
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY IN PRAGUE

H
A
B
IL
IT
A
T
IO
N
T
H
E
S
IS

Approximate Inference

in Graphical Models

Tomáš Werner

October 20, 2014

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz

Contents

1 Introduction 2

2 Background 3

2.1 Graphical Models . 3
2.2 Inference in Graphical Models . 4
2.3 Example . 6

3 Contributions 7

3.1 Review of the LP Relaxation Approach 7
3.2 Interactions of Arbitrary Arity 8
3.3 Semiring-based Generalization . 8
3.4 Universality of the Local Marginal Polytope 10
3.5 An Insight into Belief Propagation 10

Bibliography 11

Attached Publications 16

1

Chapter 1

Introduction

Graphical models combine graph theory and probability theory to a general
formalism to model interactions of a set of variables. The formalism finds many
applications in pattern recognition, artificial intelligence, computer vision, and
other disciplines. A basic operation with a graphical model is inference, which
requires computation of either the maximum or the marginals of the probability
distribution defined by the model. Up to rare cases, computing these quantities
is intractable and one has to recourse to approximative algorithms.

This thesis documents my contributions to approximate inference in graphi-
cal models. My baseline was an old and widely unknown (but recently rediscov-
ered) approach to maximizing the distribution by Schlesinger et al., based on
linear programming relaxation. I generalized this approach, which enabled han-
dling interactions of arbitrary arity, constructing a hierarchy of progressively
tighter relaxations, and incrementally tightening the relaxation in a cutting
plane fashion. Then I generalized the resulting message-massing algorithm in
yet another way, based on the concept of commutative semiring. This unified
it with several other algorithms, in particular constraint propagation widely
used in constraint programming. Finally, I used insights obtained from the LP
relaxation framework to derive an alternative view on the dynamics of loopy
belief propagation, a famous algorithm to approximate marginals of a graphical
model.

The thesis has the form of a collection of selected publications, endowed with
an introductory text. Chapter 2 gives background on graphical models and in
Chapter 3 surveys our novel contributions. Then a collection of publications,
which were referred to in Chapter 3, follows.

2

Chapter 2

Background

In this chapter, we review the formalism of graphical models and their applica-
tions. Then we define the two problems needed to make inference in graphical
models, the sum-product problem and the max-product problem.

2.1 Graphical Models

The most general way how to model interaction of a set of variables is by speci-
fying their joint probability distribution. Unless the number of variables is very
small, such a distribution in its unrestricted form is impossible to represent
in the computer or estimate from data. This ‘curse of dimensionality’ can be
avoided by restricting the form of the distribution to be a product of functions,
each depending on only a subset of the variables. Formally, let our set of vari-
ables be V , where a variable v ∈ V attains states xv from some finite domain
Xv. Let E ⊆ 2V be a system of variable subsets, thus (V,E) can be understood
as a hypergraph and A ∈ E as a hyperedge. The joint distribution then has the
form

p(xV) =
1

Z(f)

∏

A∈E

fA(xA) (2.1)

where xA = (xv | v ∈ A) denotes the joint state of subset A ⊆ V of the
variables and each fA is a function that maps xA to a non-negative number.
We assume the variable domains Xv to be finite, thus fA is represented by an
|A|-dimensional array. The distribution is normalized by the partition function

Z(f) =
∑

xV

∏

A∈E

fA(xA). (2.2)

For example, let V = (1, 2, 3, 4) and E = {(1, 2), (1, 3), (2, 3, 4)}. Then

p(xV) = p(x1, x2, x3, x4) =
1

Z(f)
f12(x1, x2) f13(x1, x3) f234(x2, x3, x4)

where
Z(f) =

∑

x1,x2,x3,x4

f12(x1, x2) f13(x1, x3) f234(x2, x3, x4).

Suppose now that each variable has 3 states, |Xv| = 3 for all v. Then the
number of all possible functions p(xV) in unrestricted form is 34 = 81, whereas
the number of all possible functions in the form (2.1) is only 32 + 32 + 33 = 45.

3

We have just described the basic idea behind graphical models (Lauritzen,
1996; Bishop, 2006; Wainwright and Jordan, 2008). Two types of graphical
models exist, directed and undirected. Distribution (2.1) is known as the Gibbs
distribution, modeled by an undirected graphical model known as Gibbs random
field (which is slightly more general than more widely known Markov random
field). In the thesis, we focus on graphical models in this very general form.

The formalism of graphical models can be applied in a remarkably wide range
of settings, see e.g. (Wainwright and Jordan, 2008, section 2.4). Acyclic graphi-
cal models (Markov chains or Markov models) have proven extremely successful
in speech recognition and bioinformatics (Durbin et al., 1999). General graphi-
cal models have been applied to bioinformatics (Kingsford et al., 2005; Sanchez
et al., 2008), artificial intelligence, combinatorial optimization, economics, op-
timal assignment of radio link frequencies (Koster et al., 1998; Aardal et al.,
2007), internet data mining, and error-correcting codes (Wainwright and Jor-
dan, 2008, §2.4.7). In image analysis, they have been used in denoising, texture
modeling, segmentation, 3-dimensional reconstruction (incl. segmentation in 3-
D and space carving), in-painting, recognition, image registration, and optical
flow. In every recent conference on computer vision or machine learning, several
new contributions on graphical models appear.

A strong feature of graphical models is multidisciplinarity – they are subject
to research in at least the following disciplines:

• Statistical physics (Mézard and Montanari, 2009; Mézard, 2003) aims to
understand how macroscopic properties of matter result from random be-
havior of locally interacting particles. A famous example is the explanation
of ferromagnetism from interaction of spin orientations by the Ising model.

• Pattern recognition, machine learning, and computer vision (Lauritzen,
1996; Koller and Friedman, 2009; Bishop, 2006; Wainwright and Jordan,
2008) aim at developing algorithms for intelligent processing of noisy in-
formation on a computer, often motivated by similar abilities of living
organisms.

• Constraint programming (Rossi et al., 2006) is motivated by the idea that
rather than to specify how to fulfill the task at hand (by giving a code), it
is often more convenient to specify what should be fulfilled (by giving a set
of constraints). The core of constraint programming is the constraint satis-
faction problem, which seeks to satisfy given relations over given subsets of
variables. Recently, this (crisp) constraint satisfaction has been extended
to the weighted constraint satisfaction (Rossi et al., 2006, chapter 9), which
is isomorphic to our maximization problem.

Vast literature on graphical models exists within each discipline but transfer
of results across discipline borders is hindered by different terminologies and
backgrounds. Though each discipline focuses on different aspects of graphical
models, there is one aspect in common: modeling a (complex) global behavior
of a system by (simple) local interactions of its parts. Arguably, this emergence
of global from local is most interesting and profound about graphical models.

2.2 Inference in Graphical Models

Inference in a graphical model means to compute the states of a subset of
the variables V (hidden variables) from the states of the remaining variables
(observed variables). According to the Bayesian decision theory, this is formal-

4

ized as minimizing the expectation of a given loss function, which specifies the
penalty for incorrect decisions. Two loss functions are most common:

• One results in maximizing the marginal distribution of each hidden variable
separately (maximum posterior marginal or MPM inference). Then the
inference algorithms require computing expressions of the type

∑

xV

∏

A∈E

fA(xA), (2.3)

which is known as the max-product problem.

• The other results in maximizing the joint distribution over all hidden vari-
ables (maximum a posteriori or MAP inference). It follows that the infer-
ence algorithms require computing expressions of the type

max
xV

∏

A∈E

fA(xA), (2.4)

which is known as the max-product problem.

The sets V,E and the functions fA in (2.4) and (2.3) are not the same as in (2.1)
because we sum or maximize only over the hidden variables. We adopted this
simplification to avoid extra notation.

Calculating expressions (2.4) and (2.3) is intractable, requiring to sum or
maximize over all states xV of all the variables (an exponential number of el-
ements). The most notable tractable subclass is formed by the problems with
an acyclic structure (the factor graph defined by E is a tree), which can be ex-
actly solved by dynamic programming and related algorithms (Aji and McEliece,
2000). Otherwise, we have to recourse to approximate inference. Algorithms
for approximate inference underwent three revolutions in the past (the last one
continues still today):

• In Gibbs sampling (Geman and Geman, 1984), samples are drawn from
the distribution by local operations and accumulating these samples yields
estimates of (max-)marginals.

• Loopy belief propagation (Pearl, 1988). Belief propagation is a finite al-
gorithm, similar to dynamic programming, to compute (max-)marginals
of distribution (2.1) on an acyclic (hyper)graph E. If applied to a cyclic
(hyper)graph (which is straightforward), it often converges to a fixed point
which yields surprisingly good approximations of (max-)marginals for many
practical problems. The reason of this behavior is not well understood.

• Algorithms based on linear programming (LP) relaxation (Shlezinger, 1976;
Werner, 2007b; Kolmogorov, 2006; Wainwright and Jordan, 2008). The
max-product problem can be cast as an integer linear programming, the re-
laxation of which is tight for a large class of problems, much larger than just
acyclic ones. This class includes also supermodular problems (Schlesinger
and Flach, 2000; Werner, 2007b), which can be solved very efficiently by
max-flow algorithms (Kolmogorov and Zabih, 2002; Schlesinger and Flach,
2006).

It is interesting that despite its very natural formulation, the max-product prob-
lem in its full generality has not been studied in mathematical optimization, only
its subproblems such as the max-cut problem (Deza and Laurent, 1997) have
been studied.

5

2.3 Example

To get the flavor of inference algorithms, let our distribution model the class
of images containing non-overlapping letters ‘Π’ of arbitrary width and height,
an example is the right-most image below. Let V be the set of pixels and let
E ⊆

(
V
2

)
be the set of pairs of neighboring pixels. Each variable v attains states

xv from the set Xv = {E, I,T, L,R,TL,TR}, representing syntactic parts of the
letter Π. Let fv(yv |xv) be the probability that pixel v has color yv given that it
has state xv. Let fuv(xu, xv) be 1 if syntactic parts xu and xv are ever incident
(in the left picture below) and 0 otherwise. Then

p(xV , yV) =
1

Z(f)

∏

v∈V

fv(yv |xv)

︸ ︷︷ ︸

data

∏

uv∈E

fuv(xu, xv)

︸ ︷︷ ︸

prior

(2.5)

is the joint probability of an image xV formed by the syntactic parts (hidden
variables) and an input image yV (observed variables). Maximizing p(xV , yV)
over xV yields the most probable image from the class, given the input image yV .
Note that the normalization factor Z(f) can be omitted in the maximization.

Maximization is done by iterating a simple local operation, which converges
to an optimum of the dual LP relaxation (Shlezinger, 1976; Werner, 2007b).
Despite the problem is neither acyclic nor supermodular, its LP relaxation is
often tight (the exact maximum is been found). This allows us to ‘parse’ even
very noisy images to its syntactic parts, as seen on the figure. Note that the
linear program we solve is large-scale – in case of large images it can easily
have millions of variables. A physicist could see this as ‘statistical mechanics of
images’: complex global patterns emerge from simple local interactions fuv.

EEEEEEE EEEEEEE EEEEEEE EEEEEEE EEEEEEE EEEEEEEE E E E E E

E E

E E

E E

E E

E E E E E

I I

I I

I I

L

L

L R

R

R

TT

E

TL TR

syntactic parts input image yV output image xV

of letter ‘Π’

6

Chapter 3

Contributions

This chapter surveys my contributions to approximate inference in graphical
models in the form (2.1). The contributions are divided into four groups, de-
scribed in the four sections below. For each group, all relevant publications are
cited, of which a subset is selected, which is indicated at the end of each section.
These selected publication are included as part of the thesis.

3.1 Review of the LP Relaxation Approach

My interest in graphical models began around the year 2000 when I attended
several lectures given by Mikhail I. Schlesinger from the Glushkov Institute
of Cybernetics in Kiev, Ukraine, who was visiting our department that time.
It turned out that he formulated the basics of the LP relaxation approach to
the max-product problem as early as in 1970’s (Shlezinger, 1976). The ap-
proach consisted in minimizing an upper bound on the true (intractable) max-
imum (2.4) by linear transformations of (the logarithm of) f that preserve the
distribution (2.1). This leads to a linear program, which in fact was dual to the
LP relaxation of the original problem. Schlesinger and his colleagues proposed
algorithms to minimize the upper bound: a very simple distributed (‘message
passing’) algorithm nicknamed ‘max-sum diffusion’ (Kovalevsky and Koval, ap-
prox. 1975) and the algorithm (Koval and Schlesinger, 1976).

I became attracted by the topic and wanted to contribute to it. However,
the approach was not known in computer vision and related fields, and even the
current work by Schlesinger and Flach (2000) was somewhat disconnected from
the main-stream literature. In fact, active knowledge of optimization of a typi-
cal computer vision researcher that time rarely reached beyond the Levenberg-
Marquardt algorithm. Having worked on multiple view geometry before, I was
no exception and had a hard time to understand the approach. Therefore, before
attempting any novel contribution, I decided to first write a review (Werner,
2005, 2007b) which would summarize the approach of Schlesinger et al. in the
modern terminology, relate it to the current state of the art, and re-implement
the algorithms. The topic turned out to be very multifaceted and I found
lots of relevant papers from quite different fields, many of them using different
formulations and terminology. Interestingly, it further turned out that a simi-
lar approach was independently discovered approximately at the same time by
Wainwright et al. (2005) and Kolmogorov (2006).

Publications included in the thesis: (Werner, 2007b)

7

3.2 Interactions of Arbitrary Arity

The arity of an interaction fA is the number of variables on which it depends,
that is, |A|. The LP relaxation approach described above was formulated only
for interactions of arity at most 2 (often called ‘binary’, ‘pairwise’, or ‘second-
order’ interactions), such as in (2.5). Seemingly, this is without any loss of
generality because any non-binary interaction can be represented by combining
binary interactions. However, representing some high-arity interactions need an
exponential number of binary interactions. Moreover, this translation destroys
symmetry. Therefore, I wanted to generalize the approach to handle interactions
of arbitrary arity natively , without translating them to binary interactions and
without sacrificing symmetry.

First I derived the LP relaxation approach for a very general family of dis-
tributions known as the (discrete) exponential family (Wainwright and Jordan,
2008), which contains distributions of type (2.1) but also other distributions.
This is described in the technical report (Werner, 2009). Most of this report
was written in fact much earlier than in 2009.

Then I took a less general view, considering only distributions of the form (2.1).
This resulted in a surprisingly elegant framework with several desirable proper-
ties:

• It is applicable to interactions of arbitrary arity but it is at the same time
very simple. The algorithm is a direct extension of max-sum diffusion as I
formulated it in (Werner, 2007b).

• It straightforwardly allows to construct a partially-ordered hierarchy of
progressively tighter LP relaxations. Compared with the existing method
by Wainwright et al. (2005) to construct such a hierarchy by combining
(hyper-)trees, this is much simpler.

• It is easy to tighten the relaxation incrementally during max-sum diffusion,
resulting in fact in a (dual) cutting plane algorithm.

• It can be easily proved that the algorithm exactly solves problems with
supermodular interactions of any arity.

The framework is described in (Werner, 2008a, 2010a). The hierarchy of LP
relaxations and the cutting plane algorithm are revisited in the book chapter
(Franc et al., 2012), where, I believe, they reached a mature state.

Publications included in the thesis: (Werner, 2010a) and (Franc et al.,
2012)

3.3 Semiring-based Generalization

Expressions of type (2.4) and (2.3) can be unified using abstract operations
⊕ and ⊗. Suppose that the numbers fA(xA) belong to some set S, the two
operations ⊕ and ⊗ are associative and commutative on S, and ⊗ distributes
over ⊕. In other words, the triplet (S,⊕,⊗) defines a commutative semiring .
By choosing different semirings, the expression

⊕

xV

⊗

A∈E

fA(xA) (3.1)

can now capture many different problems, for example:

• Semiring (R+,+,×) yields the sum-product problem (2.3).

8

• Semiring (R+,max,×) yields the max-product problem (2.4).

• The max-sum semiring (R ∪ {−∞},max,+) is isomorphic (via logarithm)
to the max-product semiring (R+,max,×), hence yielding an isomorphic
problem.

• The Boolean semiring ({0, 1},max,min) yields the classical constraint sat-
isfaction problem (Mackworth, 1991).

• Semiring ([0, 1],max,min) yields the fuzzy constraint satisfaction problem
(Rosenfeld et al., 1976).

The fact that certain problems and algorithms can be unified using the semir-
ing formalism has been observed several times in pattern recognition (Aji and
McEliece, 2000) and constraint programming, (Bistarelli et al., 1999) and (Rossi
et al., 2006, chapter 9).

I observed that max-sum diffusion (its arbitrary-arity form) can be naturally
generalized to a wide class of commutative semirings (Werner and Shekhovtsov,
2007; Werner, 2007a). Later I called the resulting algorithm enforcing marginal
consistency of the network f (Werner, 2008b, 2013, 2014). It provides inspiring
links between the disciplines of graphical models and constraint programming.
The algorithm is so natural and simple that it is surprising that it was not
proposed before. Let us describe its raw version:

• A local equivalent transformation of a pair (fA, fB) is any change of the
functions fA and fB that preserves the function

fA(xA)⊗ fB(xB) (3.2)

for all xA∪B . Clearly, this also preserves the function
⊗

A∈E fA(xA) for all
xV and therefore problem (3.1).

For example, let A = (1, 2), B = (2, 3, 4), and ⊗ be the usual multiplica-
tions. Then a local equivalent transformation on (fA, fB) is any change of
arrays f12 and f234 that preserves the expression f12(x1, x2)f234(x2, x3, x4)
for all x1, x2, x3, x4.

• A pair (fA, fB) is marginal-consistent if
⊕

xA\B

fA(xA) =
⊕

xB\A

fB(xB), (3.3)

that is, the variables shared by fA and fA have equal marginals.

For example, let A = (1, 2), B = (2, 3, 4), and ⊕ be maximization. Then
the pair (fA, fB) is marginal consistent if f12(x1, x2) = maxx3

f234(x2, x3, x4).

• Enforcing marginal consistency of a pair (fA, fB) is the local equivalent
transformation of the pair that makes it marginal-consistent. For most
semirings of interest, this transformation is (surprisingly) unique and can
be described by a simple rule.

• The algorithm to enforce marginal consistency of network f repeats the
following iteration: pick a pair of hyperedges, (A,B) with A,B ∈ E, and
enforce marginal consistency of (fA, fB). The pairs (A,B) can be picked
arbitrarily (for example, in a predefined fixed order), provided that every
pair is visited with a non-zero probability. The algorithm converges to a
state in which every pair of interactions is marginal-consistent.

For different semirings, the algorithm has different behavior and its fixed
points have different properties. For many semirings one obtains known al-
gorithms. For example, the Boolean semiring ({0, 1},max,min) yields the arc

9

consistency algorithm, ubiquitous in constraints satisfaction. Semiring (R ∪
{−∞},max,+) yields max-sum diffusion. For semiring (R+,+,×), the algo-
rithm can be used to strengthen arc consistency in the classical constraint sat-
isfaction problem (Werner, 2011a).

Publications included in the thesis: (Werner, 2014)

3.4 Universality of the Local Marginal Polytope

The LP relaxation reviewed in (Werner, 2007b, 2010a) is exact for a large class of
min-sum instances (e.g., all tractable languages with finite costs (Thapper and
Živný, 2012) and instances with bounded treewidth) and it is a basis for con-
structing good approximations for many other instances (Kappes et al., 2013).
It is therefore of great practical interest to have efficient algorithms to solve the
LP relaxation.

As LP is in the P complexity class, one might think that solving the LP
relaxation is easy, by off-the-self solvers. However, this is not so if we want to
solve large or very large instances that often occur, e.g., in computer vision.
For min-sum problems with pairwise interactions and 2 labels, the LP relax-
ation can be solved efficiently because it reduces in linear time to max-flow
(Boros and Hammer, 2002; Rother et al., 2007). For more general problems, no
really efficient algorithm is known. In particular, the well-known simplex and
interior point methods are not applicable, if only due to their quadratic space
complexity. Convergent message-passing algorithms (Kovalevsky and Koval,
approx. 1975; Werner, 2007b; Kolmogorov, 2006) and the Augmenting DAG /
VAC algorithm (Koval and Schlesinger, 1976; Cooper et al., 2010) do apply to
large-scale instances but they find only a local (rather than global) optimum of
the dual LP relaxation.

My colleague and me have shown (Pr̊uša and Werner, 2013, 2014; Živný
et al., 2014) that the quest for efficient algorithms to solve the LP relaxation of
the general min-sum problem has a fundamental limitation, because this task
is not easier than solving any linear program. Precisely, our most important
result says that every linear program can be reduced in linear time to the LP
relaxation of a max-sum problem (allowing infinite costs) with 3 labels. From
the polyhedral point of view, we have shown that every polytope is (up to scale)
a coordinate-erasing projection of a face of a local marginal polytope (which is
the feasible set of the LP relaxation) with 3 labels, whose description can be
computed from the input polytope in linear time. Later we proved a similar
(though somewhat weaker) result for a subclass of the max-sum problem, the
attractive Potts problem (also known as the metric labeling problem) (Pr̊uša
and Werner, 2015).

Publications included in the thesis: (Pr̊uša and Werner, 2014)

3.5 An Insight into Belief Propagation

Belief propagation (BP) is a well-known algorithm to approximate marginals
of the Gibbs distribution (2.1) – in other words, it tackles the sum-product
problem. It was proposed by Pearl (1988) and later generalized to interactions
of any arity by Kschischang et al. (2001). For acyclic (hyper-)graphs, BP always
converges and yields the exact marginals. For graphs with cycles, BP is not
guaranteed to converge but it was empirically observed that when it converges,

10

it often yields surprisingly good approximations of the true marginals. Attempts
to understand this behavior has generated a large body of literature, as surveyed
e.g. in (Wainwright and Jordan, 2008).

Some solid ground to understand BP was provided by Yedidia et al. (2000,
2005), who discovered that BP fixed points coincide with stationary points of
the Bethe variational problem, long known in statistical physics. This problem
consists in minimizing a non-convex function over an affine subspace. Though
this sheds light on the nature of BP fixed points , it does not explain the BP
algorithm because the variables in this algorithm (‘beliefs’) are infeasible to the
Bethe variational problem until convergence.

In (Werner, 2011b, 2010b), we offer an alternative, ‘dual’ view on the dy-
namics of the BP algorithm (‘dual’ is in quotes because the Bethe variational
problem is non-convex, therefore the classical Fenchel or Lagrange duality does
not apply). Here, the BP fixed points are shown to coincide with the stationary
points of a certain multivariate function (which we called the Bethe log-partition
function) without any constraints. The BP algorithm can be seen as a block-
coordinate search to find such a stationary point: in every iteration, we find (in
closed form) the stationary point of the Bethe log-partition function restricted
on a small subset of variables, the remaining variables being fixed. On condition
that the stationary points were local extremes (as is usual), this block-coordinate
search would necessarily converge. However, we showed they are saddle points ,
in which case the search may oscillate.

Publications included in the thesis: (Werner, 2010b)

11

Bibliography

K.I. Aardal, van Hoesel. C.P.M., A.M.C.A. Koster, C. Mannino, and A. Sassano.
Models and solution techniques for the frequency assignment problem. Annals
of Operations Research, 153:79–129, 2007.

Srinivas M. Aji and Robert J. McEliece. The generalized distributive law. IEEE
Trans. on Information Theory, 46(2):325–343, 2000.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer
Science+Bussiness Media, New York, NY, 2006.

S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and H. Fargier.
Semiring-based CSPs and valued CSPs: Frameworks, properties, and com-
parison. Constraints, 4(3):199–240, 1999.

Endre Boros and Peter L. Hammer. Pseudo-Boolean optimization. Discrete
Applied Mathematics, 123(1-3):155–225, 2002. ISSN 0166-218X.

M. C. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner.
Soft arc consistency revisited. Artificial Intelligence, 174(7-8):449–478, 2010.

Michel Marie Deza and Monique Laurent. Geometry of Cuts and Metrics.
Springer, Berlin, 1997.

R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Anal-
ysis. Cambridge University Press, 1999.

V. Franc, S. Sonnenburg, and T. Werner. Cutting plane methods in machine
learning. In S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization for
Machine Learning. MIT Press, 2012.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and
Bayesian restoration of images. IEEE Trans. Pattern Analysis Machine In-
telligence, 6:721–741, 1984.

Jörg H. Kappes, Bjoern Andres, Fred A. Hamprecht, Christoph Schnörr, Se-
bastian Nowozin, Dhruv Batra, Sungwoong Kim, Bernhard X. Kausler, Jan
Lellmann, Nikos Komodakis, and Carsten Rother. A comparative study of
modern inference techniques for discrete energy minimization problem. In
Conf. Computer Vision and Pattern Recognition, 2013.

Carleton L. Kingsford, Bernard Chazelle, and Mona Singh. Solving and ana-
lyzing side-chain positioning problems using linear and integer programming.
Bioinformatics, 21(7):1028–1039, 2005.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and
Techniques. MIT Press, 2009.

12

Vladimir Kolmogorov. Convergent tree-reweighted message passing for energy
minimization. IEEE Trans. Pattern Analysis and Machine Intelligence, 28
(10):1568–1583, 2006.

Vladimir Kolmogorov and Ramin Zabih. What energy functions can be min-
imized via graph cuts? In Eur. Conf. on Computer Vision, pages 65–81.
Springer-Verlag, 2002. ISBN 3-540-43746-0.

Arie Koster, C. P. M. van Hoesel, and A. W. J. Kolen. The partial constraint
satisfaction problem: Facets and lifting theorems. Operations Research Let-
ters, 23(3-5):89–97, 1998.

V. K. Koval and M. I. Schlesinger. Dvumernoe programmirovanie v zadachakh
analiza izobrazheniy (Two-dimensional programming in image analysis prob-
lems). Automatics and Telemechanics, 8:149–168, 1976. In Russian.

V. A. Kovalevsky and V. K. Koval. A diffusion algorithm for decreasing the
energy of the max-sum labeling problem. Glushkov Institute of Cybernetics,
Kiev, USSR. Unpublished, approx. 1975.

F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and the sum-
product algorithm. IEEE Trans. Information Theory, 47(2):498–519, 2001.

S. Lauritzen. Graphical Models. Oxford University Press, 1996.

A. Mackworth. Constraint satisfaction. In Encyclopaedia of Artificial Intelli-
gence, pages 285–292. Wiley, 1991.

M. Mézard. Passing messages between disciplines. Science, 301:1685–1686, 2003.

M. Mézard and A. Montanari. Information, Physics, and Computation. Oxford
University Press, Inc., New York, NY, USA, 2009.

Judea Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible
inference. Morgan Kaufmann, San Francisco, 1988.

Daniel Pr̊uša and Tomáš Werner. Universality of the local marginal polytope. In
Conf. on Computer Vision and Pattern Recognition, pages 1738–1743. IEEE
Computer Society, 2013.

Daniel Pr̊uša and Tomáš Werner. Universality of the local marginal poly-
tope. IEEE Trans. on Pattern Analysis and Machine Intelligence, PP(99):
1–1, 2014. ISSN 0162-8828. doi: 10.1109/TPAMI.2014.2353626. Electronic
preprint.

Daniel Pr̊uša and Tomáš Werner. How hard is the LP relaxation of the Potts
min-sum labeling problem? In Conf. on Energy Minimization Methods in
Computer Vision and Pattern Recognition, Hongkong. Springer, 2015. To
appear.

A. Rosenfeld, R. A. Hummel, and S. W. Zucker. Scene labeling by relaxation
operations. IEEE Trans. on Systems, Man, and Cybernetics, 6(6):420–433,
June 1976.

Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Con-
straint Programming. Elsevier, 2006.

13

Carsten Rother, Vladimir Kolmogorov, Victor S. Lempitsky, and Martin Szum-
mer. Optimizing binary MRFs via extended roof duality. In Conf. Computer
Vision and Pattern Recognition, Minneapolis, USA, 2007.

M. Sanchez, S. de Givry, and T. Schiex. Mendelian error detection in complex
pedigrees using weighted constraint satisfaction techniques. Constraints, 13
(1):130–154, 2008.

D. Schlesinger and B. Flach. Transforming an arbitrary minsum problem into a
binary one. Technical Report TUD-FI06-01, Dresden University of Technol-
ogy, 2006.

Michail I. Schlesinger and Boris Flach. Some solvable subclasses of structural
recognition problems. In Czech Pattern Recognition Workshop. Czech Pattern
Recognition Society, 2000.

M. I. Shlezinger. Syntactic analysis of two-dimensional visual signals in noisy
conditions. Cybernetics and Systems Analysis, 12(4):612–628, 1976. Transla-
tion from Russian.

Johan Thapper and Stanislav Živný. The power of linear programming for
valued CSPs. In Symp. Foundations of Computer Science, pages 669–678.
IEEE, 2012.

Stanislav Živný, Tomáš Werner, and Daniel Pr̊uša. The power of lp relaxation
for map inference. In S. Nowozin, P. V. Gehler, J. Jancsary, and C. Lampert,
editors, Advanced Structured Prediction. MIT Press, 2014. To appear.

M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via agreement
on (hyper)trees: message passing and linear programming approaches. IEEE
Trans. Information Theory, 51(11):3697–3717, 2005.

Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential
families, and variational inference. Foundations and Trends in Machine Learn-
ing, 1(1-2):1–305, 2008.

Tomáš Werner. A linear programming approach to max-sum problem: A review.
Technical Report CTU-CMP-2005-25, Center for Machine Perception, Czech
Technical University, December 2005.

Tomáš Werner. What is decreased by the max-sum arc consistency algorithm?
In Intl. Conf. on Machine Learning, Oregon, USA, June 2007a.

Tomáš Werner. A linear programming approach to max-sum problem: A review.
IEEE Trans. Pattern Analysis and Machine Intelligence, 29(7):1165–1179,
July 2007b.

Tomáš Werner. High-arity interactions, polyhedral relaxations, and cutting
plane algorithm for soft constraint optimisation (MAP-MRF). In Computer
Vision and Pattern Recognition Conf., Anchorage, USA, June 2008a.

Tomáš Werner. Marginal consistency: Unifying constraint propagation on com-
mutative semirings. In Intl. Workshop on Preferences and Soft Constraints,
pages 43–57, 2008b.

14

Tomáš Werner. Revisiting the decomposition approach to inference in exponen-
tial families and graphical models. Research Report CTU-CMP-2009-06, Cen-
ter for Machine Perception, K13133 FEE Czech Technical University, Prague,
Czech Republic, May 2009.

Tomáš Werner. Revisiting the linear programming relaxation approach to Gibbs
energy minimization and weighted constraint satisfaction. IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 32(8):1474–1488, August 2010a.

Tomáš Werner. Primal view on belief propagation. In Conf. on Uncertainty in
Artificial Intelligence, pages 651–657, July 2010b.

Tomáš Werner. How to compute primal solution from dual one in MAP inference
in MRF? Control Systems and Computers, March–April(2):35–45, 2011a.
ISSN 0130-5395.

Tomáš Werner. Zero-temperature limit of a convergent algorithm to minimize
the bethe free energy. Research Report CTU-CMP-2011-14, Center for Ma-
chine Perception, K13133 FEE Czech Technical University, Prague, Czech
Republic, December 2011b.

Tomáš Werner. Marginal consistency: Unifying convergent message passing and
constraint propagation. Research Report CTU-CMP-2013-26, Department
of Cybernetics, FEE Czech Technical University, Prague, Czech Republic,
October 2013.

Tomáš Werner. Marginal consistency: Upper-bounding partition functions over
commutative semirings. IEEE Trans. on Pattern Analysis and Machine In-
telligence, PP(99):1–1, 2014. ISSN 0162-8828. doi: 10.1109/TPAMI.2014.
2363833. Electronic preprint.

Tomáš Werner and Alexander Shekhovtsov. Unified framework for semiring-
based arc consistency and relaxation labeling. In 12th Computer Vision Win-
ter Workshop, St. Lambrecht, Austria, pages 27–34. Graz University of Tech-
nology, February 2007.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free-energy ap-
proximations and generalized belief propagation algorithms. IEEE Trans.
Information Theory, 51(7):2282–2312, 2005.

Jonathan Yedidia, William T. Freeman, and Yair Weiss. Generalized belief
propagation. In Neural Information Processing Systems, pages 689–695, 2000.

15

Attached Publications

As the rest of the thesis, we include copies of the following publications (in this
order):

• (Werner, 2007b),

• (Werner, 2010a),

• (Franc et al., 2012),

• (Pr̊uša and Werner, 2014),

• (Werner, 2014),

• (Werner, 2010b).

16

1TO APPEAR IN IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. 29, NO. 7, JULY 2007

A Linear Programming Approach to

Max-sum Problem: A Review
Tomáš Werner

Dept. of Cybernetics, Czech Technical University

Karlovo náměstı́ 13, 121 35 Prague, Czech Republic

Abstract— The max-sum labeling problem, defined as maximiz-
ing a sum of binary functions of discrete variables, is a general
NP-hard optimization problem with many applications, such as
computing the MAP configuration of a Markov random field. We
review a not widely known approach to the problem, developed
by Ukrainian researchers Schlesinger et al. in 1976, and show
how it contributes to recent results, most importantly those on
convex combination of trees and tree-reweighted max-product.
In particular, we review Schlesinger’s upper bound on the max-
sum criterion, its minimization by equivalent transformations, its
relation to constraint satisfaction problem, that this minimiza-
tion is dual to a linear programming relaxation of the original
problem, and three kinds of consistency necessary for optimality
of the upper bound. We revisit problems with Boolean variables
and supermodular problems. We describe two algorithms for de-
creasing the upper bound. We present an example application to
structural image analysis.

Index Terms— Markov random fields, undirected graphical
models, constraint satisfaction problem, belief propagation, lin-
ear programming relaxation, max-sum, max-plus, max-product,
supermodular optimization.

I. INTRODUCTION

The binary (i.e., pairwise) max-sum labeling problem is de-

fined as maximizing a sum of unary and binary functions of

discrete variables, i.e., as computing

max
x∈XT

[

∑

t∈T

gt(xt) +
∑

{t,t′}∈E

gtt′(xt, xt′)
]

,

where an undirected graph (T,E), a finite set X , and numbers

gt(xt), gtt′(xt, xt′) ∈ R∪{−∞} are given. It is a very general

NP-hard optimization problem, which has been studied and

applied in several disciplines, such as statistical physics, com-

binatorial optimization, artificial intelligence, pattern recogni-

tion, and computer vision. In the latter two, the problem is also

known as computing maximum posterior (MAP) configuration

of Markov random fields (MRF).

This article reviews an old and not widely known approach

to the max-sum problem by Ukrainian scientists Schlesinger

et al. and shows how it contributes to recent knowledge.

A. Approach by Schlesinger et al.

The basic elements of the old approach were given by

Schlesinger in 1976 in structural pattern recognition. In [1], he

generalizes locally conjunctive predicates by Minsky and Pa-

pert [2] to two-dimensional (2D) grammars and shows these

are useful for structural image analysis. Two tasks are con-

sidered on 2D grammars. The first task assumes analysis of

ideal, noise-free images: test whether an input image belongs

to the language generated by a given grammar. It leads to what

is today known as the Constraint Satisfaction Problem (CSP)

[3], or discrete relaxation labeling. Finding the largest arc

consistent subproblem provides some necessary but not suf-

ficient conditions for satisfiability and unsatisfiability of the

problem. The second task considers analysis of noisy images:

find an image belonging to the language generated by a given

2D grammar that is ‘nearest’ to a given image. It leads to the

max-sum problem.

In detail, paper [1] formulates a linear programming relax-

ation of the max-sum problem and its dual program. The dual

is interpreted as minimizing an upper bound to the max-sum

problem by equivalent transformations, which are redefinitions

of the the problem that leave the objective function unchanged.

The optimality of the upper bound is equal to triviality of the

problem. Testing for triviality leads to a CSP.

An algorithm to decrease the upper bound, which we called

augmenting DAG algorithm, was suggested in [1] and pre-

sented in more detail by Koval and Schlesinger [4] and fur-

ther in [5]. Another algorithm to decrease the upper bound

is a coordinate descent method, max-sum diffusion, discov-

ered by Kovalevsky and Koval [6] and later independently by

Flach [7]. Schlesinger noticed [8] that the termination crite-

rion of both algorithms, arc consistency, is necessary but not

sufficient for minimality of the upper bound. Thus, the algo-

rithms sometimes find the true minimum of the upper bound

and sometimes only decrease it to some point.

The material in [1], [4] is presented in detail in the book [9].

The name ‘2D grammars’ was later assigned a different mean-

ing in the book [10] by Schlesinger and Hlaváč. In their orig-

inal meaning, they largely coincide with MRFs.

By minimizing the upper bound, some max-sum problems

can be solved to optimality (the upper bound is tight) and some

cannot (there is an integrality gap). Schlesinger and Flach [11]

proved that supermodular problems have zero integrality gap.

B. Relation to Recent Works

Independently on the work by Schlesinger et al., a signifi-

cant progress has recently been achieved in the max-sum prob-

lem. This section reviews the most relevant newer results by

others and shows how they relate to the old approach.

2

1) Convex relaxations and upper bounds: It is common in

combinatorial optimization to approach NP-hard problems via

continuous relaxations of their integer programming formula-

tions. The linear programming relaxation given by Schlesinger

[1] is quite natural and has been suggested independently and

later by others: by Koster et al. [12], [13], who address the

max-sum problem as a generalization of CSP, the Partial CSP;

by Chekuri et al. [14] and Wainwright et al. [15]; and in bioin-

formatics [16]. Koster et al. in addition give two classes of

non-trivial facets of the Partial CSP polytope, i.e., linear con-

straints missing in the relaxation.

Max-sum problems with Boolean (i.e., two-state) variables

are a subclass of pseudo-Boolean and quadratic Boolean op-

timization, see e.g. the review [17]. Here, several different

upper bounds were suggested, which were shown equivalent

by Hammer et al. [18]. These bounds are in turn equivalent

to [1], [12], [14] with Boolean variables, as shown in [19].

Other than linear programming relaxations of the max-sum

problem have been suggested, such as quadratic [20], [21] or

semidefinite [22] programming relaxations. We will not dis-

cuss these.

2) Convex combination of trees: The max-sum problem has

been studied in terminology of graphical models, in particular

it is equivalent to finding MAP configurations of undirected

graphical models, also known as MRFs. This research primar-

ily focused on computing the partition function and marginals

of MRFs and approached the max-sum problem as the limit

case of this task.

Wainwright et al. [23] shows that a convex combination of

problems provides a convex upper bound on the log-partition

function of MRF. These subproblems can be conveniently cho-

sen as (tractable) tree problems. For the sum-product problem

on cyclic graphs, this upper bound is almost never tight. In the

max-sum limit (also known as the zero temperature limit) the

bound is tight much more often, namely if the optima on indi-

vidual trees share a common configuration, which is referred

to as tree agreement [15], [24]. Moreover, in the max-sum case

the bound is independent on the choice of trees. Minimizing

the upper bound is shown [15], [24] to be a Lagrangian dual

of a linear programming relaxation of the max-sum problem.

This relaxation is the same as in [1], [12], [14]. Besides di-

rectly solving this relaxation, tree-reweighted message passing

(TRW) algorithm is suggested to minimize the upper bound.

Importantly, it is noted [25], [26] that message passing can be

alternatively viewed as reparameterizations of the problem.

TRW is guaranteed neither to converge nor to decrease the

upper bound monotonically. Kolmogorov [27]–[30] suggests

its sequential modification (TRW-S) and conjectures that it

always converges to a state characterized by weak tree agree-

ment. He further shows that the point of convergence might

differ from a global minimum of the upper bound, however,

for Boolean variables [19], [31] they are equal.

The approach based on convex combination of trees is

closest to the approach by Schlesinger’s et al. The linear

programming relaxation considered by Wainwright is the

same as Schlesinger’s one. Reparameterizations correspond

to Schlesinger’s equivalent transformations. If the trees are

chosen as individual nodes and edges, Wainwright’s upper

bound becomes Schlesinger’s upper bound, tree agreement be-

comes CSP satisfiability, and weak tree agreement becomes arc

consistency. The convenient choice of subproblems as nodes

and edges is without loss of generality because Wainwright’s

bound is independent on the choice of trees.

The approach based on convex combination of trees is more

general than the approach reviewed in this article but the latter

is simpler, hence it may be more suitable for analysis. How-

ever, the translation between the two is not straightforward

and the approach by Schlesinger et al. provides the following

contributions to that by Wainwright et al. and Kolmogorov.

Duality of linear programming relaxation of the max-sum

problem and minimizing Schlesinger’s upper bound is proved

more straightforwardly by putting both problems into matrix

form [1], as is common in linear programming.

The max-sum problem is intimately related with CSP via

complementary slackness. This reveals that testing for tight-

ness of the upper bound is NP-complete, which has not been

noticed by others. It leads to a relaxation of CSP, which pro-

vides a simple way [8] to characterize spurious minima of the

upper bound. This has an independent value for CSP research.

The max-sum diffusion is related to TRW-S but has advan-

tage in its simplicity, which also might help further analysis.

With its combinatorial flavor, the Koval-Schlesinger augment-

ing DAG algorithm [4] is dissimilar to any recent algorithm

and somewhat resembles the augmenting path algorithm for

max-flow/min-cut problem.

3) Loopy belief propagation: It is long known that the sum-

product and max-sum problems on trees can be efficiently

solved by belief propagation and message passing [32]. When

applied to cyclic graphs, these algorithms were empirically

found sometimes to converge and sometimes not to, with

the fixed points (if any) sometimes being useful approxima-

tions. The main recent result [33] is that the fixed points of

this ‘loopy’ belief propagation are local minima a non-convex

function, known in statistical physics as Bethe free energy.

The max-sum diffusion resembles loopy belief propagation:

both repeat simple local operations and both can be interpreted

as a coordinate descent minimization of some functional. How-

ever, for the diffusion this functional is convex while for belief

propagation it is non-convex.

4) CSP and extensions: The CSP seeks to find values of

discrete variables that satisfy given logical constraints. Its ex-

tensions have been suggested in which the constraints become

soft and one seeks to maximize a criterion rather than satisfy

constraints. The max-sum problem is often closely related to

these extensions. Examples are the Max CSP [34] (subclass of

the max-sum problem), Valued CSP [35] (more general than

max-sum), and Partial CSP [12] (equivalent to max-sum).

The max-sum problem relates to CSP also via complemen-

tary slackness, as mentioned above. This establishes links to

the large CSP literature, which may be fruitful in both direc-

tions. This article seems to be the first in pattern recognition

and computer vision to make this link.

5) Maximum flow (minimum cut): Finding max-flow/min-

cut in a graph has been recognized very useful for (mainly

low-level) computer vision [36]. Later it has been realized that

3

supermodular max-sum problems can be translated to max-

flow/min-cut (see section VIII). For supermodular max-sum

problems, Schlesinger’s upper bound is tight and finding an

optimal configuration is tractable [11]. The relation of this

result with lattice theory is considered in [19], [37]–[40]. We

further extend this relation and give it a simpler form.

C. Organization of the Article

Section II introduces the labeling problem on commutative

semirings and basic concepts. Section III reviews CSP. Sec-

tion IV presents the linear programming relaxation of the max-

sum problem, its dual, Schlesinger’s upper bound, and equiv-

alent and trivial problems. Section V characterizes minimality

of the upper bound. Two algorithms for decreasing the upper

bound are described in sections VI and VII. Section VIII es-

tablishes that the bound is tight for supermodular problems.

Application to structural image analysis [1], [9] is presented

in section IX. A previous version of this article is [41].

Logical conjunction (disjunction) is denoted by ∧ (∨). Func-

tion [[ψ]] returns 1 if logical expression ψ is true and 0 if it

is false. The set of all maximizers of f(x) is argmaxx f(x).
Assignment is denoted by x := y, symbol x += y denotes

x := x+ y. New concepts are in boldface.

II. LABELING PROBLEMS ON COMMUTATIVE SEMIRINGS

This section defines a class of labeling problems of which

the CSP and the max-sum problem are special cases. Here we

introduce basic terminology used in the rest of the article.

We will use the terminology from [11] where the variables

are called objects and their values are called labels. Let G =
(T,E) be an undirected graph, where T is a discrete set of

objects and E ⊆
(

T
2

)

is a set of (object) pairs. The set of

neighbors of an object t is Nt = { t′ | {t, t′} ∈ E }. Each

object t ∈ T is assigned a label xt ∈ X , where X is a discrete

set. A labeling x ∈ XT is a |T |-tuple that assigns a single

label xt to each object t. When not viewed as components of

x, elements of X will be denoted by x, x′ without subscripts.

Let (T × X,EX) be another undirected graph with edges

EX = { {(t, x), (t′, x′)} | {t, t′} ∈ E, x, x′ ∈ X }. When G
is a chain, this graph corresponds to the trellis diagram, fre-

quently used to visualize Markov chains. The nodes and edges

of G will be called objects and pairs, respectively, whereas the

terms nodes and edges will refer to (T ×X,EX). The set of

all nodes and edges is I = (T ×X) ∪ EX . The set of edges

leading from a node (t, x) to all nodes of a neighboring ob-

ject t′ ∈ Nt is a pencil (t, t′, x). The set of all pencils is

P = { (t, t′, x) | {t, t′} ∈ E, x ∈ X }. Figure 1 shows how

both graphs, their parts, and labelings will be visualized.

Let an element gt(x) of a set S be assigned to each node

(t, x) and an element gtt′(x, x
′) to each edge {(t, x), (t′, x′)},

where gtt′(x, x
′) = gt′t(x

′, x). The vector obtained by con-

catenating all gt(x) and gtt′(x, x
′) is denoted by g ∈ SI .

Before starting with the max-sum labeling problem, we in-

troduce labeling problems in a more general form. It was ob-

served [11], [42]–[45] that different labeling problems can be

unified, by letting a suitable commutative semiring specify

pair {t, t′}

object t

pencil (t, t′, x)

(t′, x′)

(t, x)
node

node

edge {(t, x), (t′, x′)}

object t′

(a) (b)

Fig. 1. (a) The 3 × 4 grid graph G (i.e., |T | = 12), graph (T × X, EX)
for |X| = 3 labels, and a labeling x (emphasized). (b) Parts of both graphs.

how different constraints are combined together. Let S en-

dowed with two binary operations ⊕ and ⊗ form a commu-

tative semiring (S,⊕,⊗). The semiring formulation of the la-

beling problem [11] is defined as computing

⊕

x∈XT

[

⊗

t∈T

gt(xt) ⊗
⊗

{t,t′}∈E

gtt′(xt, x
′
t)

]

. (1)

More exactly, this is the binary labeling problem, according

to the highest arity of the functions in the brackets. We will

not consider problems of higher arity.

Interesting problems are obtained, modulo isomorphisms,

by the following choices of the semiring:

(S,⊕,⊗) task

({0, 1},∨,∧) or-and problem, CSP

([−∞,∞),min,max) min-max problem

([−∞,∞),max,+) max-sum problem

([0,∞),+, ∗) sum-product problem

Note that the extended domain, S = [−∞,∞), of min-max

and max-sum problems yields a more general formulation than

usually used S = (−∞,∞).
The topic of this article is the max-sum problem but we

will briefly cover also the closely related CSP. Since semiring

({0, 1},∨,∧) is isomorphic with ({−∞, 0},max,+), CSP is

a subclass of the max-sum problem. However, we will treat

CSP separately since a lot of independent research has been

done on it. We will not discuss the sum-product problem (i.e.,

computing MRF partition function) and the min-max problem.

III. CONSTRAINT SATISFACTION PROBLEM

The constraint satisfaction problem (CSP) [3] is defined

as finding a labeling that satisfies given unary and binary con-

straints, i.e., that passes through some or all of given nodes and

edges. It was introduced, often independently, several times in

computer vision [1], [46]–[48] and artificial intelligence [49],

often under different names, such as the Consistent Labeling

Problem [50]. CSP is NP-complete. Tractable subclasses are

obtained either by restricting the structure of G (limiting its

fractional treewidth [51]) or the constraint language. In the lat-

ter, a lot of research has been done and mathematicians seem

to be close to complete classification [52]. Independently on

this, Schlesinger and Flach discovered a tractable CSP sub-

class defined by the interval condition [11], [38]. In particular,

binary CSP with Boolean variables is known to be tractable.

4

x

t t
′

x

t t
′

(a) (b)

Fig. 2. The arc consistency algorithm deletes (a) nodes not linked with some
neighbor by any edge, and (b) edges lacking an end node.

(a) (b) (c)

Fig. 3. Examples of CSPs: (a) satisfiable, hence with a non-empty kernel
which allows to form a labeling (the labeling is emphasized); (b) with an
empty kernel, hence unsatisfiable; (c) arc consistent but unsatisfiable. The
forbidden nodes are in white, the forbidden edges are not shown.

We denote a CSP instance by (G,X, ḡ). Indicators ḡt(x),
ḡtt′(x, x

′) ∈ {0, 1} say if the corresponding node or edge is

allowed or forbidden. The task is to compute the set

L̄G,X(ḡ)=
{

x ∈ XT
∣

∣

∣

∧

t

ḡt(xt) ∧
∧

{t,t′}

ḡtt′(xt, xt′) = 1
}

. (2)

A CSP is satisfiable if L̄G,X(ḡ) 6= ∅.

Some conditions necessary or sufficient (but not both) for

satisfiability can be given in terms of local consistencies, sur-

veyed e.g. in [53]. The simplest local consistency is arc con-

sistency. A CSP is arc consistent if
∨

x′

ḡtt′(x, x
′) = ḡt(x), {t, t′} ∈ E, x ∈ X. (3)

CSP (G,X, ḡ′) is a subproblem of (G,X, ḡ) if ḡ′ ≤ ḡ. The

union of CSPs (G,X, ḡ) and (G,X, ḡ′) is (G,X, ḡ ∨ ḡ′).
Here, operations ≤ and ∨ are meant componentwise. Follow-

ing [1], [9], we define the kernel of a CSP as follows. First

note that the union of arc consistent CSPs is arc consistent. To

see this, write the disjunction of (3) for arc consistent ḡ and

ḡ′ as [
∨

x′ ḡtt′(x, x
′)] ∨ [

∨

x′ ḡ′tt′(x, x
′)] =

∨

x′ [ḡtt′(x, x
′) ∨

ḡ′tt′(x, x
′)] = ḡt(x)∨ ḡ

′
t(x), obtaining that ḡ∨ ḡ′ satisfies (3).

The kernel of a CSP is the union of all its arc consistent sub-

problems. Arc consistent subproblems of a problem form a

join semilattice w.r.t. the partial ordering by inclusion ≤. The

greatest element of this semilattice is the kernel. Equivalently,

the kernel is the largest arc consistent subproblem.

The kernel can be found by the arc consistency algorithm,

known also as discrete relaxation labeling [48]. Starting with

their initial values, the variables ḡt(x) and ḡtt′(x, x
′) violat-

ing (3) are iteratively set to zero by applying rules (figure 2)

ḡt(x) := ḡt(x) ∧
∨

x′

ḡtt′(x, x
′), (4a)

ḡtt′(x, x
′) := ḡtt′(x, x

′) ∧ ḡt(x) ∧ ḡt′(x
′). (4b)

The algorithm halts when no further variable can be set to

zero. It is well-known that the result does not depend on the

order of the operations.

Theorem 1: Let (G,X, ḡ∗) be the kernel of a CSP

(G,X, ḡ). It holds that L̄G,X(ḡ) = L̄G,X(ḡ∗).

Proof. The theorem is a corollary of the more general the-

orem 6, given later.

It can also be proved by the following induction argument.

If a pencil (t, t′, x) contains no edge, the node (t, x) clearly

cannot belong to any labeling (figure 2a). Therefore, the node

(t, x) can be deleted without changing L̄G,X(ḡ). Similarly, if

a node (t, x) is forbidden then no labeling can pass through

any of the pencils { (t, t′, x) | t′ ∈ Nt } (figure 2b).

A corollary of theorem 1 are the following conditions prov-

ing or disproving satisfiability. Figure 3 shows examples.

Theorem 2: Let (G,X, ḡ∗) denote the kernel of CSP

(G,X, ḡ).

• If the kernel is empty (ḡ∗ = 0) then the CSP is not

satisfiable.

• If there is a unique label in each object (
∑

x ḡ
∗
t (x) = 1

for t ∈ T) then the CSP is satisfiable.

IV. MAX-SUM PROBLEM

We now turn our attention to the central topic of the article,

the max-sum problem. Its instance is denoted by (G,X,g),
where gt(x) and gtt′(x, x

′) will be called qualities. The qual-

ity of a labeling x is

F (x |g) =
∑

t∈T

gt(xt) +
∑

{t,t′}∈E

gtt′(xt, xt′). (5)

Solving the problem means finding (one, several or all ele-

ments of) the set of optimal labelings

LG,X(g) = argmax
x∈XT

F (x |g). (6)

A. Linear Programming Relaxation

Let us formulate a linear programming relaxation of the

max-sum problem (6). For that, we introduce a different rep-

resentation of labelings that allows to represent ‘partially de-

cided’ labelings. A relaxed labeling is a vector α with the

components αt(x) and αtt′(x, x
′) satisfying

∑

x′

αtt′(x, x
′) = αt(x), {t, t′} ∈ E, x ∈ X (7a)

∑

x

αt(x) = 1, t ∈ T (7b)

α ≥ 0 (7c)

where αtt′(x, x
′) = αt′t(x

′, x). Number αt(x) is assigned to

node (t, x), number αtt′(x, x
′) to edge {(t, x), (t′, x′)}. The

set of all α satisfying (7) is a polytope, denoted by ΛG,X .

