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Abstrakt
Tato práce se zabývá cenovou soutěží na agregačních stránkách, které umožňují zákazníkům
porovnávat různé nabídky produktu na základě cen. Agregační stránky se v dnešní době
stávají široce populární. Na základě předchozího empirického výzkumu byl navržen obecný
model chování obchodníků a zákazníků. S použitím existujících modelů cenové soutěže bylo
navrženo několik strategií cenotvorby. Na základě rozšíření jednoho z modelů byla vyvinuta
technika reagování na pozorované ceny konkurence. V kombinaci s vyvinutou technikou
byly úspěšně použity metody teorie her, optimálního řízení a dynamického programování.
Jako výsledek byly získány další strategie cenotvorby. Tyto strategie modelují kapacitu ob-
chodníků a časovou strukturu cenové soutěže. Byla realizována výpočetní simulace soutěže.
Taky byla navržena metoda jednotného hodnocení kvality různých strategií. Simulace uká-
zaly, že uvažovat pouze cenu konkurence může být prospěšné jen z krátkodobého hlediska, z
dlouhodobého hlediska to nutno brát v úvahu více parametrů. V simulacích se strategie vy-
cházející z učení podle herně-teoretické metodiky fictitious play v kombinací s dynamickým
programováním ukázala jako obecně nejefektivnější.

Klíčová slova
(cenová soutěž, agregační stránky, teorie her, optimální řízení, dynamické programování)
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Abstract
This thesis investigates price competition at comparison shopping engines which are be-
coming widely popular nowadays. Based on empirical related work a general model of
retailers’ and customers’ behaviour is proposed. Using existing models of price competi-
tion several pricing strategies for the studied problem are obtained. One related model
is extended and a technique for response to observed competitors’ behaviour is suggested.
The developed technique was successfully combined with methods of game theory, optimal
control and dynamic programming. As a result, further pricing strategies were obtained.
The strategies model retailer’s capacity and the temporal structure of the price competi-
tion. A computational simulation of the competition was implemented and the method
of unified numerical evaluation of different strategies was suggested. Using simulation it
was found out that strategies based purely on observation of prices might be efficient only
in short-term competition. To be successful in long-term competition, a retailer has to
consider further characteristics of the problem. Using simulations the strategy based on
fictitious play in combination with dynamic programming was found to be in general the
most efficient. Factitious play is a game-theoretic learning rule.

Keywords
(price competition, shopbots, game theory, optimal control, dynamic programming, simu-
lation)
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1. Introduction
Development of information technology has influenced the forms of retailing. Online shop-
ping has become widely popular among both adults and adolescents [1]. According to Czech
Statistical Office, the internet retailing share of a total Czech retail was 5-6% in 2011 with
revenues of 40-45 billion CZK. It is predicted that this share will grow. As the popularity
of online retailing among customers is considerable, even big classic stores sell their goods
via the Internet as well [2].

One reason for the popularity of online retailing is the possibility to compare different
offers of a particular product and choose the most preferable one [3]. For the purpose of
easier comparisons special engines have been developed. In the literature there are several
terms describing essentially the same online comparison-shopping engines. These terms
are: product comparison agents, price comparison sites, shopbots, comparison-shopping
agents/engines, recommendation or buyer’s agents, internet shopping agents and price ag-
gregators [4, 5, 6, 7]. In this work a term shopbot will be used.

Shopbots are automated tools which provide customers with comparison of prices or
other attributes of a particular product offered by different online shops [8]. Shopbots
increase price transparency [7]. It leads to intensive price competition among retailers at
shopbots [3]. Initially online retailers tried to avoid the price competition and did not
join shopbots. However, nowadays retailers actively join them [3], because shopbots have
become very popular among customers [4, 3]. Analysis of the price competition at shopbots
and developing effective pricing strategies might be very important for successful online
retailing.

In this work a general model of the price competition at shopbots is formulated. Based
on existing related models of price competition, several pricing strategies are obtained.
One existing model is extended in order to become as close to the general model as possi-
ble. A technique for learning from observation is developed for the extended model. The
technique is successfully combined with methods of game theory, optimal control and dy-
namic programming. As a result, further pricing strategies are designed. The strategies
consider retailer’s capacity and the temporal structure of the price competition. Moreover,
observation of adversaries’ inventory levels is not required. A computational simulation of
the price competition is implemented and performance of developed strategies is evaluated
numerically. A set of experiments required for unified comparative evaluation of different
strategies is proposed. In experiments it is shown that pricing strategies using observations
of previous prices might be efficient only in short-term competition. In order to maximize
profits in long-term competition, it is important to consider possible loyalty of customers,
an inventory level, duration of sales and a total expected demand. It is shown that the
strategy based on fictitious play in combination with dynamic programming is in general
the most efficient.

The following section describes a structure of the work.

1.1. Outline of the thesis
In Chapter 2 the complex problem of pricing at shopbots is investigated systematically.
Based on related empirical research key components and the most important characteris-
tics of the price competition among retailers are discussed. A general model of retailers’
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1. Introduction

and customers’ behaviour is provided. In Chapter 3 related models of similar competitions
on prices are surveyed. Different possible approaches to studying price competition are
discussed. Limitations of these approaches are considered. Chapter 4 shows that it is pos-
sible to design pricing strategies based on the scientific models from the previous chapter.
In the next Chapter 5 a more realistic extension of one model is developed based on the
general model from Chapter 2. Using the developed extension further pricing strategies
are designed in Chapter 6 based on methods of game theory, optimal control and dynamic
programming. In order to evaluate the performance of different pricing strategies, a com-
putational simulation of the price competition at shopbots is used in Chapter 7.
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2. Price competition among retailers at a
shopbot and its model

Each retailer, who participates in price competition at a shopbot, tries to maximise his
profit. The aim of this work is to develop pricing strategies, which would maximise a
retailer’s profit. A real-world behaviour of the retailer is very complex. While selling a
product at a shopbot the retailer has to deal with a lot of issues (transport and storing
of the product, collecting information about adversaries and customers, updating a price
etc.). It might be impossible to develop a pricing strategy which takes into consideration
all real-world issues. The more real-world information would be taken into account, the
better the performance of the strategy is expected to be. It is important to gather the most
relevant information about shopbots, customers’ behaviour at shopbots, and behaviour of
retailers at a shopbot. This information organized systematically will provide a general
model of the price competition at a shopbot. The model will apparently be too complex to
obtain any pricing strategy. Models for developing pricing strategies will be significantly
simpler than the general model. But after developing the general one it will be possible to
understand limitations of simpler models better.

2.1. Functions of online comparison-shopping engines
The purpose of this work is to analyse price competition among retailers at shopbots. Ser-
vices provided by shopbots shape the competition among retailers and should be inspected.
On the other hand, neither technical realization of shopbots, nor algorithmic aspects of
shopbots’ functions would not be considered.

Shopbots provide customers with comparison of prices or other attributes of products
available online. Shopbots are capable of collecting information from the retailers, storing
and processing the stored information on prices or further product attributes [4]. Shopbots
also allow customers to rate retailers. Shopbots store customers’ ratings and reviews [9].
All information about offers and retailers is public [10]. Additionally, shopbots can provide
retailers with analysis of the demand each retailer faces [11].

The information on prices and availability is updated periodically. The maximal fre-
quency of price updates might be given by rules of the shopbot. For instance, according
to the rules of a Czech shopbot heureka.cz [10], prices are updated several times per day.
Google Shopping1 shopbot advises customers to update information on prices and avail-
ability four times per day [13]. If four updates per day is not enough more frequent changes
of prices and availability can be enabled [13]. Shopbots are especially interested in present-
ing up-to-date information on availability. Heureka.cz updates information on availability
every ten minutes [14].

Even though many shopbots provide customers with comparison of various product at-
tributes, price has always been the most common one. Historically the very first shopbot
developed in 1995 compared only prices on available online CDs [15]. Nowadays many
shopbots offer not only a comparison of prices but also a comparison of subjective cus-
tomers’ experiences [4, 10]. Heureka.cz in addition compares even such a specific piece of

1According to the most recent reports of CPC Strategy, a shopbots management company, Google Shopping
is currently the top-performing shopbot [12].
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2. Price competition among retailers at a shopbot and its model

information as a distance to a shop. Interestingly, it was shown that additional compari-
son information does not necessarily result in more visitors of a shopbot [16]. Some price
comparison shopbots can compare total prices a particular customer would have to pay for
a particular product. The total price includes a shipping cost and taxes. As an example,
price comparison shopbot Google Shopping offers customers comparison of the total prices
a customer would have to pay.

Deeper analysis of shopbots is not a subject of this work. The brief overview presented
here should be enough for further analysis of a price competition among retailers at shop-
bots.

2.2. Behaviour of retailers at shopbots
2.2.1. Results of empirical research
Results of empirical research on pricing behaviour of competing retailers at shopbots are
to be discussed.

It was shown that retailers periodically change their prices. Using a comprehensive set
of empirical data it was found that top-ranked retailers adjust their prices quite often [3,
5]. Retailers who set the lowest prices are meant by the top-ranked retailers. Retailers
with median positions 2nd - 5th had to make more than 3000 adjustment during a studied
period (12 months), i.e. on average more than 8 adjustments per day [3]. Non-top retailers
do not adjust their prices so often [3]. They might be big and very reputable retailers. It
was predicted that shopbots should not affect pricing behaviour of reputable retailers very
much [6]. On the average a retailer at the shopbot adjusted his price every 9 days [3]. Only
2% of all retailers at the studied shopbot have never been placed on the first page among
the cheapest retailers and no single retailer managed to hold the first position [3].

At some point in time prices of different retailers at a shopbot vary significantly. In
other words, it has been shown that prices at a shopbot are strongly dispersed [17, 3, 18].
Neither level of price dispersion, nor price level at shopbots are lower compared to the level
of offline market [3].

Using empirical data, it was shown that retailers’ behaviour at a shopbot can be described
using a probabilistic pricing [5, 6], when every retailer has defined probabilities of setting
each possible value of a price.

2.2.2. Set of prices
Possible values of a price for an arbitrary product are to be considered. One particular item
from a retailer’s list of offered goods or services is meant by a product. For instance, in the
work the term product will be used for plane tickets on a particular date of flight, and for
particular book, and for particular laptop model, and for hotel rooms on a particular date,
etc. Let a piece of a product be a single unit of the product. A price for a single piece of
the product will be meant by a price for a product.

Setting a negative price for a product is usually not desirable, as well as setting a price
which is lower than a product cost2. If a retailer produces a product, then the product cost
might be viewed as an average cost of the production and storing of one piece of a product.
If a retailer does not produce a product, then the product cost might be viewed as a sum
of the factory price, the shipping price, taxes, and the price of storing a single piece of a
product. Let cst denote the product cost, cst ∈ R ∧ cst > 0. For additional remarks on
the meaning of cst in the general model see Subsection 2.2.4. A term "zero profit price",
𝑝zero profit, will be used for a product price which equals to a product cost.

2Theoretically, though, both cases are possible in competitions similar to the one at shopbots [19].
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2.2. Behaviour of retailers at shopbots

In the online market there is the highest reasonable price 𝑝highest [5, 19, 6]. It is such a
price, that no customer would buy a product at a higher price 𝑝H > 𝑝highest.

A set of actions available to every player is setting a reasonable price 𝑝, 𝑝 ∈
[︀
𝑝zero profit, 𝑝highest

]︀
.

Note, that in a case if 𝑝highest ≤ 𝑝zero profit a retailer cannot make any profit from partic-
ipating in a price competition. Retailer are assumed to be rational and, as a consequence,
𝑝highest > 𝑝zero profit.

Also we assume that a retailer sets a price from an interval
[︀
𝑝zero profit, 𝑝highest

]︀
only

if he has product pieces to sell. If a retailer has nothing to sell, he automatically quits
a shopbot. A shopbot is not interested in displaying outdated information to customers
[14, 13]. If a retailer has no product pieces at his storage, then his offer is automatically
unavailable to customers. It means that no customer can buy from the retailer.

All retailers, who compete with each other at a shopbot, offer the same product. The
product cost is assumed to be the same for all retailers. As a consequence, the price
𝑝zero profit is the same for all competing retailers.

2.2.3. Capacity constraints a retailer faces

We have discussed that a set of possible prices is constrained. In the real-world situations
every retailer also faces capacity constraints. Usually a retailer has a product storage with
a fixed capacity. For instance, a warehouse might be the storage. Also every retailer has
some limited amount of available money, it also constrains a number of product pieces the
retailer can buy. To sum up, every retailer has a maximal number of product pieces he is
capable of buying and storing. Let this maximal number be called a retailers’ capacity, as
it was done in [20, 21]. Capacities of different retailers in general differ.

Let an inventory level be a number of pieces a retailer currently has. The notation
is taken from [20, 21]. An inventory level cannot be negative. This is another capacity
constraint each retailer faces.

2.2.4. Temporal structure of retailer’s actions

If in real-world situations a retailer sells everything out, he cannot refill his inventory level
with a new portion of products at any moment. In practice new portions are delivered
periodically. As a result, a retailer faces a problem of selling a limited number of products
over a finite time horizon [20, 21, 19].

At the end of the time horizon a retailer can refill an inventory level up to a number
of products equal to the retailer’s capacity. After the refilling the retailer faces the same
problem of selling his capacity over the time horizon before the next refilling of the inventory
level. As the problems are analogous, it is sufficient to consider only a time interval between
two consequent refillings, as it was done in [20, 19, 21]. The time interval was called a sales
horizon in [20, 21]. The same term will be used in this work.

During a sales horizon a retailer at a shopbot is involved in a dynamic price competition.
He changes prices periodically [3]. It can be assumed that all retailers at a shopbot update
prices in the same periods [20, 19]. When some retailer does not update his price the
situation is identical as if he updated a price but set the same value as he had before the
update. The frequency of price updates might be given by the rules of a shopbot [10].
Alternatively, it can be assumed that prices of all retailers are updated with a frequency
of the most active retailers, which is observable by all retailers [3]. Every update of prices
starts a new period of competition among retailers. Inventory levels of successful retailer
decreases as the competition goes on.

Let a total profit of a retailer be equal to a sum of all retailer’s profits during the sales

5



2. Price competition among retailers at a shopbot and its model

horizon, the same definition of a total profit was used in [21]3. If at some moment t a
customer buys a piece of product from the retailer at price price(t), then retailer’s profit
at that moment would be profitmoment = (price(t) − cst).

A period of competition and a sales horizon should be distinguished. A sales horizon is
usually a longer time interval compared to a period of competition. It is often the case
as products are not usually delivered more often than once per day, and usually several
changes of prices take place during a day [3]. It is assumed that a sales horizon duration
can be expressed as a multiple of a competition period, as it was done in [20, 19], see Fig.
3.1.1.
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Fig. 2.2.1. Illustration of the difference between periods of competition and sales horizons

Note, that a retailer has to pay some holding cost for storing one item of a product during
the sales horizon [21]. In the model it is assumed that the holding cost over one sales horizon
is included in the product cost, cst. However, if a piece of a product is not sold during
one sales horizon, then the retailer will have to pay additional holding cost for the next
sales horizon. The length of the next sales horizon might be unknown. Nevertheless, in the
model the cost for holding a piece of a product over the next sales horizon is assumed to
be fixed, as it has been done in [21].

A comment on alternative definitions of the competition period is required. In related
work periods of the competition were defined with arrivals of customers [20, 19]. In both
[19] and [20] arrivals of customers were assumed to be observable by all retailers. If a
customer arrives to any of the retailers, then a new period of the competition starts and
retailers might want to change their prices.

In real-world situations a retailer usually cannot observe arrivals of customers to other
retailers.

2.2.5. Information a retailer can observe

A retailer can observe several pieces of information.
a) Previous prices all other retailers at a shopbot might be observed.
b) A number of customers who previously bought from the retailer at some particular

price might be observed.
c) In some cases it is possible to observe a capacity of other retailers. For instance, in a

hotel business the initial capacities of hotel rooms are known. Nowadays hotels sell their
rooms via shopbots as well. Another example is an airline business. A number of seats at a
particular flight is usually known. There are many shopbots specifically for airline tickets.

3Sometimes a synonymous term total revenue is used [20, 21].
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2.3. Customers’ behaviour at shopbots

d) It might be possible to observe sales horizons of other retailers. For instance, in a
case of airlines everybody usually knows a start date of sales of the tickets for a particular
flight on a particular date. And the date of the flight is also known, it terminates a sales
horizon.

Also it is possible to observe sales horizons of other retailers in a case of the hotel business.
Hotels often sell reservations for their rooms for a particular weekend [22]. The sales of the
reservations usually start a few months in advance. Sales horizon in this case is equal to
a time interval between the start of sales and a date of the considered weekend. And all
other competing hotels in the same area with similar rooms for the weekend can observe
sales horizons of their competitors.

d) It might rarely be possible to observe other retailers’ inventory levels. For instance,
it is so in the case of an airline business.

When it is not the case, sometimes a retailer might be capable of an approximate esti-
mation of other retailers’ inventory levels, see [20, 19] for details.

2.2.6. Pseudo code of a retailer

The discussed retailer’s behaviour during a single sales horizon will be formally described
with pseudo code, see Algorithm 1. Note that after the end a sales horizon the retailer
would pay a cost for holding the remaining pieces of a product. At the same time the
retailer can refill his inventory level.

In the general model it is assumed that each customer buys just one piece of a product,
see Subsection 2.3.3.

Note, that in Algorithm 1 function ComputePrice(knowledge, Parameters) has to re-
turn only allowed values of prices defined in the Subsection 2.2.2.

Interaction between customers and retailers in the pseudo code is given as a test for
customer’s purchase from a considered retailer. Customers’ behaviour is considered in the
next section.

2.3. Customers’ behaviour at shopbots
One of key goals of each retailer at a shopbot is to attract customers, as a retailer would earn
nothing if no customer decides to buy from him. Therefore, in order to understand better
which actions retailers should take, we need to examine factors that influence costumers’
choices.

2.3.1. Offer attributes which influence a customer’s choice at shopbots

Using a comprehensive set of empirical data it has been found that 90% of all clicks at the
studied shopbot were obtained by retailers who had prices 𝑝 such that 𝑝 6 1.05 𝑝min, where
𝑝min is the minimal price available at the shopbot [3]. So we can see that costumer choices
are strongly influenced by prices.

It was also shown that having two similar offers with the same price more customers
prefer a retailer with a stronger brand [7]. It should be noted that by a retailer’s brand the
retailer’s reputation is meant. Even though a retailer’s brand matters, still a product price
is a primary determinant of choices for many customers [23].

2.3.2. Loyal and switching customers

In some works price competition among retailers at a shopbot is modelled as an all-or-
nothing type of the competition, when all customers buy from retailers who offer the lowest

7



2. Price competition among retailers at a shopbot and its model

Input: Observations, see 2.2.5
Result: A retailer sets a price for the offered product
Parameters: the first period = period after a refilling of an inventory

level, a capacity, an inventory level, a product cost = cst,
a profit, a sales horizon

Variables: knowledge

initialization:
knowledge = {capacities and sales horizons of other retailers, information on other

retailers’ inventory levels, Observations};
while (current period - the first period) < sales horizon do

if inventory level ≥ 1 then
knowledge = knowledge + current period;
price = ComputePrice(knowledge, Parameters);
set a price price for the product;
repeat

if a customer buys a piece of the product then
inventory level = inventory level - 1;
profit = profit + price - cst;
if inventory level = 0 then

quit the shopbot;
end

end
until the end of the current period;

else
quit the shopbot;

end
knowledge = knowledge + Observations;
current period = current period + 1;

end
Algorithm 1: Pseudo code modelling a retailer’s behaviour at a shopbot

price [5, 19, 6]. These models of the price competition predict a demand jump for a retailer
who starts to offer the lowest price. The demand jump has been observed using a set of
empirical data [24].

In real-world situations if a retailer starts to offer the lowest price at a shopbot, he
does not experience a jump from a zero demand to a total demand. For instance, in the
empirical research [24] 45% of all clicks were obtained by a retailer who offered the lowest
price4. More than a half of all customers did not choose the cheapest offer. In the work [24]
it is explained by the fact that some customers have their preferred retailers at the shopbot
[24]. Such customers are often called loyal customers or simply the loyals [24, 5, 6]. It is
assumed that the loyals buy from their preferred retailers as long as the price is reasonable,
i.e. as long as price 𝑝 ≤ 𝑝highest. Not all customers at a shopbot can be modelled as the
loyals. Another type of shopbot customers are shoppers, or switching customers, or simply
the switchers. The switchers always choose the lowest price [24, 5, 6].

The concept of the loyals relates to the concept of brand-sensitive customers. It has
been shown that some customers are brand-sensitive, i.e. they would like to buy from
reputable retailers even at prices higher than the minimal ones [7]. The concept of the

4Note, that it has been shown that clicks data can be used for identification of the demand characteristics
[24].
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loyals and the switchers also predicts that some customers would choose offers at prices
higher than the minimal one. It is important to note that the empirical study [24] which
has shown the credibility of the loyals/switchers model explains an existence of the loyals
by brand-sensitivity of customers. Specifically, it has been shown that reputable online
retailers which also have classic stores attract more customers compared to purely online
retailers [24].

The retailer’s brand can be understood as a general characteristic of the previous cus-
tomers’ experience. The brand is often expressed via forums, customers’ reviews and rating
systems [10]. The greater the retailer’s brand is, the more satisfied the customers were with
the retailer’s services. And if the customers had been satisfied it is very likely that they
became loyal to the retailer.

The behaviour of one customer in the general model is concisely described in the next
section.

2.3.3. Summation on customers’ behaviour

In the general model it is assumed that each customer buys just one piece of a product.
The same assumption was made in models of price competition among retailers in [25, 19,
20].

Demand is usually decreasing in price. It is assumed that at the shopbot there is such a
price 𝑝highest, that no customer would buy a product at a higher price 𝑝H > 𝑝highest [5, 19].
If all available prices are higher than 𝑝highest, then a customer buys nothing and leaves. If a
customer does not trust any of retailers at a shopbot due to the described loyalty, then the
customer also buys nothing. In other cases a customer takes into consideration available
prices and his own preferences and buys a piece of a product from some retailer. If a purely
price sensitive customer faces several offers at the same price, then he chooses one offer at
random [19].

