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Abstract

Inference tasks in Markov random fields
(MRFs) are closely related to the constraint
satisfaction problem (CSP) and its soft gen-
eralizations. In particular, MAP inference
in MRF is equivalent to the weighted (max-
sum) CSP. A well-known tool to tackle CSPs
are arc consistency algorithms, a.k.a. relax-
ation labeling. A promising approach to
MAP inference in MRFs is linear program-
ming relaxation solved by sequential tree-
reweighted message passing (TRW-S). There
is a not widely known algorithm equivalent to
TRW-S, max-sum diffusion, which is slower
but very simple. We give two theoretical re-
sults. First, we show that arc consistency
algorithms and max-sum diffusion become
the same thing if formulated in an abstract-
algebraic way. Thus, we argue that max-sum
arc consistency algorithm or max-sum relax-
ation labeling is a more suitable name for
max-sum diffusion. Second, we give a cri-
terion that strictly decreases during these al-
gorithms. It turns out that every class of
equivalent problems contains a unique prob-
lem that is minimal w.r.t. this criterion.

1. Introduction

A promising approach to (approximate) computing
the maximum of a discrete Gibbs probability distri-
bution or, equivalently, MAP inference in a discrete
Markov random field (MRF, a.k.a. undirected graph-
ical model) is the linear programming relaxation pro-
posed independently by (Schlesinger, 1976b; Koster
et al., 1998; Chekuri et al., 2001; Wainwright et al.,
2005). It is known that rather than to solve this lin-
ear programming relaxation directly, it is more effi-
cient first to solve its linear programming dual. This
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dual corresponds to minimizing a convex upper bound
by reparameterizations. The resulting linear program
cannot be solved by general-purpose (such as simplex
or interior point) algorithms. Instead, efficient net-
work algorithms, utilizing the specific structure of the
task, are needed. The most well-known representant of
such algorithms is the sequential tree-reweighted mes-
sage passing (TRW-S) by (Kolmogorov, 2006).

A less known such algorithm is maz-sum diffusion (Ko-
valevsky & Koval, approx 1975). It is an algorithm
to decrease Schlesinger’s upper bound (Schlesinger,
1976b; Schlesinger & Giginjak, 2007), which is equiv-
alent to the bound decreased by TRW-S. These works
are published only in Russian or unpublished but
they have been recently surveyed! in (Werner, 2005;
Werner, 2007). Max-sum diffusion is fascinatingly
simple (although slower than TRW-S on monotonic
chains), hence very easy to implement and suitable for
mathematical analysis. In fact, it can be seen as a
special case of TRW-S where the trees are the individ-
ual nodes and edges of the problem graph. Max-sum
diffusion resembles belief propagation but there is an
essential difference: it has been always observed to
converge and it seeks to minimize a convex function.
It is also different from the edge-based reparameter-
izations in (Wainwright et al., 2005). It shares with
TRW-S the drawback that its fixed points not neces-
sarily correspond to the minima of the upper bound.

From the optimization point of view, inference tasks
in MRF are closely related to constraint satisfaction
problems (CSPs). The ordinary (crisp) CSP (Waltz,
1972; Mackworth, 1991), which is also known as
the consistent labeling problem (Haralick & Shapiro,
1979), seeks to assign states to discrete variables that
satisfy a given set of crisp constraints (i.e., relations).
As this formulation is too rough for many applications,
a number of soft modifications of CSPs have been pro-
posed, where one seeks to optimize soft constraints

My knowledge of max-sum diffusion and my works
(Werner, 2005; Werner, 2007) are based on unpublished
lectures of M.I. Schlesinger and my personal communica-
tion with him.
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rather than satisfy crisp ones. Examples are the max-
CSP, the fuzzy, partial, weighted, probabilistic, and
possibilistic CSP; references and terminology can be
found e.g. in (Bistarelli et al., 1999b; Bistarelli, 2004;
Meseguer et al., 2006). MAP inference in MRF coin-
cides with what we further call the max-sum CSP.