A binary vector α represents a ‘decided’ labeling; there is a

bijection between the sets XT and ΛG,X ∩ {0, 1}I , given by

αt(x) = [[xt = x]] and αtt′(x, x
′) = αt(x)αt′(x

′). A non-

integer α represents an ‘undecided’ labeling.

Remark 1: Constraints (7a)+(7b) are linearly dependent. To

see this, denote αt =
∑

x αx(t) and αtt′ =
∑

x,x′ αtt′(x, x
′)

and sum (7a) over x, which gives αt = αtt′ . Since G is con-

nected, (7a) alone implies that αt and αtt′ are equal for the

5

whole G. Thus, ΛG,X could be represented in a less redun-

dant way by, e.g., replacing (7b) with
∑

t αt = |T |. It is shown

in [12] that dim ΛG,X = |T |(|X| − 1) + |E|(|X| − 1)2.

Remark 2: Conditions (7a)+(7c) can be viewed as a con-

tinuous generalization of arc consistency (3) in the following

sense: for any α satisfying (7a)+(7c), the CSP ḡ given by

ḡt(x) = [[αt(x) > 0]] and ḡtt′(x, x
′) = [[αtt′(x, x

′) > 0]]
satisfies (3).

Quality and equivalence of max-sum problems can be ex-

tended from ordinary to relaxed labelings. The quality of a

relaxed labeling α is the scalar product 〈g,α〉. Like F (• |g),
function 〈g, •〉 is invariant to equivalent transformations be-

cause 〈0ϕ,α〉 identically vanishes, as is verified by substitut-

ing (9) and (7a). The relaxed max-sum problem is the linear

program

ΛG,X(g) = argmax
α∈ΛG,X

〈g,α〉. (8)

The set ΛG,X(g) is a polytope, being the convex hull of the

optimal vertices of ΛG,X . If ΛG,X(g) has integer elements,

they coincide with LG,X(g).
The linear programming relaxation (8) was suggested by

several researchers independently: by Schlesinger in structural

pattern recognition [1], by Koster et al. as an extension of

CSP [12], by Chekuri et al. [14] for metric Markov random

fields, and in bioinformatics [16].

Solving (8) by a general linear programming algorithm, such

as simplex or interior point method, would be inefficient and

virtually impossible for large instances which occur e.g. in

computer vision. There are two ways to do better. First, the

linear programming dual of (8) is more suitable for optimiza-

tion because it has less variables. Second, a special algorithm

utilizing the structure of the task has to be designed.

Further in section IV, we formulate the dual of (11) and

interpret it as minimizing an upper bound on problem quality

by equivalent transformations, and that tightness of the relax-

ation is equivalent to satisfiability of a CSP. The subsequent

section V gives conditions for minimality of the upper bound,

implied by complementary slackness.

B. Equivalent Max-sum Problems

Problems (G,X,g) and (G,X,g′) are called equivalent

(denoted by g ∼ g′) if functions F (• |g) and F (• |g′) are

identical [1], [25], [28]. An equivalent transformation is a

change of g taking a max-sum problem to its equivalent. Fig-

ure 4 shows the simplest such transformation: choose a pencil

(t, t′, x), add a number ϕtt′(x) to gt(x), and subtract the same

number from all edges in pencil (t, t′, x).
A special equivalence class is formed by zero problems

for which F (• |g) is the zero function. By (5), the zero class

{g | g ∼ 0 } is a linear subspace of R
I . Problems g and g′

are equivalent if and only if g − g′ is a zero problem.

We will parameterize any equivalence class by a vector ϕ ∈
R

P with components ϕtt′(x), assigned to pencils (t, t′, x).
Variables ϕtt′(x) are called potentials in [1], [4], [9] and corre-

spond to messages in belief propagation literature. The equiv-

alent of a problem g given by ϕ is denoted by gϕ = g +0ϕ.

x

t t′

+ϕtt′(x)

−ϕtt′(x)

Fig. 4. The elementary equivalent transformation.

It is obtained by composing the elementary transformations

shown in figure 4 for all pencils, which yields

gϕ

t (x) = gt(x) +
∑

t′∈Nt

ϕtt′(x), (9a)

gϕ

tt′(x, x
′) = gtt′(x, x

′) − ϕtt′(x) − ϕt′t(x
′). (9b)

It is easy to see that problems g and gϕ are equivalent for

any ϕ since inserting (9) to (5) shows that F (x |gϕ) identi-

cally equals F (x |g). We would like also the converse to hold,

i.e. any two equivalent problems to be related by (9) for some

ϕ. However, this holds only if G is connected and all quali-

ties g are finite, as is given by theorem 3. Connectedness of G
is naturally satisfied in applications. The second assumption

does not seem to be an obstacle in algorithms even when the

extended domain g ∈ [−∞,∞)I is used, though we still do

not fully understand why.

Theorem 3: [54], [1], [28], [30] Let the graph G be con-

nected and g ∈ R
I . F (• |g) is the zero function if and only

if there exist numbers ϕtt′(x) ∈ R such that

gt(x) =
∑

t′∈Nt

ϕtt′(x), (10a)

gtt′(x, x
′) = −ϕtt′(x) − ϕt′t(x

′). (10b)

The reader may skip the proof in the first reading.

Proof. The if part is easy, by verifying that (5) identically

vanishes after substituting (10). We will prove the only if part.

Since F (• |g) is the zero function and therefore it is modu-

lar (i.e., both sub- and supermodular w.r.t. to any order ≤). By

theorem 12 given later, also functions gtt′(•, •) are modular.

Any modular function is a sum of univariate functions [55].

This implies (10b).

Let x and y be two labelings that differ only in an object

t where they satisfy xt = x and yt = y. After substituting (5)

and (10b) to the equality F (x |g) = F (y |g), most terms

cancel out giving gt(x) −
∑

t′ ϕtt′(x) = gt(y) −
∑

t′ ϕtt′(y).
Since this holds for any x and y, neither side depends on x.

Thus we can denote ϕt = gt(x) −
∑

t′ ϕtt′(x). Substituting

(10) to F (• |g) = 0 yields
∑

t ϕt = 0.

To show (10a), we will give an equivalent transformation

that sets all ϕt to zero. Let G′ be a spanning tree of G. It

exists because G is connected. Find a pair {t, t′} in G′ such

that t is a leaf. Do the following transformation of (G,X,g):
set ϕtt′(x) += ϕt for all x and ϕt′t(x

′) −= ϕt for all x′.
Set ϕt′ += ϕt and ϕt := 0. Remove t and {t, t′} from G′.

Repeat until G′ is empty.

As a counter-example for infinite g, consider the problem

in figure 5a and the same problem with the crossed edge be-

ing −∞. These two problems are equivalent but they are not

related by (9) for any ϕ ∈ R
P .

6

〈g,α〉 → max
α

∑

t∈T

ut +
∑

{t,t′}∈E

utt′ → min
ϕ,u

(11a)

∑

x′∈X

αtt′(x, x
′) = αt(x) ϕtt′(x) ∈ R, {t, t′} ∈ E, x ∈ X (11b)

∑

x∈X

αt(x) = 1 ut ∈ R, t ∈ T (11c)

∑

x,x′∈X

αtt′(x, x
′) = 1 utt′ ∈ R, {t, t′} ∈ E (11d)

αt(x) ≥ 0 ut −
∑

t′∈Nt

ϕtt′(x) ≥ gt(x), t ∈ T, x ∈ X (11e)

αtt′(x, x
′) ≥ 0 utt′ + ϕtt′(x) + ϕt′t(x

′) ≥ gtt′(x, x
′), {t, t′} ∈ E, x, x′ ∈ X (11f)

TABLE I

C. Schlesinger’s Upper Bound and Its Minimization

Let the height of object t and the height of pair {t, t′} be

respectively

ut = max
x

gt(x), utt′ = max
x,x′

gtt′(x, x
′). (12)

The height of a max-sum problem (G,X,g) is

U(g) =
∑

t

ut +
∑

{t,t′}

utt′ . (13)

Comparing corresponding terms in (5) and (13) yields that the

problem height is an upper bound of quality, i.e., any g and

any x satisfy F (x |g) ≤ U(g).
Unlike the quality function, the problem height is not in-

variant to equivalent transformations. This naturally leads to

minimizing this upper bound by equivalent transformations,

expressed by the linear program

U∗(g) = min
g′∼g

U(g′) (14a)

= min
ϕ∈RP

[

∑

t

max
x

gϕ

t (x) +
∑

{t,t′}

max
x,x′

gϕ

tt′(x, x
′)

]

.(14b)

Remark 3: Some equivalent transformations preserve U(g),
e.g., adding a constant to all nodes of an object and subtracting

the same constant from all nodes of another object. Thus, there

may be many problems with the same height within every

equivalence class. This gives an option to impose constraints

on ut and utt′ in the minimization and reformulate (14) in a

number of ways, e.g.

U∗(g) = min
ϕ∈RP | gϕ

tt′
(x,x′)≤0

∑

t

max
x

gϕ

t (x) (15a)

= |T | min
ϕ∈RP | gϕ

tt′
(x,x′)≤0

max
t

max
x

gϕ

t (x). (15b)

Form (15a) corresponds to imposing utt′ ≤ 0. Form (15b)

corresponds to utt′ ≤ 0 and ut = ut′ = u. Other natural

constraints are ut = 0, or ut = ut′ = utt′ .

D. Trivial Problems

Node (t, x) is a maximal node if gt(x) = ut. Edge

{(t, x), (t′, x′)} is a maximal edge if gtt′(x, x
′) = utt′ , where

u is given by (12). Let this be expressed by Boolean variables

ḡt(x)=[[gt(x) = ut]], ḡtt′(x, x
′)=[[gtt′(x, x

′) = utt′]]. (16)

A max-sum problem is trivial if a labeling can be formed of

(some or all of) its maximal nodes and edges, i.e., if the CSP

(G,X, ḡ) with ḡ given by (16) is satisfiable. It is easy to see

that the upper bound is tight, i.e. F (x |g) = U(g) for some

x, for and only for trivial problems. This allows to formulate

the following theorem, central to the whole approach.

Theorem 4: Let C be a class of equivalent max-sum prob-

lems. Let C contain a trivial problem. Then any problem in

C is trivial if and only if its height is minimal in C.

Proof. Let (G,X,g) be a trivial problem in C. Let a labeling

x be composed of the maximal nodes and edges of (G,X,g).
Any g′ ∼ g satisfies U(g′) ≥ F (x |g′) = F (x |g) = U(g).
Thus (G,X,g) has minimal height.

Let (G,X,g) be a non-trivial problem with minimal height

in C. Any g′ ∼ g and any optimal x satisfy U(g′) ≥ U(g) >
F (x |g) = F (x |g′). Thus C contains no trivial problem.

Theorem 4 allows to divide the solution of a max-sum problem

into two steps:

1) minimize the problem height by equivalent transforma-

tions,

2) test the resulting problem for triviality.

If the resulting problem with minimal height is trivial, i.e.

(G,X, ḡ) is satisfiable, then LG,X(g) = L̄G,X(ḡ). If not, by

theorem 4 the max-sum problem has no trivial equivalent and

remains unsolved. In the former case the relaxation (8) is tight

and in the latter case it is not.

Testing for triviality is NP-complete, equivalent to CSP.

Thus, recognizing whether a given upper bound is tight is NP-

complete. Even if we knew that a given upper bound U(g) is

tight, finding a labeling x such that F (x |g) = U(g) still

would be NP-complete. We can prove or disprove tightness of

an upper bound only in special cases, such as those given by

theorem 2.

Figure 3, giving examples of CSPs, can be interpreted also

in terms of triviality if we imagine that the black nodes are

maximal, the white nodes are non-maximal, and the shown

edges are maximal. Then figure 3a shows a trivial prob-

lem (thus having minimal height), 3b a problem with a non-

minimal height (hence non-trivial), and 3c a non-trivial prob-

lem with minimal height.

Note that not every polynomially solvable subclass of the

max-sum problem has a trivial equivalent: e.g., if G is a simple

7

loop dynamic programming is applicable but figure 3c shows

there might be no trivial equivalent.

E. Linear Programming Duality

The linear programs (8) and (14) are dual to each other [1,

theorem 2]. To show this, we wrote them together in equa-

tion (11) (table I) such that a constraint and its Lagrange mul-

tiplier are on the same line, as is usual in linear programming.

The pair (11) can be slightly modified, corresponding to

modifications of the primal constraints (7) and imposing con-

straints on dual variables u, as discussed in remarks 1 and 3.

Duality of (8) and upper bound minimization was indepen-

dently shown also by Wainwright et al. [15], [24] in the frame-

work of convex combinations of trees. In our case, when the

trees are objects and object pairs, proving the duality is more

straightforward then for general trees.

Schlesinger and Kovalevsky [56] proposed elegant physical

models of the pair (11). We described one of them in [41].

V. CONDITIONS FOR MINIMAL UPPER BOUND

This section discusses how we can recognize that the height

U(g) of a max-sum problem is minimal among its equivalents,

i.e., that g is optimal to (11). The main result will be that a

non-empty kernel of the CSP formed by the maximal nodes

and edges is necessary but not sufficient for minimal height.

To test for optimality of (11), linear programming duality

theorems [57] give us a starting point. By weak duality, any g

and any α ∈ ΛG,X satisfy 〈g,α〉 ≤ U(g). By strong duality,

〈g,α〉 = U(g) if and only if g has minimal height and α has

maximal quality. By complementary slackness, 〈g,α〉 = U(g)
if and only if α is zero on non-maximal nodes and edges.

To formalize the last statement, we define the relaxed

CSP (G,X, ḡ) as finding relaxed labelings on given nodes

and edges, i.e., finding the set Λ̄G,X(ḡ) of relaxed labelings

α ∈ ΛG,X satisfying the complementarity constraints

[1− ḡt(x)]αt(x) = 0, [1− ḡtt′(x, x
′)]αtt′(x, x

′) = 0. (17)

Thus, Λ̄G,X(ḡ) is the set of solutions to system (7)+(17). A

CSP (G,X, ḡ) is relaxed-satisfiable if Λ̄G,X(ḡ) 6= ∅.

Further in this section, we let ḡ denote a function of g

given by (16). In other words, (G,X, ḡ) is not seen as an

independent CSP but it is composed of the maximal nodes

an edges of the max-sum problem (G,X,g). Complementary

slackness now reads as follows.

Theorem 5: The height of (G,X,g) is minimal of all its

equivalents if and only if (G,X, ḡ) is relaxed-satisfiable. If it

is so then ΛG,X(g) = Λ̄G,X(ḡ).

A. Non-empty Kernel Necessary for Minimal Upper Bound

In section III, the concepts of arc consistency and kernel

have been shown useful for characterizing CSP satisfiability.

They are useful also for characterizing relaxed satisfiability.

To show that, we first generalize the result that taking kernel

preserves L̄G,X(ḡ):

Theorem 6: Let (G,X, ḡ∗) be the kernel of a CSP

(G,X, ḡ). Then Λ̄G,X(ḡ) = Λ̄G,X(ḡ∗).

Proof. Obvious from the argument in section III. A formal

proof in [41].

Thus, theorem 2 can be extended to relaxed labelings:

Theorem 7: A non-empty kernel of (G,X, ḡ) is neces-

sary for its relaxed satisfiability, hence for minimal height of

(G,X,g).

Proof. An immediate corollary of theorem 6. Alternatively,

it is instructive to consider also the following dual proof.

We will denote the height of pencil (t, t′, x) by utt′(x) =
maxx′ gtt′(x, x

′) and call (t, t′, x) a maximal pencil if it con-

tains a maximal edge. Let us modify the arc consistency al-

gorithm such that rather than by explicitly zeroing variables

ḡ like in (4), nodes and edges of (G,X, ḡ) are deleted by re-

peating the following equivalent transformations on (G,X,g):

• Find a pencil (t, t′, x) such that utt′(x) < utt′ and

gt(x) = ut. Decrease node (t, x) by ϕtt′(x) = 1
2 [utt′ −

utt′(x)]. Increase all edges in pencil (t, t′, x) by ϕtt′(x).

• Find a pencil (t, t′, x) such that utt′(x) = utt′ and

gt(x) < ut. Increase node (t, x) by ϕtt′(x) = 1
2 [ut −

gt(x)]. Decrease all edges in pencil (t, t′, x) by ϕtt′(x).

When no such pencil exists, the algorithm halts.

If the kernel of (G,X, ḡ) was initially non-empty, the algo-

rithm halts after the maximal nodes and edges that were not in

the kernel are made non-maximal. If the kernel was initially

empty, the algorithm sooner or later decreases the height of

some node or edge, hence U(g).

The algorithm in the proof has only a theoretical value. In

practice, it is useless due to its slow convergence.

B. Non-empty Kernel Insufficient for Minimal Upper Bound

One might hope that non-empty kernel is not only neces-

sary but also sufficient for relaxed satisfiability. Unfortunately,

this is false, as was observed by Schlesinger [8] and, analogi-

cally in terms of convex combination of trees, by Kolmogorov

[28], [30]. Figures 5b,c,d show counter-examples. We will jus-

tify these counter-examples first by giving a primal argument

(i.e., by showing that (G,X, ḡ) is not relaxed-satisfiable) then

by giving a dual argument (i.e., by giving an equivalent trans-

formation that decreases U(g)).

1) Primal argument: Let (G,X, ḡ∗) denote the kernel of

a CSP (G,X, ḡ). Consider an edge {(t, x), (t′, x′)}. By theo-

rem 6, existence of α ∈ Λ̄G,X(ḡ) such that αtt′(x, x
′) > 0 im-

plies ḡ∗tt′(x, x
′) = 1. Less obviously, the opposite implication

is false. In other words, the fact that an edge belongs to the ker-

nel is necessary but not sufficient for some relaxed labeling to

be non-zero on this edge. The same holds for nodes. Figure 5a

shows an example: it can be verified that system (7a)+(17) im-

plies that αtt′(x, x
′) = 0 on the edge marked by the cross.

In figures 5b and 5c, the only solution to system (7a)+(17)

is α = 0, therefore ḡ is relaxed-unsatisfiable. Note that 5b

contains 5a as its part.

2) Dual argument: The analogical dual observation is that

the kernel of (G,X, ḡ) is not invariant to equivalent trans-

formations of (G,X,g). Consider the transformations in fig-

ure 5, depicted by non-zero values of ϕtt′(x) written next to

8

−1+1

−1

−1+1

+1
−1 +1

−1 +1

+1 −1

−1

+1 −1

+1

−1 +1

−1+1

+1

−1

−1+1

−1

+1

+1

−1

−1 +1

−2+1

+1

−2
+2

−2

+2
−2

+2

−1−1

(a) (b) (c) (d)

Fig. 5. Examples of kernels not invariant to equivalent transformations. The shown edges have quality 0 and the not shown edges −∞. Problem (a) has
minimal height, problems (b, c) do not; in particular, for (b, c) system (7a)+(7b)+(17) is unsolvable. For problem (d), system (7a)+(7b)+(17) is solvable but
system (7a)+(7b)+(7c)+(17) is not.

the line segments crossing edge pencils (t, t′, x). In each sub-

figure, the shown transformation makes the edge marked by

the cross non-maximal and thus deletes it from the kernel. Af-

ter this, the kernel in figure 5a still remains non-empty while

the kernels in 5b and 5c become empty, as is verified by doing

the arc consistency algorithm by hand. Thus, in 5b and 5c a

non-empty kernel of (G,X, ḡ) does not suffice for minimality

of the height of (G,X,g).

In figures 5b and 5c, system (7a)+(7b)+(17) has no solution,

without even considering constraint (7c). Figure 5d shows a

more advanced counter-example, where system (7a)+(7b)+(17)

has a (single) solution but this solution violates (7c).

C. Boolean Max-sum Problems

For problems with Boolean variables (|X| = 2), Schlesinger

observed [54] that a non-empty kernel is both necessary and

sufficient for minimal upper bound. Independently, the equiv-

alent observation was made by Kolmogorov and Wainwright

[19], [31], who showed that weak tree agreement is sufficient

for minimality of Wainwright’s tree-based upper bound [24].

In addition, both noticed that for Boolean variables at least one

relaxed labeling is half-integral; an analogical observation was

made in pseudo-Boolean optimization [18], referring to [58].

Theorem 8: Let a CSP (G,X, ḡ) with |X| = 2 labels have

a non-empty kernel. Then Λ̄G,X(ḡ) ∩ {0, 1
2 , 1}

I 6= ∅.

Proof. We will prove the theorem by constructing a relaxed

labeling α ∈ Λ̄G,X(ḡ) ∩ {0, 1
2 , 1}

I .

Delete all nodes and edges not in the kernel. Denote the

number of nodes in object t and the number of edges in pair

{t, t′} by nt =
∑

x ḡt(x) and ntt′ =
∑

x,x′ ḡtt′(x, x
′), respec-

tively. All object pairs can be partitioned into five classes (up

to swapping labels), indexed by triplets (nt, nt′ , ntt′):

(1, 1, 1) (1, 2, 2) (2, 2, 2) (2, 2, 3) (2, 2, 4)

Remove one edge in each pair of class (2, 2, 3) and two

edges in each pair of class (2, 2, 4) such that they be-

come (2, 2, 2). Now there are only pairs of classes (1, 1, 1),
(1, 2, 2) and (2, 2, 2). Let αt(x) = ḡt(x)/nt and αtt′(x, x

′) =
ḡtt′(x, x

′)/ntt′ . Clearly, this α belongs to Λ̄G,X(ḡ).

For |X| > 2, a relaxed labeling that is an integer multiple

of |X|−1 may not exist. A counter-example is in figure 6.

1
4

1

2

1

4

1

4

1

4

3

4

1

4

1

2
1

4

1

2
1

4

Fig. 6. A CSP for which Λ̄G,X(ḡ) has a single element α that is not an inte-

ger multiple of |X|−1. This can be verified by solving system (7a)+(7b)+(17).

D. Summary: Three Kinds of Consistency

To summarize, we have met three kinds of ‘consistency’,

related by implications as follows:

ḡ satisfiable
g trivial

⇒
ḡ relaxed-satisfiable
height of g minimal

⇒ kernel of ḡ non-empty.

The opposite implications do not hold in general. Excep-

tions are problems with two labels, for which non-empty ker-

nel equals relaxed satisfiability, and supermodular max-sum

problems (lattice CSPs) and problems on trees for which non-

empty kernel equals satisfiability.

Testing for the first condition is NP-complete. Testing for

the last condition is polynomial and simple, based on arc con-

sistency. Testing for the middle condition is polynomial (solv-

able by linear programming) but we do not know any effi-

cient algorithm to do this test for large instances. The diffi-

culty seems to be in the fact that while arc consistency can be

tested by local operations, relaxed satisfiability is probably an

inherently non-local property.

To our knowledge, all known efficient algorithms for de-

creasing the height of max-sum problems use arc consistency

or non-empty kernel as their termination criterion. We will re-

view two such algorithms in sections VI and VII. Existence

of arc consistent but relaxed-unsatisfiable configurations is un-

pleasant here because these algorithms need not find the min-

imal problem height. Analogical spurious minima occur also

in the sequential tree-reweighted message passing (TRW-S)

algorithm, as observed by Kolmogorov [27]–[30]. Omitting a

formal proof, we argue that they are of the same nature as arc

consistent relaxed-unsatisfiable states.

9

VI. MAX-SUM DIFFUSION

This section describes the max-sum diffusion algorithm [6],

[7] to decrease the upper bound (13). It can be viewed as a

coordinate descent method.

The diffusion is related to edge-based message passing by

Wainwright [24, algorithm 1] but, unlike the latter, it is con-

jectured to always converge. Also, it can be viewed as the

sequential tree-reweighted message passing (TRW-S) by Kol-

mogorov [27], [30], with the trees being nodes and edges (we

omit a detailed proof). The advantage of the diffusion is its

simplicity: it is even simpler than belief propagation.

A. The Algorithm

The node-pencil averaging on pencil (t, t′, x) is the equiv-

alent transformation that makes gt(x) and utt′(x) equal, i.e.,

which adds number 1
2 [utt′(x) − gt(x)] to gt(x) and subtracts

the same number from qualities of all edges in pencil (t, t′, x).
Recall that utt′(x) = maxx′ gtt′(x, x

′). In its simplest form,

the max-sum diffusion algorithm repeats node-pencil averag-

ing until convergence, on all pencils in any order such that

each pencil is visited ‘sufficiently often’. The following code

does it (with a deterministic order of pencils):

repeat

for (t, t′, x) ∈ P do

ϕtt′(x) += 1
2 [maxx′ gϕ

tt′(x, x
′) − gϕ

t (x)];
end for

until convergence

g := gϕ;

Remark 4: The algorithm can be easily made slightly more

efficient. If a node (t, x) is fixed and node-pencil averaging is

iterated on pencils { (t, t′, x) | t′ ∈ Nt } till convergence, the

heights of all these pencils and gt(x) become equal. This can

be done by a single equivalent transformation on node (t, x).

B. Monotonicity

When node-pencil averaging is done on a single pencil, the

problem height can decrease, remain unchanged, or increase.

For an example when the height increases, consider a max-

sum problem with X = {1, 2} such that for some pair {t, t′},

we have gt(1) = gt(2) = 1 and utt′(1) = utt′(2) = −1. After

the node-pencil averaging on (t, t′, 1), U(g) increases by 1.

Monotonic height decrease can be ensured by choosing an

appropriate order of pencils as given by theorem 9. This shows

that the diffusion is a coordinate descent method.

Theorem 9: After the equivalent transformation consisting

of |X| node-pencil averagings on pencils { (t, t′, x) | x ∈ X },

the problem height does not increase.

Proof. Before the transformation, the contribution of object

t and pair {t, t′} to U(g) is maxx gt(x)+maxx utt′(x). After

the transformation, this contribution is maxx[gt(x)+utt′(x)].
The first expression is not smaller than the second one be-

cause any two functions f1(x) and f2(x) satisfy maxx f1(x)+
maxx f2(x) ≥ maxx[f1(x) + f2(x)].

Fig. 7. A max-sum problem satisfying (18). A line segment starting from
node (t, x) and aiming to but not reaching (t′, x′) denotes an edge satisfying
gt(x) = gtt′ (x, x′) < gt′ (x

′). If gt(x) = gtt′ (x, x′) = gt′ (x
′), the line

segment joins the nodes (t, x) and (t′, x′). The grey levels help distinguish
different layers; the highest layer is emphasized.

C. Properties of the Fixed Point

Based on numerous experiments, it was conjectured that

the max-sum diffusion always converges. In addition, its fixed

points can be characterized as follows:

Conjecture 1: For any g ∈ [−∞,∞)I , the max-sum dif-

fusion converges to a solution of the system

max
x′

gtt′(x, x
′) = gt(x), {t, t′} ∈ E, x ∈ X. (18)

We are not aware of any proof of this conjecture.

Any solution to (18) has the following layered structure (see

figure 7). A layer is a maximal connected subgraph of graph

(T ×X,EX) such that its each edge {(t, x), (t′, x′)} satisfies

gt(x) = gtt′(x, x
′) = gt′(x

′). By (18), all nodes and edges of

a layer have the same quality, the height of the layer. The

highest layer is formed by the maximal nodes and edges.

Property (18) implies arc consistency of the maximal nodes

and edges, as given by theorem 10. However, the converse is

false: not every max-sum problem with arc consistent maximal

nodes and edges satisfies (18).

Theorem 10: If a max-sum problem satisfies (18) then its

maximal nodes and edges form an arc consistent CSP.

Proof. Suppose (18) holds. By (3), we are to prove that a

pencil (t, t′, x) is maximal if and only if node (t, x) is max-

imal. If (t, x) is maximal, then utt′(x) = gt(x) ≥ gt(x
′) =

utt′(x
′) for each x′, hence (t, t′, x) is maximal. If (t, x) is

non-maximal, then utt′(x) = gt(x) < gt(x
′) = utt′(x

′) for

some x′, hence (t, t′, x) is not maximal.

Since the max-sum problems in figures 5b,c,d satisfy (18),

diffusion fixed points can have a non-minimal upper bound

U(g). This is a serious drawback of the algorithm.

More on max-sum diffusion can be found in the recent

works [59], [60].

VII. THE AUGMENTING DAG ALGORITHM

This section describes the height-decreasing algorithm given

in [4], [9]. Its main idea is as follows: run the arc consistency

10

algorithm on the maximal nodes and edges, storing the point-

ers to the causes of deletions. When all nodes in a single

object are deleted, it is clear that the kernel is empty. Back-

tracking the pointers provides a directed acyclic graph (DAG),

called the augmenting DAG, along which a height-decreasing

equivalent transformation is done.

The algorithm has been proved to converge in a finite num-

ber of steps [1] if it is modified as follows: maximality of

nodes and edges is redefined using a threshold, ε. We will

first explain the algorithm without this modification and re-

turn to it at the end of the section.

The iteration of the algorithm proceeds in three phases,

described in subsequent sections. We use formulation (15a),

i.e., we look for ϕ that minimizes U(gϕ) =
∑

t maxx g
ϕ

t (x)
subject to the constraint that all edges are non-positive,

gϕ
tt′(x, x

′) ≤ 0. Initially, all edges are assumed non-positive.

A. Phase 1: Arc Consistency Algorithm

The arc consistency algorithm is run on the maximal nodes

and edges. It is not done exactly as described by rules (4) but

in a slightly modified way as follows.

A variable pt(x) ∈ {ALIVE, NONMAX} ∪ T is assigned to

each node (t, x). Initially, we set pt(x) := ALIVE if (t, x) is

maximal and pt(x) := NONMAX if (t, x) is non-maximal.

If a pencil (t, t′, x) is found satisfying pt(x) = ALIVE and

violating condition

(∃x′)

[

edge {(t, x), (t′, x′)} is maximal,

pt′(x
′) = ALIVE

]

, (19)

node (t, x) is deleted by setting pt(x) := t′. The object t′

is called the deletion cause of node (t, x). This is repeated

until either no such pencil exists, or an object t∗ is found

with pt∗(x) 6= ALIVE for all x ∈ X . In the former case,

the augmenting DAG algorithm halts. In the latter case, we

proceed to the next phase.

After every iteration of this algorithm, the maximal edges

and the variables pt(x) define a directed acyclic subgraph D
of graph (T ×X,EX), as follows: the nodes of D are the end

nodes of its edges; edge ((t, x), (t′, x′)) belongs to D if and

only if it is maximal and pt(x) = t′. Once t∗ has been found,

the augmenting DAG D(t∗) is a subgraph of D reachable by

a directed path in D from the maximal nodes of t∗.

Example. The example max-sum problem in figure 8 has T =
{a, . . . , f} and the labels in each object are 1, 2, 3, numbered

from bottom to top. Figure 8a shows the maximal edges and

the values of pt(x) after the first phase, when 10 nodes have

been deleted by applying rule (19) successively on pencils

(c, a, 2), (c, a, 3), (e, c, 1), (e, c, 3), (f, e, 3), (d, c, 2), (b, d, 2),
(a, b, 2), (d, b, 1), (f, d, 1). The non-maximal edges are not

shown. The nodes with pt(x) = ALIVE are small filled, with

pt(x) = NONMAX small unfilled, and with pt(x) ∈ T large

filled. For the deleted nodes, the causes pt(x) are denoted by

short segments across pencils (t, pt(x), x). The object t∗ = f
has a black outline.

Figure 8a shows D after t∗ has been found and figure 8b

shows D(t∗). The edges of D and D(t∗) are emphasized and

the nodes, except (a, 3), too.

(a)

b d

eca

f

(b)

-1

-1

-1-1

-1

+1

+1

-1

+1

+1

+1

+1

+1

-1

-2

+2

b d

eca

f

Fig. 8. (a) The augmenting DAG algorithm after phase 1; (b) after phase 2.

B. Phase 2: Finding the Search Direction

The direction of height decrease is found in the space R
P ,

i.e., a vector ∆ϕ is found such that U(gϕ+λ∆ϕ) < U(gϕ)
for a small positive λ.

Denoting ∆ϕt(x) =
∑

t′∈Nt
∆ϕtt′(x), the vector ∆ϕ has

to satisfy

−∆ϕt∗(x) = 1 if pt∗(x) 6= NONMAX,

∆ϕt(x) ≤ 0 if pt(x) 6= NONMAX,

∆ϕtt′(x)+∆ϕt′t(x
′) ≥ 0 if {(t, x), (t′, x′)} maximal.

We find the smallest vector ∆ϕ satisfying these. This is done

by traversing D(t∗) from roots to leaves, successively enforc-

ing these constraints for all its nodes and edges. The traversal

is done in a linear order on D(t∗), i.e., a node is not vis-

ited before the tails of all edges entering it have been visited.

In figure 8b, the non-zero numbers ∆ϕtt′(x) are written near

their pencils.

C. Phase 3: Finding the Search Step

The search step length λ is found such that no edge becomes

positive, the height of no object is increased, and the height

of t∗ is minimized. These read respectively

gϕ+λ∆ϕ

tt′ (x, x′) ≤ 0,

gϕ+λ∆ϕ

t (x) ≤ max
x

gϕ

t (x),

gϕ+λ∆ϕ

t∗ (x) ≤ max
x

gϕ

t∗(x) − λ.

To justify the last inequality, see that each node of t∗ with

pt∗(x) ∈ T decreases by λ and each node with pt∗(x) =
NONMAX increases by λ∆ϕt∗(x). The latter is because D(t∗)
can have a leaf in t∗. To minimize the height of t∗, the nodes

with pt∗(x) = NONMAX must not become higher than the nodes

with pt∗(x) ∈ T .

Solving the above three conditions for λ yields the system

λ ≤
gϕ

tt′(x, x
′)

∆ϕtt′(x) + ∆ϕt′t(x′)
if ∆ϕtt′(x) + ∆ϕt′t(x

′) < 0,

λ ≤
ut − gϕ

t (x)

[[t = t∗]] + ∆ϕt(x)
if [[t = t∗]] + ∆ϕt(x) > 0.

11

We find the greatest λ satisfying these.

The iteration of the augmenting DAG algorithm is com-

pleted by the equivalent transformation ϕ += λ∆ϕ.

For implementation details, refer to [4], [41].

The algorithm sometimes spends a lot of iterations to min-

imize the height in a subgraph of G accurately [61]. This is

wasteful because this accuracy is destroyed once the subgraph

is left. This behavior, somewhat similar to the well-known in-

efficiency of the Ford-Fulkerson max-flow algorithm, can be

reduced by redefining maximality of nodes and edges using a

threshold ε > 0 as follows [4]: node (t, x) is maximal if and

only if −gϕ

tt′(x, x
′) ≤ ε, and edge {(t, x), (t′, x′)} is maximal

if and only if −gϕ

tt′(x, x
′) ≤ ε. If ε is reasonably large, ‘nearly

maximal’ nodes and edges are considered maximal and often

a larger λ results. With ε > 0, the algorithm terminates in

finite number of iterations [4]. A possible scheme is to run

the algorithm several times, exponentially decreasing ε.
Since they are arc-consistent, the problems in figures 5b,c,d

are termination states of the algorithm. Thus, the algorithm

can terminate with a non-minimal upper bound U(g).

VIII. SUPERMODULAR MAX-SUM PROBLEMS

(Super-) submodularity, for bivariate functions also known

as (inverse) Monge property [62], is well-known to simplify

many optimization tasks; in fact, it can be considered a dis-

crete counterpart of convexity [63]. It is long known that set

supermodular max-sum problems can be translated to max-

flow/min-cut [17], [64] and therefore are tractable. Some

authors suggested this independently, e.g. Kolmogorov and

Zabih [36]. Others showed translation to max-flow for other

subclasses of the supermodular max-sum problem: Greig et al.

[65]; Ishikawa and Geiger [66], [67] for the bivariate func-

tions being convex univariate functions of differences of vari-

able pairs; Cohen et al. for Max CSP [34]. D. Schlesinger and

Flach [68] gave the translation to max-flow of the full class of

supermodular max-sum problems; importantly, this is a spe-

cial case of the more results that max-sum problem with any

number of labels can be transformed to a problem with two

labels [68]. In many of these works, especially in computer

vision, connection with supermodularity was not noticed and

the property was given ad hoc names.

Tractability of supermodular max-sum problems follows

from a more general result. Their objective function is a spe-

cial case of a supermodular function on a product of chains,

which is in turn a special case of a supermodular function

on a distributive lattice. Submodular functions with Boolean

variables can be minimized in polynomial time [69], [70] and

for submodular functions on distributive lattices, even strongly

polynomial algorithms exist [71], [72].

Linear programming relaxation (11) was shown tight for

supermodular problems by Schlesinger and Flach [11] and,

independently, for Boolean supermodular problems by Kol-

mogorov and Wainwright [19], [31] using convex combina-

tion of trees [15], [24]. Further in this section, we prove this,

following [11].

In particular, we will prove that if the function F (x |g)
(or, equivalently, the functions gtt′(•, •)) is supermodular then

x

t t′

x′

y′y

(a) (b)

Fig. 9. (a) An arc consistent lattice CSP is always satisfiable because
a labeling on it can be found by picking the lowest label in each ob-
ject separately (emphasized). (b) Supermodular max-sum problems satisfy
gtt′ (x, x′) + gtt′ (y, y′) ≥ gtt′ (x, y′) + gtt′ (y, x′) for every x ≤ y and
x′ ≤ y′. It follows that the poset L̄tt′ = { (x, x′) | gtt′ (x, x′) = utt′ } is
a lattice. In the pictures, the order ≤ is given by the vertical direction.

the max-sum problem has a trivial equivalent and finding an

optimal labeling is tractable. We will proceed in two steps:

first, we’ll show that a certain subclass of CSP is tractable and,

moreover, satisfiable if its kernel is non-empty; second, we’ll

show that the maximal nodes and edges of a supermodular

problem always form a CSP in this subclass.

We assume that the label set X is endowed with a (known)

total order ≤, i.e., the poset (X,≤) is a chain. The product

(Xn,≤) of n these chains is a distributive lattice, with the new

partial order given componentwise, and with meet ∧ (join ∨)

being componentwise minimum (maximum). In this section,

∧ and ∨ denote meet and join rather than logical conjunction

and disjunction. See [41], [55], [73] for background on lattices

and supermodularity.

Let L̄tt′ = { (x, x′) | ḡtt′(x, x
′) = 1 }. We call (G,X, ḡ) a

lattice CSP if the poset (L̄tt′ ,≤) is a lattice (i.e., is closed

under meet and join) for every {t, t′} ∈ E. Note, it follows

easily that for a lattice CSP, L̄G,X(ḡ) is also a lattice. Theo-

rem 11 shows that lattice CSPs are tractable.

Theorem 11: Any arc consistent lattice CSP (G,X, ḡ) is

satisfiable. The ‘lowest’ labeling x =
∧

L̄G,X(ḡ) is given by

xt = min{x ∈ X | ḡt(x) = 1 } (xt are the components of x).

Proof. It is obvious from figure 9a that the ‘lowest’ nodes

and edges form a labeling. Here is a formal proof.

Let xt = min{x ∈ X | ḡt(x) = 1 }. We’ll show that

ḡtt′(xt, xt′) = 1 for {t, t′} ∈ E. Pick {t, t′} ∈ E. By (3),

pencil (t, t′, xt) contains at least one edge, while pencils

{ (t, t′, x) | x < xt } are empty. Similarly for pencils (t′, t, xt′)
and { (t′, t, x′) | x′ < xt′ }. Since (L̄tt′ ,≤) is a lattice, the

meet of the edges in pair {t, t′} is {(t, xt), (t
′, xt′)}.

Recall that a function f : A → R on a lattice (A,≤) is

supermodular if all a, b ∈ A satisfy

f(a ∧ b) + f(a ∨ b) ≥ f(a) + f(b). (20)

In particular, a bivariate function f (i.e., (A,≤) is a product

of two chains, (X2,≤)) is supermodular if and only if x ≤ y
and x′ ≤ y′ implies f(x, x′) + f(y, y′) ≥ f(x, y′) + f(y, x′).

We say (G,X,g) is a supermodular max-sum problem if

all the functions gtt′(•, •) are supermodular on (X2,≤). The

following theorem shows that this is equivalent to supermod-

ularity of the function F (• |g).

12

Theorem 12: The function F (• |g) is supermodular if and

only if all the bivariate functions gtt′(•, •) are supermodular.

Proof. The if part is true because by (20), a sum of super-

modular function is supermodular.

The only if part. Pick a pair {t, t′}. Let two labelings x,y ∈
XT be equal in all objects except t and t′ where they satisfy

xt ≤ xt′ and yt ≥ yt′ . If F (• |g) is supermodular, by (20) it

is F (x ∧ y |g) + F (x ∨ y |g) ≥ F (x |g) + F (y |g). After

substitution from (5) and some manipulations, we are left with

gtt′(xt, yt′) + gtt′(yt, xt′) ≥ gtt′(xt, xt′) + gtt′(yt, yt′).

Function F (• |g) is invariant to equivalent transformations.

Theorem 12 implies that supermodularity of gtt′(•, •) is so

too. This is also seen from the fact that an equivalent transfor-

mation means adding a zero problem, which is modular, and

supermodularity is preserved by adding a modular function.

The following theorem shows that the maximal nodes and

edges of a supermodular problem form a lattice CSP.

Theorem 13: [55] The set A∗ of maximizers of a super-

modular function f on a lattice A is a sublattice of A.

Proof. Let a, b ∈ A∗. Denote p = f(a) = f(b), q = f(a∧b),
and r = f(a ∨ b). Maximality of p implies p ≥ q and p ≥ r.

Supermodularity condition q + r ≥ 2p yields p = q = r.

The theorem can be applied to function f being either

gtt′(•, •) or F (• |g). This completes the proof that every su-

permodular max-sum problem has a trivial equivalent and is

tractable.

IX. APPLICATION TO STRUCTURAL IMAGE ANALYSIS

Even if this article primarily focuses on theory, we present

an example of applying the approach to structural image anal-

ysis. It is motivated by those in [1], [9] and we give more such

examples in [41]. The task is different from non-supermodular

problems of Potts type and arising from stereo reconstruction,

experimentally examined in [19], [28], [29], [31], [74], [75],

in the fact that a lot of edge qualities are −∞. In that, our

example is closer to CSP. In the sense of [1], [9], it can be

interpreted as finding the ‘nearest’ image belonging to the lan-

guage generated by a given 2D grammar (in full generality,

2D grammars include also hidden variables). If qualities are

viewed as log-likelihoods, the task corresponds to finding the

maximum of a Gibbs distribution.

Let the following be given. Let G represent a 4-connected

image grid. Each pixel t ∈ T has a label from X = {E,I,T,L,
R}. Numbers gtt′(x, x

′) are given by figure 10a, which shows

three pixels forming one horizontal and one vertical pair, as

follows: the solid edges have quality 0, the dashed edges − 1
2 ,

and the edges not shown −∞. The functions gtt′(•, •) for all

vertical pairs are equal, as well as for all horizontal pairs.

Numbers f(E) = f(I) = 1 and f(T) = f(L) = f(R) = 0
assign an intensity to each label. Thus, f(x) = { f(xt) | t ∈
T } is the black-and-white image corresponding to labeling x.

First, assume that gt(x) = 0 for all t and x. The set

{ f(x) | F (x |g) > −∞} contains images feasible to the 2D

grammar (G,X,g), here, images of multiple non-overlapping

black ‘free-form’ characters ‘Π’ on white background. An ex-

ample of such an image with labels denoted is in figure 10b.

The number of characters in the image is −F (x |g).

T

L

R R

L

T

R

L

I

E

E

I

E

I

T

EEEEEEE EEEEEEE EEEEEEE EEEEEEE EEEEEEE EEEEEEEE E E E E E

E E

E E

E E

E E

E E E E E

I I

I I

I I

L

L

L R

R

R

TT

E

TT

(a) (b)

(c) (d) (e)

Fig. 10. The ‘Letters Π’ example. (a) The vertical and horizontal pixel
pair defining the problem. (b) A labeled image feasible to this definition. The
input image in (d) is the image in (c) plus independent Gaussian noise. (e)
The output image. Image size 50 × 50 pixels.

Let an input image { ft | t ∈ T } be given. The numbers

gt(x) = −c [ft − f(x)]2 quantify similarity between the input

image and the intensities of the labels; we set c = 1
6 . Setting

the dashed edges in figure 10a to a non-zero value discourages

images with a large number of small characters, which can be

viewed as a regularization.

For the input in figure 10d, we minimized the height of the

max-sum problem (G,X,g) by the augmenting DAG algo-

rithm and then computed the kernel of the CSP formed by

the maximal nodes and edges. To get a partial and suboptimal

solution to the CSP, we used the unique label condition from

theorem 2. The result is in figure 10e. A pixel t with a unique

maximal node (t, x) is black or white as given by f(x), a pixel

with multiple maximal nodes is gray. Unfortunately, there are

rather many ambiguous pixels.

It turns out that if X and g are redefined by adding two

more labels as shown in figure 11, a unique label in each

pixel is obtained. We observed this repeatedly: of several for-

mulations of the max-sum problem defining the same feasible

set { f(x) | F (x |g) > −∞}, some (usually not the simplest

ones) provide tight upper bounds more often.

For figure 10, the runtime of the augmenting DAG algo-

rithm (the implementation [41]) was 1.6 s on a 1.2 GHz lap-

top PC, and the max-sum diffusion achieved the state with arc

consistent maximal nodes and edges in almost 8 min (maxi-

mality threshold 10−6, double arithmetic). For figure 11, the

augmenting DAG algorithm took 0.3 s and the diffusion 20 s.

X. CONCLUSION

We have reviewed the approach to the max-sum problem by

Schlesinger et al. in a unified and self-contained framework.

The fact that due to non-optimal fixed points, no efficient

algorithm to minimize the upper bound U(g) is known is the

most serious open question. This is not only a gap in theory but

13

T

L

R

TL

TR TR

TL

R

L

T

TR

TL

R

L

I

E

E

I

E

I

T

EEEEEEE EEEEEEE EEEEEEE EEEEEEE EEEEEEE EEEEEEEE E E E E E

E E

E E

E E

E E

E E E E E

I I

I I

I I

L

L

L R

R

R

TT

E

TL TR

(a) (b)

(c)

Fig. 11. The ‘Letters Π 2’ example, alternative ‘better’ definition of ’Letters
Π’. (a) Definition, (b) a feasible labeled image, (c) output. The input was
figure 10d.

also relevant in applications because the difference between

the true and a spurious minimum can be arbitrarily large.

To present the approach by Schlesinger et al. in a single

article, we had to omit some issues for lack of space. We

have omitted a detailed formal comparison with the work by

Wainwright et al. and Kolmogorov [19], [24], [30]. We have

not discussed relation to other continuous relaxations [20]–

[22], [76], to α-expansions and αβ-swaps [77], and to primal-

dual schema [78]. We have not done experimental comparison

of the max-sum diffusion and the augmenting DAG algorithms

with other approximative algorithms for the max-sum problem

[75], [79], [80]. We have not discussed persistency (partial

optimality) results by Kolmogorov and Wainwright [19] for

Boolean variables and by Kovtun [39], [40] for the (NP-hard)

Potts model.

ACKNOWLEDGMENT

My work has been supported by the the European Union,

grant IST-2004-71567. The article could not be written with-

out Václav Hlaváč, who established co-operation of our group

with the Kiev and Dresden groups in 1996 and has been

supporting it since then, and my personal communication

with Mikhail I. Schlesinger. Christoph Schnör, Alexander

Shekhovtsov, Václav Hlaváč, Mirko Navara, Tomáš Pajdla, Jiřı́

Matas, and Vojtěch Franc gave me valuable comments.

REFERENCES

[1] M. I. Schlesinger, “Sintaksicheskiy analiz dvumernykh zritelnikh sig-
nalov v usloviyakh pomekh (Syntactic analysis of two-dimensional vi-
sual signals in noisy conditions),” Kibernetika, vol. 4, pp. 113–130,
1976, in Russian.

[2] M. L. Minsky and S. A. Papert, Perceptrons: An Introduction to Compu-

tational Geometry, 2nd ed. Cambridge, MA, USA: MIT Press, 1988,
first edition in 1971.

[3] A. Mackworth, “Constraint satisfaction,” in Encyclopedia of Artificial

Intelligence. New York: Wiley, 1991, pp. 285–292.

[4] V. K. Koval and M. I. Schlesinger, “Dvumernoe programmirovanie v
zadachakh analiza izobrazheniy (Two-dimensional programming in im-
age analysis problems),” USSR Academy of Science, Automatics and

Telemechanics, vol. 8, pp. 149–168, 1976, in Russian.

[5] V. A. Kovalevsky, M. I. Schlesinger, and V. K. Koval, “Ustrojstvo dlya
analiza seti,” Patent Nr. 576843, USSR, priority of January 4, 1976,
1977, in Russian.

[6] V. A. Kovalevsky and V. K. Koval, “A diffusion algorithm for decreasing
energy of max-sum labeling problem,” approx. 1975, Glushkov Institute
of Cybernetics, Kiev, USSR. Unpublished.

[7] B. Flach, “A diffusion algorithm for decreasing energy of max-sum
labeling problem,” 1998, Fakultät Informatik, Technische Universität
Dresden, Germany. Unpublished.

[8] M. I. Schlesinger, “False minima of the algorithm for minimizing energy
of max-sum labeling problem,” 1976, Glushkov Institute of Cybernetics,
Kiev, USSR. Unpublished.

[9] ——, Matematicheskie sredstva obrabotki izobrazheniy (Mathematical

Tools of Image Processing). Naukova Dumka, Kiev, 1989, in Russian.

[10] M. I. Schlesinger and V. Hlaváč, Ten Lectures on Statistical and Struc-

tural Pattern Recognition, M. A. Viergever, Ed. Dordrecht, The Nether-
lands: Kluwer Academic Publishers, 2002.

[11] M. I. Schlesinger and B. Flach, “Some solvable subclasses of structural
recognition problems,” in Czech Patt. Recog. Workshop, 2000.

[12] A. Koster, C. P. M. van Hoesel, and A. W. J. Kolen, “The partial con-
straint satisfaction problem: Facets and lifting theorems,” Operations

Research Letters, vol. 23, no. 3–5, pp. 89–97, 1998.

[13] A. Koster, “Frequency assignment – models and algorithms,” Ph.D. dis-
sertation, Universiteit Maastricht, Maastricht, The Netherlands, 1999,
ISBN 90-9013119-1.

[14] C. Chekuri, S. Khanna, J. Naor, and L. Zosin, “Approximation algo-
rithms for the metric labeling problem via a new linear programming
formulation,” in Symposium on Discrete Algorithms, 2001, pp. 109–118.

[15] M. Wainwright, T. Jaakkola, and A. Willsky, “MAP estimation via
agreement on (hyper)trees: message passing and linear programming
approaches,” in Allerton Conf. on Communication, Control and Com-

puting, 2002.

[16] C. L. Kingsford, B. Chazelle, and M. Singh, “Solving and analyzing
side-chain positioning problems using linear and integer programming,”
Bioinformatics, vol. 21, no. 7, pp. 1028–1039, 2005.

[17] E. Boros and P. L. Hammer, “Pseudo-Boolean optimization,” Discrete

Applied Mathematics, vol. 123, no. 1-3, pp. 155–225, 2002.

[18] P. L. Hammer, P. Hansen, and B. Simeone, “Roof duality, complementa-
tion and persistency in quadratic 0-1 optimization,” Math. Programming,
vol. 28, pp. 121–155, 1984.

[19] V. N. Kolmogorov and M. J. Wainwright, “On the optimality of tree-
reweighted max-product message-passing,” in Conf. Uncertainty in Ar-

tificial Intelligence (UAI), 2005.

[20] T. Wierschin and S. Fuchs, “Quadratic minimization for labeling prob-
lems,” Technical University Dresden, Germany, Tech. Rep., 2002.

[21] P. Ravikumar and J. Lafferty, “Quadratic programming relaxations for
metric labeling and Markov random field MAP estimation,” in Intl. Conf.

Machine Learning ICML, 2006.

[22] M. J. Wainwright and M. I. Jordan, “Semidefinite relaxations for ap-
proximate inference on graphs with cycles.” in Conf. Neural Information

Processing Systems (NIPS), 2003.

[23] M. J. Wainwright, T. Jaakkola, and A. S. Willsky, “A new class of upper
bounds on the log partition function,” IEEE Trans. Information Theory,
vol. 51, no. 7, pp. 2313–2335, 2005.

[24] M. Wainwright, T. Jaakkola, and A. Willsky, “MAP estimation via
agreement on (hyper)trees: message passing and linear programming
approaches,” IEEE Trans. Information Theory, vol. 51, no. 11, pp. 3697–
3717, 2005.

[25] ——, “Tree-based reparameterization framework for analysis of sum-
product and related algorithms,” IEEE Trans. Information Theory,
vol. 49, no. 5, pp. 1120–1146, 2003.

[26] ——, “Tree consistency and bounds on the performance of the max-
product algorithm and its generalizations,” Statistics and Computing,
vol. 14, pp. 143–166, 2004.

[27] V. Kolmogorov, “Convergent tree-reweighted message passing for en-
ergy minimization,” Microsoft Research, Tech. Rep. MSR-TR-2004-90,
2004.

[28] ——, “Convergent tree-reweighted message passing for energy mini-
mization,” Microsoft Research, Tech. Rep. MSR-TR-2005-38, 2005.

[29] ——, “Convergent tree-reweighted message passing for energy mini-
mization,” in Intl. Workshop on Artificial Intelligence and Statistics (AIS-

TATS), 2005.

14

[30] ——, “Convergent tree-reweighted message passing for energy min-
imization,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 28, no. 10, pp. 1568–1583, 2006.

[31] V. Kolmogorov and M. Wainwright, “On the optimality of tree-
reweighted max-product message-passing,” Microsoft Research, Tech.
Rep. MSR-TR-2004-37, 2005.

[32] J. Pearl, Probabilistic reasoning in intelligent systems: Networks of plau-

sible inference. San Francisco: Morgan Kaufmann, 1988.

