
Master’s thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Visibility of Triangulated Surface
Illuminated by Flat Light Panel

Bc. Lukáš Koucký
Cybernetics and Robotics

10.5.2014
Supervisor: Ing. Vladimír Smutný

Acknowledgement / Declaration
I would like to express my gratitude

to my supervisor ing. Vladimír Smutný
for his time, patient guidance and pre-
cious advices.

My biggest thanks goes to my family
for their never ending support through-
out whole study.

Prohlašuji, že jsem předloženou
práci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

Lukáš Koucký
V Praze, 9. května 2014

v

Abstrakt / Abstract
Algoritmus předložený v této práci je

navržen pro zjistění viditelnosti triangu-
lovaného lesklého povrchu osvětleného
plošným osvětlovačem. Algoritmus je
schopen rozpoznat části zkoumaného
povrchu viditelné kamerou a zpřes-
nit triangulaci. Tento proces nemení
rozměry zkoumaného povrchu protože
zpřesněná triangulace leží v té původní
a činní jí tak detailnější a přesnější z po-
hledu kamery. Algoritmus nalezne části
povrchu osvětlené zdrojem světla, které
odrází obraz do kamery. Výstupem al-
goritmu je označkovaný triangulovaný
povrch, narozdíl od tradičních algo-
ritmů, jejichž výstupem je rasterový
obraz.

Algoritmus byl otesovánán na 3D mo-
delech s triangulovaným povrchem s roz-
ličnými pozicemi a vlastnostmi kamer a
osvětlení, kde prokázal svoji korektnost.

Klíčová slova: počítačové vidění, po-
čítačová grafika, triangulovaný povrch,
viditelnost, reflexe

Algorithm proposed in this thesis
is designed for visibility determining of
triangulated glossy surface illuminated
by flat light source. Algorithm is able to
recognize parts of examine surface visi-
ble by camera and refine triangulation.
This process does not change dimen-
sions of examine surface because refine
triangulation lies in original one mak-
ing it more detailed and more precise
from camera perspective. Algorithm
compute parts of surface illuminated
by light source reflecting light to the
camera. Output of the algorithm is
labelled triangulation unlike traditional
algorithms where the output is raster
visibility image.

Algorithm was tested on 3D models
with triangulated surface with various
camera and light source positions and
properties which proves algorithms cor-
rectness.

Keywords: computer vision, com-
puter graphics, triangulated surface,
visibility, reflection

vi

/ Contents
1 Introduction .1
1.1 Problem statement.1
1.2 Related work .3

2 Theoretical background.4
2.1 Surface triangulation4

2.1.1 Triangle .4
2.1.2 Triangulation.5
2.1.3 Delaunay triangulation5

2.2 Geometrical optics7
2.3 Camera geometry7

2.3.1 Pinhole camera model8
3 Algorithm design9
3.1 Light source .9
3.2 Examined model9
3.3 Camera model. 10
3.4 Structure of algorithm 11
3.5 Backface culling 11
3.6 Triangles in field of view. 12
3.7 Hidden triangles 16
3.8 Retriangulation 17
3.9 Reflection detection 19

4 Implementation. 22
5 Testing . 23
5.1 Backface culling 23
5.2 Triangles in field of view. 24
5.3 Covered triangles 25
5.4 Retriangulation 25
5.5 Reflection. 26

6 Conclusion . 28
References . 29

A Content of enclosed CD 31

vii

Tables / Figures
3.1. Vertices structure 10
3.2. Triangles structure 10

1.1. Difference between raster im-
age and our approach1

1.2. Scene with camera, light
source and examined surface2

2.1. Triangle with circumcircle4
2.2. Domain Ω with and its trian-

gulation .5
2.3. Two triangulations of the

same point set .6
2.4. Two triangulations with cir-

cumcircles .6
2.5. Reflection on glossy surface.7
2.6. Visibility described by ray7
2.7. Pinhole camera geometry8
3.1. Description of camera and

light source . 11
3.2. Backface culling 12
3.3. Clipping of triangles partly

in field of view. 14
3.4. Possible triangle splitting 14
3.5. Discarding of faces out of

field of view . 15
3.6. Subdivision of triangle for

calculating barycentric coor-
dinates . 16

3.7. Retriangulation. 17
3.8. Computing 3D coordinates

of intersection point 19
3.9. Notation in reflex detection. . . . 20

3.10. Triangle with reflection 20
5.1. Objects of testing 23
5.2. Backface culling 23
5.3. Triangles in field of view 24
5.4. Another example of triangles

in field of view. 24
5.5. Covered triangles 25
5.6. Retriangulation. 25
5.7. Reflection detection algo-

rithm. 26
5.8. Reflection on examine sur-

faces . 27

viii

Chapter 1
Introduction

Computing visibility is a fundamental problem in computer graphic. Rendering scene
without dividing surface into parts that are visible and not visible for camera will
end up in incorrect result. Two distinct goals in visibility determining are algorithm
correctness and efficiency. For efficient visibility determining are used conservative
algorithms. Their purpose is to distinct parts of scene that are likely visible from those
that are definitely not visible. They are fast but does not guarantee accurate results.
Correct algorithms on the other hand are responsible for exact visibility determining
for given camera. Because conservative algorithms results can be obtained much more
quickly they are commonly used to reduce amount of data later processed by exact
algorithms and thus speed up the whole rendering process.

In this thesis is propose algorithm for determining parts of triangulated surface which
reflects light from the light source to the camera. We call such situation when camera
detect reflection on examine surface visible reflection. Algorithm uses both exact and
conservative approaches. Main difference from common visibility algorithms is that
the output is refined labelled triangulated surface compared to raster visibility image
of standard approaches. Figure 1.1 shows difference between raster image and our
approach. This opens opportunity to study surface visibility from more cameras at
time and can be used, for example, to distribute cameras and light sources around the
object so that every single triangle reflects light to at least one camera.