Many properties of the CSP and soft CSPs can be
studied in a unified algebraic framework. Particular
CSPs are obtained by choosing the appropriate alge-
braic structures. Two approaches exist: the walued
CSP uses a totally ordered set with a single opera-
tion (Schiex et al., 1995; Bistarelli et al., 1999b), the
semiring-based CSP uses two abstract operations that
form a commutative semiring (Bistarelli et al., 1999b;
Bistarelli, 2004; Schlesinger & Flach, 2000). This alge-
braic formulation is similar to semiring unification of
dynamic programming and message passing by (Verdd
& Poor, 1987; Aji & McEliece, 2000).

As the CSP is NP-complete, there is no hope for a
polynomial algorithm to prove or disprove its satis-
fiability, unless P=NP. However, there is a number
of polynomial conditions necessary (but not sufficient)
for satisfiability. They are typically based on local con-
sistencies, surveyed e.g. in (Bessiere, 2006). Of them,
the simplest and most important is arc consistency
(Hentenryck et al., 1992). The analogical concept is
frequent also in MRFs and graphical models, though
usually under different names.

Arc consistency was originally formulated for the crisp
CSP (Waltz, 1972). The algorithm achieving arc con-
sistency is also known as discrete relaxation labeling
by (Rosenfeld et al., 1976). Considerable effort has
been devoted to generalizing arc consistency to soft
constraints. The earliest such work was done proba-
bly by (Rosenfeld et al., 1976) for the fuzzy CSP, and
later e.g. by (Bistarelli et al., 1999b; Bistarelli et al.,
1999a; Bistarelli & Gadducci, 2006; Cooper & Schiex,
2004; Cooper et al., 2007).

We present two theoretical results.

First, we generalize equivalence of instances and the
upper bound given in (Schlesinger, 1976b) and max-
sum diffusion to the valued CSP. In this algebraic for-
mulation, max-sum diffusion becomes the same thing
as arc consistency algorithms (relaxation labeling).
This relates max-sum diffusion (and message passing
in general) to the large literature on arc consistency.
In a way, this can be seen as a similar unification for
arc consistency as (Aji & McEliece, 2000) was for mes-
sage passing. It can be also seen as a continuation of
the work by (Rosenfeld et al., 1976) on relaxation la-
beling. Based on this observation, we argue that max-
sum diffusion could be called maz-sum arc consistency

Figure 1. An example of a binary CSP. Graph (T, E) is the
3 x 4 grid graph, thus it has |T| = 12 nodes. There are
|X| = 3 labels. An example of labeling x is emphasized.

edge {(t,z),(t',2')} with weight git/ zar = grt.0r  pencil (¢, 1, z)

node (t',z’)
with weight g/ o b
node (t, z)
p— T with weight g,
\\variablc t

variable pair {t,¢'}

variable

Figure 2. Illustration of the used terminology.

algorithm or maz-sum relazation labeling.

Second, we give a criterion that decreases after every
iteration of the arc consistency algorithm. This con-
trasts the fact that the known convex upper bounds
on the objective function, sought to be minimized by
the max-sum diffusion and TRW-S, either decrease or
remain unchanged after every iteration. Every set of
equivalent instances contains at most one instance that
is minimal w.r.t. the new criterion. We will show that
the arc consistency algorithm can be interpreted as a
block-coordinate descent w.r.t. to the new criterion.

2. Constraint Satisfaction Problems

In the sequel, we will denote a set by {---} and an
ordered tuple by (---). Ordered tuples will be typed
in bold-face and their components in italics, as g =
(g:). For clarity, we will consider only CSPs with unary
and binary constraints. However, the results can be
straightforwardly extended for problems of any arity.

Let T be a finite set of variables and E C (g) a set
of variable pairs, thus (T, F) is an undirected graph.
We will denote by Ny = {¢' € T | {t,t'} € E'} the
neighbors of t. Each variable ¢ € T is assigned a single
label z; € X, where the label domain X is a finite set.
An assignment of a single label x; to each variable ¢ is

a labeling x = (z; |t € T) € X, See Figure 1.

Let (T x X, Ex) be an undirected graph with edges
Ex = {{{t,x), (t',a")} | {t,{'} € B, x,2" € X }. By
nodes and edges we will refer to graph (T x X, Ex),
while the nodes and edges of graph (T, E) will be called
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variables and variable pairs. The set of all nodes
and edges is I = (T'x X)U Ex. The | X| edges leading
from a node (t, z) to all nodes of a neighboring variable
t' € N; is a pencil (t,t',z). The set of all pencils is
P={({tz)|{t,t'}€EE, ze X}

Let A be a set of values. Each node (¢, x) is assigned
a value g; , € A and each edge {(t,z), (t',2')} a value
Gtt! zx' € A, where we adopt gtt' xzx' = Gt'tz'z- By
g € Al we denote the vector with components g; .,
gtt' za'- These concepts are illustrated in Figure 2.