[33] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free-energy
approximations and generalized belief propagation algorithms,” IEEE

Trans. Information Theory, vol. 51, no. 7, pp. 2282–2312, 2005.

[34] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin, “Supermodular func-
tions and the complexity of Max CSP.” Discrete Applied Mathematics,
vol. 149, no. 1-3, pp. 53–72, 2005.

[35] S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and
H. Fargier, “Semiring-based CSPs and valued CSPs: Frameworks, prop-
erties,and comparison,” Constraints, vol. 4, no. 3, pp. 199–240, 1999.

[36] V. Kolmogorov and R. Zabih, “What energy functions can be minimized
via graph cuts?” in European Conf. Computer Vision (ECCV). Springer-
Verlag, 2002, pp. 65–81.

[37] D. Schlesinger, “Strukturelle ansätze für die stereorekonstruktion,” Ph.D.
dissertation, Technische Universität Dresden, Fakultät Informatik, Insti-
tut für Künstliche Intelligenz, July 2005, in German.

[38] B. Flach, “Strukturelle bilderkennung,” Fakultät Informatik, Technische
Universität Dresden, Germany, Tech. Rep., 2002, habilitation thesis, in
German.

[39] I. Kovtun, “Partial optimal labelling search for a NP-hard subclass of
(max,+) problems,” in Conf. German Assoc. for Pattern Recognition

(DAGM), 2003, pp. 402–409.

[40] ——, “Segmentaciya zobrazhen na usnovi dostatnikh umov optimal-
nosti v NP-povnikh klasakh zadach strukturnoi rozmitki (Image seg-
mentation based on sufficient conditions of optimality in NP-complete
classes of structural labeling problems),” Ph.D. dissertation, IRTC ITS
Nat. Academy of Science Ukraine, Kiev, 2004, in Ukrainian.

[41] T. Werner, “A linear programming approach to max-sum problem: A
review,” Center for Machine Perception, Czech Technical University,
Tech. Rep. CTU–CMP–2005–25, December 2005.

[42] S. Verdú and H. V. Poor, “Abstract dynamic programming models under
commutativity conditions,” SIAM J. Control and Optimization, vol. 25,
no. 4, pp. 990–1006, July 1987.

[43] S. Bistarelli, U. Montanari, and F. Rossi, “Semiring-based constraint
satisfaction and optimization,” J. of ACM, vol. 44, no. 2, pp. 201–236,
1997.

[44] S. Gaubert, “Methods and applications of (max,+) linear algebra,” In-
stitut national de recherche en informatique et en automatique (INRIA),
Tech. Rep. 3088, 1997.

[45] S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE

Trans. on Information Theory, vol. 46, no. 2, pp. 325–343, 2000.

[46] D. L. Waltz, “Generating semantic descriptions from drawings of scenes
with shadows,” Massachusetts Institute of Technology, Tech. Rep., 1972.

[47] U. Montanari, “Networks of constraints: Fundamental properties and
application to picture processing,” Information Science, vol. 7, pp. 95–
132, 1974.

[48] A. Rosenfeld, R. A. Hummel, and S. W. Zucker, “Scene labeling by
relaxation operations,” IEEE Trans. on Systems, Man, and Cybernetics,
vol. 6, no. 6, pp. 420–433, June 1976.

[49] A. K. Mackworth, “Consistency in networks of relations,” Artificial in-

telligence, vol. 8, no. 1, pp. 65–73, 1977.

[50] R. M. Haralick and L. G. Shapiro, “The consistent labeling problem,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 1, no. 2,
pp. 173–184, 1979.

[51] M. Grohe and D. Marx, “Constraint solving via fractional edge covers,”
in Proc. the 17th annual ACM-SIAM symp. Discrete algorithm (SODA).
ACM Press, 2006, pp. 289–298.

[52] A. Bulatov, P. Jeavons, and A. Krokhin, “Classifying the complexity of
constraints using finite algebras,” Computing, vol. 34, no. 3, pp. 720–
742, 2005.

[53] R. Debruyne and C. Bessière, “Domain filtering consistencies,” Journal

of Artificial Intelligence Research, no. 14, pp. 205–230, May 2001.

[54] M. I. Schlesinger, “Lectures on labeling problems attended by the au-
thors, Kiev, Prague, Dresden,” 1996-2006.

[55] D. M. Topkis, “Minimizing a submodular function on a lattice,” Oper-

ations Research, vol. 26, no. 2, pp. 305–321, 1978.

[56] M. I. Schlesinger and V. Kovalevsky, “A hydraulic model of a linear
programming relaxation of max-sum labeling problem,” 1978, Glushkov
Institute of Cybernetics, Kiev, USSR. Unpublished.

[57] R. J. Vanderbei, Linear Programming: Foundations and Extensions.
Boston: Kluwer Academic Publishers, 1996.

[58] M. L. Balinski, “Integer programming: methods, uses, computation,”
Management Science, vol. 12, no. 3, pp. 253–313, 1965.

[59] T. Werner and A. Shekhovtsov, “Unified framework for semiring-based
arc consistency and relaxation labeling,” in 12th Computer Vision Winter

Workshop, St. Lambrecht, Austria, M. Grabner and H. Grabner, Eds.
Graz University of Technology, February 2007, pp. 27–34.

[60] T. Werner, “What is decreased by the max-sum arc consistency algo-
rithm?” in Intl. Conf. on Machine Learning, Oregon, USA, June 2007.

[61] M. I. Schlesinger, “Personal communication,” 2000-2005, International
Research and Training Centre, Kiev, Ukraine.

[62] R. E. Burkard, B. Klinz, and R. Rudolf, “Perspectives of Monge proper-
ties in optimization,” Discrete Applied Math., vol. 70, no. 2, pp. 95–161,
1996.

[63] L. Lovász, “Submodular functions and convexity,” in Mathematical Pro-

gramming – The State of the Art, A. Bachem, M. Grötschel, and B. Ko-
rte, Eds. Springer-Verlag, New York, 1983, pp. 235–257.

[64] P. L. Hammer, “Some network flow problems solved with pseudo-
Boolean programming,” Operations Research, vol. 13, pp. 388–399,
1965.

[65] D. Greig, B. Porteous, and A. Seheult, “Exact maximum a posteriori
estimation for binary images,” J. R. Statist. Soc. B, no. 51, pp. 271–279,
1989.

[66] H. Ishikawa and D. Geiger, “Segmentation by grouping junctions,” in
IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 1998,
pp. 125–131.

[67] H. Ishikawa, “Exact optimization for Markov random fields with convex
priors.” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25,
no. 10, pp. 1333–1336, 2003.

[68] D. Schlesinger and B. Flach, “Transforming an arbitrary MinSum prob-
lem into a binary one,” Dresden University of Technology, Germany,
Tech. Rep. TUD-FI06-01, April 2006.

[69] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid method and
its consequences in combinatorial optimization.” Combinatorica, vol. 1,
no. 2, pp. 169–197, 1981.

[70] ——, Geometric Algorithms and Combinatorial Optimization. Springer
Verlag, 1988, 2nd edition in 1993.

[71] A. Schrijver, “A combinatorial algorithm minimizing submodular func-
tions in strongly polynomial time,” Combinatorial Theory, Ser. B,
vol. 80, no. 2, pp. 346–355, 2000.

[72] S. Iwata, L. Fleischer, and S. Fujishige, “A combinatorial strongly
polynomial-time algorithm for minimizing submodular functions,” J. As-

soc. Comput. Mach., vol. 48, pp. 761–777, 2001.
[73] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order.

Cambridge University Press, Cambridge, 1990.
[74] T. Meltzer, C. Yanover, and Y. Weiss, “Globally optimal solutions for en-

ergy minimization in stereo vision using reweighted belief propagation,”
in Int. Conf. on Computer Vision (ICCV), June 2005, pp. 428–435.

[75] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov,
A. Agarwala, M. Tappen, and C. Rother, “A comparative study of en-
ergy minimization methods for Markov random fields,” in European

Conf. Computer Vision (ECCV), 2006, pp. II: 16–29.
[76] M. P. Kumar, P. H. S. Torr, and A. Zisserman, “Solving Markov random

fields using second order cone programming,” in Conf. on Computer

Vision and Pattern Recognition (CVPR), 2006.
[77] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-

imization via graph cuts,” IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 23, no. 11, pp. 1222–1239, 2001.
[78] N. Komodakis and G. Tziritas, “A new framework for approximate la-

beling via graph cuts.” in Intl. Conf. Computer Vision (ICCV), 2005, pp.
1018–1025.

[79] V. Kolmogorov and C. Rother, “Comparison of energy minimization
algorithms for highly connected graphs,” in European Conf. Computer

Vision (ECCV), 2006, pp. II: 1–15.
[80] C. Yanover, T. Meltzer, and Y. Weiss, “Linear programming relaxations

and belief propagation: An empirical study,” Machine Learning Re-

search, vol. 7, pp. 1887–1907, September 2006.

1

Revisiting the Linear Programming Relaxation
Approach to Gibbs Energy Minimization

and Weighted Constraint Satisfaction
Tomáš Werner

Abstract —We present a number of contributions to the LP relaxation approach to weighted constraint satisfaction (= Gibbs energy
minimization). We link this approach to many works from constraint programming, which relation has so far been ignored in machine
vision and learning. While the approach has been mostly considered only for binary constraints, we generalize it to n-ary constraints
in a simple and natural way. This includes a simple algorithm to minimize the LP-based upper bound, n-ary max-sum diffusion –
however, we consider using other bound-optimizing algorithms as well. The diffusion iteration is tractable for a certain class of high-
arity constraints represented as a black-box, which is analogical to propagators for global constraints CSP. Diffusion exactly solves
permuted n-ary supermodular problems. A hierarchy of gradually tighter LP relaxations is obtained simply by adding various zero
constraints and coupling them in various ways to existing constraints. Zero constraints can be added incrementally, which leads to a
cutting plane algorithm. The separation problem is formulated as finding an unsatisfiable subproblem of a CSP.

Index Terms —weighted constraint satisfaction, Gibbs distribution, graphical model, Markov random field, linear programming
relaxation, marginal polytope, cut polytope, cutting plane algorithm, global constraint, supermodularity, tree-reweighted max-product

✦

1 INTRODUCTION

THE topic of this paper is the following problem:
given a set of discrete variables and a set of functions

each depending on a subset of the variables, maximize
the sum of the functions over all the variables. This NP-
hard combinatorial optimization problem is known as
the weighted (valued, soft) constraint satisfaction prob-
lem (WCSP) [1], minimizing Gibbs energy, or finding the
most probable configuration of a Markov random field.
For Boolean (= two-state) variables, it becomes pseudo-
Boolean optimization [2]. The WCSP is useful in many
fields, such as AI or machine vision and learning.

One of the approaches to WCSP is the linear program-
ming (LP) relaxation, first proposed by Schlesinger [3].
The WCSP is formulated as an integer LP in which the
integrality constraint is then relaxed. The dual of the
resulting LP minimizes an upper bound on the WCSP
optimum by equivalent transformations (reparameteri-
zations) of the problem. Schlesinger and colleagues pro-
posed two algorithms to decrease the bound: max-sum
diffusion [4], [5], which averages overlapping edge max-
marginals until they all coincide, and the augmenting
DAG algorithm [6]. In general, these algorithms do not
find the global minimum of the bound but only a (good)
local optimum. We surveyed works [3], [4], [6] in [7], [8].

This article is a continuation of our survey [8] of the
approach by Schlesinger et al. and an improved version
of our paper [9]. We present the following contributions:

• The author is with the Department of Cybernetics, Czech Technical
University, Karlovo náměstı́ 13, 12135 Praha, Czech Republic. Email:
werner@cmp.felk.cvut.cz.

Links to constraint programming: Minimizing Gibbs energy
and WCSP are closely linked to the constraint satisfac-
tion problem (CSP) and the related field of constraint
programming [10] because: (i) the WCSP upper bound is
tight iff the CSP formed by active constraint values has a
solution [8], (ii) CSP is a special case of WCSP, (iii) WCSP
itself is subject to research in the constraints community
[1], [11], [12]. Though early seminal works on using
constraints in image analysis reflected the rôle of crisp
constraints [13] and their relation to soft constraints [14],
[3], nowadays the relation to CSP is ignored in machine
vision and learning, where people speak only about
MRFs and graphical models. We relate the LP relaxation
approach to many results from constraint programming.
This links MRF inference to a lot of relevant literature.

N-ary generalization of the LP relaxation: The LP relaxation
by Schlesinger and max-sum diffusion were originally
formulated for binary WCSPs [3], [8]. We generalize
them to constraints of any arity: while in the binary
case nodes are coupled to edges, here we couple pairs
of hyperedges. Which hyperedge pairs are actually cou-
pled is specified by the coupling scheme. This allows to
include non-binary constraints in a native way (= not by
translation to binary constraints).

High-arity and global constraints: A high-arity constraint
represented by a black box is feasible to handle by max-
sum diffusion whenever max-marginals of its reparam-
eterization are tractable to compute. This is very similar
to how global constraints are commonly treated in CSP.

Supermodular n-ary problems: We show that for super-
modular n-ary WCSPs, any local optimum of the bound
solves the WCSP exactly; here, it suffices to couple

2

hyperedges only to variables, i.e., to achieve only gener-
alized arc consistency. By revisiting [15], [12], we gener-
alize this result to permuted supermodular WCSPs.

Tighter relaxations: We show that once we have a natively
n-ary LP relaxation, it can be tightened simply by adding
zero constraints. Dually, this means that equivalent
transformations change not only the constraint values
but also the problem hypergraph. Adding various zero
constraints and coupling them to existing constraints
in various ways yields a hierarchy of gradually tighter
relaxations, corresponding to a hierarchy of nested poly-
hedral outer bounds of the marginal polytope. This can
be done incrementally, yielding a dual cutting plane
algorithm. The separation problem can be posed purely
in CSP terms, such as finding an unsatisfiable sub-CSP.
We relate higher-order LP relaxations to stronger local
consistencies (path consistency, k-consistency) in CSP.

1.1 Other Works

Non-binary constraints, tighter relaxations and cutting-
plane strategies in LP relaxation approaches to WCSP
have been addressed in a number of other works.

Most similar to ours is the decomposition approach. The
original WCSP is expressed as a sum of subproblems
on tractable hypergraphs. The sum of maxima of the
subproblems is an upper bound on the maximum of
their sum (= the true solution). The bound is minimized
over constraint values of the subproblems, subject to that
they sum to a reparameterization of the original WCSP.

The approach was proposed by Wainwright et al. [16],
[17], [18] for tree-structured subproblems and improved
by Kolmogorov [19]. Using hypertrees rather than trees
allows for natively handling non-binary constraints and
yields a hierarchy of progressively tighter relaxations [17,
§VI], [18]. Johnson et al. [20] used general subproblems
rather than (hyper)trees, also obtaining a hierarchy of
relaxations. Komodakis et al. [21] pointed out that de-
composition is a standard technique in optimization [22].

Our approach can be seen equivalent to the decompo-
sition approach. In the one direction, we decompose the
WCSP into the smallest possible subproblems, individual
constraints. In the other direction, if each constraint
in our approach is itself defined as a sum of several
constraints, we obtain the decomposition approach. Our
adding of zero constraints is similar to constructing an
augmented hypergraph in [20], [18].

Weiss et al. [23] extended the LP relaxation to n-
ary problems in a way similar to ours, with a small
but crucial difference: they couple hyperedges only to
variables (rather than other hyperedges), in which case
adding zero constraints does not tighten the relaxation.

A global constraint in WCSP was used by Rother et al.
[24]. Our aproach is different, relying on LP relaxation.

Tighter LP relaxations of WCSP and cutting plane
strategies have recently appeared in many works. These
approaches can be divided into primal [25], [26] and dual
[20], [27], [28], [29]. Ours is dual. Primal approaches have

a drawback that no algorithms to solve the primal LP are
known that scale to large problems.

Koster et al. [25] proposed the same LP relaxation as
[3] (without dual) and a primal cutting plane algorithm.

Sontag and Jaakkola [26] observed the relation of the
marginal polytope and the cut polytope [30], for which
many classes of cutting planes are known, and adapted
the algorithm [31] to separate inconsistent cycles.

Kumar and Torr [27] and Komodakis and Paragios [28]
add cycles to the LP relaxation.

Sontag et al. [29] incrementally tighten the relaxation
by adding clusters of variables.

N-ary generalizations of the LP relaxation to WCSP,
their higher-order versions, and cutting plane strategies
proposed in the above works often use different for-
malisms which makes it difficult to compare them –
however, one can conjecture that they all yield the same
hierarchy of polyhedral relaxations (or at least some of
its lower levels). We offer yet another formulation, which
is very simple and general. Its main strength is in its
close relation to constraint programming, which allows
to formulate optimality conditions and the separation
problem in CSP terms and straightforwardly extends to
global and n-ary (permuted) supermodular constraints.

2 NOTATION AND PROBLEM FORMULATION

2V resp.
(

V
k

)

is the set of all resp. of k-element subsets of
a set V . The value [[ω]] is 1 if logical expression ω is true
and 0 if ω is false. R denotes the reals and R̄ = R∪{−∞}.
The set of mappings from X to Y is Y X . An ordered
resp. unordered tuple is denoted (· · ·) resp. {· · ·}.

Let V be a finite, totally ordered set of variables. To
emphasize the variable ordering, when defining a subset
of V by enumerating its elements we use (· · ·) instead of
{· · ·}. Each variable v ∈ V is assigned a finite set Xv , its
domain. An element of Xv is a state of variable v and
is denoted xv . The joint domain of variables A ⊆ V is
the Cartesian product XA =×v∈AXv , where the order
of the factors is determined by the order on V . A tuple
xA ∈ XA is a joint state of variables A.

Example 1. Let V = (1, 2, 3, 4), X1 = X2 = X3 = X4 =
{a, b}. A joint state x134 = (x1, x3, x4) ∈ X134 = X1 ×
X3 ×X4 of variables A = (1, 3, 4) ⊆ V is e.g. (a, a, b).

We will use the following implicit restriction conven-
tion: for B ⊆ A, whenever symbols xA and xB appear in
a single expression they do not denote independent joint
states but xB denotes the restriction of xA to variables B.

A constraint with scope A ⊆ V is a function fA: XA →
R̄. The arity of the constraint is the size of its scope, |A|.

Let E ⊆ 2V be a set of subsets of V , i.e., a hypergraph.
Each hyperedge A ∈ E is assigned a constraint fA. All
these constraints together are understood as a single
mapping f : T (E,XV) → R̄, (A, xA) 7→ fA(xA), where
we denoted T (E,XV) = { (A, xA) | A ∈ E, xA ∈ XA }.

The topic of this article is the problem

max
xV ∈XV

∑

A∈E

fA(xA) (1)

3

∑

A∈E

∑

xA

fA(xA)µA(xA)→ max
µ

∑

A∈E

ψA → min
ϕ,ψ

(2a)

∑

xA\B

µA(xA) = µB(xB) ϕA,B(xB) ≶ 0 ∀(A,B) ∈ J, xB ∈ XB (2b)

∑

xA

µA(xA) = 1 ψA ≶ 0 ∀A ∈ E (2c)

µA(xA) ≥ 0
∑

B|(B,A)∈J

ϕA,B(xA)−
∑

B|(A,B)∈J

ϕB,A(xB) + ψA ≥ fA(xA) ∀A ∈ E, xA ∈ XA (2d)

which we will refer to as the weighted constraint satis-
faction problem (WCSP). The WCSP instance is defined
by a tuple (V,E,XV , f). When V , E and XV are clear
from context, sometimes we will refer to the instance just
as f . The arity of the instance is maxA∈E |A|.

Example 2. Let V = (1, 2, 3, 4) and E = {(2, 3, 4), (1, 2),
(3, 4), (3)}. Problem (1) means that we maximize the
function f234(x2, x3, x4)+f12(x1, x2)+f34(x3, x4)+f3(x3)
over x1, x2, x3, x4.

3 L INEAR PROGRAMMING RELAXATION

The LP relaxation approach developed by Schlesinger [3]
was originally formulated for binary WCSP. Following
our survey [8], we generalize it here to n-ary WCSPs.

We start by writing the relaxation as the pair of
mutually dual linear programs (2). Here, ≶ 0 means that
the variable is unconstrained. In matrix form, (2) reads

f⊤µ→ max
µ

ψ⊤1→ min
ϕ,ψ

(3a)

Mµ = 0 ϕ ≶ 0 (3b)

Nµ = 1 ψ ≶ 0 (3c)

µ ≥ 0 ϕ⊤M + ψ⊤N ≥ f⊤ (3d)

The pairs (2) and (3) are written such that a constraint
and its Lagrange multiplier is always on the same line.

Besides E, XV and f , the LP is described by a set

J ⊆ I(E) = { (A,B) | A ∈ E, B ∈ E, B ⊂ A } (4)

where I(E) denotes the (strict) inclusion relation on E.
We refer to the set J as the coupling scheme.

In §3.1, §3.2 we explain the primal and dual in detail.

3.1 The Primal Program

In the primal LP, each hyperedge A ∈ E is assigned
a function µA: XA → [0, 1], where primal constraints
(2c)+(2d) impose that µA is a probability distribution. All
the distributions together are understood as a mapping
µ: T (E,XV) → [0, 1]. While the constraints (2c)+(2d)
affect each distribution separately, constraint (2b) cou-
ples some pairs of distributions, imposing that they have
consistent marginals. The coupling scheme J determines
which pairs of distributions are actually coupled.

Example 3. Let A = (1, 2, 3), B = (2, 3). Then (2b) reads:
∀x2 ∈ X2, x3 ∈ X3:

∑

x1
µ123(x1, x2, x3) = µ23(x2, x3).

If µ is integral, µ: T (E,XV)→ {0, 1}, then, on certain
conditions on E and J , the primal LP is equivalent to
WCSP. Theorem 1 shows that for this equivalence to
hold, it suffices to couple hyperedges to variables [23].

Theorem 1. Let
(

V
1

)

⊆ E and IGAC(E) ⊆ J , where

IGAC(E) = { (A, (v)) | A ∈ E, |A| > 1, v ∈ A } (5)

Then the primal LP with integral µ is equivalent to (1).

Proof: Let µ be integral. Then µA represents a sin-
gle joint state, xA. Thus, fA(xA) =

∑

yA
fA(yA)µA(yA).

Equality (2b) means that the joint state represented by
µB is the restriction of the joint state represented by µA
on variables B. If IGAC(E) ⊆ J then fixing µv for all
v ∈ V uniquely determines µA for all A ∈ E.

If IGAC(E) 6⊆ J then the primal LP can have integral
optimal solutions that are not solutions of (1).

To conclude, the primal LP is a relaxation of the
WCSP. The relaxation is twofold: first, µ is allowed to be
continuous rather than integral, second, only a subset,
J , of possible marginalization constraints is imposed.
Clearly, the primal optimum is an upper bound on (1).

3.1.1 Alternative Forms of Marginal Consistency
The marginal consistency condition (and the coupling
scheme) could be formulated in several alternative ways,
different from (2b). We state these alternative forms here.

First, (2b) can be stated in a symmetric form as

∑

xA\C

µA(xA) =
∑

xB\C

µB(xB)

{

∀(A,B,C) ∈ J
∀xC ∈ XC

(6)

where J ⊆ I(E) = { (A,B,C) | A,B ∈ E, ∅ 6= C ⊆
A ∩ B }. Form (6) may appear more general than the
asymmetric form (2b); e.g., if A∩B 6= ∅ and B 6⊂ A then
equality (2b) is vacuous and (6) is not. But this is not so
because equality (6) applied on (A,B,C) is equivalent
to two equalities (2b) applied on (A,C) and (B,C). This
assumes that C ∈ E, which can be ensured by adding
the zero constraint with scope C (see Example 6 in §9).

Second, while equality (2b) is imposed on all joint
states xB ∈ XB , we could impose it only on their subset:

∑

xA\B

µA(xA) = µB(xB) ∀(A,B, xB) ∈ J (7)

4

where J ⊆ I(E) = {(A,B, xB) | A,B ∈ E, B ⊂ A, xB ∈
XB }. Form (6) can be refined similarly.

3.2 The Dual Program

Definition 1. Let E ⊆ 2V , E′ ⊆ 2V , f : T (E,XV) → R̄,
f ′: T (E′, XV) → R̄. WCSP instances (V,E,XV , f) and
(V,E′, XV , f

′) are equivalent iff

∑

A∈E

fA(xA) =
∑

A∈E′

f ′A(xA) ∀xV ∈ XV

Unlike the previous definition of WCSP equivalence
[3], [8], [19], Definition 1 does not require that equivalent
WCSPs have the same hypergraph, it only requires that
they have the same variables V and domains XV . Thus,
it allows to change not only the constraint values but also
the hypergraph. We call a transformation taking a WCSP
to its equivalent an equivalent transformation. Until §9,
we will consider only equivalent transformations that
preserve the hypergraph (i.e., E = E′ in the definition).

The simplest hypergraph-preserving equivalent trans-
formation is applied to a single pair of constraints, fA
and fB for B ⊂ A, by adding a function ϕA,B : XB → R

(a ‘message’) to fA and subtracting it from1 fB , i.e.,

fA(xA)← fA(xA) + ϕA,B(xB) ∀xB ∈ XB (8a)

fB(xB)← fB(xB)− ϕA,B(xB) ∀xB ∈ XB (8b)

Let a function ϕA,B : XB → R be assigned to each
(A,B) ∈ J . The collection of these functions forms a
single mapping ϕ. Let fϕ denote the WCSP obtained by
applying (8) on f for all (A,B) ∈ J , i.e., fϕ is given by

fϕA(xA) = fA(xA)−
∑

B|(B,A)∈J

ϕB,A(xA) +
∑

B|(A,B)∈J

ϕA,B(xB) (9)

We refer to (9) as a reparameterization2 of f .
In matrix form, (9) reads fϕ = f −M⊤ϕ. This shows

clearly why reparameterizations preserve the primal ob-
jective: because Mµ = 0 implies (f⊤ − ϕ⊤M)µ = f⊤µ.

Theorem 2. For any f : T (E,XV)→ R̄, we have

max
xV

∑

A∈E

fA(xA) ≤
∑

A∈E

max
xA

fA(xA) (10)

which holds with equality iff there exists a joint state xV ∈
XV such that fA(xA) = maxyA

fA(yA) for all A ∈ E.

Proof: Clearly, maxi
∑

j aij ≤
∑

j maxi aij for any
aij ∈ R̄, which holds with equality iff there exists i such
that aij = maxk akj for all j. This is applied to (1).

1. While (8) is clearly an equivalent transformation, it is far from
obvious whether any hypergraph-preserving equivalent transformation
is realizable as a composition of (8) for various (A, B) ∈ I(E). In
analogy with [8, Theorem 3] and [19, Lemma 6.3], we conjecture that
this is so if E is closed to intersection (A, B ∈ E implies A ∪ B ∈ E).

2. There is a ‘gauge freedom’ in (9): f = fϕ need not imply ϕ = 0.
It is an open problem for a given f to describe the set {ϕ | f = fϕ }.
If some constraint values are −∞, this seems to be difficult.

The right-hand expression in (10) is an upper bound
on (1). By eliminating variables ψA, the dual LP reads

min
ϕ

∑

A∈E

max
xA

fϕA(xA) (11)

which can be interpreted as minimizing the upper bound
by reparameterizations permitted by J .

3.3 Hierarchy of LP Relaxations

We have shown, both by primal and dual arguments,
that the optimum of the LP (2) is an upper bound on
the true WCSP optimum (1). Sometimes, the bound is
tight, i.e., equal to (1). For any non-trivially chosen J ,
this happens for a large and complex class of WCSPs.

Tightness of the relaxation depends on the coupling
scheme J . An equality (2b) in the primal corresponds
via duality to a variable ϕA,B(xB) in the dual – thus,
the larger J is, the more the primal is constrained and
the larger is the set of permitted reparameterizations in
the dual. LP relaxations for various J ∈ I(E) form a
hierarchy, partially ordered by the inclusion on I(E).

Let P (E,XV , J) ⊆ [0, 1]T (E,XV) denote the polytope of
mappings µ feasible to the primal LP. The hierarchy of
relaxations is established by the obvious implication3

J1 ⊇ J2 =⇒ P (E,XV , J1) ⊆ P (E,XV , J2) (12)

Imposing marginal consistency in form (7) rather
than (2b) would yield a finer-grained hierarchy of re-
laxations. This would require to modify formula (9).

4 CONSTRAINT SATISFACTION PROBLEM

The constraint satisfaction problem (CSP) [33] is one of
the classical NP-complete problems. Here we give back-
ground on the CSP which we will need later.

Let each hyperedge A ∈ E be assigned a crisp con-
straint f̄A: XA → {0, 1}, understood as the characteristic
function of an |A|-ary relation over variables A. A joint
state xA is permitted (forbidden) iff A ∈ E and f̄A(xA)
equals 1 (0). Let ∨ (∧) denote the logical disjunction
(conjunction). The CSP asks whether there exists a joint
state xV ∈ XV satisfying all the relations, i.e., f̄A(xA) = 1
for each A ∈ E. Such xV is a solution. The CSP instance
is defined by (V,E,XV , f̄), where f̄ : T (E,XV)→ {0, 1}.

A CSP is satisfiable iff it possesses a solution. We call
xA a satisfiable joint state iff it can be extended to a
solution. Note, the fact that the CSP is satisfiable and
xA is permitted does not imply that xA is satisfiable. A
joint state xA is locally consistent iff f̄B(xB) = 1 for
every B such that B ∈ E and B ⊆ A. In particular, xV
is a solution iff it is locally consistent.

For tractable subclasses of the CSP see [34], [35].
A powerful tool to solve CSPs is constraint propagation

[36] (filtering, relaxation labeling [14]). The possibility to

3. Different coupling schemes may yield the same relaxation, i.e.,
P (E, XV , J1) = P (E, XV , J2) need not imply J1 = J2. It is an open
problem to characterize when exactly this happens.

5

propagate constraints is the distinguishing feature of the
CSP: while in general a search cannot be avoided to solve
a CSP, propagating constraints during the search prunes
the search space such that instances of practical size can
be solved. In a way, constraint propagation is a crisp
analogy of ‘message passing’ in graphical models.

In constraint propagation, some obviously unsatisfi-
able joint states are iteratively deleted using a simple
local rule, a propagator. This is often done until the CSP
satisfies a state characterized by a local consistency – then
we speak about enforcing the local consistency.

Many local consistencies have been proposed, see [36]
for a survey and [37] for comparison of their strength for
binary CSPs. The most well-known one is arc consistency
(AC). It is defined for binary CSPs, while we need a local
consistency defined for CSPs of any arity. Many such
consistencies are known; of them, most relevant to our
LP relaxation are pairwise consistency (PWC), generalized
arc consistency (GAC), and k-consistency [36].

4.1 J-consistency

To fit our form of coupling, we introduce a modification
of PWC, J-consistency. While PWC enforces consistency
of all pairs of relations, J-consistency enforces consis-
tency of relations f̄A and f̄B only if (A,B) ∈ J .

Definition 2. For B ⊂ A, relations f̄A: XA → {0, 1} and
f̄B : XB → {0, 1} are pairwise consistent iff

∨

xA\B

f̄A(xA) = f̄B(xB) ∀xB ∈ XB (13)

A CSP (V,E,XV , f̄) is J-consistent iff relations f̄A and
f̄B are pairwise consistent for every (A,B) ∈ J .

Note that the set of equalities (13) has the following
meaning: a joint state xB is permitted by relation f̄B iff
xB can be extended to a joint state xA satisfying f̄A.

PWC and GAC are special cases of J-consistency. PWC
is obtained if E is closed to intersection (i.e., A,B ∈ E
implies A ∩ B ∈ E) and J = I(E). GAC is obtained4

if
(

V
1

)

⊆ E and J = IGAC(E). For binary CSPs with
(

V
1

)

⊆ E, PWC and GAC become AC.
To enforce J-consistency, a generalization of well-

known algorithms to enforce (G)AC can be used. Al-
gorithm 1 deletes unsatisfiable joint states until the CSP
becomes J-consistent, while preserving the solution set,
i.e., the relation

∧

A∈E f̄A(xA).
Obviously, if the algorithm makes f̄ empty (i.e., f̄ = 0)

then the initial CSP was unsatisfiable. Note that if any
relation f̄A becomes empty during the algorithm, it is
already clear that f̄ will eventually become empty.

We give the algorithm also in the parameterized form
as Algorithm 2, which does not change the relations f̄
(thus, they can be represented intensionally, §6.3). Each

4. We remark that the concept of GAC allows us to explain Theo-
rem 1 in §3.1 in CSP terms as follows. An integer primal-feasible µ
can be seen as a CSP in which, due to (2c), each relation has a single
permitted joint state. Clearly, such a CSP is satisfiable iff it is GAC.

Algorithm 1 (enforcing J-consistency of CSP)

repeat

Find (A,B) ∈ J , xB ∈ XB s.t.
∨

xA\B

f̄A(xA) 6= f̄B(xB)

for xA\B ∈ XA\B do f̄A(xA)← 0 end for

f̄B(xB)← 0

until f̄ is J-consistent

(A,B) ∈ J is assigned a function ϕ̄A,B : XB → {0, 1},
where all these functions together form a mapping ϕ̄.
Initially we set ϕ̄ = 1. Analogically to (9), we define
transformation f̄ ϕ̄ of f̄ by

f̄ ϕ̄A(xA) = f̄A(xA) ∧
∧

B|(B,A)∈J

ϕ̄B,A(xA) ∧
∧

B|(A,B)∈J

ϕ̄A,B(xB)

Algorithm 2 (enforcing J-consistency, parameterized)

repeat

Find (A,B) ∈ J , xB ∈ XB s.t.
∨

xA\B

f̄ ϕ̄A(xA) 6= f̄ ϕ̄B(xB)

ϕ̄A,B(xB)← 0

until f̄ ϕ̄ is J-consistent

The closure of a CSP with respect to a local consistency
is the maximal subset of its permitted joint states that
still achieves the local consistency [36, §3]. To formalize
this, we define inclusion ≤ and join ∨ on CSPs by:

f̄ ≤ f̄ ′ ⇐⇒ ∀A, xA: f̄A(xA) ≤ f̄ ′A(xA)

f̄ = f̄ ′ ∨ f̄ ′′ ⇐⇒ ∀A, xA: f̄A(xA) = f̄ ′A(xA) ∨ f̄ ′′A(xA)

Definition 3. The J-consistency closure of a CSP
(V,E,XV , f̄) is the CSP (V,E,XV , f̄

∗) where

f̄∗ =
∨

{ f̄ ′ | f̄ ′ ≤ f̄ , f̄ ′ is J-consistent } (14)

It is easy to verify that the join of J-consistent CSPs is
J-consistent (in other words, J-consistent CSPs form a
join-semilattice). Hence the closure (14) is J-consistent.

It is not true in general that an algorithm to enforce
a local consistency produces the closure of that local
consistency [36]. However, it is true for J-consistency.

Theorem 3. Algorithm 1 or 2 finds the J-consistency closure.

4.2 k-consistency

There exist stronger local consistencies than (G)AC and
PWC. Most important of them is k-consistency [36].

Definition 4. A CSP is k-consistent iff for every locally
consistent joint state xA such that |A| = k − 1 and every
variable v ∈ V there exists a state xv such that xA∪(v) is
locally consistent (i.e., xA can be extended to variable v).

Strong k-consistency is k′-consistency for all k′ ≤ k.
Solvability by strong k-consistency characterizes an im-
portant class of tractable relation languages [34, §8.4.2]
(e.g., binary CSPs with Boolean variables are solved by

6

strong 3-consistency). Strong k-consistency solves CSPs
with (hyper)graph of treewidth less than k [38], [35, §3.4].

Unlike J-consistency, enforcing (strong) k-consistency
in general requires adding new relations to the CSP. Let
f̄A = 1 denote the universal relation (i.e., identically true)
on A. An inefficient way to enforce k-consistency is to
add all possible universal relations of arity k − 1 and k
(such that

(

V
k−1

)

∪
(

V
k

)

⊆ E), then enforce PWC, and then
remove all the previously added k-ary relations [39, §8].

In a more efficient algorithm, only some of the missing
(k − 1)-ary relations can be added. It achieves strong k-
consistency by enforcing k′-consistency for k′ = 2, . . . , k
in turn. A (k−1)-consistent CSP is made k-consistent as
follows. We iteratively set f̄A(xA) ← 0 whenever |A| =
k − 1 and xA cannot be extended to some variable v.
Here, if A was not already in E, we first add A to E and
set f̄A ← 1. Simultaneously, PWC is enforced.

2-consistency is the same as arc consistency.

4.2.1 3-consistency and Path Consistency

3-consistency in a binary CSP is also known as path con-
sistency for the following reason. A sequence (u, . . . , v)
of variables is a path if {u, v} and all edges along the
sequence are in E (we also allow u = v which yields
a cycle). The path is consistent iff any state pair (xu, xu)
satisfying relation f̄uv can be extended to all intermediate
relations along the path. A graph is chordal (= triangu-
lated) iff every cycle of length 4 or more has a chord.

Theorem 4. In a chordal graph, every path of length 3 (i.e.,
with 3 variables) is consistent iff every path is consistent.

Proof: For complete (hence chordal) graphs, this is a
classical results by Montanari [13], [36]. It was extended
to chordal graphs by Bliek and Sam-Haroud [40].

By definition, 3-consistency means that any locally
consistent state pair (xu, xv) can be extended to any third
variable w. In other words, after filling-in the CSP to the
complete graph with universal binary relations, all paths
of length 3 are consistent – hence, all paths are consistent.

4.3 CSP with a Relation over All the Variables

Let
⋃

E =
⋃

A∈E A (typically but not necessarily we have
⋃

E = V). Consider a CSP containing a relation over
hyperedge

⋃

E (i.e.,
⋃

E ∈ E) and the coupling scheme

ISAT(E) = { (
⋃

E,A) | A ∈ E, A 6=
⋃

E } (15)

which couples
⋃

E to all other hyperedges. Proposi-
tions 5, 6, 7 give properties of ISAT(E)-consistency we
will need later. Proofs are easy, from Definitions 2, 3.

Proposition 5. A CSP with
⋃

E ∈ E has a non-empty
ISAT(E)-consistency closure iff it is satisfiable.

Proposition 6. A CSP with
⋃

E ∈ E is ISAT(E)-consistent
iff every joint state xA permitted by f̄A is satisfiable.

Proposition 7. If a CSP with
⋃

E = V ∈ E is ISAT(E)-
consistent then

f̄V (xV) ≤
∧

A∈E

f̄A(xA) ∀xV ∈ XV (16)

Note, equality in (16) for all xV means that the relation
f̄V is realizable as the conjunction of the relations f̄A.

Example 4. Let V = (1, 2, 3), XV = {0, 1}V , and E =
{ (1, 2), (1, 3), (2, 3), (1, 2, 3) }. Let f̄ be defined by

f̄123(x1, x2, x3) = x1x̄2x̄3 ∨ x̄1x2x̄3 ∨ x̄1x̄2x3 (17a)

f̄12(x1, x2) = x̄1x̄2 ∨ x1x̄2 ∨ x̄1x2 (17b)

and f̄13 = f̄23 = f̄12, where we denoted x̄u = 1 − xu
and xuxv = xu ∧ xv . The CSP (V,E,XV , f̄) is ISAT(E)-
consistent but the inequality in (16) is strict for xV =
(x1, x2, x3) = (0, 0, 0). Clearly, f̄123 is not realizable as a
conjunction of any binary relations.

5 OPTIMALITY OF THE LP RELAXATION

Given feasible primal and dual variables, we want to
recognize whether they are optimal to the LP pair and
whether this optimum is tight. As shown in [3], [8] for
binary WCSPs, the answers to these questions depend
only on the properties of the CSP formed by the active
joint states. This is significant because it moves reasoning
about optimality of the LP relaxation to the realm of a
well-known and long-studied problem.

Here we extend these results for WCSPs of any arity.
Theorems 8, 9, 10 characterize three levels of optimality
of the LP relaxation: whether the upper bound is tight
(i.e., equal to (1)), minimal, or locally minimal.

Definition 5. Given a function fA: XA → R̄, we define a
relation ⌈fA⌉: XA → {0, 1} by

⌈fA⌉(xA) =







1 if fA(xA) = max
yA

fA(yA)

0 if fA(xA) < max
yA

fA(yA)
(18)

A joint state xA of constraint fA is active iff ⌈fA⌉(xA) = 1.
Given a mapping f : T (E,XV)→ R̄, we define a mapping

⌈f⌉: T (E,XV)→ {0, 1} by ⌈f⌉A(xA) = ⌈fA⌉(xA).

Theorem 8. Inequality (10) holds with equality iff the CSP
(V,E,XV , ⌈f⌉) is satisfiable5. The solutions of this CSP are
in one-to-one correspondence with the maximizers of (1).

Proof: By restating the second part of Theorem 2.

Theorem 9. Let µ: T (E,XV) → [0, 1] be feasible to the
primal LP. The primal and dual LP are jointly optimal iff

[1− ⌈fϕA⌉(xA)]µA(xA) = 0 ∀A ∈ E, xA ∈ XA (19)

Proof: Apply complementary slackness to (2b).

Theorem 9 characterizes WCSPs for which the bound
is dual optimal, i.e., cannot be improved by changing ϕ:

5. Note a subtlety: since finding a solution to a CSP is NP-complete
even if we know that the CSP is satisfiable, finding an optimizer to a
WCSP is NP-complete even if we know that the upper bound is tight.

7

it is when a primal feasible µ exists such that µA(xA) = 0
whenever joint state xA is inactive. In fact, given any
single dual optimal solution, all primal optimal solutions
are uniquely determined by the active joint states by (19).

Theorem 10. If, for any J , ϕ is optimal to the dual LP then
the J-consistency closure of ⌈fϕ⌉ is not empty.

Proof: Let f̄ ′A(xA) = [[µA(xA) > 0]]. For any non-
negative µA, obviously

∑

xA\B
µA(xA) = µB(xB) im-

plies
∨

xA\B
f̄ ′A(xA) = f̄ ′B(xB). Hence, the CSP f̄ ′ is J-

consistent. Clearly, (19) can be rewritten as f̄ ′ ≤ ⌈fϕ⌉.
By (14), ⌈fϕ⌉ has a non-empty J-consistency closure.

As shown in [41], [8], [19], a non-empty closure of ⌈fϕ⌉
is only necessary but not sufficient for dual optimality.
Thus, Theorem 10 characterizes local minima of the upper
bound (10). These local minima naturally appear in
several algorithms to solve the dual LP6.

The only known WCSP classes for which all local
minima are global are the supermodular ones and those
with binary constraints and Boolean variables [8], [42].

6 OPTIMIZING THE BOUND

Here we focus on algorithms to solve the LP (2).
It is better to solve the dual LP than the primal LP.

This is because no algorithm is known to solve (or find a
good suboptimum of) the primal for large instances; only
general LP solvers (simplex) have been used [25], [26].
Moreover, the number of primal variables is exponential
in the arity of the instance, thus for large arities the
primal cannot be solved explicitly at all, whereas the
corresponding exponential number of dual constraints
sometimes can be handled implicitly (§6.3, §9.3).

6.1 Existing Algorithms for Binary Problems

The dual LP in the form (11) is an unconstrained mini-
mization of a convex piecewise linear (hence nonsmooth)
function. To scale to large instances, it is reasonable to
require that an algorithm to solve (11) have space com-
plexity linear in the number of dual variables ϕA,B(xB). This
rules out e.g. the simplex and interior point algorithms.
For binary WCSPs, known algorithms with this property
can be divided into two groups:

1) Local algorithms find a local minimum of the upper
bound characterized by arc consistency of the active joint
states. The found local minima are usually very good or
even global. Two types of such algorithms are known:

a) Algorithms based on averaging max-marginals:
max-sum diffusion [4], [5], [8], TRW-S [19] and [43],
[20]. They can be roughly seen as a (block) coordinate
descent. Existence of local minima follows from the
fact that coordinate descent need not find the global
minimum of a convex nonsmooth function [44, §7.3].

6. In particular, in any fixed point of the TRW-S algorithm [19], the
states and state pairs whose max-marginals are maximal in trees form
an arc consistent CSP. This is called weak tree agreement in [19].

b) The augmenting DAG algorithm [6], [7], [8] and
the virtual arc consistency (VAC) algorithm [12]. They
explicitly try to enforce AC of ⌈fϕ⌉. If all the states of
any variable are deleted, the bound can be improved
by back-tracking the causes of deletions.

2) Global algorithms find the global minimum of the upper
bound. Two types of such algorithms are known:

a) Subgradient descent [45], [21] is a well-known method
to minimize nonsmooth functions. These approaches
rely on decomposing the WCSP as a sum of tractable
subproblems (§1.1). To achieve good convergence rate,
the subproblems must be well chosen (large enough).

b) Smoothing algorithms [44, §7.4], [23], [20], [46] use
a sequence of smooth convex approximations of our
nonsmooth convex objective function. Each such func-
tion can be minimized by coordinate descent globally.

Unlike the global algorithms, the local algorithms
improve the bound monotonically.

In principle, any of the above algorithms can be gener-
alized to n-ary WCSPs, still keeping its space complexity
linear in the number of variables ϕA,B(xB). This is
easiest for max-sum diffusion, which we show in §6.2.

6.2 Max-sum Diffusion

The max-sum diffusion iteration is the reparameteriza-
tion (8) on a single (A,B) ∈ J that averages fB and the
max-marginals of fA, i.e., makes satisfied the equalities

max
xA\B

fA(xA) = fB(xB) ∀xB ∈ XB (20)

If fB(xB) > −∞, maxxA\B
fA(xA) > −∞, this is done by

setting ϕA,B(xB) = [fB(xB)−maxxA\B
fA(xA)]/2 in (8).

Theorem 11. The iteration does not increase the upper bound.

Proof: Let us denote a(xB) = maxxA\B
fA(xA),

b(xB) = fB(xB), c(xB) = [b(xB)− a(xB)]/2 = ϕA,B(xB).
Before the iteration, the contribution of fA and fB to the
upper bound (10) is

max
xA

fA(xA)+max
xB

fB(xB) = max
xB

a(xB)+max
xB

b(xB) (21)

After the iteration, this contribution is

max
xB

[a(xB)+ c(xB)]+max
xB

[b(xB)− c(xB)]

= max
xB

[a(xB)+ b(xB)] (22)

Clearly, expression (22) is not greater than (21).

Using parameterization (9), we obtain Algorithm 3.
To correctly handle infinite weights, it assumes that the
CSP f̄fin defined by f̄fin

A (xA) = [[fA(xA) > −∞]] is J-
consistent. Optionally, any time a constant can be added
to a constraint and subtracted from another constraint.

Next we give important properties of the algorithm.

Theorem 12. In any fixed point ϕ of Algorithm 3, ⌈fϕ⌉ is
J-consistent.

Proof: Show that maxxA\B
fA(xA) = fB(xB) implies

∨

xA\B
⌈fA⌉(xA) = ⌈fB⌉(xB), which is easy.

8

Algorithm 3 (max-sum diffusion, parameterized)

loop
for (A,B) ∈ J , xB ∈ XB s.t. fB(xB) > −∞ do
ϕA,B(xB)← ϕA,B(xB)+ [fϕB(xB)−max

xA\B

fϕA(xA)]/2

end for
end loop

Theorem 13. If the J-consistency closure of ⌈fϕ⌉ is initially
empty then after a finite number of iterations of Algorithm 3,
the upper bound strictly decreases.

Theorem 14. If the J-consistency closure of ⌈fϕ⌉ is initially
non-empty then:

• after any number of iterations of Algorithm 3, the upper
bound does not change;

• after a finite number of iterations of Algorithm 3, ⌈fϕ⌉
becomes the J-consistency closure of the initial ⌈fϕ⌉.

Proof: Theorems 13 and 14 can be proved by noting
that what diffusion does to the active joint states is
precisely what Algorithm 2 does to the permitted joint
states. See [8, Theorem 7], cf. [19, Theorem 3.4].

Max-sum diffusion is not yet fully understood, in
particular its convergence theory is missing. For binary
WCSPs, it has been conjectured [4], [5] that diffusion
converges to a fixed point, when (20) holds for all
(A,B) ∈ J . Though firmly believed true, this conjecture
has been never proved. We state it as follows.

Conjecture 15. In Algorithm 3, the sequence of numbers
fϕB(xB)−maxxA\B

fϕA(xA) converges to zero.

6.3 Handling High-arity and Global Constraints

A constraint fA can be represented either by explicitly
storing the values fA(xA) for all xA ∈ XA or by a black-
box function. In constraint programming, this is known
as extensional and intensional representation, respectively.
For high-arity constraints, only intensional representa-
tion is possible because the set XA is intractably large.
Intensionally represented constraints of a non-fixed arity
(not necessarily depending on all the variables) are
referred to as global constraints [47], [36], [48].

The propagator of a local consistency that is trivial
to execute for a low-arity constraint may be intractable
for a high-arity intensional constraint. A lot of research
has been done to find polynomial-time propagators for
global constraints [47]. Usually, the strongest local con-
sistency for which such a propagator is found is GAC.

Analogically, max-sum diffusion can handle an in-
tensionally represented constraint fA of an arbitrarily
high arity if a polynomial algorithm exists to compute
maxxA\B

fϕA(xA). Recall from §4 that the iteration of
Algorithm 1 or 2 is the propagator for J-consistency.
In this sense, the max-sum diffusion iteration can be
called a soft propagator (for the augmenting DAG /
VAC algorithm, we would need a slightly different soft
propagator). Thus, soft high-arity and global constraints

can be handled in the way similar to how crisp global
constraints are commonly handled in CSP.

Example 5. Let E =
(

V
1

)

∪E′ ∪ (V) where E′ ⊆
(

V
2

)

. Let
J = IGAC(E). Algorithm 3 does two kinds of updates:
between binary and unary constraints, and between the
global and unary constraints. For the latter, we need to
compute maxxV \(u)

fϕV (xV) for every u ∈ V and xu ∈ Xu.
From (9) we have

fϕV (xV) = fV (xV) +
∑

v∈V

ϕV,v(xv) (23)

Note that (23) is an objective function of a WCSP with
the global and unary constraints. Depending on fV , com-
puting maxxV \(u)

fϕV (xV) may or may not be tractable.
As a tractable example, let XV = {0, 1}V and

fV (xV) =

{

0 if
∑

v∈V xv = n
−∞ otherwise

(24)

be the cardinality constraint7, which enforces the number
of variables with state 1 to be n. Instead of the max-
marginal maxxV \(u)

fϕV (xV), for simplicity we will only
show how to compute maxxV

fϕV (xV). It can be rewritten
as a constrained maximization,

max
xV

fϕV (xV) = max
{

∑

v∈V

ϕV,v(xv)
∣

∣

∣
xV ∈XV ,

∑

v∈V

xv = n
}

One verifies that this equals β +
∑

v∈V ϕV,v(0) where
β is the sum of n greatest numbers from {ϕV,v(1) −
ϕV,v(0) | v ∈ V } [49]. This can be done efficiently using
a dynamically updated sorted list.

As an evidence that the approach yields plausible
approximations, we present a toy experiment with image
segmentation. The first image in Figure 1 is the input bi-
nary image corrupted with additive Gaussian noise. We
set fuv(xu, xv) = [[xu = xv]] and fv(xv) = −[θ(xv) − gv]

2

where θ(x) is the expected intensity of a pixel with
label x and gv is the actual intensity of pixel v. We ran
diffusion until the greatest residual was 10−8 and then
we obtained xV by taking the active state in each variable
(this means, the constraint

∑

v xv = n may be satisfied
only approximately). The binary images in Figure 1 show
the results for different n.

Note that e.g. all algorithms in [49] can be used as
soft GAC-propagators. We anticipate that in the future,
more global constraints with tractable soft propagators
and useful in applications will be discovered.

7 SUPERMODULAR PROBLEMS

Supermodular constraints form the only known inter-
esting tractable class of weighted constraints languages
[11]. For binary supermodular WCSPs, it is known that

7. Binary supermodular WCSPs with cardinality constraint (24) (and
its soft versions) can be well approximated by a more efficient algo-
rithm using parametric max-flow. In detail, we observed experimen-
tally (but did not prove) that constraining the variables ϕV,v(xv) to be
equal for all v ∈ V does not change the least upper bound. However,
this of course may not hold for other global constraints.

9

n = 2000 3000 4000 5000 6000 7000 8000 9000
∑

v xv = 2008 3004 4011 5006 6004 7024 7982 9032

Fig. 1. Image segmentation with cardinality constraint.

the LP relaxation [3] is tight [50], [8]. This has been
generalized to n-ary supermodular WCSPs by Werner
[9] and Cooper et al. [12]. Moreover, [9], [12] show that
to solve a supermodular WCSP it suffices to find any
local optimum of the bound such that ⌈fϕ⌉ is (G)AC.

D. Schlesinger [15] showed that binary supermodular
WCSPs can be solved in polynomial time even after
an unknown permutation of states in each variable. As
pointed out in [15], [12], this can be done also for n-ary
supermodular WCSPs.

Revisiting [50], [8], [9], [12], [15], we show in this sec-
tion how to solve permuted n-ary supermodular WCSPs.

Let each domain Xv be endowed with a total order
≤v . A function fA: XA → R̄ is supermodular iff

fA(xA ∧ yA) + fA(xA ∨ yA) ≥ fA(xA) + fA(yA)

for any xA, yA ∈ XA, where ∧ (∨) denotes the
component-wise minimum (maximum) w.r.t. orders ≤v .

Suppose that max-sum diffusion (or the augmenting
DAG / VAC algorithm, §6.1) with J = IGAC(E) found ϕ
such that ⌈fϕ⌉ is GAC. It can be verified that supermod-
ularity of fA is preserved by reparameterizations (8) on
pairs8 (A, (v)), hence constraints fϕA are supermodular
too. It remains to prove the following theorem.