Figure 1.1. Difference between raster image and our approach. On the left is scene with
two surfaces (orange and blue) and camera capturing raster image. On the right is the
same scene, this time with proposed approach. Note the red area that is hidden for camera
behind blue surface. Orange surface is divided into visible orange part and not visible red

part.

1.1 Problem statement
The problem that algorithm designed in this thesis solves is following. Imagine scene
with object with glossy mirror like surface S. The surface is surrounded with n cameras

1

1. Introduction .
C1 . . . Cn and m light sources G1 . . . Gm. Algorithm computes visible reflection of every
light source from every camera and the purpose is to cover whole examine surface with
visible reflections. It is necessary to represent surface, cameras and light sources in
form of mathematical model in order to process this problem with computer algorithm.

How to determine visibility by Geometrical optics is cover in Section 2.2. Camera
is represented by pinhole camera model described in Section 2.3. The light source is
represented as a flat surface that is pointed towards the examine surface. And finally
the examine surface is represented by triangulated 3D model. Properties of triangulated
model are described in Section 2.1.

Figure 1.2. Scene with camera (blue), light source (light red) and examined surface (or-
ange). Reflection visible by camera is marked red on examine surface.

For purposes of this thesis it is sufficient to design algorithm that examine surface
with one camera and one light in a scene as shown in Figure 1.2. With this simplification
is possible to cover whole surface with visible reflections by running the algorithm
multiple time with different camera and light source parameters and positions and thus
fulfil purpose of designed algorithm. Algorithm have to solve five main problems in
order to correctly compute visibility reflection. They are:

.Select parts of examine surface facing towards the camera..Select parts of examine surface inside the field of view of the camera..Find parts of examine surface hidden behind another part of surface..Refine triangulation..Detects reflection of light source on visible parts of examine surface.

Solution to these five problem is discuses in Chapter 3.

2

. 1.2 Related work

1.2 Related work
Computer graphics knows many algorithms for visibility determining. Most common
ones are raster algorithms with depth memory like z-buffer or Depth-buffer. Their
principle is simple but powerful. For every pixel p in the image measure distance to
each object that intersect straight line going from camera center through p. Colour
of object that is closer to the camera is then used in final image for pixel p. Depth
memory algorithm are widely use in real time scene rendering. Modification of depth
memory algorithms is depth line algorithm which evaluates whole line at a time and
thus offer compromise between memory usage and used time [1].

Because for large scenes could be memory and time expensive to compare every
object in scene and look for the one that is closest to camera, computer graphics uses
algorithms like Backface culling, that removes parts of objects facing away from camera.
More about this algorithm can be found in Section 3.5.

List priority algorithms sometimes called Painter’s algorithm [1] sorts scene by dis-
tance from camera and then paints closer objects over more distant ones. This is not
very efficient but improvements like Binary Space Partitioning helps to efficiently cal-
culate visibility.

Popular technique in space sorting is Binary Space Partitioning (BSP). BSP recur-
sively partition space into convex subsets by hyperplanes. Binary Space Partition tree
or BSP tree is the data structure used to represent partitioning. Root of the tree con-
tains all the space and partition plane that divides space into two subsets. Whole scene
is then divided into front facing and back facing convex areas [2].

Area subdivision algorithms subdivide image into four rectangle areas and then sub-
divides every rectangle into smaller ones until rectangles are at pixel size or each cover
only one triangle. [3].

Hidden point removal purposed by Katz, Tal and Basri [4] works with point cloud
without reconstructing the surface or estimating normals. They compute convex hull
of whole object from given viewpoint and then removing hidden points. The proposed
operator is however not completely accurate and relays on initial settings.

3

Chapter 2
Theoretical background

2.1 Surface triangulation
Triangulation is a word with many meanings. In finance triangulation stands for a
strategy where trader exploits situation when three pairs of currencies are not balanced
against each other [5]. In chess it is a move that forces opponent player to abandon
a blockade and let the other player to move into his position [6]. In psychology it de-
scribes situation when one person communicates with another indirectly through third
person [7]. And list of meanings goes on and on [8]. In this thesis meaning of triangu-
lation is surface subdivision into collection of connected non-overlapping triangles [9].
This can be understood as approximation of curvilinear surfaces. The whole surface is
covered with triangles

2.1.1 Triangle
Triangle is a basic geometry shape with three vertices and three edges. Each edge
connects two different vertices. The only limitation for vertices is not to lie on straight
line - the three vertices must not be collinear. Each triangle have three angles with
sum 180 degrees. On Figure 2.1 are angles named α, β and γ. For reasons described
later it is often beneficial to avoid triangles with small angles in triangulation. The
circumscribed circle or circumcircle of a triangle is a unique circle through all vertices
of triangle and it will play its role in Section 2.1.3.

Figure 2.1. Triangle with circumcircle.

4

. 2.1 Surface triangulation

2.1.2 Triangulation
In general we can call any collection of triangles triangulation. However for practical
reasons we are interested in triangulations that meets certain requirements. To de-
scribe those requirement several definitions need to be established. When constructing
triangulation, we usually start with given collection of vertices

V = {vi}, i = 1, . . . , n,

and a domain Ω that contains all points in V . Figure 2.2 shows domain Ω with ten
vertices and corresponding triangulation of these vertices. This example in 2D is still
valid in 3D space.

Figure 2.2. Domain Ω with ten vertices on the left and triangulation on the right.

