What Is Decreased by the Max-sum Arc Consistency Algorithm?

Tomáš Werner

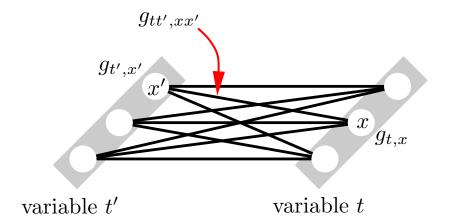
Center for Machine Perception Czech Technical University Prague, Czech Republic

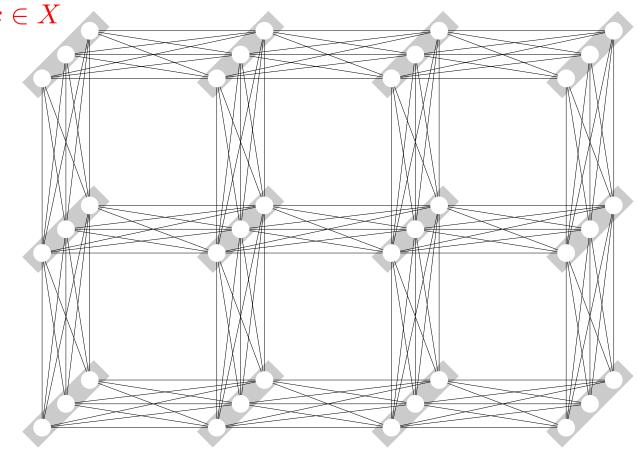
ICML 2007, Corvallis

- Finding maximum of a MRF-defined distribution: Problem formulation
- Background: Not widely-known approach to solving the problem
 - Minimizing LP-based upper bound [Schlesinger-76]
 - Max-sum diffusion algorithm [Koval-Kovalevsky-76]
 - Example on syntactic image analysis
- Contribution 1: Max-sum diffusion is an arc consistency algorithm
- Contribution 2: Strictly monotonically decreasing criterion

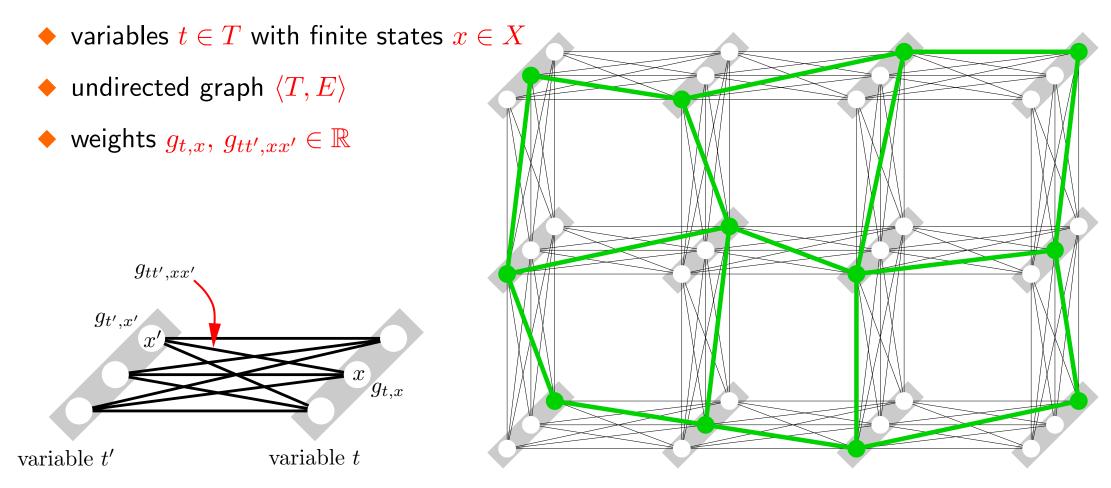
Undirected graphical model (MRF) with max. cliques of size 2 is given by

- \blacklozenge variables $t \in T$ with finite states $x \in X$
 - undirected graph $\langle T, E \rangle$
 - igle weights $g_{t,x}, \, g_{tt',xx'} \in \mathbb{R}$





