
CZECH TECHNICAL UNIVERSITY IN PRAGUE

DOCTORAL THESIS STATEMENT



Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Telecommunication Engineering 

Ing. Jiří Hlaváček

Robustness of VoIP systems

Ph.D. Programme: Electrical Engineering and Information Technology

Branch of study: Telecommunication Engineering

Doctoral thesis statement for obtaining the academic title of “Doctor”,

abbreviated to “Ph.D.”

Prague, september 2014



The doctoral thesis was produced in combined manner Ph.D. study at the Department of

Telecommunication Engineering of the Faculty of Eletrical Engineering of the CTU in Prague.

Candidat: Ing. Jiří Hlaváček

Department of Telecommunication Engineering

Faculty of Eletrotechnical Engineering, CTU

Technická 2, 166 27, Prague 6, Czech Republic

Supervisor: Ing. Robert Bešťák, Ph.D.

Department of Telecommunication Engineering

Faculty of Eletrotechnical Engineering, CTU

Technická 2, 166 27, Prague 6, Czech Republic

Opponents: .............................................................................

.............................................................................

.............................................................................

The doctoral thesis statement was distributed on: ...............................

The defence of the doctoral thesis will be held on …............. at …..... a.m./p.m. before

the Board for the Defence of the Doctoral Thesis in the branch of study Telecommunication

Engineering  in the meeting room No.  …...... of the Faculty of Electrical Engineering of the

CTU in Prague.

Those interested may get acquainted with the doctoral thesis concerned at the Dean

Office of the Faculty of Electrical Engineering of the CTU in Prague, at the Department for

Science and Research, Technická 2, Praha 6.

 

…..................................................

Chairman of the Board for the Defence of the Doctoral Thesis

in the branch of study Telecommunication Engineering

Faculty of Electrical Engineering of the CTU in Prague

Technická 2, 166 27  Prague 6.



Table of Contents

 List of Figures..........................................................................................................5

 Index of Tables.........................................................................................................5

1 Current Situation of the Studied Problem..........................................................6

1.1 Availability of VoIP Servers.......................................................................................6

1.1.1 Fault Recovery without Context Preservation...................................................8

1.1.2 Fault Tolerance with Context Replication.........................................................9

1.1.2.1 Solutions Impacting Applications..............................................................9

1.1.2.2 Solutions Transparent for Applications....................................................10

2 Aims of the Doctoral Thesis................................................................................11

3 Working Methods................................................................................................12

3.1 Current Situation.....................................................................................................12

3.2 Virtualization...........................................................................................................12

3.3 Actor model.............................................................................................................12

4 Results..................................................................................................................14

4.1 Virtualization...........................................................................................................14

4.2 Actor model.............................................................................................................15

4.2.1 High-level model.............................................................................................16

4.2.2 Availability Analysis........................................................................................18

4.2.3 Numerical results.............................................................................................20

5 Conclusion............................................................................................................21

5.1 Future Work.............................................................................................................22

6 References............................................................................................................23

7 Publications Related to the Thesis.....................................................................27

7.1 Publications in Impact Journals...............................................................................27

7.2 Publications in Reviewed Journals..........................................................................27

7.3 Publications Excerpt in Web of Science..................................................................27

7.4 Other Publications...................................................................................................27

 Resumé...................................................................................................................29

 Summary................................................................................................................30

- 4 / 30 -



List of Figures

Figure 1: Jitter using unmodified replication mechanism...................................................14

Figure 2: Jitter using modified replication mechanism.......................................................15

Figure 3: Single actor model..............................................................................................16

Figure 4: Single actor module interface..............................................................................17

Figure 5: Actor tree of the SIP transport layer implementation..........................................17

Figure 6: Transport layer availability model.......................................................................18

Figure 7: Two-state Markov chain......................................................................................19

Index of Tables

Table 1: Availability comparison between an actor based system and a standard one........20

- 5 / 30 -



Current Situation of the Studied Problem

1 Current Situation of the Studied Problem

The use of the Internet Protocol as a support for telecommunication systems brought many

advantages, but also a few problems. The availability engagement in the Service Level

Agreement of the Voice over Internet Protocol (VoIP) phone line proposed currently by the

telecommunication operators is usually about three nines. The standard of the traditional

telephony services is five nines. It is reached thanks to a specific hardware and software

equipments. VoIP systems are popular because of cost efficiency reached using standard

hardware and software, but there’s an important impact on system robustness. 

Current private branch exchanges (PBX) can be integrated with other information

technology systems and bring the possibility to implement many advanced services, for

example, a web callback. Contrary to the traditional PBX, which is often deployed as a

standalone system, Internet protocol PBX (IPBX) is deployed in a complex environment

with many interconnections. New challenges like the cloud and distributed environments

are  faced.  Network  availability  can  be  ensured  using  redundant  paths  and appropriate

configuration protocols. A high availability hardware with redundant components is also

widely available. A typical mean time between failures (MTBF) of a server is about 6.5

year [1], but usual OS’s MTBF is about 60 days [2]. IPBX software enables advanced

services and integrations, but its availability is one of the VoIP system’s drawbacks. 

An IPBX providing advanced services and integration with other services requires

more complex software. New software architectures are needed to be able to provide the

same availability while increasing software complexity. Software architecture should be

fault tolerant and allow context replication or restore on failure in order to preserve service

continuity. The software should also be able to overcome hardware malfunctions. It should

enable reliability modeling and estimation of the availability characteristics like the MTBF.

Two active research fields are identified. The first one is focused on software architectures

in the cloud computing and the second on the distributed software applications [3] [4] [5].

1.1 Availability of VoIP Servers

SIP proxy servers are critical components of SIP networks. SIP proxies are relaying SIP

messages between terminals; each server therefore represents a single point of failure. SIP

servers are software applications usually running on high availability server hardware. 