Triangulation ∆ is collection of triangles ti,j,k and triangle ti,j,k have vertices vi, vj
and vk. Triple (i, j, k) represents triangle ti,j,k so that set of triples I∆ represents all
the triangles in triangulation. Triple

t = (i, j, k) ∈ I∆

for some integers i, j and k refers to triangle ti,j,k in triangulation ∆. Requirements for
triangulation by [9] are following:

1. No triangle ti,j,k in a triangulation ∆ is degenerated, that is, if (i, j, k) ∈ I∆, then
vi, vj and vk are not collinear.

2. The interiors of any two triangles in ∆ do not intersect, that is, if (i, j, k) ∈ I∆ and
(α, β, γ) ∈ I∆ then

Int(ti,j,k) ∩ Int(tα,β,γ) = ∅.

3. The boundaries of two triangles can only intersect at common edge or at common
vertex.

2.1.3 Delaunay triangulation
Triangulation from collection of vertices can be achieved by various algorithms. They
are usually focussing on creating optimal triangulation in a sense to avoid ”poorly
shaped” triangles. Such triangle is elongated or almost degenerated. When we want
to avoid poorly shaped triangles we may say that triangulation is ”good” if it consists
of triangles that are close to being equiangular. More specifically, if we compare all
possible triangulations constructed from the same collection of vertices, we may prefer

5

2. Theoretical background .

Figure 2.3. Two triangulations of the same point set. Triangulation on the right is
Delaunay triangulation.

one that has triangle with largest minimal angle. Such criterion is known as MaxMin
angle criterion [9].

Figure 2.3 shows two different triangulations of the same point set. Triangulation
∆a is on the left and ∆b on the right side. Only difference is in swapping two of the
edges that effects area in dark blue color. Both triangulations satisfy MaxMin angle
criterion because minimal angle is in both α. But only ∆b is Delaunay triangulation,
this is determine by the Circle Criterion.

Circle Criterion: A Delaunay triangulation ∆ of a set of vertices V in plane is
a triangulation, where the interior the circumcircle of any triangle in ∆ contains no
point from T [9].

Figure 2.4. Two triangulations of the same point set with circumcircles.

Figure 2.4 shows the same example of triangulations as Figure 2.3. This time there
are three circumcircle highlighted. Red one on the left (only part of this circumcircle
is visible on Figure) shows why this is not Delaunay triangulation. Inside the red
circumcircle is another vertex which violates the Circle Criterion. Blue circumcircles
on the right satisfies this criterion. Circle Criterion can be generalized on Delaunay
triangulation in 3D by considering circumscribed spheres.

6

. 2.2 Geometrical optics

2.2 Geometrical optics
Physics describes light as electromagnetic radiation. When we study light in environ-
ment with dimensions much larger than lights wave length we can use Geometrical
optics as a tool for light propagation description. Geometrical optics or ray optics de-
scribes light propagation in form of line that is known as ray. Ray is idealize model of
light that points in direction of energy flow [10].

Figure 2.5. Reflection on glossy surface. Incident ray ri makes with normal angle αi which
is same as αo that makes reflected ray ro with normal.

Figure 2.5 shows reflection of light on glossy surface described by geometrical optics.
Incident ray ri makes with normal same angle as reflected ray ro. Such reflection is
called specular reflection [10].

Ray can serve as a good instrument to define visibility. We can say that point A is
visible from point B if a ray can travel from point A to point B without colliding with
another object.

Figure 2.6. Visibility described by ray. On the left is point A visible from B because ray
r can pass from A to B without colliding with another object. On the right is point A not

visible from B because before reaching A, ray r hits obstacle.

2.3 Camera geometry
A camera could be understood as mapping between the 3D world points an a 2D image
points. This could be represented by a 3 × 4 matrix. This matrix is called camera
projection matrix and usually is labelled P . One of the simplest and most commonly
used camera models is pinhole camera model [11].

7

2. Theoretical background .
2.3.1 Pinhole camera model

Pinhole camera projects 3D world points on image plane (see Figure 2.7). Center of
projection is camera center C. A point in space with coordinates X = (X,Y, Z)T is
projected on as point x on the image plane where a ray connecting point X with camera
center C meets the image plane.

Figure 2.7. Pinhole camera geometry. Ray connecting point X and camera center C maps
point X where the ray meets image plane.

Camera model is represented by camera projection matrix P . Using homogeneous
coordinates, projection matrix maps points in space X = (X,Y, Z, 1)T to image points
x = (x, y, 1) by

x = PX (1)

We can decompose camera matrix to

P = K[R|t] (2)

Where K is calibration matrix, R is rotation matrix representing the orientation of
the camera coordinate frame, t = −RC and C is camera center [12].

8

Chapter 3
Algorithm design

The purpose of a proposed algorithm is determining visibility of triangulated glossy
surface and reflection of illuminating light source. Input is a model with triangulated
surface, camera pointed at the model and finally a light source illuminating the model.. Light source - As a light source is considered flat light panel. Real world example

of such light source can be monitor or display. Since surface of examine model is
glossy or mirror like, it is capable to reflect not only active light source that emits
light, but also a passive source. As a passive source that does not radiates light can
serve any picture or object which reflected image will be visible on examine surface
by camera.. Examined surface - is represented by 3D model with triangulated surface. Such
model is formed from vertices and triangles. Triangulated is described in detail in
Section 2.1.. Camera model - Pinhole camera model described in Section 2.3.1 is used as a camera
representation.

All items are described more detailed in following sections.

3.1 Light source
Light source G is represented by coordinates of corners. In this thesis was used rect-
angle light source ((G1, G2, G3, G4) on Figure 3.1) but algorithm will work with any
polyhedron. Light source does not carry any information about which direction is fac-
ing, it is however assume that since the goal is to detect reflection, light source is facing
towards examine surface.