Definition 1. A valuation structure (Schiez et al.,
1995; Bistarelli et al., 1999b) is a triplet (A, <, ®)
where < is a total order on A, and ® is a binary as-
soctative and commutative operation that is closed in
A and monotonic w.r.t. <, i.e.

(a<b) = [(a®@c) < (b@c)] (1)

Note that (A, max) and (A, ®) are commutative semi-
groups and (A, max, ®) is a commutative semiring?.

Let max denote the maximum with respect to <. Let

F(x|g) = <®gt,xt> ® ( ® gtt’,m,,act/) (2a)
teT

{t,t’'}eE
F(g) = F 2b
(g) = max F(x|g) (2b)
Note, (2a) can be seen as a function F(-|g): X7 — A
that is pairwise-decomposable using operation ®. Ex-
pression (2b) is known as the valued CSP (VCSP).

3. Equivalent Instances

It is an important observation that function (2a) can
be identical for different value vectors g. This leads to
the concept of equivalent value vectors and closely re-
lated local equivalent transformations. Equivalence is
important because it allows to transform value vector
to a form most convenient for (approximate) calcula-
tion of expression (2b).

The following definition generalizes equivalence of
max-sum CSP instances given by (Schlesinger, 1976b).

Definition 2. Value vectors g, g’ € Al are equiva-
lent (denoted by g ~g') if F(x|g) = F(x|g') for all
x € X1, i.e., if functions F(-|g) and F(-|g') equal.

In the definition, set I and functions F(x|g) and
F(x|g') are considered w.r.t. the same T, E, X, A,
®. Note, equivalence does not depend on the order <.

The equivalence relation ~ partitions the set A into
the set A/~ of equivalence classes.

*Valuation structures and commutative semiring are of-
ten defined also with the zero and unit elements. But we
will not need the zero and unit.

(a) (b) (c)

Figure 3. For (A,®) = (R, +), pencils (a) and (b) are re-
lated by a local equivalent transformation because 4 +
2 =145 3+2=0+5 and 6+2 = 3+5. For
(A, ®) = (R, min), pencils (a) and (c) are related by a local
equivalent transformation because min{4,2} = min{2, 2},
min{3,2} = min{3, 2}, and min{6, 2} = min{5, 2}.

Two tasks related to equivalence naturally arise: test
whether two given instances are equivalent and enu-
merate the elements of an equivalence class. These
tasks may be easy or hard depending on (4, ®).

Example 1. Let (A,®) = ({0,1},x). Testing
whether a vector g is equivalent to the all-zero vector
0 means testing the crisp CSP for satisfiability, hence
it is NP-complete. [ |

Definition 3. A local equivalent transformation
of problem g on pencil (t,t',x) is a replacement of val-
ues gio and { gi wor | ¥ € X } with values g; , and
{ Gt war | ¥ € X'} such that the latter satisfy

g;m ® gét/,zm’ = gt,l’ ® gtt/,zm’ V'T/ S X (3)

Note, a local equivalent transformation affects only the
| X | edges in a single pencil (¢, ', ) and the node (¢, x),
incident with the pencil. Figure 3 shows examples.

By (2a) and (3), local equivalent transformations pre-
serve the function F(-|g). Thus, they allow to tra-
verse through the equivalence class by local operations.
Sometimes all elements of the equivalence class can be
enumerated like this, sometimes not. In detail, three
cases can occur for equivalent value vectors g and g’:

1. g can be transformed to g’ by a finite sequence of
local equivalent transformations;

2. there is an infinite sequence of local equivalent
transformations of g that converges to g’ (as
shown by Example 3 below);

3. g cannot be transformed to g’ by local equivalent
transformations (as shown by Example 1).