- 6 / 30 -



Current Situation of the Studied Problem

Modules used in circuit  switched systems have a MTBF about 1 000 000 hours

(approx. 100 years, based on MTBF of German Electronic World Switch Digital (EWSD)

modules).  Although  today's  servers  may  have  multiple  processors,  redundant  network

cards, several hard-disks working in a RAID and redundant power sources; theirs MTBF

doesn't  reach MTBF of circuit  switched system specific hardware (MTBF of servers is

usually between 50 000 and 300 000 hours). Exceptions are routers and specialized router

cards with MTBF about 1 000 000 hours (Cisco router modules). Large legacy systems

like the German EWSD system implement software recovery controllers and hardware

monitors [6].  Software recovery controllers are special  programs,  which aim to detect,

solve and report errors. Hardware monitors test periodically each component of the system.

Each anomaly is logged up and reported. As far as I know, software implementations of

SIP servers aren't that robust, interfaces for software recovery controllers aren't proposed.

Hardware monitoring of servers should be done by some specialized hardware monitor

with problem reporting. Actual VoIP platforms are represented by a standard redundant

hardware  together  with  an  operating  system  configured  to  provide  high  availability

services. Software architectures of VoIP servers usually do not implement recovery and

fault tolerance, therefore they are not as robust as the software of the legacy systems. As an

example I can cite open source VoIP servers Asterisk and Mobicents. The Asterisk PBX is

a  multi-threaded  C  application  [7],  therefore  sensitive  to  deadlock  and  with  possible

segmentations faults. The Mobicents suite runs in the JBoss application server [8] [9], it’s

error-recovery features are also limited. 

A document from Cisco [10] compares the availability of the legacy PBX to the

Cisco VoIP systems. It is shown that both approaches can achieve five nines availability

(5.26 minutes of downtime per year) by replication of components. This is a special case,

because Cisco SIP servers are not running on a standardized server but directly by the

Cisco router. Also, the features of the application programming interface (API) exposed by

the presented Cisco system are very limited. A generic VoIP system can use switches and

routers with the MTBF values close to routers or circuit switched systems. Anyhow, the

server  running  SIP applications  doesn't  reach  the MTBF value  of  the  router. A server

redundancy must be introduced in order to achieve five nines availability using standard

servers. 

- 7 / 30 -



Current Situation of the Studied Problem

Based on whether the call and associated services are lost or preserved following a

failure, two types of recovery exist: fault recovery without context preservation and fault

tolerance with context replication.

1.1.1 Fault Recovery without Context Preservation

The simplest  implementation of  the server redundancy is  to introduce an address  of a

backup proxy/registrar server. This solution is only static and doesn't scale well. It's useful

only  as  a  cheap  solution  for  small  local  networks.  Also,  if  a  registrar/proxy  fails,

established calls are lost and the endpoint is not reachable before it re-registers with the

new active registrar/proxy server. One  of  the  recommended methods to  ensure  service

continuity in case of server failure is the use of the Domain Name System Service Record

(DNS SRV) mechanism [11] [12]. This solution, discussed in [10], is called “Intelligence

in previous hop”. The idea is quite simple: a special DNS request is issued to get an IP

address of the SIP proxy/registrar. This implies that SIP components must implement DNS

SRV lookups. The abbreviation DNS SRV means an IP address of the server that proposes

the required service. The response from the DNS server is a DNS SRV record, which is a

list of IP addresses; each address is associated a weight and a priority. This solution is

standardized for the SIP core network, but most terminals doesn't implement DNS SRV

mechanism. Furthermore, the use of DNS requests increases call establishment time, in

particular in the case of primary DNS failure.  In this method, a single point of failure is

the DNS server itself.  A secondary DNS server is  usually present  but  the timeout and

takeover adds some seconds to the call establishment. Also, the context replication issue is

not addressed and thus this solution is suitable only for stateless servers.

The paper [13] explains a solution that allows using of standard DNS requests to

redirect SIP terminals to one of multiple SIP servers. The idea is to introduce a domain

based load balancer (DN-LB). The load balancer uses a heart-beat probe mechanism to

check availability of SIP servers and in function of result redirects SIP clients to one of the

pool of SIP servers. SIP clients must address DNS lookup requests to the domain based

load balancer. This solution is quite easy to implement using existing software products.

The main inconvenient of this solution is that the domain based load balancer represents a

single point of failure.  This difficulty can't  be solved by using two domain based load

balancers, because the DNS clients wait for some seconds before sending the request to the

second DNS server (DN-LB here). This is hardly acceptable in a highly available system.

Another weak point is that SIP terminals are required to do a DNS lookup before sending a

SIP request. This feature is not proposed by standard SIP terminals. 

- 8 / 30 -



Current Situation of the Studied Problem

It’s possible to let the media data pass directly between terminals, without passing

by the proxy. Such a configuration allows to maintain calls even when a proxy failure

occurs, but as the call context is lost, additional services can’t be offered. 

1.1.2 Fault Tolerance with Context Replication

A common point of the solutions described below is the use of the Internet Protocol (IP)

failover  mechanism.  This  mechanism ensures  that  the  failover  is  transparent  from the

client's point of view by migrating the IP address of the failed server to the backup server

[14].

The  passage  of  the  IP  address  from  the  failed  server  to  the  backup  one  is

fundamental for the VoIP service continuity. However, ensuring a reliable delivery of SIP

messages to the operating SIP server isn't enough to ensure a successful failover without

lost  calls.  The  new active  server  doesn't  know current  calls  nor  registered  terminals.

Consequently, as the new active server doesn't know any endpoints, any incoming calls

can't be processed before a new terminal registration. SIP allows use of stateless proxies,

but  stateful  proxies  are  needed for  billing and other  services.  New active server  must

therefore  restore  contexts  of  the  established  calls  and  registered  terminals  in  order  to

ensure  the  continuity of  services.  Call  establishment,  call  transfers,  charging and other

complementary  services  then  continue  to  be  provided  by  the  new active  server.  This

mechanism can work only when UDP [15] is used. TCP [16] is connection oriented and

when the connection fails the terminal must open a new connection with the server. If this

condition is fulfilled, described mechanism can be used even using TCP or TLS [17]. A

way to ensure failover of the TCP connection is standardized in [18]. 