Theorem 16. Let a WCSP be such that its constraints are
supermodular and the CSP formed by its active joint states is
GAC. Then (10) holds with equality and a maximizer of (1)
can be found in polynomial time, without taking into account
the orders ≤v of variable states.

Proof: A relation f̄A: XA → {0, 1} is a lattice iff

f̄A(xA ∧ yA) ∧ f̄A(xA ∨ yA) ≥ f̄A(xA) ∧ f̄A(yA)

for any xA, yA ∈ XA, i.e., iff f̄A(xA) = f̄A(yA) = 1 implies
f̄A(xA ∧ yA) = f̄A(xA ∨ yA) = 1. A CSP in which each
relation is a lattice is a lattice CSP. The lattice CSP is both
max-closed and min-closed [34, §8.4.2], hence tractable.
Its instance is satisfiable iff its GAC closure is not empty.

The maximizers of a supermodular function on a
distributive lattice form a sublattice of this lattice [51].
Hence, ⌈fϕ⌉ is a lattice CSP. Because ⌈fϕ⌉ is GAC and
non-empty, it is satisfiable and its solutions are in one-
to-one correspondence with the maximizers of (1).

8. I thank Martin Cooper for pointing out that transformation (8)
preserves supermodularity only if |B| = 1. It is not clear whether
diffusion solves supermodular WCSPs if J ⊃ IGAC(E).

We will show how to find a solution to a lattice CSP
that is GAC and non-empty. If the orders ≤v are known,
a solution xV is formed simply by the lowest (w.r.t. ≤v)
permitted state xv in each variable [34], [50], [8].

If the orders ≤v are unknown, we give an algorithm
to find a solution independently on them. It is easy to
prove that the GAC closure of a lattice CSP is again a
lattice CSP. Let us pick any v and xv and set f̄v(xv) ←
0. This can be seen as adding a unary relation to the
CSP. Since any unary relation is trivially a lattice, if we
now enforce GAC we again obtain a lattice CSP. This
CSP is either empty or non-empty. If it is empty (i.e., xv
was the last satisfiable state in variable v), we undo the
enforcing of GAC and pick a different v and xv . If it is
non-empty, we have a lattice CSP with fewer permitted
states that is non-empty and GAC, hence satisfiable. We
can pick another v and xv and repeat the iteration, until
each variable has a single permitted state.

8 INCREMENTALLY TIGHTENING RELAXATION

We have seen in §3.3 that choosing different coupling
schemes J ⊆ I(E) yields a hierarchy of LP relaxations.
Here we show that the relaxation can be tightened
incrementally, by progressively enlarging J .

Any time during max-sum diffusion, we can extend
the current J by any J ′ ⊆ I(E) (i.e., we set J ← J ∪ J ′).
This means, we add dual variables ϕA,B for (A,B) ∈ J ′

and set them to zero. Clearly, this does not change the
current upper bound. By Theorem 11, the future dif-
fusion iterations either preserve or improve the bound.
If the bound does not improve, all we have lost is the
memory occupied by the added dual variables.

Alternatively, this can be imagined as if the dual
variables ϕA,B were initially present for all (A,B) ∈ I(E)
but were ‘locked’ to zero except for those given by J .
Extending J ‘unlocks’ some dual variables.

This scheme can be run also with other bound-
optimizing algorithms (§6.1). If the algorithm is mono-
tonic, the resulting incremental scheme is monotonic too.

The incremental scheme can be seen as a cutting plane
algorithm because an extension of J that leads to a better
bound corresponds to adding linear inequalities that
separate the solution µ optimal in the current feasible
polytope P (E,XV , J) from the polytope P (E,XV , I(E)).
Finding cutting plane(s) that separate current µ from
P (E,XV , I(E)) is known as the separation problem9.

Note that our algorithm runs in the dual rather than
primal space and that many rather than one cutting
plane are added at a time: extending J by already a
single (A,B) ∈ I(E) may result in several planes inter-
secting P (E,XV , J), induced by the primal constraints.

9. The term separation problem is not fully justified here because it
will be applied also to the case when extending J gets the bound out
of a local optimum (see Theorem 10), as shown later in Example 11.

10

8.1 Separation Test

Let us ask whether adding a given J ′ ⊆ I(E) to current
J would lead a bound improvement. We refer to this as
the separation test. Of course, this test must be simpler
and provide more insight than actually adding J ′ and
running the bound-optimizing algorithm.

One easily invents a sufficient separation test: if run-
ning diffusion such that only pairs (A,B) ∈ J ′ are visited
improves the bound (where the amount of improvement
is a good heuristic to assess the usefulness of J ′ [29])
then running diffusion on pairs (A,B) ∈ J ∪ J ′ would
obviously improve the bound too. Unfortunately, this
test is not necessary, by Example 11 given later in §9.5.

Theorems 13+14 yield a sufficient and necessary test:

Proposition 17. Extending J by J ′ leads to a bound improve-
ment iff the (J ∪ J ′)-consistency closure of ⌈fϕ⌉ is empty.

By Proposition 17, to find out whether extending J
and running Algorithm 3 improves the bound, we can
extend J and run (simpler and faster) Algorithm 2.

9 ADDING ZERO CONSTRAINTS

So far, we have considered only equivalent transforma-
tions that preserve the hypergraph (i.e., E = E′ in Defi-
nition 1). Let us turn to equivalent transformations that
change the hypergraph. The simplest such transforma-
tion is obtained by adding a zero constraint, i.e., by adding
a hyperedge A /∈ E to E, setting fA = 0 (where 0 denotes
the zero function), and extending J to couple A to (some
or all of) the existing incident hyperedges. More complex
such transformations are obtained as the composition of
reparameterizations and adding zero constraints. Since
adding zero constraints enables previously impossible
reparameterizations, it may improve the relaxation.

All the results obtained in §3–§8 of course apply also to
zero constraints. Further in §9 we discuss some specific
properties of WCSPs containing zero constraints.

9.1 Complete Hierarchy of LP Relaxations

Given a WCSP with hypergraph E, its hypergraph can
be completed to the complete hypergraph 2V by adding
zero constraints with scopes 2V \E. Now, the relaxation
is determined by the coupling scheme J ⊆ I(2V) alone.
The zero constraints not present in any pair (A,B) ∈ J
are only virtual, they have no effect and can be ignored.

As in §3.3, relaxations for various J ⊆ I(2V) form a
hierarchy, partially ordered by inclusion on I(2V). For
the lowest element of the hierarchy, J = ∅, formula (9)
permits no reparameterizations at all and the optimum
of the LP is simply the upper bound (10). The highest
element of the hierarchy, J = I(2V), yields the exact
solution; however, by Proposition 5 the exact solution is
obtained already for J = ISAT(E). In between, there is a
range of intermediate relaxations, including J = I(E).

9.2 Adding Zero Constraints = Lifting + Projection

Let zero constraints with scopes F ⊆ 2V \ E be added
to a WCSP (V,E,XV , f) and let J ⊆ I(E ∪ F). Since
zero constraints do not affect the objective function of
the primal LP, the primal LP can be written as

max
{

f⊤µ | µ ∈ πT (E,XV)P (E ∪ F,XV , J)
}

(25)

where πD′Y ⊆ R
D′

denotes the projection of a set
Y ⊆ R

D onto dimensions D′ ⊆ D (i.e., πD′ deletes
components D \ D′ of every element of Y). Thus, zero
constraints manifest themselves as a projection of the
primal feasible polytope onto the space of non-zero
constraints. In turn, adding zero constraints with scopes
F then means lifting the primal feasible set from dimen-
sions T (E,XV) to dimensions T (E ∪ F,XV), imposing
new primal constraints (2b)+(2c)+(2d) in the lifted space,
and projecting back onto dimensions T (E,XV).

Suppose zero constraints with scopes 2V \E have been
added. Similarly to (12), for any J1, J2 ⊆ I(2

V) we have10

J1 ⊇ J2 =⇒

πT (E,XV)P (2V , XV , J1) ⊆ πT (E,XV)P (2V , XV , J2)

In [16], [17], [18], Wainwright et al. introduced the
marginal polytope, formed by collections (associated with
E and XV) of marginals of some global distribution µV .
Of fundamental importance is the marginal polytope of
the complete hypergraph 2V , given by P (2V , XV , I(2

V)).
The marginal polytope of a hypergraph E ⊆ 2V is then
πT (E,XV)P (2V , XV , I(2

V)). Therefore, for any J ⊆ I(2V),
polytope πT (E,XV)P (2V , XV , J) is a polyhedral outer
bound of the marginal polytope associated with (E,XV).

It is not hard to show [9] that the marginal polytope is
the WCSP integral hull, i.e., the convex hull of (integral)
points feasible to the integer LP given by Theorem 1.

9.3 Handling Zero Constraints in Max-sum Diffusion

In the sense of §6.3, a zero constraint can be understood
as a trivial intensionally represented constraint and the
max-sum diffusion iteration as its soft propagator. Let us
see how zero constraints can be handled in diffusion.

Suppose fA = 0. Then reparameterization (9) reads

fϕA(xA) = −
∑

B|(B,A)∈J

ϕB,A(xA) +
∑

B|(A,B)∈J

ϕA,B(xB) (26)

Example 6. Let E = {(2), (1, 2), (2, 3)}, f2 = 0, J = I(E).
Then fϕ2 (x2) = −ϕ12,2(x2)− ϕ23,2(x2).

More interesting is the case when there is no B such
that (B,A) ∈ J . Then the first sum in (26) is vacuous and
fϕA is the objective function of a WCSP with variables A,
hypergraph EA = {B | (A,B) ∈ J }, and constraints
ϕA,B . Computing maxxA\B

fϕA(xA) means solving a WCSP

10. Recall (Footnote 3) that J1 6= J2 may yield the same relaxation.
If all the constraints are non-zero, this happens iff P (2V , XV , J1) =
P (2V , XV , J2). If constraints with scopes 2V \E are zero, this happens
iff πT (E,XV)P (2V , XV , J1) = πT (E,XV)P (2V , XV , J2). Note that the
former condition implies the latter one but not vice versa.

11

on a smaller hypergraph11. Adding a zero constraint fA
makes sense only if WCSPs on EA are easier to solve
than the WCSP on E. Note that no function of arity |A|
needed to be explicitly stored.

Example 7. Let V = (1, 2, 3, 4), E = { (1), (2), (3), (4),
(1, 2), (2, 3), (3, 4), (1, 4), (1, 3), V }, fV = 0, and J =
{ (V, (1, 2)), (V, (2, 3)), (V, (3, 4)), (V, (1, 4)) }. Then EA is
a cycle of length 4 and fϕV (x1, x2, x3, x4) = ϕV,12(x1, x2)+
ϕV,23(x2, x3) + ϕV,34(x3, x4) + ϕV,14(x1, x4).

Example 8. In this example, we show how adding short
cycles improves relaxations of binary WCSPs.

We tested two types of graphs:

• E =
(

V
1

)

∪ E′ where E′ ⊆
(

V
2

)

is the 2-dimensional
4-connected m×m grid.

• Complete graph, E =
(

V
1

)

∪
(

V
2

)

where |V | = m.

For the grid graph, we tested two relaxations: J1 = I(E)
and J2 = I(E ∪ F) where F ⊆

(

V
4

)

contains all hy-
peredges A such that E ∩ 2A is a cycle of length 4 (as
in Example 7). For the complete graph, we tested two
relaxations: J1 = I(E) and J2 = I

(

E ∪
(

V
3

))

, i.e., the
relaxation J2 was obtained by adding all 3-cycles.

Each variable had the same number of states, |Xv|. We
tested five types of constraints f :

• random: all weights fv(xv) and fuv(xu, xv) were
i.i.d. drawn from the normal distribution N [0; 1].

• attract: fuv(xu, xv) = [[xu = xv]] and fv(xv) were
drawn from N [0; 1.6]. We chose variance 1.6 because
it yielded (by trial) the hardest instances.

• repulse: fuv(xu, xv) = [[xu 6= xv]] and fv(xv) were
drawn from N [0; 0.1].

In the other types (apply only to grid graphs), fv(xv)
were drawn from N [0; 1] and the binary constraints were
crisp, fuv(xu, xv) ∈ {−∞, 0}. They were taken from [7]:

• lines: fuv(xu, xv) were as in [7, Figure 19a].
• curve: fuv(xu, xv) were as in [7, Figure 15a].

On a number of WCSP instances, we counted how
many instances were solved to optimality. Once diffusion
converged, the instance was marked as solved if there
was a unique active state in each variable. Table 1
shows the results, where r1 resp. r2 is the proportion
of instances solved to optimality by relaxation J1 resp.
J2. There were 100 trials for each line; in each trial,
we randomly drew instances from the instance type
and computed relaxation J1 until it was not tight, and
then we computed relaxation J2. Runtime for random
or attract on 100× 100 grid and |Xv| = 4 was several
minutes (for a non-optimized Matlab+C code).

For random and attract on both graphs and for
repulse on grids, relaxation J2 was much tighter and
was often exact even for large graphs. For crisp binary
constraints (on grids), relaxation J2 clearly beat J1, but
for m ≥ 25 lines and curve were unsolvable. This is
not too surprising because lines and curve are much

11. These sub-WCSPs roughly correspond to the subproblems in the
decomposition approach [17], [19], [20] (see §1.1) and to the ’slave’
problems in the dual decomposition formulation [21].

graph constraints m |Xv | r1 r2

grid random 15 5 0.01 1.00
grid random 25 3 0.00 0.98
grid random 100 3 0.00 0.72
grid attract 15 5 0.79 0.99
grid attract 25 5 0.48 0.98
grid attract 100 5 0.00 0.81
grid repulse 10 3 0.18 1.00
grid repulse 20 3 0.00 0.98
grid repulse 50 3 0.00 0.57
grid lines 10 4 0.71 0.85
grid lines 15 4 0.40 0.54
grid lines 25 4 0.00 0.05
grid curve 10 9 0.17 0.65
grid curve 15 9 0.00 0.24
grid curve 25 9 0.00 0.00
complete random 10 3 0.01 1.00
complete random 15 3 0.00 0.89
complete random 20 3 0.00 0.40
complete random 25 2 0.00 0.87
complete repulse 4 2 0.00 0.98
complete repulse 5 2 0.00 0.00
complete repulse 4 3 0.00 0.00

TABLE 1
Tightening the LP relaxation by adding short cycles.

harder than instances typical in low-level vision (such as
the benchmarks in [52]). In more detail [7], they are easy
if the data terms fv(xv) are ‘close to a feasible image’
but this is not at all the case if fv(xv) are random.

Despite it is known that densely connected instances
are hard [53], it is surprising that repulse was never
solved even on very small graphs. Note, repulse en-
courages neighboring variables to have different states,
thus it is close to the difficult graph coloring problem.

9.4 Optimality under Presence of Zero Constraints

As shown in §5, optimality of the upper bound (10)
depends on the CSP formed by active joint states. Since
fA = 0 implies ⌈fA⌉ = 1 (where 1 denotes the universal
relation), adding a zero constraint to the WCSP means
adding a universal relation to this CSP. After reparam-
eterization (9), a zero constraint fA = 0 becomes fϕA
which is no longer zero and a universal relation ⌈fA⌉ = 1
becomes ⌈fϕA⌉ which is no longer universal.

By Theorem 8, the relaxation is tight iff ⌈fϕ⌉ is satisfi-
able. It can happen that the CSP formed only by relations
⌈fϕA⌉ with fA 6= 0 is satisfiable but the whole CSP ⌈fϕ⌉
is unsatisfiable. Example 9 shows this is indeed possible.
Thus, we must not ignore zero constraints when testing for
bound optimality and recovering an optimizer.

Example 9. First, we give an unsatisfiable ternary CSP
(V,E,XV , f̄) whose binary part is satisfiable. Let V =
(1,2,3,4), XV = {0,1}V , E =

(

V
2

)

∪
(

V
3

)

. Let f̄ be defined
by f̄12 = f̄13 = f̄14 = f̄23 = f̄24 = f̄34 and f̄123 = f̄124 =
f̄134 = f̄234 where relations f̄123 and f̄12 are given by (17).
Thus, the CSP consists of four copies of the CSP from
Example 4 glued together12. Its six binary relations are

12. This CSP is the ternary generalization of the well-known binary
unsatisfiable CSP on three variables (the ‘frustrated cycle’), given by
f̄12 = f̄13 = f̄23 where f̄12(x1,x2) = x̄1x2 ∨x1x̄2.

12

shown below (the ternary relations are not visualized):

For J = I(E), check that f̄ is J-consistent. Any x1234 ∈
{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,0,0,0)} satis-
fies all the six binary relations but none of them satisfies
all the ternary relations. Hence, f̄ is unsatisfiable.

Second, we give a WCSP (V,E,XV ,f) with the ternary
constraints being zero and we give a diffusion fixed
point ϕ such that f̄ = ⌈fϕ⌉. This may look trivial because
any CSP is indeed realizable as ⌈fϕ⌉ for some f and
ϕ. But we must not forget about the constraint that the
ternary constraints are zero. E.g., f123 = 0 and hence,
by (9), fϕ123 = ϕ123,12 +ϕ123,13 +ϕ123,23, i.e., fϕ123 must be
a sum of binary functions. We show such f and ϕ exist.

Let f and ϕ be defined by f123 = f124 = f134 = f234 = 0,
f12 = f13 = f14 = f23 = f24 = f34 and ϕ123,12 = ϕ123,13 =
ϕ123,23 = ϕ124,12 = ϕ124,14 = ϕ124,24 = ϕ134,13 = ϕ134,14 =
ϕ134,34 = ϕ234,23 = ϕ234,24 = ϕ234,34, where

f12(x1,x2) = 4x̄1x̄2 +9(x̄1x2 +x1x̄2)+7x1x2

ϕ123,12(x1,x2) = x̄1x̄2 +2(x̄1x2 +x1x̄2)

From (9) we get that fϕ is given by fϕ123 = fϕ124 = fϕ134 =
fϕ234 = ϕ123,12 +ϕ123,13 +ϕ123,23 and fϕ12 = fϕ13 = fϕ14 =
fϕ23 = fϕ24 = fϕ34 = f12−ϕ123,12−ϕ124,12 where

fϕ123(x1,x2,x3) = 3x̄1x̄2x̄3 +5(x1x̄2x̄3 + x̄1x2x̄3 + x̄1x̄2x3)

+ 4(x1x2x̄3 +x1x̄2x3 + x̄1x2x3)

fϕ12(x1,x2) = 5(x̄1x̄2 + x̄1x2 +x1x̄2)+4x1x2

Check that fϕB(xB) = maxxA\B
fϕA(xA) for each (A,B)∈ J ,

i.e., ϕ is a diffusion fixed point. Check that f̄ = ⌈fϕ⌉.
Note a surprising property of fϕ123: function fϕ123 is

a sum of binary functions but (see Example 4) relation
⌈fϕ123⌉ is not a conjunction of any binary relations13.

9.5 Adding Zero Constraints Incrementally

We have shown in §8 how the relaxation can be tightened
incrementally by extending J . When combined with
adding zero constraints14, this can be seen as a cutting
plane algorithm which adds sets of linear inequalities
separating µ optimal in πT (E,XV)P (E,XV , J) from the
marginal polytope πT (E,XV)P (2V , XV , I(2

V)). Here we
focus mainly on the separation problem.

The separation test (§8.1) asks whether extending J
by J ′ ⊆ I(2V) would lead to bound improvement. In
general, this is answered by Proposition 17. However, if

13. This suggests an interesting problem: Given f̄V : XV → {0,1}
and E ⊆ 2V , find f : T (E,XV) → R̄ such that f̄V =

⌈
∑

A∈E fA

⌉

or
show that no such f exists. For given (V,E,XV), characterize the class
of relations f̄V realizable in this way.

14. The incremental scheme from §8 is not restricted to zero con-
straints, it can be used also with non-zero constraints. E.g., given a
WCSP with hypergraph E ∪ F where constraints E are ‘easy’ (unary,
binary) and constraints F are ‘hard’ (high arity), we can first solve
constraints E and then incrementally extend J to include constraints F .
In both cases, Proposition 17 applies.

Fig. 2. Incrementally adding zero constraints.

J ′ has a special form, this can be formulated in terms
of satisfiability of a sub-CSP of ⌈fϕ⌉. For a CSP with
hypergraph E, we define its restriction to F ⊆ E to be
the CSP with hypergraph F and the relations inherited
from the original CSP.

Proposition 18. Let (V,E,XV , f) be a WCSP. Let F ⊆
E. Let us ask whether adding the zero constraint with scope
⋃

F , extending J by J ′ = ISAT(F), and running max-sum
diffusion will improve the bound.

• If the restriction of ⌈fϕ⌉ to F is not satisfiable then the
answer is ‘yes’.

• If, in the restriction of ⌈fϕ⌉ to F , every permitted joint
state is satisfiable then the answer is ‘no’.

Proof: In Proposition 17, apply Propositions 5 and 6
on the restriction of ⌈fϕ⌉ on hypergraph F .

Example 10. Let us return to Example 8. Figure 2 (left)
shows the CSP ⌈fϕ⌉ after convergence of max-sum dif-
fusion for relaxation J1 of an instance random with size
m = 8 and |Xv| = 4. The upper bound is not optimal
because of the depicted unsatisfiable sub-CSP. Let A
denote the four depicted variables. After adding the
zero constraint with scope A, diffusion yielded Figure 2
(right) with an improved bound – here, the exact solu-
tion. Of course, many such steps are typically needed.

The inconsistent sub-CSP is supported only by 2
(rather than 4) states of each variable v ∈ A. Thus, in-
stead of adding a zero constraint with 4 states, we could
add a constraint with 2 states. For variables with large
domains, this could drastically reduce the computational
effort (see experiments in [29]). This would mean using
the fine-grained hierarchy of coupling schemes15 (7).

Example 11. Let ⌈fϕ⌉ be this unsatisfiable CSP:

1

4

3

2

15. Using the fine-grained hierarchy of coupling schemes (i.e., using
(7) rather than (2b)) would require adapting Algorithm 3 and the
theorems in §6.2 because e.g. Theorem 11 does not hold. This would
require some more research, for which paper [54] might be relevant.

13

The sub-CSP on variables (1, 2, 4) is satisfiable but has
unsatisfiable permitted joint states. Let us add constraint
f124 = 0. This makes the PWC closure of the whole
CSP empty. Thus, running diffusion on the sub-WCSP
on variables (1, 2, 4) will not improve the bound but
running diffusion on the whole WCSP will.

As shown in [8, Figure 5b], the CSP ⌈fϕ⌉ in the figure
corresponds to a local optimum of ϕ that is not global.
Thus, adding zero constraints sometimes can get the
bound out of a local optimum.

For some WCSP instances, it can be useful to add more
complex subproblems than cycles.

Example 12. Consider the binary CSP ⌈fϕ⌉ in figure (a),
whose hypergraph E has 15 variables (i.e., 1-element
hyperedges) and 22 2-element hyperedges:

(a) (b)

Let J = I(E). The CSP is J-consistent, thus diffusion
cannot improve the bound. It contains no unsatisfiable
cycles but it is unsatisfiable because of the sub-CSP with
hypergraph F ⊂ E marked in red: F has |

⋃

F | = 12
variables and 14 2-element hyperedges. The sub-CSP is
unsatisfiable because it can be reduced (by ‘contracting’
the identity relations) to the CSP in figure (b), which
encodes the (impossible) task of 3-coloring the graph K4.

Adding the zero constraint with scope
⋃

F and ex-
tending J by J ′ = ISAT(F) = { (

⋃

F,A) | A ∈ F }
makes the J-consistency closure of ⌈fϕ⌉ empty (verify
by Algorithm 2). Hence, diffusion will now improve the
bound. Computing maxxA\B

fϕA(xA) for A =
⋃

F needs
more effort than if F was a cycle, but is still feasible.

Given a family J of tentative subsets of I(2V), the
separation problem consists in finding a ‘small’ J ′ ∈ J
that will improve the bound. If J is small, J ′ can
be searched exhaustively. If J has an intractable size,
Proposition 18 translates the separation problem to find-
ing an unsatisfiable sub-CSP of ⌈fϕ⌉. It is subject to
future research to discover polynomial-time algorithms
to find an unsatisfiable sub-CSP of a CSP, where the sub-
CSP are from some combinatorially large class (such as
cycles). Finding minimal unsatisfiable sub-CSPs (though
not in polynomial time) has been addressed in [55], [54].

Finally, note that extending J by elements of J one by
one has a theoretical problem: it can happen that adding
any single element of J does not improve the bound but
adding the union of several elements of J does.

Example 13. Consider the CSP with E = {(1), (2), (3),
(4), (1, 2), (2, 3), (3, 4), (1, 4)} in figure (a):

3

4 1

2

(a) (b) (c) (d)

Adding simultaneously zero constraints with scopes
(1, 3), (1, 2, 3), (1, 3, 4) makes the PWC closure empty
(figures b,c,d). However, adding any of these constraints
separately does not make the PWC closure empty.

9.6 k-consistency of Active Joint States

If E is closed to intersection and J = I(E), ⌈fϕ⌉ can al-
ways be made PWC by changing ϕ. PWC is the strongest
local consistency of ⌈fϕ⌉ achievable without adding zero
constraints. By adding zero constraints, stronger local
consistencies of ⌈fϕ⌉ can be achieved.

By §4.2, adding all possible zero constraints of arity k
and k−1 and running max-sum diffusion with J = I(E)
makes ⌈fϕ⌉ k-consistent. Unlike in CSP, the previously
added k-ary constraints cannot be removed after this [39,
§8]. Thus, there is a difference in the rôle of k-consistency
in CSP and WCSP. Enforcing strong k-consistency of a
CSP requires adding only relations of arity less than k.
For a WCSP, enforcing strong k-consistency of ⌈fϕ⌉
requires adding constraints of arity less or equal to k.
E.g., a binary CSP can be made 3-consistent and remain
binary; for a binary WCSP, ⌈fϕ⌉ can be made 3-consistent
but only at the expense of making the WCSP ternary16.

Similarly as in CSP (§4.2), strong k-consistency of ⌈fϕ⌉
can be enforced in a more efficient way, by incrementally
adding only some of all missing constraints of arity k
or less. Supposing ⌈fϕ⌉ is (k − 1)-consistent, it is made
k-consistent as follows. Whenever |A| = k − 1 and xA
cannot be extended to some variable v, we add constraint
fA∪(v) = 0, and if A /∈ E we also add constraint fA = 0.
Then we set J = I(E) and re-optimize the bound.

As making ⌈fϕ⌉ 3-consistent requires adding new
(O(|V |3) at worst) binary and ternary constraints, it is
practical only for mid-size instances. Otherwise, partial
forms of 3-consistency can be considered. One such form
is suggested by Theorem 4: add only edges to E that
make E chordal17 (rather than complete). Since this can
be still prohibitive, even fewer edges can be added.

Example 14. Let E be the m ×m grid graph. We did a
‘partial chordal completion’ of E as follows: of all edges
necessary to complete E to a chordal graph, we added
only those edges (u, v) for which the Manhattan distance
between nodes u and v in the original graph was not
greater than d (this can be done by a simple modification
of known algorithms for chordal completion). Then we
triangulated the graph, added the resulting triangles and

16. Note, otherwise we’d get a paradox. A binary CSP with Boolean
variables is tractable: it is satisfiable iff enforcing 3-consistency does not
make it empty [34, §8.4.2]. If the active joint states of any binary WCSP
with Boolean variables could be made 3-consistent without adding
ternary constraints, we would have a polynomial algorithm to solve
any binary WCSP with Boolean variables, which is intractable.

17. It is well-known that chordal completion is done also before the
junction tree algorithm [32]. This is unrelated to its purpose here.

14

ran max-sum diffusion. The table shows the proportions
of instances drawn from type lines (see Example 8)
that were solved to optimality for various m and d. The
number of added triangles is stated in parentheses.

d = 1 d = 2 d = 3 d = 4 d = 5

m=10 0.71 (0) 0.85 (162) 0.88 (313) 0.92 (592) 0.95 (703)
m=15 0.40 (0) 0.54 (392) 0.58 (785) 0.77 (1469) 0.88 (1906)
m=20 0.11 (0) 0.26 (722) 0.28 (1483) 0.38 (2773) 0.57 (3167)
m=25 0.00 (0) 0.05 (1152) 0.06 (2392) 0.16 (4459) 0.33 (5819)

Comparing to Table 1 shows that the added triangles
significantly tightened the relaxation. We remark that
using the above described more efficient incremental
algorithm would results in fewer added triangles.

9.6.1 3-consistency and the Cycle Inequalities

By Theorem 4, in a 3-consistent binary CSP every cycle
is consistent18. This closely resembles the algorithm by
Barahona and Mahjoub [31] (applied to WCSP in [26]) to
separate cycle inequalities in the cut polytope [30]. While
the algorithm [31] is primal and works only for Boolean
variables, enforcing 3-consistency of ⌈fϕ⌉ works in the
dual space and for variables with any number of states.
The precise relationship between the algorithm [31] and
enforcing 3-consistency of ⌈fϕ⌉ has yet to be clarified.

In particular, it is known that the planar max-cut prob-
lem is tractable, solved by a linear program over the
semimetric polytope defined by the cycle inequalities [30,
§27.3], cf. [56], [57]. The planar max-cut problem is equiv-
alent to the WCSP (V,XV , E, f) where XV = {0, 1}V ,
E ⊆

(

V
2

)

is a planar graph, and constraints f have the
form fuv(xu, xv) = cuv[[xu = xv]] with cuv ∈ R (i.e., cuv
have arbitrary signs). It is an open problem whether this
WCSP is solved by enforcing 3-consistency of ⌈fϕ⌉.

10 CONCLUSION

We have tried to pave the way to WCSP solvers that
would natively handle non-binary constraints (possibly
of high-arity and represented by a black-box function)
and use the cutting plane strategy.

Though we have considered only max-sum diffu-
sion, most of the theory applies to the other bound-
optimizing algorithms from §6.1, most notably to the
augmenting DAG / VAC algorithm. Choosing which
bound-optimizing algorithm to use is important and
each algorithm has pros and cons:

• Max-sum diffusion is extremely simple and very
flexible. Its drawback is that it is rather slow – for
images, several times than the closely related and
slightly more complex TRW-S.

• The augmenting DAG / VAC algorithm is complex
and painful to implement efficiently [7] but has a
unique advantage in its incrementality: if we run it
to convergence and make a ‘small’ change to the

18. Note, this shows that if all cycles of length 3 are added to a WCSP
on a complete graph in Example 8 (relaxation J2), the relaxation cannot
be further improved by adding any cycles of greater lengths.

WCSP, it typically needs a ‘small’ number of itera-
tions to re-converge. This makes it suitable for cut-
ting plane schemes (as observed in [28]), branch&cut
search, and for incremental fixing of undecided vari-
ables. All the other bound-optimizing algorithms
from §6.1 need a large number of iterations to re-
converge, and this does not seem possible to avoid
by any clever scheduling of iterations.

• In the light of the possibility to add zero constraints,
the globally optimal algorithms (such as subgradi-
ent and smoothing methods) lose something of their
attractivity. It is always a question whether to use
these algorithms (which are slower than the local
algorithms, especially when the LP relaxation is not
tight) or to add zero constraints.

We considered only obtaining upper bounds on WCSP
and we have not discussed rounding schemes to round
undecided variables or using the LP relaxation as part
of a search, such as branch&bound [12] or branch&cut.

ACKNOWLEDGMENTS

This research was supported by the European Com-
mission grant 215078 and the Czech government grant
MSM6840770038. I thank Mikhail I. Schlesinger for open
discussions on his unpublished work. Martin Cooper
and Thomas Schiex provided useful remarks on WCSP.

REFERENCES

[1] P. Meseguer, F. Rossi, and T. Schiex, “Soft constraints,” ch. 9, in
[10].

[2] P. L. Hammer, P. Hansen, and B. Simeone, “Roof duality, comple-
mentation and persistency in quadratic 0-1 optimization,” Math.
Programming, vol. 28, pp. 121–155, 1984.

[3] M. I. Shlezinger, “Syntactic analysis of two-dimensional visual
signals in noisy conditions,” Cybernetics and Systems Analysis,
vol. 12, no. 4, pp. 612–628, 1976, translation from Russian: Sin-
taksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh
pomekh, Kibernetika, vol. 12, no. 4, pp. 113-130, 1976.

[4] V. A. Kovalevsky and V. K. Koval, “A diffusion algorithm for
decreasing energy of max-sum labeling problem,” approx. 1975,
Glushkov Institute of Cybernetics, Kiev, USSR. Unpublished.

[5] “Personal communication of the author with Mikhail I.
Schlesinger,” 2000-2005.

[6] V. K. Koval and M. I. Schlesinger, “Dvumernoe programmirovanie
v zadachakh analiza izobrazheniy (Two-dimensional program-
ming in image analysis problems),” USSR Academy of Science,
Automatics and Telemechanics, vol. 8, pp. 149–168, 1976, in Russian.

[7] T. Werner, “A linear programming approach to max-sum prob-
lem: A review,” Center for Machine Perception, Czech Technical
University, Tech. Rep. CTU–CMP–2005–25, December 2005.

[8] ——, “A linear programming approach to max-sum problem:
A review,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 29, no. 7, pp. 1165–1179, July 2007.

[9] ——, “High-arity interactions, polyhedral relaxations, and cutting
plane algorithm for soft constraint optimisation (MAP-MRF),” in
Computer Vision and Pattern Recognition (CVPR) Conf., Anchorage,
USA, June 2008.

[10] F. Rossi, P. van Beek, and T. Walsh, Handbook of Constraint Pro-
gramming. Elsevier, 2006.

[11] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin, “The complex-
ity of soft constraint satisfaction,” Artificial Intelligence, vol. 170,
pp. 983–1016, 2006.

[12] M. C. Cooper, S. de Givry, M. Sánchez, T. Schiex, and M. Zytnicki,
“Virtual arc consistency for weighted CSP,” in Conf. on Artificial
Intelligence (AAAI), July 2008, pp. 253–258.

15

[13] U. Montanari, “Networks of constraints: Fundamental properties
and application to picture processing,” Information Science, vol. 7,
pp. 95–132, 1974.

[14] A. Rosenfeld, R. A. Hummel, and S. W. Zucker, “Scene labeling
by relaxation operations,” IEEE Trans. on Systems, Man, and Cy-
bernetics, vol. 6, no. 6, pp. 420–433, June 1976.

[15] D. Schlesinger, “Exact solution of permuted submodular MinSum
problems,” in Conf. Energy Minimization Methods in Computer Vi-
sion and Pattern Recognition (EMMCVPR), Ezhou, China. Springer,
2007, pp. 28–38.

[16] M. J. Wainwright and M. I. Jordan, “Graphical models, exponen-
tial families, and variational inference,” UC Berkeley, Dept. of
Statistics, Tech. Rep. 649, 2003.

[17] M. Wainwright, T. Jaakkola, and A. Willsky, “MAP estimation via
agreement on (hyper)trees: message passing and linear program-
ming approaches,” IEEE Trans. Information Theory, vol. 51, no. 11,
pp. 3697–3717, 2005.

[18] M. J. Wainwright and M. I. Jordan, “Graphical models, exponen-
tial families, and variational inference,” Foundations and Trends in
Machine Learning, vol. 1, no. 1-2, pp. 1–305, 2008.

[19] V. Kolmogorov, “Convergent tree-reweighted message passing for
energy minimization,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 28, no. 10, pp. 1568–1583, 2006.

[20] J. K. Johnson, D. M. Malioutov, and A. S. Willsky, “Lagrangian
relaxation for MAP estimation in graphical models,” in Allerton
Conf. Communication, Control and Computing, 2007.

[21] N. Komodakis, N. Paragios, and G. Tziritas, “MRF optimization
via dual decomposition: Message-passing revisited,” in Intl. Conf.
Computer Vision (ICCV), 2007.

[22] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena
Scientific, 1999.

[23] Y. Weiss, C. Yanover, and T. Meltzer, “MAP estimation, linear
programming and belief propagation with convex free energies,”
in Conf. Uncertainty in Artificial Intelligence (UAI), 2007.

[24] C. Rother, T. Minka, A. Blake, and V. Kolmogorov, “Cosegmen-
tation of image pairs by histogram matching – incorporating a
global constraint into MRFs,” in Conf. Computer Vision and Pattern
Recognition (CVPR), 2006.

[25] A. Koster, C. P. M. van Hoesel, and A. W. J. Kolen, “The par-
tial constraint satisfaction problem: Facets and lifting theorems,”
Operations Research Letters, vol. 23, no. 3–5, pp. 89–97, 1998.

[26] D. Sontag and T. Jaakkola, “New outer bounds on the marginal
polytope,” in Neural Information Processing Systems (NIPS), 2007.

[27] M. P. Kumar and P. H. S. Torr, “Efficiently solving convex re-
laxations for MAP estimation,” in Intl. Conf. on Machine Learning
(ICML). ACM, 2008, pp. 680–687.

[28] N. Komodakis and N. Paragios, “Beyond loose LP-relaxations:
Optimizing MRFs by repairing cycles,” in European Conf. on
Computer Vision (ECCV), 2008.

[29] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss,
“Tightening LP relaxations for MAP using message passing,” in
Conf. Uncertainty in Artificial Intelligence (UAI), 2008.

[30] M. M. Deza and M. Laurent, Geometry of Cuts and Metrics.
Springer, Berlin, 1997.

[31] F. Barahona and A. R. Mahjoub, “On the cut polytope,” Mathe-
matical Programming, vol. 36, no. 2, pp. 157–173, 1986.

[32] S. Lauritzen, Graphical Models. Oxford University Press, 1996.
[33] A. Mackworth, “Constraint satisfaction,” in Encyclopaedia of Arti-

ficial Intelligence. Wiley, 1991, pp. 285–292.
[34] D. Cohen and P. Jeavons, “The complexity of constraint lan-

guages,” ch. 8, in [10].
[35] J.K.Pearson and P.G.Jeavons, “A survey of tractable constraint

satisfaction problems,” Royal Holloway, University of London,
Tech. Rep. CSD-TR-97-15, July 1997.

[36] C. Bessiere, “Constraint propagation,” ch. 3, in [10].
[37] R. Debruyne and C. Bessière, “Domain filtering consistencies,”

Journal of Artificial Intelligence Research, no. 14, pp. 205–230, 2001.
[38] E. C. Freuder, “A sufficient condition for backtrack-free search,”

J. ACM, vol. 29, no. 1, pp. 24–32, 1982.
[39] T. Werner, “Marginal consistency: Unifying constraint propaga-

tion on commutative semirings,” in Intl. Workshop on Preferences
and Soft Constraints (co-located with Conf. on Principles and Practice
of Constraint Programming), September 2008, pp. 43–57.

[40] C. Bliek and D. Sam-Haroud, “Path consistency on triangulated
constraint graphs,” in Intl. Joint Conference on Artificial Intelligence
(IJCAI), 1999, pp. 456–461.

[41] M. I. Schlesinger, “False minima of the algorithm for minimizing
energy of max-sum labeling problem,” 1976, Glushkov Institute
of Cybernetics, Kiev, USSR. Unpublished.

[42] V. N. Kolmogorov and M. J. Wainwright, “On the optimality of
tree-reweighted max-product message-passing,” in Conf. Uncer-
tainty in Artificial Intelligence (UAI), 2005.

[43] A. Globerson and T. Jaakkola, “Fixing max-product: Convergent
message passing algorithms for MAP LP-relaxations,” in Neural
Information Processing Systems (NIPS), 2008, pp. 553–560.

[44] T. Werner and A. Shekhovtsov, “Unified framework for semiring-
based arc consistency and relaxation labeling,” in 12th Computer
Vision Winter Workshop, St. Lambrecht, Austria. Graz University
of Technology, February 2007, pp. 27–34.

[45] M. I. Schlesinger and V. V. Giginjak, “Solving (max,+) problems of
structural pattern recognition using equivalent transformations,”
Upravlyayushchie Sistemy i Mashiny (Control Systems and Machines),
Kiev, Naukova Dumka, vol. 1 and 2, 2007, in Russian, English
translation available on www.

[46] P. Ravikumar, A. Agarwal, and M. J. Wainwright, “Message-
passing for graph-structured linear programs: proximal projec-
tions, convergence and rounding schemes,” in Intl. Conf. on
Machine Learning (ICML). ACM, 2008, pp. 800–807.

[47] W.-J. van Hoeve and I. Katriel, “Global constraints,” ch. 7, in [10].
[48] C. Bessière and P. V. Hentenryck, “To be or not to be ... a

global constraint,” in Conf. on Principles and Practice of Constraint
Programming (CP), 2003, pp. 789–794.

[49] R. Gupta, A. A. Diwan, and S. Sarawagi, “Efficient inference
with cardinality-based clique potentials,” in Intl. Conf. on Machine
Learning (ICML), 2007, pp. 329–336.

[50] M. I. Schlesinger and B. Flach, “Some solvable subclasses of struc-
tural recognition problems,” in Czech Pattern Recognition Workshop.
Czech Pattern Recognition Society, 2000.

[51] D. M. Topkis, Supermodularity and Complementarity, ser. Frontiers
of Economic Research. Princeton University Press, 1998.

[52] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov,
A. Agarwal, M. Tappen, and C. Rother, “A comparative study of
energy minimization methods for Markov random fields,” in Eur.
Conf. Computer Vision (ECCV), 2006, pp. II: 16–29.

[53] V. Kolmogorov and C. Rother, “Comparison of energy minimiza-
tion algorithms for highly connected graphs,” in European Conf.
Computer Vision (ECCV), 2006, pp. II: 1–15.

[54] E. Gregoir, B. Mazure, and C. Piette, “MUST: Provide a finer-
grained explanation of unsatisfiability,” in Conf. on Principles and
Practice of Constraint Programming (CP), 2007, pp. 317–331.

[55] F. Hemery, C. Lecoutre, L. Sais, and F. Boussemart, “Extracting
MUCs from constraint networks,” in Europ. Conf. on Artificial
Intelligence (ECAI), Trento, Italy, 2006, pp. 113–117.

[56] A. Globerson and T. Jaakkola, “Approximate inference using
planar graph decomposition,” in Neural Information Processing
Systems (NIPS), 2006, pp. 473–480.

[57] N. N. Schraudolph and D. Kamenetsky, “Efficient exact inference
in planar Ising models,” in Neural Information Processing Systems
(NIPS), 2008, pp. 1417–1424.

Tomáš Werner spent most of his time at the
Center for Machine Perception, a research group
at the Czech Technical University in Prague.
In 1999, he defended there his PhD thesis on
multiple view geometry in computer vision. Since
2000, he spent 1.5 years in the Visual Geometry
Group at the Oxford University, U.K., and then
returned to Prague. Until 2002 his main interest
was multiple view geometry and since then,
optimization and Markov random fields.

1 Cutting plane methods in machine learning

Vojtěch Franc xfrancv@cmp.felk.cvut.cz

Czech Technical University in Prague

Technická 2, 166 27 Prague 6

Czech Republic

Sören Sonnenburg Soeren.Sonnenburg@tu-berlin.de

Berlin Institute of Technology

Franklinstr. 28/29

10587 Berlin, Germany

Tomáš Werner werner@cmp.felk.cvut.cz

Czech Technical University in Prague

Technická 2, 166 27 Prague 6

Czech Republic

Cutting plane methods are optimization techniques that incrementally con-

struct an approximation of a feasible set or an objective function by linear

inequalities, called cutting planes. Numerous variants of this basic idea are

among standard tools used in convex nonsmooth optimization and integer

linear programing. Recently, cutting plane methods have seen growing inter-

est in the field of machine learning. In this chapter, we describe the basic

theory behind these methods and we show three of their successful applica-

tions to solving machine learning problems: regularized risk minimization,

multiple kernel learning, and MAP inference in graphical models.

Many problems in machine learning are elegantly translated to convex

optimization problems, which, however, are sometimes difficult to solve

efficiently by off-the-shelf solvers. This difficulty can stem from complexity

of either the feasible set or of the objective function. Often, these can be

accessed only indirectly via an oracle. To access a feasible set, the oracle

either asserts that a given query point lies in the set or finds a hyperplane

2 Cutting plane methods in machine learning

that separates the point from the set. To access an objective function, the

oracle returns the value and a subgradient of the function at the query point.

Cutting plane methods solve the optimization problem by approximating

the feasible set or the objective function by a bundle of linear inequalities,

called cutting planes. The approximation is iteratively refined by adding

new cutting planes, computed from the responses of the oracle.

Cutting plane methods have been extensively studied in literature. We

refer to Boyd and Vandenberge (2008) for an introductory yet comprehensive

overview. For the sake of self consistency, we review the basic theory in

Section 1.1. Then, in three separate sections, we describe their successful

applications to three machine learning problems.

The first application, Section 1.2, is on learning linear predictors from

data based on regularized risk minimization (RRM). RRM often leads to a

convex but nonsmooth task, which cannot be efficiently solved by general-

purpose algorithms, especially for large-scale data. Prominent examples of

RRM are support vector machines, logistic regression, and structured output

learning. We review a generic risk minimization algorithm proposed by Teo

et al. (2007, 2010), inspired by a variant of cutting plane methods known

as proximal bundle methods. We also discuss its accelerated version (Franc

and Sonnenburg, 2008, 2010; Teo et al., 2010), which is among the fastest

solvers for the large-scale learning.

The second application, Section 1.3, is multiple kernel learning (MKL).

While classical kernel-based learning algorithms use a single kernel, it is

sometimes desirable to use multiple kernels (Lanckriet et al., 2004b). Here,

we focus on the convex formulation of the MKL problem for classification as

first stated in (Zien and Ong, 2007; Rakotomamonjy et al., 2007). We show

how this problem can be efficiently solved by a cutting plane algorithm

recycling standard SVM implementations. The resulting MKL solver is

equivalent to the column generation approach applied to the semi-infinite

programming formulation of the MKL problem proposed by Sonnenburg

et al. (2006a).

The third application, Section 1.4, is maximum a posteriori (MAP) infer-

ence in graphical models. It leads to a combinatorial optimization problem

which can be formulated as a linear optimization over the marginal polytope

(Wainwright and Jordan, 2008). Cutting plane methods iteratively construct

a sequence of progressively tighter outer bounds of the marginal polytope,

corresponding to a sequence of LP relaxations. We revisit the approach by

Werner (2008a, 2010), in which a dual cutting plane method is a straightfor-

ward extension of a simple message passing algorithm. It is a generalization

of the dual LP relaxation approach by Shlezinger (1976) and the max-sum

diffusion algorithm by Kovalevsky and Koval (approx. 1975).

1.1 Introduction to cutting plane methods 3

1.1 Introduction to cutting plane methods

Suppose we want to solve the optimization problem

min{ f(x) | x ∈ X } , (1)

where X ⊆ R
n is a convex set, f : R

n → R is a convex function, and we

assume that the minimum exists. Set X can be accessed only via the so called

separation oracle (or separation algorithm). Given x̂ ∈ R
n, the separation

oracle either asserts that x̂ ∈ X or returns a hyperplane 〈a, x〉 ≤ b (called

a cutting plane) that separates x̂ from X, i.e., 〈a, x̂〉 > b and 〈a, x〉 ≤ b for

all x ∈ X. Figure 1.1(a) illustrates the idea.

The cutting plane algorithm (Algorithm 1.1) solves (1) by constructing

progressively tighter convex polyhedrons Xt containing the true feasible setcutting plane

algorithm X, by cutting off infeasible parts of an initial polyhedron X0. It stops when

xt ∈ X (possibly up to some tolerance).

The trick behind the method is not to approximate X well by a convex

polyhedron but to do so only near the optimum. This is best seen if X is

already a convex polyhedron, described by a set of linear inequalities. At

optimum, only some of the inequalities are active. We could in fact remove

all the inactive inequalities without affecting the problem. Of course, we do

not know which ones to remove until we know the optimum. The cutting

plane algorithm imposes more than the minimal set of inequalities but still

possibly much fewer than the whole original description of X.

Algorithm 1.1 Cutting plane algorithm

1: Initialization: t← 0, X0 ⊇ X
2: loop

3: Let xt ∈ argminx∈Xt
f(x)

4: If xt ∈ X then stop, else find a cutting plane 〈a, x〉 ≤ b separating xt from X.
5: Xt+1 ← Xt ∩ {x | 〈a, x〉 ≤ b }
6: t← t + 1
7: end loop

This basic idea has many incarnations. Next we describe three of them,

which have been used in the three machine learning applications presented

in this chapter. Section 1.1.1 describes a cutting plane method suited for

minimization of nonsmooth convex functions. An improved variant thereof,

called the bundle method , is described in Section 1.1.2. Finally, Section 1.1.3

describes application of cutting plane methods to solving combinatorial

optimization problems.

4 Cutting plane methods in machine learning

a x̂

X

x0x1

f(x)

X
x2

f2(x)

f(x0) + 〈f ′(x0), x− x0〉 f(x1) + 〈f ′(x1), x− x1〉

(a) (b)

Figure 1.1: Figure (a) illustrates the cutting plane 〈a, x〉 ≤ b cutting off
the query point x̂ from the light gray halfspace {x | 〈a, x〉 ≤ b} which
contains the feasible set X (dark gray). Figure (b) shows a feasible set X (gray
interval) and a function f(x) which is approximated by a cutting plane model
f2(x) = max{f(x0) + 〈f ′(x0), x − x0〉, f(x1) + 〈f ′(x1), x − x1〉}. Starting
from x0, the CPA generates points x1 and x2 = argminx∈X f2(x).

1.1.1 Nonsmooth optimization

When f is a complicated nonsmooth function while the set X is simple, we

want to avoid explicit minimization of f in the algorithm. This can be done

by writing (1) in the epigraph form as

min{ y | (x, y) ∈ Z } where Z = { (x, y) ∈ X × R | f(x) ≤ y } . (2)

In this case, cutting planes can be generated by means of subgradients.

Recall that f ′(x̂) ∈ R
n is a subgradient of f at x̂ ifsubgradient

f(x) ≥ f(x̂) + 〈f ′(x̂), x− x̂〉 , x ∈ X . (3)

Thus, the right-hand side is a linear underestimator of f . Assume that

x̂ ∈ X. Then, the separation algorithm for the set Z can be constructed

as follows. If f(x̂) ≤ ŷ then (x̂, ŷ) ∈ Z. If f(x̂) > ŷ then the inequality

y ≥ f(x̂) + 〈f ′(x̂), x− x̂〉 (4)

defines a cutting plane separating (x̂, ŷ) from Z.

This leads to the algorithm proposed independently by Cheney and Gold-

stein (1959) and Kelley (1960). Starting with x0 ∈ X, it computes the next

1.1 Introduction to cutting plane methods 5

iterate xt by solving

(xt, yt) ∈ argmin
(x,y)∈Zt

y where

Zt =
{

(x, y) ∈ X × R | y ≥ f(xi) + 〈f ′(xi), x− xi〉, i = 0, . . . , t− 1
}

.
(5)

Here, Zt is a polyhedral outer bound of Z defined by X and the cutting

planes from previous iterates {x0, . . . ,xt−1}. Problem (5) simplifies to

xt ∈ argmin
x∈X

ft(x) where ft(x) = max
i=0,...,t−1

[

f(xi)+〈f
′(xi), x− xi〉

]

. (6)

Here, ft is a cutting-plane model of f (see Figure 1.1(b)). Note that

(xt, ft(xt)) solves (5). By (3) and (6), we have that f(xi) = ft(xi) for

i = 0, . . . , t − 1 and f(x) ≥ ft(x) for x ∈ X, i.e., ft is an underestima-

tor of f which touches f at the points {x0, . . . ,xt−1}. By solving (6) we

do not only get an estimate xt of the optimal point x∗ but also a lower

bound ft(xt) on the optimal value f(x∗). It is natural to terminate when

f(xt) − ft(xt) ≤ ε, which guarantees that f(xt) ≤ f(x∗) + ε. The method

is summarized in Algorithm 1.2.

Algorithm 1.2 Cutting plane algorithm in epigraph form

1: Initialization: t← 0, x0 ∈ X, ε > 0
2: repeat

3: t← t + 1
4: Compute f(xt−1) and f ′(xt−1).
5: Update the cutting plane model ft(x)← maxi=0,...,t−1

ˆ

f(xi) + 〈f ′(xi), x − xi〉
˜

6: Let xt ∈ argminx∈X ft(x).
7: until f(xt)− ft(xt) ≤ ε

In Section 1.3, this algorithm is applied to multiple kernel learning. This

requires solving the problem

min{ f(x) | x ∈ X } where f(x) = max{ g(α,x) | α ∈ A } . (7)

X is a simplex and function g is linear in x and quadratic negative

semi-definite in α. In this case, the subgradient f ′(x) equals the gradi-

ent ∇xg(α̂,x) where α̂ is obtained by solving a convex quadratic program

α̂ ∈ argmaxα∈A g(α,x).

1.1.2 Bundle methods

Algorithm 1.2 may converge slowly (Nemirovskij and Yudin, 1983) because

subsequent solutions can be very distant, exhibiting a zig-zag behavior, thus

many cutting planes do not actually contribute to the approximation of f

6 Cutting plane methods in machine learning

around the optimum x∗. Bundle methods (Kiwiel, 1983; Lemaréchal et al.,

1995) try to reduce this behavior by adding a stabilization term to (6). The

proximal bundle methods compute the new iterate asproximal bundle

methods
xt ∈ argmin

x∈X

{ νt‖x− x
+
t ‖

2
2 + ft(x) } ,

where x+
t is a current prox-center selected from {x0, . . . ,xt−1} and νt is

a current stabilization parameter. The added quadratic term ensures that

the subsequent solutions are within a ball centered at x+
t whose radius

depends on νt. If f(xt) sufficiently decreases the objective, the decrease step

is performed by moving the prox-center as x+
t+1 := xt. Otherwise, the null

step is performed, x+
t+1 := x+

t . If there is an efficient line-search algorithm,

the decrease step computes the new prox-center x+
t+1 by minimizing f along

the line starting at x+
t and passing through xt. Though bundle methods

may improve the convergence significantly they require two parameters: the

stabilization parameter νt and the minimal decrease in the objective which

defines the null step. Despite significantly influencing the convergence, there

is no versatile method for choosing these parameters optimally.

