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Outline

¢ Finding maximum of a MRF-defined distribution: Problem formulation
¢ Background: Not widely-known approach to solving the problem

e Minimizing LP-based upper bound [Schlesinger-76]

e Max-sum diffusion algorithm [Koval-Kovalevsky-76]

e Example on syntactic image analysis
¢ Contribution 1: Max-sum diffusion is an arc consistency algorithm

¢ Contribution 2: Strictly monotonically decreasing criterion



Finding maximum of MRF-defined (= Boltzmann) distribution

Undirected graphical model (MRF) with max. cliques of size 2 is given by

& variables ¢t € T" with finite states z € X

¢ undirected graph (T, F)

¢ weights g; », g/ 2o € R

gtt' xx’

gt’,x’
/

X \
i

variable ¢

variable t/

| N N
i i i
_ iy iy, i
i oy /] i -
i i i
i i i




Finding maximum of MRF-defined (= Boltzmann) distribution 4

Undirected graphical model (MRF) with max. cliques of size 2 is given by

& variables ¢t € T" with finite states z € X
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¢ undirected graph (T, F) -
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¢ weight of configuration x € X7 F(x|g) = th z, T Z 9it! wpw, X logp(x|g)
teT {tt'}eE

¢ find maximum over all configurations: F(g) = max F(x|g)
xcXT



Equivalent instances, reparameterizations

¢ Weight vectors g and g’ are equivalent iff F(x|g) = F(x|g’) forall x € X7,

¢ Elementary equivalent transformation (reparameterization) on pencil (t,t', x):
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¢ Every equivalence class is competely covered by composing these transformations.

¢ Every equivalence class is an affine subspace of the space of possible weight vectors g.



Upper bound [Schlesinger-etal-76] 6

weight of configuration x upper bound
< — / /
F(x|g) =) gret D, Gwwa, < UlR=) maxg.+ » AX Gt
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¢ F(x|g) =U(g) iff configuration x is composed of maximal nodes and edges.
If such a configuration exists, then F(g) =U(g).



The approach to compute (an approximation of) F(g) [Schlesinger-76]

1. Minimize U(g) by equivalent transformations (LP)

composed of maximal nodes and edges (CSP, CLP):
¢ if such a configuration exists, we have an exact solution

¢ if not, we have only a strict upper bound

2. Try to find a configuration x



Minimizing the upper bound

Minimizing U(g) by equivalent transformations is an LP.

¢ An identical upper bound was given in a different form (convex combination of trees) by
[Wainwright-Jordan-Jaakkola-05].

¢ Its LP dual reads max { g ( B0, e = frees S e =1 }
r'eX reX
which is the LP relaxation proposed independently by [Schlesinger-76,Koster-98,Chekuri-01].

The feasible set is an outer approximation of marginal polytope [Wainwright-Jordan-03].

LP relaxation is very successful in tackling large instances of the problem. In practice, a
good approximation or even an exact solution is often obtained.



Max-sum diffusion [Kovalevsky-Koval-76]

Repeat for all pencils (¢, x) in any order:

¢ Do equivalent transformation that enforces equality g; . = max giy/ ;.
T e

/ maX gtt/’xa;-/
HS x
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¢ Monotonically (but not strictly) decreases U(g)
¢ Converges to a fixed point

¢ Need not find the minimal U(g) but often does

¢ Special case of sequential tree-reweighted message passing (TRW-S) by
[Wainwright-Jordan-Jaakkola-05,Kolmogorov-06]: trees are individual variables and variable
pairs

¢ Resembles max-sum loopy BP but essentially different: always converges



Syntactic image analysis: ‘Rectangles’
¢ variables T" are pixels, graph (T, E) is the image grid
¢ X={E I, L R T, B, TL, TR, BL, BR } are syntactic parts of a rectangle

teT {t,t’'}eFE
data term prior term

¢ Data term: distance between image given by configuration x and input image

¢ Prior term: log-probability of configuration x of syntactic parts
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hidden states = syntactic parts input image output image

observed states = {black,white} (result of MAP inference)
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Valued constraint satisfaction problem

If operation + is replaced with an abstract operation @, max-sum diffusion still works!