The call context is saved by the application. There are two types of fault tolerance:

solutions affecting applications and solutions transparent for applications. 

1.1.2.1      Solutions Impacting Applications

An application level replication is described by A. Gorti in [19]. It is using the OpenAIS

AMF (Open Application Interface Specification Availability Management Framework) for

the call context replication. It doesn't consider the replication of registrations. Call contexts

are replicated using checkpoints. A checkpoint is defined as a current call state. The aim of

checkpoints is to simplify context replication. In order to define appropriate number of

checkpoints  a  functional  analysis  of  SIP protocol  should  be  done.  The  article  doesn't

explain  how  checkpoints  were  chosen.  The  focus  is  on  the  implementation  and  its

- 9 / 30 -



Current Situation of the Studied Problem

complexity. Following areas  of  application  design  were  identified  as  keys  to  the  high

availability application simplicity: event-driven model, checkpoint data identification and

process roles. It was shown that using discussed solution the availability of a VoIP service

can be improved from 99,999 % to 99, 9999 % without considering hardware faults. The

presented solution can be considered as a proof of concept, because its real performances

are very low. The proposed solution requires a specific software development, which is

expensive and long. Replication enabled applications based on software frameworks for

high availability (e.g., Terracota) are hard to configure and maintain. Furthermore, there

are several requirements on the software architecture such as thread safety [20].

G.  Kambourakis  et  al.  propose  a  database-based  state  sharing  mechanism  [21].

Contexts are saved in a database and the replication is done by the database engine. This

solution is relatively easy to implement as only a database connector needs to be developed

instead  of  a  complex  replicated  system preserving  data  consistency. Nevertheless,  the

architecture remains complex and hard to integrate with existing applications. 

The  paper  [22]  uses  the  OpenAIS  framework  to  supervise  SIP  proxies  by  the

dispatcher.  It  proposes  an  OpenAIS-based  SIP  load  balancing  strategy.  Proxy  health

conditions and CPU load are monitored by the dispatchers using OpenAIS functions. This

solution brings down the time needed to find out a failed proxy and improves the balancing

thanks  to  the  knowledge  of  the  charge  of  each  proxy. The  main  disadvantage  of  this

solution is the need of some custom software development. 

A common problem to all application dependent solutions is the breakdown of TCP

and Transport Layer Security (TLS) connections when taking over the IP address. These

connections can't be migrated without specialized operating systems or replication aware

clients.

1.1.2.2      Solutions Transparent for Applications

Solutions transparent for application usually require more resources, but it is compensated

by an easier development and maintenance of applications. 

For special cases of Java applications,  Aspect-oriented programming frameworks

with real-time byte-code instrumentation for context replication can be used [23]. The cited

work  discusses  drawbacks  of  this  solution.  Main  issues  are  complexity  of  use  and

performances. 

Hardware virtualization is another possibility discussed below.

- 10 / 30 -



Aims of the Doctoral Thesis

2 Aims of the Doctoral Thesis

With consideration of the actual situation of the studied problem, the aims of the thesis

were defined as follows:

● Analyze drawbacks of existing solutions and architectures for high available VoIP

systems  with  a  focus  on  private  branch  exchanges.  An  important  axis  of  the

analysis is the way the implementation is dealing with software failures. 

● Find a software architecture suitable for implementation of highly available VoIP

systems. The emphasis is on the call and service continuity, the call context must

be restored or replicated following a failure. The architecture should be applicable

to the distributed and cloud environments.

● Propositions should be validated on a prototype in order to validate its feasibility.

● The availability should be validated either by measurements, or by simulation.

- 11 / 30 -



Working Methods

3 Working Methods

The thesis is organized in three main parts. The first part provides a survey of the current

situation, the second analyze the high available virtualization solutions and the third use of

the actor model in a high available software applications.

3.1 Current Situation

This part presents a survey and analysis of existing solutions and proposals. It contains

results of research, synthesis and classification of existing works. It is completed by an

evaluation  of  the  current  situation  in  different  contexts  and  propositions  of  possible

enhancements and combinations improving the overall system availability.

3.2 Virtualization

The second part is focused on hardware virtualization. By analysis of the previous research

works [24] [25] [26] was deduced, that the virtualization is suitable for highly available

systems. Based on details explained in [27] [28], it is also expected that the continuous live

migration mechanism degrades network performances. A testbed without virtualization is

installed  and  initial  measurements  of  network  characteristics  are  performed.  These

measurements  are  repeated  on  a  testbed  with  virtualized  servers.  The  continuous  live

migration mechanism is configured and a new set of measurements is executed.

Expectations  are  confirmed  and  the  problem  is  analyzed.  The  checkpointing

mechanism together with the output commit problem [27] generates an important jitter and

packet  bursts.  An  improvement  consisting  in  a  fine  packet  classification  and different

routing path for the real-time packets is proposed and implemented. This modification is

then verified by further measurements. An analysis of the modified method is presented.

3.3 Actor model

The third part deals with the actor model. In order to examine advantages of the actor

model for the software availability, following methods are used. A prototype SIP server is

designed and implemented. Its software architecture reflects capacities and fault tolerance

features of the actor model presented in [29] [30] [31]. A new availability model based on

stochastic colored Petri Nets suitable for actor systems is then proposed. This model is

- 12 / 30 -



Working Methods

elaborated using methodologies for availability analysis presented mainly in [32] [33] [34].

The failure rate of a single actor is evaluated based on results presented in [33].