In Section 1.2, a variant of this method is applied to regularized risk

minimization which requires minimizing f(x) = g(x) + h(x) over R
n where

g is a simple (typically differentiable) function and h is a complicated

nonsmooth function. In this case, the difficulties with setting two parameters

are avoided because g naturally plays the role of the stabilization term.

1.1.3 Combinatorial optimization

A typical combinatorial optimization problem can be formulated as

min{ 〈c,x〉 | x ∈ C } , (8)

where C ⊆ Z
n (often just C ⊆ {0, 1}n) is a finite set of feasible configura-

tions, and c ∈ R
n is a cost vector. Usually C is combinatorially large but

highly structured. Consider the problem

min{ 〈c,x〉 | x ∈ X } where X = conv C . (9)

Clearly, X is a polytope (bounded convex polyhedron) with integral vertices.

Hence, (9) is a linear program. Since a solution of a linear program is always

attained at a vertex, problems (8) and (9) have the same optimal value. The

set X is called the integral hull of problem (8).

Integral hulls of hard problems are complex. If a problem (8) is not polyno-

mially solvable then inevitably the number of facets of X is not polynomial.

Therefore (9) cannot be solved explicitly. This is where Algorithm 1.1 is

1.2 Regularized risk minimization 7

used. The initial polyhedron X0 ⊇ X is described by a tractable number of

linear inequalities and usually it is already a good approximation of X, often

but not necessarily we also have X0 ∩Z
n = C. The cutting plane algorithm

then constructs a sequence of gradually tighter LP relaxations of (8).

A fundamental result states that a linear optimization problem and the

corresponding separation problem are polynomial-time equivalent (Grötschel

et al., 1981). Therefore, for an intractable problem (8) there is no hope to

find a polynomial algorithm to separate an arbitrary point from X. However,

a polynomial separation algorithm may exist for a subclass (even intractably

large) of linear inequalities describing X.

After this approach was first proposed by Dantzig et al. (1954) for the

travelling salesman problem, it became a breakthrough in tackling hard

combinatorial optimization problems. Since then much effort has been de-

voted to finding good initial LP relaxations X0 for many such problems,

subclasses of inequalities describing integral hulls for these problems, and

polynomial separation algorithms for these subclasses. This is the subject of

polyhedral combinatorics (e.g., Schrijver, 2003).

In Section 1.4, we focus on the NP-hard combinatorial optimization

problem arising in MAP inference in graphical models. This problem, in

its full generality, has not been properly addressed by the optimization

community. We show how its LP relaxation can be incrementally tightened

during a message passing algorithm. Because message passing algorithms

are dual, this can be understood as a dual cutting plane algorithm: it does

not add constraints in the primal but variables in the dual. The sequence of

approximations of the integral hull X (the marginal polytope) can be seen

as arising from lifting and projection.

1.2 Regularized risk minimization

Learning predictors from data is a standard machine learning problem. A

wide range of such problems are special instances of the regularized risk

minimization. In this case, learning is often formulated as an unconstrained

minimization of a convex function

w∗ ∈ argmin
w∈Rn

F (w) where F (w) = λΩ(w) + R(w) . (10)

The objective F : R
n → R, called regularized risk, is composed of a regu-

larization term Ω: R
n → R and empirical risk R : R

n → R which are both

convex functions. The number λ ∈ R+ is a predefined regularization constant

and w ∈ R
n is a parameter vector to be learned. The regularization term Ω

8 Cutting plane methods in machine learning

is typically a simple, cheap-to-compute function used to constrain the space

of solutions in order to improve generalization. The empirical risk R evalu-

ates how well the parameters w explains the training examples. Evaluation

of R is often computationally expensive.

Example 1.1. Given a set of training examples {(x1, y1), . . . , (xm, ym)} ∈

(Rn × {+1,−1})m, the goal is to learn a parameter vector w ∈ R
n of a

linear classifier h : R
n → {−1, +1} which returns h(x) = +1 if 〈x, w〉 ≥ 0

and h(x) = −1 otherwise. Linear support vector machines (Cortes and

Vapnik, 1995) without bias learn the parameter vector w by solving (10)

with the regularization term Ω(w) = 1
2‖w‖

2
2 and the empirical risk R(w) =

1
m

∑m
i=1 max{0, 1−yi〈xi, w〉} which, in this case, is a convex upper bound on

the number of mistakes the classifier h(x) makes on the training examples.

There is a long list of learning algorithms which in their core are solvers

of a special instance of (10), see, e.g. Schölkopf and Smola (2002). If F is

differentiable, (10) is solved by algorithms for a smooth optimization. If F is

nonsmooth, (10) is typically transformed to an equivalent problem solvable

by off-the-shelf methods. For example, learning of the linear SVM classifier

in Example 1.1 can be equivalently expressed as quadratic program. Because

off-the-shelf solvers are often not efficient enough in practice a huge effort has

been put into development of specialized algorithms tailored to particular

instances of (10).

Teo et al. (2007, 2010) proposed a generic algorithm to solve (10) which is a

modification of the proximal bundle methods. The algorithm, called bundle

method for risk minimization (BMRM), exploits the specific structure of

the objective F in (10). In particular, only the risk term R is approximated

by the cutting-plane model while the regularization term Ω is without any

change used to stabilize the optimization. In contrast, standard bundle

methods introduce the stabilization term artificially. The resulting BMRM

is highly modular and was proven to converge in O(1
ε
) iterations to an ε-

precise solution. In addition, if an efficient line-search algorithm is available,

BMRM can be drastically accelerated with a technique proposed by Franc

and Sonnenburg (2008, 2010); Teo et al. (2010). The accelerated BMRM has

been shown to be highly competitive with state-of-the-art solvers tailored

to particular instances of (10).

In the next two sections, we describe BMRM algorithm and its version

accelerated by line-search.

1.2 Regularized risk minimization 9

Algorithm 1.3 Bundle Method for Regularized Risk Minimization (BMRM)

1: input & initialization: ε > 0, w0 ∈ R
n, t← 0

2: repeat

3: t← t + 1
4: Compute R(wt−1) and R′(wt−1)
5: Update the model Rt(w)← maxi=0,...,t−1 R(wi) + 〈R′(wi), w −wi〉
6: Solve the reduced problem wt ← argminw Ft(w) where Ft(w) = λΩ(w) + Rt(w)
7: until F (wt)− Ft(wt) ≤ ε

1.2.1 Bundle method for regularized risk minimization

Following optimization terminology, we will call (10) the master problem.

Using the approach by Teo et al. (2007), one can approximate the master

problem (10) by its reduced problem

wt ∈ argmin
w∈Rn

Ft(w) where Ft(w) = λΩ(w) + Rt(w) . (11)

The reduced problem (11) is obtained from the master problem (10) by

substituting the cutting-plane model Rt for the empirical risk R while the

regularization term Ω remains unchanged. The cutting-plane model reads

Rt(w) = max
i=0,...,t−1

[

R(wi) + 〈R′(wi), w −wi〉
]

, (12)

where R′(w) ∈ R
n is a subgradient of R at point w. Since R(w) ≥ Rt(w),

∀w ∈ R
n, the reduced problem’s objective Ft is an underestimator of

the master objective F . Starting from w0 ∈ R
n, BMRM of Teo et al.

(2007) (Algorithm 1.3) computes a new iterate wt by solving the reduced

problem (11). In each iteration t, the cutting-plane model (12) is updated

by a new cutting plane computed at the intermediate solution wt leading to

a progressively tighter approximation of F . The algorithm halts if the gap

between the upper bound F (wt) and the lower bound Ft(wt) falls bellow a

desired ε, meaning that F (wt) ≤ F (w∗) + ε.Solving the

reduced problem In practice, the number of cutting planes t required before the algorithm

converges is typically much lower than the dimension n of the parameter

vector w ∈ R
n. Thus, it is beneficial to solve the reduced problem (11) in its

dual formulation. Let A = [a0, . . . ,at−1] ∈ R
n×t be a matrix whose columns

are the subgradients ai = R′(wi) and let b = [b0, . . . , bt−1] ∈ R
t be a column

vector whose components equal to bi = R(wi) − 〈R
′(wi), wi〉. Then the

reduced problem (11) can be equivalently expressed as

wt ∈ argmin
w∈Rn,ξ∈R

[

λΩ(w)+ξ
]

s.t. ξ ≥ 〈w, ai〉+bi , i = 0, . . . , t−1 . (13)

10 Cutting plane methods in machine learning

The Lagrange dual of (13) reads (Teo et al., 2010, Theorem 2)

αt ∈ argmin
α∈Rt

[

− λΩ∗(−λ−1Aα) + 〈α, b〉
]

s.t. ‖α‖1 = 1 ,α ≥ 0 , (14)

where Ω∗ : R
n → R

t denotes the Fenchel dual of Ω defined as

Ω∗(µ) = sup
{

〈w, µ〉 − Ω(w)
∣

∣ w ∈ R
n
}

.

Having the dual solution αt, the primal solution can be computed by

solving wt ∈ argmaxw∈Rn

[

〈w, −λ−1Aαt〉 − Ω(w)
]

which for differentiable

Ω simplifies to wt = ∇µΩ∗(−λ−1Aαt).

Example 1.2. For the quadratic regularizer Ω(w) = 1
2‖w‖

2
2 the Fenchel

dual reads Ω∗(µ) = 1
2‖µ‖

2
2. The dual reduced problem (14) boils down to the

quadratic program

αt ∈ argmin
α∈Rt

[

−
1

2λ
αT AT Aα+αTb

]

s.t. ‖α‖1 = 1 ,α ≥ 0

and the primal solution can be computed analytically by wt = −λ−1Aαt.

The convergence of Algorithm 1.3 in a finite number of iterations is

guaranteed by the following theorem:Convergence

guarantees
Theorem 1.3. (Teo et al., 2010, Theorem 5) Assume that (i) F (w) ≥ 0,

∀w ∈ R
n, (ii) maxg∈∂R(w) ‖g‖2 ≤ G for all w ∈ {w0, . . . ,wt−1} where

∂R(w) denotes the subdifferential of R at point w, and (iii) Ω∗ is twice

differentiable and has bounded curvature, that is, ‖∂2Ω∗(µ)‖ ≤ H∗ for all

µ ∈ {µ′ ∈ R
t | µ′ = λ−1Aα , ‖α‖1 = 1 ,α ≥ 0 } where ∂2Ω∗(µ) is the

Hessian of Ω∗ at point µ. Then Algorithm 1.3 terminates after at most

T ≤ log2

λF (0)

G2H∗
+

8G2H∗

λε
− 1

iterations for any ε < 4G2H∗λ−1.

Furthermore, for a twice differentiable F with bounded curvature Algo-

rithm 1.3 requires only O(log 1
ε
) iterations instead of O(1

ε
) (Teo et al., 2010,

Theorem 5). The most constraining assumption of Theorem 1.3 is that it

requires Ω∗ to be twice differentiable. This assumption holds, e.g., for the

quadratic Ω(w) = 1
2‖w‖

2
2 and the negative entropy Ω(w) =

∑n
i=1 wi log wi

regularizers. Unfortunately, the theorem does not apply for the ℓ1-norm reg-

ularizer Ω(w) = ‖w‖1 often used to enforce sparse solutions.

1.2 Regularized risk minimization 11

1.2.2 BMRM algorithm accelerated by line-search

BMRM can be drastically accelerated whenever an efficient line-search

algorithm for the master objective F is available. An accelerated BMRM for

solving linear SVM problem (c.f. Example 1.1) has been first proposed in

Franc and Sonnenburg (2008). Franc and Sonnenburg (2010) generalized the

method for solving (10) with an arbitrary risk R and quadratic regularizer

Ω(w) = 1
2‖w‖

2
2. Finally, Teo et al. (2010) proposed a fully general version

imposing no restrictions on Ω and R. BMRM accelerated by the line-search,

in Teo et al. (2010) called LS-BMRM, is described by Algorithm 1.4.

Algorithm 1.4 BMRM accelerated by line-search (LS-BMRM)

1: input & initialization: ε ≥ 0, θ ∈ (0, 1], wb
0, w

c
0 ← wb

0, t← 0
2: repeat

3: t← t + 1
4: Compute R(wc

t−1) and R′(wc
t−1)

5: Update the model Rt(w)← maxi=1,...,t−1 R(wc
i) + 〈R′(wc

i), w −w
c
i 〉

6: wt ← argminw Ft(w) where Ft(w) = λΩ(w) + Rt(w)
7: Line-search: kt ← argmink≥0 F (wb

t + k(wt −w
b
t−1))

8: wb
t ← wb

t−1 + kt(wt −w
b
t−1)

9: wc
t ← (1− θ)wb

t−1 + θwt

10: until F (wb
t)− Ft(wt) ≤ ε

Unlike BMRM, LS-BMRM simultaneously optimizes the master and re-

duced problems’ objectives F and Ft, respectively. In addition, LS-BMRM

selects cutting planes that are close to the best-so-far solution which has a

stabilization effect and, moreover, such cutting planes have a higher chance

of actively contributing to the approximation of the master objective F

around the optimum w∗. In particular, there are three main changes com-

pared to BMRM:

1. BMRM-LS maintains the best-so-far solutionwb
t obtained during the first

t iterations, i.e., F (wb
0), . . . , F (wb

t) is a monotonically decreasing sequence.

2. The new best-so-far solutionwb
t is found by searching along a line starting

at the previous solution wb
t−1 and crossing the reduced problem’s solution

wt. This is implemented on lines 7 and 8.

3. The new cutting plane is computed to approximate the master objective

F at the point wc
t ← (1− θ)wb

t + θwt (line 9) which lies on the line segment

between the best-so-far solution wb
t and the reduced problem’s solution wt.

θ ∈ (0, 1] is a prescribed parameter. Note that wc
t must not be set directly

to wb
t in order to guarantee convergence (i.e., θ = 0 is not allowed). It was

found experimentally (Franc and Sonnenburg, 2010), that value θ = 0.1

12 Cutting plane methods in machine learning

works consistently well.
Convergence

guarantees LS-BMRM converges in O(1
ε
) iterations to ε-precise solution:

Theorem 1.4. (Teo et al., 2010, Theorem 7) Under the assumption of

Theorem 1.3 Algorithm 1.4 converges to the desired precision after

T ≤
8G2H∗

λε

iterations for any ε < 4G2H∗λ−1.
Efficient

line-search

algorithm

LS-BMRM requires at line 7 to solve a line-search problem

k∗ = argmin
k≥0

f(k) where f(k) = λΩ(w′ + kw) + R(w′ + kw) . (15)

Franc and Sonnenburg (2008, 2010) proposed a line-search algorithm which

finds the exact solution of (15) if Ω(w) = 1
2‖w‖

2
2 and

R(w) =

m
∑

i=1

max
j=1,...,p

(uij + 〈vij , w〉) , (16)

where uij ∈ R and vij ∈ R
n, i = 1, . . . , m, j = 1, . . . , p, are some fixed scalars

and vectors, respectively. In this case, the subdifferential of ∂f(k) can be

described by O(pm) line segments in 2D. Problem (15) can be replaced

by solving ∂f(k) ∈ 0 w.r.t. k which is equivalent to finding among the

line segments the one intersecting the x-axis. This line-search algorithm

finds the exact solution of (15) in O(mp2 + mp log mp) time. The risk (16)

emerges in most variants of the support vector machines learning algorithms,

e.g., binary SVMs, multi-class SVMs or SVM regression. Unfortunately, the

algorithm is not applicable if p is huge which excludes applications to the

structured output SVM learning (Tsochantaridis et al., 2005).

1.2.3 Conclusions

A notable advantage of BMRM is its modularity and simplicity. One only

needs to supply a procedure to compute the risk R(w) and its subgradi-

ent R′(w) at a point w. The core part of BMRM, i.e., solving the reduced

problem, remains for a given regularizer Ω unchanged. Thus, many exist-

ing learning problems can be solved by a single optimization technique.

Moreover, one can easily experiment with new learning formulations just by

specifying the risk term R and its subgradient R′ without spending time on

development of a new solver for that particular problem.

The convergence speed of BMRM and the accelerated LS-BMRM has

1.3 Multiple kernel learning 13

been extensively studied on a variety of real-life problems in domains ranging

from the text classification, bioinformatics and computer vision to computer

security systems (Teo et al., 2007; Franc and Sonnenburg, 2008, 2010; Teo

et al., 2010). Compared to the state-of-the-art dedicated solvers, BMRM

is typically slightly slower, however, it is still competitive and practically

useful. On the other hand, the LS-BMRM has proved to be among the

fastest optimization algorithms for a variety of problems. Despite the similar

theoretical convergence times, in practice, the LS-BMRM is on average by

an order of magnitude faster than BMRM.

The most time-consuming part of BMRM, as well as LS-BMRM, is the

evaluation of the risk R and its subgradient R′. Fortunately, the risk,

and thus also its subgradient, are typically additively decomposable which

allows for an efficient parallelization of their computation. The effect of the

parallelization on the reduction of the computational time is empirically

studied in Franc and Sonnenburg (2010); Teo et al. (2010).

A relatively high memory requirements of BMRM/LS-BMRM may be

the major deficiency if the method is applied to large-scale problems. The

method stores in each iteration t a cutting plane of size O(n), where n

is the dimension of the parameter vector w ∈ R
n, which leads to O(nt)

memory complexity not counting the reduced problem which is typically

much less memory demanding. To alleviate the problem, Teo et al. (2010)

propose a limited memory variant of BMRM maintaining up to K cutting

planes aggregated from the original t cutting planes. Though the memory

limited variant does not have an impact on the theoretical upper bound

of the number of iterations, in practice, it may significantly slow down the

convergence.

The implementations of BMRM and LS-BMRM can be found in the

SHOGUN machine learning toolbox (Sonnenburg et al., 2010) or in the

open-source packages BMRM (http://users.cecs.anu.edu.au/~chteo/

BMRM.html) and LIBOCAS (http://cmp.felk.cvut.cz/~xfrancv/ocas/

html/index.html).

1.3 Multiple kernel learning

Multiple kernel learning (MKL) (e.g., Bach et al., 2004) has recently become

an active line of research. Given a mapping Φ : X 7→ R
n that represents each

object x ∈ X in n-dimensional feature space1, a kernel machine employs a

1. For the sake of simplicity, we consider the n-dimensional Euclidean feature space.
However, all the methods in this section can be applied even if the objects are mapped

14 Cutting plane methods in machine learning

kernel function

k(x,x′) = 〈Φ(x), Φ(x′)〉

to compare two objects x and x′ without ever explicitly computing Φ(x).

Ultimately, a kernel machine learns α-weighted linear combination of kernel

functions with bias b

h(x) =
m
∑

i=1

αik(xi,x) + b , (17)

where x1, . . . ,xm is a set of training objects. For example, the support

vector machine (SVM) classifier uses the sign of h(x) to assign a class label

y ∈ {−1, +1} to the object x (e.g., Schölkopf and Smola, 2002).

Traditionally, just a single kernel function has been used. However, it has

proven beneficial to consider not just a single, but multiple kernels in various

applications (see Section 1.3.4). Currently, the most popular way to combine

kernels is via convex combinations, i.e., introducing

B =
{

β ∈ R
K
∣

∣‖β‖1 = 1 ,β ≥ 0} , (18)

the composite kernel is defined as

k(x,x′) =
K
∑

k=1

βkkk(x,x′) , β ∈ B , (19)

where kk : X×X→ R, k = 1, . . . , K, is a given set of positive-definite kernels

(Schölkopf and Smola, 2002). Now, in contrast to single kernel algorithms,

MKL learns in addition to the coefficients α and b the weighting over

kernels β.

In Section 1.3.1, we review convex MKL for classification and, in Sec-

tion 1.3.2, we show that this problem can be cast as minimization of a

complicated convex function over a simple feasible set. In Section 1.3.3, we

derive a CPA that transforms the MKL problem into a sequence of linear

and quadratic programs, of which the latter can be efficiently solved by

existing SVM solvers. Section 1.3.4 concludes this part.

1.3.1 Convex multiple kernel learning

Various MKL formulations have been proposed (Lanckriet et al., 2004b;

Bach et al., 2004; Sonnenburg et al., 2006a; Varma and Babu, 2009; Kloft

into arbitrary Reproducing Kernel Hilbert Space (Schölkopf and Smola, 2002).

1.3 Multiple kernel learning 15

et al., 2009; Bach, 2009; Nath et al., 2009; Cortes et al., 2009). Here we focus

solely on the convex optimization problem for classification as first stated

by Zien and Ong (2007); Rakotomamonjy et al. (2007). Note that the same

authors have shown that the mixed-norm approaches of Bach et al. (2004);

Sonnenburg et al. (2006a) are equivalent.

Let {(x1, y1), . . . , (xm, ym)} ∈ (X × {−1, +1})m be a training set of

examples of input x and output y assumed to be i.i.d. from an unknown

distribution p(x, y). The input x is translated into a compositional feature

vector (Φ1(x); . . . ; ΦK(x)) ∈ R
n1+···+nk that is constructed by a set of K

mappings Φk : X → R
nk , k = 1, . . . , K. The goal is to predict y from an

unseen x by using a linear classifier

y = sgn
(

h(x)
)

where h(x) =
K
∑

k=1

〈wk, Φk(x)〉+ b , (20)

its parameters wk ∈ R
nk , k = 1, . . . , K, b ∈ R, are learned from the training

examples. Using the definition x
0 = 0 if x = 0 and ∞ otherwise, the param-

eters of the classifier (20) can be obtained by solving the following convex

primal MKL optimization problem (Zien and Ong, 2007; Rakotomamonjy

et al., 2007)

min
1

2

K
∑

k=1

1

βk

‖wk‖
2
2 + C

m
∑

i=1

ξi (21)

w.r.t. β ∈ B ,w = (w1, . . . ,wK) ∈ R
n1+···+nK , ξ ∈ R

m, b ∈ R

s.t. ξi ≥ 0 and yi

(

K
∑

k=1

〈wk, Φk(xi)〉+ b

)

≥ 1− ξi, i = 1, . . . , m .

Analogously to the SVMs, the objective of (21) is composed of two terms.

The first (regularization) term constrains the spaces of the parameters wk,

k = 1, . . . , K, in order to improve the generalization of the classifier (20).

The second term, weighted by a prescribed constant C > 0, is an upper

bound on the number of mistakes the classifier (20) makes on the training

examples. In contrast to SVMs, positive weights β with ℓ1-norm constraint

(see (18)) are introduced to enforce block-wise sparsity, i.e., rather few blocks

of features Φk are selected (have non-zero weight wk). Since 1
βk

≫ 1 for small

βk, non-zero components of wk experience stronger penalization and thus

the smaller βk the smoother wk. By definition, wk = 0 if βk = 0. Note that

for K = 1, the MKL problem (21) reduces to the standard two-class linear

SVM classifier.

16 Cutting plane methods in machine learning

1.3.2 Min-max formulation of multiple kernel learning

To apply kernels, the primal MKL problem (21) must be reformulated such

that the features vectors Φk(xi) appear in terms of dot products only.

Following Rakotomamonjy et al. (2007) we can rewrite (21) as

min{F (β) | β ∈ B} , (22)

where F (β) is a shortcut for solving the standard SVM primal on the β-

weighted concatenated feature space

F (β) = min
1

2

K
∑

k=1

1

βk

‖wk‖
2
2 + C

m
∑

i=1

ξi (23)

w.r.t. w = (w1, . . . ,wK) ∈ R
n1+···+nK , ξ ∈ R

m, b ∈ R

s.t. ξi ≥ 0 and yi

(

K
∑

k=1

〈wk, Φk(xi)〉+ b

)

≥ 1− ξi , i = 1, . . . , m.

Note, that in (23) the weights β are fixed and the minimization is only over

(w, ξ, b). The Lagrange dual of (23) reads (Rakotomamonjy et al., 2007)

D(β) = max{S(α,β) | α ∈ A} where S(α,β) =
K
∑

k=1

βkSk(α) , (24)

and Sk and A are defined as follows:

Sk(α) =
m
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

αiαjyiyj〈Φk(xi), Φk(xj)〉

A = {α ∈ R
m | 0 ≤ αi ≤ C , i = 1, . . . , m ,

m
∑

i=1

αiyi = 0} .

(25)

Note, that (24) is equivalent to solving the standard SVM dual with the

composite kernel (19). Because (23) is convex and the Slater’s qualification

condition holds, the duality gap is zero, i.e. F (β) = D(β). Substituting

D(β) for F (β) in (22) leads to an equivalent min-max MKL problemMin-Max

Problem
min{D(β) | β ∈ B} . (26)

Let β∗ ∈ argmaxβ∈B D(β) and α∗ ∈ argmaxα∈A S(α,β∗). Then the solu-

tion of the primal MKL problem (21) can be computed analytically as

w∗
k = β∗

k

m
∑

i=1

α∗
i yiΦk(xi) and b∗ = yi −

K
∑

k=1

〈w∗
k, Φk(xi)〉 , i ∈ J , (27)

1.3 Multiple kernel learning 17

where J = {j ∈ {1, . . . , m} | 0 < α∗
i < C}. The equalities (27) follow from

the Karush-Kuhn-Tucker optimality conditions of the problem (23) (e.g.,

Schölkopf and Smola, 2002). Note, that in practice, b∗ is computed as an

average over all |J | equalities which is numerically more stable.

By substituting (27) and kk(xi,x) = 〈Φk(xi), Φk(x)〉 in the linear clas-

sification rule (20), we obtain the kernel classifier (17) with the composite

kernel (19). In addition, after substituting kk(xi,xj) for the dot products

〈Φk(xi), Φk(xj)〉 in (25) we can compute all the parameters of the kernel

classifier without ever using the features Φk(xi) explicitly.

1.3.3 Solving MKL via cutting planes

In this section, we will apply the cutting plane Algorithm 1.2 to the min-max

MKL problem (26).

It follows from (24) that the objective D is convex since it is a point-

wise maximum over an infinite number of functions S(α,β), α ∈ A, which

are linear in β (e.g., Boyd and Vandenberghe, 2004). By Danskin’s theorem

(e.g., Proposition B.25 in Bertsekas, 1999), the subgradient of D at point

β equals the gradient ∇βS(α̂,β) where α̂ ∈ argmaxα∈A S(α,β), i.e, the

subgradient reads

D′(β) = [S1(α̂); . . . ; SK(α̂)] ∈ R
K . (28)

Note, that computing D(β) and its subgradient D′(β) requires solving

the convex quadratic program (24) which is equivalent to the standard

SVM dual computed on the composite kernel (19) with a fixed weighting

β (Rakotomamonjy et al., 2007). Thus, existing SVM solvers are directly

applicable.

Having the means to compute D and its subgradient D′, we can approxi-

mate the objective D by its cutting-plane model

Dt(β) = max
i=0,...,t−1

[

D(βi) + 〈D′(βi), β − βi〉
]

= max
i=0,...,t−1

〈β, D′(βi)〉 . (29)

The points {β0, . . . ,βt−1} can be computed by Kelley’s CPA (Algorithm 1.2)

as follows. Starting with β0 ∈ B, a new iterate is obtained by solving

βt ∈ argmin
β∈B

Dt(β) , (30)

which can be cast as a linear program. Note, that since the feasible set B is

bounded so is the solution of (30). In each iteration t, the obtained point βt

is an estimate of the optimal β∗, and it is also used to update the cutting

18 Cutting plane methods in machine learning

Algorithm 1.5 Cutting plane algorithm for solving the MKL problem. The

algorithm requires solving a simple LP (line 7) and a convex QP (line 3) which

is equivalent to the standard SVM dual.

1: Initialization: t← 0, β0 ∈ B (e.g. β0 = [1

K
; . . . ; 1

K
]), ε > 0

2: repeat

3: Let αt ∈ argmaxα∈A S(α, βt)
4: Compute D(βt)← S(αt,βt) and D′(βt) = [S1(αt); . . . ; SK(αt)]
5: t← t + 1
6: Update the cutting plane model Dt(β)← maxi=0,...,t−1〈D

′(βi), β〉
7: Let βt ∈ argminβ∈B Dt(β)
8: until D(βt−1)−Dt(βt) ≤ ε

plane model (29). The process is repeated until the gap between D(βt−1)

and Dt(βt) falls below a prescribed ε, meaning that D(βt) ≤ D(β∗) + ε

holds. Algorithm 1.5 summarizes the method.

Note that originally Sonnenburg et al. (2006a) converted the problem

(26) into a semi-infinite linear problem (SILP) that was solved by column

generation. However, the SILP is equivalent to the epigraph form of (26)

(see Section 1.1.1) and the column generation results in the exact same

Algorithm 1.5.

Since large-scale SVM training problems are usually solved by so-called

decomposition techniques like chunking (e.g., used in Joachims, 1999), one

may significantly speedup Algorithm 1.5 by alternately solving for α and β

within the SVM solver avoiding to solve the full SVM model with a high

precision (Sonnenburg et al., 2006a). Furthermore, as noted in Section 1.2.1,

potential oscilations occuring in cutting plane methods can be reduced by

the bundle methods, as has been done by Xu et al. (2009a).

1.3.4 Conclusions

Multiple Kernel Learning has been used in various applications across

diverse fields like bioinformatics, image analysis, signal processing, and

biomedical applications like brain computer interfaces. It is being applied

to fusing heterogeneous data (Lanckriet et al., 2004a; Sonnenburg et al.,

2006b; Zien and Ong, 2007; Rakotomamonjy et al., 2008; Varma and Babu,

2009), to understand the learned kernel classifier (Sonnenburg et al., 2005),

feature selection (Szafranski et al., 2008; Xu et al., 2009b; Subrahmanya

and Shin, 2010) or automated model selection Sonnenburg et al. (2006a).

In this section, we have illustrated that the min-max formulation of MKL

problem (22) can be converted into a sequence of linear and quadratic

programs, of which the LP is of a simple nature and the QP can be directly

solved using any of the various existing SVM solvers. There exist further

1.4 MAP inference in graphical models 19

extensions of this approach not discussed in this section, e.g. an infinite

dimensional version of the min-max MKL which was proposed by Argyriou

et al. (2006). We provide efficient implementations of MKL in the SHOGUN

machine learning toolbox (Sonnenburg et al., 2010).

1.4 MAP inference in graphical models

MAP inference in graphical models (Wainwright and Jordan, 2008) leads to

the following NP-hard combinatorial optimization problem: given a set of

variables and a set of functions of (small) subsets of the variables, maximize

the sum of the functions over all the variables. This is also known as the

weighted constraint satisfaction problem (Rossi et al., 2006, chapter 9).

The problem has a natural LP relaxation, proposed independently by

Shlezinger (1976), Koster et al. (1998), and Wainwright et al. (2005). It is

crucial to optimize the LP in the dual because primal methods do not scale to

large problems, which is not done in (Koster et al., 1998). The relaxation was

extended by Wainwright et al. (2005), Wainwright and Jordan (2008) and

Johnson et al. (2007) to a hierarchy of progressively tighter LP relaxations.

Komodakis et al. (2007) pointed out that the LP approach can be seen as a

dual decomposition of the problem to tractable subproblems.

Several authors proposed to tighten the relaxation incrementally. First,

primal methods were proposed (Koster et al., 1998; Sontag and Jaakkola,

2007; Sontag, 2007), then dual methods (Werner, 2008a, 2010; Kumar and

Torr, 2008; Sontag et al., 2008; Komodakis and Paragios, 2008). Not all of

the authors related these incremental schemes to cutting plane methods.

We revisit here the approach by Werner (2008a, 2010), which, we believe,

captures the very core of the dual cutting plane approach to MAP inference

in a clean and transparent way. It is a generalization of the dual LP relax-

ation approach by Shlezinger (1976) and the max-sum diffusion algorithm

by Kovalevsky and Koval (approx. 1975), which have been recently reviewed

by Werner (2005, 2007).

The approach is surprisingly simple and general. Every subset of the of

variables is assigned a function (‘interaction’), all of them except a small part

(which defines the problem) being initially zero. Max-sum diffusion passes

messages between pairs of the variable subsets, acting as reparameterizations

of the problem which monotonically decrease its upper bound. While in the

extreme case all pairs of variable subsets are coupled like this, coupling

only some of them results in a relaxation of the problem. Any time during

diffusion we can tighten the relaxation by coupling new pairs – this results

in an incremental scheme, recognized as a dual cutting plane method.

20 Cutting plane methods in machine learning

After introducing notation, we construct the integer hull of the problem

and the hierarchy of its LP relaxations in Section 1.4.2. In Sections 1.4.3

and 1.4.4 we dualize the LP relaxation and describe the max-sum diffusion

algorithm which optimizes the dual. In Section 1.4.5 we augment this to

a dual cutting plane algorithm and discuss the corresponding separation

problem. Section 1.4.6 explains the geometry of this cutting plane algorithm

in the primal domain, relating it to the marginal polytope.

1.4.1 Notation and problem definition

Let V be an ordered set of variables (the order on V is used only for notation

consistency). A variable v ∈ V attains states xv ∈ Xv, where Xv is the

(finite) domain of the variable. The joint domain of a subset A ⊆ V of the

variables is the Cartesian product XA =
∏

v∈A Xv, where the order of factors

is given by the order on V . A tuple xA ∈ XA is a joint state of variables A.

An interaction with scope A ⊆ V is a function θA: XA → R = R ∪ {−∞}.

Let E ⊆ 2V be a hypergraph on V (a set of subsets of V). Every variable

subset A ⊆ V is assigned an interaction, while θA is identically zero whenever

A /∈ E. Having to deal with so many interactions may seem scary – but it

will always be evident that the vast majority of them do not contribute to

sums and are never visited in algorithms. Our task is to compute

max
xV ∈XV

∑

A∈E

θA(xA) = max
xV ∈XV

∑

A⊆V

θA(xA) . (31)

E.g., if V = (1, 2, 3, 4) and E = {(1, 3, 4), (2, 3), (2, 4), (3)} then (31) reads

max
x1,x2,x3,x4

[θ134(x1, x3, x4) + θ23(x2, x3) + θ24(x2, x4) + θ3(x3)]. Note, as V is

an ordered set we use (· · ·) rather than {· · · } to denote V and its subsets.

We will use T = { (A, xA) | A ⊆ V, xA ∈ XA } to denote the set of all

joint states of all variable subsets (‘T ’ stands for ‘tuples’). All interactions

θA, A ⊆ V , will be understood as a single vector θ ∈ R
T .

1.4.2 The hierarchy of LP relaxations

We define a mapping δ: XV → {0, 1}T as follows: δA(yA)(xV) equals 1 if jointLP formulation

state yA is the restriction of joint state xV on variables A, and 0 otherwise.

Here, δA(yA)(xV) denotes the (A, yA)-component of vector δ(xV) ∈ {0, 1}T .

This lets us write the objective function of (31) as a scalar product,
∑

A⊆V

θA(xA) =
∑

A⊆V

∑

yA

θA(yA) δA(yA)(xV) = 〈θ, δ(xV)〉 .

1.4 MAP inference in graphical models 21

Problem (31) can now be reformulated as

max
xV ∈XV

∑

A⊆V

θA(xA) = max
xV ∈XV

〈θ, δ(xV)〉 = max
µ∈δ(XV)

〈θ,µ〉 = max
µ∈conv δ(XV)

〈θ,µ〉

where δ(XV) = { δ(xV) | xV ∈ XV }. This expresses problem (31) in the

form (9), as a linear optimization over the integral hull conv δ(XV) ⊆ [0, 1]T .

Let I = { (A, B) | B ⊆ A ⊆ V } denote the set of hyperedge pairs related

by inclusion, i.e., the inclusion relation on 2V . For any J ⊆ I, we define a

polytope M(J) to be the set of vectors µ ∈ [0, 1]T satisfying
∑

xA\B

µA(xA) = µB(xB) , (A, B) ∈ J, xB ∈ XB , (32a)

∑

xA

µA(xA) = 1 , A ⊆ V . (32b)

What is this object? Any µ ∈M(J) is a set of distributions µA: XA → [0, 1]

over every subset A ⊆ V of the variables. Constraint (32b) normalizes the

distributions. Constraint (32a) couples pairs of distributions, imposing that

µB is the marginal of µA whenever (A, B) ∈ J . E.g., if A = (1, 2, 3, 4) and

B = (2, 4) then (32a) reads
∑

x1,x3
µ1234(x1, x2, x3, x4) = µ24(x2, x4).

For brevity, we will use the shorthand M(I) = M. We claim thatintegral hull

conv δ(XV) = M . (33)

To see it, let us write a convex combination of the elements of δ(XV),

µ =
∑

xV

µV (xV) δ(xV) , (34)

where µV (xV) denote the coefficients of the convex combination. But µV is

already part of µ. The (A, yA)-component of vector (34) reads

µA(yA) =
∑

xV

µV (xV) δA(yA)(xV) =
∑

yV \A

µV (yV) .

But this is (32a) for (A, B) = (V, A).

By imposing only a subset of all possible marginalization constraints (32a),hierarchy of LP

relaxations an outer relaxation of the integral hull conv δ(XV) = M is obtained. Namely,

for any J ⊆ I we have M(J) ⊇M, hence

max{ 〈θ,µ〉 | µ ∈M(J) } (35)

is a linear programming relaxation of problem (31), i.e., its optimum is

an upper bound on (31). All possible relaxations form a partially ordered

hierarchy, indexed by J ⊆ I. Figure 1.2 shows examples.

22 Cutting plane methods in machine learning

We remark that the hierarchy could be made finer-grained by selecting

also subsets of joint states, i.e., by imposing marginalization equality (32a)

for (A, B, xB) ∈ J where J ⊆ I = { (A, B, xB) | B ⊆ A ⊆ V, xB ∈ XB }.

123 124 134 234

13

1234

12 14 23 24 34

4321

123 124 134 234

13

1234

12 14 23 24 34

4321

123 124 134 234

13

1234

12 14 23 24 34

4321

(a) (b) (c)

Figure 1.2: The Hasse diagram of the set 2V of all subsets of V = (1, 2, 3, 4).
The nodes depict hyperedges A ⊆ V (with hyperedge ∅ omitted) and the
arcs depict hyperedge pairs (A, B) ∈ I. The hyperedges in circles form the
problem hypergraph E = {(1), (2), (3), (4), (1, 2), (1, 4), (2, 3), (2, 4), (3, 4)},
the interactions over the non-circled hyperedges are zero. Any subset J ⊆ I
of the arcs yields one possible relaxation (35) of problem (31). Subfigures (a),
(b), (c) show three example relaxations, with J depicted as thick arcs.

1.4.3 The dual of the LP relaxation

Rather than solving the linear program (35) directly, it is much better toconstructing the

dual solve its dual. This dual is constructed as follows. Let matrices A and B

be such that Aµ = 0 and Bµ = 1 is the set of equalities (32a) and (32b),

respectively. Then (35) can be written as the left linear program below:

〈θ,µ〉 → max 〈ψ,1〉 → min (36a)

Aµ = 0 ϕ ≶ 0 (36b)

Bµ = 1 ψ ≶ 0 (36c)

µ ≥ 0 ϕA+ψB ≥ θ (36d)

On the right we wrote the LP dual, such that in (36b-d) a constraint and its

Lagrange multiplier are always on a same line (‘≶ 0’ means that the variable

vector is unconstrained). By eliminating the variables ψ, the dual reads

min
ϕ

∑

A⊆V

max
xA

θϕ
A(xA) (37)

1.4 MAP inference in graphical models 23

where we abbreviated θϕ = θ −ϕA. The components of vector θϕ read

θϕ
A(xA) = θA(xA)−

∑

B|(B,A)∈J

ϕBA(xA) +
∑

B|(A,B)∈J

ϕAB(xB) (38)

where ϕ = {ϕAB(xB) | (A, B) ∈ J, xB ∈ XB }. Next we explain the

meaning of (38) and (37).
reparameterizations A reparameterization is a transformation of θ that preserves the objective

function
∑

A⊆V θA of problem (31). The simplest reparameterization is done

as follows: pick two interactions θA and θB with B ⊆ A, add an arbitrary

function (a ‘message’) ϕAB: XB → R to θA, and subtract it from θB:

θA(xA)← θA(xA) + ϕAB(xB) , xA ∈ XA , (39a)

θB(xB)← θB(xB)− ϕAB(xB) , xB ∈ XB . (39b)

E.g., if A = (1, 2, 3, 4) and B = (2, 4) then we add a function ϕ1234,24(x2, x4)

to θ1234(x1, x2, x3, x4) and subtract it from θ24(x2, x4). This preserves θA+θB

(because ϕAB cancels out) and hence also
∑

A⊆V θA. Applying reparameter-

ization (39) to all pairs (A, B) ∈ J yields (38).

Thus, (38) describes reparameterizations, i.e., for every xV and ϕ we have
∑

A⊆V

θA(xA) =
∑

A⊆V

θϕ
A(xA) .

Besides this, (38) preserves (for feasible µ) also the objective of the primal

program (36): Aµ = 0 implies 〈θϕ,µ〉 = 〈θ −ϕA,µ〉 = 〈θ,µ〉.

By the well-known max-sum dominance, for any θ we haveupper bound

max
xV

∑

A⊆V

θA(xA) ≤
∑

A⊆V

max
xA

θA(xA) , (40)

thus the right-hand side of (40) is an upper bound on (31). This shows that

the dual (37) minimizes an upper bound on (31) by reparameterizations.

Note that for each (A, B) ∈ J , marginalization constraint (32a) corre-

sponds via duality to message ϕAB. The larger is J , the larger is the set of

reparameterizations (38) and hence the smaller the optimal value of (37).

When is inequality (40) (and hence the upper bound) tight? It happens

if and only if the independent maximizers of the interactions agree on a

common global assignment, i.e., if there exists yV ∈ XV such that

yA ∈ argmax
xA

θA(xA) , A ⊆ V .

We will further refer to the set argmaxxA
θA(xA) as the active joint states

of interaction θA. The test can be cast as the constraint satisfaction problemCSP on active

joint states

24 Cutting plane methods in machine learning

(CSP) (Mackworth, 1991; Rossi et al., 2006) formed by the active joint states

of all the interactions (Shlezinger, 1976; Werner, 2007, 2010). Thus, if after

solving (37) this CSP is satisfiable for θϕ, the relaxation is tight and we

have solved our instance of problem (31) exactly. Otherwise, we have only

an upper bound on (31).

1.4.4 Max-sum diffusion

Max-sum diffusion is a simple convergent ‘message-passing’ algorithm to

tackle the dual LP. It seeks to reparameterize θ such thatfixed point

max
xA\B

θA(xA) = θB(xB) , (A, B) ∈ J, xB ∈ XB . (41)

The algorithm repeats the following iteration:update

Enforce (41) for a single pair (A, B) ∈ J by reparameterization (39).

This is done by setting ϕAB(xB) = [θB(xB) − maxxA\B
θA(xA)]/2 in (39).

The algorithm converges to a fixed point when (41) holds for all (A, B) ∈ J .

We remark that originally (Kovalevsky and Koval, approx. 1975), max-

sum diffusion was formulated for problems with only binary (no unary)

interactions. The generalization (41) by Werner (2008a, 2010) is interesting

in the fact that (41) has exactly the same form as (32a). We pursued this

idea further in (Werner, 2008b).

Doing reparameterization by messages rather than by modifying θ yields

Algorithm 1.6. To correctly handle infinite weights, the algorithm expects

that [θB(xB) > −∞]⇔ [maxxA\B
θA(xA) > −∞] for every (A, B) ∈ J .

Algorithm 1.6 Max-sum diffusion

1: repeat

2: for (A, B) ∈ J and xB ∈ XB such that θB(xB) > −∞ do

3: ϕAB(xB)← ϕAB(xB) + [θϕ
B(xB)− max

xA\B

θϕ
A(xA)]/2

4: end for

5: until convergence

The diffusion iteration decreases or preserves, but never increases, theproperties

upper bound. In general, the algorithm does not find the global minimum

of (37) but only a certain local minimum (where ‘local’ is meant w.r.t. block-

coordinate moves), which is nevertheless very good in practice. These local

minima are characterized by local consistency (Rossi et al., 2006, chapter 3)

of the CSP formed by the active joint states.

1.4 MAP inference in graphical models 25

1

46

4

5

2
4

−1

5

0

0 7

7

5

7

2

2

47

5

2

6

−2

−2

−2

5

3

−6

3

4

0

1

4

4

4

4

1

3

2
4

1

42

4 42

1

1

3

3

4

4 4 2

−1

−3

5

5

5

5

5

5

5

5

5

5

5

5

5 5

5

2

4

3

4

0 4

2

5

5

5

−3

−2

−1

(a) (b) (c)

Figure 1.3: The visualization of a problem with |Xv| = 2 variable states
and hypergraph E as in Figure 1.2. The variables are shown as boxes, their

numbering is 2
1

3
4. Variable states are shown as circles, joint states of variable

pairs as edges. Weights θA(xA), A ∈ E, are written in the circles and next
to the edges. Active joint states are emphasized (black circles, thick edges).
Example (a) is not a diffusion fixed point, (b,c) are diffusion fixed points
for J from Figure 1.2a. Examples (a,b) are reparameterizations of each other
(this is not obvious at the first sight), (c) is not a reparameterization of (a,b).
For (b), a global assignment xV can be composed of the active joint states
and hence inequality (40) is tight. For (a,c), no global assignment xV can be
composed of the active joint states, hence inequality (40) is not tight.

Note that the only non-trivial operation in Algorithm 1.6 is computing the

max-marginals maxxA\B
θϕ
A(xA). By (38), this is an instance of problem (31).

When |A| is small (such as for a binary interaction), computing the max-

marginals is trivial. But even when |A| is large, depending on the function

θA and on J there may exist an algorithm polynomial in |A| to compute

maxxA\B
θϕ
A(xA). In that case, Algorithm 1.6 still can be used.

If θA = 0, it depends only on J whether maxxA\B
θϕ
A(xA) can be computed

in polynomial time. E.g., in Figure 1.2c we have θ1234 = 0 and hence, by (38),

θϕ
1234(x1, x2, x3, x4) = ϕ1234,12(x1, x2) + ϕ1234,23(x2, x3) + ϕ1234,34(x3, x4) +

ϕ1234,14(x1, x4). Thus we have a problem on a cycle, which can be solved

more efficiently than by going through all states (x1, x2, x3, x4).

This suggests that diffusion in a sense exactly solves certain small subprob-diffusion solves

subproblems lems (which links it to the dual decomposition interpretation (Komodakis

et al., 2007)). This can be formalized as follows. Let A ∈ F ⊆ 2A. Clearly,

max
xA

∑

B∈F

θB(xB) ≤
∑

B∈F

max
xB

θB(xB) (42)

for any θ, which is inequality (40) written for subproblem F . Let J =

{ (A, B) | B ∈ F }. In this case, the minimal upper bound for subproblem

F is tight. To see it, just do reparameterization (39) with ϕAB = θB for

26 Cutting plane methods in machine learning

B ∈ F , which results in θB = 0 for B ∈ F \{A}, hence (42) is tight trivially.

What is not self-evident is that diffusion finds the global minimum in this

case. It does: if θ satisfies (41) for J = { (A, B) | B ∈ F } then (42) is tight.

1.4.5 Dual cutting plane algorithm

The relaxation can be tightened incrementally during dual optimization.incremental

scheme Any time during Algorithm 1.6, the current J can be extended by any J ′ ⊆ I,

J ′∩J = ∅. The messages ϕAB for (A, B) ∈ J ′ are initialized to zero. Clearly,

this does not change the current upper bound. Future diffusion iterations

can only preserve or improve the bound, so the scheme remains monotonic.

This can be imagined as if the added variables ϕAB extended the space of

possible reparameterizations and diffusion is now trying to take advantage

of it. If the bound does not improve, all we will have lost is the memory

occupied by the added variables. Algorithm 1.7 describes this.

In the primal domain, this incremental scheme can be understood as a

cutting plane algorithm. We discuss this later in Section 1.4.6.

Algorithm 1.7 Dual cutting plane algorithm

1: Initialization: Choose J ⊆ I and J ⊆ 2I .
2: repeat

3: Execute any number of iterations of Algorithm 1.6.
4: Separation oracle: Choose J ′ ∈ J, J ∩ J ′ = ∅.
5: J ← J ∪ J ′

6: Allocate messages ϕAB , (A, B) ∈ J ′, and set them to zero.
7: until no suitable J ′ can be found

On line 4 of Algorithm 1.7 the separation oracle is called, which choosesseparation test

a promising extension J ′ from some predefined set J ⊆ 2I of candidate

extensions. We assume |J| is small so that J it can be searched exhaustively.

For that, we need a test to recognize whether a given J ′ would lead to a

(good) bound improvement. We refer to this as the separation test .

Of course, a trivial necessary and sufficient separation test is to extend J

by J ′ and run diffusion till convergence. One easily invents a faster test:

Execute several diffusion iterations only on pairs J ′. If this improves

the bound, then running diffusion on J ∪J ′ would inevitably improve

the bound too.

This local test is sufficient but not necessary for improvement because even

if running diffusion on J ′ does not improve the bound, it may change the

problem such that future diffusion iterations on J ∪ J ′ improve it.

Even with a sufficient and necessary separation test, Algorithm 1.7 isgreediness

1.4 MAP inference in graphical models 27

‘greedy’ in the following sense. For J ′
1, J

′
2 ⊆ I, it can happen that extending

J by J ′
1 alone or by J ′

2 alone does not lead to a bound improvement but

extending J by J ′
1 ∪ J ′

2 does. See (Werner, 2010) for an example.

The extension J ′ can be an arbitrary subset of I. One form of extension has

a clear meaning: pick a hyperedge A not yet coupled to any other hyperedge,

choose F ⊆ 2A, and let J ′ = { (A, B) | B ∈ F }. This can be seen as

‘connecting’ a so far disconnected interaction θA to the problem.

An important special case is connecting a zero interaction, θA = 0.adding zero

subproblems Because, by (38), we have θϕ
A(xA) =

∑

B∈F ϕAB(xB), we refer to this

extension as adding a zero subproblem F . In this case, the separation test

can be done more efficiently than by running diffusion on J ′. This is based

on the fact stated at the end of Section 1.4.4: if inequality (42) is not tight

for current θϕ then running diffusion on J ′ will surely make it tight, i.e.,

improve the bound. Note, we do not need A ∈ F here because θA = 0. The

gap in (42) is an estimate of the expected improvement.

This has a clear interpretation in CSP terms. Inequality (42) is tight if and

only if the CSP formed by the active joint states of interactions F is satisfi-

able. If this CSP is unsatisfiable then J ′ will improve the bound. Therefore,

the separation oracle needs to find a (small) unsatisfiable subproblem of the

CSP formed by the active joint states.

For instance, Figure 1.3c shows a problem after diffusion convergence,

for J defined by Figure 1.2a. The CSP formed by the active joint states

is not satisfiable because it contains an unsatisfiable subproblem, the cycle

F = {(1, 2), (1, 4), (2, 4)}. Hence, adding zero subproblem F (which yields J

from Figure 1.2b) and running diffusion would improve the bound. Adding

the zero cycle F = {(1, 2), (1, 4), (2, 3), (3, 4)} (yielding J from Figure 1.2c)

or the whole zero problem F = E would improve the bound too.

Figure 1.4 shows a more complex example.

Message passing algorithms have a drawback: after extending J , theyremoving zero

subproblems need a long time to re-converge. This can be partially alleviated by adding

multiple subproblems at a time and doing so before full convergence. As

some of the added subproblems might later turn out redundant, we found

helpful to remove redundant subproblems occasionally – which can be done

without sacrificing monotonicity of bound improvement. This is a (dual)

way of ‘constraint management’, often used in cutting plane methods.

1.4.6 Zero interactions as projection, marginal polytope

In the beginning, formula (31), we added all possible zero interactions to ourzero interactions

act as projection problem. This has proved natural because the problem is after all defined

only up to reparameterizations and thus any zero interaction can become

28 Cutting plane methods in machine learning

(a) (b) (c)

Figure 1.4: Two steps of the cutting plane algorithm for a problem with
the 8 × 8 grid graph E and |Xv| = 4 variable states. The set J of candidate
extensions contains all cycles of length 4. Only the active joint states are
shown. Subfigure (a) shows the problem after diffusion has converged for
J = { (A, B) | B ⊆ A; A, B ∈ E }. The upper bound is not tight because
of the depicted unsatisfiable subproblem (an inconsistent cycle). Adding the
cycle and letting diffusion re-converge results in problem (b) with a better
bound. The original cycle is now satisfiable but a new unsatisfiable cycle
occurred. Adding this cycle solves the problem, (c).

non-zero. Now, let us see how the LP relaxation would look like without

adopting this abstraction. Let T (E) = { (A, xA) | A ∈ E, xA ∈ XA } denote

the restriction of the set T to hypergraph E. Since zero interactions do not

contribute to the objective function of (35), (35) can be written as

max{ 〈θ,µ〉 | µ ∈M(J) } = max{ 〈πT (E)θ, µ〉 | µ ∈ πT (E)M(J) } (43)

where πD′a ∈ R
D′

denotes the projection of a vector a ∈ R
D on dimensions

D′ ⊆ D, thus πD′ deletes the components D \D′ of a. Applied to a set of

vectors, πD′ does this for every vector in the set. Informally, (43) shows that

zero interactions act as the projection of the feasible set onto the space of

non-zero interactions.