3.2 Examined model
As mention before, examine surface is 3D model with triangulated surface. Such surface
consists of vertices and triangles. Every vertex v is described by two vectors. First
vector called position holds 3D coordinates of v. Second vector normal describes normal
of vertex v. Normal of vertex v is given by the mean of normals of all triangles that
are formed by v. Both normals and vertices positions are stored in separated arrays of
the same length. Triangle is represented by a triple of integers, where each integer is
an index to the array of vertices.

Vertices and triangles are stored in two structures. Format of structures is shown in
Tables 3.1 and 3.2.

Structure of vertices contains five array of same length, in this example n elements.
First three arrays contains coordinates. Position stores coordinates of vertices in space,
position2D stores coordinates on image plane and normal stores vertices normals. The
remaining two arrays, visible and reflection, are logical arrays. They are initially set to
zeros. If the vertex is determine to be visible, its position in visible array is set to 1.

9

3. Algorithm design .

position

x1, x2, · · · xn
y1, y2, · · · yn
z1, z2, · · · zn


normal

xn1, xn2, · · · xnn
yn1, yn2, · · · ynn
zn1, zn2, · · · znn


position2D

(
x1, x2, · · · xn
y1, y2, · · · yn

)
visible (v1, v2, · · · vn)
reflection (v1, v2, · · · vn)

Table 3.1. Structure of vertices.

vertices

 v11, v12, · · · v1m
v21, v22, · · · v2m
v31, v32, · · · v3m


normal

xn1, xn2, · · · xnm
yn1, yn2, · · · ynm
zn1, zn2, · · · znm


visible (t1, t2, · · · tm)
partly visible (t1, t2, · · · tm)
reflection (t1, t2, · · · tm)

Table 3.2. Structure of triangles.

Same principle is with array reflection, is concrete vertex reflect light from light source
to camera.

Structure of triangles is based on the same principles as previous structure, with
length of m elements. Array vertices stores id’s of vertices that forms concrete triangle.
Meaning that integers store in this array are direct reference to arrays in structure of
vertices. Structure normal contains triangles normal, it determine as mean of its vertices
normals. Last three arrays are logical in a same sense as in structure of vertices. Visible
determines that whole triangle is visible from camera perspective. If only one or two of
triangles vertices are visible, partly visiblee is set to 1. Reflection is set to 1 if all three
vertices of triangle projects reflection.

3.3 Camera model
Last input for algorithm is a camera model. Algorithm uses pinhole camera model
represented by camera projection matrix P described in Section 2.3. Matrix P is used
for mapping points from 3D world coordinates to 2D image coordinates. If the world
coordinates X are homogeneous coordinates then homogeneous 2D image coordinates
x can be computed as x = PX described in Section 2.3.1.

10

. 3.4 Structure of algorithm

Figure 3.1. Description of camera

3.4 Structure of algorithm

Algorithm consists of five parts. Each part is described in detail in following sections.
Structure of algorithm is described in Algorithm 3.1 below.

Algorithm 3.1 Main algorithm

input: camera and light source properties
3D model with triangulated surface

1. Find triangles facing away from camera (Backface culling).
2. Find triangles in cameras field of view and refine

triangles partly visible.
3. Find hidden triangles.
4. Retriangulate triangles that are labelled as partly visible in

step 3.
5. Find visible triangles that reflect light from light source

into camera.

3.5 Backface culling

Backface culling selects triangles facing towards camera and labels them as visible.
Since every vertex have its normal, which expresses which direction is vertex facing,
finding triangles that are facing towards camera is done by method called Backface
Culling [13]. Let vi be the any vertex of model and vn its normal. This defines plane
that passes through vi and has normal vn. Camera can see vertex if it is on positive
side of that plane. Camera can be represented as camera center point C. If vector from
vi to C forms with vn angle smaller than 90◦ than vi is visible. This describes Equation
(1).

(C − vi) · vn > 0 (1)

11

3. Algorithm design .
Algorithm 3.2 Backface culling

input: structure of vertices V
structure of triangles T
camera structure camera

1. for each vertex vi of V and its normal vni
2. if (C − vi) · vni > 0 then
3. vvisiblei = 1
4. endif
5. endfor
6. for each triangle ti of T
7. if v1visible&v2visible&v3visible == 1 then
8. tvisiblei = 1
9. endif

10. endfor

When all three vertices of triangle fulfils this condition, triangle is front facing camera
and it is labelled as visible. But condition like this is not sufficient to completely decide
about visibility. Figure 3.2 shows two examples of such insufficiency. On Figure 3.2 is
camera pointed at object with eight faces. Blue and orange faces are marked as visible
by backface culling, red ones are marked as not visible. Triangle can be facing camera
but another part of model can cover it, like face F and D highlighted orange. Face F
is in fact invisible from camera perspective because it is covered by A and H. Face D
is even more problematic. Part of it is covered by face H and part is out of field of
view, just like face B. Face E is completely out of field of view and thus not visible for
camera. Following parts of algorithm covers these problems.

Figure 3.2. Backface culling.

3.6 Triangles in field of view
Backface culling removes triangles that are facing away from camera. But triangles
facing camera out of field of its view are marked as visible and this is not correct. To

12

. 3.6 Triangles in field of view

find such triangles is task of this part of algorithm. This process is in literature called
clipping [13, 2].