The  proposed  model  is  simulated  using  a  simulation  software  [35].  Using  the

proposed model, the availability of the new fault tolerant implementation is estimated and

compared  with  the  availability  of  the  corresponding  standard  implementation.  Further

analysis  evaluating  the  impact  of  the  failure  rate  on  the  availability  is  realized.  This

analysis is performed by simulations.

- 13 / 30 -



Results

4 Results

The  thesis  brings  a  detailed  survey  of  existing  solutions  and  architectures  for  highly

available VoIP systems. The software is identified as the weak point of the VoIP systems

and new software architectures improving the availability are proposed.

4.1 Virtualization

The section  dealing  with  the  hardware  virtualization  analyses  the  impact  of  the

virtualization on the VoIP system network characteristics.  At first,  it  is  shown that  the

virtualization introduces a small jitter. The jitter values without virtualization are about

100μs,  whereas  values  up  to  8ms  are  observed  on  virtualized  servers.  Thereafter,  the

continuous live migration mechanism is focused. This mechanism enables a hot standby

high  availability  configuration.  The  work  demonstrates  that  the  actual  implementation

doesn’t  meet  requirements  of  real-time  systems  like  VoIP servers.  The  impact  of  the

continuous live migration on the network characteristics is shown in Fig.  1. There's an

important  jitter  and  packets  are  released  in  bursts  each  400ms  (packets  are  sent

each 20ms).

Figure 1: Jitter using unmodified replication mechanism

- 14 / 30 -



Results

An improvement in the continuous live migration is described, implemented and

validated. It resolves the problem of the jitter identified in the current implementation. The

jitter using the improved mechanism is depicted in Fig. 2. The remaining jitter observed in

Fig. 2 is due to the checkpointing required by the principle of the continuous live migration

and is emphasized by the limited performances of the used testbed. A low performance

testbed is used to validate the function in an environment with limited resources. 

Figure 2: Jitter using modified replication mechanism

The behavior during the crash of the primary machine is also analyzed. The results

show that the hot standby machine takes over and all established calls are preserved with a

short call drop-out.

4.2 Actor model

The thesis also study the actor model in the context of high availability software

architectures. The actor model is a hierarchical model, actor create, supervise and destroy

children [36]. An actor can also supervise other actors. Each actor can be addressed by its

reference and communicates with others by messages. 

A highly available implementation of a SIP proxy is proposed. High availability is

reached thanks to the mechanisms enabling fault-tolerance. These are also described.

- 15 / 30 -



Results

Figure 3: Single actor model

A new availability model for actor systems is proposed. It is based on the stochastic

colored Petri nets. The model is hierarchical. A single actor model is defined and reused to

build  the  model  of  the  whole  system.  The  single  actor  model  presented  in  Fig.  3.  It

represents an actor controlling one child. If the child fails three times in a specified period,

the actor stops itself to escalate the problem. The model contains six places serving as

connection points when the model is used as a submodel. The first two places Start and

Stop are life controlling places. Then there are two places for child actor lifecycle control

named Restart and Poison Pill and finally two places for fail notifications, Failed for a

notification from the child actor and Fail for upwards failure notification.

4.2.1 High-level model

In  this  section,  an  example  model  of  the  SIP server's  transport  layer  is  described  to

illustrate the use of the proposed availability model. A complete model is composed of

modules  representing  the  single  actor  model  presented above.  The Fig.  4 presents  the

module interface. The module is configurable; hence, it is possible to reuse the same model

with a customized parameters of failure distribution. 

A SIP transport layer implementation is modeled. An actor tree of the considered

implementation is  depicted in  Fig.  5.  Actors  are  represented as  circles,  supervision by

arrows and message exchanges by lines between actors. 

- 16 / 30 -



Results

Figure 4: Single actor module interface

The presented hierarchy is relatively simple as there are only two supervision levels.

The transport supervisor is an actor dedicated to fault tolerance. Its work is to deal with

failure notifications. Actors UDP sender, UDP receiver are stateless and can be restarted on

failure without losing any saved state. Restart is preferred to resume as it’s important to

reopen the socket in case of reconfiguration such as an IP address update. SIP encoding

and transport actor is stateless and is resumed on failure. It is considered that the parser

error  doesn't  require  actor  restart.  The  transaction  router  maintains  the  directory  of

transactions and associated actors. The actor named Transaction 1 is its child representing

a SIP transaction. These transactions are stopped when the transaction router is restarted. 

The availability model of the transport layer composed of the presented module is

shown in Fig 6. Each module instance is represented by a filled rectangle named I0-I4. The

- 17 / 30 -

Figure 5: Actor tree of the SIP transport layer implementation



Results

module  was  adapted  to  expose  the  right  number  of  child  supervision  interfaces.  One

transaction children actor is used (represented by the module I1).

The model is suitable for actor based systems. It is used to estimate the availability

of the proposed implementation. A reference model for a traditional implementation is also

designed. 

Figure 6: Transport layer availability model

Using the reference model,  the availability  of  the  actor based implementation is

compared with the availability of the traditional implementation. 

4.2.2 Availability Analysis

This section describes how to calculate the system’s availability using the model presented

in the previous section.

A method similar to the one used in [32] is used. It consists in state qualification in a

failure state set and an operational state set. Each state in the model is marked as failure or

operational  and  the  mean  time  spent  in  failure  and  operational  states  set  is  used  to

determine failure and repair rates. In the presented case, failure states are Restarting and

Restart states of each actor. The probability of the failure state can be written as:

PFailure=∑
i=1

n

Pi , Restarting+Pi , Restart
(1)

- 18 / 30 -



Results

Where i determines the number of actors in the system and goes from 1 to the total

number of actors in the system, Pi, Restarting and Pi, Restart are probabilities of each failure state

by actor instance. Likewise, operational states are P i, 1, Pi, 2 and PStart and the probability the

operational state can be expressed as:

POperational=∑
i=1

n

Pi , 1+P i ,2+Pi ,Start (2)

A basic model for the system’s availability is a Markov chain with two states: UP

and  DOWN.  The  system  gets  from  the  state  UP to  the  state  DOWN  with  a  failure

probability λ and back to the UP state with a repair probability μ. This model is depicted in

Fig. 7. 