An important special case is when (A, ®) is a group
(e.g., (R,+) or (Ryy, %), see §6.3). Thus, we have di-
vision (denoted by @), the unit element, and inverse.
In this case, all possible local equivalent transforma-
tions on pencil (¢,t,x) can be parameterized by a sin-
gle value @y, € A (assigned to pencil (¢,¢',x)) as

/

gt@ = gt,a: @ Qatt’,w (43)

g;t’,zm’ = gtt’ ,xz’ 0 Ptt’ .« (4b)
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Composing (4) for all pencils (t,t',z) € P yields

g;,m = Gtz @ ( ® tht’,w) (53)

t'EN,
/
Gtt war = 9tt' wa’ @ Pit' .2 @ Prrtar (5b)

Theorem 1 shows® that of the three cases above, Case
1 occurs for groups.

Theorem 1. Let (A, ®) be a group. Let the graph
(T, E) be connected. Then g ~ g’ iff there exist values
O o € A such that (5) holds.

Proof. See (Werner, 2005; Werner, 2007). ]

Values ¢y, are often called messages (Pearl, 1988)
and transformations (4) and (5) reparameterizations
(Wainwright & Jordan, 2003; Kolmogorov, 2006).

Another important special case is the semigroup
(A,®) = (A"U{0g},®), where (A’,®) is a group and
Og satisfies a®0g = Og for all a € A’. Here, reparam-
eterizations (5) cover only the part of the equivalence
class obtained for ¢ € (A")F. Letting ¢ € AY would
not help because expressions a @ 0g and Og @ Og are
undefined and cannot be defined consistently. Theo-
rem 1 does not hold and Cases 2 or 3 can occur, as
given by the two examples below.

Example 2. Let (A, ®) = (RU{—o0},+) (see §6.3).
This semigroup has the subsemigroup ({—oo, 0}, +),
which is isomorphic to ({0,1}, x). By Example 1, test-
ing whether two instances are equivalent is NP-hard
and Theorem 1 does not hold. [ ]
Example 3. Let (4,®) = (RU {—o0}, +). Consider
two instances in Figure 4. These instances are equiva-
lent but not related by (5) for any ¢y, € R. However,
there is a sequence of local equivalent transformations
of problem (a) that converges to problem (b). This se-
quence is the infinite repetition of reparameterizations
(5) with values @y, shown in the figure. [ |

4. Criteria to Minimize

Approximate computation of F(g) is approached via
upper bounds. Theorem 2 gives two such upper
bounds on F(g), obtained by generalizing upper
bound by (Schlesinger, 1976b) (see §6.3) to VCSPs.

Theorem 2. Denote

F(g) = (®g1€8§<gt,x) ® ( X e gw,m) (6)
teT {t,t'}eFE
For any g € A, we have
_ IT|+|E|
F(g) < F(g) < (r?gfgi) (7)

3Theorem 1 and its proof was given in unpublished lec-
tures by M. I. Schlesinger, attended by the author.

(a) (b)
Figure 4. In these instances with (4, ®) = (RU{—o0}, +),
the nodes and the shown edges have values 0, and the edges
not shown have values —oco. Cyclic repetition of the de-
picted local equivalent transformations decreases the value
of edge e to an arbitrarily small value, keeping all other
values unchanged.

where the power in (7) is taken using operation &.

Proof. Using that ® distributes over max, open the
parentheses in (6) and write it as a single maximum
of elements. It turns out that these elements will be
all the elements present in (2b) plus some additional
ones, i.e., F(g) = max{F(g), - }. Hence F(g) < F(g).

It is easy to verify that any a,b € A satisfy
a®b < (max{a,b})? (8)

To see this, suppose a < b (if not, swap a and b). Since
max{a,b} = b, (8) reads a ® b < b2, But this is true,
by setting ¢ = b in the axiom (1).

By induction, (8) can be generalized to ).

i=1

(max?_, a;)". Hence F(g) < (max; g;)/TI*IEl, [

CL1'<

A good approximation of F(g) can be obtained by
minimizing (or at least decreasing) the upper bounds
over the equivalence class of g (or its subset). This can
be done using a sequence of suitable local equivalent
transformations, in other words, by a block-coordinate
descent. Recall, (block-)coordinate descent is a method
that in every iteration minimizes a given criterion over
a single variable (or a set of variables), keeping the
other variables fixed. In our case, the free variables
are the values g, and { gu 2ov | 2’ € X } on a single
pencil (¢,t’, ), while all other values g; are fixed. That
is, every iteration is a local equivalent transformation.