Undirected graphical model (MRF) with max. cliques of size 2 is given by

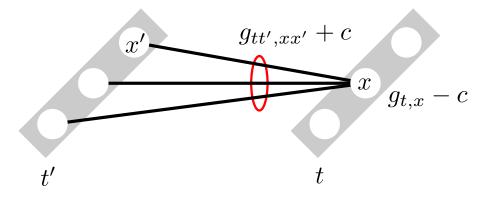


• weight of configuration $\mathbf{x} \in X^T$: $F(\mathbf{x} | \mathbf{g}) = \sum_{t \in T} g_{t,x_t} + \sum_{\{t,t'\} \in E} g_{tt',x_tx_{t'}} \propto \log p(\mathbf{x} | \mathbf{g})$

find maximum over all configurations: $F(\mathbf{g}) = \max_{\mathbf{x} \in X^T} F(\mathbf{x} | \mathbf{g})$

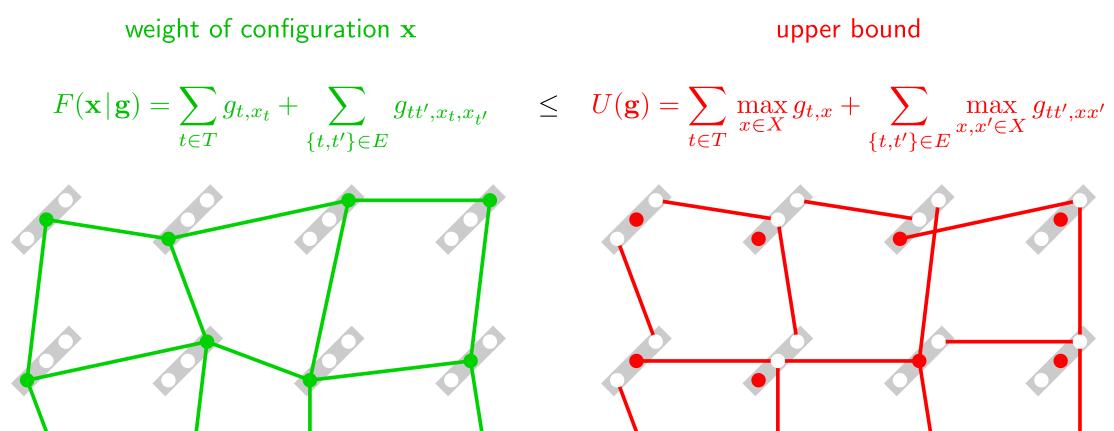
• Weight vectors \mathbf{g} and \mathbf{g}' are equivalent iff $F(\mathbf{x} | \mathbf{g}) = F(\mathbf{x} | \mathbf{g}')$ for all $\mathbf{x} \in X^T$.

• Elementary equivalent transformation (reparameterization) on pencil $\langle t, t', x \rangle$:



• Every equivalence class is competely covered by composing these transformations.

 $igodoldsymbol{\in}$ Every equivalence class is an affine subspace of the space of possible weight vectors \mathbf{g} .

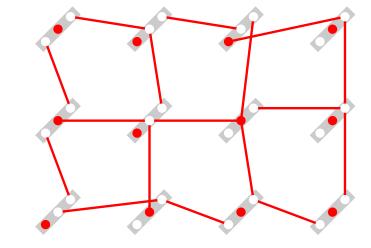


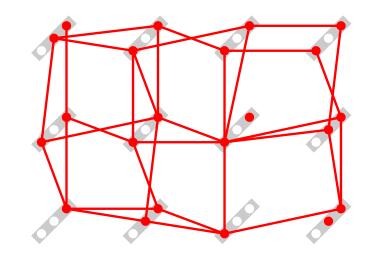
• $F(\mathbf{x}|\mathbf{g}) = U(\mathbf{g})$ iff configuration \mathbf{x} is composed of maximal nodes and edges. If such a configuration exists, then $F(\mathbf{g}) = U(\mathbf{g})$. The approach to compute (an approximation of) $F(\mathbf{g})$ [Schlesinger-76]

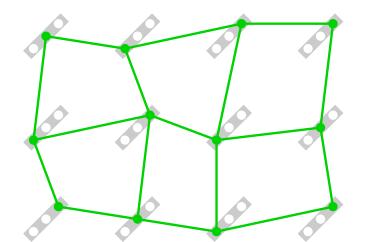
1. Minimize $U(\mathbf{g})$ by equivalent transformations (LP)

2. Try to find a configuration \mathbf{x} composed of maximal nodes and edges (CSP, CLP):

- if such a configuration exists, we have an exact solution
- if not, we have only a strict upper bound







Minimizing $U(\mathbf{g})$ by equivalent transformations is an LP.

