
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

BACHELOR THESIS

Vojtěch Lhotský

Demonstration Tasks for the SyRoTek System

Department of Cybernetics

Thesis supervisor: RNDr. Miroslav Kulich, Ph.D.

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: Vojtěch L h o t s k ý

Studijní program: Kybernetika a robotika (bakalářský)

Obor: Robotika

Název tématu: Demonstrační úlohy pro systém SyRoTek

Pokyny pro vypracování:

SyRoTek je systém pro vzdálenou výuku mobilní robotiky a příbuzných oborů vyvinutý na
Katedře kybernetiky a umístěný v laboratoři E132. Cílem práce je seznámit se s tímto
systémem a implementovat sadu demonstračních úloh, které budou demonstrovat základní
funkcionality systému a které budoucím uživatelům systému zpříjemní první kroky s ním. Při
vypracování postupujte podle následujících kroků:

1. Seznamte se se systémy SyRoTek (http://syrotek.felk.cvut.cz) a ROS (Robot Operating
 system, http://ros.org) a jejich propojením.
2. Naimplementujte vybrané demostrační úlohy (seznam konzultujte s vedoucím práce).
3. Funkčnost úloh demonstrujte nejprve v simulátoru a poté i na reálných robotech systému
 SyRoTek.
4. Z demonstrací natočte video a úlohy důkladně zdokumentujte.

Seznam odborné literatury:

[1] Kulich, M.; Chudoba, J.; Kosnar, K.; Krajnik, T.; Faigl, J.; Preucil, L.: "SyRoTek—Distance
 Teaching of Mobile Robotics," Education, IEEE Transactions on , vol.56, no.1, pp.18,23,
 Feb. 2013.
[2] Siciliano, B.; Khatib, O. (Eds.): Springer Handbook of Robotics. Springer 2008.
 ISBN 978-3-540-23957-4.
[3] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S.
 Thrun: Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT Press,
 Boston, 2005.

Vedoucí bakalářské práce: RNDr. Miroslav Kulich, Ph.D.

Platnost zadání: do konce letního semestru 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 10. 1. 2014

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Vojtěch L h o t s k ý

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Bachelor Project: Demonstration Tasks for the SyRoTek System

Guidelines:

SyRoTek is a system for distant learning of mobile robotics and related areas developed at
Department of Cybernetics and placed at E-132 laboratory. The aim of thesis is to get
acquainted with this system and to implement a set of demonstration tasks that will
demonstrate fundamental functionalities of the systems and that will make the first steps with
the system easier for the future users. Keep the following guidelines:

1. Get acquainted with the SyRoTek system (http://syrotek.felk.cvut.cz) and ROS framework
 (Robot Operating system, http://ros.org) as well as with their interconnection.
2. Implement selected demonstration tasks (consult the list with the supervisor).
3. Demonstrate the functionality of the tasks in the simulator and then also with real robots on
 the SyRoTek system.
4. Record videos of the demonstrations and document the tasks carefully.

Bibliography/Sources:
[1] Kulich, M.; Chudoba, J.; Kosnar, K.; Krajnik, T.; Faigl, J.; Preucil, L.: "SyRoTek—Distance
 Teaching of Mobile Robotics," Education, IEEE Transactions on , vol.56, no.1, pp.18,23,
 Feb. 2013.
[2] Siciliano, B.; Khatib, O. (Eds.): Springer Handbook of Robotics. Springer 2008.
 ISBN 978-3-540-23957-4.
[3] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S.
 Thrun: Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT Press,
 Boston, 2005.

Bachelor Project Supervisor: RNDr. Miroslav Kulich, Ph.D.

Valid until: the end of the summer semester of academic year 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 10, 2014

Prohlášeńı autora práce

Prohlašuji, že jsem p̌redloženou práci vypracoval samostatně a že jsem uvedl veškeré použité
informačńı zdroje v souladu s Metodickým pokynem o dodržováńı etických principů p̌ri p̌ŕıpravě
vysokoškolských závěrečných praćı.

V Praze dne............................. ...

Podpis autora práce

Acknowledgements

I would like to thank my supervisor RNDr. Miroslav Kulich, Ph.D. for his advice and guidance
throughout this project.