2.3.4. Arrivals of customers

A customer’s behaviour has been modelled. At different moments of time there are different
numbers of customers at a shopbot. Arrivals of customers can be described as a stochastic
process [19, 24, 20, 21]. A number of arrived customers during a particular period of the
competition is a value of a discrete random variable. Let Y denote this random variable.

Y assigns a natural number of arrived customers to every possible period of the compe-
tition. Note that all periods of the same length which can take place are meant by possible
periods of the competition. All these possible periods make up a sample space Y is defined
on.

There are several stochastic processes which can describe arrivals of customers at a shop-
bot. The Bernoulli process is often used to model arrivals of customers ([26], p. 297). In
real-world situations customers do not necessarily arrive one by one in discrete time peri-
ods. So arrivals of customers might be better modelled with the Poisson process which is a
continuous-time analogue of the Bernoulli process ([26], p. 309). Both processes are used
in the literature to model arrivals of customers. In [21] the Poisson process was used for
analysis of a problem similar to ours. But in both [19] and [20] the Bernoulli process was
used. It was argued that the Bernoulli process approximate the Poisson process well if one
chooses an appropriate time scale [20, 19],([26], p. 311).

The Bernoulli process is easier to implement in numerical simulations of the competition
at a shopbot. Studying of underlying stochastic process in detail is not the aim of this
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work. The goal of this work is to develop retailers’ strategies, for this purpose the Bernoulli
process of arrivals of customers would serve well.

The period of customer arrivals is not equal to the period of the competition in the model.
In the model it is assumed that several customers might arrive during the single period of
the competition.

The behaviour of a customer at a shopbot has been described in Subsection 2.3.3. In the
model each customer performs the described behaviour as soon as he arrives to a shopbot.
Pseudo code 2 captures in a concise manner a process of customers’ arrivals. In the code
start is the first period of the competition at a shopbot which would be considered.

Variables: current number of arrivals, a natural number k
for current period = start to infinity do

current number of arrivals = Y(current period);
k = current number of arrivals;
while k > 0 do

a new customer arrives;
k = k - 1;

end
end

Algorithm 2: Pseudo code modelling customers’ arrivals to a shopbot
To conclude, the most important characteristics of the price competition among retailers

at a shopbot have been underlined. The general model of retailers’ reasoning and customers’
behaviour is concisely given in Subsection 2.3.3 and in Algorithms 1 and 2. The model
considers the most important real-world attributes of the price competition at a shopbot.
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3. Related work on models of the price
competition at shopbots

There are several possible ways to study the competition at shopbots. Game-theoretic
methods can be used for this purpose, as retailers at shopbots might be viewed as com-
peting rational decision-makers. Game theory is a study of strategic interactions among
rational, independent and self-interested decision-makers [27]. Game-theoretic models of
price competition are described in Section 3.1.

Another possible way to address the competition at shopbots is to use optimal control.
Using variations in price, each retailer tries to control a number of sold products in such
a way, that his profit is maximised. Section 3.2 describes related work in which optimal
control methods were used to analyse dynamic price competition among several retailers.

3.1. Game-theoretic approach
Dealing with game-theoretic models related to the competition at shopbots some definitions
from the field of game theory will be used. These definitions can be found in Appendix A.

3.1.1. Bertrand model
The basic economic model developed by Bertrand is one of the oldest models of price
competition similar to the competition at shopbots.

Retailers at a shopbot offer the same product, i.e. all retailers sell an identical prod-
uct. Selling a homogeneous product is an assumption of the Bertrand model [28]. As a
consequence, the model assumes that the price 𝑝zero profit is the same for all retailers. In
the Bertrand model customers are price-sensitive and buy from the retailer, who offers the
lowest price [28]. Retailers’ capacities are not considered in the model. Basic results of the
model will be shown for a duopoly, i.e. a competition between two retailers [28, 29]. In
the model it is assumed that every retailer can meet the total demand. The competition is
modelled as a single-stage game.

It was shown that in the only Nash equilibrium of the Bertrand competition every retailer
sets a price equal to the product cost, 𝑝zero profit [28]. Having a duopoly with retailers 𝐴
and 𝐵 the best response of a retailer 𝐵 to a price 𝑝𝐴 of a retailer 𝐴 is

𝐵𝑅(𝑝𝐴) =
{︃

𝑝𝐴 − 𝜖, 𝑝𝐴 − 𝜖 > 𝑝zero profit;
𝑝zero profit, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

The result is taken from [29]. The only Nash equilibrium is given by 𝑝*
𝐴 = 𝑝*

𝐵 =
𝑝zero profit [29]. It is impossible to improve the profit by setting a price lower or higher
than 𝑝zero profit if another retailer sets 𝑝zero profit.

The result holds in the case of more retailers [30].

3.1.2. Bertrand competition in the context of shopbots
It was shown that under certain conditions the competition among retailers at shopbots
might be the Bertrand competition, i.e. all competing retailers in the equilibrium would set
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the price 𝑝zero profit [18, 31]. The assumptions for this were: a) a low customer search cost
and price-sensitive customers, b) a large number of retailers at a shopbot [31]. Nowadays
customer search at shopbots is very fast and free, it can be viewed as a zero cost search. A
majority of customers are price sensitive [23]. Price-sensitive customers are fully informed
and can choose an offer at the lowest price. The number of retailers participating in shopbots
is large nowadays. In this case a retailer’s competitors can meet the total demand. To sum
up, the price competition at a shopbot could take a form of the Bertrand competition. As
a result, initially it was expected that in equilibrium all retailers would set the same low
prices [31].

However, in empirical studies it was shown that prices of different retailers at shopbots
vary significantly [17, 3, 18]. The price level at shopbots is not lower compared to the
price level on the same product at classic stores [3]. For that reason further studies of the
problem were required.

3.1.3. Alternative models of the competition

To explain an observed behaviour of retailers at shopbots, new models of the price compe-
tition were developed. Some of these models deal with a concept of loyal customers and
switching customers, see Subsection 2.3.2.

Using the concept of switching and loyal customers, it was shown that an average price
at a shopbot might not decrease comparing to offline market price [6, 5]. The models
predict that retailers at shopbots would have mixed strategies. These theoretical results
were verified using empirical data [6, 5].

A game-theoretic model considering loyal and switching customers will be described in
Subsection 3.1.4.

The possibility of non-zero profit equilibrium in price competition similar to the one at
shopbots can be explained in another way. In works [19] and [20] an extensive-form game is
suggested. The real-world temporal structure of the competition and the retailers’ capacity
are taken into consideration. Extensive-form game models will be considered in sections
3.1.5 and 3.1.6.

3.1.4. Normal-form game model developed by Koçaş [5]

Koçaş [5] analyses price competition among retailers with different numbers of loyal cus-
tomers. It was shown that only retailers with a small number of loyal customers, compared
to a number of their addressable switching customers, would in equilibrium actively partici-
pate in price competition. The retailers were shown to adopt mixed strategies. In the model
developed by Koçaş all competing retailers have similar small numbers of loyal customers
compared to a number of switching customers they can address.

Let 𝑝min be the lowest price a retailer would ever consider to set. In [5] the price 𝑝min is
calculated using simple reasoning. The retailer should be indifferent between selling pieces
of a product to his loyal customers at 𝑝highest price or selling to both loyal and switching
customers but at the 𝑝min price. In the general model the retailer’s profit from selling a
piece of a product at price 𝑝𝑖 is given by (𝑝𝑖 − cst), where cst stands for a product cost1.
Let 𝜒 be a number of retailer’s loyal customers and let 𝜓 be a number of his addressable
switching customers. It is assumed that 𝜒 ≥ 1. Otherwise a retailer will act according to

1See 2.2.2 and 2.2.4 for details on product cost cst. Koçaş assumed a zero product cost and obtained
slightly different formulas.
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the Bertrand model. (𝑝min − cst) (𝜒+ 𝜓) = 𝜒 · (𝑝highest − cst). Therefore,

𝑝min = cst + 𝜒
(𝑝highest − cst)

𝜒+ 𝜓
. (3.1.1)

As mentioned before, it was shown using empirical data that retailers’ behaviour at
shopbots can be modelled with probabilistic pricing [6, 5]. In the model developed by
Koçaş mixed strategies are described in detail. It is assumed that prices are generated as
values of some random variable 𝐾. The strategy of a competing retailer in the model of
Koçaş is represented with a cumulative distribution function:

𝐹𝐾(𝑝) = 1 −
(︃(︀
𝑝highest − 𝑝

)︀
𝜒

(𝑝− cst)𝜓

)︃ 1
𝑒−1

, (3.1.2)

where 𝑝 is a price a retailer sets; 𝑒 is a number of retailers who participate in price
competition, it is assumed that 𝑒 ≥ 2; 𝑝highest is the highest reasonable price at the shopbot.
The formula was obtained similarly as in the work of Koçaş, only the product cost cst was
assumed to be non-zero. 𝐹𝐾 is defined on the interval

[︀
𝑝min, 𝑝highest

]︀
. 𝐹𝐾(𝑝highest) is

defined as a left-sided limit, 𝐹𝐾(𝑝highest) = lim𝑝→(𝑝highest−) 𝐹𝐾(𝑝) = 1.
To gain some intuition about the pricing behaviour suggested by the strategy described

above, some reasonable values for the constants in the Eq. (3.1.2) would be considered.
It is assumed that 𝜒 = 15 and 𝜓 = 100. Let 𝑝highest = $1000, cst = $100. Hence,
𝑝min = 100 + 151000−100

15+100 ≈ $217. Let the number of competing retailers be 𝑒 = 3 or 𝑒 = 30.
The cumulative distribution functions (3.1.2) for given values are plotted in Fig. 3.1.1.
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Fig. 3.1.1. The cumulative distribution function described with Eq. (3.1.2)

Using the cumulative distribution function (3.1.2), it can be shown that in the case
of 𝑒 = 30 competing retailers a probability of setting prices 𝑝 such that 𝑝 ≤ $999 is
𝑃 (𝑝 ≤ $999) ≈ 25.9%. And in the case of 𝑒 = 3 competing retailers 𝑃 (𝑝 ≤ $999) ≈ 98.7%.
Thus, the retailer has an incentive to sell to his loyals mostly if the number of competitors
becomes large. However, if there are just several competitors, then a retailer actively
participates in price competition.

To sum up, the model developed by Koçaş takes into consideration real-world differences
in loyalty of customers, see Subsection 2.3.2. The model also deals with probabilistic
pricing mentioned in 2.2.1. It explains the real-world price dispersion and price level, see
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Subsection 2.2.1. However, neither the temporal structure of a retailer’s behaviour, nor
retailer’s capacity constraints are considered.

It is possible to obtain pricing strategies based on the model. Due to the discussed
limitations of the model, the strategies might not be efficient in cases of real-world problems.

3.1.5. Extensive-form game model developed by Martínez-de-Albéniz and
Talluri [19]

A starting point of the work [19] is the Bertrand model of a duopoly with capacity con-
straints. It is called the Bertrand-Edgeworth model. If this model is extended to an
extensive-form game, then there might exist a pure-strategy subgame perfect equilibrium
with non-zero retailers’ profits [25, 19].

Martínez-de-Albéniz and Talluri have considered in [19] an extensive-form game with
perfect information between two retailers.

In the model each retailer has a fixed capacity, i.e. a given number of product pieces,
he would like to sell over a finite time horizon. At most one customer could arrive during
every stage of the game. Arrivals of customers are modelled as a stochastic process. All
the results were obtained for a general stochastic process. Bernoulli stochastic process was
pointed out as a possible option. In the model every stage of the game is called a period of
sales. During every period before the end of the sales horizon each retailer sets a price. An
expected number of future arrivals of customers is assumed to be known to both retailers.
In the model customers are modelled as purely price-sensitive, so if a customer arrives he
buys from a retailer who offers a lower price. If both retailers set the same price, then an
arrived customer buys from any of them at random. It is assumed that every customer
buys just one piece of product. It is also assumed that both retailers can observe inventory
levels of each other. The last note about the model refers to a retailer’s profit. In the model
a product cost is assumed to be zero, so during one period of sales a retailer makes a profit
equal to 𝑝 if he sells one item at a price 𝑝. Non-zero product cost can be easily included in
the model.

It was proved that in the model the unique subgame-perfect equilibrium in pure strategies
exists. Technical proof can be found in [19]. Here an intuitive explanation will be provided.

The model assumes that customers always buy from a retailer with a lower price. Thus,
the competition during a single period of sales is very similar to the Bertrand competition.
However, it differs from the Bertrand model because each retailer can estimate an expected
number of customers who will arrive until the end of the sales horizon, also inventory levels
of both retailers are known to everyone. If none of the retailers can meet the total demand,
then in the equilibrium a retailer with a larger inventory level would prefer to let another
retailer sell everything out, rather than participate in a zero-profit Bertrand competition.
After the smaller retailer sells everything out the bigger one becomes a monopolist and sets
the highest reasonable price 𝑝highest.

Equilibrium prices can be computed, see [19] for details. Before stating the results, it is
necessary to introduce some notation.

Let 𝑇 be the length of a sales horizon. A random variable which assigns a natural number
of future arrivals of customers to every period t is denoted by R(𝑡), 𝑡 ∈ N ∧ 𝑡 ≤ 𝑇 . Let
𝑃 (R(𝑡) > 𝑎) be a probability that a value of random variable R(𝑡) is greater than 𝑎, 𝑎 ∈ N.
Let R(𝑡) be an expected value of the R(𝑡).

It is assumed that one retailer has an inventory level 𝑥 and another retailer’s inventory
level is 𝑦. In the equilibrium if a customer arrives, then he buys from a retailer with the
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lowest capacity at price 𝑝* given by the expression

𝑝* =

⎧⎪⎪⎨⎪⎪⎩
(𝑝highest − cst) · 𝑃 (R(𝑡) ≥ min{𝑥, 𝑦}), 𝑥 ̸= 𝑦;

(𝑝highest − cst) · 𝑃 (R(𝑡) ≥ 𝑥) · min{1,R(𝑡) − 2𝑥+ 2}, 𝑥 = 𝑦.

(3.1.3)

Derivation of equilibrium price values can be found in [19]. Additionally, a non-zero
product cost cst was included in the final expression (3.1.3).

The model predicts zero-profit and negative-profit prices in the considered duopoly. If
each retailer can meet the whole demand on his own and retailers’ inventory levels differ,
then zero-profit prices are possible. In fact, the Bertrand competition takes place during
each period of the sales horizon.

If both retailers have the same inventory level 𝑥 and 2𝑥 > (R(𝑡)+2), then negative-profit
prices are predicted. Predicted for this case negative prices were explained. Each retailer
has an incentive to pay for selling a few pieces of product because in this case he would
become a retailer with a smaller capacity. So the competitor in the equilibrium would let
him sell all remaining pieces of a product at some positive price.

The results have been generalised for a specific case of 𝑛 ≥ 2 retailers, 𝑛 ∈ N. The
case when there are dominant retailers is considered. The dominant retailers have larger
capacities than all non-dominant retailers together. It was shown, that if there is one
dominant retailer, then in the equilibrium some smaller retailer sells a product at price
𝑝 = (𝑝highest − cst) · 𝑃 (R(𝑡) ≥ ·𝑥1), where 𝑥1 is a total capacity of all non-dominant
retailers. If there are several dominant retailers with the same capacities, then negative-
profit prices are possible in the equilibrium. It is the case if 𝑥Σ > (R(𝑡) + 2), where 𝑥Σ is
a total capacity of all competing retailers.

To sum up, the model developed by Martínez-de-Albéniz and Talluri takes into consid-
eration important real-world features of the competition at shopbots. Retailers’ capacity
constraints and real-world temporal structure of the competition has been modelled, in-
cluding stochastic arrivals of customers. The main result of the work is computation of
the unique subgame-perfect equilibrium for the case of duopoly. It is a stable solution to
the competition. Existence of a Nash equilibrium was also shown for a specific case of
oligopoly with dominant retailers. In that case in equilibrium all smaller retailers have to
set the same price. However, it is known that prices of different retailers at a shopbot differ
significantly [3]. Thus, the case of dominant retailers is not realistic.

The weak point of the model is the assumption of observability of retailers’ inventory
levels. In [19] it was discussed that for the case of duopoly inventory levels might be
approximated if the total capacities are known, because in the equilibrium a retailer with
smaller capacity would raise his price if a piece of a product is sold.

The model considers only the case of a duopoly. Extension to the case of more retailers
is not general and cannot be used in real-world situations.

Another weak point of the model is a neglect of customers’ brand-sensitivity. It was
discussed that more complicated demand functions can be considered in order to model
real-world brand-sensitive customers. However, in this case it is impossible to solve the
problem analytically [19].

The analogous model with a more complex demand function exists. Its brief description
will be given in the next section.

3.1.6. Extensive-form game model developed by Lin, and Sibdari [20]
The model developed by Lin, and Sibdari is essentially the same as the one developed by
Martínez-de-Albéniz and Talluri. The differences in the model of Lin, Sibdari compared
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to the model of Martínez-de-Albéniz, Talluri will be listed.
a) There are in general 𝑛 competing retailers in the model of Lin, Sibdari, 𝑛 ∈ N.
b) Multinomial logit (MNL) model is used to model choices of customers.
MNL model of the customer’s behaviour considers a popularity of retailers. It is widely

used in economic science literature [20]. If an arrived customer observes a price vector
p = (𝑝1, 𝑝2, ..., 𝑝𝑛), where 𝑝𝑖 is a price of the 𝑖𝑡ℎ retailer, then the customer buys a product
from the 𝑖𝑡ℎ retailer with a probability

𝑃𝑖(p) = 𝑒𝛼𝑖−𝛽𝑝𝑖

1 +
∑︀𝑛
𝑗=1 𝑒

𝛼𝑗−𝛽𝑝𝑗
(3.1.4)

and with a probability

𝑃0(p) = 1
1 +

∑︀𝑛
𝑗=1 𝑒

𝛼𝑗−𝛽𝑝𝑗
(3.1.5)

a customer does not buy a product. 𝛽 is called the price response coefficient and models
price-sensitivity of customers. The parameter 𝛼𝑖 models the popularity of the 𝑖𝑡ℎ retailer.
Values of 𝛼𝑖 and 𝛽 has to be positive [21]. The lower the price 𝑝𝑖 is, the higher the probability
𝑃𝑖(p) is. The probability 𝑃𝑖(p) is also higher if the popularity 𝛼𝑖 is higher. It is always
true that

∑︀𝑛
0 𝑃𝑖 = 1.

In the model of Lin it is assumed that a retailer can set any positive price. If a retailer
sets an infinite price, then he experiences a zero demand.

It has been proved that in the modelled competition a pure-strategy Nash equilibrium
always exists. However, it might be not unique.

To sum up, the model developed by Lin and Sibdari considers brand-sensitivity of cus-
tomers. However, the model becomes too complex and Nash equilibrium prices can be
computed only numerically.

3.2. Related work based on optimal control
Methods of optimal control were used to analyse a dynamic pricing of perishable products
by retailers with fixed capacities during a given time horizon [21].

A retailer tries to control a number of product pieces he sells using a price as a control
variable. The number of his sales is influenced with other retailers’ prices as well. Thus,
an extension of a classical optimal control model should be used. Such an extension is a
differential game. It is a type of optimal control problems with multiple and self-interested
controllers [32].

In [21] price competition has been modelled as a differential game. A continuous time
model was used. An inventory level was assumed to be a state variable in the model. It has
been shown that under certain conditions a stable solution to the problem exists in the case
of open-loop controls. Such a stable solution for a problem is Nash equilibrium for open-
loop controls. Open-loop control is a pricing strategy in the case if retailers cannot observe
inventory levels of their adversaries. Necessary conditions for existence of the equilibrium
have been stated for different models of demand. For linear demand the equilibrium exists
if a retailer can set such a price that he experiences a zero demand. For MNL demand
the equilibrium was proved to exist always. Then in the work a problem-specific notion of
Nash equilibrium was given, which deals with shadow prices. Shadow prices were defined as
measures of the capacity externalities different retailers exert on each other. Conditions for
the uniqueness of the defined Nash equilibrium were stated and can be found in the work
[21]. It has been discussed that a problem of finding a solution to the stated differential
game might be addressed as a finite-dimensional nonlinear numerical problem [21].
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Note that it might be impossible to find an analytical solution to the differential game
modelling the competition at shopbots due to the problem formulation. The issue should
be discussed.

Let the simplest price competition between two retailers be considered. The first retailer
tries to maximise his performance index 𝐽1 =

∫︀ 𝑇
0 𝐿1(𝑥1, 𝑥2, 𝑢1, 𝑢2)𝑑𝑡 over a time interval

[0, 𝑇 ], 𝑥1, 𝑥2, 𝑢1, 𝑢2 ∈ R for the sake of simplicity. The behaviour of the second retailer

is analogous. The state equation is
[︃
𝑥1
𝑥2

]︃
= 𝑓(𝑥1, 𝑥2, 𝑢1, 𝑢2). In order to find the solu-

tion to the game, functions 𝐿1, 𝐿2 and 𝑓 must be separable into 𝐿1 = 𝐿11(𝑥1, 𝑥2, 𝑢1) +
𝐿12(𝑥1, 𝑥2, 𝑢2), 𝐿2 = 𝐿21(𝑥1, 𝑥2, 𝑢1) + 𝐿22(𝑥1, 𝑥2, 𝑢2), 𝑓 = 𝑓1(𝑥1, 𝑥2, 𝑢1) + 𝑓2(𝑥1, 𝑥2, 𝑢2). In
all related works available to the author analytical solutions to differential games similar
to the one of interest are based on these assumptions [32], ([33], p. 278), ([34], p. 454).