At first is determine which vertices are in field of view and which are not. The field
of view can be imagine as a pyramid with apex in camera center C and four sided base
given by the image plane, see Figure 3.3 where is pyramid formed from C,D1, D2, D3
and D4. To determine whether is vertex inside pyramid and thus inside field of view are
at first computed four planes that creates sides of pyramid. Each plane is defined by
three points, they are pc12 = (C,D1, D2) for first plane, pc23 = (C,D2, D3) for second,
pc34 = (C,D3, D4) for third and pc41 = (C,D4, D1) for last plane. Every plane has its
normal ncxy, they are

nc12 = ((D1 − C)× (D2 − C))
nc23 = ((D2 − C)× (D3 − C))
nc34 = ((D3 − C)× (D4 − C))
nc41 = ((D4 − C)× (D1 − C))

(2)

With description of corner points of image plane D1, D2, D3 and D4 clockwise when
looking towards camera, normals nc12, nc23, nc34 and nc41 are pointing away from each
other. Any point p is on the plane pcxy if (p−C) · ncxy = 0. Point is above the plane if
(p− C) · ncxy > 0 and under plane if (p− C) · ncxy < 0. Because normals of all planes
on surface of pyramid points away from each other, if any point is under all four planes
we can say that such point is inside pyramid. Pyramid in this case represents field of
view, that is why every vertex v is inside field of view if it satisfy all four following
conditions:

(v − C) · nc12 < 0
(v − C) · nc23 < 0
(v − C) · nc34 < 0
(v − C) · nc41 < 0

(3)

After computing these conditions for all visible points, array visible in vertices struc-
ture is updated. Then are processed whole triangles. If all three points of triangle
are not visible, triangle is not visible. If one ore two vertices are visible, only part of
triangle is in the field of view. This situation is illustrated on Figure 3.3. Three tri-
angles created by vertices (v8, v7, v6), (v8, v6, v5) and (v6, v5, v4) are completely in field
of view. Triangle formed with vertices (v1, v2, v3) is completely out of field of view and
thus not visible for camera. But triangles created by vertices (v5, v4, v3) and (v4, v3, v2)
are partly visible. Intersections between edges of triangles and plane pc23 are red points
i1, i2 and i3.

For every partly visible triangle are computed intersections of all edges containing
not visible vertices with all four planes. As mention before point p is on a plane pcxy if
(p − C) · ncxy = 0. Let edge be a line segment from vertex v1 to vertex v2. Such line
segment can be described by equation

p = v1 + d(v2 − v1), d ∈≤ 0, 1 ≥ (4)

Intersection between line segment and plane is in point p when

(v1 + d(v2 − v1)− C) · ncxy = 0 (5)

13

3. Algorithm design .

Figure 3.3. Clipping of triangles partly in field of view.

Adjusting previous formula to compute unknown d to
d(v2 − v1) · ncxy + (v1 − C) · ncxy = 0

d(v2 − v1) · ncxy = (C − v1) · ncxy

d = (C − v1) · ncxy
(v2 − v1) · ncxy

(6)

If d ∈≤ 0, 1 ≥ point of intersection is p = v1 + d(v2 − v1).
Once point of intersection are computed algorithm checks whether these points al-

ready exist in array of vertices positions. If not adds them to structure of arrays and
creates two or three new triangles from partly visible one [2]. Figure 3.4 shows why
two or three.

Figure 3.4. Possible triangle splitting.

As Figure 3.4 illustrates, dividing line can split triangle into two smaller triangles
if it not passes through one of vertices, it other cases is triangle split into three new

14

. 3.6 Triangles in field of view

triangles. Partly visible triangle is thrown away and new triangles are immediately
tested on visibility in field of view and than put into structure of triangles. Pseudo
code of this algorithm is below in Algorithm 3.3 box.

Algorithm 3.3 Triangles in cameras field of view

input: structure of vertices V
structure of triangles T
camera structure camera

1. Find equations for planes describing field of view pyramid.
2. for each visible triangle ti of T
3. Determine whether vertices of ti are in field of view.
4. if all 3 vertices of ti are out of field of view then
5. tvisiblei = 0
6. else if 1 or 2 vertices of ti are out of field of view then
7. Find intersection between four planes and triangle.
8. Create new triangles so that they are either

fully inside field of view or fully out of field of view.
9. Add new triangles to T and throw away ti.

10. endif
11. endfor

Figure 3.5 illustrates the same scene as Figure 3.2 but this time after Backface culling
and removing of triangles out of field of view. Face E was out of field of view and now
is marked in red color as not visible. Because face B was partly out of field of view
algorithm divided this face into two new faces. Visible I and not visible J . Similar
situation occurred with face D. It was also divided into two new faces, but face K is
still partly covered by face H. This problem will solve next part of algorithm.

Figure 3.5. Discarding of faces out of field of view.

15

3. Algorithm design .
3.7 Hidden triangles

Figure 3.5 shows face K that is partly visible and partly behind face H. Also face F
is still marked as visible but from Figure 3.5 is clearly visible that camera is unable to
see that face from its position. Following part of algorithm deals with this problem.
Every visible triangle tvisible is tested whether another triangles lay between it and
camera. Firstly are for every visible vertex vvisible found triangles closer to camera
than vvisible. Once we have all triangles that are closer to camera and therefore can
lie between camera and vvisible rest of computation is done in 2D projection on image
plane of camera. There is tested whether point vvisible is inside any triangle closer to
camera. This would mean that such triangle is between camera and vvisible. Barycentric
coordinates are used for determining whether point is inside triangle or not. Figure3.6
shows subdivision of triangle for calculating barycentric coordinates.

Figure 3.6. Subdivision of triangle for calculating barycentric coordinates.

Area of triangle with vertices v1, v2 and v3, (vi = (xi, yi)) is given by

A(v1, v2, v3) = 1
2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ . (7)

Any point p in plane can be handle ass linear combination of the three vertices of
triangle v1, v2 and v3 as

p = b1v1 + b2v2 + b3v3, (8)

if b1 + b2 + b3 = 1. Than the triple (b1, b2, b3) is known as barycentric coordinates of p
with respect to v1, v2 and v3. Barycentric coordinates can be expressed geometrically
as ratios of area and total area of triangle is A = A1 +A2 +A3, then

b1 = A1

A
, b2 = A2

A
, b3 = A3

A
. (9)

If b1, b2, b3 < 1 then p is inside the triangle. If bi = 0 than p lies on the triangle edge
opposite to pi. If bi = 1 than p coincides with pi [9].