The set πT (E)M ⊆ [0, 1]T (E) is recognized as the marginal polytope (Wain-marginal

polytope wright et al., 2005) of hypergraph E. Its elements µ are the marginals over

variable subsets E of some global distribution µV , which not necessarily is

part of µ. The marginal polytope of the complete hypergraph πT (2V)M = M

is of fundamental importance because all other marginal polytopes are its

projections. For J ⊆ I, the set πT (E)M(J) ⊇ πT (E)M is a relaxation of the

marginal polytope, which may contain elements µ that no longer can be

realized as the marginals of any global distribution µV .

While conv δ(XV) = M is the integral hull of the problem max{ 〈θ,µ〉 |

µ ∈ δ(XV) }, the polytope conv πT (E)δ(XV) = πT (E) conv δ(XV) = πT (E)M

is the integral hull of the problem max{ 〈πT (E)θ,µ〉 | µ ∈ πT (E)δ(XV) }.

1.4 MAP inference in graphical models 29

Following (Wainwright et al., 2005), we say a relaxation J is local in E iflocal vs. non-local

relaxations A, B ∈ E for every (A, B) ∈ J . E.g., in Figure 1.2 only relaxation (a) is local.

For local relaxations, the distributions µA, A /∈ E, are not coupled to any

other distributions and the action of πT (E) on M(J) is simple: it just removes

these superfluous coordinates. Thus, πT (E)M(J) has an explicit description

by a small (polynomial in |E|) number of linear constraints.

For non-local relaxations, the effect of the projection is in general complex

and the number of facets of πT (E)M(J) is exponential in |E|. It is well-known

that to compute the explicit description of a projection of a polyhedron can

be extremely difficult – which suggests that to directly look for the facets

of πT (E)M might be a bad idea. Non-local relaxations can be seen as a lift-

and-project approach: we lift from dimensions T (E) to dimensions T , impose

constraints in this lifted space, and project back onto dimensions T (E).

Now it is clear what is the geometry of our cutting plane algorithm in theprimal view on

the cutting plane

algorithm
primal space [0, 1]T (E). Suppose max-sum diffusion has found a global opti-

mum of the dual and let µ∗ ∈ [0, 1]T (E) be a corresponding primal optimum.

A successful extension of J means that a set (perhaps exponentially large)

of cutting planes is added to the primal that separates µ∗ from πT (E)M.

However, µ∗ is not computed explicitly at all (and, let us remark, it is ex-

pensive to compute µ∗ from a dual optimum for large problems). In fact,

µ∗ may not even exist because diffusion may find only a local optimum of

the dual – we even need not run diffusion to full convergence.

1.4.7 Conclusions

We have presented the theory of the cutting plane approach to the MAP

inference problem, as well as a very general message passing algorithm

to implement this approach. In comparison with other similar works, the

theory, and Algorithm 1.6 in particular, is very simple. We have shown

that for the case of adding subproblems, separation means finding a (small)

unsatisfiable subproblem of the CSP formed by the active joint states.

We assumed, in Section 1.4.5, that the set J of candidate extensions is

tractably small. Is there a polynomial algorithm to select an extension from

an intractably large set J? In particular, is there a polynomial algorithm to

find a small unsatisfiable subproblem (most interestingly, a cycle) in a given

CSP? This is currently an open problem. An inspiration for finding such

algorithms are local consistencies in CSP (Rossi et al., 2006, chapter 3).

Let us remark that several polynomial algorithms are known to separate

intractable families of cutting planes of the max-cut polytope (Deza and

Laurent, 1997), closely related to the marginal polytope. Some of them have

been applied to MAP inference by Sontag and Jaakkola (2007) and Sontag

30 Cutting plane methods in machine learning

(2007). As these algorithms work in the primal space, they cannot be used

in our dual cutting plane scheme – we need a dual separation algorithm.

References

A. Argyriou, R. Hauser, C. A. Micchelli, and M. Pontil. A dc-programming

algorithm for kernel selection. In Proc. Intl. Conf. Machine Learning,

pages 41–48. ACM Press, 2006.

F. Bach. Exploring large feature spaces with hierarchical multiple kernel

learning. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances

in Neural Information Processing Systems 9, pages 105–112, 2009.

F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning,

conic duality, and the smo algorithm. In Proc. Intl. Conf. Machine

Learning. ACM Press, 2004.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA,

1999. ISBN 1-886529-00-0.

S. Boyd and L. Vandenberge. Localization and cutting-plane meth-

ods. Stanford University, California, USA, Unpublished lecture

notes, 2008. URL http://see.stanford.edu/materials/lsocoee364b/

05-localization_methods_notes.pdf.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, March 2004. ISBN 0521833787.

E. W. Cheney and A. A. Goldstein. Newton’s method for convex program-

ming and Tchebycheff approximation. Numerische Mathematik, 1:253–

268, 1959. ISSN 0029-599X.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20

(3):273–297, 1995.

C. Cortes, M. Mohri, and A. Rostamizadeh. Learning non-linear combina-

tions of kernels. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors,

Advances in Neural Information Processing Systems 9, pages 396–404,

2009.

G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-

salesman problem. Operations Research, 2:393–410, 1954.

M. M. Deza and M. Laurent. Geometry of Cuts and Metrics. Springer,

Berlin, 1997.

V. Franc and S. Sonnenburg. OCAS optimized cutting plane algorithm for

support vector machines. In Proc. Intl. Conf. Machine Learning, pages

1.4 MAP inference in graphical models 31

320–327. ACM Press, 2008.

V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for large-

scale risk minimization. Journal of Machine Learning Research, 10:2157–

2192, 2010.

M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its

consequences in combinatorial optimization. Combinatorica, 1(2):169–197,

1981.

T. Joachims. Making large–scale SVM learning practical. In B. Schölkopf,

C. Burges, and A. Smola, editors, Advances in Kernel Methods — Support

Vector Learning, pages 169–184, Cambridge, MA, USA, 1999. MIT Press.

J. K. Johnson, D. M. Malioutov, and A. S. Willsky. Lagrangian relaxation for

MAP estimation in graphical models. In Allerton Conf. Communication,

Control and Computing, 2007.

J. E. Kelley. The cutting-plane method for solving convex programs. Journal

of the Society for Industrial and Applied Mathematics, 8(4):703–712, 1960.

K. C. Kiwiel. An aggregate subgradient method for nonsmooth convex

minimization. Mathematical Programming, 27:320–341, 1983.

M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K.-R. Müller, and A. Zien.

Efficient and accurate lp-norm multiple kernel learning. In M. C. Mozer,

M. I. Jordan, and T. Petsche, editors, Advances in Neural Information

Processing Systems 9, pages 997–1005. MIT Press, 2009.

N. Komodakis and N. Paragios. Beyond loose LP-relaxations: Optimizing

MRFs by repairing cycles. In European Conf. on Computer Vision, 2008.

N. Komodakis, N. Paragios, and G. Tziritas. MRF optimization via dual

decomposition: Message-passing revisited. In Proc. Intl. Conf. Computer

Vision, 2007.

A. Koster, C. P. M. van Hoesel, and A. W. J. Kolen. The partial constraint

satisfaction problem: Facets and lifting theorems. Operations Research

Letters, 23(3–5):89–97, 1998.

V. A. Kovalevsky and V. K. Koval. A diffusion algorithm for decreasing the

energy of the max-sum labeling problem. Glushkov Institute of Cybernet-

ics, Kiev, USSR. Unpublished, personally communicated to T. Werner by

M. I. Schlesinger., approx. 1975.

M. P. Kumar and P. H. S. Torr. Efficiently solving convex relaxations for

MAP estimation. In Proc. Intl. Conf. Machine Learning, pages 680–687.

ACM, 2008.

G. Lanckriet, T. D. Bie, N. Cristianini, M. Jordan, and W. Noble. A

statistical framework for genomic data fusion. Bioinformatics, 20:2626–

32 Cutting plane methods in machine learning

2635, 2004a.

G. Lanckriet, N. Cristianini, L. E. Ghaoui, P. Bartlett, and M. I. Jordan.

Learning the kernel matrix with semi-definite programming. Journal of

Machine Learning Research, 5:27–72, 2004b.

C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. New variants of bundle

methods. Mathematical Programming, 69(1–3):111–147, 1995.

A. Mackworth. Constraint satisfaction. In Encyclopaedia of Artificial

Intelligence, pages 285–292. John Wiley, 1991.

J. S. Nath, G. Dinesh, S. Ramanand, C. Bhattacharyya, A. Ben-Tal, and

K. R. Ramakrishnan. On the algorithmics and applications of a mixed-

norm based kernel learning formulation. In M. C. Mozer, M. I. Jordan, and

T. Petsche, editors, Advances in Neural Information Processing Systems

9, pages 844–852, 2009.

A. S. Nemirovskij and D. B. Yudin. Problem Complexity and Method

Efficiency in Optimization. Wiley Interscience, New York, 1983.

A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. More efficiency

in multiple kernel learning. In Proc. Intl. Conf. Machine Learning, pages

775–782, 2007.

A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet. SimpleMKL.

Journal of Machine Learning Research, 9:2491–2521, 2008.

F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming.

Elsevier, 2006.

B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002.

A. Schrijver. Combinatorial Optimization : Polyhedra and Efficiency (Algo-

rithms and Combinatorics). Springer, 2003.

M. I. Shlezinger. Syntactic analysis of two-dimensional visual signals in

noisy conditions. Cybernetics and Systems Analysis, 12(4):612–628, 1976.

Translation from Russian.

S. Sonnenburg, G. Rätsch, and C. Schäfer. Learning interpretable SVMs for

biological sequence classification. In S. Miyano, J. P. Mesirov, S. Kasif,

S. Istrail, P. A. Pevzner, and M. Waterman, editors, Research in Com-

putational Molecular Biology, 9th Annual International Conference (RE-

COMB), volume 3500, pages 389–407. Springer-Verlag, 2005.

S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large Scale

Multiple Kernel Learning. Journal of Machine Learning Research, 7:1531–

1565, July 2006a.

S. Sonnenburg, A. Zien, and G. Rätsch. ARTS: Accurate Recognition of

Transcription Starts in Human. Bioinformatics, 22(14):e472–e480, 2006b.

1.4 MAP inference in graphical models 33

S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien,

F. de Bona, A. Binder, C. Gehl, and V. Franc. The SHOGUN machine

learning toolbox. Journal of Machine Learning Research, 11:1799–1802,

June 2010. URL http://www.shogun-toolbox.org.

D. Sontag. Cutting plane algorithms for variational inference in graphical

models. Master’s thesis, Massachusetts Institute of Technology, Depart-

ment of Electrical Engineering and Computer Science, 2007.

D. Sontag and T. Jaakkola. New outer bounds on the marginal polytope.

In Advances in Neural Information Processing Systems 7, 2007.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening

LP relaxations for MAP using message passing. In Conf. Uncertainty in

Artificial Intelligence (UAI), 2008.

N. Subrahmanya and Y. C. Shin. Sparse multiple kernel learning for signal

processing applications. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 32:788–798, 2010.

M. Szafranski, Y. Grandvalet, and A. Rakotomamonjy. Composite kernel

learning. In Proc. Intl. Conf. Machine Learning, 2008.

C. Teo, Q. Le, A. Smola, and S. Vishwanathan. A scalable modular convex

solver for regularized risk minimization. In Proc. Intl. Conf. Knowledge

Discovery and Data Mining, 2007.

C. Teo, S. Vishwanathan, A. Smola, and V. Quoc. Bundle methods for

regularized risk minimization. Journal of Machine Learning Research, 11:

311–365, 2010.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin

methods for structured and interdependent output variables. Journal of

Machine Learning Research, 6:1453–1484, 2005.

M. Varma and B. R. Babu. More generality in efficient multiple kernel

learning. In Proc. Intl. Conf. Machine Learning, pages 1065–1072, New

York, NY, USA, 2009. ACM Press.

M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via agreement

on (hyper)trees: message passing and linear programming approaches.

IEEE Trans. Information Theory, 51(11):3697–3717, 2005.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families,

and variational inference. Foundations and Trends in Machine Learning,

1(1-2):1–305, 2008.

T. Werner. High-arity interactions, polyhedral relaxations, and cutting plane

algorithm for soft constraint optimisation (MAP-MRF). In Proc. IEEE

Conf. Computer Vision and Pattern Recognition, June 2008a.

34 Cutting plane methods in machine learning

T. Werner. Revisiting the linear programming relaxation approach to

Gibbs energy minimization and weighted constraint satisfaction. IEEE

Transactions on Pattern Analysis and Machine Intelligence, August 2010.

T. Werner. A linear programming approach to max-sum problem: A review.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(7):

1165–1179, July 2007.

T. Werner. Marginal consistency: Unifying constraint propagation on com-

mutative semirings. In Intl. Workshop on Preferences and Soft Constraints

(co-located with Conf. on Principles and Practice of Constraint Program-

ming), pages 43–57, September 2008b.

T. Werner. A linear programming approach to max-sum problem: A review.

Technical Report CTU–CMP–2005–25, Center for Machine Perception,

Czech Technical University, December 2005.

Z. Xu, R. Jin, I. King, and M. Lyu. An extended level method for efficient

multiple kernel learning. In M. C. Mozer, M. I. Jordan, and T. Petsche,

editors, Advances in Neural Information Processing Systems 9, pages

1825–1832, 2009a.

Z. Xu, R. Jin, J. Ye, M. R. Lyu, and I. King. Non-monotonic feature

selection. In Proc. Intl. Conf. Machine Learning, pages 1145–1152, 2009b.

A. Zien and C. S. Ong. Multiclass multiple kernel learning. In Proc. Intl.

Conf. Machine Learning, pages 1191–1198. ACM Press, 2007.

1

Universality of the Local Marginal Polytope
Daniel Průša and Tomáš Werner

✦

Abstract—We show that solving the LP relaxation of the min-sum

labeling problem (also known as MAP inference problem in graphical

models, discrete energy minimization, or valued constraint satisfaction)

is not easier than solving any linear program. Precisely, every polytope is

linear-time representable by a local marginal polytope and every LP can

be reduced in linear time to a linear optimization (allowing infinite costs)

over a local marginal polytope. The reduction can be done (though with

a higher time complexity) even if the local marginal polytope is restricted

to have a planar structure.

Index Terms—graphical model, Markov random field, discrete energy

minimization, valued constraint satisfaction, linear programming relax-

ation, local marginal polytope

1 INTRODUCTION

The min-sum (labeling) problem is defined as follows:
given a set of discrete variables and a set of functions
depending on one or two variables, minimize the sum
of the functions over all variables. This problem arises
in MAP inference in graphical models [22] and it is also
known as discrete energy minimization [9] or valued
constraint satisfaction [21].

This NP-complete problem has a natural linear pro-
gramming (LP) relaxation, proposed by a number of
authors [18], [13], [4], [22]. This relaxation is equivalent
to the dual (Lagrangian) decomposition of the min-sum
problem [8], [12], [19]. While the min-sum problem can
be formulated as a linear optimization over the marginal
polytope, the LP relaxation approximates this polytope by
its outer bound, the local marginal polytope [22].

The relaxation is exact for a large class of min-sum
instances and it is a basis for constructing good ap-
proximations for many other instances [20], [23], [9]. It
is therefore of great practical interest to have efficient
algorithms to solve the LP relaxation.

To solve the LP relaxation, the simplex and interior
point methods are prohibitively inefficient for large-scale
instances (which often occur, e.g., in computer vision).
For min-sum problems with 2 labels, the LP relaxation
can be solved efficiently because it reduces in linear time
to max-flow [3], [17]. For more general problems, no
really efficient algorithm is known to solve the LP.

In this article we show that the quest for efficient
algorithms to solve the LP relaxation of the general

• The authors are with the Department of Cybernetics, Czech Technical
University, Karlovo náměstı́ 13, 12135 Praha, Czech Republic. Emails:
{prusapa1,werner}@cmp.felk.cvut.cz.

min-sum problem has a fundamental limitation, because
this task is not easier than solving any linear program.
Precisely, we prove the following theorems.

Theorem 1. Every polytope is (up to scale) a coordinate-
erasing projection of a face of a local marginal polytope
with 3 labels, whose description can be computed from
the input polytope in linear time.

The input polytope is described by a set of linear in-
equalities with integer coefficients. By coordinate-erasing
projection, we mean a projection that copies a subset of
coordinates and erases the remaining ones.

Theorem 2. Every linear program can be reduced in lin-
ear time to a linear optimization (allowing infinite costs)
over a local marginal polytope with 3 labels.

While Theorem 2 immediately follows from Theo-
rem 1, the situation is more complex when infinite costs
are not allowed. In this case, the reduction time and the
output size are quadratic (see Theorem 9).

Given these negative results, one may ask whether the
LP relaxation can be solved efficiently for some useful
subclasses of the min-sum problem. One such subclass is
the planar min-sum problem, which frequently occurs in
computer vision. We show (in Theorem 11) that even in
this case, the reduction can be done (with infinite costs
allowed), in better than quadratic time.

Similar universality results are known also for other
polytopes, e.g., the three-way transportation polytope [6]
and the traveling salesman polytope [2].

2 THE LOCAL MARGINAL POLYTOPE

Let (V,E) be an undirected graph, where V is a finite set
of objects and E ⊆

(

V
2

)

is a set of object pairs. Let K be a
finite set of labels. Let gu: K → R and guv: K×K → R be
unary and binary cost functions, where R = R∪{∞} and
we adopt that guv(k, ℓ) = gvu(ℓ, k). The min-sum problem
is defined as

min
k∈KV

(

∑

u∈V

gu(ku) +
∑

{u,v}∈E

guv(ku, kv)
)

. (1)

All the costs gu(k), guv(k, ℓ) form a vector g ∈ R
I

where
I = (V × K) ∪ { {(u, k), (v, ℓ)} | {u, v} ∈ E; k, ℓ ∈ K }.
The problem instance is given by a tuple (V,E,K,g).

2

a b c

p q r

u

v

Fig. 1. A pair of objects {u, v} ∈ E with |K| = 3 labels.

The local marginal polytope [22] is the set Λ of vectors
µ ∈ R

I
+ satisfying

∑

ℓ∈K

µuv(k, ℓ) = µu(k), u ∈ V, v ∈ Nu, k ∈ K (2a)

∑

k∈K

µu(k) = 1, u ∈ V (2b)

where Nu = { v | {u, v} ∈ E } are the neighbors
of u and we assume µuv(k, ℓ) = µvu(ℓ, k). The numbers
µu(k), µuv(k, ℓ) are known as pseudomarginals [22]. The
local marginal polytope is given by a triplet (V,E,K).

The LP relaxation of the min-sum problem reads

Λ∗(g) = argmin
µ∈Λ

〈g,µ〉 (3)

where in the scalar product 〈g,µ〉 we define 0 · ∞ = 0.
The set (3) contains all vectors µ for which 〈g,µ〉 attains
minimum over Λ. It is itself a polytope, a face of Λ.

We will depict min-sum problems by diagrams, as in
Figure 1. Objects u ∈ V are depicted as boxes, labels
(u, k) ∈ I as nodes, label pairs {(u, k), (v, ℓ)} ∈ I as
edges. Each node is assigned a unary pseudomarginal
µu(k) and cost gu(k). Each edge is assigned a binary
pseudomarginal µuv(k, ℓ) and cost guv(k, ℓ).

Note the meaning of constraints (2) in Figure 1. Con-
straint (2b) imposes for unary pseudomarginals a, b, c
that a + b + c = 1. Constraint (2a) imposes for binary
pseudomarginals p, q, r that a = p+ q + r.

3 INPUT POLYHEDRON

We consider the input polyhedron in the form

P = {x = (x1, . . . , xn) ∈ R
n | Ax = b, x ≥ 0 } (4)

where1 A = [aij] ∈ Z
m×n, b = (b1, . . . , bm) ∈ Z

m, m ≤ n.
We assume there is at least one non-zero entry in each
row and column of A. The instance of polyhedron (4) is
given by (A,b) or, in short, by the extended matrix

Ā = [āij] = [A |b] ∈ Z
m×(n+1). (5)

It will be convenient to rewrite the system Ax = b as
follows. In the i-th equation

ai1x1 + · · ·+ ainxn = bi (6)

1. The assumption that (A,b) are integer-valued is common, see
e.g. [10]. In the more general case of rational-valued (A,b), Lemma 4
would not hold. Linear complexity of the reduction could probably be
maintained under some additional assumptions, such as prior bounds
on the sizes of coordinates of the vertices of P .

it is assumed that bi ≥ 0 (if not, multiply the equation
by −1). Further, the terms with negative coefficients are
moved to the right-hand side, such that both sides have
only non-negative terms. Thus, (6) is rewritten as

a+i1x1 + · · ·+ a+inxn = a−i1x1 + · · ·+ a−inxn + bi (7)

where a+ij ≥ 0, a−ij ≥ 0, aij = a+ij−a−ij . We assume w.l.o.g.

that a+i1 + · · ·+ a+in 6= 0 and a−i1 + · · ·+ a−in + bi 6= 0.
The following lemmas give some bounds that will be

needed in the encoding algorithm.

Lemma 3. For every matrix A ∈ R
n×n with columns aj ,

|detA| ≤
n
∏

j=1

‖aj‖2 ≤
n
∏

j=1

‖aj‖1.

Proof: The first inequality is well-known as
Hadamard’s inequality. The second inequality holds be-
cause ‖a‖2 ≤ ‖a‖1 for every a ∈ R

n.

Lemma 4. Let b 6= 0. Let (x1, . . . , xn) be a vertex of P .
Then for each j we have xj = 0 or M−1 ≤ xj ≤ M where

M =
n+1
∏

j=1

m
∑

i=1

|āij |. (8)

Proof: It is well-known from the theory of linear
programming that every vertex x of P is a solution of
a system A′x′ = b′, where x′ = (x′

1, x
′
2, . . .) are the non-

zero components of x, A′ is a non-singular submatrix
of A, and b′ is a subvector of b. By Cramer’s rule,

x′
j =

detA′
j

detA′ (9)

where A′
j denotes A′ with the j-th column replaced

by b′. Lemma 3 implies | detA′
j |, | detA

′| ≤ M .

Lemma 5. Let P be bounded. Then for every x ∈ P , each
side of equation (7) is not greater than

N = M
m

max
i=1

n
∑

j=1

|aij |. (10)

Proof: Since every point (x1, . . . , xn) of P is a convex
combination of vertices of P , we have xj ≤ M for each j.
Hence, a+i1x1 + · · · + a+inxn ≤ M(|ai1| + · · · + |ain|) ≤ N
for each i.

4 ENCODING A POLYTOPE

In this section, we prove Theorem 1 by constructing, in
linear time, a min-sum problem (V,E,K,g) with costs
g ∈ {0, 1}I such that the input polyhedron P is a scaled
coordinate-erasing projection of Λ∗(g). We assume that
P is bounded, i.e., a polytope2.

2. If the input polytope is in the general form {x ∈ R
n | Ax ≤ b },

it can be transformed to the form (4) by adding slack variables and
translating.

3

4.1 Elementary constructions

The output min-sum problem will be constructed from
small building blocks, which implement certain simple
operations on unary pseudomarginals. We call these
blocks elementary constructions. An elementary construc-
tion is a min-sum problem with |K| = 3 labels, zero
unary costs gu(k) = 0, binary costs guv(k, ℓ) ∈ {0, 1}, and
optimal value minµ∈Λ〈g,µ〉 = 0. It follows that µ ∈ Λ is
optimal to the LP relaxation if and only if

guv(k, ℓ)µuv(k, ℓ) = 0, {u, v} ∈ E; k, ℓ ∈ K. (11)

We will define elementary constructions by diagrams
such as in Figure 1, in which we draw only edges
with costs guv(k, ℓ) = 1. Edges with costs guv(k, ℓ) = 0
are not drawn. We will use the following elementary
constructions (see Figure 2):

COPY enforces equality of two unary pseudomarginals
a, d in two objects while imposing no other constraints
on b, c, e, f . Precisely, given any feasible unary pseudo-
marginals a, b, c, d, e, f , there exist feasible binary pseu-
domarginals satisfying (11) if and only if a = d.

ADDITION adds two unary pseudomarginals a, b in one
object and represents the result as a unary pseudo-
marginal c = a+b in another object. No other constraints
are imposed on the remaining unary pseudomarginals.

EQUALITY enforces equality of two unary pseudo-
marginals a, b in a single object, introducing two aux-
iliary objects. No other constraints are imposed on the
remaining unary pseudomarginals. In the sequel, this
construction will be abbreviated by omitting the two
auxiliary objects and writing the equality sign between
the two nodes, as shown in Figure 2(d).

POWERS creates the sequence of unary pseudomarginals
with values 2ia for i = 0, . . . , d, each in a separate object.
We call d the depth of the pyramid.

NEGPOWERS is similar to POWERS but constructs values
2−i for i = 0, . . . , d.

Figure 3 shows an example of how the elementary con-
structions can be combined. The edge colors distinguish
different elementary constructions. By summing selected
bits from NEGPOWERS, the number 5

8 is constructed. The
example can be easily generalized to construct the value
2−dk for any d, k ∈ N such that 2−dk ≤ 1.

4.2 The algorithm

Now we are ready to describe the encoding algorithm.
The input of the algorithm is a set of equalities (7).
Its output will be a min-sum problem (V,E,K,g) with
|K| = 3 labels and costs gu(k) = 0, guv(k, ℓ) ∈ {0, 1}. We
will number labels and objects by integers, K = {1, 2, 3}
and V = {1, . . . , |V |}.

The algorithm is initialized as follows:

1.1. For each variable xj in (4), introduce a new object j
into V . The variable xj will be represented (up to
scale) by pseudomarginal µj(1).

a b c

d e f

(a) COPY

a

c

b

(b) ADDITION

a b

(c) EQUALITY

a = b

(d) its shorthand

a =

=

=

=

2a

4a

8a

(e) POWERS

1

=

=

=

1/2

1/4

1/8

(f) NEGPOWERS

Fig. 2. Elementary constructions.

1

=

=

=

1/2

1/4

1/8

5/8

1/8 1/2

Fig. 3. Construction of the number 5
8 .

1.2. For each such object j, build POWERS to the depth
dj = ⌊log2 maxmi=1 |aij |⌋ based on label 1. This yields
the sequence of numbers 2iµj(1) for i = 0, . . . , dj .

1.3. Build NEGPOWERS to the depth d = ⌈log2 N⌉.

Then the algorithm proceeds by encoding each equa-
tion (7). The i-th equation is encoded as follows:

2.1. Construct pseudomarginals with non-zero values
|aij |xj , j = 1, . . . , n, by summing selected values
from POWERS built in Step 1.2, similarly as in
Figure 3. Note that the depths dj are large enough
to make this possible.

2.2. Construct a pseudomarginal with value 2−dbi by
summing selected bits from NEGPOWERS built in

4

Step 1.3, similarly as in Figure 3. The value 2−dbi
represents bi, which sets the scale (mentioned in
Theorem 1) between the input and output polytope
to 2−d. Note, the depth d is large enough to ensure
that all pseudomarginals are bounded by 1.

2.3. Sum all the terms on each side of the equation by
repetitively applying ADDITION and COPY.

2.4. Apply COPY to enforce equality of the two sides of
the equation.

Figure 4 shows the output min-sum problem for an
example polytope P . By construction, the resulting min-
sum problem encodes the input polytope as follows:

• If P = ∅ then minµ∈Λ〈g,µ〉 > 0.
• If P 6= ∅ then minµ∈Λ〈g,µ〉 = 0 and

P = π(Λ∗(g)) (12)

where π: RI → R
n is the scaled coordinate-erasing

projection given by π(µ) = 2d(µ1(1), . . . , µn(1)).

Let us make some remarks on this construction. The
output min-sum problem has costs g ∈ {0, 1}I but we
could clearly use g ∈ {0,∞}I without affecting the
result. The min-sum problem with costs in {0,∞} is
well-known as the constraint satisfaction problem (CSP).
An instance of CSP is arc consistent [1] if

min
ℓ∈K

guv(k, ℓ) = gu(k), u ∈ V, v ∈ Nu, k ∈ K. (13)

Our constructed min-sum problem is arc consistent.

Solving the LP relaxation of the problem (V,E,K,g)
decides whether P 6= ∅ and if so, it finds x ∈ P . But this
in fact means it solves the system {Ax = b, x ≥ 0 }.
Thus, we have the following side-result.

Theorem 6. Solving any system of linear inequalities re-
duces in linear time to the LP relaxation of an arc consis-
tent min-sum problem with 3 labels and costs in {0,∞}.

4.3 The complexity of encoding

Let us show that the running time of the algorithm
in §4.2 is linear in the size of P , i.e., in the size of
the matrix (5). It is usual (see e.g. [10]) to define the
description size of a matrix as the number of bits needed
to encode all its entries in binary. Since an integer a ∈ Z

needs at least log2(|a|+ 1) bits to encode, the number

L1 =

n+1
∑

j=1

m
∑

i=1

log2(|āij |+ 1) (14)

is a lower bound on the size of Ā. Now it suffices to
show that the running time is O(L1) because then it will
clearly be linear also in the true size of P .

Note that zero entries āij = 0 do not contribute to L1.
Thus L1 is a lower bound on a sparse representation of Ā,
in which only non-zero entries are stored.

The running time of the algorithm is obviously3 linear
in |E|. Object pairs are created only when an object is
created and the number of object pairs added with one
object is bounded by a constant, hence |E| = O(|V |). So
it suffices to show that |V | = O(L1).

On initialization, the algorithm creates
∑n

j=1(dj + 1)
objects in Step 1.2 and d+1 objects in Step 1.3. It is easy
to verify that both these numbers are O(L1). To show
that d+1 = O(L1), one needs to show (referring to (10))
that log2 M = O(L1) and log2 maxi

∑

j |aij | = O(L1).
For illustration, we only prove log2 M = O(L1) and

leave the rest up to the reader. For every j, we have

m
∑

i=1

|āij | ≤
m
∏

i=1

(|āij |+ 1)

because multiplying out the left-hand side yields the
right-hand side plus additional non-negative terms. Tak-
ing logarithm and summing over j yields

log2 M =

n+1
∑

j=1

log2

m
∑

i=1

|āij | ≤
n+1
∑

j=1

m
∑

i=1

log2(|āij |+ 1) = L1.

Finally, encoding one equality (7) adds at most as
many objects as there are bits in the binary represen-
tation of all its coefficients. Thus, the number of objects
added to encode all equalities (7) is O(L1).

5 ENCODING A LINEAR PROGRAM

We now show how to reduce any linear program to
linear optimization over a local marginal polytope. By
saying that problem A can be reduced to problem B
we mean there is an oracle to solve problem B which
takes constant time and which can be called (possibly
repeatedly) to solve problem A (this is known as Turing
reduction [15]).

We assume the input linear program in the form

P ∗(c) = argmin
x∈P

〈c,x〉 (15)

where c = (c1, . . . , cn) ∈ Z
n. Since the encoding in §4

can be applied only to a bounded polyhedron but the
LP (15) can be unbounded, we first need a lemma.

Lemma 7. Every linear program can be reduced in linear
time to a linear program over a bounded polyhedron.

Proof: Denote H(α) = {x ∈ R
n | 〈1,x〉 ≤ α }. By

Lemma 4, all vertices of P are contained in the halfspace
H(nM). Clearly,

min
x∈P∩H(nM)

〈c,x〉 ≥ min
x∈P∩H(2nM)

〈c,x〉. (16)

Each side of (16) is a linear program over a bounded
polyhedron. Inequality (16) is tight if and only if (15)

3. The only thing that may not be obvious is how to multiply large
integers a, b in linear time. But this issue can be avoided by instead
computing p(a, b) = 2⌈log2 a⌉+⌈log2 b⌉, which can be done in linear
time using bitwise operations. Since ab ≤ p(a, b) ≤ (2a)(2b), the
bounds like M become larger but this does not affect the overall
complexity.

5

1

1/2

1/28

1/29
1/29

1/283/29

x

x+2y+2z

2y+2z

2y+2z

2y

2z

2y 2z

y zx

y

2y

3y

3y

3y+1/29

1/29

=

=

=

= =

=

=

=

Fig. 4. The output min-sum problem for the polytope P = { (x, y, z) | x+ 2y + 2z = 3; −x+ 3y = −1; x, y, z ≥ 0 }.

is bounded, in which case (16) has the same optimum
as (15). The linear programs (16) are infeasible if and
only if (15) is infeasible.

The description size of numbers nM and 2nM is
O(L1), thus the reduction is done in linear time.

By Lemma 7, we further assume that P is bounded.
We also assume that P 6= ∅ because P = ∅ is indicated
by minµ∈Λ〈g

′,µ〉 > 0.
By Theorem 1, optimizing a linear function over P can

be reduced in linear time to optimizing a linear function
over a face of Λ. Given an oracle to optimize a linear
function over Λ, it may seem unclear how to optimize
a linear function over a face of Λ. This can be done by
setting non-zero binary costs to a large constant.

Precisely, let (V,E,K,g′) be the min-sum problem that

encodes P , constructed in §4. Define g ∈ R
I

by

gi(k) =

{

ci if k = 1 and i ∈ {1, . . . , n},

0 otherwise,
(17a)

gij(k, ℓ) =

{

0 if g′ij(k, ℓ) = 0,

g∞ if g′ij(k, ℓ) = 1.
(17b)

By (17a), we have 〈g,µ〉 = 〈c, π(µ)〉 for every µ. The
constant g∞ in (17b) is large enough to ensure that every
µ ∈ Λ∗(g) satisfies (11). It follows that

P ∗(c) = π(Λ∗(g)). (18)

It remains to choose g∞. The situation is different
depending on whether or not we are allowed to use

infinite costs. If infinite costs are allowed, we simply set
g∞ = ∞. This proves Theorem 2.

If infinite costs are not allowed, g∞ must be large
enough but finite. Unfortunately, manipulation with
these large numbers increases the complexity of the
reduction. This is given by Theorem 9. To prove it,
we first need a lemma, which refines Lemma 4 for the
special case of the local marginal polytope.

Lemma 8. Let µ ∈ R
I be a vertex of the local marginal

polytope defined by (V,E,K) with |K| = 3. Then each
component µ of µ satisfies µ = 0 or µ ≥ M−1

Λ where

MΛ = 2|V |+6|E|. (19)

Proof: Write the local marginal polytope in the
form (4), i.e., constraints (2) read Ax = b. Matrix A

has |V |+ 6|E| rows and 3|V |+ 9|E| columns. Each row
of matrix [A |b] has exactly 4 non-zeros, each of them
in {−1, 1}. By Hadamard’s inequality, in (9) we have
| detA′

j |, | detA
′| ≤ MΛ.

Theorem 9. Every linear program (15) can be reduced
to a linear optimization (allowing only finite costs) over
a local marginal polytope with 3 labels. The size of the
output and the reduction time are O(L1(L1 + L2)) where
L2 is the description size of c.

Proof: Choose g∞ = 1 +MΛ(C2 − C1) where

C1 =
n
∑

i=1

min{0, ci}, C2 =
n
∑

i=1

max{0, ci}.

6

We show that now every µ ∈ Λ∗(g) satisfies (11). It
suffices to show this only for vertices of Λ∗(g) because
taking convex combinations of vertices preserves (11).

Since µ ∈ [0, 1]I , the contribution of the unary terms
to 〈g,µ〉 is in the interval [C1, C2]. Since P 6= ∅, we have
minµ∈Λ〈g

′,µ〉 = 0 and therefore minµ∈Λ〈g,µ〉 ≤ C2.
Suppose there is a vertex µ of Λ∗(g) and a label pair

{(u, k), (v, ℓ)} such that guv(k, ℓ) = g∞ and µuv(k, ℓ) > 0.
By Lemma 8, we have µuv(k, ℓ) ≥ M−1

Λ . Thus

min
µ∈Λ

〈g,µ〉 ≥ g∞M−1
Λ + C1 > C2

which is a contradiction.
Let us prove the claimed complexity. The binary length

of g∞ is O(L1 + L2). It occurs in g at O(L1) positions,
thus the binary length of g is O(L1(L1 + L2)).

6 REDUCTION TO PLANAR MIN-SUM

In this section, we show that the reduction can be done
even if we require the graph (V,E) of the output min-
sum problem to be planar. For that, it suffices to modify
the construction in §4.2 to ensure that (V,E) is planar.

Consider a drawing of the graph (V,E) in the plane, in
which vertices are distinct points and edges are straight
line segments connecting the vertices. We assume w.l.o.g.
that no three edges intersect at a common point, except
at graph vertices.

The main idea is to replace every edge crossing
with an equivalent planar min-sum problem. Consider
a pair {u, z}, {v, w} ∈ E of crossing edges, as shown
in Figure 5(a). This pair is replaced by a construction
in Figure 5(b). The cost functions guu′ = gvv′ copy
unary pseudomarginals, i.e., they enforce µu = µu′ and
µv = µv′ . The other cost functions are set as gu′′z = guz
and gv′′w = gvw. Problem H is a planar min-sum problem
that enforces unary pseudomarginals in objects u′, u′′

and v′, v′′ to be equal, µu′ = µu′′ and µv′ = µv′′ . This
problem can be drawn arbitrarily small so that it is not
intersected by any other edges.

Figure 6 shows how the planar min-sum problem H
can be designed. We work with halves of unary pseudo-
marginals, the first two from each object. The order of
unary pseudomarginals is changed by swapping neigh-
bors, imitating bubble sort on four elements.

Recall that the (non-planar) min-sum problem con-
structed in §4.2 has E = O(L1) object pairs. Thus, there
are O(L2

1) edge crossings in this problem, which yields
a reduction to a planar min-sum problem (allowing
infinite costs) done in time O(L2

1 + L2).
It turns out that a more careful strategy of drawing the

graph decreases the bound on edge crossings to O(mL1).
Before proving this in Theorem 11, we need a lemma.

Suppose we are given numbers α1, . . . , αp and sets
I1, . . . , Iq ⊆ {1, . . . , p} and we want to compute numbers
βj =

∑

i∈Ij
αi, j = 1 . . . , q. The j-th sum is constructed

using a binary tree, Tj , in which every non-leaf vertex is
the sum of its children (i.e., every non-leaf vertex with
two children is ADDITION and every edge is COPY, as

u v

zw

(a)

u v

w z

Hu′
v′

v′′
u′′

(b)

Fig. 5. Eliminating an edge crossing.

= = = =

a b c x y z

= =

a/2 b/2 x/2 y/2b/2a/2 y/2x/2

b/2 x/2

a/2 a/2 b/2 b/2x/2 x/2 y/2 y/2

a/2 x/2 b/2 y/2

= = = =x/2 a/2 y/2 b/2a/2x/2 b/2y/2

a/2 y/2

= = = =x/2 y/2 a/2 b/2y/2x/2 b/2a/2

x y z a b c

= =

u′ v′

v′′ u′′

Fig. 6. Planar edge crossing using 3 labels.

in Figure 3). The leaves of Tj are αi, i ∈ Ij , and its root
is βj . We refer to this construction as SUMTREES.

Lemma 10. Let SUMTREES be drawn such that the leaves
α1, . . . , αp lie on a common horizontal line and their
positions on the line are given, and the roots β1, . . . , βq

lie on a different horizontal line and their positions on
the line can be arbitrary. Under this constraint, SUMTREES

can be drawn with O(q
∑q

j=1 |Ij |) edge crossings.

Proof: The construction is drawn as follows (see
Figure 7(a)). Each tree is drawn without edge crossings.
In each tree Tj , all the leaves αi, i ∈ Ij , have the same
distance (i.e., the number of edges) to the root βj . Let the
height of a tree vertex be defined as its distance to the
nearest leaf. The vertical coordinate of every non-root
vertex is equal to its height. All the roots β1, . . . , βq have
the same vertical coordinate h = ⌈log2 maxqj=1 |Ij |⌉.

Let us focus on tree T1. It is built in the bottom-
up manner. All non-leaf vertices with the same height
have two children except the right-most one, which

7

α1 α2 α3 α4 α5 α6

β1 β2

(a)

k

k+1
u v w

XwXvXu

(b)

Fig. 7. (a) A drawing of SUMTREES for p = 6, q = 2,
I1 = {1, 3, 4, 5}, I2 = {2, 3, 4, 5, 6}. (b) Crossing edges
between two layers.

can have only one child. The horizontal coordinate of
a vertex equals the horizontal coordinate of its second
child; if there is only one child, it equals the horizontal
coordinate of this child. When a layer containing only
one vertex has been drawn and its height is less than h,
the vertex is linked by a single vertical edge with the
layer of height h (thus, this edge can jump over several
layers), where it forms the root β1. Clearly, adding this
vertical edge does not affect the overall complexity.

The trees T2, . . . , Tq are drawn similarly. The only
difference is that all non-leaf vertices are shifted to the
left by a small offset, to ensure that the non-leaf vertices
of all the trees are distinct.

We will show that the number of edge crossings
between two trees Ti and Tj is O(|Ii| + |Ij |). Consider
all vertices with heights k and k + 1 (see Figure 7(b)).
For a vertex u with height k + 1, let Xu ⊂ R denote the
smallest interval containing the horizontal coordinates
of u and its children. Edges going down from u and v
to height k can cross each other only if the intervals Xu

and Xv intersect. Note that if u and v belong to the same
tree, then Xu and Xv are disjoint.

Let qi,k and qj,k be the number of vertices with height k
of Ti and Tj , respectively. The number of pairs of inter-
secting intervals is O(qi,k+qj,k). To see this, observe that
if an interval is included in another, then it appears only
in one intersecting pair. If all such included intervals are
discarded, each interval intersects at most two others.
Thus the number of intersections is O(qi,k + qj,k).

It follows that the number of edge crossings between
Ti and Tj is O(|Ti|+ |Tj |), where |T | denotes the number
of vertices of tree T . But we have |Tj | = O(|Ij |), because
qj,k+1 = ⌈qj,k/2⌉ for every j, k (recall, in every tree the
highest non-root layer with a single node is linked with
the root layer by a single edge).

The total number of crossings in the whole SUMTREES

graph is
∑

1≤i 6=j≤q O(|Ii|+ |Ij |) = O(q
∑q

j=1 |Ij |).

Theorem 11. Every linear program can be reduced in
O(mL1 + L2) time to a linear optimization (allowing
infinite costs) over a local marginal polytope with 3 labels
over a planar graph.

Proof: It suffices to show how to draw, in the al-

gorithm from §4.2, the graph (V,E) with O(mL1) edge
crossings. We show this in the rest of the proof.

We start by drawing POWERS for variable x1 hori-
zontally. Then we draw SUMTREES over the objects of
POWERS, with roots being non-zero numbers |ai1|x1,
i = 1, . . . ,m. The i-th tree has O(log2(|ai1| + 1)) leaves,
therefore, by Lemma 10, this SUMTREES construction has
O(m

∑m

i=1 log2(|ai1|+ 1)) edge crossings.
This is repeated for the remaining variables x2, . . . xn,

resulting in n independent SUMTREES constructions. The
numbers 2−dbi, i = 1, . . . ,m, are constructed similarly,
by drawing SUMTREES over NEGPOWERS. The total
number of edge crossings is

O
(

n
∑

j=1

m
m
∑

i=1

log2(|aij |+1)+m
m
∑

i=1

log2(|bi|+1)
)

=O(mL1).

At this stage, we have objects representing all non-zero
numbers |aij |xj and 2−dbi. We assume that the vertical
positions of all SUMTREES were such that all these
objects lie on a single horizontal line. Now we proceed
to sum the terms of each side of each equality (7). This
is done by drawing SUMTREES over these objects, with
2m roots being the left-hand and right-hand sides of all
equalities (7). The tree associated with any side of the i-
th equality (7) has O(ni) leaves, where ni is the number
of non-zeros in the i-th row of A. Therefore, the number
of edge crossings is O(m

∑m

i=1 ni) = O(mL1).
At this stage, all objects representing both sides of all

equalities (7) lie on a common horizontal line. It remains
to join corresponding left- and right-hand sides using
COPY. This creates O(m2) ⊆ O(mL1) edge crossings.

7 CONSEQUENCES

Let us discuss some consequences of our results.
Most importantly, our results show that solving the

LP relaxation of the min-sum problem is comparably
hard as solving any LP. This is straightforward if infinite
costs are allowed. Then, by Theorem 2, the reduction
is done in time O(L) where L = L1 + L2, while the
best known algorithm [10] for general LP has time
complexity4 O(n3.5L2 logL log logL). Finding a very fast
algorithm, such as O(L2 logL), to solve the LP relaxation
would imply improving the best-known complexity of
LP, which is unlikely.

The cases in which the reduction time is polynomial
but higher than linear (Theorems 11 and 9) still impose a
restriction on possible search for an efficient algorithm to
solve the LP relaxation. There are not many principles
how to solve the general LP in polynomial time (one
is the ellipsoid algorithm), and finding a new such
principle is expected to be difficult. Therefore, we should
restrict our search to modifying these known principles
rather than to discovering a new principle.

4. Note, Karmarkar [10] assumes full encoding of the LP matrix but
we allow sparse encoding (see §4.3). To the best of our knowledge, the
complexity of solving sparse LPs is largely open [16].

8

Our results make more precise the known observation
that the LP relaxation of the min-sum problem is easier
for 2 labels than for the general case. It is known that for
2 labels the LP relaxation reduces in linear time to max-
flow [3], [17] and the local marginal polytope has half-
integral vertices [11], [23]. For 3 labels, the coordinates
of the vertices of local marginal polytopes can have
much more general values, as shown in §4.1. Moreover,
there is not much difference in complexity between the
LP relaxation for 3 labels and for more than 3 labels
(allowing infinite costs) because, by Theorem 2, the latter
can be reduced to the former in linear time.

Rather than solving directly the LP relaxation (3), it is
often more desirable to solve its dual. The dual seeks to
maximize a lower bound on (1) by reparameterizations.
One class of algorithms to tackle this dual LP converges
only to its local minimum, characterized by arc con-
sistency. This class includes popular message passing
algorithms [23], [11], [7] and the algorithms [14], [23,
§VII], [5]. Theorem 6 has an interesting consequence.
Suppose we are given a fixed point of say min-sum
diffusion [23] and want to decide whether it is (globally)
optimal to the dual LP relaxation and if so, find an
optimal solution to the primal LP (3). This problem is
equivalent to the LP relaxation of an arc consistent min-
sum problem with costs in {0,∞}, therefore it is as hard
as solving the general system of linear inequalities.

Acknowledgment

Both authors were supported by the Czech Science Foun-
dation grant P202/12/2071. Besides, TW was supported
by the European Comission grant FP7-ICT-270138.

REFERENCES

[1] Christian Bessiere. Constraint propagation. In Handbook of
Constraint Programming, chapter 3. Elsevier, 2006.

[2] Louis J. Billera and A. Sarangarajan. All 0-1 polytopes are
traveling salesman polytopes. Combinatorica, 16(2):175–188, 1996.

[3] Endre Boros and Peter L. Hammer. Pseudo-Boolean optimization.
Discrete Applied Mathematics, 123(1-3):155–225, 2002.

[4] Chandra Chekuri, Sanjeev Khanna, Joseph Naor, and Leonid
Zosin. Approximation algorithms for the metric labeling problem
via a new linear programming formulation. In Symp. on Discrete
Algorithms, 2001.

[5] M. C. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki,
and T. Werner. Soft arc consistency revisited. Artificial Intelligence,
174(7-8):449–478, 2010.

[6] Jesús A. De Loera and Shmuel Onn. All linear and integer
programs are slim 3-way transportation programs. SIAM J. on
Optimization, 17(3):806–821, 2006.

[7] Amir Globerson and Tommi Jaakkola. Fixing max-product: Con-
vergent message passing algorithms for MAP LP-relaxations. In
Conf. on Neural Information Processing Systems, 2008.

[8] Jason K. Johnson, Dmitry M. Malioutov, and Alan S. Willsky.
Lagrangian relaxation for MAP estimation in graphical models.
In Allerton Conf. on Communication, Control and Computing, 2007.

[9] Jörg H. Kappes, Bjoern Andres, Fred A. Hamprecht, Christoph
Schnörr, Sebastian Nowozin, Dhruv Batra, Sungwoong Kim, Bern-
hard X. Kausler, Jan Lellmann, Nikos Komodakis, and Carsten
Rother. A comparative study of modern inference techniques for
discrete energy minimization problem. In Conf. on Computer Vision
and Pattern Recognition, 2013.

[10] Narendra Karmarkar. A new polynomial-time algorithm for linear
programming. In ACM Symp. Theory of Computing, 1984.

[11] Vladimir Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization. IEEE Trans. Pattern Analysis and
Machine Intelligence, 28(10):1568–1583, 2006.

[12] Nikos Komodakis, Nikos Paragios, and Georgios Tziritas. MRF
energy minimization and beyond via dual decomposition. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 33(3):531–552,
2011.

[13] Arie Koster, Stan P.M. van Hoesel, and Antoon W.J. Kolen. The
partial constraint satisfaction problem: Facets and lifting theo-
rems. Operations Research Letters, 23(3–5):89–97, 1998.

[14] V. K. Koval and Michail I. Schlesinger. Dvumernoe program-
mirovanie v zadachakh analiza izobrazheniy (Two-dimensional
programming in image analysis problems). USSR Academy of
Science, Automatics and Telemechanics, 8:149–168, 1976. In Russian.

[15] Christos M. Papadimitriou. Computational complexity. Addison-
Wesley, 1994.

[16] Panos M. Pardalos and Stephen A. Vavasis. Open questions in
complexity theory for numerical optimization. Math. Program.,
57:337–339, 1992.

[17] Carsten Rother, Vladimir Kolmogorov, Victor S. Lempitsky, and
Martin Szummer. Optimizing binary MRFs via extended roof
duality. In Conf. on Computer Vision and Pattern Recognition, 2007.

[18] Michail I. Shlezinger. Syntactic analysis of two-dimensional visual
signals in noisy conditions. Cybernetics and Systems Analysis,
12(4):612–628, 1976.

[19] David Sontag, Amir Globerson, and Tommi Jaakkola. Introduc-
tion to dual decomposition for inference. In Optimization for
Machine Learning. MIT Press, 2011.

[20] Johan Thapper and Stanislav Živný. The power of linear program-
ming for valued CSPs. In Symp. Foundations of Computer Science.
IEEE, 2012.

[21] Stanislav Živný. The Complexity of Valued Constraint Satisfaction
Problems. Cognitive Technologies. Springer, 2012.

[22] Martin J. Wainwright and Michael I. Jordan. Graphical models,
exponential families, and variational inference. Foundations and
Trends in Machine Learning, 1(1-2):1–305, 2008.

[23] Tomáš Werner. A linear programming approach to max-sum
problem: A review. IEEE Trans. Pattern Analysis and Machine
Intelligence, 29(7):1165–1179, 2007.

Daniel Průša received his PhD degree at
Charles University in Prague, in 2005. In 1999-
2010, he worked as a software engineer in Sun
Microsystems. Since 2010, he works as a re-
searcher at the Center for Machine Perception
at the Czech Technical University in Prague.
His interests include computational complexity,
theory of formal languages, and optimization.

Tomáš Werner received his PhD degree at the
Czech Technical University in Prague, in 1999.
Since then, he worked as a researcher at the
Center for Machine Perception at the same uni-
versity. The years 2000-2001 he spent as a
postdoc in the Visual Geometry Group at the
Oxford University, U.K. His interests include mul-
tiple view geometry, graphical models, constraint
satisfaction, and optimization.

1

Marginal Consistency: Upper-Bounding Partition
Functions over Commutative Semirings

Tomáš Werner

Abstract—Many inference tasks in pattern recognition and artificial intelligence lead to partition functions in which addition and

multiplication are abstract binary operations forming a commutative semiring. By generalizing max-sum diffusion (one of convergent

message passing algorithms for approximate MAP inference in graphical models), we propose an iterative algorithm to upper bound

such partition functions over commutative semirings. The iteration of the algorithm is remarkably simple: change any two factors of

the partition function such that their product remains the same and their overlapping marginals become equal. In many commutative

semirings, repeating this iteration for different pairs of factors converges to a fixed point when the overlapping marginals of every

pair of factors coincide. We call this state marginal consistency. During that, an upper bound on the partition function monotonically

decreases. This abstract algorithm unifies several existing algorithms, including max-sum diffusion and basic costraint propagation (or

local consistency) algorithms in constraint programming. We further construct a hierarchy of marginal consistencies of increasingly

higher levels and show than any such level can be enforced by adding identity factors of higher arity (order). Finally, we discuss

instances of the framework for several semirings, including the distributive lattice and the max-sum and sum-product semirings.

Index Terms—partition function, commutative semiring, graphical model, Markov random field, linear programming relaxation,

message passing, max-sum diffusion, soft constraint satisfaction, local consistency, constraint propagation

✦

1 INTRODUCTION

A partially separable function is the product
∏

A∈E fA(xA)
where E ⊆ 2V is a hypergraph and each factor fA is a
function of variables xA = (xi)i∈A. The sum of the values
of this function over all the variables xV = (xi)i∈V is the
partition function

∑

xV

∏

A∈E

fA(xA). (1)

E.g., for V = {1, 2, 3, 4} and E = {{1, 3, 4}, {1, 2}, {2, 3}}
the partition function is the number

∑

x1,x2,x3,x4

f134(x1, x3, x4)× f12(x1, x2)× f23(x2, x3)

where we abbreviated f{1,3,4} by f134, etc.
It is known [1], [59], [7], [6], [35], [52] that many

inference tasks in pattern recognition and artificial in-
telligence lead to expressions of the form (1) where
+ and × are not the ordinary arithmetic operations
but abstract binary operations on some set S such that
both operations are associative and commutative and
× distributes over +. Such a structure (S,+,×) is known
as the commutative semiring [26], [24].