However, even in the case of two retailers at a shopbot the assumptions do not hold.
𝐿1 and 𝑓 take the form 𝐿1 = 𝑢1𝑓(𝑢1, 𝑢2) and 𝑓 = 𝑓(𝑢1, 𝑢2), where 𝑢1 is a retailer’s price
and 𝑓(𝑢1, 𝑢2) is a demand function. If the demand function is separable, i.e. 𝑓(𝑢1, 𝑢2) =
𝑓1(𝑢1) + 𝑓2(𝑢2), then 𝐿1 = 𝑢1𝑓1(𝑢1) + 𝑢1𝑓2(𝑢2) is not separable due to a term 𝑢1𝑓2(𝑢2). If
the function 𝐿1 is separable, i.e. 𝐿1 = 𝐿11(𝑢1) + 𝐿12(𝑢2) = 𝑢1𝑓(𝑢1, 𝑢2), then 𝑓(𝑢1, 𝑢2) =
𝐿11(𝑢1)
𝑢1

+ 𝐿12(𝑢2)
𝑢1

is not separable due to a term 𝐿12(𝑢2)
𝑢1

. Indeed, the stated assumption of
separability does not hold.
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4. Pricing strategies based directly on
models from related work

In the previous chapter possible models of price competition similar to the competition at
shopbots were investigated. Based on these models pricing strategies for a retailer at a
shopbot can be obtained.

4.1. Pricing strategy based on the Bertrand model
The Bertrand model of price competition is a single-stage game. Considering the repeating
single-stage game a pricing strategy can be given as

𝑝(𝑡) =
{︃

𝑝min(𝑡− 1) − 1, 𝑝min(𝑡− 1) − 1 > 𝑝zero profit;
𝑝zero profit, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

where 𝑝(𝑡) is a price for a competition period 𝑡 and 𝑝min(𝑡− 1) is the minimal price at the
shopbot during the previous period (𝑡 − 1). The strategy was given in [29]. For the sake
of simplicity natural values of prices are considered. Natural-valued prices would suffice in
the majority of real-world situations.

To make the strategy complete, the case of a monopoly has to be considered, i.e. the
case when there are no adversarial retailers at a shopbot. In this case 𝑝(𝑡) = 𝑝highest.

For the purpose of numerical evaluations of the strategy’s performance it is implemented
in a Java class BertrandRetailer.java, see the attached CD.

4.2. Pricing strategy for a single-stage game based on the model
developed by Koçaş [5]

The model of price competition at shopbots developed by Koçaş is described in 3.1.4. The
same notation as in Subsection 3.1.4 will be used here.

In Subsection 3.1.4 pricing behaviour of a retailer in the equilibrium is given with a
cumulative distribution function (3.1.2). Based on it the pricing strategy can be obtained.

First, it is needed to show that the cumulative distribution function (3.1.2) has an inverse
function.

A derivative of the cumulative distribution function (3.1.2) with respect to price 𝑝 can
be computed:

𝑑𝐹𝐾
𝑑𝑝

= 𝜒 ·
𝑝highest − cst

𝜓(𝑒− 1)(𝑝− cst)2

(︃
𝜒
(︀
𝑝highest − 𝑝

)︀
𝜓 (𝑝− cst)

)︃ 2−𝑒
𝑒−1

. (4.2.1)

In the model it is assumed that a number of retailer’s loyals is 𝜒 ≥ 1. Also it is assumed
that a number of addressable switchers is 𝜓 > 𝜒. As a consequence of the Eq. (3.1.1),
𝑝min > cst, therefore the inequality (𝑝 − cst) > 0 holds for all prices. In Subsection 2.2.2
it was pointed out that 𝑝highest > cst for rational retailers. Rationality of a player is one
of the main assumptions in game theory, therefore in game-theoretic model of Koçaş the
inequality 𝑝highest > cst must hold. As a result, (𝑝highest − cst) > 0 for every retailer.
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4.2. Pricing strategy for a single-stage game based on the model developed by Koçaş [5]

The inequality 𝑝 ≤ 𝑝highest holds for all prices, hence,
(︀
𝑝highest − 𝑝

)︀
≥ 0. In the model it

is assumed that 𝑒 ≥ 2. Thus, 2−𝑒
𝑒−1 ≤ 0. Hence, the factor

(︀
𝑝highest − 𝑝

)︀
is in the dominator

of the Eq. (4.2.1).
To conclude, all factors of 𝑑𝐹𝐾

𝑑𝑝 in (4.2.1) are positive for ∀𝑝 ∈
[︀
𝑝min, 𝑝highest

)︀
. For a

boundary price 𝑝 = 𝑝highest the left-hand derivative is

𝑑𝐹𝐾(𝑝highest−)
𝑑𝑝

= lim
ℎ→0−

𝐹𝐾(𝑝highest + ℎ) − 𝐹𝐾(𝑝highest)
ℎ

=

= lim
ℎ→0−

− ((𝑝− cst)𝜓)𝑒−1

ℎ
(︀(︀
𝑝highest − 𝑝highest − ℎ

)︀
𝜒
)︀𝑒−1 = +∞.

(4.2.2)

𝐹𝐾 has a jump at 𝑝 = 𝑝highest.
As a result, the derivative 𝑑𝐹𝐾

𝑑𝑝 > 0 for all possible prices ∀𝑝 ∈
[︀
𝑝min, 𝑝highest

]︀
. Hence,

𝐹𝐾 is increasing on the interval
[︀
𝑝min, 𝑝highest

]︀
([35], p. 8). An increasing function has an

inverse function ([35], p. 2). Function 𝐹𝐾 maps the interval
[︀
𝑝min, 𝑝highest

]︀
to the interval

[0, 1]. Therefore, its inverse 𝐹−1
𝐾 : [0, 1] ↦→

[︀
𝑝min, 𝑝highest

]︀
. The inverse function is given as

𝐹−1
𝐾 (𝑦) =

𝑝highest𝜒+ cst · (1 − 𝑦)𝑒−1𝜓

𝜓(1 − 𝑦)𝑒−1 + 𝜒
. (4.2.3)

To obtain a pricing strategy for a retailer, The Inverse Transform Method can be used.

Theorem 4.2.1 (The Inverse Transform Method). "Let a cumulative distribution function
𝐹 (𝑥), 𝑥 ∈ R, have an inverse function 𝐹−1(𝑦), 𝑦 ∈ [0, 1]. Let 𝑈 be a random variable
uniformly distributed on the interval [0, 1]. Then 𝐹 is a cumulative distribution function of
𝑋 = 𝐹−1(𝑈)."

The formulation was taken from ([36], p.6). The proof can be found in ([36], p.6).
Thus, in order to simulate the equilibrium pricing behaviour of a retailer in the model of

Koçaş, it is needed to use a value 𝑦 of a random variable 𝑈 uniformly distributed over the
interval [0, 1] and substitute 𝑦 into Eq. (4.2.3). A uniformly distributed random variable
can be modelled using a function of Java Math library Math.random(). The described
technique provides a mixed strategy based on the model of Koçaş.

To use the strategy, knowledge about customer’s loyals and addressable switchers is
required. In the original model developed by Koçaş it is assumed that parameters 𝜒 and
𝜓 are known to all competing retailers beforehand [5]. In all investigated related work it is
assumed that characteristics of the demand, such as amounts of customers loyal to different
retailers or parameters of the stochastic process of arrivals of customers, are known to all
competing retailers before the start of price competition and estimation of the demand
was never considered as a part of price competition [5, 19, 20]. The same assumption will
be used in this work. Alternatively, it might be assumed that before the start of price
competition all competing retailers have successfully estimated the characteristics of the
demand. One possible method of the estimation can be found in Section 5.3. However,
the meaning of the retailer’s parameters 𝜒 and 𝜓 in the case of repeating periods of the
competition should be discussed.

The model developed by Koçaş is a single-stage game. The quality of the strategy based
on the model will be evaluated using numerical simulation of the price competition at
shopbots. In the simulation the single-stage game of Koçaş will be repeated. Arrivals of
customers during different stages will be described using a stochastic process in accordance
with the general model of the competition, see Subsection 2.3.4.

In the model developed by Koçaş it is assumed that during the single period of the
competition there are 𝜒 customers loyal to our retailer and 𝜓 switching customers. Both 𝜒
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4. Pricing strategies based directly on models from related work

and 𝜓 are assumed to be known. As it was discussed in Subsection 2.3.2, 𝜒 is related to our
retailer’s popularity among customers. 𝜓 might be related to characteristics of the product.
If the product is just a book, then many customers might behave as switchers. But if the
product is a laptop, then customers might get suspicious to buy the cheapest offer. To sum
up, 𝜒 and 𝜓 from the single-period model might be viewed as general characteristics of
the structure of arrived customers during the multi-period competition. These parameters
describe a relative share of customers loyal to different retailers and of switching customers.
If there are 𝑚 retailers at a shopbot and the popularity of the 𝑖𝑡ℎ retailer is characterized
with 𝜒𝑖, then it is assumed that an arrived customer is loyal to the 𝑖𝑡ℎ retailer with a
probability

𝑃𝑖,loyal = 𝜒𝑖
𝜓 +

∑︀𝑚
𝑗=1 𝜒𝑗

, (4.2.4)

where 𝜓 characterises the number of switchers for the case of a particular product. An
arrived customer is a switcher with a probability

𝑃switcher = 𝜓

𝜓 +
∑︀𝑚
𝑗=1 𝜒𝑗

. (4.2.5)

Let Y be an expected number of customers arriving during a period of the competition.
In this case an expected number of customers loyal to the 𝑖𝑡ℎ retailer is Y · 𝑃𝑖,loyal and an
expected number of addressable switchers is Y · 𝑃switcher. The obtained expected numbers
can be used in the simulation of pricing behaviour based on the model of Koçaş.

It completes the description of the mixed pricing strategy developed using the model of
Koçaş.

For the purpose of numerical evaluations of strategies’ performance the strategy is im-
plemented in a Java class KocasRetailer.java, see the attached CD.

4.3. Pricing strategy for a multiple-stage game based on the
model developed by Martínez-de-Albéniz and Talluri [19]

Another pricing strategy for a retailer at a shopbot can be obtained based on the model of
Martínez-de-Albéniz and Talluri, see Subsection 3.1.5. In the case of duopoly an equilibrium
pricing strategy was computed [19]. A non-zero product cost has been already included in
the result expression (3.1.3) in previous chapter. It is possible to use the expression directly.
One additional modification will be done.

In the model negative equilibrium prices are predicted. In real-world situations when a
retailer tries to sell product pieces quickly he might discount and set prices lower than the
product cost. However, negative prices are not common. It is not profitable for a retailer
to pay not only the product cost but also additional amount of money. In order to make
pricing strategy more realistic, it will be assumed that a minimal possible price is equal to
zero.

The pricing strategy can be summarized as follows:
A retailer compares his own capacity and the competitor’s capacity. If his capacity is

greater, then he sets a price 𝑝highest. Otherwise, a price is computed using the expression
(3.1.3). If according to the Eq. (3.1.3) the equilibrium price would be negative, a retailer
would set a price equal to zero.

To use the Eq. (3.1.3), it is required to know parameters of a stochastic process which
describes arrivals of customers. In the work [19] the parameters are assumed to be known
to both customers. As it was discussed in the previous section, the same assumption is
used in this work.
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4.3. Pricing strategy for a multiple-stage game based on the model developed by
Martínez-de-Albéniz and Talluri [19]

In the work [19] the Bernoulli stochastic process was suggested to model arrivals of
customers. The same stochastic process was chosen in the general model, see Subsection
2.3.4. In case of the Bernoulli process the binomial random variable describes a number
of arrived customers during 𝑛 independent periods of arrivals ([26], p. 298). Let 𝑛 be a
maximal possible number of customers during the competition. Periods of the competition
in the model of Martínez-de-Albéniz and Talluri are defined with periods of possible arrivals
of customers. As a consequence, the length of a sales horizon is 𝑛 [19]. Thus, the model
assumes that the maximal possible number of remaining customers until the end of the
competition is (𝑛 − 𝑡), where 𝑡 is a current period. Let 𝜉 be a probability of arrival of a
customer during a single period of arrivals. As a result, an expected value R(𝑡) = 𝜉(𝑛− 𝑡),
see Subsection 3.1.5 for details on notation.

During 𝑙 periods of the competition 𝑘 customers arrive with a probability 𝑃 ′(𝑘) =(︀ 𝑙
𝑘

)︀
𝜉𝑘(1 − 𝜉)(𝑙−𝑘), 𝑘 ≤ 𝑙.
Then 𝑃 (R(𝑡) > 𝑎) from the Eq. (3.1.3) can be computed as follows:

𝑃 (R(𝑡) > 𝑎) =
𝑛−𝑡∑︁
𝑗=𝑎+1

(︃(︃
𝑛− 𝑡

𝑗

)︃
𝜉𝑗(1 − 𝜉)(𝑛−𝑡−𝑗)

)︃
. (4.3.1)

It completes the description of the pricing strategy based on the model of Martínez-de-
Albéniz and Talluri.

For the purpose of numerical evaluations of different strategies and their performance
the developed strategy is implemented in a Java class MartinezTalluriRetailer.java, see the
attached CD.

Note that the strategy was obtained for the case of duopoly. A heuristic extension of
the strategy might be suggested for the case of several competing retailers. All competitors
can be modelled as a single adversary who has a capacity equal to a total capacity of all
adversaries.

Note on the model developed by Lin and Sibdari [20]
Lin and Sibdari developed another extensive-game model of price competition. The model
might be viewed as an alternative to the model of Martínez-de-Albéniz and Talluri [19].

In the model of Lin and Sibdari it is impossible to obtain an analytical equilibrium
solution to the formulated problem. Equilibrium pricing strategies were proved to exist
and it might be possible to compute the strategies numerically for the given model of
demand [20]. Details about the computation can be found in [20].

The MNL demand model is used. It enables to consider brand sensitivity of customers.
On the other hand, it does not explicitly consider a real-world level of prices for a particular
product. If a customer arrives and he has to choose among several retailers with different
popularities, then in the model there is a non-zero probability that a customer would buy
the product at arbitrary high prices. In order to use the model in simulations of the
competition, it is not enough to know characteristics of the demand, such as amounts of
customers loyal to different retailers and parameters of arrivals of customers. For every
combination of competing retailers parameters of the MNL demand model have to be fitted
in such a way that a level of equilibrium prices would make sense for the considered product.

The model of Martínez-de-Albéniz and Talluri explicitly takes into consideration a real-
world price level for the case of a particular product. For the purpose of evaluation of a
strategy based on an extensive-form game only the strategy obtained from the model of
Martínez-de-Albéniz and Talluri will be investigated.
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5. Multi-period model as an extension of the
model developed by Koçaş [5]

Using empirical data it was shown that pricing behaviour of retailers at a shopbot can be
described by probabilistic pricing, i.e. by using mixed pricing strategies [5, 6]. Mixed pricing
strategies might arise due to the presence of loyal customers [24, 23]. In Section 4.2 the
mixed pricing strategy based on these findings was developed. Unfortunately, the strategy
takes into consideration neither temporal structure of the competition, nor the retailer’s
inventory level. However, in order to maximise the total profit from a fixed capacity over
a given sales horizon, a retailer should take the temporal structure of the competition and
capacity constraints into consideration.

The model of Koçaş can be improved by considering a multi-period competition in ac-
cordance with the general model from Chapter 2. In the case of a multi-period competition
a retailer can observe pricing behaviour of all other retailers and take the observed infor-
mation into consideration before setting a price for the next period.

It is required to develop a pricing strategy for one particular retailer. This retailer is
named an our retailer. All other retailers at a shopbot can be viewed as adversaries of our
retailer, they are named adversarial retailers or simply adversaries.

Based on an assumption that retailers adopt mixed-strategies it is possible to estimate a
probability that our retailer has the lowest available price at a shopbot if he sets some arbi-
trary price. Based on this finding a demand function for our retailer can be approximated.

Demand is determined by customers’ preferences. Loyal customers prefer to buy from a
particular retailer at any price 𝑢 ∈

[︀
𝑝zero profit, 𝑝highest

]︀1.
Due to the presence of switching customers a retailer experiences a jump in the demand

when he starts to offer a product at a price lower than prices of adversarial retailers [24].
Thus, it is important to estimate our retailer’s probability 𝑃 (𝑢) of having the lowest price
at a shopbot when he sets some reasonable price 𝑢, 𝑢 ∈

[︀
𝑝zero profit, 𝑝highest

]︀
.

5.1. Probability of having the lowest price

If our retailer sets a price lower than all adversaries do, he will attract not only his loyals
but also all switching customers at a shopbot. In order to understand our retailer’s prob-
ability 𝑃 (𝑢) of having the lowest price, it is important to understand pricing behaviour of
adversarial retailers.

Adversarial retailers at a shopbot are numbered. Let there be 𝑞 adversarial retailers
at a shopbot, 𝑞 ∈ N. Each adversary at a shopbot has assigned an ordinal number 𝑖,
𝑖 ∈ N ∧ 𝑖 ≤ 𝑞.

Pricing behaviour of retailers at shopbots can be described using probabilistic pricing [6,
5]. A price which a particular adversarial retailer 𝑖 sets can be viewed as a value of some
discrete random variable Var𝑖2. The random variable Var𝑖 assigns to every possible period

1See Subsection 2.2.2 for details on possible prices.
2The prices a retailer can set in the real life belongs to some discrete set. So a discrete random variable is

considered.
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5.1. Probability of having the lowest price

of the competition a reasonable price3. The probability mass function of the considered
random variable Var𝑖 depends on retailer-specific parameters [6, 5]. These parameters
might be sizes of loyal and switching segments, see Subsection 2.3.2. The size of a retailer’s
loyal segment is related to retailer’ popularity. The size of the switching segment might
be determined by characteristics of the considered product. Neither retailer’s popularity,
nor characteristics of the product change too quickly. Thus, it is assumed that a size of
the switching segment as well as sizes of loyal segments of all retailers at a shopbot are
constant during the considered price competition [5]. As a consequence, it is assumed that
every adversarial retailer sets prices according to some static probability mass function
as long as he has some pieces of a product to sell. However, very often information on
retailer’s capacities is not public. The worst possible case when all adversaries have infinite
capacities is assumed. Thus, all adversaries set prices according to their static probability
mass function and no adversary ever quits the competition.

To estimate the mentioned probability mass functions, available observations of previous
prices can be used. The set of all reasonable prices is

[︀
𝑝zero profit, 𝑝highest

]︀
for every

competing retailer, see Subsection 2.2.2 for details. Let this set be called a set of allowed
prices = 𝑆𝑎𝑙𝑙𝑜𝑤𝑒𝑑. Let k be a number of values in 𝑆𝑎𝑙𝑙𝑜𝑤𝑒𝑑, k ∈ N. Ordinal numbers
can be assigned to elements of 𝑆𝑎𝑙𝑙𝑜𝑤𝑒𝑑 starting from the lowest price up to the highest
one. Thus, the lowest price in 𝑆𝑎𝑙𝑙𝑜𝑤𝑒𝑑 can be denoted by 𝑢1 = 𝑝zero profit, the highest
price is in this case 𝑢k = 𝑝highest and 𝑆𝑎𝑙𝑙𝑜𝑤𝑒𝑑 = {𝑢1, 𝑢2, ..., 𝑢k}. During some number of
competition periods prices of each adversarial retailer are observed. For each adversary our
retailer counts how many times every allowed price has occurred and divides the result by
a total number of observations for the retailer. As a result, an estimation of the adversarial
retailer’s probability mass function is obtained.

Knowing estimations of all adversaries’ probability mass functions it is possible to esti-
mate probabilities 𝑃1, 𝑃2, ..., 𝑃k that a customer would buy a piece of a product from our
retailer at prices 𝑢1, 𝑢2, ..., 𝑢k respectively. 𝑃1 is a probability that an arrived customer
would buy a piece of a product from our retailer at a price 𝑢1. For the sake of compactness
a situation when a customer buys a piece of a product from our retailer is named a success.
Next, a mathematical formula for 𝑃𝑖, 𝑖 ∈ N, 𝑖 ≤ 𝑘 is derived.

The probability of success for price 𝑢1, 𝑃1, is equal to a probability that all adversaries
set prices higher than 𝑢1 plus a probability of success in case of ties, i.e. in the case when
our retailer sets the lowest available price 𝑢1 but he is not the only one who sets this price.
A similar general note on probabilities of success was made in [5] without mentioning the
ties.

Probability mass functions of random variables Var𝑖 are assumed to be static and each
adversary retailer uses only his own probability mass function while setting prices. Thus,
for ∀𝑖, 𝑗 : 𝑖, 𝑗 ∈ N ∧ 𝑖 ≤ 𝑞 ∧ 𝑗 ≤ 𝑞 Var𝑖 and Var𝑗 are independent random variables.
Therefore, a probability that at the same time several adversarial retailers set prices higher
than some allowed price 𝑢𝑓 is equal to a product of probabilities that each adversary sets
a price higher than 𝑢𝑓 . Let 𝑃𝑗,𝑙 be a probability that a retailer with an ordinal number 𝑗
sets an allowed price 𝑢𝑙. In the case when our retailer sets an allowed price 𝑢𝑛 a probability
that all adversaries set higher prices is

𝑃𝑛 the only lowest =
𝑞∏︁
𝑗=1

⎛⎝ 𝑘∑︁
𝑙=𝑛+1

𝑃𝑗,𝑙

⎞⎠ .
Note that ∀𝑗 ∈ 𝑅 :

∑︀𝑘
𝑙=𝑘+1 𝑃𝑗,𝑙 = 0.

3Note that by possible periods of the competition all periods of the same length which can take place are
meant. All these possible periods make up a sample space the random variable Var𝑖 is defined on.
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Possible ties should be taken into consideration. Let ties be broken at random. It means
that an arrived customer would at random choose a retailer from those who offer the lowest
price. During every period of the competition it is possible to have the same lowest price
with just one adversary, or with several adversaries, or with all of them. In the case when
our retailer has the same price as 𝑚 adversaries an arrived customer would buy from our
retailer with probability equal to 1

𝑚+1 , as ties are broken at random. During some period
of the competition it is possible that just one adversary has the same price as our retailer
does, this one adversary might be any adversary at the shopbot. Also during a period of
the competition any pair of adversaries can have the same price as our retailer does, and
so on. In total, during some period of the competition our retailer might have the same
price as adversaries in any subset of a set of all adversarial retailers at a shopbot. If our
retailer has the same price as an empty subset of adversaries, then he is the only retailer
who has a given price at a shopbot. Some notation should be developed. Let 𝑅 be a set of
all adversaries’ ordinal numbers. Let 𝒫(𝑅) be a power set of the set 𝑅.

