv′) + µuv′(xu, xv′) if v′ ∈ Nu, u 6= u′

which can be written compactly as (51).
We tested the correctness of expression (51) numerically, by comparing it with the second

derivatives obtained by finite differences for small random Gibbs distributions.
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