The simplest instance is obtained for the or-and semir-
ing ({0, 1},max,min). Here the semiring operations have
the meaning of logical disjunction and conjunction and
(1) is the decision problem asking whether there is a con-
figuration satisfying all the predicates fA. This problem
is known in computer vision and pattern recognition as

• The author is with the Department of Cybernetics, Czech Technical
University, Karlovo náměstı́ 13, 12135 Praha, Czech Republic.

the consistent labeling problem [27], [28] and in artificial
intelligence and constraint programming [55] as the
constraint satisfaction problem (CSP) [45], [20]. The latter
name is more widely used today. Here, the factors fA are
usually called constraints and the collection fA, A ∈ E, a
network of constraints.

The ordinary ‘crisp’ CSP has been generalized to
handle ‘soft’ constraints, which can be partially satisfied
rather than completely satisfied or completely violated
[48]. This leads to optimization problems. One important
such formulation is obtained for the max-min semiring
([0, 1],max,min). This problem was first proposed in [54]
but it is more widely known as the fuzzy CSP [17].
Another important formulation is obtained for the max-
sum semirings (R,max,+) and (R∪{−∞},max,+) where
+ is the ordinary addition. In computer vision and
pattern recognition, this problem has been called a two-
dimensional grammar [61], [58], discrete energy min-
imization [8], [66], [33], MAP inference in graphical
models [69], or the max-sum labeling problem [72]. In
constraint programming, it has been called the partial
[40], weighted [48] or valued [68] CSP. Several other soft
CSP formulations exist [48], [5].

Two abstract frameworks have been proposed in con-
straint programming to unify various formulations of
soft CSPs, [56] and [7], [6]. The latter is strictly more
general than the former [5] and closely related to our
formulation. The main difference to our formulation is
that [56], [7], [6] assume that the semiring addition is
idempotent (a + a = a for all a ∈ S) because otherwise
(1) might no longer be an optimization problem (such as
if it is the ordinary partition function).

For the max-sum semiring, a class of approaches to

2

problem (1) is based on linear programming relaxation
[61], [72], [40], [69], [37], [10], [67] or, equivalently, dual
decomposition [32], [39], [64]. To solve this LP relaxation,
convergent message-passing algorithms have been pro-
posed [41], [37], [32], [23], [47], [64] that monotonically
decrease a convex upper bound on (1) by minimizations
over blocks of variables. These algorithms are closely
related to one another: they converge in infinite time to
a fixed point, which is a local (with respect to block-
coordinate moves) optimum of the relaxation. The sim-
plest and oldest of them is max-sum diffusion, proposed
in 1970’s for purely unary constraints but never pub-
lished [41], and recently revisited in [72], [74].

Convergent message passing algorithms repeat a
simple local operation which propagates information
through the network and monotonically decreases some
quantity. In this respect, they resemble local consistency
(or constraint propagation) algorithms [50], [15], [4], used
in constraint programming to prune the search space of
the CSP. The most widely known local consistency is arc
consistency [46], [4, §4]. In computer vision, an algorithm
equivalent to enforcing arc consistency was proposed
by Waltz [70] and revisited by Rosenfeld et al. [54],
who called it discrete relaxation labeling. Unlike message
passing algorithms, local consistency algorithms in CSP
converge in polynomial time, so they can be easily
maintained during search.

In constraint programming, the question appeared
whether local consistency algorithms can be extended
from the ordinary CSP to soft CSPs. This turns out
to be straightforward for soft CSPs with idempotent
semiring multiplication (a × a = a for all a ∈ S), such
as in the max-min semiring. The resulting algorithms
are polynomial and their fixed point does not depend
on the order of updates [54], [56], [7], [5], [6]. However,
for non-idempotent semiring multiplication (such as in
the max-sum semiring), no finite network algorithm
has been found that would naturally generalize classi-
cal local consistency algorithms [56], [7], [5], [6], [12].
Motivated primarily by efficiency in branch-and-bound
search, several finite algorithms have been proposed
[13] but they provide weaker bounds than convergent
message-passing algorithms.

Contribution. In this paper, we show that max-sum
diffusion can be naturally generalized to the abstract
commutative semiring. The update of the resulting al-
gorithm is remarkably simple:

Change two factors fA and fB such that the function
fA × fB is preserved and the overlapping marginals of
fA and fB become equal,

i.e., change fA and fB such that fA(xA)× fB(xB) is pre-
served for all xA∪B and

∑

xA\B
fA(xA) =

∑

xB\A
fB(xB)

for all xA∩B . In many semirings, repeating this operation
for different pairs of factors converges to a fixed point.
This results in the observation that has never before been
clearly formulated:

In many commutative semirings, every partially separa-
ble function can be reparameterized by local operations
to a state when the overlapping marginals of each pair
of factors coincide.

We call this state marginal consistency and the algorithm
enforcing marginal consistency. This terminology agrees
with that in constraint programming [4], which distin-
guishes, e.g., arc consistency (a property of a network)
and enforcing arc consistency (an algorithm to achieve
this property). Marginal consistency can be enforced in a
number of commutative semirings, including the or-and,
max-min, max-sum, and sum-product semiring. As spe-
cial cases, we obtain basic local consistency algorithms
in CSP, including arc consistency.

We further show that
∏

A∈E

∑

xA
fA(xA) is an upper

bound on the semiring partition function, with respect
to the canonical order on the semiring [26]. If the semir-
ing satisfies the Cauchy-Schwarz inequality, the upper
bound monotonically decreases during the algorithm.

For the max-sum semiring, it was observed that the
basic LP relaxation of (1) [61], [72], [40], [10], [67] can
be made tighter at the expense of more computational
effort [40], [32], [42], [38], [69], [65], [62], [63], [74]. Some
researchers proposed whole hierarchies of increasingly
tighter LP relaxations [69, §8.5], [63], [74]. This is sim-
ilar to using increasingly larger subproblems in dual
decomposition [39]. In [74], [19], we constructed such a
hierarchy by adding ‘dummy’ zero constraints of higher
arities. Zero constraints can be added incrementally dur-
ing max-sum diffusion in a dual cutting-plane fashion.
We generalize this technique to other semirings, obtain-
ing a hierarchy of marginal consistencies of increasingly
higher levels. For the or-and semiring, this hierarchy
contains (strong) k-consistency in CSP [21], [4].

Even for idempotent semiring multiplication our al-
gorithm is simpler than local consistency algorithms
proposed for soft CSPs [56], [7], [5], [6].

Our framework does not cover belief propagation (or
the sum-product algorithm) [51], [69], which computes,
in polynomial time for acyclic networks, the exact par-
tition function and marginals. This algorithm (and its
junction-tree version) can be generalized to any com-
mutative semiring [1]. This is straightforward because
its update rule uses only the operations of the sum-
product semiring. In contrast, the max-sum diffusion
update [72, §VI.A] uses not only the operations ‘max’
and ‘sum’ but also ‘minus’ and ’divide by 2’, which have
no counterparts in some semirings. Another difference
to [1] is that our algorithm does not compute marginals
even on trees, e.g., no simple way is known to extract
max-marginals from a max-sum diffusion fixed point.

2 PRELIMINARIES

In the sequel, sets are denoted by {· · ·} and ordered
tuples by (· · ·). Real closed, open and semiopen intervals
are [a, b], (a, b) and [a, b), respectively. Non-negative and
positive reals are R+ = [0,∞) and R++ = (0,∞),

3

respectively. The set of all subsets of a set A is denoted
by 2A and the set of all its k-element subsets by

(

A
k

)

.
Newly defined concepts are typed in boldface.

2.1 Commutative Semigroups and Semirings

Definition 1. A commutative semigroup is a set S
endowed with a binary operation + that is associative and
commutative. We denote a commutative semigroup by (S,+).

Definition 2. A commutative semiring is a set S endowed
with binary operations + and × such that + is associative
and commutative, × is associative and commutative, and ×
distributes over +. We denote it by (S,+,×).

A commutative semiring can be seen as two commuta-
tive semigroups, (S,+) and (S,×), coupled by distribu-
tivity. A commutative semiring may have an identity
element 1, satisfying a×1 = a for all a ∈ S. If an identity
element exists, it is unique. A commutative semiring
may have a zero element 0, satisfying a + 0 = a and
a× 0 = 0 for all a ∈ S. If it exists, it is unique.

We will usually abbreviate a×b by ab. We define an =
a× · · · × a (n-times) and na = a+ · · ·+ a (n-times).

2.2 Functions of Blocks of Variables

Let V be a finite set of variables. Each variable i ∈ V
attains states xi ∈ Xi, where Xi is a finite domain of the
variable. A joint state (configuration) of variables A ⊆ V
is an element xA of the Cartesian product XA =

∏

i∈AXi.
The order of factors in this Cartesian product is given by
some fixed total order on V (e.g., for V = {1, . . . , n} we
can take the natural arithmetic order).

In the sequel, by the symbol xA we will always
denote a joint state, i.e., the ordered tuple (xi)i∈A ∈ XA.
Moreover, we adopt the following ‘implicit restriction’
convention: for B ⊂ A, whenever symbols xA and
xB occur in the same expression then xB denotes the
restriction of xA to variables B. This convention is often
tacitly used and in fact self-evident: if, e.g., A = {1, 2, 3}
and B = {1, 2}, then xB = (x1, x2) is indeed the restriction
of xA = (x1, x2, x3) to variables {1, 2}.

For A ⊆ V , consider an S-valued function of vari-
ables A, i.e., a function XA → S. We call A the scope
of the function and |A| its arity (often called order). We
define the following two operations on such functions:

1) The combination of functions φ: XA → S and
ψ: XB → S is the function

φ× ψ: XA∪B → S, (φ× ψ)(xA∪B) = φ(xA)× ψ(xB).

2) The marginalization (also known as projection) of a
function φ: XA → S onto variables B ⊆ A (or over
variables A \B) is the function

φ|B : XB → S, φ|B(xB) =
∑

xA\B

φ(xA).

Example 1. Let A = {1, 2, 3}, B = {3, 4}, φ: XA → S,
ψ: XB → S. The combination of functions φ and ψ is the

function (φ×ψ)(x1, x2, x3, x4) = φ(x1, x2, x3)×ψ(x3, x4).
The marginalization of function φ onto variables C =
{2, 3} is the function φ|C(x2, x3) =

∑

x1
φ(x1, x2, x3).

For two functions φ, ψ: XA → S, we will write φ = ψ
to denote that φ(xA) = ψ(xA) for all xA ∈ XA.

The operators of combination and marginalization are
often explicitly used in constraint programming [7], [6],
[48]. The set of functions XA → S for all A ⊆ V endowed
with combination and marginalization is an example of
the valuation algebra [60], [35], [36], [52]. We state here
three of the axioms of the valuation algebra:

1) Combination is associative and commutative.

2) For φ: XA → S and C ⊆ B ⊆ A,

(φ|B)|C = φ|C . (2)

3) For φ: XA → S, ψ: XB → S, and A ∩B ⊆ C ⊆ A ∪B,

(φ× ψ)|C = φ|A∩C × ψ|B∩C . (3)

2.3 Semiring Partition Function

Let E ⊆ 2V be a hypergraph over V . Let each hyperedge
A ∈ E be assigned a function fA: XA → S. The partially
separable function

∏

A∈E fA: XV → S can be seen as
the combination of the functions fA and the partition
function (1) is the marginal of this function over all the
variables, thus it can be written also as

(
∏

A∈E fA
)∣

∣

∅
.

We refer to each function fA as a factor and to the
collection fA, A ∈ E, as a network of functions or
simply a network. A network can be seen as a map

f : XE → S

(A, xA) 7→ fA(xA)

where
XE = { (A, xA) | A ∈ E, xA ∈ XA }

is the set of tuples. Note the abuse of notation: Xi for
i ∈ V , XA for A ⊆ V , and XE for E ⊆ 2V denote three
different things.

3 ENFORCING MARGINAL CONSISTENCY

Here we generalize max-sum diffusion and related con-
cepts to the abstract commutative semiring.

3.1 Equivalent Networks and Reparameterizations

Definition 3. Let E,E′ ⊆ 2V . Networks f : XE → S and
f ′: XE′ → S are equivalent if

∏

A∈E fA =
∏

A∈E′ f ′A.

Note that the operation + does not appear in the
definition, thus network equivalence is defined only with
respect to the semigroup (S,×). Equivalent networks
have the same set of variables V and domains Xi,
i ∈ V , but they can have different hypergraphs and
factors. When E = E′, the networks differ only in the
values of the factors. In this case, we say that f ′ is a
reparameterization of f . Deciding whether two given

4

networks are reparameterizations of each other can be
easy or hard, depending on the semigroup (S,×).

Some reparameterizations are local, in the sense that
they are restricted only to a part of the network. The
simplest such reparameterization is restricted to a sub-
network containing only two factors, fA and fB .

Definition 4. A reparameterization of a pair {fA, fB} is
a change of fA and fB that preserves the function fA×fB . A
reparameterization of any single pair of factors of a network
is a local reparameterization of the network.

Example 2. Let A = {1, 2} and B = {2, 3}. A reparame-
terization of the pair {fA, fB} is any change of f12 and
f23 that preserves the value f12(x1, x2) × f23(x2, x3) for
all x1 ∈ X1, x2 ∈ X2, x3 ∈ X3.

Local reparameterizations allow us to traverse through
a class of equivalent networks XE → S. However, some
reparameterizations may not be compositions of local
reparameterizations. This depends on the semigroup
(S,×). In §5.1 we shall discuss properties of reparam-
eterizations for several concrete semigroups (S,×).

3.2 Enforcing Marginal Consistency of a Pair

Definition 5. A pair {fA, fB} is marginal consistent if
fA|A∩B = fB |A∩B .

Example 3. For A = {1, 2} and B = {2, 3}, fA|A∩B =
fB |A∩B reads

∑

x1
f12(x1, x2) =

∑

x3
f23(x2, x3) for all

x2 ∈ X2.

Note that marginal consistency is defined only with
respect to the semigroup (S,+), the operation × does
not appear in Definition 5.

Definition 6. Enforcing marginal consistency of a pair
{fA, fB} is a reparameterization of this pair that makes it
marginal consistent.

Enforcing marginal consistency of a pair {fA, fB}
means replacing this pair with a solution {f ′A, f ′B} to the
equation system

f ′A × f ′B = fA × fB (4a)

f ′A|A∩B = f ′B |A∩B . (4b)

In expanded form, this reads

f ′A(xA)× f ′B(xB) = fA(xA)× fB(xB) ∀xA∪B ∈ XA∪B
∑

xA\B

f ′A(xA) =
∑

xB\A

f ′B(xB) ∀xA∩B ∈ XA∩B .

Note that the system in fact breaks into several smaller
independent systems, one for each xA∩B .

As we are in the abstract commutative semiring, it is
not clear how many (if any) solutions system (4) has and
how to find them. It would be desirable to characterize
semirings in which the system is solvable and to give an
algorithm to find all its solutions in any such semiring.
We have not been able to do this.

It is easy to obtain a partial solution to (4). Using (3),
marginalizing (4a) onto variables A ∩B yields

f ′A|A∩B × f ′B |A∩B = fA|A∩B × fB |A∩B .

Substituting (4b) into this yields

(f ′A|A∩B)
2 = (f ′B |A∩B)

2 = fA|A∩B × fB |A∩B (5)

where, for a function φ, we abbreviated φ2 = φ × φ.
Similarly, marginalizing (4a) onto variables A yields

f ′A × f ′B |A∩B = fA × fB |A∩B . (6)

Equation (5) is solvable if the semiring has a square
root. The square root may not be unique, thus (5) can
have mutliple solutions. Unfortunately, having f ′B |A∩B

we may not be able to solve (6) for f ′A because the
semiring may not have division. In fact, it can happen
that (5) is solvable but (4) is not (see Example 16).

We shall see in §5 that in many semirings, system (4)
has a solution and this solution is often unique.

3.3 Marginal Consistency Algorithm

We now formulate a simple algorithm that iteratively
enforces marginal consistency of different pairs of factors
in a network f : XE → S. Let these pairs be given by
a set J ⊆ {{A,B} | A,B ∈ E } =

(

E
2

)

, which can
be seen as an undirected graph over E. The order of
updates is given by an infinite sequence ({Ak, Bk})∞k=1

of
hyperedge pairs, such that each pair {A,B} ∈ J occurs
in the sequence an infinite number of times. We call this
sequence the update schedule.

Algorithm 1 (Marginal consistency algorithm.)

for k = 1, . . . ,∞ do
Enforce marginal consistency of pair {fAk

, fBk
}.

end for

It turns out that in many commutative semirings, the
algorithm converges to a fixed point when all pairs
{fA, fB} for {A,B} ∈ J are marginal consistent. It would
be desirable to characterize commutative semirings in
which this fact holds and provide a rigorous proof. This
is difficult in full generality and we have not done it1.
We discuss convergence of the algorithm for a number
of concrete semirings in §5.

3.4 Higher Levels of Marginal Consistencies

We say that a network has marginal consistency level
J ⊆

(

E
2

)

if fA|A∩B = fB |A∩B for all {A,B} ∈ J . We now

extend this definition to levels higher than
(

E
2

)

.
Consider a collection of functions fA, A ⊆ V , i.e., a

network over the complete hypergraph 2V . We say that
this network is globally marginal consistent if fA = fV |A

1. In fact, we cannot speak about convergence yet because we
have not defined a metric or topology on the abstract commutative
semiring. Endowing a semiring with a topology has been considered
in mathematics [24], [26] but this is out of scope of our paper.

5

for all A ⊆ V . But then we have also fA|A∩B = fB |A∩B

for all A,B ⊆ V . This immediately follows from (2) be-
cause fA|A∩B = (fV |A)|A∩B = fV |A∩B = (fV |B)|A∩B =
fB |A∩B . By imposing the constraints fA|A∩B = fB |A∩B

for only a subset J ⊆ {{A,B} | A,B ⊆ V } =
(

2
V

2

)

of all possible pairs {A,B}, we obtain various levels
of marginal consistency, which are necessary (but not
sufficient) for global marginal consistency.

When we have a network over a hypergraph E ⊂ 2V

rather than E = 2V , the problem is that for some pairs
{A,B} ∈ J , the function fA or fB may not be in the
network. In that case, we require that these missing
functions exist outside of the network. This leads to the
following definitions.

Definition 7. A network f : XE → S is globally marginal
consistent if there exists a function fV : XV → S such that
fA = fV |A for every A ∈ E. Here the function fV can either
be in the network (V ∈ E) or not (V /∈ E).

Example 4. Let V = {1, 2, 3, 4} and E = {{1, 3, 4}, {1, 2},
{2, 3}}. A network f : XE → S is globally marginal
consistent if there exists a function f1234 such that f134 =
f1234|134, f12 = f1234|12, f23 = f1234|23.

Definition 8. A network f : XE → S has marginal consis-

tency level J ⊆
(

2
V

2

)

if there exist functions fA: XA → S,
A ⊆ V , A /∈ E, such that fA|A∩B = fB |A∩B for all
{A,B} ∈ J .

Example 5. A network with V = {1, 2, 3, 4} and
E = {{1, 2}, {1, 3}, {1, 4}, {3.4}, {2, 3}} has marginal
consistency level J = { ({1, 2}, {1, 3}), ({1, 2}, {2, 3}),
({1, 3}, {2, 3}), ({1, 3, 4}, {1, 3}), ({1, 3, 4}, {1, 4}) } if
f12|1 = f13|1, f12|2 = f23|2, f13|3 = f23|3 there exists a
function f134 such that f134|13 = f13, f134|14 = f14.

Some levels of marginal consistency are implied by
lower levels. E.g., every level is implied by some level
J ⊆ {{A,B} | B ⊂ A ⊆ V } because fB |A∩B = fB |A∩B

is implied by fA|A∩B = fB |A∩B and fB |A∩B = fA∩B .

All possible subsets J ⊆
(

2
V

2

)

form a partially ordered
hierarchy of marginal consistencies. The least element of

the hierarchy has level ∅, the top element has level
(

2
V

2

)

.
Global marginal consistency has level { {V,A} | A ∈ E }
but, by (2), this already implies the top level

(

2
V

2

)

. There
are two natural intermediate levels:

1) hyperedge-to-variable coupling

J = { {A, {i}} | i ∈ A ∈ E }, (7)

2) hyperedge-to-hyperegde coupling J =
(

E
2

)

.

Algorithm 1 can in general enforce marginal consis-
tency levels not greater than

(

E
2

)

. We now describe a sim-
ple technique (proposed for max-sum diffusion in [74],
[19]) how to enforce higher levels. Suppose our semiring
has the identity element 1. We call fA an identity factor
if fA(xA) = 1 for every xA ∈ XA (in short, fA = 1).
Suppose we extend E by some A /∈ E and set fA = 1.
Since 1 × a = a for all a ∈ S, this yields an equivalent

network. We call this operation adding an identity factor
to the network. By Definition 8, adding one or more
identity factors (of possibly higher arities) and running
Algorithm 1 allows us to enforce an arbitrary level of
marginal consistency, at the expense of enlarging the
network. We shall see in §5.2.1 that in some semirings
this is possible even without enlarging the network.

Remark 1. It might seem that adding an identity fac-
tor fA requires to store |XA| numbers in memory, which
may be prohibitive. But this can be alleviated by per-
forming reparameterizations by ‘messages’ during Al-
gorithm 1, rather than modifying factors ‘in place’. This
is common in the max-sum semiring [37], [72], [74], [19]
but it is possible also in other semirings [73].

Remark 2. Recall that marginal consistency is defined on
the semigroup (S,+), so it can be studied independently
on the operation ×. In the semigroup (R+,+) where
+ is the ordinary addition, the set of globally marginal
consistent networks is (up to normalization conditions
fA|∅ = 1, A ∈ E) known as the marginal polytope and the
set of networks with marginal consistency level (7) as the
local marginal polytope [69]. If E is acyclic, these polytopes
are equal [69, Proposition 4.1]. This suggests a question:
does this fact extend to other semigroups? Precisely, is
it true that for acyclic networks, marginal consistency
level (7) implies global marginal consistency? Though
for some semigroups the answer is known, in general
the question is open.

4 UPPER BOUND ON PARTITION FUNCTION

Max-sum diffusion monotonically decreases an upper
bound on the true max-sum partition function. Unlike
the partition function, this bound is tractable to compute.
At a fixed point of max-sum diffusion, it often happens
that the bound is tight (i.e., equal to (1)). In this section,
we generalize these concepts to other semirings.

4.1 Canonical Order on a Commutative Semiring

To formulate the upper bound, we first need to define a
suitable partial order on the commutative semiring. The
standard way of doing this is as follows [26].

Definition 9. The canonical preorder on a commutative
semigroup (S,+) is the relation ≤ on S defined by

a ≤ b ⇐⇒ (a = b) or (∃c ∈ S)(a+ c = b). (8)

Note that the condition a = b is redundant if the
semigroup (S,+) has a neutral element 0. The relation ≤
is reflexive and transitive, hence a preorder. It naturally
extends to the semiring (S,+,×) as follows.

Theorem 1. The semiring operations are monotone with
respect to ≤, i.e., for all a, b, c ∈ S we have

a ≤ b =⇒ a+ c ≤ b+ c, ac ≤ bc. (9)

Proof: Suppose a ≤ b = a+d. Then b+c = a+d+c ≥
a+ c and bc = (a+ d)c = ac+ dc ≥ ac.

6

In general, the relation ≤ is not antisymmetric, there-
fore it may not be a partial order. Theorem 2 gives some
simple conditions sufficient for ≤ to be an order or not.

A binary operation + is idempotent if a + a = a for
all a ∈ S. It is selective [26] (also known as conservative
[11]) if a + b ∈ {a, b} for all a, b ∈ S. Clearly, any selec-
tive operation is idempotent. A commutative semigroup
(S,+) is cancellative if a+ c = b+ c implies a = b for all
a, b, c ∈ S. Cancellation and idempotency exclude each
other (by cancellation, a+ a = a implies a = 0).

Theorem 2. Let ≤ be the canonical preorder on (S,+).
1) If (S,+) is a group, then ≤ is an equivalence, therefore it
is not a partial order.

2) If + is idempotent (i.e., (S,+) is a semilattice), then ≤ is
a partial order and we have

a ≤ b ⇐⇒ a+ b = b. (10)

Moreover, + is the least upper bound with respect to ≤.

3) If + is selective, then ≤ is a total order. Moreover, + is the
maximum with respect to ≤.

Proof: 1) Suppose a ≤ b = a + c. Since (S,+) is a
group, c has an inverse, therefore b+ (−c) = a ≥ b. This
shows that ≤ is symmetric.

2) Suppose a ≤ b = a+c. Then a+b = a+a+c = a+c = b,
which proves (10). Antisymmetry holds by (10). Proving
that a+ b is the least upper bound of a, b means proving
that a ≤ c and b ≤ c implies a+b ≤ c. By (10), this means
that a+ c = c and b+ c = c implies a+ b+ c = c. This is
true because a+ b+ c = (a+ c) + (b+ c) = c+ c = c.

3) For any a, b, we have either a + b = a or a + b = b.
By (10), this means either b ≤ a or a ≤ b.

If the canonical preorder is antisymmetric, we call it
the canonical order. We shall see in §5 that this is so in
many concrete instances.

4.2 The Bound

Now we can introduce a tractable upper bound on the
semiring partition function (1).

Theorem 3. We have
∑

xV

∏

A∈E

fA(xA) ≤
∏

A∈E

∑

xA

fA(xA) =
∏

A∈E

fA|∅. (11)

Proof: Using distributivity, multiply the factors on
the right-hand side. This yields all the terms on the left-
hand side plus some additional terms. The inequality
follows from (8), where c are the additional terms.

4.3 The Effect of Enforcing Marginal Consistency

Suppose that enforcing marginal consistency of a pair
{fA, fB} is possible, i.e., there exist {f ′A, f ′B} satisfy-
ing (4). In this section, we show that, under a certain
assumption on the semiring, enforcing marginal consis-
tency of the pair never increases the upper bound (11).

Since enforcing marginal consistency of {fA, fB} af-
fects only the two factors in the bound corresponding
to A and B, we want to show that

f ′A|∅ × f ′B |∅ ≤ fA|∅ × fB |∅. (12)

From (4b) and using (2) we have

f ′A|∅ = (f ′A|A∩B)|∅ = (f ′B |A∩B)|∅ = f ′B |∅. (13)

Recall that if system (4) has a solution, f ′A|A∩B
= f ′B |A∩B

satisfy (5). Suppose the semiring has a square root. It
need not be unique, we only require that some unary
operation

√· exists on S satisfying (
√
a)2 = a (but not

necessarily
√
a2 = a) for all a ∈ S. Then (5) has a solution

f ′A|A∩B = f ′B |A∩B =
√

fA|A∩B × fB |A∩B (14)

where
√
φ denotes component-wise application of

√· to
a function φ. Using (13) and (14), inequality (12) reads

(
√

fA|A∩B × fB |A∩B

∣

∣

∅

)2 ≤ fA|∅ × fB |∅.
Denoting xA∩B = i, |XA∩B | = n, fA|A∩B(xA∩B) = ai,
fB |A∩B(xA∩B) = bi, this can be written as

(

n
∑

i=1

√

aibi

)2

≤
(

n
∑

i=1

ai

)(

n
∑

i=1

bi

)

. (15)

To summarize, we have the following result.

Theorem 4. Let
√· be a unary operation on S that satisfies

(
√
a)2 = a for all a ∈ S and (15) for all ai, bi ∈ S, i =

1, . . . , n. Then enforcing marginal consistency of any pair of
factors (if it is possible) does not increase the upper bound (11).

Inequality (15) is a form of the Cauchy-Schwarz inequal-
ity on the semiring. When the square root is unique,
we have (

√
a)2 = a =

√
a2 for all a ∈ S and therefore

(15) can be written in the more familiar form

〈a, b〉2 ≤ 〈a, a〉〈b, b〉 (16)

for all a, b ∈ Sn, where 〈a, b〉 = a1b1 + · · · + anbn is
the ’inner product’ on the semiring. Moreover, it can be
verified that (16) is implied by the inequality

2ab ≤ a2 + b2 (17)

for all a, b ∈ S (however, (16) does not imply (17) in some
semirings). Let us emphasize that when

√
a2 = a for all

a ∈ S does not hold, (17) may not imply (15).
Theorem 4 says that, under a reasonable assumption

on the semiring, every iteration of Algorithm 1 either
decreases the upper bound or keeps it unchanged. Given
this result, one might think that the algorithm is nothing
more than a (block-)coordinate descent to minimize the
upper bound by local reparameterizations. However, this
does not fully explain Algorithm 1 because a coordinate
descent is expected to strictly decrease its objective in
every iteration, whereas an iteration of Algorithm 1 can
keep the bound unchanged. Yet we cannot omit such
iterations because they may modify the network in such
a way that some later iterations decrease the bound

7

strictly. This is very obvious in the or-and semiring but
it is true also in other semirings.

Of course, monotonic decrease of the bound during
Algorithm 1 is neither sufficient nor necessary for its
convergence to a fixed point. Although in many semir-
ings these two properties occur together, there can be
exceptions (see §5.5).

4.4 The Effect of Adding Identity Factors

In §3.4 we showed how higher levels of marginal consis-
tency can be achieved by adding identity factors. What
effect does this have on the upper bound?

When the operation + is idempotent, adding an iden-
tity factor fA = 1 to a network preserves the upper
bound because fA|∅ =

∑

xA
1 = 1. Suppose Algorithm 1

is at its fixed point. If we now add one or more identity
factors to the network, extend the set J , and run the
algorithm again, the upper bound may further decrease.
Indeed, this is because the added factors extended the
space of reparameterizations that Algorithm 1 can reach
by local reparameterizations. Identity factors can be
added incrementally during Algorithm 1 in a cutting-
plane fashion, similarly as in [74], [19]. This incremental
scheme ensures monotonic improvement of the bound.

When + is not idempotent, adding an identity factor
may increase the upper bound because

∑

xA
1 ≥ 1. There-

fore, adding identity factors has no obvious advantage
in, e.g., the sum-product semiring.

Remark 3. There is another, very obvious technique how
to tighten the upper bound arbitrarily at the expense of
more computational effort: by merging several factors
into one. In the max-sum semiring, this corresponds to
using larger subproblems in dual decomposition [32],
[39]. E.g., if {1, 2}, {2, 3}, {1, 3} ∈ E, we can merge binary
factors f12, f23, f13 into the ternary factor f12 × f23 × f13.
This decreases |E| by two, keeps the network equiva-
lent, and may decrease the upper bound. Subsequently
enforcing marginal consistency may improve the bound
even further. This technique is not limited to semirings
with idempotent addition. However, it is less compatible
with the concept of local consistencies (e.g., in the or-and
semiring it does not lead to k-consistencies, §5.2.2).

4.5 When is the Bound Tight?

In this section, we discuss two natural conditions on
a network under which inequality (11) is tight (i.e.,
holds with equality). One condition will be given by
Definition 10 and the other condition is global marginal
consistency (Definition 7).

In the max-sum semiring, inequality (11) is tight if all
constraints in the network agree on some common global
configuration xV . In [69, §8.4], this condition has been
called strong tree agreement. We say a tuple (A, xA) ∈ XE

is active if fA(xA) = fA|∅. It is known [61], [72], [74], [12]
that deciding the condition leads to the CSP formed by
the active tuples. The condition can be formulated for
any commutative semiring as follows.

Definition 10. A network f : XE → S satisfies active tuple
agreement if there exists a configuration xV ∈ XV such that
the tuple (A, xA) is active for every A ∈ E.

Note the implicit restriction (§2.2) in Definition 10: xA
is a restriction of xV to variables A.

Example 6. Let V = {1, 2, 3, 4} and E = {{1, 3, 4}, {1, 2},
{2, 3}}. A network f : XE → S satisfies active tuple
agreement if there exist x1 ∈ X1, x2 ∈ X2, x3 ∈ X3, x4 ∈
X4 such that f134(x1, x3, x4) = f134|∅, f12(x1, x2) = f12|∅,
f23(x2, x3) = f23|∅. Here, e.g., f12|∅ =

∑

x1,x2
f12(x1, x2).

Theorem 5. Active tuple agreement is sufficient for inequal-
ity (11) to be tight.

Proof: The claim follows from the chain

∏

A∈E

fA(xA)
(a)

≤
∑

yV

∏

A∈E

fA(yA)
(b)

≤
∏

A∈E

fA|∅
(c)
=

∏

A∈E

fA(xA)

where inequality (a) follows from (8), inequality (b)
is (11), and equality (c) holds by the assumption.

Theorem 6. If the operation + is selective and the semigroup
(S,×) is cancellative, active tuple agreement is necessary for
inequality (11) to be tight.

Proof: First observe that by (9) and by cancellation,
a < b and a′ ≤ b implies aa′ < bb′ for every a, b, a′, b′ ∈ S.
Suppose that for every xV ∈ XV there exists some
A ∈ E such that fA(xA) < fA|∅. Using (11), this implies
∏

A∈E fA(xA) <
∏

A∈E fA|∅. Since + is selective, this
implies that inequality (11) is strict.

Let us turn to the second condition, global marginal
consistency (Definition 7).

Theorem 7. If the operation + is selective or the operation ×
is idempotent, global marginal consistency is sufficient for
inequality (11) to be tight.

Proof: Suppose a network f is globally marginal
consistent, i.e., there is a function fV such that fA = fV |A
for every A ∈ E. Then inequality (11) reads

∑

xV

∏

A∈E

fV |A(xA) ≤
∏

A∈E

∑

xA

fV |A(xA). (18)

We have

∏

A∈E

∑

xA

fV |A(xA) =
∏

A∈E

∑

xV

fV (xV) =
[

∑

xV

fV (xV)
]|E|

.

By (8), we have fV (xV) ≤ fV |A(xA) for every xV ∈ XV

and A ⊆ V . This simply says that a function cannot be
greater than its marginal. Therefore,
∑

xV

∏

A∈E

fV |A(xA) ≥
∑

xV

∏

A∈E

fV (xV) =
∑

xV

[

fV (xV)
|E|

]

.

If the operation × is idempotent, then for any n ∈ N

and a ∈ S we have an = a. If + is selective, it is easy
to show that for any n ∈ N and any a1, . . . , an ∈ S
we have

(
∑

i ai
)n

=
∑

i(ai)
n. In both cases, we have

8

∑

xV

[

fV (xV)
|E|

]

=
[
∑

xV
fV (xV)

]|E|
. Combining this

with (18) yields that inequality (18) is tight.
We now compare the strength of active tuple agree-

ment and global marginal consistency.

Theorem 8. If the operation + is selective, global marginal
consistency implies active tuple agreement.

Proof: By global marginal consistency, there is fV
such that fA = fV |A for all A ∈ E. Take any xV
such that fV (xV) = fV |∅. Such xV exists because + is
selective. We have fA(xA) = fV |A(xA) = fV |∅ (note the
implicit restriction: xA is the restriction of xV). By (2),
fA|∅ = (fV |A)|∅ = fV |∅. We conclude that fA(xA) = fA|∅.

When + is selective, for every a1, . . . , an ∈ S there is
some j such that aj =

∑n

i=1
ai. However, such j may not

exist when + is not selective. In that case, active tuple
agreement is not likely to hold because there may be
some A ∈ E such that no tuple (A, xA) is active.

On the other hand, it can happen that active tuple
agreement does not hold but inequality (11) is tight. For
a simple example, take a network with a single unary
factor, i.e., |V | = 1 and E = {V }. Trivially, any such
network is globally marginal consistent. Let + not be
selective and × be idempotent (as in Example 11). Then
constraint agreement may not hold but, by Theorem 7,
inequality (11) is tight.

5 INSTANCES OF THE FRAMEWORK

Let us now discuss concrete instances of our frame-
work. Since the properties of reparameterizations do not
depend on the operation +, we find it useful to first
discuss reparameterizations in concrete commutative
semigroups (S,×). Then we turn to enforcing marginal
consistency in concrete commutative semirings.

Further in §5, symbols +,×, 0, 1,√· will have their
ordinary (non-semiring) meaning. We will distinguish
semigroups and semirings only up to isomorphism; e.g.,
the max-sum semiring (R,max,+) and the max-product
semiring (R++,max,×) are isomorphic (via logarithm).

5.1 Reparameterizations in Concrete Semigroups

Here we discuss reparameterizations in concrete com-
mutative semigroups. We focus on two questions: (i)
How hard is to decide whether two given networks
are reparameterizations of each other? (ii) Which repa-
rameterizations are compositions of local reparameteri-
zations? We do not try to answer these questions for any
commutative semigroup (which we believe would be
difficult) but only for selected semigroups of our interest.

5.1.1 Semilattice (S,∧)
A commutative semigroup (S,∧) in which the semi-
group operation ∧ is idempotent is a semilattice [14].
Equivalently, ∧ is the greatest lower bound with respect
to some partial order on S. Examples of semilattices are

({0, 1},min), ([0, 1],min), and (2U ,∩) where U is a set
and ∩ is the set intersection.

Theorem 9. In every non-trivial (|S| > 1) semilattice,
deciding whether two networks are reparameterizations of each
other is NP-hard.

Proof: The claim holds for semilattice ({0, 1},min)
because deciding whether a given network is a reparam-
eterization of the zero network f = 0 (i.e., fA(xA) = 0
for all (A, xA) ∈ XE) is equivalent to the CSP, hence
NP-complete. The general case holds because every non-
trivial semilattice has a subsemilattice isomorphic to
({0, 1},min), namely ({a, a ∧ b},∧) for any a, b ∈ S.

In a semilattice, not every reparameterization is as a
composition of local reparameterizations. This is shown
by the following example.

Example 7. Let (S,∧) = ({0, 1},min). Let V = {1, 2, 3},
E = {{1, 2}, {2, 3}, {1, 3}}, X1 = X2 = X3 = {1, 2},
f12(1, 1) = f12(2, 2) = f23(1, 1) = f23(2, 2) = f13(1, 2) =
f13(2, 1) = 1, f12(1, 2) = f12(2, 1) = f23(1, 2) = f23(2, 1) =
f13(1, 1) = f13(2, 2) = 0. This network (the ’inconsistent
cycle’) forms an unsatisfiable CSP, i.e., it is a reparame-
terization of the zero network. But one easily checks that
no local reparameterization is possible.

5.1.2 Group

Consider semigroup (R,+). It is a group, i.e., every
element has an inverse. Here, every reparameterization
{f ′A, f ′B} of a pair {fA, fB} can be written explicitly as

f ′A = fA + ϕAB (19a)

f ′B = fB − ϕAB (19b)

for some function ϕAB : XA∩B → R (a ’message’). It
is known [37, Lemma 6.3], [72, Theorem 3] that in
(R,+), every reparameterization is a composition of a
finite number of local reparameterizations and that these
local reparameterizations (and whether they exist) can be
found in polynomial time. Given (19), this shows that
every reparameterization is an affine transformation.

Though this result has been proved for networks
with unary and binary constraints fA, it is natural to
conjecture (cf. [74, §3.2]) that it extends to any network.
Moreover, it is easy to verify that the proofs in [37], [72]
apply not only to (R,+) but to any group.

5.1.3 Semigroup (R ∪ {−∞},+)

This semigroup has the sub-semigroup ({−∞, 0},+)
which is a semilattice, thus some reparameterizations
are not compositions of local reparameterizations. It has
also the sub-semigroup (R,+), thus some reparameter-
izations are compositions of a finite number of local
reparameterizations, given by (19) for ϕAB : XA∩B → R.
However, a new phenomenon appears [76], [75]: there
exist networks f and f ′ that are reparameterizations of
each other and there is an infinite (but no finite) sequence
of local reparameterizations of f that converges to f ′.

9

Example 8. Let V = {1, 2, 3}, E = {{1, 2}, {2, 3}, {1, 3}},
X1 = X2 = X3 = {1, 2}, f12(1, 1) = f12(2, 2) =
f23(1, 1) = f23(2, 2) = f13(1, 1) = f13(2, 2) = f13(1, 2) =
0, f12(1, 2) = f12(2, 1) = f23(1, 2) = f23(2, 1) = f13(2, 1) =
−∞. Consider the sequence of three local reparameter-
izations (19) where the functions ϕ12,13, ϕ23,12, ϕ13,23

are given by ϕ12,13(1) = ϕ23,12(1) = ϕ13,23(1) = 1,
ϕ12,13(2) = ϕ23,12(2) = ϕ13,23(2) = 0. This sequence de-
creases the value f13(1, 2) by 1 and keeps all other values
unchanged. Repeating the sequence therefore converges
to f13(1, 2) = −∞. However, no finite sequence of local
reparameterizations can set f13(1, 2) to −∞.

5.2 Distributive Lattice (S,∨,∧)
A commutative semiring (S,∨,∧) in which both opera-
tions are idempotent and satisfy the absorption law

a ∨ (a ∧ b) = a = a ∧ (a ∨ b) (20)

is a distributive lattice [14]. Then ∨ is the least upper
bound and ∧ is the greatest lower bound with respect
to the canonical order ≤. Equivalence (10) extends to

a ∧ b = a ⇐⇒ a ≤ b ⇐⇒ a ∨ b = b. (21)

Example 9. The or-and semiring ({0, 1},max,min) is a
distributive lattice.

Example 10. The max-min semiring ([0, 1],max,min) is
a distributive lattice.

Example 11. In the or-and and max-min semirings, both
operations are selective hence the canonical order is
total. In some inference tasks, our preferences may be
given by a partial order that is not total. An example
is the distributive lattice (2U ,∪,∩) for some set U (or
a sublattice of this lattice), where ≤ is the inclusion
relation ⊆ on 2U . In this case, the value (1) is not exactly
what we would like to obtain as the result of inference.
We would rather like to find maximal elements of the
partially ordered set

{
∧

A∈E fA(xA)
∣

∣xV ∈ XV

}

⊆ S,
while (1) is the least upper bound of this set. Discussion
on how to find maximal elements of this set is out of
scope of our paper. Nevertheless, enforcing marginal
consistency may decrease the values of some tuples, i.e.,
simplify the problem.

As (S,∧) is a semilattice, reparameterizations are de-
scribed by §5.1.1. System (4) has the unique solution

f ′A = fA ∧ fB |A∩B (22a)

f ′B = fB ∧ fA|A∩B . (22b)

Let us prove (22a). From (6) and (4b) we obtain
f ′A ∧ f ′A|A∩B

= fA ∧ fB |A∩B . But the absorption law (20)
implies f ′A ∧ f ′A|A∩B

= f ′A. By symmetry we get (22b).
The update (22) never increases the value of any tuple

because, by (8) and (20), we have a∧b ≤ a for all a, b ∈ S.
It follows that the upper bound (11) never increases. This
agrees with the fact that the distributive lattice has a

unique square root (the solution to b ∧ b = a is b = a)
which satisfies (17).

The behavior of Algorithm 1 is similar to local con-
sistency algorithms for the crisp CSP and soft CSPs
with idempotent semiring multiplication: it converges in
finite time and its fixed point is unique. To formulate
this statement more precisely, we extend the canonical
order ≤ from tuples to networks: for f, f ′: XE → S we
define f ≤ f ′ if fA(xA) ≤ f ′A(xA) for all (A, xA) ∈ XE .

Theorem 10. Algorithm 1 reaches in a finite number of
iterations a fixed point. This fixed point is the greatest one
among all fixed points that are not greater than the initial
network, therefore it is independent of the update schedule.

Our proof uses the technique proposed in [2]. It is
similar to the proof of the well-known Knapster-Tarski
fixed point theorem [14].

Proof: Enforcing marginal consistency of a single pair
{fA, fB} is a function that maps a network to a network.
We denote this function by pAB . It has the following
properties:

pAB(pAB(f)) = pAB(f) (idempotency)

pAB(f) ≤ f (intensivity)

f ≤ f ′ =⇒ pAB(f) ≤ pAB(f
′) (monotonicity)

Note, these are the axioms of a closure operator [14].
Algorithm 1 produces a sequence of networks (fk)∞k=0

defined recurrently by fk = pAkBk
(fk−1), where f0 is the

initial network and {Ak, Bk} is the k-th element of the
update schedule.

Any value that any tuple can ever attain during the
algorithm belongs to the closure of the set of initial
values { f0A(xA) | (A, xA) ∈ XE } ⊆ S by the operations ∨
and ∧. Due to the lattice structure, this closure has finite
size. Therefore, by intensivity, the sequence fk converges
in a finite number of iterations.

Suppose a network f satisfies f ≤ f0 and pAB(f) = f
for all A,B ∈ E. We will prove by induction that f ≤ fk

for any k. Suppose f ≤ fk−1. By monotonicity,

f = pAkBk
(f) ≤ pAkBk

(fk−1) = fk.

We conclude that the convergence point of the se-
quence fk is the greatest common fixed point of all
the functions pAB , {A,B} ∈ J , among all networks not
greater than f0.

5.2.1 Adding Identity Factors

In §3.4 and §4.4 we discussed how any level of marginal
consistency can be achieved by adding identity factors
to the network. Assume that our lattice has an identity
element, 1. Distributive lattices have the following ad-
vantage, not shared by other semirings.

Theorem 11. Let E,F ⊆ 2V . Let f : XE∪F → S be a net-
work such that fA = 1 for every A ∈ F . Let f ′: XE∪F → S
be the fixed point of Algorithm 1 applied to f . Then

∧

A∈E∪F

f ′A =
∧

A∈E

f ′A. (23)

10

Proof: The claim is proved by the following chain:

∧

A∈E

f ′A
(a)

≤
∧

A∈E

fA
(b)
=

∧

A∈E∪F

fA
(c)
=

∧

A∈E∪F

f ′A
(d)

≤
∧

A∈E

f ′A.

In (a) and (d), ≤ denotes the componentwise partial or-
der. Inequality (a) holds because the update (22) cannot
increase the value of any tuple, (b) holds because fA = 1
for every A ∈ F , (c) holds because enforcing marginal
consistency is a reparameterization, and (d) holds be-
cause a ∧ b ≤ a for every a, b ∈ S.

The theorem says that if we add one or more identity
factors to a network and run Algorithm 1, we can then
remove the updated identity factors from the network
because this yields a reparameterization of the initial net-
work. In other words, identity factors can be added only
temporarily and thus the level of marginal consistency
can be increased without enlarging the network.

This can be understood also as follows. Adding iden-
tity factors extends the space of reparameterizations
reachable by local reparameterizations. In a distributive
lattice, some reparameterizations cannot be composed
of local reparameterizations. Adding identity factors,
enforcing marginal consistency, and then removing the
updated identity factors means performing a reparame-
terization of the initial network that may not be reach-
able by local reparameterizations.

In fact, if we could minimize the upper bound (11) over
all reparameterizations, the bound would become tight.
Indeed, we can add the identity factor fV = 1 to the
network and run Algorithm 1 with J = { {V,A} | A ∈
E }. By Theorem 7, this makes inequality (11) tight. Now
we remove the factor fV .

5.2.2 Marginal Consistency in CSP

In the or-and semiring ({0, 1},max,min), inequality (11)
evaluated at the fixed point of Algorithm 1 says the well-
known fact that passing a local consistency test is neces-
sary for CSP satisfiability. Here, some levels of marginal
consistency coincide with some basic local consistencies
in CSP [4]. For a network with unary and binary con-
straints, local marginal consistency is arc consistency [46],
[4, §4]. For any network, marginal consistency of level (7)
is generalized arc consistency [4, §4]. For any network, local
marginal consistency is pairwise consistency [31], [4, §5.4].
Adding appropriate identity constraints of arity less than
or equal to k and enforcing pairwise consistency yields
(strong) k-consistency [21], [4, §5.2].

5.3 Semirings of Max-Sum Type

5.3.1 Semiring (R,max,+)

In this semiring, reparameterizations are affine transfor-
mation of f (see §5.1.2) and the upper bound (11) is a
piecewise-linear convex function of f . Therefore, mini-
mizing the upper bound over all reparameterizations can
be formulated as a linear program. This linear program
is the natural LP relaxation of problem (1), considered

(sometimes in dual form) by many researchers [61], [40],
[69], [37], [10], [67].

System (4) has the unique solution

f ′A = fA + (fB |A∩B − fA|A∩B)/2 (24a)

f ′B = fB + (fA|A∩B − fB |A∩B)/2, (24b)

which immediately follows from (5) and (6). The semir-
ing has a unique square root (the solution to b+ b = a is
b = a/2), which satisfies conditions (17). Algorithm 1 is
known as max-sum diffusion [41], [72], [74]. It is firmly
believed that max-sum diffusion converges to a fixed
point in an infinite number of iterations but this was
never proved (a slightly weaker form of convergence has
been proved in [57]).

For different update schedules, the algorithm can con-
verge to different fixed points with different values of
the bound. Therefore, in general it does not find the
minimum upper bound over all reparameterization [72],
[37]. Precisely, for some networks the bound cannot be
decreased by any single local reparameterization but
only by multiple local reparameterizations simultane-
ously. This is a manifestation of the fact that block-
coordinate descent may not find the global minimum of
a convex non-smooth function [3]. Note the difference to
the distributive lattice, where some reparameterizations
cannot be composed of local reparameterizations at all.

5.3.2 Semiring (R ∪ {−∞},max,+)

This semiring, known as the tropical semiring [22], is
obtained by adding the zero semiring element −∞ to
(R,max,+). Minimizing the upper bound over local
reparameterizations (19) again leads to a linear program.
However, by §5.1.3, some reparameterizations are not
compositions of local reparameterizations and so this
does not yield the minimum upper bound over all repa-
rameterizations. This is not surprising since the semir-
ing has a subsemiring ({−∞, 0},max,+) isomorphic to
({0, 1},max,min), so this would solve the CSP.

The solution to (4) is unique, given by (24) where the
operation ‘−’ (minus) is extended from R to R ∪ {−∞}
by defining a− (−∞) = −∞ for all a ∈ R ∪ {−∞}. The
semiring has a unique square root which satisfies (17).

Two stages can be discerned in Algorithm 1. After a
finite number of iterations, the set of tuples with values
−∞ stops changing, which resolves the ‘crisp’ part of the
problem. Then the algorithm changes only finite tuples,
similarly as in the semiring (R,max,+).

5.3.3 Max-Sum Semiring with Truncated Addition

This is the semiring ([−1, 0],max,⊗) where

a⊗ b = max{−1, a+ b}. (25)

This semiring is isomorphic to semiring ([0, 1],max,⊗′)
where a ⊗′ b = max{a + b − 1, 0} is the Łukasziewicz
t-norm [34]. The resulting problem (1) is closely related
to the k-weighted CSP [48, §9.2.2].

11

The semiring has a square root but it is not unique:
b ⊗ b = a has always a solution but, e.g., for a = −1
the solutions are all b ∈ [−1,− 1

2
]. However, there exists

a square root, b = a/2, satisfying (15). With this square
root, system (4) has a solution2

f ′A = max{−1, fA + (fB |A∩B − fA|A∩B)/2 } (26a)

f ′B = max{−1, fB + (fA|A∩B − fB |A∩B)/2 }. (26b)

In experiments on random networks, we observed that
Algorithm 1 always converged to a fixed point.

5.3.4 Max-Sum Semiring with Lexicographic Maximum

This is the semiring (R2,⊕,⊗) where

(a1, a2)⊕ (b1, b2) =











(b1, b2) if a1 < b1

(a1,max{a2, b2}) if a1 = b1

(a1, a2) if a1 > b1

(a1, a2)⊗ (b1, b2) = (a1 + b1, a2 + b2).

The operation ⊕ is the maximum with respect to the
lexicographic order on R

2, which is also the canonical
order. The solution to (4) is unique, given by (24) where
(max,+) is replaced by (⊕,⊗).

The framework can be easily extended from R
2 to R

n.

5.3.5 Adding Identity Factors

As in §5.2.1, suppose we add identity factors to a
network and then apply Algorithm 1 to the resulting
network. Unfortunately, nothing like Theorem 11 holds
in max-sum semirings, so we now cannot remove the
updated identity factors because this might yield a net-
work that is not equivalent to the initial network. Thus,
in general, higher levels of marginal consistency can be
achieved only at the expense of increasing the number
of factors in the network.

This can be alternatively understood as follows. In
semiring (R,max,+), every reparameterization can be
composed of local reparameterizations. Thus, the only
way how to extend the space of reparameterizations
reachable by local reparameterizations is to add new
identity factors. This is in contrast with the distributive
lattice (§5.2.1), where it suffices to add identity factors
only temporarily.

5.4 Semirings of Sum-Product Type

5.4.1 Semiring (R++,+,×)

In this semiring, system (4) has the unique solution

f ′A = fA ×
√

fB |A∩B /fA|A∩B (27a)

f ′B = fB ×
√

fA|A∩B /fB |A∩B . (27b)

The semiring has a unique square root (the only solution
to b2 = a is b =

√
a) which satisfies conditions (17).

2. Note that we cannot write f ′

A
= fA ⊗ (fB |A∩B − fA|A∩B)/2

in (26a), because (fB |A∩B − fA|A∩B)/2 may not be in [−1, 0].

The semiring is isomorphic (via logarithm) to semiring
(R,⊕,+) where

a⊕ b = log(ea + eb) (28)

is the log-sum-exp operation. In this semiring, reparame-
terizations are affine transformations of f and the upper
bound (11) is a smooth convex function of f . Algorithm 1
is a block-coordinate descent method to minimize this
function over reparameterizations and therefore it con-
verges to its global minimum [3]. It can be shown [76]
that the fixed point of the algorithm is unique.

This algorithm is not widely known, it was proposed
in [76, §6] and also [47] noticed that max-sum diffusion
can be formulated in the sum-product semiring. The
minimum upper bound is usually very loose, therefore
not useful to approximate (1). Even for acyclic E, the
bound is not exact and no finite algorithm is known to
compute the fixed point. The algorithm can be seen as a
very simple representant of convergent message passing
algorithms to minimize convex free energies [30], [71],
[29], [69, §7], which can provide better bounds.