The expression for 𝑃𝑛 is derived in several steps. Let 𝑃helping be a probability of the case
when our retailer sets an allowed price 𝑢𝑛, the price 𝑢𝑛 is the lowest price at a shopbot,
and each and only each adversarial retailer in a set 𝑂 also sets the price 𝑢𝑛, 𝑂 ∈ 𝒫(𝑅). In
this case all adversaries in a set 𝑅 ∖𝑂 must have prices higher than 𝑢𝑛. Probability of such
situation is

𝑃helping =
∏︁

𝑗∈{𝑅∖𝑂}

⎛⎝ 𝑘∑︁
𝑙=𝑛+1

𝑃𝑗,𝑙

⎞⎠ .
Probability that when our retailer sets a price 𝑢𝑛 there is a tie among and only among
retailers in the subset 𝑂 and our retailer is 𝑃tie =

∏︀
𝑖∈𝑂 𝑃𝑖,𝑛. Consequently, the probability

of success in the case when our retailer sets a price 𝑢𝑛 and there is a tie among and only
among retailers in the subset 𝑂 and our retailer is

𝑃success helping = 1
| 𝑂 | +1

(︃∏︁
𝑖∈𝑂

𝑃𝑖,𝑛

)︃⎛⎝ ∏︁
𝑗∈{𝑅∖𝑂}

⎛⎝ 𝑘∑︁
𝑙=𝑛+1

𝑃𝑗,𝑙

⎞⎠⎞⎠ ,
where | 𝑂 | is a cardinality of the subset 𝑂. Note that we have chosen one particular
element 𝑂 of the power set 𝒫(𝑅). In order to obtain the final formula for probability of
success for a particular allowed price 𝑢𝑛, it is necessary to sum probabilities 𝑃success helping
for all possible subsets 𝑂 ∈ 𝒫(𝑅):

𝑃𝑛 =
∑︁

𝑂∈𝒫(𝑅)

⎡⎣ 1
| 𝑂 | +1

(︃∏︁
𝑖∈𝑂

𝑃𝑖,𝑛

)︃⎛⎝ ∏︁
𝑗∈{𝑅∖𝑂}

⎛⎝ 𝑘∑︁
𝑙=𝑛+1

𝑃𝑗,𝑙

⎞⎠⎞⎠⎤⎦ . (5.1.1)

5.2. Estimated demand function
The method for computing probabilities of having the lowest price was suggested in the
previous section. It can be combined with information on arrivals of customers and the
retailer’s popularity, which are assumed to be known before the start of the competition.
Based on the knowledge about customers who are loyal to different retailers and about price-
sensitive customers it is possible to compute a probability 𝑃our,loyal that an arrived customer
is loyal to our retailer, see the Eq. (4.2.4). Using the Eq. (4.2.5) a probability 𝑃switcher
that an arrived customer is a switcher can be estimated. Using an expected number Y
of customers during one period of the competition and the probabilities 𝑃1, 𝑃2, ..., 𝑃k from
the previous section it is possible to obtain an estimation of the demand function. Let
𝐷1, 𝐷2, ..., 𝐷k be estimations of expected numbers of customers who would like to buy a
piece of a product from our retailer at allowed prices 𝑢1, 𝑢2, ..., 𝑢k respectively.
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5.3. Estimation of the demand structure

Our retailer’s loyal customers buy from him as long as he sets a price 𝑝 ≤ 𝑝highest. An
expected number of arrived loyal customers is Your · 𝑃our,loyal. An expected number of
arrived switching customers is Your · 𝑃switcher, but they will buy from our retailer only if
he has the lowest price. Here the probabilities of having the lowest price at a shopbot are
used.

As a result, for every allowed price 𝑢𝑖 we obtain 𝐷𝑖 as follows:

∀𝑖 ∈ [1, k] ⊂ N : 𝐷𝑖 = Y (𝑃our,loyal + 𝑃𝑖 · 𝑃switcher) . (5.2.1)

Let D be a vector (𝐷1, 𝐷2, ..., 𝐷k). It will be called a demand vector D = (𝐷1, 𝐷2, ..., 𝐷k).

5.3. Estimation of the demand structure
Analysing price competition, characteristics of the demand are assumed to be known to all
retailers before the start of the competition and estimation of the demand structure is not
considered to be a part of a pricing strategy, as it was done in related work [5, 19, 20].
However, one possible method for estimation of the demand structure is described in this
section for the sake of completeness.

In the model of demand it is assumed that each arrived customer buys just one piece
of a product [20, 19]. A customer who buys more pieces of a product is modelled as
several customers. Numbers of arrived customers are modelled with the Bernoulli stochastic
process.

Let Y be a random variable assigning a total number of arrived customers to every period
of the competition, see Subsection 2.3.4. The Bernoulli stochastic process was chosen to
model arrival of customers. Hence, Y is the binomial random variable ([26], p. 298). Let
𝑛 be a maximal number of arrivals of customers during a period of the competition. The
arrivals during one period of the competition can be visualized as a sequence of 𝑛 coin
tosses ([26], p. 297). Every two of these coin tosses are independent. If the outcome of a
toss is head, then a customer arrives. And a probability of a head is 𝜉.

If during some period of the competition our retailer sets the lowest price at a shopbot,
then both switchers and our retailer’s loyals buy pieces of a product from our retailer.
Customers loyal to some adversarial retailers would arrive to the shopbot also, but they
never buy from our retailer. It was discussed that numbers of different retailers’ loyals 𝜒
and a number of switchers 𝜓 are viewed as characteristics of the total demand structure
and describe relative shares of customers loyal to different retailer and switching customers,
see Section 4.2. Let 𝑛our be a maximal number of arrivals of customers who can potentially
buy from our retailer. If there are 𝑚 retailers at a shopbot and the popularity of the 𝑖𝑡ℎ
retailer is characterized with 𝜒𝑖, then

𝑛our = 𝜒our + 𝜓

𝜓 +
∑︀𝑚
𝑗=1 𝜒𝑗

𝑛, (5.3.1)

where 𝜓 characterises the number of switchers for the case of a particular product. As a
consequence, our retailer can observe at maximum only 𝑛our possible arrivals from a total
maximal number of 𝑛. Still every possible arrival of interest occurs with the probability
𝜉. Let Your be a random variable determining a number of arrived customer who can
potentially buy from our retailer, i.e. a number of our retailer’s loyals and all switchers,
which is at maximum 𝑛our. Obviously, Your is also a binomial random variable. Parameters
of this variable can be estimated.

The maximal possible number 𝑛our of potential customers is equal to a maximal possible
amount of arrived switchers together with the retailer’s loyals. For the sake of simplicity
the estimations of 𝑛our and 𝜉 are denoted by 𝑛our and 𝜉 as well. In order to estimate
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5. Multi-period model as an extension of the model developed by Koçaş [5]

parameters of Your correctly, our retailer has to set the lowest price at a shopbot and
attract switchers. He can observe numbers of arrived customers during different periods of
the competition. Using these observed numbers the retailer can compute a sample mean
Your. It estimates an expected value of a number of his potential customers arriving a
period. Based on observations it is possible to compute the sample variance 𝑆2

Your
. Using

formulas of expected value and variance for the Bernoulli process, for instance from ([26],
p. 298), it is possible to estimate 𝑛our and 𝜉 as follows:

𝜉 = 1 −
𝑆2

Your

Your
;

𝑛our = 𝜉

Your
.

If our retailer sets a maximal price for some number of competition periods, then during
each period only his loyal customers would buy from the retailer. The retailer can compute
an average number 𝜒ℎ𝑒𝑙𝑝𝑖𝑛𝑔 of arrived loyals during one period, which is at the same time
equal to

𝜒ℎ𝑒𝑙𝑝𝑖𝑛𝑔 = Your · 𝜒our
𝜒our + 𝜓

.

𝑛our = 𝜒our + 𝜓. Thus, it is possible to estimate

𝜒our =
𝑛our · 𝜒ℎ𝑒𝑙𝑝𝑖𝑛𝑔

Your
,

𝜓 = 𝑛our − 𝜒our.

To sum up, it was described how to estimate parameters 𝑛our, 𝜉, 𝜒our, 𝜓 of customers’
arrivals modelled as the Bernoulli process. The meaning of the parameters can be sum-
marized as follows: at maximum 𝑛our customers can arrive during a period of competition
and buy from our retailer. Customers arrives sequentially and one customer arrives with a
probability 𝜉. If one of 𝑛our customers arrives, then he will be loyal to our retailer with a
probability of 𝜒our

𝜒our+𝜓 and a switching customer with a probability of 𝜓
𝜒our+𝜓 .

Therefore, the method estimates not only parameters of arrivals of customers, but also
an expected number of customers who are loyal to our retailer, compared to an expected
number of addressable switching customers.

The compared popularity of different retailers is expressed via shopbot’s rating systems
and is public information. Using it and the expected number 𝜒our of our retailer’s loyals
it is possible to estimate an expected number 𝜒𝑖 of customers who are loyal to the 𝑖𝑡ℎ

adversarial retailer. If required, based on the Eq. (5.3.1) it is also possible to estimate a
maximal total number 𝑛 of all customers arriving during a period of the competition using
estimations of 𝜉, 𝑛our, 𝜓 and 𝜒𝑖 for different retailers.

Note, that if some pricing strategy does not consider loyalty of customers and models all
customers as switchers, then only 𝑛our and 𝜉 are required. 𝑛our is assumed to be the total
maximal number of arriving customers in this case.

To sum up, even though estimation of demand is not considered to be a part of price
competition, it was shown how the demand can be estimated by a retailer. The estimation
can be used in cases when there is no price competition as well. In this case in order to
estimate a total number of potential customers, a retailer does not have to set the lowest
possible price as at any reasonable price every potential customer would buy from our
retailer.
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6. Design of pricing strategies using the
formulated multi-period model

Based on the developed multi-period model from Chapter 5 it is possible to obtain new
pricing strategies for retailers at shopbots. The same notation as in the Chapter 5 will be
used.

6.1. Strategy 1: fictitious play approach
A model of multi-period competition was developed. It allows our retailer to set a price for
the next period based on experience gained so far. In other words the multi-period model
enables our retailer to learn. One of basic game-theoretic learning rules is called a fictitious
play ([27], p. 201). Fictitious play is such a learning rule, when the retailer assumes that
his adversaries adopt mixed strategies. The retailer estimates these strategies based on
previous actions of his adversaries. During every stage of the game the retailer plays a best
response to the estimated mixed strategies of his adversaries ([27], p. 206). Thus, using
fictitious play it is possible to develop a strategy computing a price for a single stage game.
The strategy takes into consideration only previous observations of adversaries’ prices and
possible loyalty of customers. It might be viewed as an extension of the strategy based on
the model of Koçaş [5].

Fictitious play suggests setting a price which is the best response to estimated strategies
of other retailers. Estimations of the strategies of all adversaries were successfully included
into the demand function, formulated in the Section 5.2. To every allowed price 𝑢𝑖 a rational
number 𝐷𝑖 was assigned. 𝐷𝑖 can be viewed as an expected number of items which would be
sold on average at price 𝑢𝑖 during one period of the competition, if the average is computed
using a large number of competition periods.

A single-period best response is a price maximising an expected profit over one period.
It can be computed as

𝑢optimal = arg max
𝑢𝑖, 1≤𝑖≤𝑘

(𝐷𝑖 (𝑢𝑖 − cst)) . (6.1.1)

In accordance with fictitious play a retailer should guess strategies of his adversaries
before the first period of the competition. After each observed action the retailer updates
his believes about the competitors’ strategies. As it can be seen on the example of strategies
developed in Chapter 4, strategies of competitors might differ significantly. Initial guess
might be misleading. To avoid it, a retailer adopting fictitious play strategy sets the highest
price during the first period of the competition without any initial guess, but starting
from the second period of the competition the retailer always plays a best response to
approximated strategies of his adversaries based on previous observations.

Now Eq. (6.1.1) together with the demand function, formulated in Section 5.2, describe
the pricing strategy based on fictitious play.

For the purpose of numerical evaluations of the strategy’s performance it is implemented
in a Java class Fictitious.java, see the attached CD.

If all adversaries have fixed mixed-strategies, then the pricing strategy (6.1.1) will converge
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to the best response for a single-period game as a number of observed periods of competition
goes to infinity ([27], p. 206). However, the strategy considers neither the real-world
temporal structure of the competition, nor capacity constraints.

6.2. Optimal control problem
One possible way to develop strategies, which would use fictitious play learning rule and
at the same time consider both the retailer’s inventory level and the temporal structure
of the competition, is to use methods of optimal control. A rational retailer at a shopbot
tries to control a number of sold product pieces during a given time horizon in a way which
maximises his profit.

Customers, our retailer and adversarial retailers can be viewed as parts of a complex
system. The system will be called a shopbot system. To develop a model of the shopbot
system, it is important to describe the key characteristics of the system.

6.2.1. General description of the system and the problem

Our retailer sells a product. The product price is a primary determinant for customers’
choices [7]. The lower price our retailer sets, the more customers buy from him and the faster
our retailer’s inventory level decreases. An inventory level, or in other words the number of
product pieces our retailer currently has, describes a current state of the shopbot system.
The inventory level can be viewed as a state variable of the system. The price can be viewed
as a control variable. Demand describes how many pieces would be bought at a particular
price, or in our retailer’s case it describes how a particular control would change a current
value of the state variable. The change of the state variable does not depend on its current
value. Thus, the demand function fully describes dynamic behaviour of the system.

Even though a number of sold pieces does not depend on an inventory level, the inventory
level limits a maximum number of pieces that can be sold. It is impossible to have a
negative number of remaining pieces. Thus, our retailer experiences a constraint on the
state variable. Price takes values from a finite set, thus the retailer experiences constraints
on the control variable, see Subsection 2.2.2.

The aim of our retailer is to sell pieces of a product in a way which maximizes his
profit over a sales horizon. The greater the profit is, the more satisfied the retailer will be.
Therefore, the retailer’s profit can be viewed as a performance index, the term performance
index is taken from ([34], pp. 20, 112).

The problem our retailer faces is to find an optimal control for the entire sales horizon.
The optimal control would be a function which maximises the total profit of our retailer,
assigning to each competition period during the sales horizon a value of the control variable.

6.3. Strategy 2: fictitious play in combination with variational
approach to optimal control

Relevant characteristics and components of the shopbot system have been underlined. The
most important component of the system is the demand function. It determines a change
of the state variable.

Possible state representation

Fictitious play suggests estimating behaviour of adversaries using previous observations of
their actions ([27], p. 206). In Section 5.2 it was shown how estimations of the adversaries’
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strategies can be expressed using the demand vector D = (𝐷1, 𝐷2, ..., 𝐷k). To every allowed
price 𝑢𝑖 a rational number 𝐷𝑖 was assigned. 𝐷𝑖 can be viewed as an expected value of
a number of product pieces which would be sold at price 𝑢𝑖 during one period of the
competition.

In order to capture the real-world temporal structure of the competition, a sequence
of the competition periods was modelled. For this purpose it is needed to represent new
expected inventory levels after every period of the competition. It is assumed that there
is some natural number 𝑥initial of items at the beginning of the first competition period.
If an allowed price 𝑢𝑖 is set during the first period, then after it an inventory level 𝑥1 =
𝑥initial −𝐷𝑖 will be obtained. Taking into account the meaning of 𝐷𝑖, 𝑥1 has the meaning
of an expected value of number of items which would remain after the first competition
period if the price 𝑢𝑖 is set during this period. Note, that the obtained demand function
assigns to every possible price an empirical estimation of a number of bought items. In the
state equation of the shopbot system 𝑥[𝑘 + 1] = 𝑓(𝑥[𝑘], 𝑢[𝑘]) function 𝑓(𝑥[𝑘], 𝑢[𝑘]) is not
expressed analytically, 𝑘 ∈ N ∧ 𝑘 ≤ 𝑇 , 𝑇 is a length of sales horizon. The stated problem
has to be solved numerically in this case. Therefore, it is important to estimate a numerical
complexity of simulations based on the obtained demand.

Numerical complexity of simulations based on suggested state representation

In attempts to work with the suggested state representation insurmountable numerical
difficulties occurred. Even for simple problems with small initial capacities and short sales
horizons the simulation of the system required too much time and memory. The time
complexity and the memory complexity were considered in more detail in Appendix B.

The generation of states in a numerical simulation in case of a small initial inventory
level 𝑥initial = 2 and short sales horizon ten periods long was examined experimentally.
Even for such a simple case numerical complexity of the simulation was high. However, if
the initial inventory level was increased to 𝑥initial = 3, then the numerical complexity of
simulations using the suggested state representation became insurmountable.

6.3.1. Continuous demand approximation

It is difficult to work with the estimated demand D. Ways how to make a problem for-
mulation easier must be found. One possible approach is to use a continuous model of
the demand. Price competition has been modelled as a continuous system in work [21].
Continuous control problems have simpler mathematical formulation than their discrete
equivalents ([34], p.110). Furthermore, if an analytical solution to continuous formulation
of the stated optimal control problem can be obtained, then computation of pricing strategy
based on the solution would have extremely low computational complexity.

A continuous linear demand function is very common in applied economic analysis due to
its simplicity [37, 21]. The demand, which our retailer experiences, will be modelled using
a linear demand function. For every possible price 𝑢 from a set 𝑢 ∈

[︀
𝑝zero profit, 𝑝highest

]︀
a linear demand function will return a number of customers who would buy a piece of
product at that price from our retailer. To estimate parameters of this linear function, the
estimated demand vector D = 𝐷1, 𝐷2, ..., 𝐷k will be used, see Section 5.2 for details on
the demand vector. Values 𝐷1, 𝐷2, ..., 𝐷k correspond to prices 𝑢1, 𝑢2, ..., 𝑢k. Parameters of
the demand function can be estimated using the method of least squares. Let he linear
demand function be 𝐷(𝑢) = a · 𝑢 + b, where a and b are constants. The linear function
𝐷(𝑢) might assign negative value to large values of allowed prices. Let a value of the
obtained linear function 𝐷(𝑢) be negative for all prices 𝑢 ≥ 𝑝zero demand, i.e. 𝑝zero demand =
−b

a .To avoid a negative demand, constraints on control in our model must be updated.
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Let 𝑢max = max{𝑝highest, 𝑝zero demand}. Now a set of all allowed prices can be given as
𝑢 ∈

[︀
𝑝zero profit, 𝑢max

]︀
.

Note that in the general model of the competition a retailer automatically quits a shopbot
when he has nothing to sell. It is enabled by a shopbot in real-world situations [14].

In accordance with fictitious play, adversaries’ strategies have to be guessed before the
start of competition ([27], p. 206). It can be slightly modified. To avoid misleading initial
guesses, the retailer would set the price 𝑝highest during the first period and starting from
the second period of the competition would estimate the demand function based purely on
previous observations. Note that the obtained function 𝐷(𝑢) will be always decreasing in
price. For instance, if all retailers always set the highest price 𝑝highest , then a probability
that our retailer has the lowest price at a shopbot is equal to one for all prices except for
𝑝highest. As a consequence, 𝐷(𝑢) is decreasing. If in another extreme case all retailers always
set 𝑝zero profit, then probabilities that our retailer’s price is lower than any adversary’s price
are equal to zero for all prices except for the price 𝑝zero profit, as ties are possible. Again,
as a result, estimated 𝐷(𝑢) is a decreasing linear function. Hence, a is always negative.
An expected number of arrived customers should be positive, otherwise it is pointless to
participate in price competition. Hence, b is always positive.

Note that the obtained demand function is an approximate estimation of demand. It
is assumed that an expected number of retailer’s potential customers is always the same.
However, if a current inventory level 𝑥 is less than a maximal number, 𝑛, of customers who
might buy a piece of a product from our retailer, then the expected number of potential
customers would be

𝑌𝑥 =
𝑥∑︁
𝑖=0

𝑃𝑟𝑜𝑏𝑖 · 𝑖+
𝑛∑︁

𝑖=𝑥+1
𝑃𝑟𝑜𝑏𝑖 · 𝑥,

where

𝑃𝑟𝑜𝑏𝑖 =
(︃
𝑛

𝑖

)︃
· 𝑝𝑖 · (1 − 𝑝)𝑛−𝑖

is a probability that 𝑖 potential customers arrive, given by the chosen Bernoulli process for
modelling arrivals of customers.

6.3.2. Model of the competition and problem formulations

In order to work with the continuous demand, a continuous model of the system has to be
developed.

It is assumed that a sales horizon starts at time 𝑡 = 0 and ends at time 𝑡 = 𝑇final,
𝑇final ∈ R, 𝑇 > 0.

Let 𝑥(𝑡) be our retailer’s inventory level, i.e. a quantity of remaining pieces of the product
at time 𝑡; ∀𝑡 ∈ [0, 𝑇final] ⊂ R : 𝑥(𝑡) ∈ R, 𝑥(𝑡) ≥ 0. In this case 𝑥(𝑡) is the state variable.
Inventory level is modelled as a continuous quantity, as it was done in work [21].

The capacity of our retailer is denoted by 𝑐, i.e. 𝑥(0) = 𝑐, 𝑐 ∈ R, 𝑐 > 0. Knowing the
capacity and the state equation it is possible to express an inventory level at time 𝑡, see an
equation for the state in the problem formulation below.

A price function is denoted by 𝑢(·) : [0, 𝑇final] ↦→
[︀
𝑝zero profit, 𝑢max

]︀
. It assigns to

each time 𝑡 ∈ [0, 𝑇final] ⊂ R ∧ 𝑥(𝑡) > 0 an allowed real-valued price from the interval[︀
𝑝zero profit, 𝑢max

]︀
. If the retailer’s inventory 𝑥(𝑡) = 0, then he automatically quits a

shopbot, i.e. the retailer’s offer becomes unavailable to customers and no one can buy from
him. Note, 𝑢(·) is a control.