Let’s define the steady-state availability as follows:

A=
Uptime

Uptime+Downtime
 (3)

Using the failure and repair rates the equation (3) can be rewritten:

A=
μ

λ+μ (4)

The considered model is limited to two states, therefore, it can be stated that:

POperational+PFailure=1 (5)

The reciprocal of PFailure can thus be used as the failure rate λ and the reciprocal of

POperational as the repair rate μ. The steady-state availability can be rewritten using (5) and

(2):

A=
POperational

POperational+PFailure

=POperational=∑
i=1

n

Pi ,1+Pi ,2+Pi , Start (6)

- 19 / 30 -

Figure 7: Two-state Markov chain



Results

4.2.3 Numerical results

According to results presented in [37] and [38], the time to failure of software application

is lognormally distributed. Thus, it is assumed that the actor’s time to failure represented

by the transaction T1 in Fig.  4 is also lognormally distributed. Due to the utilization of

multiple  general  transitions  (many  actors  in  an  active  state),  a  simulation  must  be

performed to get numerical results. Simulations were performed by the TimeNet software

tool developed at the Technische Universität Berlin [35]. 

System Availability Downtime/year

Actor based implementation 0.9993507 5 hours 41 minutes

Standard implementation 0.9872581 4 days 15 hours

Table 1: Availability comparison between an actor based system and a standard one

Results  of  performed  simulations  are  reported  in  Table  1.  The  actor  model  can

improve software availability by a magnitude of two orders.

- 20 / 30 -



Conclusion

5 Conclusion

The  thesis  analyses  the  robustness  of  VoIP  systems  with  focus  on  the  software

architectures. The aim of the thesis is to find a software architecture allowing to reach the

five nines availability standard for telephony systems. The work is divided into three parts:

a survey of the highly available VoIP systems, a study of high availability solutions based

on the virtualization techniques and an analysis of the actor model in the context of the

fault tolerant software development.

An analysis of the highly available VoIP systems is presented first. Requirements on

the network architecture,  network services and hardware components are detailed with

references to standards and related articles. Advantages and drawbacks of each solution are

underlined. The conclusion of these investigations is that there are industrialized solutions

for the network and hardware infrastructure, but only partial solutions for the software.

Therefore, the second and third parts focus on suitable software architectures.

The second part study the hardware virtualization in the context of high availability

systems. The hot standby configuration called continuous live migration is analyzed and

improved.  This  type  of  replication  works  as  follows:  a  virtualized  running  server  is

backed-up by a continuous real-time replication on another physical machine. The backup

virtual machine takes the place of the master in the case of failure. Measurements show

that the current implementations of continuous real-time replication are not suitable for the

real-time data. It degrades the call quality by an important jitter. A modification of the

replication  mechanism  is  proposed  and  realized.  Measurements  performed  with  the

improved version confirm that the modified hypervisor is suitable for real-time systems. As

the whole machine state is replicated, all calls with associated contexts are preserved when

a  failure  occurs.  This  solution  is  application  transparent  and  is  appropriate  for  VoIP

systems where the high availability requirements were not considered in the initial design.

The actor model is studied in the third part. It is an interesting alternative to the

object-oriented development as it permits to separate the application’s logic from the error

processing and parallelization. A highly-available SIP server prototype is implemented and

employed fault-tolerant techniques are described. An availability model for actor systems

is proposed. The model is built on the stochastic colored Petri nets and is hierarchical. A

generic module representing one actor is proposed. The whole system is then modeled as a

hierarchical composition of modules. The availability of the actor based systems is then

- 21 / 30 -



Conclusion

compared with the availability of a standard software implementation. Results indicate that

the actor model can improve software availability by a magnitude of two orders. The actor

model is worth considering when a new VoIP application is designed. 

Present work proposes two ways to implement high-available VoIP systems. As each

one suits a particular context, these two propositions are complementary.

5.1 Future Work

A research work focusing on the efficiency of the virtual machine state replication is still in

progress. Replication requires a lot of bandwidth and processing power, these are topics to

be addressed by further studies. The modification proposed in this work is applicable for

other applications than VoIP systems. The implementation should be extended to support

other real-time data flows.

A further study of the proposed availability model  would allow to derive design

principles improving the overall availability. Furthermore, using the data obtained by an

in-depth monitoring of actor systems the availability model prediction capacities can be

improved.  More  research  work  is  needed  to  confirm  and  describe  possibilities  of  the

prediction.

- 22 / 30 -



References

6 References

[1] Intel  Server  Calculated  MTBF  Estimates,  rev.  1,  2009,

http://download.intel.com/support/motherboards/server/sb/s3420gpmtbfcalculationr

ev10.pdf, [retrieved: June 2014].

[2] Kim, D. S.,  Machida, F.,  Trivedi,  K.S., "Availability Modeling and Analysis of a

Virtualized System," Dependable Computing, 2009. PRDC '09. 15th IEEE Pacific

Rim International Symposium on , vol., no., pp.365,371, 16-18 Nov. 2009.

[3] Kanso, A., Lemieux, Y., "Achieving High Availability at the Application Level in the

Cloud," 2013 IEEE Sixth International Conference on Cloud Computing, 2013, pp.

778-785.

[4] Havemose, A., Ngan, C. Y. P., “Method and system for providing high availability to

distributed computer applications,” Google Patents, 2013. US Patent 8,433,951.

[5] Beyersdorf,  C.  F.,  Wermser, D.,  Hartmann,  D.,  Cao,  X.,  “Virtualization of  VoIP

Application Servers for Implementation of Private Unified Communication Services

via LTE,” In Mobilkommunikation (ITG-FB 242) Technologien und Anwendungen,

Vorträge der 18. ITG-Fachtagung vom 15. bis 16. Mai 2013 in Osnabrück.