As will be shown later, arc consistency algorithms and
max-sum diffusion monotonically decrease the quan-
tity max; g;, hence the second upper bound in (7). It
is tempting to interpret these algorithms as a block-
coordinate descent to minimize max; g;. This interpre-
tation is flawed because the bound does not decrease
strictly, i.e., in every iteration the bound either de-
creases or remains unchanged. We will show that what
these algorithms do is a block-coordinate descent on a
different criterion.

Definition 4. For g € A!, let sortg denote the ele-
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ment of AT obtained by sorting the components g; of g
in the descending order w.r.t. <. Let <jox denote the
lexicographic order on AT induced by <.

We define the relations C and C on AT by
(8'Cg) <«
(g'Ceg <«

(sort g’ <jex sortg)
(' C g) A (sort g’ # sort g)

It is easy to see that the relation C is a total order?.
We say that g € A’ is minimal w.r.t. C on a set G C
Al iff g C g for all g’ € G. Theorem 3 is a trivial
consequence of the fact that C is a total order.

Theorem 3. Any set G C Al contains at most one
element that is minimal w.r.t. C.

Proof. Set G is totally ordered by C. It is well-known
that if a totally (unlike partially) ordered set contains
a minimal element than this element is unique. [ ]

By letting G to be the set of value vectors reachable by
all local equivalent transformations on a single pencil
(t,t’,x), we obtain the main result of our paper.

Proposition 1. Arc consistency algorithms and maz-
sum diffusion can be interpreted as the block-coordinate
descent where in every iteration, value vector g is min-
imized w.r.t. © by a local equivalent transformation.

Let g and g’ be the value vector before and after any
non-vacuous iteration (i.e., such that g’ # g). Then
clearly g’ C g, meaning that g is strictly decreased
w.r.t. C. In contrast, we have the implication

’ I < )
(&'Ce = (rgglxgz < maxg; (9)

but g’ C g does not imply max; g; < max; g;. Hence,
if g stricly decreases w.r.t. C then max; g; either de-
creases or remains unchanged.

Importantly, the order C allows to define optimal in-
stances in a new way: rather than minimizing any of
the bounds in (7) on the equivalence class, we mini-
mize g w.r.t. C. Doing this does not seem to have any
immediate practical advantage but it is very natural
matematically because (by Theorem 3) this new op-
timum is unique. This is in contrast to the fact that
the value vector g minimizing any bound in (7) is typ-
ically not unique because many components of g can
be freely changed (within the equivalence class). An
interesting example of this follows.

Example 4. Let G be the equivalence class of the
instance in Figure 4a. This instance minimizes max; g;

4As the logical expression g’ C g is invariant to per-
muting the elements of g and g’, it would be also possible
to define the relation T on unordered tuples (multisets)
rather than on ordered tuples of elements from A.

a1
as ;
2 x
az @

t' t

Figure 5. The values entering an arc consistency transfor-
mation on pencil (¢,t', ), for X = {1,2,3}.

on G but it is not minimal w.r.t. C because edge e can
be decreased by the depicted reparameterization. In
contrast, the instance in Figure 4b is minimal w.r.t. C
on G (and, by (9), minimizes also min; g;). [

5. Arc Consistency

This section defines arc consistency and an algorithm
to achieve it in the algebraic framework developed in §2
and §3. It will turn out that this algorithm is the block-
coordinate descent from Proposition 1 for a special
class of valuation structures.

Definition 5. Pencil (t,t',x) is arc consistent if
Gt = MAX Grtt za! (10)
Note, arc consistency does not depend on ®.

Definition 6. An arc consistency transformation
on pencil (t,t' ) is a local equivalent transformation
that makes the pencil arc consistent.

Doing an arc consistency transformation on pencil
(t,t', x) means solving the system of two equations (3)
and (10) for g; , and { g;;/ v | 2" € X }. Dropping the
indices t, ',z (which are constant because we consider
only a single pencil (t,t',z)) and denoting

li / / /
&= Ggtx, @ = gt,a:? Ay = Gtt! ,xx's Qg :gtt’,mx’ (11)

(see Figure 5), this system reads

d®ay =a®ay Vo' e X (12a)
a' = max al, (12b)
r’'eX

Given a and a,/, (12) has to be solved for a’ and a/,.