The demand is denoted by 𝐷(𝑢(𝑡)) ∈ R. 𝐷(𝑢(𝑡)) = a · 𝑢(𝑡) + b. 𝐷(𝑢(𝑡)) is a number
of customers who would buy a piece of a product at price 𝑢(𝑡) from our retailer at time 𝑡,
each customer buys just one piece.
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Let ℎ(𝑛) : [0, 𝑐] ↦→ [0; h · 𝑐] be a retailer’s real-valued holding cost function, the term is
taken from [21]. h is a specific constant for our retailer, h ∈ R, h ≥ 0. ℎ(𝑛) is a cost of holding
a product quantity 𝑛, 𝑛 ∈ R, 𝑛 ≥ 0, over one sales horizon. ℎ(𝑛) = h · 𝑛.It is assumed that
a holding cost over the first sales horizon is included into a product cost, cst. However, if a
retailer does not sell all his products during the sales horizons, then he will have to pay for
holding the remaining inventory level during the next sales horizon. Therefore, in a stated
optimal control problem a final weighting function is 𝜑(𝑥(𝑇 )) = −ℎ(𝑥(𝑇 )). The term final
weighting function is taken from ([34], p. 112).

Let 𝑒(𝑡) ∈ R be our retailer’s profit, or earnings, obtained at time 𝑡. Note that 𝑒(𝑡) is a
weighting function, the term is taken from ([34], p. 112).

Let 𝑒total ∈ R be a total profit of our retailer over the sales horizon. Note that 𝑒total is a
performance index of the shopbot system. The optimal control problem is to find a control
function 𝑢*(·) which would maximise the performance index. For the sake of readability 𝑢
might be used instead of 𝑢(·).

Now it is possible to state the problem formally.

∀𝑡 ∈ [0, 𝑇final]:
𝑑𝑥(𝑡)
𝑑𝑡

= −(a · 𝑢(𝑡) + b);

equation for a state : 𝑥(𝑡) = 𝑐−
∫︁ 𝑡

0
(a · 𝑢(𝜏) + b)𝑑𝜏 ;

control constraints : 𝑢(𝑡) ∈
[︀
𝑝zero profit, 𝑢max

]︀
;

state constraint : 𝑥(𝑡) ≥ 0;

if x(t) = 0, then control are disabled by the shopbot;

𝑒(𝑡) = (𝑢(𝑡) − cst) · ((a · 𝑢(𝑡) + b));

ℎ(𝑛) = h · 𝑛;

performance index : 𝑒total = −ℎ(𝑥(𝑇final)) +
∫︁ 𝑇final

0
𝑒(𝜏)𝑑𝜏 ;

problem : 𝑢* = arg max𝑢 𝑒total

(6.3.1)

6.3.3. Solution to the problem

There are several inequality constraints in the problem (6.3.1): constraints on the control
variable and a constraint on the state variable. In general, an inequality constraint on
a state variable makes the problem of finding an optimal control very difficult to solve
analytically [38],[39].However, it is possible to find an analytical solution to the problem
(6.3.1).

At the beginning the constraint on the state variable is neglected.

Necessary conditions for optimality

The necessary conditions for optimality of a solution to the problem (6.3.1) can be obtained.
Derivation of these conditions can be found in Appendix C.
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Using the same notation as in Appendix C, a Hamiltonian function is defined as

𝐻 (𝑢 (𝑡) , 𝑥 (𝑡) , 𝜆(𝑡)) = (a𝑢(𝑡) + b) (𝑢(𝑡) − cst) + 𝜆(𝑡) (−a𝑢(𝑡) − b) =
= a𝑢2(𝑡) + (b − cst · a − 𝜆 (𝑡))𝑢(𝑡) − b (𝜆(𝑡) + cst) ,

(6.3.2)

where costate 𝜆(𝑡) ∈ R.

A costate equation
One of the necessary conditions for optimality of a solution to the problem (6.3.1) is a
costate equation

𝜕𝐻

𝜕𝑥
+ 𝜆̇ = 0. (6.3.3)

Taking a partial derivative 𝜕𝐻
𝜕𝑥 of the Hamiltonian (6.3.2),

𝜆̇ = −𝜕𝐻

𝜕𝑥
= 0. (6.3.4)

Thus, an optimal costate variable 𝜆* has to be a constant.

A boundary condition
Another necessary condition for optimality is a boundary condition for the studying prob-
lem: (︂

𝜕𝜑

𝜕𝑥
− 𝜆

)︂
|𝑇= 0.

Therefore, an optimal costate variable 𝜆*(𝑇 ) at final time 𝑇 is

𝜆*(𝑇 ) = −h.

An optimal costate variable has to be a constant. Thus, the value of the optimal costate
variable is

𝜆* = −h. (6.3.5)

Pontryagin’s Maximum Principle
A set of admissible values for the control variable is an interval

[︀
𝑝zero profit, 𝑢max

]︀
. An-

other necessary condition for optimality of a solution, therefore, is given by Pontryagin’s
Maximum Principle:

∀𝑢 ∈
[︀
𝑝zero profit, 𝑢max

]︀
: 𝐻(𝑥*, 𝑢*, 𝜆*) ≥ 𝐻(𝑥*, 𝑢, 𝜆*). (6.3.6)

The same notation as in Appendix C.3 is used.
Using the Hamiltonian (6.3.2), the expression (6.3.6) can be rewritten as

∀𝑢 ∈
[︀
𝑝zero profit, 𝑢max

]︀
: a (𝑢*)2 + (b − cst · a − 𝜆*)𝑢* − b (𝜆* + cst) ≥

≥ a𝑢2 + (b − cst · a − 𝜆*)𝑢− b (𝜆* + cst) ,
(6.3.7)

which is equivalent to

∀𝑢 ∈
[︀
𝑝zero profit, 𝑢max

]︀
: a (𝑢*)2 + (b − cst · a + h)𝑢* ≥ a𝑢2 + (b − cst · a + h) . (6.3.8)
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Let 𝑦(𝑢) = a𝑢2 + (b − cst · a + h). According to (6.3.8), an optimal control 𝑢* has to
maximise the function 𝑦(𝑢) on the interval

[︀
𝑝zero profit, 𝑢max

]︀
.

The minimal value of a control variable is 𝑝zero profit = cst > 0. In the Subsection 2.2.2
it is shown that 𝑢max > 𝑝zero profit, otherwise a retailer choose not to participate in the
price competition. An optimal control 𝑢* can be computed.

A costate variable 𝜆* = −h is a constant, thus z = (b − cst · a + h) is also a constant.
Therefore, the function

𝑦(𝑢) = a𝑢2 + z𝑢

represents a parabola, as a ̸= 0. Note, that a < 0. So, 𝑦(𝑢) is concave. As a consequent,
𝑦(𝑢) has a global maximum. Note that the parabola 𝑦(𝑢) has the same shape for all
moments ∀𝑡 ∈ [0, 𝑇final] because a and z are constants. Let 𝑢*

g be an optimal control for
the case when constraints on control are relaxed. Setting 𝑑𝑦

𝑑𝑢 = 0,

𝑢*
g = − z

2a .

The same result could be obtained using a stationary condition for an unconstrained case.
Zeros of the function 𝑦(𝑢) are {0, −z

a }.
b is positive, a is negative, h is non-negative. Hence, (b − cst · a + h) is positive. There-

fore, z > 0. As a consequence, −z
a > 0. And 𝑢*

g > 0.
If 𝑢*

g ∈
[︀
𝑝zero profit, 𝑢max

]︀
, then an optimal control is equal to 𝑢*

g. The value 𝑢*
g is the

same for all possible moments, ∀𝑡 ∈ [0, 𝑇final] : 𝑢* = 𝑢*
g = 𝑐𝑜𝑛𝑠𝑡.

If 𝑢*
g ̸∈

[︀
𝑝zero profit, 𝑢max

]︀
, then for every possible time of interest the function 𝑦(𝑢)

might be either strictly increasing, or strictly decreasing on the interval
[︀
𝑝zero profit, 𝑢max

]︀
.

If 𝑦(𝑢) is strictly increasing on
[︀
𝑝zero profit, 𝑢max

]︀
, then an optimal control is again the same

for all possible moments 𝑢* = 𝑢max. If 𝑦(𝑢) is strictly decreasing on the allowed interval
of controls, then an optimal control is 𝑢* = 𝑝zero profit and is the same for all moments of
time as the function 𝑦(𝑢) is the same during the sales horizon.

In general a form an optimal control can be given as

𝑓(𝑥) =

⎧⎪⎨⎪⎩
𝑢*

g, 𝑢*
g ∈

[︀
𝑝zero profit, 𝑢max

]︀
;

𝑝zero profit, 𝑢*
g < 𝑝zero profit;

𝑢max, 𝑢*
g > 𝑢max,

(6.3.9)

where 𝑢*
g = −(b − cst · a + h)

2a .
To sum up, using necessary conditions for optimality it was proved that an optimal

control 𝑢* has to be a constant. Its value is given with Eq. (6.3.9). However, the constraint
on the state variable has not been considered yet.

A constraint on the state variable and an optimal state trajectory

In the problem (6.3.1) a current value of the state variable is given by

𝑥(𝑡) = 𝑐−
∫︁ 𝑡

0
𝐷(𝑢(𝜏))𝑑𝜏.

It was shown that an optimal control 𝑢* has to be a constant. As a consequence, a corre-
sponding optimal demand 𝐷(𝑢*) = a · 𝑢* + b has to be a constant as well. Therefore, an
optimal state trajectory would be given by

𝑥*(𝑡) = 𝑐−
∫︁ 𝑡

0
𝐷(𝑢*)𝑑𝜏 = 𝑐− 𝑡 ·𝐷(𝑢*). (6.3.10)
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6. Design of pricing strategies using the formulated multi-period model

Thus, a graph of an optimal state trajectory would be a straight line. On a time axis the
graph is bounded with the 0 and 𝑇final. On an axis of an inventory level the upper bound
is given with the initial inventory level 𝑐, i.e. 𝑥max = 𝑐, as demand cannot be negative.
The lower bound is given with a constraint on state 𝑥(𝑡) ≥ 0, i.e. 𝑥min = 0. A point [0, 𝑐]
always belongs to an optimal state trajectory. However, there are several possibilities how
the graph can reach a boundary of the allowed region [0, 𝑇final] × [0, 𝑐]. Four possible cases
are depicted in Fig.6.3.1.
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) = 0 and

x(t) > 0 for all other t

Fig. 6.3.1. Possibilities how the graph x(t) can reach a boundary of the allowed region

Case 1
The graph of an optimal state trajectory might stay on the boundary 𝑥(𝑡) = 𝑐 during
the whole period [0, 𝑇final]. It is the case when a retailer does not participate in the
competition but have some inventory level. In this case he will have to pay for holding his
entire inventory 𝑐 during future sales horizons. However, a rational retailer would prefer to
sell at least some products even at the price 𝑝zero profit and pay a lower holding cost for
the remaining inventory level, rather than not participate in the competition at all.

As a conclusion, a retailer with a positive inventory level would prefer to participate
in the price competition and an optimal state trajectory would not stay on the boundary
𝑥*(𝑡) = 𝑐.

A possible optimal state trajectory depicted as the case 4 in Fig.6.3.1 will be examined
next.

Case 4 compared to case 3

Let us examine the case when an optimal state trajectory reaches a boundary 𝑥min = 0 at
time 𝑡, 𝑡 < 𝑇final, see the case 4 in Fig.6.3.1. Let 𝑢*

4 be an optimal control for the possible
case 4. In this case all 𝑐 pieces of a product would be sold out before the end of the sales
horizon. This situation will be compared to the possible case 3 from Fig.6.3.1 when all 𝑐
pieces of a product would be sold exactly at the end of the sales horizon. Let 𝑢*

3 be an

34



6.3. Strategy 2: fictitious play in combination with variational approach to optimal
control

optimal control for the possible case 3. From Fig.6.3.1 it is obvious, that 𝐷(𝑢*
4) > 𝐷(𝑢*

3).
Demand 𝐷(𝑢) is decreasing in price, consequently,

𝑢*
4 < 𝑢*

3. (6.3.11)

As in both cases all pieces of a product were sold out, then a final weighting function

𝜑(𝑥(𝑇final)) = −ℎ(𝑥*
4(𝑇final)) = −ℎ(𝑥*

3(𝑇final)) = −h · 0 = 0

. Thus,
𝐽*

4 = (𝑢*
4 − cst) · 𝑐

and
𝐽*

3 = (𝑢*
3 − cst) · 𝑐.

Taking into consideration Eq. (6.3.11),

𝐽*
3 > 𝐽*

4 .

Thus, 𝑢*
4 cannot be an optimal control and an optimal state trajectory cannot have the

graph depicted as the case 4 in Fig.6.3.1.

To sum up, graphs depicted as cases 2 and 3 in Fig.6.3.1 are the only possible graphs of
an optimal state trajectory. Therefore, the constraint on state is equivalent to an inequality

0 ≤ 𝑥*(𝑇final) < 𝑐.

It is equivalent to
0 ≤ 𝑐−𝐷(𝑢*) · 𝑇final < 𝑐 ⇔

⇔ 𝑐

a𝑇final
− b

a ≤ 𝑢* < −b
a . (6.3.12)

Note, that it might happen that 𝑢max <
𝑐

a𝑇final
− b

a , which is equivalent to an expression
𝑐−𝑇final𝐷(𝑢max) > 0. It is the case when even the lowest value of demand, 𝐷(𝑢max), is so
large, that if 𝑢max is applied then a retailer will sell out all his capacity before the end of
sales horizon and will be disabled to act by a shopbot. The length 𝑇 of maximal duration
of sales has to be updated.

𝑐− 𝑇𝐷(𝑢max) ≥ 0 ⇔ 𝑇 ≤ 𝑐

𝐷(𝑢max) . (6.3.13)

The maximal duration of sales is

𝑇max = min
{︂
𝑇final,

𝑐

𝐷(𝑢max)

}︂
.

Considering the expression (6.3.12), let

𝑢min = max
{︂

𝑐

a𝑇max
− b

a , 𝑝zero profit

}︂
. (6.3.14)

𝑢max = max{𝑝highest,−b
a }, see the Subsection 6.3.1. The price 𝑝highest can be an optimal

price. However, when −b
a = 𝑝zero demand ≤ 𝑝highest, the price 𝑝zero demand cannot be optimal

and has to be excluded from a set of considered prices. In real-world situations a price
can take values from a discrete set 𝑆𝑎𝑙𝑙𝑜𝑤𝑒𝑑 = {𝑢1, 𝑢2, ..., 𝑢k}. It will be assumed that if
𝑝zero demand ≤ 𝑝highest, then 𝑢max′ = 𝑝zero demand−1. Obtained precision would be enough in
a majority of practical cases. Moreover, the discussed strategy is based on an approximate
estimation of the demand. As a result, dealing with too precise price values might be
pointless.

To conclude, an inequality constraint on the state variable was successfully transformed
into new inequality constraints on control and a new duration of sales 𝑇max.
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The pricing strategy

As a summation, the pricing strategy 𝑢* would be presented.

𝑢max′ =

⎧⎪⎪⎨⎪⎪⎩
−b

a − 1, 𝑝highest ≥ −b
a ;

𝑝highest, otherwise;

𝑇max = min
{︂
𝑇final,

𝑐

𝐷(𝑢max′)

}︂
;

𝑢min = max
{︂

𝑐

a𝑇max
− b

a , 𝑝zero profit

}︂
;

𝑢*
g = − (b − cst · a + h)

2a ;

𝑢* =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢*
g, 𝑢*

g ∈ [𝑢min, 𝑢max′ ] ;

𝑢min, 𝑢*
g < 𝑢min;

𝑢max′ , 𝑢*
g > 𝑢max′ ,

(6.3.15)

where a linear demand function 𝐷(𝑢) = a · 𝑢 + b is obtained as described in Subsection
6.3.1.

Sufficient condition for optimality

The optimal control was obtained using necessary conditions for optimality. The set of
necessary conditions for the considered problem becomes a set of sufficient conditions if it
is true that

𝜕2𝐻

𝜕2𝑢
< 0,

see Appendix C.4.

𝜕2𝐻

𝜕2𝑢
= a < 0.

Note that it has been already shown that in our case Hamiltonian is a concave function of
a control variable.

As a conclusion, the strategy (6.3.15) is an optimal solution to our problem (6.3.1).
To sum up, the pricing strategy for a retailer was developed using methods of continuous

optimal control in combination with fictitious learning. It considers temporal structure of
the competition, capacity constraints the retailer faces and future holding cost for product
pieces which remain after the end of the competition. Previous observations of adversaries’
prices are taken into account also. However, the observations are not used directly but
rather are approximated with a continuous demand function. Possible inaccuracy of the
approximation is a main weak point of the strategy. On the other hand, computation of
the price according to the developed strategy has extremely low numerical complexity. It
is the main advantage of the obtained strategy.

For the purpose of numerical simulations, the strategy is implemented as a Java class
FictitiousOptimalController.java, see the attached CD for details.
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Numerical methods

For the sake of completeness, note that there are several numerical methods solving contin-
uous optimal control problem with state inequality constraints, as very often these problem
are very hard to solve analytically.

The simplest approach is to use an integral penalty function which is described in ([33],
pp. 242,240). If the performance index is 𝐽 and the constraint on state 𝐶(𝑥) < 0 is
specified for times [𝑡0, 𝑡𝑓 ], then it is possible to augment the constraint to the performance

index as 𝐽 ′ = 𝐽+𝜇
∫︀ 𝑡𝑓
𝑡0 (𝐶(𝑥))2 1(𝐶)𝑑𝑡, where 1(𝐶) =

{︃
1, 𝐶(𝑥) > 0;
0, 𝐶(𝑥) < 0, and 𝜇 is a real-valued

constant which has to be positive if 𝐽 is maximised and negative otherwise.
As an alternative to the penalty function method, a nonlinear programming approach

was developed in [38]. The detailed description of the method can be found in [38].

6.4. Strategy 3: dynamic programming approach to optimal
control

It is possible to develop another pricing strategy which would consider not only previous
observations of the competitors’ prices but also the temporal structure of the competition,
the retailer’s inventory level and the cost of holding the remaining items during the next
sales horizon. Dynamic programming in combination with fictitious learning can be used to
develop such a pricing strategy. Dynamic programming is "an alternative to the variational
approach to optimal control" ([34], p. 260). Dynamic programming can be applied on
discrete-time dynamic system even if the system dynamics contains some random parameter
([40], p. 2). In this case the optimal control problem is formulated as an optimization of
an expected performance index

𝐸

{︃
𝜑(𝑥𝑁 ) +

𝑁∑︁
𝑘=0

𝐿𝑘(𝑢𝑘))
}︃
,

where 𝐿𝑘 is a weighted function and 𝜑 is a final weighted function and 𝐸 {�} is an "expec-
tation with respect to a joint distribution of the random variables involved" ([40], p. 2).
In the case of such systems instead of a state equation transition probability graphs can be
used to describe the system’s evolution ([40], p. 9). "These graphs depict the transition
probabilities between various pairs of states for each value of the control" ([40], p. 9). The
transition probability graph can be obtained for the shopbot system. An inventory level is a
state variable. Only non-negative integer values of the inventory level are allowed. Periods
of arrivals of potential customers are considered instead of periods of price changes. Periods
of arrivals are also considered in [19, 20]. For details on potential customers of our retailer
see Section 5.3. If at maximum 𝑛 potential customers can arrive during a single period of
the competition and there are 𝑇 competition periods in a sales horizon, then there are 𝑛 ·𝑇
periods when a potential customer can arrive. From now one in this section by a customer
a potential customer of our retailer is meant. Let 𝜉 be a probability that a customer arrives
during a single period of arrivals of customers. Let 𝑃our,loyal be a probability that an arrived
customer is loyal to our retailer. Let 𝑃switcher be a probability that an arrived customer
is a switcher, see Section 5.2 for details. And let 𝑃𝑢𝑖 be a probability that our retailer’s
price 𝑢𝑖 is the lowest one at the shopbot. Let us examine a case when at the beginning
of period 𝑡 of customers’ arrivals our retailer has an inventory level 𝑥 and sets a price 𝑢𝑖.
During a period 𝑡 no customer arrives with a probability (1 − 𝜉). In this case before the
next period of arrivals our retailer again has an inventory level 𝑥. With a probability 𝜉 a
potential customer arrives. In this case with a probability 𝑃our,loyal the customer might be
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loyal to our retailer and the retailer’s inventory level at the beginning of the next period
of arrivals would be (𝑥 − 1). At the same time the arrived customer might be a switcher
with a probability 𝑃switcher. With a probability (1−𝑃𝑢𝑖) the retailer’s inventory level at the
beginning of the next period of arrivals remains 𝑥 and with a probability 𝑃𝑢𝑖 the retailer’s
inventory level becomes (𝑥− 1) before the beginning of the next period.

To sum up, if during some period of arrivals of customers our retailer’s inventory level
is 𝑥, then it will remain the same if no customer arrives during the period or if an arrived
customer is a switcher but our retailer’s price is not the lowest available at the shopbot. In
other cases at the beginning of the next period of customers’ arrivals the retailer’s inventory
level would be (𝑥 − 1). Based on the given description of all possibilities, the transition
probability graph can be obtained. It depicts evolution of the state variable from the start
of a period of arrivals to the end of the period. For every state variable 𝑥, 𝑥 ∈ N} and for
every price 𝑢𝑖 from a set of allowed prices, 𝑢𝑖 ∈ 𝑆𝑎𝑙𝑙𝑜𝑤𝑒𝑑 the transition probability graph of
the state variable before and after the period of arrivals is depicted in Fig. 6.4.1.

x

x− 1

x

ξ · (Pour,loyal + Pswitcher · Pui
)

1− ξ + ξ · Pswitcher · (1− Pui
)

1

Fig. 6.4.1. Transition probability graph of the shopbot system with natural-valued state variable

Dynamic programming is based on Bellman’s principle of optimality ([34], p. 260):

Theorem 6.4.1 (Bellman’s principle of optimality). "An optimal policy has the property
that no matter what the previous decision have been, the remaining decisions must constitute
an optimal policy with regard to the state resulting from those previous decisions."