 An identical upper bound was given in a different form (convex combination of trees) by [Wainwright-Jordan-Jaakkola-05].

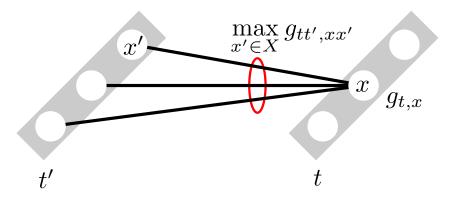
• Its LP dual reads
$$\max\left\{ \left. \mathbf{g}^{\top} \boldsymbol{\mu} \right| \, \boldsymbol{\mu} \geq \mathbf{0}, \, \mu_{t,x} = \sum_{x' \in X} \mu_{tt',xx'}, \, \sum_{x \in X} \mu_{t,x} = 1 \right\}$$

which is the LP relaxation proposed independently by [Schlesinger-76,Koster-98,Chekuri-01]. The feasible set is an outer approximation of marginal polytope [Wainwright-Jordan-03].

LP relaxation is very successful in tackling large instances of the problem. In practice, a good approximation or even an exact solution is often obtained.

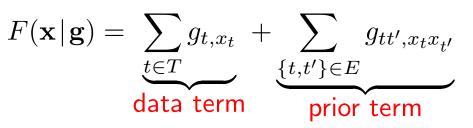
Repeat for all pencils $\langle t, t', x \rangle$ in any order:

• Do equivalent transformation that enforces equality $g_{t,x} = \max_{x' \in X} g_{tt',xx'}$

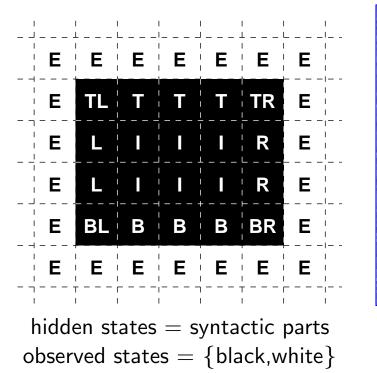


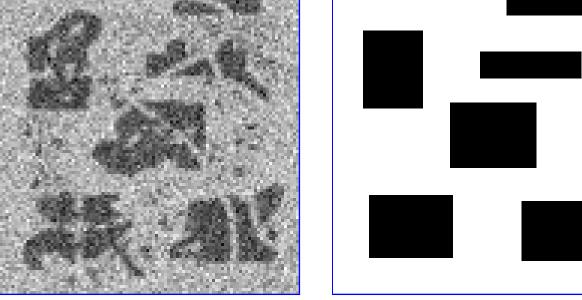
- igstarrow Monotonically (but not strictly) decreases $U({f g})$
- Converges to a fixed point
- $igodoldsymbol{\bullet}$ Need not find the minimal $U(\mathbf{g})$ but often does
- Special case of sequential tree-reweighted message passing (TRW-S) by [Wainwright-Jordan-Jaakkola-05,Kolmogorov-06]: trees are individual variables and variable pairs
- Resembles max-sum loopy BP but essentially different: always converges

- \blacklozenge variables T are pixels, graph $\langle T, E \rangle$ is the image grid
- $X = \{ E, I, L, R, T, B, TL, TR, BL, BR \}$ are syntactic parts of a rectangle



Data term: distance between image given by configuration x and input image
 Prior term: log-probability of configuration x of syntactic parts





input image

output image (result of MAP inference)

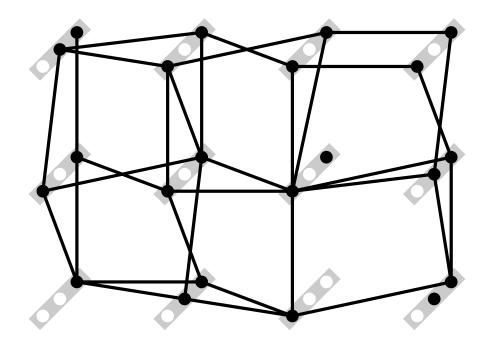
If operation + is replaced with an abstract operation \otimes , max-sum diffusion still works!