5.4.2 Semiring (R+,+,×)

This semiring is obtained by adding the zero semiring
element 0 to (R++,+,×). Since the semigroup (R+,×)
is isomorphic to (R∪{−∞},+), reparameterizations are
described by §5.1.3. System (4) has a unique solution,
given by (27) where we define a/0 = 0 for all a ∈ R+.

5.4.3 Relation to the Max-Sum Semiring

Define the operation ⊕t by

a⊕t b =
(ta)⊕ (tb)

t
=

log(eta + etb)

t
. (29)

For every finite t, (R,⊕t,+) is a semiring isomorphic to
(R,⊕,+). In the limit t→ ∞, the operation ⊕t becomes
max. The semiring (R,max,+) is no longer isomorphic
to (R,⊕,+). This process is known as tropicalization [22],
dequantization [44] or the zero temperature limit [49].

We said in §5.3.1 that in semiring (R,max,+), Algo-
rithm 1 in general does not find the minimum upper
bound over all reparameterizations. However, the se-
quence of fixed points of the algorithm in semirings
(R,⊕t,+) for increasing t converges to the optimal up-
per bound [76]. This is the core of proximal projection
methods with entropy distances for exactly solving the
LP relaxation mentioned in §5.3.1 [53].

5.4.4 Application to CSP

Although in the sum-product semiring the minimum
upper bound is usually very loose, in [75] we described
an interesting situation when this bound is useful. We
now revisit this result in the semiring context.

Let f : XE → {0, 1}. In semiring ({0, 1},max,min),
expression (1) equals 1 if the CSP represented by f
is satisfiable and 0 if not. In semiring (R+,+,×), ex-
pression (1) counts the number of solutions to the CSP

12

represented by f . This problem is known as the counting
CSP (#CSP) [9]. Note that ({0, 1},+,×) is not a semiring
because the set {0, 1} is not closed under addition.

Let Uor,and ∈ {0, 1} be the upper bound (11) at the
fixed point of Algorithm 1 applied to the network f in
semiring ({0, 1},max,min). Let U+,× ∈ R+ be the upper
bound at the fixed point of Algorithm 1 applied to f in
semiring (R+,+,×). Clearly, Uor,and = 1 is necessary for
the CSP represented by f to be satisfiable (see §5.2.2). But
U+,× ≥ 1 is also necessary for this CSP to be satisfiable,
requiring that the CSP has at least one solution.

The update rules in the semirings ({0, 1},max,min)
and (R+,+,×) treat zero tuples in the same way: if
the former sets some tuple to zero, so does the lat-
ter3. It follows that Uor,and = 0 implies U+,× = 0.
Equivalently, U+,× > 0 implies Uor,and = 1. However,
the opposite implication does not hold: there are CSP
instances for which Uor,and = 1 and U+,× = 0 [75].
Therefore, Algorithm 1 in semiring (R+,+,×) yields a
strictly stronger condition necessary for CSP satisfiability
than in semiring ({0, 1},max,min).

The algorithm has the drawback that when reparame-
terizations are represented by messages, some messages
can grow unbounded [75]. This is a manifestation of the
phenomenon described in Example 8.

5.5 Expectation Semiring

Expectation semirings, introduced in [18], [43], are dis-
similar to any semiring we discussed above. An example
is the commutative semiring (R++ × R,⊕,⊗) where

(a1, a2)⊕ (b1, b2) = (a1 + b1, a2 + b2)

(a1, a2)⊗ (b1, b2) = (a1b1, a1b2 + b1a2).

As noted in [25, Example 7.3], this semiring can be seen

as the semiring of matrices

[

a1 a2
0 a1

]

with the usual

matrix addition and product. These matrices are positive
definite, hence the semiring has multiplicative inverse
and unique square root. Therefore, the solution to (4) can
be written as (27) where ×, /,√· are matrix operations.

The canonical preorder (8) is not antisymmetric: e.g.,
we have both (0,−1) ≤ (0, 1) and (0, 1) ≤ (0,−1). There-
fore the concepts of upper bound and its decrease are
meaningless. Despite this, we observed in experiments
on random networks that Algorithm 1 always converged
to a fixed point.

5.6 Semirings that Do Not Admit Enforcing Marginal
Consistency

Not every commutative semiring allows enforcing
marginal consistency. For that, system (4) has to be
solvable. Furthermore, it is reasonable to require that the
canonical preorder ≤ is antisymmetric and the semiring

3. A similar observation was made for loopy belief propagation [16],
showing that it treats zero tuples the same way as the arc consistency
algorithm.

satisfies the conditions of Theorem 4. Here we give
examples of semirings that violate some of these require-
ments.

Example 12. In semiring (R,+,×), the semigroup (R,+)
is a group, therefore by Theorem 2 the relation ≤ is an
equivalence rather than a partial order.

Example 13. In semiring (N,max,+), system (4) is not
always solvable. Indeed, this semiring does not have a
square root because a+ a = b has no solution for odd b.

Example 14. Semiring (2U ,∪,⊗) where 2U is the set of
all subsets of a vector space U , ∪ is the set union and
a ⊗ b = {x + y | x ∈ a, y ∈ b } is the Minkowski set
sum. This semiring does not have a square root: e.g., for
U = R, there is no a ⊆ R satisfying a⊗ a = {1, 2}.

Example 15. Semiring (S,⊕,⊗) where S is the set of all
convex subsets of a vector space U , a⊕ b = conv(a ∪ b),
and a ⊗ b = {x + y | x ∈ a, y ∈ b }. This semiring has
a unique square root: the solution to b ⊗ b = a is b =
{x/2 | x ∈ a }. Thus equation (5) always has a unique
solution. However, system (4) may not have a solution.
This can happen already in the simple case U = R, i.e.,
the elements of S are intervals. E.g., take A = {1, 2}, B =
{1}, X1 = {1}, X2 = {1, 2}, f1(1) = {0}, f12(1, 1) = {−2},
f12(1, 2) = {2}. The solution to (5) is f ′1(1) = conv{−1, 1}.
But (4a) requires that f ′12(1, 1)⊗f ′1(1) = f12(1, 1)⊗f1(1) =
{−2} ⊗ {0} = {−2}. Clearly, there is no such f ′12(1, 1).

Example 16. [5, §2.4.5] Semiring (R2,⊕,⊗) where

(a1, a2)⊕ (b1, b2) =











(b1, b2) if a1 < b1

(a1,max{a2, b2}) if a1 = b1

(a1, a2) if a1 > b1

(a1, a2)⊗ (b1, b2) =











(a1, a2) if a1 < b1

(a1, a2 + b2) if a1 = b1

(b1, b2) if a1 > b1

The operation ⊕ is the same as in §5.3.4. The solution
to the equation (b1, b2) ⊗ (b1, b2) = (a1, a2) is (b1, b2) =
(a1, a2/2), thus the semiring has a unique square root.
Therefore equation (5) always has a unique solution.
However, system (4) may not have a solution. This hap-
pens, e.g., for A = {1, 2}, B = {1}, X1 = {1}, X2 = {1, 2},
f1(1) = (0, 3), f12(1, 1) = (0, 2), f12(1, 2) = (2, 0).

For semirings that do not allow enforcing marginal
consistency it is an interesting open question whether
enforcing marginal consistency only approximately can
yield useful upper bounds.

6 SUMMARY

Our goal in this article has been to theoretically in-
vestigate the simple algorithm defined in §3, first for
the abstract commutative semiring and then for several
concrete semirings. Let us review the algorithm once
again. We are given a commutative semiring (S,+,×),
a hypergraph E ⊆ 2V , and a collection of functions

13

fA: XA → S, A ∈ E. The algorithm visits differ-
ent pairs {fA, fB} and changes every pair such that
fA|A∩B = fB |A∩B while preserving the function fA×fB .
In many semirings, repeating this operation converges to
a fixed point when fA|A∩B = fB |A∩B holds for each pair
{fA, fB}. Every iteration either decreases or preserves
the upper bound

∏

A∈E fA|∅ on the semiring partition
function

(
∏

A∈E fA
)∣

∣

∅
.

We have extended this basic algorithm to achieve
higher levels of consistency. This is done by adding
identity factors fA = 1 (typically of higher arities) to
the network, which preserves the function

∏

A∈E fA but
extends the set of reachable reparameterizations and
thus may enable further improvement of the bound. This
yields a hierarchy of consistencies of increasingly higher
levels, necessary for global marginal consistency. For
a wide class of semirings, global marginal consistency
suffices for the upper bound to be tight.

We have discussed the properties of the algorithm in
a number of concrete semirings. In a distributive lattice,
the algorithm converges in finite time and its fixed point
is unique. An example of a distributive lattice is the
or-and semiring, for which various levels of marginal
consistency correspond to several classical local consis-
tencies in CSP. In semirings of max-sum type, the algo-
rithm converges in an infinite time and its fixed point
depends on the update schedule. It is known as max-
sum diffusion. In semirings of sum-product type, the
algorithm converges in infinite time and its fixed point
is unique. In the log-domain, the algorithm minimizes a
smooth convex function by block-coordinate descent. It
is a simple example of message passing algorithms with
convex free energies.

Finally, let us remark that our article is relevant to two
disciplines, pattern recognition and constraint program-
ming, which use different terminology and communicate
little with each other. We hope that our paper will
narrow this undesirable interdisciplinary gap.

ACKNOWLEDGMENT

The author has been supported by the Czech Science
Foundation under project P202/12/2071 and by the Eu-
ropean Commission under project FP7-ICT-270138.

REFERENCES

[1] Srinivas M. Aji and Robert J. McEliece. The generalized distribu-
tive law. IEEE Trans. on Information Theory, 46(2):325–343, 2000.

[2] Krzysztof R. Apt. The rough guide to constraint propagation. In
Conf. on Principles and Practice of Constraint Programming, pages
1–23. Springer, 1999.

[3] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific,
Belmont, MA, 1999.

[4] Christian Bessiere. Constraint Propagation. In Rossi et al. [55], 2006.
[5] S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and

H. Fargier. Semiring-based CSPs and valued CSPs: Frameworks,
properties, and comparison. Constraints, 4(3):199–240, 1999.

[6] Stefano Bistarelli. Semirings for Soft Constraint Solving and Program-
ming. Springer Verlag, 2004.

[7] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-
based constraint satisfaction and optimization. J. ACM, 44(2):201–
236, 1997.

[8] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate
energy minimization via graph cuts. IEEE Trans. Pattern Analysis
and Machine Intelligence, 23(11):1222–1239, 2001.

[9] Andrei A. Bulatov and Vı́ctor Dalmau. Towards a dichotomy
theorem for the counting constraint satisfaction problem. J.
Information and Computation, 205(5):651–678, 2007.

[10] Chandra Chekuri, Sanjeev Khanna, Joseph Naor, and Leonid
Zosin. A linear programming formulation and approximation
algorithms for the metric labeling problem. SIAM Journal on
Discrete Mathematics, 18(3):608–625, 2005.

[11] David Cohen and Peter Jeavons. The complexity of constraint
languages. In Handbook of Constraint Programming, chapter 8.
Elsevier, 2006.

[12] M. C. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki,
and T. Werner. Soft arc consistency revisited. Artificial Intelligence,
174(7-8):449–478, 2010.

[13] Martin Cooper and Thomas Schiex. Arc consistency for soft
constraints. Artificial Intelligence, 154(1-2):199–227, 2004.

[14] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, Cambridge, 1990.

[15] Romuald Debruyne and Christian Bessière. Domain filtering
consistencies. Journal of Artificial Intelligence Research, (14):205–230,
2001.

[16] R. Dechter and R. Mateescu. A simple insight into iterative
belief propagation’s success. In Conf. on Uncertainty in Artificial
Intelligence, 2003.

[17] Didier Dubois, Helene Fargier, and Henri Prade. The calculus of
fuzzy restrictions as a basis for flexible constraint satisfaction. In
IEEE Conf. on Fuzzy Systems (FUZZ-IEEE), 1993.

[18] Jason Eisner. Parameter estimation for probabilistic finite-state
transducers. In Annual Meeting of the Assoc. for Computational
Linguistics (ACL), pages 1–8, 2002.

[19] V. Franc, S. Sonnenburg, and T. Werner. Cutting plane methods in
machine learning. In S. Sra, S. Nowozin, and S. J. Wright, editors,
Optimization for Machine Learning. MIT Press, 2012.

[20] Eugene Freuder and Alan K. Mackworth. Constraint satisfaction:
An emerging paradigm. In Rossi et al. [55], 2006.

[21] Eugene C. Freuder. Synthesizing constraint expressions. Commu-
nications of the ACM, 21(11):958–966, 1978.

[22] Stéphane Gaubert. Methods and applications of (max,+) linear
algebra. Technical Report 3088, Institut national de recherche en
informatique et en automatique (INRIA), 1997.

[23] Amir Globerson and Tommi Jaakkola. Fixing max-product: Con-
vergent message passing algorithms for MAP LP-relaxations. In
Neural Information Processing Systems, pages 553–560, 2008.

[24] Jonathan S. Golan. Semirings and their Applications. Kluwer
Academic, 1999.

[25] Jonathan S. Golan. Semirings and affine equations over them: theory
and applications. Kluwer Academic, 2003.

[26] Michel Gondran and Michel Minoux. Graphs, Dioids and Semirings:
New Models and Algorithms. Springer, 2008.

[27] R. M. Haralick and L. G. Shapiro. The consistent labeling problem.
IEEE Trans. Pattern Analysis and Machine Intelligence, 1(2):173–184,
1979.

[28] Robert M. Haralick and Linda G. Shapiro. Computer and Robot
Vision. Addison-Wesley Longman Publishing, 1992.

[29] Tamir Hazan and Amnon Shashua. Convergent message-passing
algorithms for inference over general graphs with convex free
energies. In Conf. on Uncertainty in Artificial Intelligence, pages
264–273, 2008.

[30] Tom Heskes. Convexity arguments for efficient minimization of
the Bethe and Kikuchi free energies. Jr. of Artificial Intelligence
Research, 26:153–190, 2006.

[31] P. Janssen, P. Jegou, B. Nouguier, and M.C. Vilarem. A filtering
process for general constraint satisfaction problems: Achieving
pairwise consistency using an associated binary representation.
In IEEE Workshop on Tools for Artificial Intelligence, pages 420–427,
1989.

[32] Jason K. Johnson, Dmitry M. Malioutov, and Alan S. Willsky.
Lagrangian relaxation for MAP estimation in graphical models.
In Allerton Conf. Communication, Control and Computing, 2007.

[33] Jörg H. Kappes, Bjoern Andres, Fred A. Hamprecht, Christoph
Schnörr, Sebastian Nowozin, Dhruv Batra, Sungwoong Kim, Bern-
hard X. Kausler, Jan Lellmann, Nikos Komodakis, and Carsten
Rother. A comparative study of modern inference techniques for
discrete energy minimization problem. In Conf. Computer Vision
and Pattern Recognition, 2013.

14

[34] E. P. Klement, R. Mesiar, and E. Pap. Triangular Norms. Springer,
2000.

[35] J. Kohlas. Information Algebras: Generic Structures for Inference.
Springer-Verlag, 2003.

[36] J. Kohlas and N. Wilson. Semiring induced valuation algebras:
Exact and approximate local computation algorithms. Artificial
Intelligence, 172(11):1360–1399, 2008.

[37] Vladimir Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization. IEEE Trans. Pattern Analysis and
Machine Intelligence, 28(10):1568–1583, 2006.

[38] N. Komodakis and N. Paragios. Beyond loose LP-relaxations:
Optimizing MRFs by repairing cycles. In Eur. Conf. on Computer
Vision, 2008.

[39] N. Komodakis, N. Paragios, and G. Tziritas. MRF energy mini-
mization and beyond via dual decomposition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 33(3):531–552, 2011.

[40] Arie Koster, C. P. M. van Hoesel, and A. W. J. Kolen. The par-
tial constraint satisfaction problem: Facets and lifting theorems.
Operations Research Letters, 23(3-5):89–97, 1998.

[41] V. A. Kovalevsky and V. K. Koval. A diffusion algorithm for de-
creasing the energy of the max-sum labeling problem. Glushkov
Institute of Cybernetics, Kiev, USSR. Unpublished, approx. 1975.

[42] Pawan Kumar and Philip H. S. Torr. Efficiently solving convex
relaxations for MAP estimation. In Intl. Conf. on Machine Learning,
pages 680–687. ACM, 2008.

[43] Zhifei Li and Jason Eisner. First- and second-order expectation
semirings with applications to minimum-risk training on trans-
lation forests. In Conf. on Empirical Methods in Natural Language
Processing (EMNLP), pages 40–51, 2009.

[44] Grigori L. Litvinov. Maslov dequantization, idempotent and
tropical mathematics: A brief introduction. Journal of Mathematical
Sciences, 140(3):426–444, 2007.

[45] A. Mackworth. Constraint satisfaction. In Encyclopaedia of Artificial
Intelligence, pages 285–292. Wiley, 1991.

[46] A. K. Mackworth. Consistency in networks of relations. Artificial
intelligence, 8(1):65–73, 1977.

[47] Talya Meltzer, Amir Globerson, and Yair Weiss. Convergent mes-
sage passing algorithms: a unifying view. In Conf. on Uncertainty
in Artificial Intelligence, pages 393–401, 2009.

[48] Pedro Meseguer, Francesca Rossi, and Thomas Schiex. Soft
Constraints. In Rossi et al. [55], 2006.

[49] M. Mézard and A. Montanari. Information, Physics, and Computa-
tion. Oxford University Press, Inc., New York, NY, USA, 2009.

[50] Ugo Montanari. Networks of constraints: Fundamental properties
and application to picture processing. Information Science, 7:95–
132, 1974.

[51] Judea Pearl. Probabilistic reasoning in intelligent systems: Networks
of plausible inference. Morgan Kaufmann, San Francisco, 1988.

[52] M. Pouly and J. Kohlas. Generic Inference – A unifying Theory for
Automated Reasoning. John Wiley & Sons, Inc., 2011.

[53] Pradeep Ravikumar, Alekh Agarwal, and Martin J. Wainwright.
Message-passing for graph-structured linear programs: Proximal
methods and rounding schemes. Journal of Machine Learning
Research, 11:1043–1080, 2010.

[54] A. Rosenfeld, R. A. Hummel, and S. W. Zucker. Scene labeling
by relaxation operations. IEEE Trans. on Systems, Man, and
Cybernetics, 6(6):420–433, June 1976.

[55] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Hand-
book of Constraint Programming. Elsevier, 2006.

[56] Thomas Schiex, Hélène Fargier, and Gerard Verfaillie. Valued
constraint satisfaction problems: Hard and easy problems. In Intl.
Joint Conf. on Artificial Intelligence), pages 631–637, 1995.

[57] M. Schlesinger and K. Antoniuk. Diffusion algorithms and struc-
tural recognition optimization problems. Cybernetics and Systems
Analysis, 47:175–192, 2011.

[58] Michail I. Schlesinger. Matematicheskie sredstva obrabotki izo-
brazheniy (Mathematical Tools of Image Processing). Naukova
Dumka, Kiev, 1989. In Russian.

[59] Michail I. Schlesinger and Boris Flach. Some solvable subclasses
of structural recognition problems. In Czech Pattern Recognition
Workshop. Czech Pattern Recognition Society, 2000.

[60] Prakash P. Shenoy and Glenn Shafer. Axioms for probability and
belief-function proagation. In Conf. on Uncertainty in Artificial
Intelligence, pages 169–198, 1990.

[61] M. I. Shlezinger. Syntactic analysis of two-dimensional visual
signals in noisy conditions. Cybernetics and Systems Analysis,
12(4):612–628, 1976. Translation from Russian.

[62] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss.
Tightening LP relaxations for MAP using message passing. In
Conf. Uncertainty in Artificial Intelligence, 2008.

[63] David Sontag. Approximate Inference in Graphical Models using LP
Relaxations. PhD thesis, Massachusetts Institute of Technology,
Dept. of Electrical Eng. and Computer Science, 2010.

[64] David Sontag, Amir Globerson, and Tommi Jaakkola. Introduc-
tion to dual decomposition for inference. In Suvrit Sra, Sebastian
Nowozin, and Stephen J. Wright, editors, Optimization for Machine
Learning. MIT Press, 2012.

[65] David Sontag and Tommi Jaakkola. New outer bounds on the
marginal polytope. In Neural Information Processing Systems, 2007.

[66] Richard Szeliski, Ramin Zabih, Daniel Scharstein, Olga Veksler,
Vladimir Kolmogorov, Aseem Agarwala, Marshall Tappen, and
Carsten Rother. A comparative study of energy minimization
methods for markov random fields with smoothness-based priors.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 30(6):1068–
1080, 2008.

[67] Johan Thapper and Stanislav Živný. The power of linear program-
ming for valued CSPs. In Symp. Foundations of Computer Science,
pages 669–678. IEEE, 2012.

[68] Stanislav Živný. The Complexity of Valued Constraint Satisfaction
Problems. Cognitive Technologies. Springer, 2012.

[69] Martin J. Wainwright and Michael I. Jordan. Graphical models,
exponential families, and variational inference. Foundations and
Trends in Machine Learning, 1(1-2):1–305, 2008.

[70] David L. Waltz. Generating semantic descriptions from drawings
of scenes with shadows. Technical Report AI271, Massachusetts
Institute of Technology, 1972.

[71] Yair Weiss, Chen Yanover, and Talya Meltzer. MAP estimation,
linear programming and belief propagation with convex free
energies. In Conf. on Uncertainty in Artificial Intelligence, 2007.

[72] Tomáš Werner. A linear programming approach to max-sum
problem: A review. IEEE Trans. Pattern Analysis and Machine
Intelligence, 29(7):1165–1179, July 2007.

[73] Tomáš Werner. Marginal consistency: Unifying constraint propa-
gation on commutative semirings. In Intl. Workshop on Preferences
and Soft Constraints, pages 43–57, 2008.

[74] Tomáš Werner. Revisiting the linear programming relaxation
approach to Gibbs energy minimization and weighted constraint
satisfaction. IEEE Trans. Pattern Analysis and Machine Intelligence,
32(8):1474–1488, August 2010.

[75] Tomáš Werner. How to compute primal solution from dual one
in MAP inference in MRF? Control Systems and Computers, March–
April(2):35–45, 2011.

[76] Tomáš Werner and Alexander Shekhovtsov. Unified framework
for semiring-based arc consistency and relaxation labeling. In 12th
Computer Vision Winter Workshop, St. Lambrecht, Austria, pages 27–
34. Graz University of Technology, February 2007.

Tomáš Werner received his PhD degree at the
Czech Technical University in Prague, in 1999.
Since then, he worked as a researcher at the
Center for Machine Perception at the same uni-
versity. The years 2000-2001 he spent as a post-
doc in the Visual Geometry Group at the Oxford
University, U.K. His interests include multiple
view geometry, graphical models, optimization,
and constraint satisfaction.

Primal View on Belief Propagation

Tomáš Werner

Center for Machine Perception, Czech Technical University
Karlovo náměst́ı 13, 12135 Prague, Czech Republic

Abstract

It is known that fixed points of loopy be-
lief propagation (BP) correspond to station-
ary points of the Bethe variational problem,
where we minimize the Bethe free energy
subject to normalization and marginalization
constraints. Unfortunately, this does not en-
tirely explain BP because BP is a dual rather
than primal algorithm to solve the Bethe
variational problem – beliefs are infeasible
before convergence. Thus, we have no bet-
ter understanding of BP than as an algo-
rithm to seek for a common zero of a system
of non-linear functions, not explicitly related
to each other. In this theoretical paper, we
show that these functions are in fact explic-
itly related – they are the partial derivatives
of a single function of reparameterizations.
That means, BP seeks for a stationary point
of a single function, without any constraints.
This function has a very natural form: it
is a linear combination of local log-partition
functions, exactly as the Bethe entropy is the
same linear combination of local entropies.

1 Introduction

Loopy belief propagation (further only belief propaga-
tion, BP) (Pearl, 1988) is a well-known algorithm to
approximate marginals and the partition function of
the Gibbs probability distribution defined by an undi-
rected graphical model (Markov random field). For
acyclic graphs it yields the exact result, for graphs
with cycles it often yields surprisingly good approxi-
mations. A large body of literature exists on BP and
related topics and we refer the reader to the recent
survey by (Wainwright & Jordan, 2008).

Unfortunately, BP on cyclic graphs is not guaranteed
to converge, which is indeed often observed. A lot

of effort has been invested to understanding this phe-
nomenon, see (Wainwright & Jordan, 2008, §4.1.3) for
references. Solid ground was provided by (Yedidia
et al., 2000; Yedidia et al., 2005) who discovered that
BP fixed points coincide with stationary points of the
Bethe variational problem, long known in statistical
physics. (Heskes, 2003; Heskes, 2006) showed that ev-
ery stable BP fixed points are local optima (rather
than saddle points) of this problem, but not vice versa.

The basic operation in the BP algorithm is ‘passing
a message’, which means sending a vector of numbers
between a node and an edge of the graph (Pearl, 1988).
Messages turned out to be directly related to the La-
grange multipliers of the Bethe variational problem
(Yedidia et al., 2000; Yedidia et al., 2005). Later it
became clear (Wainwright et al., 2004) that passing
a message corresponds to reparameterizing the distri-
bution. In this view, BP tries to reparameterize the
distribution so that the corresponding beliefs have con-
sistent marginals.

Though this is generally known, no existing theoretical
analysis of BP fully utilizes the interpretation of mes-
sages and the Lagrange multipliers of the Bethe varia-
tional problem as reparameterizations. In contrast, we
incorporate reparameterizations into variational infer-
ence and BP in a principled way, which makes the
picture more complete and provides a mathematical
framework in which we formulate our main result.

The correspondence between BP fixed points and the
Bethe variational problem did not entirely explain the
BP algorithm itself because BP does not directly solve
the Bethe variational problem – beliefs are infeasible
to this problem until convergence. Thus, we still have
no better understanding of BP than an algorithm to
seek for a common zero of a system of non-linear func-
tions, not explicitly related to each other. As our main
result, we show that these functions are in fact explic-
itly related – they are the partial derivatives of a sin-
gle function of reparameterizations. In other words,
BP searches for a stationary point of a single func-

tion, without any constraints. This function has a very
natural form: it is a linear combination of local log-
partition functions, exactly as the Bethe entropy is the
same linear combination of local entropies. We show
that BP fixed points are in one-to-one correspondence
with stationary points of this function and that all
these points are saddles1.

Several versions of BP and related free energies ex-
ist. Originally, BP was formulated for models with
pairwise interactions. We formulate our result for the
factor-graph BP (Kschischang et al., 2001), which per-
mits interactions of arbitrary order. We currently do
not consider more complex versions, cluster variation
methods and generalized BP (Yedidia et al., 2005).

2 Exponential families

Here we recall the basics of exponential families of
probability distributions, which offer a convenient for-
malism to reason about graphical models (Wainwright
& Jordan, 2008). In §2.3, we incorporate the con-
cept of reparameterizations in overcomplete exponen-
tial families in a more principled way than other au-
thors – which is important for graphical models, where
reparameterizations play a crucial rôle.

Let X and I be finite sets and φ: X → R
I . The

discrete exponential family is a family of probability
distributions

p(x |θ) = exp[θφ(x)− F (θ)] (1)

instantiated by triplet (X, I, φ) and parameterized by
vector θ ∈ R

I . We understand θ as a row vector and
φ(x) as a column vector, so that θφ(x) =

∑

i∈I θiφi(x).
The normalization term

F (θ) =
⊕

x∈X

θφ(x) (2)

is the log-partition function and a ⊕ b = log(ea + eb)
denotes the log-sum-exp operation. Operation ⊕ is as-
sociative and commutative and + distributes over ⊕.

We assume in §2.1 and §2.2 that the functions φi are
affinely independent, i.e., they form a minimal repre-
sentation of the family. We relax this later in §2.3.

2.1 Mean parameters

The mean values of functions φi with respect to distri-
bution (1) are the mean parameters of the distribution

µ =
∑

x∈X

p(x |θ)φ(x) =

∑

x∈X φ(x) exp θφ(x)
∑

x∈X exp θφ(x)
(3)

1These saddle points should not be confused with the
saddle points in the double-loop algorithms to minimize
the Bethe free energy (Heskes, 2003; Heskes, 2006).

which is a column vector. The map θ 7→ µ defined
by (3) will be denoted m: R

I → R
I . Parameters θ

are uniquely determined by µ by solving the equation
system µ = m(θ). Mean parameters are related with
the log-partition function by

dF (θ)

dθ
= m(θ) (4)

Let φ(X) = {φ(x) | x ∈ X } denote the range of φ, a
finite set of vectors from R

I . The set of all realizable
mean value vectors of φ is the convex hull of φ(X),

convφ(X) =
{

∑

x∈X

p(x)φ(x)
∣

∣

∣
p(x)≥ 0,

∑

x∈X

p(x) = 1
}

where p stands for all possible distributions over X,
not necessarily from the family. Every element of
conv φ(X) with p(x) > 0 (i.e., a strictly positive con-
vex combination of φ) can be obtained also as the mean
of φ over a distribution from the family – thus, the
range m(RI) of the map m is the interior of conv φ(X).

2.2 Entropy and convex conjugacy

The entropy of distribution (1) as a function of θ equals
F (θ) − θm(θ). Let H(µ) denote the entropy of the
distribution as a function of µ. It is defined implicitly:
we first take any θ satisfying µ = m(θ) and then let
H(µ) = F (θ) − θµ. The function H is positive and
concave and its domain is the interior of conv φ(X).

The functions F and −H are related by convex con-
jugacy (Legendre-Fenchel transform), which says that
any µ from the interior of conv φ(X) and any θ satisfy
Fenchel’s inequality

F (θ)−H(µ)− θµ ≥ 0 (5)

where equality holds if and only if µ = m(θ). An
alternative view of (5) is that F (θ)−H(µ)− θµ is the
KL-divergence between the distribution determined by
θ and the distribution determined by µ.

Notice that the equality (4) can be obtained by mini-
mizing the left-hand side of (5) with respect to θ. Sim-
ilarly, minimizing with respect to µ yields

dH(µ)

dµ
= −θ (6)

where θ is the (unique) solution of m(θ) = µ.

2.3 Reparameterizations

Now, suppose the basis functions φi are affinely depen-
dent, that is, they form an overcomplete representation
of the family. These dependencies can be written as

Aφ(x) = 0, Bφ(x) = 1 ∀x ∈ X (7)

for some matrices A and B, where 0 and 1 denote
here column vectors of zeros and ones. Thus, matrix
A captures homogeneous dependencies and matrix B
captures inhomogeneous dependencies. It follows that

aff φ(X) = {µ ∈ R
I | Aµ = 0, Bµ = 1 }

is the affine hull of the set φ(X).

Let α and β be arbitrary row vectors and let

θ′ = θ + αA + βB (8)

Then, θ′φ(x) = θφ(x) + β1 and F (θ′) = F (θ) + β1. It
follows that transformation (8) preserves distribution
(1) and it is thus a reparameterization of the distribu-
tion. We will refer to the subclass of reparameteriza-
tions with β = 0 as homogeneous reparameterizations.

For an overcomplete representation, θ is no longer de-
termined by µ uniquely but only up to reparameteri-
zations, m(θ + αA + βB) = m(θ).

Moreover, equality (6) can no longer be used because
the partial derivatives of H(µ) are undefined – only
directional derivatives parallel to the space aff φ(X)
are defined. Let

∇νH(µ) = lim
t→0

H(µ + tν)−H(µ)

t
=

dH(µ + tν)

dt

∣

∣

∣

∣

t=0

denote the directional derivative of H(µ) in direction
ν ∈ R

I . To be parallel to aff φ(X), ν has to satisfy
Aν = 0 and Bν = 0. Then (6) generalizes to

∇νH(µ) = −θν ∀ν: Aν = 0, Bν = 0 (9)

This is consistent with the fact that θν is invariant to
reparameterizations, (θ + αA + βB)ν = θν.

3 Gibbs distribution

In §3, we show how the Gibbs distribution on a graph-
ical model arises as a special exponential family.

Let V be a set of variables. Let E ⊆ 2V be a set vari-
able subsets, i.e., (V,E) is a hypergraph2. We assume
E contains no one-element subsets. A variable v takes
states xv ∈ Xv, where Xv is a finite domain of the vari-
able. For a hyperedge a ∈ E, let Xa = ×v∈a Xv de-
note the Cartesian product of domains of variables a.
Elements of Xa will be denoted xa.

We instantiate (X, I, φ) such that distribution (1) be-
comes the Gibbs distribution on hypergraph (V,E).
Let X = XV be the Cartesian product of all variable
domains. Let

I = {(v,xv) | v ∈ V, xv ∈Xv} ∪ {(a,xa) | a∈E, xa ∈Xa}

2Though we consider the factor-graph BP in the paper,
we do not use the concept of a factor graph – we use a
hypergraph instead, which is clearly equivalent.

For i ∈ I, we denote the i-component of vector θ and µ
by θv(xv), θa(xa) and µv(xv), µa(xa), respectively. Let
φ: X → {0, 1}I be indicator functions chosen such that

θφ(x) =
∑

v∈V

θv(xv) +
∑

a∈E

θa(xa) (10)

Now, distribution (1) is the Gibbs distribution and
µ = m(θ) are its marginals,

µv(xv) =
∑

xV \v

p(x |θ), µa(xa) =
∑

xV \a

p(x |θ)

The polytope conv φ(X) contains all realizable
marginal vectors µ and is known as the marginal poly-
tope (Wainwright & Jordan, 2008). Moreover, for this
choice of (X, I, φ) we have {0, 1}I ∩ aff φ(X) = φ(X).

3.1 Affine dependencies

Now we specify matrices A and B, which capture affine
dependencies among functions φi. We do this indi-
rectly, by writing down products Aµ, Bµ, αA and βB.

Equation systems Aµ = 0 and Bµ = 1 turn out to be
the familiar marginalization and normalization condi-
tions, respectively:

∑

xa\v

µa(xa)− µv(xv) = 0 (11a)

∑

xv

µv(xv) = 1,
∑

xa

µa(xa) = 1 (11b)

Let us remark that (11a) describes only a subset of all
existing homogeneous dependencies among φi, namely
those that couple hyperedges with variables, and omits
those that couple pairs of hyperedges. But this is a lim-
itation of the factor-graph BP compared to the gener-
alized BP. All existing dependences would be described
by

∑

xa\b
µa(xa) =

∑

xb\a
µb(xb). If E ⊆

(

V

2

)

is an or-

dinary graph (that means, there are only pairwise in-
teractions), (11a) describes all existing dependencies.

Reparameterization θ′ = θ + αA + βB reads

θ′v(xv) = θv(xv) −
∑

a∋v

αav(xv) + βv (12a)

θ′a(xa) = θa(xa) +
∑

v∈a

αav(xv) + βa (12b)

Let us explain the detailed meaning of (12).

We define the elementary homogeneous reparameteri-
zation as follows: pick any pair (a, v) with v ∈ a, sub-
tract an arbitrary unary function αav(·) from function
θv(·), and add the same function to θa(·):

θ′v(xv)← θv(xv) − αav(xv) (13a)

θ′a(xa)← θa(xa) + αav(xv) (13b)

Since αav(xv) cancels out, this preserves the sum
θv(xv) + θa(xa) and hence also the function (10). Ap-
plying transformations (13) to all pairs (a, v) yields the
terms with α in (12), i.e., the homogeneous reparam-
eterization θ′ = θ + αA.

Reparameterization θ′ = θ+βB simply adds constants
βv, βa to all functions θv(·), θa(·).

Let us point out that papers on graphical models usu-
ally mean by ‘reparameterizations’ only homogeneous
reparameterizations, or are not explicit about that.

Reparameterizations in the form (12) and (13) were
first used by (Shlezinger, 1976) in LP relaxation of the
problem maxx∈X θφ(x) (i.e., finding modes of a Gibbs
distribution). More can be found in modern revisions
(Werner, 2007; Werner, 2010) of this approach.

4 Belief propagation

In the most general formulation (Yedidia et al., 2005),
BP and related algorithms and free energies start with
decomposing the original hypergraph into a collection
of sub-hypergraphs (typically, hypertrees). Each sub-
hypergraph is assigned a counting number (negative,
zero, or positive) such that every hyperedge of the orig-
inal hypergraph is counted exactly once in total.

In the factor-graph BP, our hypergraph (V,E) is de-
composed into the collection of sub-hypergraphs Ev

and Ea, where v ∈ V and a ∈ E. Hypergraph Ev

contains only variable v. Hypergraph Ea contains hy-
peredge a and variables v ∈ a. The counting number
of Ea equals 1 and the counting number of Ev equals
1− nv, where nv =

∑

a∋v 1.

Each sub-hypergraph defines its own local Gibbs dis-
tribution. Let the distribution on Ev and Ea be de-
noted respectively by

pv(xv |θ) = exp
[

θv(xv)− F v(θ)
]

(14a)

pa(xa |θ) = exp
[

θa(xa) +
∑

v∈a

θv(xv)− F a(θ)
]

(14b)

where the local log-partition functions read

F v(θ) =
⊕

xv

θv(xv) (15a)

F a(θ) =
⊕

xa

[

θa(xa) +
∑

v∈a

θv(xv)
]

(15b)

Similarly, the entropies of distributions (14) read3

Hv(µ) = −
∑

xv

µv(xv) log µv(xv) (16a)

Ha(µ) = −
∑

xa

µa(xa) log µa(xa) (16b)

3It might seem surprising that numbers µv(xv) for v ∈ a
are absent in (16b). But (16b) is correct, variables really
have zero counting numbers in hypergraph Ea.

Let us define two functions

F̃ (θ) =
∑

v∈V

(1− nv)F v(θ) +
∑

a∈E

F a(θ) (17)

H̃(µ) =
∑

v∈V

(1− nv)Hv(µ) +
∑

a∈E

Ha(µ) (18)

While the function H̃ is the well-known Bethe en-
tropy approximation, F̃ can be seen as the ‘Bethe log-
partition function’. To our knowledge, the function F̃
was not mentioned in previous works.

Next we proceed as follows. In §4.1 we define the BP
algorithm and its fixed points. Then we give two in-
terpretations of BP fixed points:

• In §4.2 we recall the well-known result by (Yedidia
et al., 2000; Yedidia et al., 2005) that BP fixed
points correspond to stationary points of the (neg-
ative) Bethe free energy θµ + H̃(µ) on the space
{µ > 0 | Aµ = 0, Bµ = 1 }. We refer to this as
the dual interpretation.

• In §4.3 we present our main result, that BP fixed
points correspond to stationary points of the func-
tion F̃ (θ) on the space of homogeneous reparam-
eterizations of θ. We refer to this as the primal
interpretation.

Here, we use the term ‘stationary point’ in a slightly
broader meaning than is usual: a stationary point of a
function on an affine space is a point where all direc-
tional derivatives parallel to that space vanish.

4.1 BP algorithm and its fixed points

Usually, BP is formulated in terms of passing mes-
sages, following (Pearl, 1988). We formulate it here in
terms of reparameterizations. Our formulation is re-
lated to but different from (Wainwright et al., 2004).

In BP, probabilities (14) are seen as approximations
of the true variable and hyperedge marginals of the
Gibbs distribution (1). For a general θ, they fail to
satisfy the marginal consistency condition

∑

xa\v

pa(xa |θ) = pv(xv |θ) (19)

which has to be satisfied by true marginals. The BP al-
gorithm seeks to reparameterize θ such that (19) holds.
Since functions (14) are invariant to reparameteriza-
tions θ′ = θ + βB, only homogeneous reparameteriza-
tions can be considered. Plugging (14) into (19) yields

⊕

xa\v

[

θa(xa) +
∑

u∈a\v

θu(xu)
]

= constav (20)

where constav = F a(θ)−F v(θ) are constants indepen-
dent on xv. We define a BP fixed point to be a vector
θ satisfying (20).

A single update of the BP algorithm (its serial ver-
sion) enforces condition (20) to hold for a single pair
(a, v) by applying the elementary homogeneous repa-
rameterization (13) to the pair (a, v). This determines
αav(·) in (13) up to a constant. This constant is set so
that

⊕

xv
αav(xv) =

⊕

xv
0, which ensures that num-

bers θ stay bounded during the algorithm.

In our exponential family formalism, the BP fixed
point condition can be stated concisely as follows. Let
a map µ = m̃(θ) be defined by µv(xv) = pv(xv |θ),
µa(xa) = pa(xa |θ). Map m̃ can be seen as an approx-
imation of the true marginal map m. Now, BP fixed
point condition (19) reads simply Am̃(θ) = 0.

The true map m satisfies Am(θ) = 0, Bm(θ) = 1 and
m(θ + αA + βB) = m(θ). In contrast, m̃ satisfies only
Bm̃(θ) = 1 and m̃(θ + βB) = m̃(θ) in general. BP
seeks to reparameterize θ such that also Am̃(θ) = 0,
i.e., to solve the system Am̃(θ + αA) = 0 for α.

4.2 Dual interpretation of BP

In variational inference (Wainwright & Jordan, 2008),
the log-partition function F and marginals m are
computed indirectly via convex conjugacy between F
and −H. Fenchel’s inequality (5) implies that

F (θ) = max{θµ+H(µ) | µ > 0, µ∈ convφ(X)} (21)

where the optimum is attained at µ = m(θ). This so
far provides no advantage because both the marginal
polytope conv φ(X) and the entropy function H are
defined in an intractable way. The trick is to replace
them with their tractable approximations. Then, the
optimal argument and value of (21) is an approxima-
tion of the true m(θ) and F (θ), respectively.

If the polytope conv φ(X) is approximated with the
‘local polytope’ (Wainwright & Jordan, 2008)

[0, 1]I ∩ aff φ(X) = {µ ≥ 0 | Aµ = 0, Bµ = 1 } (22)

and the true entropy H with the Bethe entropy (18),
we obtain the Bethe variational problem

max{ θµ + H̃(µ) | µ > 0, Aµ = 0, Bµ = 1 } (23)

where −θµ− H̃(µ) is known as the Bethe free energy.

In general, [0, 1]I ∩ aff φ(X) ⊃ conv φ(X) and H̃ 6= H.
However, if the factor graph of our graphical model is
acyclic then [0, 1]I∩aff φ(X) = conv φ(X) and H̃ = H.
(Wainwright & Jordan, 2008; Yedidia et al., 2005).

Let us emphasize that the BP algorithm does not di-
rectly solve problem (23). BP maintains µ = m̃(θ),
which ensures µ > 0 and Bµ = 1, and tries to reparam-
eterize θ so that Aµ = 0. Thus, µ is infeasible to (23)
until BP converges. Operating on the Lagrange mul-
tipliers of (23), BP is a dual algorithm to solve (23).

(Yedidia et al., 2005) showed that BP fixed points cor-
respond to stationary points of problem (23). We need
to say precisely what is meant by this correspondence
because we defined BP fixed points in terms of θ and
stationary points of (23) in terms of µ. The correspon-
dence is given by the map µ = m̃(θ). This map is one-
to-one up to adding constants to functions θv(·), θa(·),
i.e., up to reparameterizations θ ← θ + βB.

Moreover, notice that the objective of (23) is in-
variant to homogeneous reparameterizations because
(θ + αA)µ = θµ for feasible µ.

With this understanding, we can state Yedidia’s result.

Theorem 1. If θ and µ correspond through µ = m̃(θ),
the following statements are equivalent:

• Am̃(θ) = 0, i.e., θ is a BP fixed point.

• µ is a stationary point of θµ + H̃(µ) on the set
{µ > 0 | Aµ = 0, Bµ = 1 }.

Let us remark that, by the discussion in §2.3, the sec-
ond statement says that the directional derivative of
θµ+H̃(µ) vanishes in all directions parallel to aff φ(X):

∇νH̃(µ) = −θν ∀ν: Aν = 0, Bν = 0 (24)

4.3 Primal interpretation of BP

Here we present our main result, which can be con-
cisely stated as follows: the BP algorithm tries to find
a vector α such that the gradient of F̃ (θ + αA) with
respect to α vanishes.

This gradient can be conveniently evaluated at α = 0
without loss of generality since the gradient at α 6= 0
can be recovered by replacing θ with θ + αA. Thus,
we claim that θ is a BP fixed point if and only if

dF̃ (θ + αA)

dα

∣

∣

∣

∣

α=0

= A
dF̃ (θ)

dθ
= 0 (25)

where the first equality follows from the chain rule.

An alternative interpretation of condition (25) is that
θ is a stationary point of function F̃ (θ) on the space
of homogeneous reparameterizations of θ. Recall that
this is the space of vectors θ + αA for all possible α.
Condition (25) says that all directional derivatives par-
allel to this space vanish. Now we formulate our result.

Theorem 2. The following statements are equivalent:

• Am̃(θ) = 0, i.e., θ is a BP fixed point.

• A [dF̃ (θ)/dθ] = 0, i.e., θ is a stationary point of
F̃ (θ) on the space of homogeneous reparameteriza-
tions of θ.

Proof. In the first part of the proof, we express the
derivative (25) in terms of m̃(θ).

We begin by expressing the derivative dF̃ (θ)/dθ in
terms of m̃(θ). Differentiating (17) yields

∂F̃ (θ)

∂θv(xv)
= (1− nv)

∂F v(θ)

∂θv(xv)
+

∑

a∋v

∂F a(θ)

∂θv(xv)
(26a)

∂F̃ (θ)

∂θa(xa)
=

∂F a(θ)

∂θa(xa)
(26b)

Let us denote µ = m̃(θ) for brevity. By (4), we have

∂F v(θ)

∂θv(xv)
= µv(xv)

∂F a(θ)

∂θa(xa)
= µa(xa)

∂F a(θ)

∂θv(xv)
=

∑

xa\v

µa(xa)

Plugging this into (26) and some manipulations yields

∂F̃ (θ)

∂θv(xv)
= µv(xv) +

∑

a∋v

γav(xv) (27a)

∂F̃ (θ)

∂θa(xa)
= µa(xa) (27b)

where we denoted γ = Aµ, i.e.,

γav(xv) =
∑

xa\v

µa(xa)− µv(xv)

By (11a), the components of (25) read

∂F̃ (θ + αA)

∂αav(xv)

∣

∣

∣

∣

α=0

=
∑

xa\v

∂F̃ (θ)

∂θa(xa)
−

∂F̃ (θ)

∂θv(xv)
(28)

Plugging (27) into (28) finally yields

∂F̃ (θ + αA)

∂αav(xv)

∣

∣

∣

∣

α=0

= −
∑

b∋v, b 6=a

γbv(xv) (29)

In the second part of the proof, we express the two
statements in Theorem 2 in terms of γ. The first state-
ment is equivalent to system (30a) below. By (29), the
second statement is equivalent to system (30b).

γav(xv) = 0 ∀a ∈ E, v ∈ a, xv (30a)
∑

b∋v, b 6=a

γbv(xv) = 0 ∀a ∈ E, v ∈ a, xv (30b)

We need to show that systems (30a) and (30b) are
equivalent. This can be shown separately for each pair
(v, xv). Pick (v, xv) and write γa instead of γav(xv) for
simplicity. Then we need to show that an arbitrary set
of numbers { γa | a ∋ v } satisfies the equivalence

[

γa = 0 ∀a ∋ v
]

⇐⇒
[

∑

b∋v, b 6=a

γb = 0 ∀a ∋ v
]

which is already easy.

Next, we give a second order property of function F̃ .

Theorem 3. Consider F̃ (θ + αA) as a function of α.
Every stationary point of this function is a saddle
point.

Proof. We need to show that the Hessian

d2F̃ (θ + αA)

dα2

is indefinite at any point α satisfying Am̃(θ+αA) = 0.
It suffices to show that only a partial Hessian is indefi-
nite. We obtain this partial Hessian by computing the
partial derivatives ∂2F̃ (θ+αA)/∂αk ∂αℓ only for some
of all possible pairs (k, ℓ). After some work (we do not
present details of the derivation) we get

∂2F̃ (θ + αA)

∂αav(xv) ∂αbv(xv)
=

{

0 if a = b
[µv(xv)− 1]µv(xv) if a 6= b

where µ = m̃(θ + αA). This holds only if Aµ = 0,
at points Aµ 6= 0 the derivative is more complex. The
derivative takes only two values, depending on whether
a = b or a 6= b. Hence the diagonal elements of the
partial Hessian are zero and the remaining elements
are equal. Any such matrix is indefinite.

4.4 Relation of primal and dual view

One can notice that F̃ , H̃, m̃ are related by certain
equalities, which can be seen as ‘rudiments’ of convex
conjugacy relationship among the true F , H, m.

Thus, (27) shows that if θ is a BP fixed point then

dF̃ (θ)

dθ
= m̃(θ) (31)

In contrast to (4), equality (31) holds only at BP
fixed points because of the extra term

∑

a∋v γav(xv) in
(27a), which vanishes at and only at BP fixed points.
In fact, this might suggest that the map µ = dF̃ (θ)/dθ
is a more fundamental object than the map µ = m̃(θ)
– but we do not further pursue this observation here.

If µ = m̃(θ) and Aµ = 0 (i.e., θ is a BP fixed point)
then

F̃ (θ)− H̃(µ)− θµ = 0 (32)

Unlike Fenchel’s equality for true F , H, m, equality
(32) fails to hold if Aµ 6= 0. Interestingly, we observed
that condition Aµ = 0 becomes unnecessary if the form
(18) of the Bethe entropy is replaced by its different
form. Let

H̃(µ) =
∑

v∈V

Hv(µ)−
∑

a∈E

Ja(µ) (33)

where

Ja(µ) =
∑

xa

µa(xa) log
µa(xa)

∏

v∈a µv(xv)

is the KL-divergence between µa(xa) and
∏

v∈a µv(xv).
Functions (18) and (33) are equal for Aµ = 0 but dif-
ferent otherwise (Wainwright & Jordan, 2008, §4.1.2).
It can be easily verified that with this form of H̃, equal-
ity (32) holds for µ = m̃(θ) even if Aµ 6= 0. In other
words, substitution µ = m̃(θ) transforms the function
θµ + H̃(µ) into F̃ (θ).

The Bethe entropy has a clear meaning: for acyclic
graphs, H̃ equals the true entropy H. It follows from
(32) that F̃ has a similar property: for acyclic graphs,
F̃ equals the true log-partition function F but only if
Am̃(θ) = 0 (i.e., only on the space of BP fixed points).

5 Conclusion

We have presented a novel interpretation of loopy be-
lief propagation. While it was known that BP fixed
points correspond to stationary points of the Bethe
free energy on the local polytope, we have shown that
they also correspond to stationary points of the ‘Bethe
log-partition function’ on the space of homogeneous
reparameterizations. To the best of our knowledge,
this simple observation was not made before. The two
interpretations are exactly complementary – however,
they are not related by classical convex duality because
function H̃ is not concave and F̃ is not convex.

So far, BP was understood as an algorithm to seek for
a common zero of a set of explicitly unrelated equa-
tions. Our result shows that these equations are par-
tial derivatives of the single function F̃ (θ + αA) of α
without any additional constraints.

One would expect that finding a stationary point of
a single multivariate analytic function must be easier
than solving a system of unrelated non-linear equa-
tions – but this is true only if the stationary point is a
local extreme. Unfortunately, all stationary points of
the function F̃ (θ+αA) are saddle points, and finding a
saddle point can be much harder (and little literature
seems to exist about it). Therefore, we currently do
not know whether our result can provide new insights
into (non-)convergence of BP.

Various generalized versions of BP are often designed
via dual considerations involving local free energies
and entropies. Our result suggests that free energies
may not be needed for this at all, the primal route via
reparameterizations and local log-partition functions
may be simpler. This is open to future research.

Although we have not demonstrated any practical con-
sequences of our contribution, we believe that the pre-
sented mathematical framework, which treats repa-
rameterizations explicitly and incorporates them into
the exponential family language, brings more clarity
in the theoretical understanding of graphical models.

Acknowledgements

This research was supported by the European Com-
mission grant 215078 (DIPLECS) and the Czech gov-
ernment grant MSM6840770038.

References

Heskes, T. (2003). Stable fixed points of loopy belief
propagation are minima of the Bethe free energy.
Advances in Neural Information Processing Systems
(NIPS) (pp. 359–366).

Heskes, T. (2006). Convexity arguments for efficient
minimization of the Bethe and Kikuchi free energies.
Jr. of Artificial Intelligence Research, 26, 153–190.

Kschischang, F. R., Frey, B. J., & Loeliger, H. A.
(2001). Factor graphs and the sum-product algo-
rithm. IEEE Trans. Inf. Theory, 47, 498–519.

Pearl, J. (1988). Probabilistic reasoning in intelligent
systems: Networks of plausible inference. San Fran-
cisco: Morgan Kaufmann.

Shlezinger, M. I. (1976). Syntactic analysis of two-
dimensional visual signals in noisy conditions. Cy-
bernetics and Systems Analysis, 12, 612–628. Trans-
lation from Russian.

Wainwright, M., Jaakkola, T., & Willsky, A. (2004).
Tree consistency and bounds on the performance of
the max-product algorithm and its generalizations.
Statistics and Computing, 14, 143–166.

Wainwright, M. J., & Jordan, M. I. (2008). Graphical
models, exponential families, and variational infer-
ence. Foundations and Trends in Machine Learning,
1, 1–305.

Werner, T. (2007). A linear programming approach to
max-sum problem: A review. IEEE Trans. Pattern
Analysis and Machine Intelligence, 29, 1165–1179.

Werner, T. (2010). Revisiting the linear programming
relaxation approach to Gibbs energy minimization
and weighted constraint satisfaction. IEEE Trans.
Pattern Analysis and Machine Intelligence. To ap-
pear in August 2010.

Yedidia, J., Freeman, W. T., & Weiss, Y. (2000). Gen-
eralized belief propagation. Neural Information Pro-
cessing Systems (NIPS) (pp. 689–695).

Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2005).
Constructing free-energy approximations and gener-
alized belief propagation algorithms. IEEE Trans.
Information Theory, 51, 2282–2312.