16

. 3.8 Retriangulation

Algorithm 3.4 Hidden triangles

input: structure of vertices V
structure of triangles T
camera structure camera

1. for each visible vertex vi of V
2. for each triangle tj of T closer to C then vi
3. if vi is inside tj in 2D projection on image plane then
4. vvisiblei = 0
5. break
6. endif
7. endfor
8. endfor
9. for each triangle ti of T

10. if all 3 vertices of ti are not visible then
11. tvisiblei = 0
12. else if 1 or 2 vertices of ti are not visible then
13. tpartly visiblei = 1
14. endif
15. endfor

3.8 Retriangulation
Previous part marked triangles that are partly visible. This part of algorithm is named
Retriangulation. Meaning that original triangulation is REfine. Retriangulation splits
all partly visible triangles into smaller once, that are either completely visible or com-
pletely not visible. This does not change dimensions of surface in any way. Only one
triangle at a time is retriangulated and new triangulation lies in original. Whole process
is very similar to dividing triangles that are partly in field of view, described in Section
3.6. Difference is that in this case, one triangle can be divided into many more than
just two or three. Situation is illustrated on Figure 3.7.

Figure 3.7. Retriangulation.

On Figure 3.7 is captured one triangle in three stages of retriangulation. On the left
side is blue triangle partly hidden behind orange triangles. This is when all intersections
with covering triangles are computed. Intersections are marked in image as black dots.
In the middle is the same triangle now without the wall of orange triangles. Triangle
is divided into smaller triangles so that whole new triangle is completely visible (blue
triangles) or completely not visible (red triangles). This creates a large amount of new

17

3. Algorithm design .
triangles. In this example is one triangle split into nine smaller ones. Because not
visible triangles (red ones) will not be later used in any way there is no need to store
all of them. To improve memory effectiveness another triangulation is made. This time
not from all intersection points, but only from points of visible triangles plus three
vertices of original triangle. This operation creates triangulation on the right side of
image where amount of new triangles is reduced to five.

Algorithm itself works partly with 2D projection on image plane and partly with 3D
scene. At first are for every partly visible triangle tpartly visible found triangles closer C
than tpartly visible. Let them be Tcloser. Then is tpartly visible tested with every triangle
from Tcloser for intersection in 2D projection on image plane. There is used same
method as in 3.6 for line segment intersection. Every edge of tpartly visible is tested for
intersection with every edge of every triangle in Tcloser. If intersection is found for some
triangle tj ∈ Tcloser it is possible that any vertex of tj is inside ti (note that this is
still in 2D projection). Again barycentric coordinates are used to find out whether any
point is inside triangle.

Every intersection point and every point inside triangle tpartly visible is stored in Re-
triangulationPoints. Once every triangle from Tcloser is tested for intersection with
tpartly visible we have several points for Retriangulation in RetriangulationPoints. Retri-
angulationPoints is then supplement by three points forming triangle tpartly visible and
Delaunay triangulation is used on set of points in RetriangulationPoints. This creates
first Retriangulation, usually with a lot of new triangles hidden. That is why new
triangles are tested for visibility in a way described in 3.7. Thanks to subdivision of
tpartly visible, new triangles are either visible or not visible. Vertices of visible triangles
and three vertices from tpartly visible are then used for second Delaunay triangulation.
Triangles previously labelled as visible stays visible and amount of not visible triangles
is reduced.

Since the intersection of triangles is done in 2D on image plane, we receive intersec-
tion points also in 2D on image plane. To determine world coordinates of intersection
point, similar method as in 3.6 is used. Equations (4), (5) and (6) solve intersection
between line (edge of partly visible triangle) and plane (side of pyramid). This time
is line represented as a ray from camera passing through intersection point in 2D and
plane is represented by triangle tpartly visible. Situation is captured on Figure 3.8. Or-
ange triangle (triangle from Tcloser) is between camera and blue triangle (tpartly visible).
Intersection points x1 and x2 are on image plane with point x3 which is vertex inside
tpartly visible. Rays from camera passes through x1, x2 and x3 creating new points X1, X2
and X3 on blue triangle tpartly visible.

Once partly visible triangle tpartly visible is Retriangulated, tpartly visible is thrown away.
New triangles are added to structure of triangles and new points are added to structure
of vertices. Whole process in form of pseudo code is in Algorithm 3.5 below.

18

. 3.9 Reflection detection

Figure 3.8. Computing 3D coordinates of intersection point.

Algorithm 3.5 Retriangulation

input: structure of vertices V
structure of triangles T
camera structure camera

1. for each partly visible triangle ti of T
2. Store coordinates of ti vertices into RetriangulationPoints
3. for each triangle tj of T closer to C then ti
4. if tj intersect ti in 2D projection on image plane then
5. Add points of intersection into RetriangulationPoints
6. if Any vertex of tj is inside ti in 2D projection then
7. Add these vertices into RetriangulationPoints
8. endif
9. endif

10. endfor
11. Compute 3D positions of new points in RetriangulationPoints.
12. Use Delaunay triangulation on RetriangulationPoints.
13. Determine visibility of new triangles.
14. Use Delaunay triangulation only on three vertices from

original triangle and all vertices of new visible triangles.
15. Determine visibility of new triangles, add new

triangles to T and throw away ti.
16. Add new points to V .
17. endfor

3.9 Reflection detection
Once every triangle on examine surface is either visible for not visible for camera,
reflection of light source on examine surface is examine. Algorithm looks for reflection
of flat panel light source that can capture camera. Reflection of course can can be
capture only on visible triangles. Principle of reflection detection is in tracking a ray
from camera to visible visible vertex, where normal is known. This allows to compute
reflection of such ray and then determine whether reflected ray hits flat light panel.