To determine a set of potentially optimal strategies, Bellman’s principle of optimality has
to be applied backward in time starting from the final stage. The dynamic programming
algorithm will be stated for a discrete-time system of the form 𝑥[𝑘+1] = 𝑓𝑘(𝑥[𝑘], 𝑢[𝑘], 𝜔[𝑘])
with associated performance index

𝐸

{︃
𝜑(𝑥[𝑁 ]) +

𝑁−1∑︁
𝑘=0

𝐿𝑘(𝑥[𝑘], 𝑢[𝑘], 𝜔[𝑘])
}︃
,

where 𝑥[𝑎] is a state, 𝑢[𝑎] is a control from an allowed set 𝑆𝑎𝑙𝑙𝑜𝑤𝑒𝑑, 𝜓 and 𝐿𝑘 are any
functions, 𝜔 is a random parameter and its distribution might depend on 𝑥[𝑎] and 𝑢[𝑎]
([40], p. 5).

Theorem 6.4.2 (The dynamic programming algorithm). "For every initial state 𝑥0 the
optimal performance index 𝐽*(𝑥0) is equal to 𝐽0(𝑥0), given by the last step of the following
algorithm, which proceeds backward in time from period 𝑁 − 1 to period 0:

𝐽𝑁 (𝑥𝑁 ) = 𝜑(𝑥𝑁 ),
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𝐽𝑘(𝑥[𝑘]) = max
𝑢[𝑘]∈𝑆𝑎𝑙𝑙𝑜𝑤𝑒𝑑

𝐸 {𝐿𝑘(𝑥[𝑘], 𝑢[𝑘], 𝜔[𝑘] + 𝐽𝑘+1(𝑓𝑘(𝑥[𝑘], 𝑢[𝑘], 𝜔[𝑘])} ,

𝑘 = 0, 1, ..., 𝑁 − 1, where the expectation 𝐸 {�} is taken with respect to the probability
distribution of 𝜔[𝑘], which can depend on 𝑥[𝑘] and 𝑢[𝑘]. Furthermore, if 𝑢*[𝑘] maximizes
the right side of the stated equation for each k, then the control policy {𝑢*[1], ..., 𝑢*[𝑁 − 1]}
is optimal."

The algorithm is taken from ([40], p. 23). Its key recursive equation is sometimes called
a functional equation of dynamic programming ([34], p. 264). Note that equilibrium profits
in [19, 20] were defined using the same recursive equation.

In case of price competition at shopbots a retailer cannot change his price during ev-
ery period of arrivals of potential customers. There are 𝑛 periods of possible arrivals in
one period of the competition, therefore, a retailer changes his price once in 𝑛 periods of
customers’ arrivals. Also note that according to fictitious play, probabilities 𝑃𝑢𝑖 have to
be updated after each period of the competition. As a result only a computed optimal
price for the current period of the competition would be used. The state variable has to be
non-negative. And if at the end of sales horizon a retailer has left 𝑙 pieces of product, then
he has to pay a holding cost h · 𝑙 for the next sales horizon.

Dynamic programming algorithm can be implemented as a recursive algorithm with a
memory [41]. It is possible to provide pseudo code for computing an optimal price using
fictitious learning and dynamic programming. Let 𝑃𝑢𝑖,buy = 𝜉 · (𝑃our,loyal + 𝑃switcher · 𝑃𝑢𝑖).
It is a probability that one piece of a product will be bought from our retailer at price
𝑢𝑖 during a period of arrivals of customers. For the sake of compactness, let 𝑥 denote an
inventory level. Let 𝑡 denote a number of remaining periods of arrivals. Let 𝑢(𝑡 − 1) be a
price from a previous period, 𝑢(𝑡 − 1) is required because a retailer can change his price
only once during 𝑛 periods of arrivals. Let 𝑗 be a helping variable for counting periods
of arrivals after the last change of price. If 𝑗 = 𝑛, then a retailer can choose an optimal
price, otherwise a price from a previous period is set automatically. An expected optimal
profit in every period of choice will be stored in memory, so in every period of decisions
optimization is carried out once. Optimal price can be computed by calling a function
optimal(𝑥current, 𝑡current, 0, 𝑛). The function is given in Algorithm 3. Note, that for the
sake of compactness it is assumed that an optimal price is automatically stored into the
memory. It is not captured in Algorithm 3 in detail. The returning value of the Function
3 is an optimal expected profit.

To sum up, another pricing strategy for a retailer was developed. It also considers the
temporal structure of the competition, the capacity constraints, and the future holding
cost for remaining product pieces which remains after the end of the competition. Previous
observations of adversaries’ prices are taken into consideration as well. Computation of
the price based on the presented algorithm might have a high numerical complexity if a
number of remaining periods is large and there are many values of possible prices. However,
the numerical complexity can be reduced using a simple heuristics. A situation when a
retailer would like to sell 𝑙 pieces during 𝑡 periods is very similar to a situation when the
retailer would like to sell 2𝑙 pieces during 2𝑡 periods. As a consequence, a situation when
a retailer has 𝑥 pieces to sell during 𝑇 period and 𝑇 > 30 will be approximately modelled
by a situation when a retailer has ⌈30𝑥

𝑇 ⌉ pieces to sell during 30 periods. Estimation of
an inventory level ⌈30𝑥

𝑇 ⌉ is rounded up in order to include cases when just one piece of a
product is left. Rounding up forces a retailer to sell pieces of a product slightly faster than
he would according to the developed dynamic programming algorithm.

For the purpose of numerical simulation, the developed algorithm for computing a pricing
strategy is implemented in Java class FictitiousDynamicProgramming.java, see the attached
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CD.

Function optimal(x, t, u(t - 1), j)
if an optimal profit for the pair (x,t) is in the memory then

return a value of an optimal profit from the memory;
else

if 𝑡 == 0 then
if 𝑡 == 𝑡current then

price cannot be set;
else

return −h · 𝑥;
end

else
if 𝑗 == 𝑛 then

j = 0;
profit = max

𝑢𝑖∈𝑆𝑎𝑙𝑙𝑜𝑤𝑒𝑑

{𝑃𝑢𝑖,buy · (𝑢𝑖 + optimal(𝑥− 1, 𝑡− 1, 𝑢𝑖, 𝑗 + 1)) +

+(1 − 𝑃𝑢𝑖,buy)optimal(𝑥, 𝑡− 1, 𝑢𝑖, 𝑗 + 1)};
store results into the memory;
return profit;

else
profit = 𝑃𝑢(𝑡−1),buy · (𝑢(𝑡− 1) + optimal(𝑥− 1, 𝑡− 1, 𝑢(𝑡− 1), 𝑗 + 1)) +
+(1 − 𝑃𝑢(𝑡−1),buy)optimal(𝑥, 𝑡− 1, 𝑢(𝑡− 1), 𝑗 + 1);
return profit;

end
end

end
end

Algorithm 3: Pseudo code of numerical generation of possible states
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7. Evaluation of the quality of pricing
strategies

7.1. Overview of the strategies

Several pricing strategies for a retailer at a shopbot have been obtained. It is required to
understand limitations of different strategies. The general model of the price competition
at shopbots, formulated in Chapter 2, underlines the most important aspects of the compe-
tition. The general model makes it possible to better understand weak points of strategies
obtained in previous chapters.

First, a simple strategy based on a classical economical model of the Bertrand compe-
tition was presented [29]. The strategy is based only on price sensitivity of customers. It
does not consider possible customers’ loyalty to particular retailers. Temporal structure of
the competition is not considered, neither is a retailer’s inventory. At the same time the
developed strategy uses observations of previous adversaries’ prices.

It is obvious that the Bertrand model is too simple model and neglects some important
features of the competition, as the model predicts that all retailers in equilibrium would set
the same zero-profit prices [29]. The price dispersion at shopbots, however, is rather high
[17, 3, 18].

Then a pricing strategy based on a slightly more sophisticated model of Koçaş was
derived [5]. Possibility of customers’ loyalty is included in the model. On the other hand
no observations are considered.

Another pricing strategy is based on even more complex model of an extensive-form game
[19]. Temporal structure of a retailer’s actions was modelled. Also retailers’ inventory levels
are taken into account. The strategy uses observations of other retailers’ capacities. It might
be an unrealistic assumption.

Finally, the model of Koçaş has been extended and several pricing strategies based on that
extension were designed. Precisely, the strategy based purely on a concept of fictitious play
([27], p. 206) was designed. This strategy not only models possible loyalty of customers,
but also uses previous observations of adversaries’ prices.

Combining fictitious play approach with methods of continuous optimal control another
strategy was created. In addition to possible loyalty of customers and observations of
previous prices, the strategy models the temporal structure of the competition, retailers’
capacity constraints and a cost of holding pieces of a product which remain after the sales
horizon. All these features of price competition are also taken into consideration in another
developed strategy based on fictitious play in combination with dynamic programming.
The difference between last two strategies is that continuous optimal control approach does
not work directly with the observations, but encodes the observed information into lin-
ear function of demand. Dynamic programming works with observations directly without
any approximations of the observed values. On the other hand dynamic programming ap-
proach computes a pricing strategy numerically and, therefore, has a higher computational
complexity comparing to analytical solution of continuous optimal control.

Every strategy has its limitations. It is important to evaluate the performance of different
strategies systematically.
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7.2. Experimental evaluation of the strategies’ quality

7.2.1. Simulation of the competition at a shopbot

For the purpose of the evaluation of strategies, a simulation of the price competition at
shopbots was implemented using Java programming language. The simulation can be found
on the attached CD. The implemented algorithms have been described in the work.

In the file Retailer.java the basic retailer’s behaviour has been implemented in accordance
with Section 2.2. The meaning of the class variables, such as a product cost, capacity, follows
from a general model in Section 2.2. Competing retailers charge prices and can learn from
previous observations. For these purposes class methods chargingPrise() and learn()
are predefined and would be implemented in subclasses of Retailer.java. If a customer buys
a product from a retailer, the class method buyFrom() is called.

Customers’ behaviour described in Section 2.3 is implemented in classes Customer-
Loyal.java and CustomerSwitcher.java. The only function of an arrived customer is to
choose one offer from available alternatives. A loyal customer is loyal to a particular re-
tailer and always buys from him, while a switching customer chooses one of the cheapest
offers at a shopbot.

The stochastic process of customer arrivals to the shopbot is implemented in the file
Evaluation.java, which contains implementation of other described processes at a shopbot.
Number of arrived customers during a single period of the competition is modelled as the
Bernoulli process with a defined maximal number 𝑛 of customers per period and probability
𝑝 that one customer arrives, see the Subsection 2.3.4. To model arrivals of customers, a
pseudorandom number with a uniform distribution is generated 𝑛 times. If the value of a
generated number is lower or equal to 𝑝, than one customer has arrived [42].

Before the start of the competition an array of participating retailers is created. The
basic simulation of one sales horizon is going on in a cycle, where each iteration of the
cycle represents a single period of the competition. At the beginning of each competition
period shopbot collects and stores prices from all retailers. In the simulation a retailer
who has nothing to sell sets price 𝑝 = −1. A shopbot deletes all offers with price −1
and sort the remaining retailers according to a price. All retailers observe prices of their
adversaries. A number of arrived customers is simulated as discussed above. Numbers
of switching customers and customers who are loyal to different retailers are proportional
to popularities of the retailer in accordance with Subsection 2.3.2. Customers choose the
preferable offers and a new period of the competition starts. Note that some retailers
might have the same prices. Such retailers are sorted by a shopbot on base of an additional
retailer’s parameter priority. Initially it is equal to the retailer’s id, which excludes the
existence of two retailers with the same priority. After each period of the competition, the
priority values of different retailers are shuffled. If during all periods of competition all
retailers have the same prices, different retailers would be displayed to customers on the
first position. A switcher chooses an offer on the first position. In the simulation non-zero
product cost cst is modelled. If a customer buys a piece of a product from a retailer a
price 𝑝, then the retailer’s profit increases by a value (𝑝 − cst). A cost for holding pieces
of a product which remains after the end of sales horizon is modelled in the simulation as
well.

In the file Evaluation.java numerical experiments are also implemented, design of exper-
iments is discussed below.

Different retailers’ strategies were implemented in subclasses of a class Retailer.java ac-
cording to strategies described in the work. The only strategy which was not discussed in
the work is a static strategy. It is a simple strategy when a retailer does not change his
price at all. The summation of files names and strategies implemented in those file is given
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in the Table 7.2.1.

File Strategy implemented in the File
BertrandRetailer.java Strategy based on the Bertrand model,

Section 4.1
StaticRetailer.java Strategy when a retailer does not change

a price
KocasRetailer.java Strategy based on the model developed of

Koçaş,section 4.2
MartinezTalluriRetailer.java Strategy based on the model of Martínez-

de-Albéniz, Talluri, Section 4.3
Fictitious.java Strategy based on fictitious play, Section

6.1
FictitiousOptimalController.java Strategy based on fictitious play and op-

timal control, Section 6.3
FictitiousDynamicProgramming.java Strategy based on fictitious play and dy-

namic programming, Section 6.4

Tab. 7.2.1. Summation of strategies implemented in different files on the attached CD

The last three strategies are based on the file DemandEstimator.java which contains
implementation of the method for the demand estimation developed in the Chapter 5.
Probability of ties inside any subset containing 1,2,3,4 and 5 retailers was considered, other
possible ties were neglected due to the computational complexity. The neglected ties have
a low probability.

7.2.2. Method for an experimental evaluation of the strategies’ quality

The developed pricing strategies differ significantly. It is required to obtain a unified method
for evaluation of a strategy’s quality. For this purpose the performance of tested strategies is
measured in head-to-head competitions between retailers who use different strategies. Using
this approach a comparative evaluation of the developed strategies’ quality can be obtained.
However, it is pointless to use any of the complicated strategies if its performance is worse
than a performance of some very simple strategy. As a simple baseline for comparison
of different developed strategies static strategies are chosen, when a retailer always sets a
constant price.

One simple static strategy is to always set the highest price 𝑝highest which can attract
some customers. For cases when a total demand on a product is so high that all retailers
sell all their capacities this static strategy is obviously optimal. Another simple strategy is
to always set a price slightly higher than a minimal one and try to attract switchers, price
𝑝zero profit + 1 was used to model this type of a static strategy in numerical experiments.
In the simulation natural-valued prices are assumed. Thus, 𝑝zero profit + 1 is the lowest
positive-profit price.

Let every head-to-head competition be called a match. The performance of every strategy
against other strategies should be evaluated in matches under different conditions which
can occur in real world. Parameters of numerical experiments which would capture different
real-world situations are discussed in the next section.
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7.2.3. Parameters of numerical experiments

Parameters of different possible numerical experiments have to be discussed. The set of all
parameters should capture all possible real-world situations.

When two retailers compete with each other, several cases are possible. A retailer and
his adversary might be in the same position, the retailer might be in a better position or in
a worse position. For instance, if one retailer has more loyal customers than another, then
the first retailer can easier gain a higher profit [5, 3] and, therefore, is in a better position
no matter what strategy he uses.

To uniformly evaluate performance of a strategy, all possible cases have to be tested in
numerical experiments. Considering a retailer’s popularity next three possibilities have to
be tested: a) a tested retailer is more popular than each adversary,

b) a tested retailer is less popular than each adversary,
c) they both have the same popularity. By a tested retailer a retailer who adopts a tested

strategy is meant. By the retailer’s adversaries all possible adversaries are meant.
A number of addressable switching customers is usually considerably greater than a

number of loyal customers [5]. In numerical experiments the number of switchers would be
assumed to be ten times larger than a number of customers loyal to a more popular retailer.
A number of switching customers was equal to 𝜓 = 50 in all simulations.

In numerical experiments with different popularities of retailers a number of customers
loyal to a more popular retailer was 𝜒popular = 5, a number of loyal customers of a less
popular retailer was 𝜒notpopular = 1.

In numerical experiments with the same popularity of both retailers a number of cus-
tomers loyal to a retailer was 𝜒1 = 𝜒2 = 5.

In accordance with the discussion in Section 5.3, numbers of loyals and switchers were
viewed as general characteristics of the structure of arrived customers.

In real-world situations retailers differ in sizes of their capacities and lengths of sales
horizons. It is important to estimate performance of every strategy in a case when a
retailer has a given number of product pieces to sell during a particular sales horizon.
Moreover, for a given pair of the retailer’s capacity and sales horizon an adversary might
have different combinations of his capacity size and sales horizon duration. However, the
situation when an adversary would like to sell 𝑘 pieces during future 𝑛 periods exerts very
similar constraints on the adversary as when he would like to sell 2𝑘 pieces during 2𝑛
periods. Thus, to model different situations when different retailers have different time and
capacity constraints in numerical experiments of head-to-head competitions it would be
assumed that both retailers have the same sales horizons and differ only in capacities.

Next situations were considered:
a) a tested retailer has a higher capacity than his adversary;
b) the retailer has a lower capacity compared to the adversary’s capacity;
c) both retailers have the same capacity.
It is impossible to know for sure if a greater capacity is an advantage. It might be.

However, if a retailer has too large capacity and a total demand for a product is very low,
i.e. almost no customer arrives to a shopbot page, then the retailer has to pay considerable
costs for holding his capacity and a retailer with a smaller capacity might be in a better
position.

To make a conclusion, not only different capacities but also different cases of the total
demand compared to the capacity levels have to be considered. For the case of different
capacities there are several possible levels of the demand in relation to retailers’ capacities.
In the first case the demand is so low that even a retailer with a smaller capacity has at
the beginning of sales horizon more product pieces than a total demand. Let this case of
demand be called a low demand. Note, a total number of customers expected during a sales
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horizon is meant by the total demand. Also it is possible that the total demand enables a
smaller retailer to sell all his capacity if he is the only seller. However, at the same time
at the start of competition a larger retailer might have more product pieces than a total
demand. This case would be called an average demand. If the total demand enables the
largest retailer to sell all his capacity but is lower than a total capacity of both retailers,
then the demand would be called a high demand. And it the total demand is such that
both retailers can sell their capacities, then it would be called a super high demand.

To conclude, a structure of numerical experiments required for a rigorous evaluation of
a strategy’s performance was proposed.

7.3. Unified indices of performance and values of simulations’
parameters

It is required to uniformly characterise performance of different strategies. For this purpose
a unified index of performance should be used. The greater profit the strategy gains, the
more efficient the strategy is.

Relative levels of retailers’ popularity, relative capacity levels and demand level specify
one particular contest situation for a tested strategy. Every tested strategy was put in
different contest situations. For instance, one such contest situation can arise when the
tested retailer is more popular than his adversary, and at the same time he has the same
capacity as the adversary, and the demand is high. As an adversary’s strategy, all strategies
were taken one by one. Each match against each adversary under defined conditions was
simulated 20 times. Average profit of the tested retailer against a given adversary was
computed. After it a sum of average profits against all possible adversaries was computed.
Note that a standard deviation of the total sum was obtained as a square root of a sum
of variances of profits obtained in competitions against different adversaries. A variance
of sum is equal to a sum of variances because each competition was independent on other
competitions. Tables with profits of different strategies against all possible adversaries
in each contest situation can be found on the attached CD in the folder experiments.
For instance result profits for the mentioned contest situation can be found in the folder
experiments/more popular than an adversary/the same capacity as an adversary/demand
is high. Tested retailer is a row retailer in the contest tables on the attached CD. For
the sake of the tables’ compactness different designed strategies are labelled with numbers
and abbreviations, see Table 7.3. In the Table 7.3 it shown what features of real-world
competition every strategy considers.

The overall performance of the strategy should characterize how efficient the strategy
is in general. A unified index characterising the overall strategy’s performance should
be designed. Some strategies might be more successful in particular contest situations,
another might perform better in another situations. However, for the case when a retailer
knows nothing about a real-world situation he would like to choose a strategy which is
efficient in general, for different real-world situations. Thus, the unified index is intended
to be a general parameter of the strategy’s performance. Successes in different possible
contest situations should have the same weight in the result index. In order to ensure this,
maximal expected profits of the tested retailer have to be set equal in different competitions.
Maximal expected profit is defined as a product of a maximal price and a maximal expected
number of sold pieces of a product during the sales horizon. Maximal price is the same
in all simulated competitions. Maximal expected number of sold pieces of a product is
soldmax = min{𝑐, 𝐸{𝐷}}, where 𝑐 is a retailer’s capacity and 𝐸{𝐷} is an expected number
of arrivals of customers during the sales horizon. Parameters of different contest situations
must be chosen in such a way that soldmax is constant. Arrivals of customers are described
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1/StH StaticRetailer.java(𝑝highest)
2/StL StaticRetailer.java(𝑝zero profit)
3/Bert BertrandRetailer.java 3

4/Koc KocasRetailer.java 3

5/MT MartinezTalluriRetailer.java 3 3 3

6/Fic Fictitious.java 3 3

7/Opt FictitiousOptimalController.java 3 3 3 3 3

8/Dyn FictitiousDynamicProgramming.java 3 3 3 3 3

Tab. 7.3.1. Numbering of strategies in tables of results of numerical experiments

with the Bernoulli stochastic process with parameters 𝑛 and 𝜉, where 𝑛 is a maximal
number of customers during a period of the competition. The length of a sales horizon
was set to be equal to 30. Hence, a total expected demand is given as 𝐸{𝐷} = 30 · 𝑛 · 𝜉.
Capacities and the demand parameters for simulation of different contest situations were
chosen in such a way that soldmax is constant, see Table 7.3 for details on parameters of
different situations. In the Table 7.3 𝑐tested and 𝑐ad stand for capacities of a tested retailer
and his adversary. Note that demand level is determined in relation to capacity levels of
both retailers. In simulations a capacity 𝑐larger of a larger retailer was always taken to be
two times larger than a capacity 𝑐smaller of the smaller retailer. The case of a low demand
was always modelled as 𝐸{𝐷} = 0.5𝑐smaller. The case of average demand was given with
𝐸{𝐷} = 𝑐smaller +0.5(𝑐larger −𝑐smaller). The case of average demand should not be modelled
if both retailers have the same capacity, as in this case total demand enables every retailer
to sell his capacity and, hence, the situation is the same as the one described as a high
demand. The case of high demand is modelled with 𝐸{𝐷} = 𝑐larger + 0.5𝑐smaller. And the
case of super high demand is modelled as 𝐸{𝐷} = 1.5(𝑐larger + 𝑐smaller).