[6] Botsch, D., Eberding, H., “A Real-Time Communication System with High-Level

Language Software,” IEEE TRANSACTIONS ON COMMUNICATIONS. 1982, 30

(6), pp. 1337–1342.

[7] Asterisk project homepage,  http://www.asterisk.org/, [retrieved: June 2014].

[8] Mobicents project homepage, http://www.mobicents.org/, [retrieved: June 2014].

[9] JBoss project homepage, http://www.jboss.org/, [retrieved: June 2014].

[10] Cisco  Systems:  High-Availability  Solutions  for  SIP  Enabled  Voice-over-IP

Networks,  2002.  White  paper.

http://www.cisco.com/en/US/tech/tk652/tk701/technologies_white_paper09186a008

00a9818.shtml, [retrieved: June 2014]. 

[11] Rosenberg,  J.,  Schulzrinne,  H.,  “Session  Initiation  Protocol  (SIP):  Locating  SIP

servers,” RFC3263, Internet Engineering Task Force, June 2002. 

[12] Gulbrandsen, A., Vixie, P., Esibov, L., “A DNS RR for specifying the location of

services (DNS SRV),” RFC2782, Internet Engineering Task Force, February 2000. 

[13] Leu, J.;  Hsieh, H.; Chen,  Y.; Chi,  Y. Design and Implementation of a Low Cost

DNS-based Load Balancing Solution for the SIP-based VoIP service. In Proceedings

- 23 / 30 -

http://www.cisco.com/en/US/tech/tk652/tk701/technologies_white_paper09186a00800a9818.shtml
http://www.cisco.com/en/US/tech/tk652/tk701/technologies_white_paper09186a00800a9818.shtml
http://www.jboss.org/
http://www.mobicents.org/
http://www.asterisk.org/
http://download.intel.com/support/motherboards/server/sb/s3420gpmtbfcalculationrev10.pdf
http://download.intel.com/support/motherboards/server/sb/s3420gpmtbfcalculationrev10.pdf


References

of  the  IEEE  Asia-Pacific  Services  Computing  Conference,  IEEE  Asia-Pacific

Services Computing Conference. 2008, pp 310–314.

[14] Singh, K., Schulzrinne, H., “Failover, load sharing and server architecture in SIP

telephony,” Comput. Commun. 30, 5, March 2007, pp. 927-942.

[15] IETF RFC 768: User Datagram Protocol, http://www.ietf.org/rfc/rfc768.txt [online],

August 1980. 

[16] IETF  RFC  793:  TRANSMISSION  CONTROL  PROTOCOL,

http://www.ietf.org/rfc/rfc793.txt [online], September 1981. 

[17] IETF  RFC  5246:  The  Transport  Layer  Security  (TLS)  Protocol  Version  1.2,

http://www.ietf.org/rfc/rfc5246.txt [online], August 2008.

[18] IETF RFC 5626: Managing Client-Initiated Connections in the Session Initiation

Protocol (SIP). http://www.ietf.org/rfc/rfc5626.txt [online]. October 2009.

[19] Gorti,  A.,  “A fault  tolerant  VoIP  implementation  based  on  open  standards,”  In

Proceedings  of  the  IEEE  Dependable  Computing  Conference,  Dependable

Computing Conference, 2006, pp. 35–38.

[20] Hlaváček,  J.,  Bešťák,  R.,  “Software  Architectures  for  High  Available

Telecommunication  Service  Platforms,”  In  Knowledge  in  Telecommunication

Technologies  and  Optics  -  KTTO  2010.  Ostrava:  VŠB  -  TUO,  FEI,  Katedra

elektroniky a telekomunikační techniky, 2010, pp. 92-96.

[21] Kambourakis  G.,  et  al.,  “High  availability  for  SIP:  Solutions  and  real-time

measurement performance evaluation,” International Journal of Disaster Recovery

and Business Continuity, vol. 1, no. 1, 2010, pp. 11-30.

[22] Cheng, Y., Wang, K., Jan, R., Chen, Ch., Huang, Ch., “Efficient Failover and Load

Balancing  for  dependable  SIP  proxy  servers.”  In  Proceedings  of  the  IEEE

Symposium  on  Computers  and  Communications  2008,  IEEE  Symposium  on

Computers and Communications. 2008, pp. 1153–1158.

[23] Dahlstedt,  J.,  Vasseur,  A.,  Bonér,  J.,  “Java  Virtual  Machine  support  for  Aspect-

Oriented Programming.” 5th International Conference on Aspect-Oriented Software

Development (AOSD'2006) Bonn, Germany. March 20-24, 2006.

[24] Lee,  M.,  Krishnakumar,  A.  S.,  Krishnan,  P.,  Singh,  N.,  Yajnik,  S.,  “XenTune:

Detecting Xen Scheduling Bottlenecks for Media Applications,” IEEE Globecom

2010 (Communications  Software,  Services  and  Multimedia Applications

Symposium), Miami, FL, Dec 6-10, 2010, pp. 1-6.

- 24 / 30 -

http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc768.txt


References

[25] Clark, Ch., et al., “Live migration of virtual machines,” In Proceedings of the 2nd

conference on Symposium on Networked Systems Design & Implementation, vol. 2,

USENIX Association, Berkeley, CA, USA, 2005, pp. 273-286. 

[26] Patnaik, D., Bijlani, A., Singh, V. K., “Towards high-availability for IP telephony

using virtual machines,” IEEE 4th International Conference on Internet Multimedia

Services Architecture and Application (IMSAA), December 2010, pp. 1-6

[27] Cully,  B.,  et  al.,  “Remus:  High  availability  via  asynchronous  virtual  machine

replication,” In Proc. Symp. Network Systems Design and Implementation (NSDI),

2008, pp. 161–174.