19

3. Algorithm design .

Figure 3.9. Notation in reflex detection.

Once we know that ray can reflect light from camera to light panel, we can assume that
light can also be emitted from light panel to camera on the same path.

Figure 3.9 illustrates such situation. Ray from C to v described with vector vi is
reflected as ray vo on vertex v to flat light panel G = (G1, G2, G3, G4). Vector vo is
specular reflection of vi, computed as [10]

vo = (I − 2vnvTn)(v − C), (10)

where I is identity matrix 3× 3. Once it is determine for every visible vertex whether
it can reflex light from light panel to camera, next step finds whole triangles that can
reflect light to camera. Important is also to compute whether ray have free path from
surface to light panel or whether it hit some obstacle. Figure 3.10 show principle of
such computation.

Figure 3.10. Triangle with reflection.

This give us opportunity to create pyramid with apex in Cr and base given by the
tr. Similar procedure as in 3.6 is then run to determine points inside pyramid. This
time not all points will be tested but only points between two planes. First plane is
given by tr and the second by G. That creates five conditions. Three for point inside
pyramid and two for point between planes. If any point satisfy all five conditions than

20

. 3.9 Reflection detection

there is an obstacle in way for rays and triangle does not reflects light from light panel
to camera. Pseudo code of reflection detection is below in box Algorithm 3.6.

Algorithm 3.6 Reflection detection

input: structure of vertices V
structure of triangles T
camera structure camera
light source

1. for each visible vertex vvis of V
2. Compute ray vi from C to vvis and reflected ray vo.
3. if vo passes through rectangle G then
4. vreflectioni = 1
5. endif
6. endfor
7. for each visible triangle ti of T
8. if all 3 vertices of ti have vreflection == 1 then
9. treflectioni = 1

10. Create reflected camera Cr behind tvis.
11. for each triangle tj of T between G and ti
12. if any tj is inside pyramid (C, ti) then
13. treflectioni = 0
14. break
15. endif
16. endfor
17. endif
18. endfor

21

Chapter 4
Implementation

Algorithm described in Chapter 3 was implemented in Matlab R2013a from Mathworks
company 1). Inputs for the main script reflex main that covers whole algorithm
described in Algorithm 3.1 are:.Camera matrix P ..Coordinates of corners of image plane (D1, D2, D3, D4) (as shown on Figure 3.1)..Coordinates of corners of light source (G1, G2, G3, G4) (also on Figure 3.1)..Triangulated surface in Waveform OBJ formate

We use OBJ formate because it is open format for 3D representation of geometric
data. OBJ is easy to open in text editor and understood its structure and many freeware
software supports this standard. Another benefit is that OBJ format stores vertices
normal and positions which is used in computation. To load model into Matlab is used
Waveform OBJ toolbox [14]. Toolbox loads all information about model available, but
not all of them are needed. Format contains information about textures and materials
used on model. These informations are not used, because they have no impact on
models visibility. Needed data are processed into two structures. One for vertices and
the other for triangles. Format of structures is described in Tables 3.1 and 3.2.

Script reflex main calls five scripts one by one. They are backfaceCulling for
Backface Culling, inFOV for determining triangles in field of view and splitting those on
the edge, hiddenTriangles to select triangles hidden behind another part of surface,
triangulate for retriangulation, and finally reflex that computes which visible trian-
gles reflects the light from the light source into the camera. Each script have structure
of vertices V , structure of triangles T and camera as input. Only reflex have also pa-
rameters of light source as input. All scripts returns V and T as output with updated
information about visibility and reflection.

1) http://www.mathworks.com

22

Chapter 5
Testing

Algorithms were implemented and tested in Matlab R2013a on object designed to cover
all problems that ware stated in 1.1. This object is rotated curve shown on Figure 5.1.

Figure 5.1. Objects of testing - rotated curve with 8064 triangles. On the left is top view
and on the right side view.

5.1 Backface culling

Figure 5.2. Backface culling. On the left is top view and on the right side view.

23

5. Testing .
Figure 5.2 shows test object with camera from two views. Camera is represented by

triangle with blue edges on the left and four triangles with blue edges creating pyramid
representing field of view on the right side. Model is covered with two colors. Blue
color marks triangles that are not visible for camera after backfaace culling and orange
marks triangles that are visible. As mention in chapter 4 triangles out of filed of view
(visible on the left side of Figure) are still marked as visible so the triangles covered by
another part of model. This is expected and correct result.

5.2 Triangles in field of view

Figure 5.3. Triangles in field of view. Same views as in previous image.

Triangles that were out of field of view are now marked blue as not visible. Triangles
on the edge of field of view are split into fully visible and completely not visible triangles.
On the right of Figure 5.3 is clearly visible dividing line. More extreme example is on
Figure 5.4 where field of view pyramids edge is passing through model.

Figure 5.4. Another example of triangles in field of view.

24

. 5.3 Covered triangles

5.3 Covered triangles

Figure 5.5. Covered triangles. Same views as in previous image.

On Figure 5.5 is tested object after running algorithm for removing triangles covered
behind another part of model. It is clear that all triangles that were hidden are now
blue coloured and thus not visible. But thanks to part of object that cast shadow, there
are now few triangles partly visible and partly covered. These triangles are marked in
red color and will be split into smaller triangles in new Retriangulation section.

5.4 Retriangulation

Figure 5.6. Retrianulation. Same views as in previous image.