𝑐tested < 𝑐ad 𝑐tested = 𝑐ad 𝑐tested > 𝑐ad
low

demand
𝑐tested = 60, 𝑐ad =
120, 𝑛 = 2, 𝑝 = 0.5

𝑐tested = 60, 𝑐ad =
60, 𝑛 = 2, 𝑝 = 0.5

𝑐tested = 120, 𝑐ad =
60, 𝑛 = 2, 𝑝 = 0.5

average
demand

𝑐tested = 30, 𝑐ad =
120, 𝑛 = 3, 𝑝 = 0.5

not modelled 𝑐tested = 40, 𝑐ad =
20, 𝑛 = 2, 𝑝 = 0.5

high
demand

𝑐tested = 30, 𝑐ad =
60, 𝑛 = 3, 𝑝 = 5/6

𝑐tested = 30, 𝑐ad =
30, 𝑛 = 3, 𝑝 = 0.5

𝑐tested = 30, 𝑐ad =
15, 𝑛 = 2, 𝑝 = 0.625

super high
demand

𝑐tested = 30, 𝑐ad =
60, 𝑛 = 5, 𝑝 = 0.9

𝑐tested = 30, 𝑐ad =
30, 𝑛 = 4, 𝑝 = 0.75

𝑐tested = 30, 𝑐ad =
15, 𝑛 = 3, 𝑝 = 0.75

Tab. 7.3.2. Parameters of numerical experiments for different possible cases of capacities and
demand

The last remark is about a set of allowed prices. In experiments a product cost was
assumed to be equal to 10, cst = 𝑝zero profit = 10. The highest possible price was 𝑝highest =
100. A holding cost per piece of product was considered to be h.
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7.4. Result indices of performance
Every single match between retailers is documented, see the attached CD. Comparative
tables of results for every contest situation are given. Graphs of mean retailers profits,
prices and inventory levels are provided. See Appendix D for detailed description of the
CD’s contents. The most important is to analyse a general performance of each strategy.

Note that the nature of price competition might evolve in time. For that reason total set of
all possible contest situations was simulated for two different durations of the competition.
First, the short-term competition was considered. Its duration was a single sales horizon.

Total results of the whole large amount of contest situations are summarized in the Table
7.4.1.

1/StH 2/StL 3/Bert 4/Koc 5/MT 6/Fic 7/Opt 8/Dyn sum rank
1 639 ± 15 400 ± 13 404 ± 11 399 ± 12 526 ± 13 396 ± 11 634 ± 15 403 ± 12 3801 ± 36 4
2 −9 ± 0 −15 ± 0 −19 ± 0 −10 ± 0 −13 ± 0 −19 ± 0 −10 ± 0 −9 ± 0 −104 ± 1 8
3 829 ± 13 −16 ± 2 495 ± 16 39 ± 5 581 ± 12 492 ± 16 827 ± 13 596 ± 12 3843 ± 34 3
4 139 ± 7 55 ± 5 65 ± 4 64 ± 5 101 ± 6 60 ± 6 128 ± 6 95 ± 7 707 ± 17 7
5 527 ± 10 322 ± 10 355 ± 11 327 ± 11 446 ± 10 364 ± 12 526 ± 9 380 ± 13 3248 ± 31 6
6 828 ± 12 −16 ± 2 548 ± 12 60 ± 14 592 ± 10 545 ± 12 831 ± 12 607 ± 11 3993 ± 32 2
7 637 ± 15 390 ± 12 401 ± 12 330 ± 11 523 ± 14 403 ± 11 631 ± 15 409 ± 12 3723 ± 36 5
8 840 ± 12 397 ± 12 538 ± 11 280 ± 16 592 ± 13 543 ± 12 836 ± 11 580 ± 11 4607 ± 35 1

Tab. 7.4.1. Total profits of a row retailer in all possible experiments. All values are divided by 100
for the sake of compactness.

It can be seen that the strategy Dyn, based on dynamic programming, appears to be the
most efficient in short-term competition.

Therefore, consideration of key features of the competition can be helpful for maximising
a total profit. However, it is obvious from the Table 7.4.1 that observation of adversaries’
prices is the most important component of a short-term success. The strategy Opt, based on
optimal control, considers key features of the competition as successful Dyn does. However,
inaccuracy of approximation of the observations with a linear function results in the fifth
position for the strategy Opt. At the same time a simpler strategy Fic is on the second
position. The strategy Fic considers only observations of previous prices and possible loyalty
of customers. The observations are analysed according to the technique developed in Section
5.1. It is worth noting that the top-ranked strategy Dyn is a direct extension of the second-
ranked Opt. The performance increased approximately by 15% due to consideration of the
capacity constraints, the temporal structure of the competition and the holding costs. The
strategy Bert based purely on observations of prices is on the third position. However, its
performance was not considerably better than the performance of the static strategy StH
who sets the highest reasonable price. This static strategy is optimal in cases when demand
is so high that both retailers will definitely sell all their capacities. Also the considered static
strategy maximises the profit obtained from selling to loyal customers.

The strategy MT is placed on the sixth position. It does not consider observations of
prices but rather observations of the capacity. It can be seen that pricing based on retailers
capacities and total demand does not lead to maximal profits, but it provides approximately
stable profits no matter what a competitor does.

The same holds for pricing strategies Opt and Dyn. It should be underlined that none of
strategies at positions 2-5 dominates all others considerably. The second-ranked strategy
Fic gained a profit greater than a profit of the fifth Opt only by 7.2%. At the same time the
strategy Fic might end up with even negative profits when a competitor acts in accordance
with the strategy StL. Thus, the performance of the strategy StL strongly depends on a
type of a competitor.

47



7. Evaluation of the quality of pricing strategies

The strategy StL might be very inefficient due to considered holding cost. Neither the
mixing strategy Koc is efficient. It does not use any observations. However, the strategy
Koc cut down prices of the strategies Bert and Fic. Note, that if the competition goes
on for a longer time, then the strategy Fic can better estimate mixed-strategy of Koc and
starts to response better. It can be seen from Table 7.4.2.

1/StH 2/StL 3/Bert 4/Koc 5/MT 6/Fic 7/Opt 8/Dyn sum rank
1 2607 ± 28 1641 ± 24 1647 ± 23 1646 ± 23 2156 ± 27 1636 ± 23 2616 ± 28 1669 ± 24 15619 ± 71 2
2 4 ± 1 −15 ± 1 −36 ± 1 3 ± 1 −12 ± 0 −36 ± 1 4 ± 1 4 ± 1 −84 ± 1 8
3 3310 ± 25 −42 ± 2 339 ± 36 190 ± 9 2308 ± 22 1530 ± 20 3317 ± 25 2052 ± 20 13003 ± 63 6
4 594 ± 14 253 ± 11 297 ± 10 295 ± 9 446 ± 12 261 ± 12 557 ± 13 394 ± 17 3096 ± 35 7
5 2160 ± 18 1340 ± 20 1463 ± 22 1347 ± 21 1840 ± 21 1455 ± 23 2153 ± 19 1490 ± 21 13247 ± 59 5
6 3391 ± 22 404 ± 30 1339 ± 17 483 ± 56 2361 ± 20 1606 ± 18 3397 ± 25 2023 ± 19 15005 ± 81 4
7 2611 ± 26 1616 ± 25 1646 ± 24 1441 ± 24 2146 ± 27 1647 ± 22 2625 ± 29 1662 ± 23 15394 ± 71 3
8 3414 ± 27 1640 ± 24 1662 ± 19 1220 ± 35 2430 ± 21 1775 ± 19 3401 ± 24 2114 ± 20 17655 ± 69 1

Tab. 7.4.2. Total profits of a row retailer in all possible experiments. All values are divided by 100
for the sake of compactness.

Table 7.4.2 presents results of the simulation with the length of four sales horizons.
Strategy Dyn again outperforms all other strategies. It is obvious that the strategy Bert

is not as efficient for long-term competition as it was for a case of short competition. It
can be seen that competition between two Bert retailers leads to negative-profits, which are
possible due to non-zero holding cost. At the same time the strategy Fic performs better
against Koc or against itself as the time goes on.

In general, to be successful in long-term competition a retailer has to take loyal customers
into consideration and try to earn as much as possible when demand is high. Results of the
strategy StH suggest it. StH can be viewed as a good option in general, and it is especially
efficient when demand is high or the retailer has a lot of loyal customers. The top-performed
strategy Dyn also tries to maximise its profit from loyal customers when demand is high.
The only unpleasant adversary for Dyn is Koc, which uses mixed strategies. Koc sometimes
sets reasonably high prices. As a consequence, there are jumps in standard deviations of
prices Koc set, see Fig. 7.4.1. And if Koc sets a high price, then Dyn tries to set a price
slightly lower than the maximal one, see Fig. 7.4.1. As a result, if a Dyn’s loyal customer
arrives, then he buys at a lower price, then the maximal one. And Dyn does not maximise
his profit from selling to loyal customers.
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Fig. 7.4.1. Trajectories of prices for the case when Dyn is more popular and demand is high and
his adversary is Koc.

Note that in a long term a strategy based on continuous optimal, Opt, is also efficient.
Interestingly, due to its imprecise estimation of the demand function, mixed-strategy of
Koc does not confuse Opt as much as Dyn.
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8. Conclusions

In this thesis price competition among retailers at shopbots was investigated. The aim of
the work was to understand the nature of the price competition, capture the most important
aspects of it and design pricing strategies using methods of game theory and optimal control.

First, available empirical work on price competition at shopbots was surveyed. Based on
it the most important features of the problem were underlined and included into a general
model of the competition. The model captures key aspects of retailers’ and customers’
behaviour.

Next, existing related models of price competition were studied. Different models neglect
different real-world aspects of the problem. Based on the models several pricing strate-
gies were obtained. One strategy considers only observation of previous prices. Another
strategy considers only possible loyalty of customers. The most complex strategy takes the
capacity constraints and the temporal structure into consideration. The strategy requires
observations of competitors’ inventory levels.

The simple model considering possible loyalty of customers was extended and the tem-
poral structure was included into the model. A technique for learning from observations
of competitors’ prices was developed for the extended model. Based on the technique and
using a game theoretic learning rule further strategy was obtained. The strategy, therefore,
takes into account previous observations and loyalty of some customers. Fictitious play was
used as the learning rule.

Price competition was formulated as an optimal control problem in order to combine the
estimations of adversaries’ behaviour with consideration of a retailer’s capacity and time.
Using the developed learning technique and optimal control two further strategies were
designed. One strategy was obtained based on variational approach to continuous optimal
control. It was shown that the solution in this case can be obtained analytically. It is a
strong point of the method. On the other hand, the continuous model does not capture the
observed information precisely.

As an alternative, dynamic programming approach to optimal control was used. The
strategy developed using dynamic programming considers the same real-world features of
the competition and deals with previous observations directly. On the other hand, the
implementation of the strategy has higher numerical complexity. However, a heuristic
modification can be suggested in order to reduce numerical complexity.

An advantage of both strategies is that observation of adversaries’ inventory levels is
not required in contrast with the strategy from the related model. On the other hand,
strategies are based on an assumption that competitors’ pricing strategies can be modelled
with probabilistic pricing [5, 6].

Performance of different strategies was evaluated numerically. For the purpose of the
evaluation a computational simulation of the price competition was implemented. The
simulation captures the structure of the competition from the developed general model and
can be used to test various pricing strategies.

A set of numerical experiments for comparative evaluation of different strategies was
proposed. The experiments enable determination of the most efficient strategy compared
to all others in general case when nothing is known about demand and a competitor. Static
strategies were included into a set of evaluated strategies as a baseline for comparison.

In numerical experiments it was found out that pricing strategies using observations
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8. Conclusions

of previous prices might be efficient only in short-term competition. However, even in
short-term competition the strategy based on fictitious play in combination with dynamic
programming outperforms all other strategies. When a competition goes on for a longer
time, then in order to maximize profits, it is important to consider possible loyalty of
customers, an inventory level, sales horizon and a total expected demand during sales
horizon. In long-term competition the dynamic programming approach again provides in
general the best results. A simple static strategy of setting the highest reasonable price
performs well too. In a general case performance of the strategy based on fictitious play in
combination with optimal control is roughly the same as performance of the static strategy.

There are several possible future research directions. Allowing retailers to choose their
capacities a new type of competition can be obtained where retailers compete both on
capacities and prices [43]. Another important extension of the considered problem might
be a simultaneous competition on several products. It is possible that a customer attracted
to a retailer’s web page by the cheapest offer of one product would also buy additional
products from the retailer [3]. It might be also important to examine when it is profitable
for a retailer to invest in customers’ loyalty.

It might be interesting to examine aspects of practical application of the most promising
strategy based on dynamic programming. The strategy does not require any additional
observations about competitors except their prices. However, it might be necessary to
improve the model of demand and investigate in detail methods of demand estimation.

New numerical experiments for evaluation of strategies might be designed as well. The
proposed method of evaluation is based on head-to-head competitions. It evaluates ev-
ery strategy in a unified way, as all possible situations in relation to another strategy and
demand are considered. However, it is computationally difficult to address all arising situ-
ations if all possible subsets of tested strategies are taken into consideration. Approaches
to unified evaluation of multiple-player competition are to be designed.
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Appendix A.

Game-theoretic definitions

A.1. Normal-form game
Definition A.1.1. "The simplest game definition, known as a normal form, contains a
tuple (N, A, u), where:

∙ N is a finite set of 𝑛 players who are taking the action.1
∙ 𝐴 = 𝐴1 ×𝐴2 × ...×𝐴𝑛 and 𝐴𝑖 is a set of actions available to the 𝑖𝑡ℎ player.2
∙ 𝑢 = (𝑢1, 𝑢2, ..., 𝑢𝑛) and 𝑢𝑖 : A ↦→ R is a utility function of the 𝑖𝑡ℎ player. The utility

function of a player maps every vector of actions 𝑎 ∈ 𝐴 to a real-valued number. This
number characterises a degree of the player’s happiness about the outcome of the vector of
actions 𝑎, which is also called an action profile. The greater the 𝑢𝑖(𝑎) is, the more satisfied
the 𝑖𝑡ℎ player is about the outcome of the action profile 𝑎3 ([27], p. 118)."

A normal-form game is very often seen as the most fundamental one. For some problems
other game formulations might be more appropriate. Nevertheless, in game-theoretic works
many other game formulations are very often represented using an "induced normal form"
as well [27]. Normal-form game is also called a single-stage game to underline the fact, that
the game has no temporal structure.

A.2. Extensive-form game with perfect information
In some cases it might be desirable to represent a temporal structure of the game. In this
case a so-called extensive-form game formulation might be used. The extensive-form game
explicitly deals with time. Very often an explicit temporal structure of the game is desired
to model a game where players perform their actions one by one. In some cases, though,
an extensive-form game where players act simultaneously might be useful as well. And a
game is called a game with perfect information if every player knows all actions chosen by
all other players previously when choosing his next action. Such an extensive-form game
with perfect information is also called a multiple-stage game with observed actions [44].
All players act simultaneously at every stage of the game and know actions of other players
during all previous stages. We will give here a formal definition of an extensive-form game
with simultaneous actions, as some of the models of competition similar to the one at
shopbots deal with this type of extensive-games.

Definition A.2.1. "A finite extensive-form game is a tuple 𝐺 = (𝑁,𝐴,𝐻,𝑍, 𝜒, 𝛿, 𝑢), where:
∙ 𝑁 is a set of 𝑛 players;

1Analysing strategic interactions among retailers at shopbots, it is obvious that a finite set of players is a
set of retailers at some shopbot.

2See 2.2.2.
3Let us note, that in the case of a competition among retailers at shopbots the greater the retailer’s profit

is, the happier the retailer is. Therefore, the retailer’s utility function would be an amount of money the
retailer earns in the defined game.
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∙ 𝐴 is a single set of actions;
∙ 𝐻 is a set of non-terminal choice nodes;
∙ 𝑍 is a set of terminal nodes, disjoint from 𝐻;
∙ 𝜒 = (𝜒1, ..., 𝜒𝑛), where 𝜒𝑖 : 𝐻 ↦→ 2𝐴 is the action function of the 𝑖𝑡ℎ player, which

assigns to each choice node a set of possible actions for the player;
∙ 𝛿 : 𝐻 ×𝐴 ↦→ 𝐻 ∪𝑍 is the successor function, which maps a choice node and an action

to a new choice node or terminal node such that for all ℎ1, ℎ2 ∈ 𝐻 and 𝑎1, 𝑎2 ∈ 𝐴, if
𝛿(ℎ1, 𝑎1) = 𝛿(ℎ2, 𝑎2) then ℎ1 = ℎ2 and 𝑎1 = 𝑎2;

∙ 𝑢 = (𝑢1, ..., 𝑢𝑛), where 𝑢𝑖 : 𝑍 ↦→ R is a real-valued utility function of the 𝑖𝑡ℎ player on
the terminal nodes 𝑍."

The definition was taken from ([27], p. 118) and has been slightly modified.
Note that from a graph theory point of view an extensive-form game is represented with

a tree.

A.3. Players’ strategies
Analysing the game among retailers at a shopbot, as a result we would like to understand
actions the retailers would have the incentive to choose.

In game theory a set of all available player’s choices is called a set of his strategies.
One type of strategies is a pure strategy [27]. For a normal-form game it means that a
player chooses one action and plays it. A selection of an action for every player is called a
pure-strategy profile. A pure strategy for extensive-form game is a complete description of
actions taken at every choice node of the game. Let us use the definition of pure strategies
for an extensive-form game from ([27], p. 119):

Definition A.3.1. "Let 𝐺 = (𝑁,𝐴,𝐻,𝑍, 𝜒, 𝛿, 𝑢) be an extensive-form game. Then the pure
strategies of the 𝑖𝑡ℎ player consist of the Cartesian product

∏︀
ℎ∈𝐻 𝜒𝑖(ℎ)."

We have already discussed pure strategies. Another type of strategies is a mixed strategy.
Let us use the definition of mixed strategies for a normal-form game from ([27], p. 59):

Definition A.3.2. "Let (𝑁,𝐴, 𝑢) be a normal-form game, and for any set 𝑋 let
∏︀

(𝑋) be
the set of all probability distributions over 𝑋. Then the set of mixed strategies for the 𝑖𝑡ℎ
player is 𝑆𝑖 =

∏︀
(𝐴𝑖). The set of mixed-strategy profiles is simply the Cartesian product of

the individual mixed-strategy sets, 𝑆1 × ...× 𝑆𝑛."

Note that a pure strategy of normal-form game might be viewed as a special case of
mixed strategies, where only one action has a probability 1, and other actions have a zero
probability.

A.4. Equilibrium
If we know strategies of all retailers except the 𝑖𝑡ℎ retailer and assuming that the retailers
are rational it is possible to predict a strategy of the 𝑖𝑡ℎ retailer. The 𝑖𝑡ℎ retailer would
choose such a strategy which maximizes his own utility. Such a maximizing strategy as
a response to a given set of other retailers’ strategies is called a best response of the 𝑖𝑡ℎ
player [27]. One of the most powerful and stable solution concepts in game theory is a Nash
equilibrium which can be defined using the best response definition. Let us use definitions
from ([27], p. 62):
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A.4. Equilibrium

Definition A.4.1. "Let 𝑆𝑖 be a set of possible strategies for the 𝑖𝑡ℎ player.
Let 𝑠−𝑖 = (𝑠1, ..., 𝑠𝑖−1, 𝑠𝑖+1, ..., 𝑠𝑛) be a strategy profile without a strategy of the 𝑖𝑡ℎ player.

The 𝑖𝑡ℎ player best response to the 𝑠−𝑖 is a strategy 𝑠*
𝑖 ∈ 𝑆𝑖 such that 𝑢𝑖(𝑠*

𝑖 , 𝑠−𝑖) ≥ 𝑢𝑖(𝑠𝑖, 𝑠−𝑖)
for all strategies 𝑠𝑖 ∈ 𝑆𝑖."

Definition A.4.2. "A strategy profile 𝑠 = (𝑠1, ..., 𝑠𝑛) is a Nash equilibrium if, for all agents
𝑖, 𝑠𝑖 is a best response to 𝑠−𝑖."

Definitions of the best response and Nash equilibria are the same in case of extensive-
form games as they are in case of normal-form games. However, there is a stronger notion
of equilibrium for extensive-form games which is called a subgame-perfect equilibrium [27].
We will give here definitions taken from ([27], pp. 122-123).

Definition A.4.3. "Given an extensive-form game 𝐺, the subgame of 𝐺 rooted at node ℎ
is the restriction of 𝐺 to the descendants of ℎ. The set of subgames of 𝐺 consists of all of
subgames of 𝐺 rooted at some node in 𝐺."

Definition A.4.4. "The subgame-perfect equilibrium of an extensive-form game 𝐺 are all
strategy profiles 𝑠 such that for any subgame 𝐺′ of 𝐺, the restriction of 𝑠 to 𝐺′ is a Nash
equilibrium of 𝐺′."
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Appendix B.

Numerical complexity of simulations using
state representation suggested in Subsection
6.3

In this Appendix the time complexity and the memory complexity of numerical simulations
using state representation suggested in Subsection 6.3 are examined. First, number of
different states generated is addressed. It provides an insight into the memory complexity
of the simulation. Then the time complexity is mentioned.

In this Appendix the same notation is used as in Section 5.2. The obtained demand func-
tion is not expressed analytically. It is given by the demand vector D = (𝐷1, 𝐷2, ..., 𝐷k),
where k is a number of allowed prices our retailer can set and 𝐷𝑖 is an expected value of
a number of customers who would buy a product piece from our retailer if he sets a price 𝑢𝑖.

B.1. Number of states generated during the simulation

Before starting the first period of the competition there is just one state given by a value
of an initial inventory level. There is a finite number k of allowed prices which can be
applied in every state. In some cases values 𝐷𝑖 and 𝐷𝑗 for different allowed prices 𝑢𝑖 and
𝑢𝑗 might be the same, for instance, it is the case if each adversarial retailer sets prices 𝑢𝑖
and 𝑢𝑗 with the same probability. The worst case will be assumed, when all possible values
of demand 𝐷𝑖 are different. Thus, after the first period of the competition there are k new
possible states. Note that a constraint on the state variable values is not considered for
now. Alternatively, it is assumed that 𝐷min = min{𝐷𝑖, 𝑖 ∈ N ∧ 𝑖 ≤ k}, and that even for
the last period of the competition with an ordinal number last : 𝐷min · last ≤ 𝑥initial.
This assumption provides estimation of the memory complexity in the case of a large initial
inventory level and short sales horizon.