◆ Valued constraint satisfaction problem (VCSP) [Schiex-95,Bistarelli-99]

$$F(\mathbf{x} | \mathbf{g}) = \bigotimes_{t \in T} g_{t, x_t} \otimes \bigotimes_{\{t, t'\} \in E} g_{tt', x_t x_{t'}}$$

- $g_{t,x}, g_{tt',xx'} \in A$
- A is a (finite or infinite) totally ordered set
- \otimes is associative, commutative, closed in A, and satisfies $a \leq b \Rightarrow (a \otimes c) \leq (b \otimes c)$

• $\langle A, \otimes \rangle = \langle \{0, 1\}, \min \rangle$ yields classical CSP: find a configuration satisfying given relations

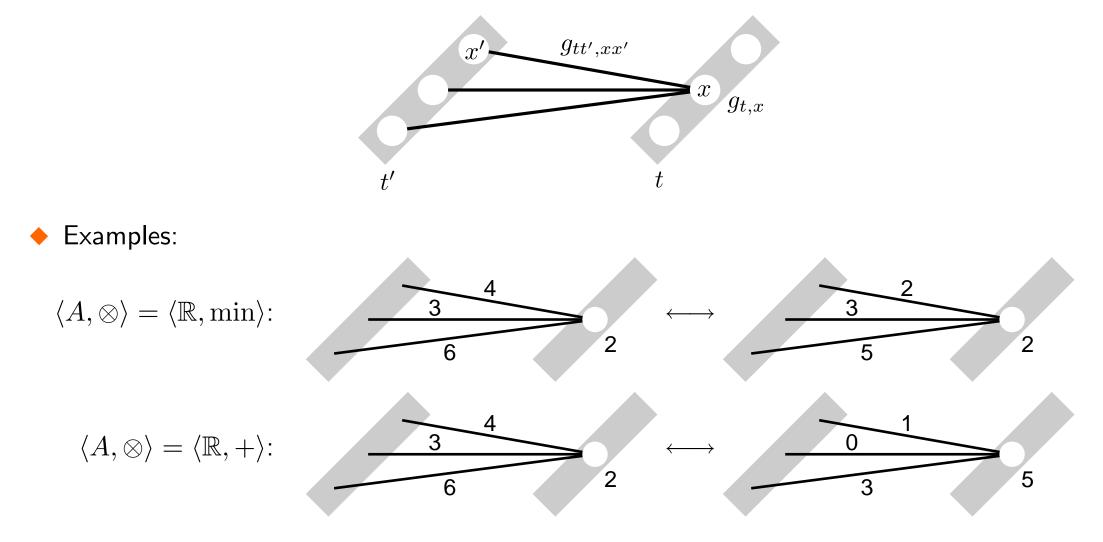


- $\langle A, \otimes \rangle = \langle \mathbb{R}, \min \rangle$ yields max-min CSP: find a configuration optimal in maximin sense
- $\langle A, \otimes \rangle = \langle \mathbb{R}, + \rangle$ yields weighted (max-sum) CSP: find a configuration maximizing a MRF-defined pdf
- $\blacklozenge \langle A, \otimes \rangle = \langle \mathbb{R} \cup \{-\infty\}, + \rangle :$