Figure 5.6 captures situation after retriangulation of partly visible triangles. The
edge between visible and not visible part of model is now clean and model is ready for
reflection detection.

25

5. Testing .

Figure 5.7. Reflection detection algorithm with pyramid from Cr through tested triangle.

5.5 Reflection
Figure 5.7 shows work of algorithm for reflection detection when looking for obstacles

in a rays path. Reflected camera center Cr is on the left in red circle and obstacles in
a path of rays are painted with pink dots.

Figure 5.8 shows reflection detected on examine surface. Surface is very curvy and
therefore reflection is visible only in small part of surface. See Figure 1.2 where is
reflection detected on flat surface and more clearly visible.

26

. 5.5 Reflection

Figure 5.8. Reflection (in red color) of light source (red see through rectangle) on examine
surface.

27

Chapter 6
Conclusion

In this thesis was designed and implemented algorithm for determining visibility and
reflection on glossy triangulated surfaces. In the Section 1.1 ware stated five problem
that needs to be solve in order to consider proposed algorithm successful. Problem with
determining triangles facing towards camera was solved using method called Backface
culling. Second problem was to locate parts of surface inside field of view. This prob-
lem was solved. Each triangle outside of field of view is labelled as not visible and
triangles on the edge are refine to two or three new triangles that are either fully visible
or fully not visible. Third stated problem was to determine parts of surface hidden be-
hind another part of surface. Algorithm that finds every hidden triangle was designed
and test proves its correctness. Removing hidden faces leaves certain triangles partly
visible and partly hidden. To deal with this problem and solve fourth stated problem
was design retriangulation algorithm that refine triangulation and leave whole examine
surface with only completely visible and completely not visible triangles. And finally to
label every triangle that reflect light from light source into the camera and thus solve
last problem, was design algorithm that follows rays from camera into the light source.
If the light ray have free path from camera into the light source, ray can also travel the
opposite direction.

Chapter 3 describes algorithm design, Chapter 4 briefly describes implementation of
designed algorithm in Matlab and Chapter 5 shows results of implementation. Pro-
posed algorithm satisfy all goals that ware stated and offers tool to study visibility
and reflection on glossy surfaces. In comparison to the traditional algorithm does not
work in limited raster but refines examine surface and as its output produce labelled
triangulation. Algorithm can be modified for more than one camera and more than one
light source, creating interesting tool that can be used to cover whole surface with vis-
ible reflections. Example of usage is to let algorithm arrange cameras and light sources
around model of real glossy object and then use this arrangement in real life study of
reflection on surface when looking for possible flaws like scratches or bumps. Such flows
would resolute in different light reflection than algorithm computes.

28

References
[1] Jiří Sochor, Jiří Žára, and Bedřich Beneš. Algoritmy počítačové grafiky. ČVUT

Praha, 2-nd edition, 1996.
[2] David Eberly. 3D game engine design : a practical approach to real-time computer

graphics. Morgan Kaufmann, San Francisco, 2001.
[3] Jiří Bittner and Peter Wonka. Visibility in computer graphics. Visibility Survey,

2003.
[4] Sagi Katz, Ayellet Tal, and Ronen Basri. Direct visibility of point sets. SIG-

GRAPH, 26, 2007.
[5] Patrick O’Beirne. Managing risk in euro currency conversion. Cutter IT Journal,

11:22–29, 1998.
[6] Pal Benko. Endgame lab: Triangulation. Chess Life, November:48–49, 2010.
[7] Margaret S. Mahler. On human symbiosis and the vicissitudes of individuation.

The International Journal of Psychoanalysis, October:740 – 763, 1967.
[8] Wikipedia. Triangulation (disambiguation) — Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Triangulation_(disambiguation). Online, ac-
cessed: 10-April-2014.

[9] Øyvind Hjelle and Morten Dæhlen. Triangulations and applications. Springer
Verlag, S.l, 2010.

[10] David Halliday. Fundamentals of Physics. Wiley, 2013.
[11] Simon Jeremy Damion Prince. Computer vision : models, learning, and inference.

Cambridge University Press, 2012.
[12] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Com-

puter Graphics - Principles and Practice. Addison-Wesley, 2-nd edition, 1990.
[13] John Hughes. Computer graphics - principles and practice. Addison-Wesley,

Upper Saddle River, New Jersey, 3-rd edition, 2014.
[14] Dirk-Jan Kroon. Wavefront obj toolbox.

http://www.mathworks.com/matlabcentral/fileexchange/27982. Online, accessed:
3-February-2014.

29

http://en.wikipedia.org/wiki/Triangulation_(disambiguation)
http://www.mathworks.com/matlabcentral/fileexchange/27982

Appendix A
Content of enclosed CD

On enclosed CD can be found following directories:.Thesis - Contains this thesis in PDF..Source - Contains source code of implementation in Matlab..Figures - Contains figures shown in Chapter 5 from algorithm testing.

In source folder are prepared five scripts that can be run in Matlab. They will produce
results shown in Chapter 5. They are test bc for Backface culling test, test fov
for test of algorithm to determine triangles in field of view, test hidden for hidden
triangles determining, test retriangulation for retriangulation test and test all
for complete algorithm test.

31

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	/Contents
	Tables/Figures
	Introduction
	Problem statement
	Related work

	Theoretical background
	Surface triangulation
	Triangle
	Triangulation
	Delaunay triangulation

	Geometrical optics
	Camera geometry
	Pinhole camera model

	Algorithm design
	Light source
	Examined model
	Camera model
	Structure of algorithm
	Backface culling
	Triangles in field of view
	Hidden triangles
	Retriangulation
	Reflection detection

	Implementation
	Testing
	Backface culling
	Triangles in field of view
	Covered triangles
	Retriangulation
	Reflection

	Conclusion
	References
	Content of enclosed CD