During the first period of the competition k new states were generated. In every new
state again k allowed prices can be applied. After it values of the state variable in some
new states would merge. For instance, if a price 𝑢𝑤 is applied in the first period of the
competition and a price 𝑢𝑞 is set in the second period, then at the beginning of the third
period of the competition the value of the state variable will the same as if a price 𝑢𝑞
had been applied in the first period of the competition and a price 𝑢𝑤 had been applied
in the second one. In fact, a number of states generated during the second competition
period and described with different values of the state variable is equal to a number of all
possible 2-combinations with repetitions from a set of allowed prices. Thus, a total number
of possible states after first 𝑁 competition periods is

𝑁∑︁
𝑖=0

(︃
k + 𝑖− 1

𝑖

)︃
. (B.1.1)
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B.1. Number of states generated during the simulation

Using Eq. (B.1.1), it is possible to estimate a number of generated states for some
particular problem. It is assumed that for some product all allowed prices are natural
numbers from an interval [100, 200] and that some retailer has a sales horizon ten periods
long. The case when 𝐷min · 10 ≤ 𝑥initial is considered first, where 𝐷min = min{𝐷𝑖, 𝑖 ∈
N ∧ 𝑖 ≤ k}. A number of different possible values of the state variable during the last
competition period is (︃

101 + 10 − 1
10

)︃
≈ 4.7 · 1013.

A total number of different state variable values is
60∑︁
𝑖=0

(︃
101 + 𝑖− 1

𝑖

)︃
≈ 5.1 · 1013.

Numbers of new states generated during each period are depicted in Fig. B.1.1.
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Fig. B.1.1. The numbers of new states generated during different periods of the competition

It can be seen that the growth in Fig. B.1.1 is approximately exponential. Therefore, if
the initial inventory level is large and sales horizon is short, then the memory complexity
of the simulation is exponential. The time complexity will be even higher, as in every
generated state all allowed prices would be applied in order to generate states for the next
period.

Note that a number of states generated in the simulation was examined, not a set of
possible values of the state variable. This set might be smaller than a total number of
all states generated in the numerical simulation. It might be possible to express a natural
multiple of some allowed demand value 𝑠 · 𝐷𝑖, 𝑠 ∈ N, 𝑠 ≤ maximum number of periods,
as a non-trivial linear combination of the rest demand values with integer non-negative
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Subsection 6.3

coefficients, every coefficient should be not greater than maximum number of periods. In
fact, if we consider any pair of two different non-zero demand values 𝐷𝑖, 𝐷𝑗 , 𝑖, 𝑗 ∈ N∧ 𝑖 ≤
k∧𝑗 ≤ k it is always possible to express one particular natural multiple of 𝐷𝑖 as a particular
natural multiple 𝐷𝑗 , i.e. ∀𝑖, 𝑗 ∈ N∧𝑖 ≤ k∧𝑗 ≤ k ∃c,d ∈ N∧c ̸= d : c·𝐷𝑖 = d·𝐷𝑗 . It is so due
to the fact that different allowed values 𝐷𝑖 are in general rational numbers, this fact follows
from equations (5.2.1) and (5.1.1). Different non-zero demand values 𝐷𝑖, 𝐷𝑗 . 𝐷𝑖, 𝐷𝑗 are
rational numbers. Thus, 𝐷𝑖 = b

a ∧𝐷𝑗 = p
q , where b, a, p, q ∈ N because all estimated demand

values are non-negative and 𝐷𝑖, 𝐷𝑗 are assumed to be non-zero. Therefore, c ·𝐷𝑖 = d ·𝐷𝑗

, where c, d ∈ N ∧ c = a · p ∧ d = q · b. And as 𝐷𝑖 ̸= 𝐷𝑗 , it is obvious that c ̸= d. If both
c and d are less than a total number of competition periods, then two possible values of the
state variable would merge, i.e. 𝑥1 = 𝑥2, where 𝑥1 = 𝑥initial −c ·𝐷𝑖∧𝑥2 = 𝑥initial −d ·𝐷𝑗 .
However, in numerical simulations of the system states described with the same values 𝑥1
and 𝑥2 would not merge as they are considered at different periods of the competition,
i.e. at different time. Note that the worst case was discussed. If an initial inventory level
is small enough, then the number of generated states will decrease. It is so due to the
constraint on a state variable value, the last has to be non-negative. In general, when an
amount of required memory for an exponential algorithm is reduced by 𝑛 times, where 𝑛 is
any natural number, the complexity of the algorithm remains exponential. In our case the
value of a state variable decreases, or remains the same, if new states are generated, and
there is a lower bound for the value the state variable. All possible values of a state variable
will be in the interval [0, 𝑥initial] ⊂ Q. The memory complexity and the time complexity
were experimentally examined for a simple problem.

The initial inventory level 𝑥initial = 2 was considered. Allowed prices were assumed to
be natural numbers from an interval [100, 200]. Sales horizon has duration of 10 periods.

A number of required states was examined numerically using the simulation of the price
competition at shopbot, see Subsection 7.2.1. In the simulation there were 20 adversarial
retailers who acted according to the developed pricing strategy based on a model by Koçaş.
The maximal number of arrived customers during one period of the competition was equal
to 10 in the simulation. The probability of an arrival of one customer was equal to 0.5.
The main parameter of each retailer by Koçaş is number of his loyal customer. Parameters
for different retailers were generated at random in the range between 1 and 5. The size of
the switching customer segment was assumed to be ten times larger than the size of loyal
segment. Before starting the generation of states, the retailer observed prices for 50 periods
of the competition. Note, that some obtained values 𝐷𝑖 for different prices were the same:
during the simulation no retailer set a price lower than 113, so probabilities of success for
prices lower than 113 were equal 1. Thus it was not the worst case when all possible values
of demand are different.

In the described simulation 736656 states were added into the memory. The time com-
plexity of an algorithm for the first estimation might evaluated by counting a number of
required tests on data (number of testing if conditions) [45]. 74402256 times it was tested
if a generated value was non-negative and at the same time had not been generated before.
On the author’s personal computer the simulation ran approximately half an hour and the
default size of a java heap space was enough. However, if instead of 𝑥initial = 2 the value
𝑥initial = 3 was used, then the default size of a java heap space was not enough and the
simulation ran out of the memory. After increasing the size of a heap space the simulation
ran too long. After 44 hours of running the simulation was stopped. To sum up, it is insur-
mountably difficult to work directly with the state representation suggested in Subsection
6.3.
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Appendix C.

Continuous optimal control: conditions for
optimality of the solution

Let us show necessary conditions for optimality of a solution to an optimal control problem
similar to ours, see the problem formulation (6.3.1). First, a general description of the
problem is stated. The state variable and the control variable are scalars. The system
is time-invariant and change of the state variable does not depend on a current value. A
weighted function in the performance index does not depend on a current state. Also there
is not an equality constraint on a final state. And both initial time and final time are known
and fixed. Let us now give a general formulation of the problem. All derivations in this
appendix are based on a work ([34], chapter 3).

C.1. Optimal control problem
Our system is described with a state equation

𝑥̇(𝑡) = 𝑓(𝑢(𝑡)), (C.1.1)

with a state variable 𝑥(𝑡) ∈ R and a control variable 𝑢(𝑡) ∈ R.
Let the associated performance index be

𝐽 = 𝜑(𝑥(𝑇 )) +
∫︁ 𝑇

𝑡0
𝐿(𝑢(𝑡))𝑑𝑡, (C.1.2)

where [𝑡0, 𝑇 ] is a time interval we examine; 𝐿(𝑢(𝑡), 𝑥(𝑡)) is a weighting function; 𝜑(𝑥(𝑇 )) is
a final weighting function.

We are going to consider an optimal control problem of finding such a control function
𝑢*(𝑡) which would maximise the performance index 𝐽 . 𝑢*(𝑡) is a function which assigns to
every moment 𝑡 ∈ [𝑡0, 𝑇 ] a control variable.

C.2. Derivation of the necessary conditions
Let us present here a brief derivation of necessary conditions for optimality based on the
derivation from ([34], chapter 3). Insignificant distinction between the derivations is given
by differences in problem formulations.

The performance index (C.1.2) has to be maximised. However, at every moment of time
𝑡 ∈ [𝑡0, 𝑇 ] Eq. (C.1.1) must hold. Thus, for every 𝑡 we should adjoin the Eq. (C.1.1) to the
performance index using a Lagrange multiplier. Alternatively, it can be done for the whole
time interval of interest if we define an associated function 𝜆(𝑡) ∈ R. 𝜆(𝑡) is a function of
time and is defined for ∀𝑡 ∈ [𝑡0, 𝑇 ]. 𝜆(𝑡) is called a costate variable, or simply a costate.
Thus, the augmented performance index is

𝐽 ′ = 𝜑(𝑥(𝑇 )) +
∫︁ 𝑇

𝑡0
[𝐿(𝑢(𝑡)) + 𝜆(𝑡)(𝑓(𝑢(𝑡)) − 𝑥̇(𝑡))] 𝑑𝑡. (C.2.1)
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Let us define a Hamiltonian function as

𝐻(𝑢(𝑡)) = 𝐿(𝑢(𝑡)) + 𝜆(𝑡)𝑓(𝑢(𝑡)). (C.2.2)

Now the augmented performance index (C.2.1) can be rewritten as

𝐽 ′ = 𝜑(𝑥(𝑇 )) +
∫︁ 𝑇

𝑡0
[𝐻(𝑢(𝑡)) − 𝜆(𝑡)𝑥̇(𝑡))] 𝑑𝑡. (C.2.3)

To find a maximum of 𝐽 ′, it is necessary to find an expression for an infinitesimal change
in 𝐽 ′ caused by independent infinitesimal changes in all of its arguments. However, state
variable 𝑥(𝑡) is a function of time. As a consequence, 𝑥 and 𝑡 are not independent and 𝐽 ′

depends on both of them.
"Let us define the variation in 𝑥(𝑡), 𝛿𝑥(𝑡), as the infinitesimal change in 𝑥(𝑡) when time

𝑡 is held fixed" ([34], p. 111).
Let us now present here two relations from calculus of variations. The first one is

𝑑𝑥(𝑇 ) = 𝛿𝑥(𝑇 ) + 𝑥̇(𝑇 )𝑑𝑇, (C.2.4)

where 𝑑𝑥(𝑇 ) is an overall infinitesimal change in 𝑥 when time 𝑡 is fixed, 𝑡 = 𝑇 .
Another relation is called Leibniz’s rule for functionals ([34], p. 111): "If x(t) ∈ R𝑛 is a

function of 𝑡 and

𝐽(𝑥) =
∫︁ 𝑇

𝑡0
ℎ(𝑥(𝑡), 𝑡)𝑑𝑡,

where 𝐽(·) and ℎ(·) are both real scalar functionals (i.e., the functions of the function x(t)),
then

𝑑𝐽 = ℎ(𝑥(𝑇 ), 𝑇 )𝑑𝑇 − ℎ(𝑥(𝑡0), 𝑡0)𝑑𝑡0 +
∫︁ 𝑇

𝑡0

[︃(︂
𝜕ℎ(𝑥(𝑡), 𝑡)

𝜕𝑥

)︂T
𝛿𝑥

]︃
𝑑𝑡.” (C.2.5)

Note that in the formula (C.2.5) 𝑥(𝑡) and ℎ(𝑥(𝑡), 𝑡) are slope vectors. Let us now use
Leibniz’s rule (C.2.5) to obtain an infinitesimal change in the augmented performance index
(C.2.3):

𝑑𝐽 ′ = 𝜕𝜑

𝜕𝑥
𝑑𝑥 |𝑇 +𝜕𝜑

𝜕𝑡
𝑑𝑡 |𝑇 + [𝐻 − 𝜆𝑥̇] 𝑑𝑡 |𝑇 − [𝐻 − 𝜆𝑥̇] 𝑑𝑡 |𝑡0 +

+
∫︁ 𝑇

𝑡0

[︂
𝜕𝐻

𝜕𝑥
𝛿𝑥+ 𝜕𝐻

𝜕𝑢
𝛿𝑢− 𝜆 𝛿𝑥̇+

(︂
𝜕𝐻

𝜕𝜆
− 𝑥̇

)︂
𝛿𝜆

]︂
𝑑𝑡.

(C.2.6)

For the sake of readability parameters of all functions are omitted.
Note that using integration by parts a term with 𝛿𝑥̇ can be eliminated:∫︁ 𝑇

𝑡0
[−𝜆 𝛿𝑥̇] 𝑑𝑡 = −𝜆 𝛿𝑥 |𝑇 +𝜆 𝛿𝑥 |𝑡0 +

∫︁ 𝑇

𝑡0

[︁
𝜆̇ 𝛿𝑥

]︁
𝑑𝑡.

Let us substitute this result into (C.2.6). After it let us express 𝛿𝑥(𝑇 ) and 𝛿𝑥(𝑡0) using
the fact 𝛿𝑥(𝑡) = 𝑑𝑥(𝑡) − 𝑥̇(𝑡)𝑑𝑡 obtained from (C.2.4). Note that both 𝑡0 and 𝑇 are fixed
and known. Also 𝑥(𝑡0) is fixed and known. As a consequence, 𝑑𝑡0 = 𝑑𝑇 = 𝑑𝑥(𝑡0) = 0. Let
us take this into consideration. From the expression (C.2.4) we have that 𝑑𝑥(𝑇 ) = 𝛿𝑥(𝑇 )
cannot be set to zero. As a result, for our case we obtain

𝑑𝐽 ′ =
(︂
𝜕𝜑

𝜕𝑥
− 𝜆

)︂
𝑑𝑥 |𝑇 +

∫︁ 𝑇

𝑡0

[︂(︂
𝜕𝐻

𝜕𝑥
+ 𝜆̇

)︂
𝛿𝑥+ 𝜕𝐻

𝜕𝑢
𝛿𝑢+

(︂
𝜕𝐻

𝜕𝜆
− 𝑥̇

)︂
𝛿𝜆

]︂
𝑑𝑡. (C.2.7)
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C.3. Pontryagin’s Maximum Principle

Our performance index 𝐽 reaches its maximal value at the same point where the aug-
mented performance index 𝐽 ′ has a maximum. A maximum has to be a stationary point, it
means that an infinitesimal change 𝑑𝐽 ′ caused by independent infinitesimal changes in all of
its arguments has to be zero. It means that in (C.2.7) coefficients of 𝛿𝑥, 𝛿𝑢, 𝛿𝜆, 𝑑𝑥 |𝑇 have to
be zero. It gives us a set of necessary conditions for a maximum of our performance index.
Let us denote by 𝑢* an optimal control function. Let us sum up necessary conditions for
optimality of a solution to our problem formulation together with the problem formulation
and the definition of Hamiltonian function.

Model of the system:

∀𝑡 ∈ [𝑡0, 𝑇 ] :

𝑥̇(𝑡) = 𝑓(𝑢(𝑡));

𝐽 = 𝜑(𝑥(𝑇 )) +
∫︁ 𝑇

𝑡0
𝐿(𝑢(𝑡))𝑑𝑡;

problem formulation : 𝑢* = arg max𝑢 𝐽 ;

optimal controller Hamiltonian : 𝐻(𝑢(𝑡)) = 𝐿(𝑢(𝑡)) + 𝜆(𝑡)𝑓(𝑢(𝑡)).

Necessary conditions for maximum:

state equation : 𝜕𝐻

𝜕𝜆
− 𝑥̇ = 0;

costate equation : 𝜕𝐻

𝜕𝑥
+ 𝜆̇ = 0;

stationary condition : 𝜕𝐻

𝜕𝑢
= 0.

boundary condition :
(︂
𝜕𝜑

𝜕𝑥
− 𝜆

)︂
|𝑇= 0.

(C.2.8)

C.3. Pontryagin’s Maximum Principle

The stationary condition for optimality from (C.2.8) was obtained under assumption that
a control variable is unconstrained. However, in many practical applications it is not the
case and a control variable can take only admissible values from a limited set ([34], p. 232).
Such a value of a control 𝑢 that 𝜕𝐻

𝜕𝑢 = 0 may not belong to a set of admissible values.
In this case a stationary condition has to be replaced with a more general one, which is
called a Pontryagin’s Maximal Principle: "the Hamiltonian must be maximised over all
admissible controls 𝑢 for optimal values of the state and costate" ([34], p. 232). All the
rest necessary conditions for optimality of the solution hold. The theorem is named after a
mathematician Pontryagin, who has proved it. Note that it might be called a Pontryagin’s
Minimum Principle, depending on a type of an optimal problem. Let us denote by 𝑈 a set
of admissible values of a control variable. 𝑢* stands for an optimal control. Let us denote
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Appendix C. Continuous optimal control: conditions for optimality of the solution

by 𝑥* a corresponding optimal state trajectory and by 𝜆* a corresponding optimal costate
trajectory. Now we can state a Pontryagin’s Maximum Principle for our problem.

Theorem C.3.1 (Pontryagin’s Maximum Principle). Having an optimal control problem
(C.3.1)

Model of the system:
∀𝑡 ∈ [𝑡0, 𝑇 ] :
𝑥̇(𝑡) = 𝑓(𝑢(𝑡));

𝐽 = 𝜑(𝑥(𝑇 )) +
∫︁ 𝑇

𝑡0
𝐿(𝑢(𝑡))𝑑𝑡;

problem formulation : 𝑢* = arg max𝑢 𝐽.

(C.3.1)

and defining a Hamiltonian as 𝐻(𝑢(𝑡), 𝜆(𝑡)) = 𝐿(𝑢(𝑡)) + 𝜆(𝑡)𝑓(𝑢(𝑡)), the necessary condi-
tions for optimality of a control function are:

state equation : 𝜕𝐻

𝜕𝜆
− 𝑥̇ = 0;

costate equation : 𝜕𝐻

𝜕𝑥
+ 𝜆̇ = 0;

boundary condition :
(︂
𝜕𝜑

𝜕𝑥
− 𝜆

)︂
|𝑇= 0.

maximum principle : 𝐻(𝑥*, 𝑢*, 𝜆*) ≥ 𝐻(𝑥*, 𝑢, 𝜆*), ∀𝑢 ∈ 𝑈.

(C.3.2)

C.4. Sufficient conditions for local maximum

We have obtained a set of necessary conditions for optimality. But without sufficient con-
ditions for optimality necessary conditions might be misleading. For instance, consider
Perron’s paradox ([46], p.148): "Let N be the largest positive integer and suppose that N
̸= 1. Then we have 𝑁2 > N , which contradicts the property of N being the largest posi-
tive integer. Therefore, N = 1." Perron’s paradox highlights the danger of working only
with necessary conditions. Note, that 𝑁 = 1 is a necessary condition for optimality of the
solution to a problem of finding the largest positive integer ([46], p.148).

A set of necessary conditions from Appendix C.3 would become a set of sufficient condi-
tions for a maximum, if we ensure that the second variation of the augmented performance
index 𝛿2𝐽 ′ < 0 for all variations 𝛿𝑢 ̸= 0 ([34], p. 189), ([33], p. 182). As in our case the
initial and the final states are fixed, we have

𝛿2𝐽 ′ = 1
2

∫︁ 𝑇

𝑡0
[𝛿𝑥 𝛿𝑢]

⎡⎢⎢⎢⎣
𝜕2𝐻

𝜕2𝑥

𝜕2𝐻

𝜕𝑥𝜕𝑢
𝜕2𝐻

𝜕𝑢𝜕𝑥

𝜕2𝐻

𝜕2𝑢

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣ 𝛿𝑥

𝛿𝑢

⎤⎥⎥⎥⎦ 𝑑𝑡

In our case Hamiltonian does not depend on a current state. As a consequence, 𝜕
2𝐻

𝜕2𝑥
=

𝜕2𝐻

𝜕𝑥𝜕𝑢
= 𝜕2𝐻

𝜕𝑢𝜕𝑥
= 0. As a result,

𝛿2𝐽 ′ = 1
2

∫︁ 𝑇

𝑡0

(︃
𝛿𝑢

𝜕2𝐻

𝜕2𝑢
𝛿𝑢

)︃
𝑑𝑡
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C.4. Sufficient conditions for local maximum

In order for 𝛿2𝐽 ′ to be negative for all 𝛿𝑢 ̸= 0, 𝛿𝑢 𝜕2𝐻
𝜕2𝑢 𝛿𝑢 has to be negative for all 𝛿𝑢 ̸= 0.

In other words, matrix 𝜕2𝐻
𝜕2𝑢 has to be negative definite. Note, that a control variable in our

case is just a scalar. So 𝜕2𝐻
𝜕2𝑢 is a scalar as well. And it has to be negative to ensure that a

solution given by (C.3.2) is an optimal solution to the problem we solve.
To sum up, the sufficient condition for optimality in our case is

𝜕2𝐻

𝜕2𝑢
< 0.
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Appendix D.

The attached CD contents

A computational simulation of price competition at shopbots and implementations of
strategies obtained in the work. For the purpose of easier usage of the simulation, an
archive of a NetBeans project Simulation.zip is provided. Source codes can be found in a
directory src in the archive.

Results of all carried out numerical experiments for evaluation the strategies’ quality.
All results can be found in archives Experiments_length of simulation. All possible settings
of numerical experiments are sorted into an intuitive system of directories. For instance,
all results for a case when a tested retailer was less popular than his adversary, had a
smaller capacity and demand was low can be found in the directory ../less popular than
an adversary/smaller capacity than an adversary/demand is low. There is a pdf file with a
table of results in a directory of the considered case. Also there is a directory graphs in it.
For every retailer there are several graphs. In a directory profits trajectories of the retailers
profits together with adversaries’ profits can be found. The graphs depict an average value
of a retailer’s profit based on repetitions of the same head-to-head competition. Standard
deviations are depicted as well. Graphs of average prices and average inventory levels have
a similar form.

Electronic version of the thesis in PDF.
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