max-sum CSP where some states or state pairs are forbidden

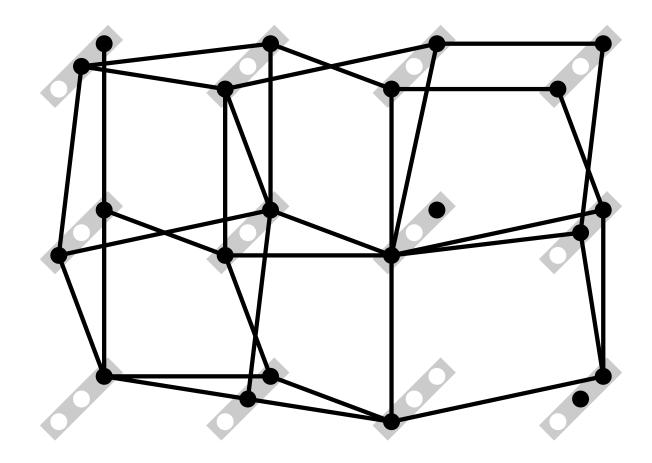
• Local equivalent transformation on pencil $\langle t, t', x \rangle$ is a change of weights in the pencil that preserves function $F(\cdot | \mathbf{g})$.

In other words, such that expression $g_{t,x} \otimes g_{tt',xx'}$ remains unchanged for all $x' \in X$.



• Equivalence classes need not be completely covered by these transformations.

• Arc consistency (AC) is long known for classical CSP [Waltz-72,Rosenfeld-76].



Today, large literature on AC and other local consistencies exists:

Many generalizations of AC to VCSPs have been proposed [Bistarelli-etal,Cooper-Schiex,...]:

- successful for VCSPs with idempotent aggregation operation $(a \otimes a = a)$
- difficult for max-sum CSP.

• Arc consistency (AC) is long known for classical CSP [Waltz-72,Rosenfeld-76].

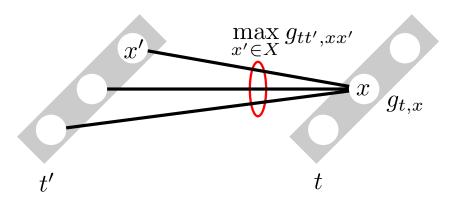


Today, large literature on AC and other local consistencies exists:

Many generalizations of AC to VCSPs have been proposed [Bistarelli-etal,Cooper-Schiex,...]:

- successful for VCSPs with idempotent aggregation operation $(a \otimes a = a)$
- difficult for max-sum CSP.

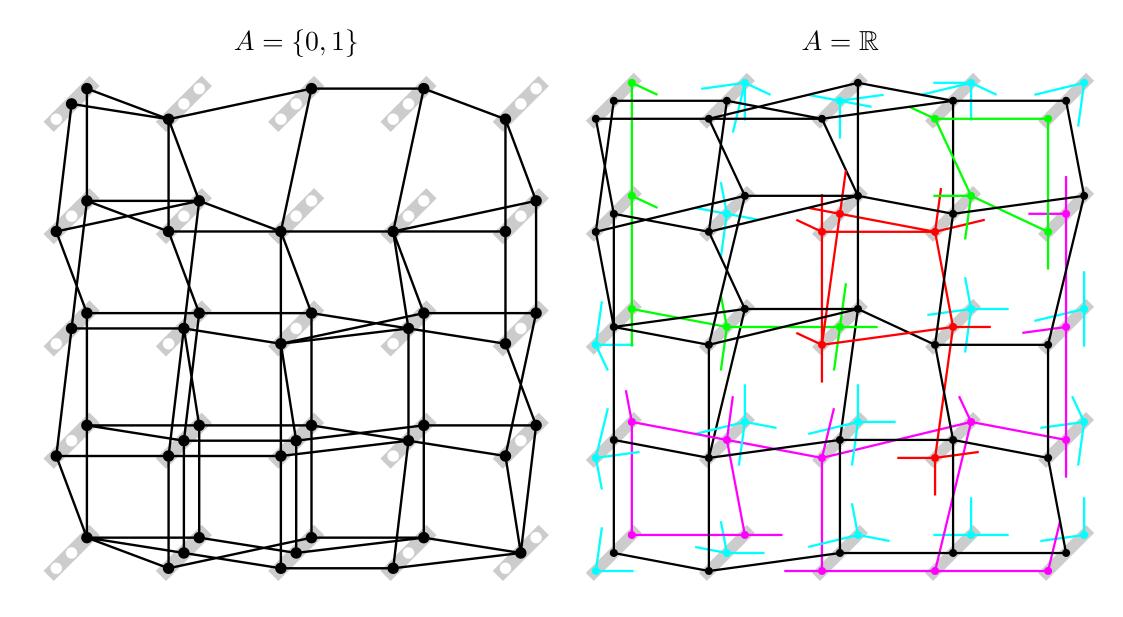
• Pencil $\langle t, t', x \rangle$ is arc consistent (AC) if $g_{t,x} = \max_{x' \in X} g_{tt',xx'}$



