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Outline 2

� Finding maximum of a MRF-defined distribution: Problem formulation

� Background: Not widely-known approach to solving the problem

• Minimizing LP-based upper bound [Schlesinger-76]

• Max-sum diffusion algorithm [Koval-Kovalevsky-76]

• Example on syntactic image analysis

� Contribution 1: Max-sum diffusion is an arc consistency algorithm

� Contribution 2: Strictly monotonically decreasing criterion



Finding maximum of MRF-defined (= Boltzmann) distribution 3

Undirected graphical model (MRF) with max. cliques of size 2 is given by

� variables t ∈ T with finite states x ∈ X

� undirected graph 〈T,E〉

� weights gt,x, gtt′,xx′ ∈ R

variable tvariable t′

gt,x

gt′,x′

gtt′,xx′

x′

x
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� weight of configuration x ∈ XT : F (x |g) =
∑
t∈T

gt,xt +
∑

{t,t′}∈E

gtt′,xtxt′
∝ log p(x |g)

� find maximum over all configurations: F (g) = max
x∈XT

F (x |g)



Equivalent instances, reparameterizations 5

� Weight vectors g and g′ are equivalent iff F (x |g) = F (x |g′) for all x ∈ XT .

� Elementary equivalent transformation (reparameterization) on pencil 〈t, t′, x〉:

t′ t

gtt′,xx′ + c

gt,x − c

x′

x

� Every equivalence class is competely covered by composing these transformations.

� Every equivalence class is an affine subspace of the space of possible weight vectors g.



Upper bound [Schlesinger-etal-76] 6

weight of configuration x upper bound

F (x |g) =
∑
t∈T

gt,xt +
∑

{t,t′}∈E

gtt′,xt,xt′
≤ U(g) =

∑
t∈T

max
x∈X

gt,x +
∑

{t,t′}∈E

max
x,x′∈X

gtt′,xx′

� F (x |g) = U(g) iff configuration x is composed of maximal nodes and edges.
If such a configuration exists, then F (g) = U(g).



The approach to compute (an approximation of) F (g) [Schlesinger-76] 7

1. Minimize U(g) by equivalent transformations (LP)

2. Try to find a configuration x
composed of maximal nodes and edges (CSP, CLP):

� if such a configuration exists, we have an exact solution

� if not, we have only a strict upper bound



Minimizing the upper bound 8

Minimizing U(g) by equivalent transformations is an LP.

� An identical upper bound was given in a different form (convex combination of trees) by
[Wainwright-Jordan-Jaakkola-05].

� Its LP dual reads max
{

g>µ
∣∣∣ µ ≥ 0, µt,x =

∑
x′∈X

µtt′,xx′,
∑
x∈X

µt,x = 1
}

which is the LP relaxation proposed independently by [Schlesinger-76,Koster-98,Chekuri-01].
The feasible set is an outer approximation of marginal polytope [Wainwright-Jordan-03].

LP relaxation is very successful in tackling large instances of the problem. In practice, a
good approximation or even an exact solution is often obtained.



Max-sum diffusion [Kovalevsky-Koval-76] 9

Repeat for all pencils 〈t, t′, x〉 in any order:

� Do equivalent transformation that enforces equality gt,x = max
x′∈X

gtt′,xx′

gt,x

t′ t

max

x′∈X
gtt′,xx′

x′

x

� Monotonically (but not strictly) decreases U(g)

� Converges to a fixed point

� Need not find the minimal U(g) but often does

� Special case of sequential tree-reweighted message passing (TRW-S) by
[Wainwright-Jordan-Jaakkola-05,Kolmogorov-06]: trees are individual variables and variable
pairs

� Resembles max-sum loopy BP but essentially different: always converges



Syntactic image analysis: ‘Rectangles’ 10

� variables T are pixels, graph 〈T,E〉 is the image grid

� X = {E, I, L, R, T, B, TL, TR, BL, BR } are syntactic parts of a rectangle

F (x |g) =
∑
t∈T

gt,xt︸ ︷︷ ︸
data term

+
∑

{t,t′}∈E

gtt′,xtxt′︸ ︷︷ ︸
prior term

� Data term: distance between image given by configuration x and input image

� Prior term: log-probability of configuration x of syntactic parts
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hidden states = syntactic parts input image output image

observed states = {black,white} (result of MAP inference)



Valued constraint satisfaction problem 11

If operation + is replaced with an abstract operation ⊗, max-sum diffusion still works!