[28] Lee, M., Krishnakumar, A. S., Krishnan, P., Singh, N., Yajnik, S., “Supporting soft

real-time tasks in the Xen hypervisor,” VEE 2010, Pittsburgh, PA, March, 2010, pp.

97-108.

[29] Vinoski,  S.,  "Reliability with Erlang",  Internet  Computing,  IEEE, vol.  11,  no.  6,

2007, pp. 79.

[30] Chechina, N., Trinder, P., Ghaffari A., Green, R., Lundin, K. and Virding. R., “The

Design of Scalable Distributed Erlang,” In the Draft Proceedings of the Symposium

on Implementation and Application of Functional Languages 2012 (IFL'12), Oxford,

UK, 2012.

[31] Erlang-an  experimental  telephony  programming  language,  JL  Armstrong,  SR

Virding - XIII International Switching Symposium, 1990.

[32] Jian, S., Shaoping, W., Yaoxing, S., "Petri-nets Based Availability Model of Fault-

Tolerant  Server  System,"  Robotics,  Automation  and  Mechatronics,  2008  IEEE

Conference on, pp. 444.

[33] Salfner,  F.,  Wolter,  K.,  "A Petri  net  model  for  service  availability  in  redundant

computing  systems,”  Simulation  Conference  (WSC),  Proceedings  of  the  2009

Winter, 2009, pp. 819.

[34] Vinayak, R., Dharmaraja, S., “Semi-Markov Modeling Approach for Deteriorating

Systems  with  Preventive  Maintenance,”  International  Journal  of  Performability

Engineering, Volume 8, Number 5, September 2012, Paper 6, pp. 515-526.

[35] TimeNet  4.0  homepage,  http://www.tu-ilmenau.de/sse/timenet/,  [retrieved  June

2014].

[36] Hewitt,  C.,  Bishop,  P.,  Steiger,  R.,  “A Universal  Modular  Actor  Formalism for

Artificial Intelligence,” IJCAI, 1973.

- 25 / 30 -

http://www.tu-ilmenau.de/sse/timenet/


References

[37] Mullen,  R.E.,  "The  lognormal  distribution  of  software  failure  rates:  origin  and

evidence,"  Software  Reliability  Engineering,  1998.  Proceedings.  The  Ninth

International Symposium on, pp. 124.

[38] Rahmani, C., Srinivasan, S.M. and Azadmanesh, A., "Exploratory failure analysis of

open source software," Software Technology and Engineering (ICSTE), 2010 2nd

International Conference on, 2010, pp. V1-51.

- 26 / 30 -



Publications Related to the Thesis

7 Publications Related to the Thesis

7.1 Publications in Impact Journals

Hlaváček, J. -  Bešťák, R.: Fault tolerant VoIP server based on the actor model.

Submitted to Annals of Telecommunications.

authorship share: Hlaváček 50%, Bešťák 50%

7.2 Publications in Reviewed Journals

Hlaváček, J.  - Bešťák, R.: Quality of Service Management in the Voice over IP

Systems.  Access  server [online].  2010,  roč. 8.,  č. 01,  s. 00003.  Internet:

http://access.feld.cvut.cz/view.php?cisloclanku=2010010003. ISSN 1214-9675. (in

Czech).

authorship share: Hlaváček 50%, Bešťák 50%

Hlaváček, J. - Bešťák, R.: Availability Model for Virtualized Platforms. Advances

in Electrical and Electronic Engineering. 2013, vol. 11, no. 5, p. 316-320. ISSN

1336-1376. 

authorship share: Hlaváček 50%, Bešťák 50%

7.3 Publications Excerpt in Web of Science

Hlaváček, J. - Bešťák, R.: Configuration of Live Migration for VoIP Applications.

In Proceedings of 15th Mechatronika 2012. Praha: Czech Technical University in

Prague, 2012, p. 187-190. ISBN 978-80-01-04987-7.

authorship share: Hlaváček 50%, Bešťák 50%

7.4 Other Publications

Hlaváček, J. - Bešťák, R.: Live Replication of Virtualized VoIP Servers. In  The

Eighth International Multi-Conference on Computing in the Global Information

Technology.  Silicon  Valley:  International  Academy,  Research  and  Industry

Association (IARIA), 2013, p. 277-282. ISBN 978-1-61208-283-7.

authorship share: Hlaváček 50%, Bešťák 50%

- 27 / 30 -



Publications Related to the Thesis

Michaux, J. - Buu, E. - Hlavacek, J. and Najm, E. An open-source platform for

converged services. In Proceedings of Principles, Systems and Applications on IP

Telecommunications (IPTComm '13). 2013, ACM, New York, NY, USA, p. 1-8.

ISBN: 978-1-4503-2672-8 

authorship share: Michaux 25%, Buu 25%, Hlavacek 25%, Najm 25%

Hlaváček,  J.  -  Bešťák,  R.:  Software  Architectures  for  High  Available

Telecommunication  Service  Platforms.  In  Knowledge  in  Telecommunication

Technologies  and  Optics  -  KTTO  2010.  Ostrava:  VŠB  -  TUO,  FEI,  Katedra

elektroniky a telekomunikační techniky, 2010, p. 92-96. ISBN 978-80-248-2330-0.

authorship share: Hlaváček 50%, Bešťák 50%

Hlaváček, J. - Bešťák, R.: Improvements in the Availability of SIP Networks. In

Proceedings  of  the  2010  Networking  and  Electronic  Commerce  Research

Conference.  Dallas,  TX:  American  Telecommunications  Systems  Management

Association Inc., 2010, p. 109-117. ISBN 978-0-9820958-3-6.

authorship share: Hlaváček 50%, Bešťák 50%

Hlaváček, J. - Bešťák, R.: Improvements in the Reliability of the Computer-Based

Telecommunications Systems. In  Proceedings CD-ROM of Digital Technologies

2007.  Žilina:  Slovenská elektrotechnická společnost,  2007.  ISBN 978-80-8070-

786-6.

authorship share: Hlaváček 50%, Bešťák 50%

- 28 / 30 -



Resumé

Telefonní hovor je součástí každodenního života, může zachránit život v případě nouze

nebo pomoci překlenout vzdálenost mezi lidmi. Telefonní spojení je tradičně vnímáno jako

bezporuchová služba s vysokou dostupností.  Internetová telefonie umožňuje implementaci

pokročilých  služeb  a  snížení  nákladů,  ale  přináší  také  komplexnost.  Bohužel,  systémy

internetové telefonie jsou v dnešní době oproti tradičním telefonním systémům stále méně

spolehlivé.