- AC transformation on pencil $\langle t, t', x \rangle$ is the local equivalent transformation that makes the pencil arc consistent.
- AC algorithm repeats AC transformation on all pencils (in arbitrary order).
 Its fixed points are called AC closures of g.

This definition of AC algorithm unifies known AC algorithms and max-sum diffusion. Max-sum diffusion is revealed to be the max-sum AC algorithm!

Examples of AC closures



Max-sum diffusion (= max-sum arc consistency algorithm) is

- extremely simple
- extremely difficult to analyze.

Examples of open theoretical problems:

- Prove convergence in parameter.
- Find a criterion that strictly monotonically decreases.

• Leximax (pre)order:

$$\mathbf{g}' \leq_{\text{leximax}} \mathbf{g} \quad \Longleftrightarrow \quad \text{sort} \, \mathbf{g}' \leq_{\text{lex}} \text{sort} \, \mathbf{g}$$

where

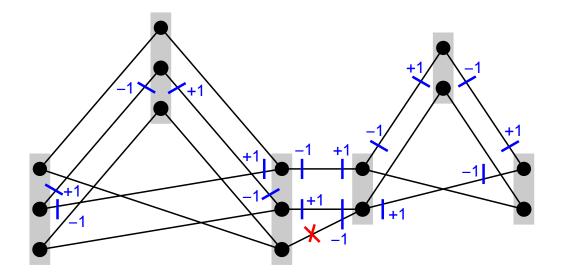
- sort g denotes vector g with entries sorted decreasingly;
- \leq_{lex} denotes the lexicographic order induced by \leq .

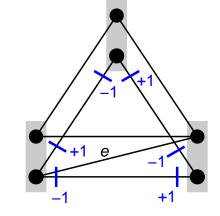
• Example: $\langle 3, 0, 2, 0, 3 \rangle <_{\text{leximax}} \langle 1, 3, 0, 2, 3 \rangle$ because $\langle 3, 3, 2, 0, 0 \rangle <_{\text{lex}} \langle 3, 3, 2, 1, 0 \rangle$

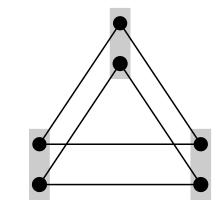
• Main result: Let g' be the weight vector after a non-vacuous AC transformation of a vector g. Then $g' <_{leximax} g$.

 AC algorithm can be interpreted as a coordinate descent method to minimize the leximax criterion.

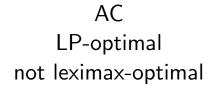
- Max-sum CSP g is leximax-optimal iff no equivalent problem g' exists such that $g' \leq_{leximax} g$.
- leximax-optimality \implies LP-optimality \implies AC
- Uniqueness: Every equivalence class contains at most one leximax-optimal instance.







AC not LP-optimal not leximax-optimal



AC LP-optimal leximax-optimal

Conclusion

- Max-sum diffusion (and, more generally, message passing algorithms to minimize convex upper bounds) has been linked to arc consistency, well-known in constraints community.
- Max-sum diffusion has naturally turned out to be the max-sum arc-consistency algorithm.
- This can be seen as a continuation of two well-known seminal papers:
 - relaxation labeling [Rosenfeld-76] (= a different name for AC algorithm)
 - generalized distributive law [Aji-McEliece-00].

- A strictly decreasing criterion has been given.
 AC algorithms are coordinate descent methods to minimize this criterion.
- Every equivalence class contains a single instance optimal w.r.t. the new criterion.

Side effect: Making max-sum diffusion known.