� Valued constraint satisfaction problem (VCSP) [Schiex-95,Bistarelli-99]

F (x |g) =
⊗
t∈T

gt,xt ⊗
⊗

{t,t′}∈E

gtt′,xtxt′

• gt,x, gtt′,xx′ ∈ A

• A is a (finite or infinite) totally ordered set

• ⊗ is associative, commutative, closed in A, and satisfies
a ≤ b ⇒ (a⊗ c) ≤ (b⊗ c)



Examples of VCSPs 12

� 〈A,⊗〉 = 〈{0, 1},min〉 yields classical CSP:
find a configuration satisfying given relations

� 〈A,⊗〉 = 〈R,min〉 yields max-min CSP:
find a configuration optimal in maximin sense

� 〈A,⊗〉 = 〈R,+〉 yields weighted (max-sum) CSP:
find a configuration maximizing a MRF-defined pdf

� 〈A,⊗〉 = 〈R ∪ {−∞},+〉 :
max-sum CSP where some states or state pairs are forbidden



Local equivalent transformations of VCSP 13

� Local equivalent transformation on pencil 〈t, t′, x〉 is a change of weights in the pencil
that preserves function F ( · |g).

In other words, such that expression gt,x ⊗ gtt′,xx′ remains unchanged for all x′ ∈ X.

t
′ t

gtt′,xx′

gt,x

x
′

x

� Examples:

〈A,⊗〉 = 〈R,min〉: 3

6

4

2
←→ 3

2

2

5

〈A,⊗〉 = 〈R,+〉: 3

6

4

2
←→

1
0

3 5

� Equivalence classes need not be completely covered by these transformations.



Arc consistency: history 14

� Arc consistency (AC) is long known for classical CSP [Waltz-72,Rosenfeld-76].

� Today, large literature on AC and other local consistencies exists:

� Many generalizations of AC to VCSPs have been proposed [Bistarelli-etal,Cooper-Schiex,...]:

• successful for VCSPs with idempotent aggregation operation (a⊗ a = a)

• difficult for max-sum CSP.
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Arc consistency 16

� Pencil 〈t, t′, x〉 is arc consistent (AC) if gt,x = max
x′∈X

gtt′,xx′

gt,x

t′ t

max

x′∈X
gtt′,xx′

x′

x

� AC transformation on pencil 〈t, t′, x〉 is the local equivalent transformation that makes
the pencil arc consistent.

� AC algorithm repeats AC transformation on all pencils (in arbitrary order).

Its fixed points are called AC closures of g.

This definition of AC algorithm unifies known AC algorithms and max-sum diffusion.

Max-sum diffusion is revealed to be the max-sum AC algorithm!



Examples of AC closures 17

A = {0, 1} A = R



Challenges in theory of max-sum diffusion 18

Max-sum diffusion (= max-sum arc consistency algorithm) is

� extremely simple

� extremely difficult to analyze.

Examples of open theoretical problems:

� Prove convergence in parameter.

� Find a criterion that strictly monotonically decreases.



Strictly decreasing criterion 19

� Leximax (pre)order:

g′ ≤leximax g ⇐⇒ sortg′ ≤lex sortg

where

• sortg denotes vector g with entries sorted decreasingly;

• ≤lex denotes the lexicographic order induced by ≤.

� Example: 〈3, 0, 2, 0, 3〉 <leximax 〈1, 3, 0, 2, 3〉 because 〈3, 3, 2, 0, 0〉 <lex 〈3, 3, 2, 1, 0〉

� Main result: Let g′ be the weight vector after a non-vacuous AC transformation of a
vector g. Then g′ <leximax g.

� AC algorithm can be interpreted as a coordinate descent method to minimize the
leximax criterion.



Uniqueness of leximax optimality 20

� Max-sum CSP g is leximax-optimal iff no equivalent problem g′ exists such that
g′ ≤leximax g.

� leximax-optimality =⇒ LP-optimality =⇒ AC

� Uniqueness: Every equivalence class contains at most one leximax-optimal instance.
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Conclusion 21

� Max-sum diffusion (and, more generally, message passing algorithms to minimize convex
upper bounds) has been linked to arc consistency, well-known in constraints community.

� Max-sum diffusion has naturally turned out to be the max-sum arc-consistency
algorithm.

� This can be seen as a continuation of two well-known seminal papers:

• relaxation labeling [Rosenfeld-76] (= a different name for AC algorithm)

• generalized distributive law [Aji-McEliece-00].

� A strictly decreasing criterion has been given.

AC algorithms are coordinate descent methods to minimize this criterion.

� Every equivalence class contains a single instance optimal w.r.t. the new criterion.

� Side effect: Making max-sum diffusion known.