The arc consistency transformation is well defined only
on a subclass of valuation structures.

Definition 7. Valuation structure (A,<,®) is an
AC-valuation structure if the system (12) has a
single solution a',al,, for any a,a, € A.

The solution of (12) cannot be given in closed form.
Only a’ can be given in closed form. Maximizing (12a)
over ' and substituting (12b) in (12a) yields

, , 1/2
a' = maxal, = (a ® max aw/) (13)
r’eX r'eX

This shows that on an AC-valuation structure, semi-
group (A, ®) must possess the unique square root, i.e.,
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equation 22 = £ ® £ = @ must have a unique solution

x = a'/? for any a € A.
Algorithm 1. (Arc consistency algorithm)

loop

e Choose an arc inconsistent pencil (if none exists,
halt). This choice can be arbitrary such that every
pencil has a non-zero probability to be chosen.

e Do arc consistency transformation on the pencil.

end loop

Conjecture 1. Let (A, <, ®) be an AC-valuation
structure. Then Algorithm 1 converges to a state where
all pencils are arc-consistent.

The proof of this conjecture is known if the operation
® is idempotent® (more in §6.1) but it is unknown if
(A, ®) = (R,4), i.e., for max-sum diffusion.

Theorem 4 below shows that the arc consistency trans-
formation strictly decreases g w.r.t. C. For its proof,
we will need Lemma, 1.

Lemma 1. Let J C I. Let g, g' € Al satisfy g; = g/
for alli € T\ J. Then the following implication holds:

: i ! 14
(ninea;cgz<r?€a3<g) — (g'cg) (14

Proof. Obvious and hence omitted. [ |

Theorem 4. Let g and g’ be an instance before and
after applying the arc consistency transformation on
any arc inconsistent pencil, respectively. Then g' C g.

Proof. Let (t,t',2) be an arc inconsistent pencil and
let J={({x)}U{{{t,z),{ )} |z € X}

Let a and a’ be given as in (11) and b = maxy et/ pq -
By (13), we have ¢/ = (a ® b)!/2.

As (A, ®) has the unique square root (§5), (8) implies
(a®b)'/? < max{a,b}. As (t,t',z) is arc inconsistent,
we have a # b. It can be shown that a # b implies
that the inequality in (8) is strict. Therefore we have
(a®b)'/? = a’ < max{a,b}. But o’ < max{a,b} is the
same as max;ecy g, < max;cj gi;- Apply Lemma 1. H

6. Particular Cases of VCSPs

This section will give concrete examples of the valua-
tion structure (A, <, ®) to which the results obtained
in the above developed algebraic framework apply.

6.1. Max-min CSP

Let (A, <) be an arbitrary totally ordered set and let
® be the minimum induced by <. Then (4, <,®) is
an AC-valuation structure. We will call this VCSP the
maz-min CSP.

5 An operation ® is idempotent if a ® a = a.

Figure 6. In the max-min CSP (i.e., (4,®) = (R, min)),
the arc consistency transformation of the pencil in (a) re-
sults in (b). In the max-sum CSP (i.e., (4,®) = (R, +)),
the arc consistency transformation of (a) results in (c).

As the minimum is idempotent, a®a = min{a,a} = a,
we have (max g)/”1*1#! = maxg in (7).
The arc consistency transformation is given by

(15a)
(15Db)

d = min{ a, Max Ay }
r'eX

al, = min{ a, a, } V' e X

An example is in Figure 6. It can be verified that (15)
is the unique solution to (12).

It is known (Bistarelli et al., 1999b; Bistarelli & Gad-
ducci, 2006; Cooper & Schiex, 2004) that for the max-
min CSP, Algorithm 1 converges in a finite number
of iterations and the result does not depend on their
order. This proves Conjecture 1.

6.2. The Crisp CSP

The crisp CSP is the max-min CSP where A has only
two elements. The natural choice is A = {0,1} and
0 < 1. The numbers g; , and g+ 5, encode unary and
binary relations, and the task is to find a labeling x €
X7 that satisfies all the relations. The CSP instance
is satisfiable if F(g) = 1 and unsatisfiable if F(g) = 0.