¢ Valued constraint satisfaction problem (VCSP) [Schiex-95,Bistarelli-99]

X | g ® gt,xy %Y ® gt S LTy

teT {t,t'}cE

¢ Gt,xy Gtt' xa’ cA
o A'is a (finite or infinite) totally ordered set

e X is associative, commutative, closed in A, and satisfies
a<b = (a®c) < (b®c)
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Examples of VCSPs

¢ (A, ®) = ({0,1},min) yields classical CSP:
find a configuration satisfying given relations

¢ (A, ®) = (R, min) yields max-min CSP:
find a configuration optimal in maximin sense

¢ (A, ®) = (R,+) yields weighted (max-sum) CSP:
find a configuration maximizing a MRF-defined pdf

¢ (A,®) = RU{-o0},+):
max-sum CSP where some states or state pairs are forbidden
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Local equivalent transformations of VCSP

Local equivalent transformation on pencil (¢,t', z) is a change of weights in the pencil
that preserves function F'(-|g).

In other words, such that expression g: » ® g4 ..’ remains unchanged for all z’ € X.
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Examples:

(A, ®) = (R, min)

(A, ®) =

e %>
> %>

Equivalence classes need not be completely covered by these transformations.



Arc consistency: history

Arc consistency (AC) is long known for classical CSP [Waltz-72,Rosenfeld-76].
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Today, large literature on AC and other local consistencies exists:
Many generalizations of AC to VCSPs have been proposed [Bistarelli-etal,Cooper-Schiex,...]:
successful for VCSPs with idempotent aggregation operation (a ® a = a)

difficult for max-sum CSP.
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Arc consistency

¢ Pencil (t,t',x) is arc consistent (AC) if g¢, = max gy 4o
x!' e ’
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¢ AC transformation on pencil (t,t’, ) is the local equivalent transformation that makes
the pencil arc consistent.

¢ AC algorithm repeats AC transformation on all pencils (in arbitrary order).
lts fixed points are called AC closures of g.

This definition of AC algorithm unifies known AC algorithms and max-sum diffusion.

Max-sum diffusion is revealed to be the max-sum AC algorithm!
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Examples of AC closures




Challenges in theory of max-sum diffusion

Max-sum diffusion (= max-sum arc consistency algorithm) is
¢ extremely simple

¢ extremely difficult to analyze.

Examples of open theoretical problems:
¢ Prove convergence in parameter.

¢ Find a criterion that strictly monotonically decreases.
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Strictly decreasing criterion

¢ Leximax (pre)order:
g/ Sleximax & <=  sort g’ <lex SOTt g

where
e sort g denotes vector g with entries sorted decreasingly;
o <iex denotes the lexicographic order induced by <.

¢ Example: (3,0,2,0,3) <jeximax (1,3,0,2,3) because (3,3,2,0,0) <jex (3,3,2,1,0)

¢ Main result: Let g’ be the weight vector after a non-vacuous AC transformation of a
vector g. Then g’ <ieximax &-

¢ AC algorithm can be interpreted as a coordinate descent method to minimize the
leximax criterion.
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Uniqueness of leximax optimality

¢ Max-sum CSP g is leximax-optimal iff no equivalent problem g’ exists such that
g/ Sleximax g.

¢ leximax-optimality = LP-optimality =— AC

¢ Uniqueness: Every equivalence class contains at most one leximax-optimal instance.

& N

AC AC AC
not LP-optimal LP-optimal LP-optimal
not leximax-optimal not leximax-optimal leximax-optimal
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Conclusion

Max-sum diffusion (and, more generally, message passing algorithms to minimize convex
upper bounds) has been linked to arc consistency, well-known in constraints community.

Max-sum diffusion has naturally turned out to be the max-sum arc-consistency
algorithm.

This can be seen as a continuation of two well-known seminal papers:
relaxation labeling [Rosenfeld-76] (= a different name for AC algorithm)

generalized distributive law [Aji-McEliece-00].

A strictly decreasing criterion has been given.
AC algorithms are coordinate descent methods to minimize this criterion.

Every equivalence class contains a single instance optimal w.r.t. the new criterion.

Side effect: Making max-sum diffusion known.