Tato práce se zaměřuje na robustnost systémů internetové telefonie (VoIP). V první

části je prezentován přehled existujících návrhů a řešení. Pro každé řešení jsou rozvedeny

jeho výhody a nevýhody. Z přehledu vyplývá, že existuje kompletní řešení pro síťové zařízení

a služby, jakož i  pro hardwarové zařízení.  Nicméně,  optimální  architektury programového

vybavení jsou stále studovány, zejména řešení pro distribuované a takzvané cloud, tedy na

Internetu založené systémy.   

Druhá část se zabývá počítačovou virtualizací a možnostmi replikace virtuálních strojů

jako  platformy  pro  vysoce  dostupné  programové  vybavení.  Nejprve  je  studován  vliv

virtualizace  na  aplikace  pracující  v  reálném  čase,  jejichž  příkladem  jsou  právě  systémy

internetové telefonie.  Následně je  studován mechanismus kontinuální  replikace v reálném

čase.  Z  výsledků práce  vyplývá,  že  kontinuální  replikace  v  reálném čase  vytváří  značné

fázové chvění. Toto chvění vylučuje použití  tohoto typu replikace pro systémy pracující v

reálném čase. V další části je mechanismus migrace upraven tak, aby bylo chvění potlačeno a

jeho  vlastnosti  jsou  ověřeny  měřením  na  laboratorní  konfiguraci.  Virtualizace  spolu  s

kontinuální replikací v reálném čase je zajímavé řešení pro existující programové vybavení

bez podpory vysoké dostupnosti.

Třetí  část  zkoumá  aktorový  model  (actor  model)  a  jeho  aplikace  v  rámci  vysoce

dostupných systémů. Nejprve je proveden návrh implementace proxy serveru protokolu SIP s

použitím aktorového modelu. Mechanismy umožňující odolnost proti  chybám jsou v práci

podrobně  popsány.  Dále  je  prezentována  koncepce  modelu  dostupnosti  vhodného  pro

programy založené na modelu aktorů. Tento model je hierarchický a umožňuje za pomoci

modulů konstrukci komplexnějších modelů. Je založen na barevných stochastických Petriho

sítích  s  logaritmicko-normálním  rozložením  četností  poruch.  V  závěru  této  části  jsou

prezentovány simulace porovnávající  dostupnost  systému založeného na modelu aktorů se

standardním systémem. Tyto ukazují, že aktorový model může zvýšit dostupnost služeb proxy

serveru až o dva řády.

Tato  práce  představuje  dvě  možné  implementace  pro  vysoce  dostupné  systémy.

Virtualizace  spolu  s  kontinuální  replikací  v  reálném  čase  je  vhodné  řešení  pro  stávající

aplikace  bez  podpory  vysoké  dostupnosti.  Z  výsledků práce  vyplývá,  že  při  vývoji  nové

aplikace by naopak mělo být zváženo použití modelu aktorů.

- 29 / 30 -



Summary

Telephony  is  used  in  our  everyday  life,  it  can  save  lives  in  emergency  cases  or

overcome the distance between people. Traditionally, it is expected to work with practically

no interruption. Voice over Internet Protocol (VoIP) technology brings new blended services

and cost efficiency, but also more complexity. Unfortunately, VoIP systems are nowadays still

less reliable than the traditional switched systems. 

The thesis deals with the robustness of VoIP systems with focus on private branch

exchanges. In the first part, a survey of existing solutions and propositions is presented and

advantages  and  drawbacks  of  each  possibility  are  analyzed.  It  is  shown  that  there  are

complete solutions for the high availability network hardware and services, as well as for fault

tolerant  hardware  equipments.  However,  optimal  software  architectures  are  still  an  active

research field, in particular for the cloud and distributed environments.

The second part addresses virtualization and its replication capabilities as a platform

for high availability software. The impact of virtualization on network characteristics of real-

time systems like VoIP servers is measured first. Results show that the virtualization generates

a small jitter. Thereafter, a continuous live migration mechanism is studied. This work shows

that continuous live migration generates an important jitter and packet bursts. The jitter is

prohibitive  for  use  of  this  type  of  migration  in  the  real-time  systems.  The  migration

mechanism is improved and its behavior is verified by new measurements on a testbed. The

proposed enhancement eliminate the problem: the jitter observed is comparable with the jitter

without  continuous live  migration.  Virtualization is  transparent  at  the  application level.  A

virtualized server with the improved continuous live migration is thus an interesting solution

for existing software without high availability support.

The third part studies the actor model and its applications to high available systems. A

highly available implementation of a SIP proxy is proposed. It is based on the actor model and

is structured to deal with software faults. Mechanisms enabling fault tolerance are explained

in detail. A modular availability model suitable for actor based applications is conceived. The

model is hierarchical and scales well. It is based on stochastic color Petri nets with lognormal

distribution of failure rates. Simulations were performed to compare the availability of the

actor based system with a standard one. Results show that the actor model can improve the

availability by a magnitude of two orders.

The  work  presents  two  possible  implementations  of  a  high  availability  system.  A

virtualization based one, which is suitable for existing applications without high availability

support. And an actor model based one, which should be considered when developing a new

application.

- 30 / 30 -