Theorem 2 has the following meaning. We have
F(g) = 0 iff all nodes in any variable ¢ or all edges in
any variable pair {¢,t¢'} are zero, i.e., max, g, , = 0 or
maXy o gt .z = 0. Clearly, in this case the instance
is unsatisfiable, which is what inequality F(g) < F(g)
says. The second upper bound, max; g;, is zero iff all
nodes and edges in the whole instance are zero.

Algorithm 1 is the well-known discrete relaxation
labeling (arc consistency algorithm) (Waltz, 1972;
Rosenfeld et al., 1976; Hentenryck et al., 1992).

6.3. Max-sum CSP

Let A = RU {—o0}, let < be the natural order, and
let ® be the ordinary addition. Then (4,<,®) is
an AC-valuation structure. We will call the resulting
VCSP the maz-sum CSP. Details on it can be found
in survey (Werner, 2005; Werner, 2007).

The upper bound (6) becomes Schlesinger’s max-sum
upper bound (Schlesinger, 1976b; Werner, 2007),

F(g)=) maxgi.+ Y  max gw e (16)
teT {t,t'Yep "’
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Minimizing (16) by reparameterizations (5) reads
min{ F(g +Ap) | p e R" } (17)

where A is the matrix with elements {—1,0,+1} such
that the formula g’ = g+ A is the formula (5) for ®
replaced with + and © replaced with —. Problem (17)
is convex and can be posed and a linear programming.

The linear programming dual of (17) is the well-known
linear programming relaxation of the max-sum CSP
(Schlesinger, 1976b; Koster et al., 1998; Chekuri et al.,
2001; Wainwright et al., 2005)

maX{gT/‘l’ ‘ w2z 0, Mtz = Z tt! xa’s Zﬂt,x = 1}

r'eX zeX
where p € RY is a vector with components p; , and
M o', Often called pseudomarginals.

As shown in (Werner, 2007), the optimum of prob-
lem (17) is the same as the optimum of

min { (|7| + |E|) max(g + Ap) | ¢ € R" }  (18)
where max g/, for g’ = g+ A¢p, denotes max; g;. This
is the second upper bound in (7).
The system (12) has the closed form solution
1
!

a = = a—|—maxa/)
2( z’'eX r

/ /!
Ay = Qg +0a—a

(19a)

V' e X (19Db)

An example is in Figure 6. The case when a and/or a,
equals —oo must be handled separately but this is easy.
Algorithm 1 becomes max-sum diffusion (Kovalevsky
& Koval, approx 1975; Werner, 2005; Werner, 2007).

Algorithm 1 need not find the global minimum of
problem (17), as observed by (Schlesinger, 1976a)
and reviewed in (Werner, 2007). This is because
(block-)coordinate descent is not guaranteed to find
the global minimum of a nonsmooth convex problem
(17) (Werner & Shekhovtsov, 2007).

6.4. Modifications of Max-sum CSP

In the max-sum CSP, it is of interest to consider other
value sets than A = RU {—o0}.

Setting A = R simplifies things since (R, +) is a group.
This case corresponds to MAP inference in MRF.

If A are the rational numbers, (4, <, ®) remains to be
an AC-valuation structure. This case is very similar
to A = R, since the optima of linear programs with
rational coefficient are rational.

If A are the integer numbers, (A, <, ®) is no longer an
AC-valuation structure. Thus Algorithm 1 cannot be
used. However, we can still do the block-coordinate

descent as given in Proposition 1.

7. Conclusion

We have given a unified algebraic framework includ-
ing arc consistency (Hentenryck et al., 1992), discrete
relaxation labeling (Rosenfeld et al., 1976), max-sum
diffusion (Kovalevsky & Koval, approx 1975), and,
more broadly, sequential message passing algorithms
for MAP inference in MRF (Wainwright et al., 2005;
Kolmogorov, 2006). This has also showed that max-
sum diffusion can be naturally considered a soft gen-
eralization of crisp arc consistency algorithm, as dis-
cussed in (Cooper & Schiex, 2004; Cooper et al., 2007).

As part of this framework, we have given a criterion
that strictly decreases during the arc consistency al-
gorithm. Importantly, this allows to define optimal
CSP instances in a new way, such that every equiv-
alence/reparameterization class contains at most one
optimal instance. It also shows that arc consistency al-
gorithms, relaxation labeling, and max-sum diffusion
can be seen as an algorithm to decrease this new cri-
terion by (block)-coordinate descent.
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