Abstrakt

Ćılem této práce je vytvǒrit praktický návod pro uživatele systému SyRoTek.
Tento návod je vytvǒren formou sady demonstračńıch úloh implemento-
vaných v ROSu (Robotický Operačńı Systém). Tato práce obsahuje popis
práce se SyRoTkem, ROSem a všech vytvǒrených demonstračńıch úloh.
Každá úloha byla otestována na skutečném robotu a všechny výsledky jsou
popsány v této práci.

Abstract

The goal of this thesis is to create a practical guide for the users of Sy-
RoTek system. The guide is in the form of a set of demonstration tasks
implemented in the ROS (Robot Operating System). This thesis contains a
tutorial for the work with the SyRoTek, the ROS, and a description of all
created demonstration tasks. Every task was tested on a real robot and all
the results are published in this thesis.

CONTENTS Demonstration Tasks

Contents

1 Introduction 1

2 ROS, SyRoTek and simulator 3

2.1 ROS (Robot Operating System) . 3

2.1.1 Creating packages . 4

2.1.2 Preparing CMakeLists.txt . 4

2.1.3 Building a program . 5

2.1.4 ROS and C++ . 5

2.1.5 Messages and topics . 6

2.2 SyRoTek . 7

2.2.1 Running ROS on SyRoTek . 8

2.2.2 Topics and messages from SyRoTek 8

2.3 Stage simulator . 9

2.3.1 Topics and messages from the simulator 9

2.4 Rviz . 10

3 The demonstration tasks 13

3.1 Braitenberg vehicle . 13

3.1.1 Processing inputs and outputs . 13

3.1.2 Conversion . 14

3.1.3 Experiments . 15

3.2 PID Controller in ROS . 16

3.2.1 Processing inputs and outputs . 16

3.2.2 Angle and distance . 17

3.2.3 Errors . 17

i

CONTENTS Demonstration Tasks

3.2.4 PID (PSD) controller . 17

3.2.5 Experiments . 18

3.3 Dead Reckoning . 19

3.3.1 Following square trajectory . 19

3.3.2 Evaluating results . 20

3.3.3 Experiment . 20

3.4 Wall Following . 21

3.4.1 Processing input and output . 22

3.4.2 PD controller of the direction . 22

3.4.3 P controller of the angle . 23

3.4.4 Linear velocity . 23

3.4.5 Experiments . 24

3.5 Trajectory Following - Pure Pursuit . 24

3.5.1 Positions and vectors . 25

3.5.2 Trajectory . 25

3.5.3 Control target point . 26

3.5.4 Circular trajectory . 27

3.5.5 Experiments . 28

4 Parameter server and launch files 31

4.1 ROS Parameter Server . 31

4.2 Roslaunch . 32

5 Transformations 33

5.1 How transformations work . 33

5.2 Viewing transformations in RVIZ . 35

5.3 Using the SyRoTek transformation tree . 35

5.4 Transformation timing . 36

ii

CONTENTS Demonstration Tasks

6 Exploration with known pose 37

6.1 Following - Follow the Carrot . 38

6.1.1 Processing inputs and outputs . 39

6.1.2 Angular velocity . 39

6.1.3 Simple obstacle avoidance . 40

6.1.4 Experiments . 40

6.2 Mapping . 41

6.2.1 Processing inputs . 41

6.2.2 Occupancy grid . 42

6.2.3 Processing measurement . 43

6.2.4 Preparing output . 44

6.2.5 Experiments . 45

6.3 Planning . 46

6.3.1 Dijkstra’s algorithm theoretically . 47

6.3.2 Processing inputs . 47

6.3.3 Graph . 47

6.3.4 Expanding obstacles . 48

6.3.5 Expanding nodes . 50

6.3.6 The Dijkstra’s algorithm . 50

6.3.7 Cleaning the route . 50

6.3.8 Converting the route to the output 51

6.4 Exploration results . 52

7 Exploration with localization 55

7.1 Navigation Stack . 55

7.2 Gmapping . 56

7.2.1 Using Navigation Stack with Gmapping 57

7.3 Exploration in the SyRoTek . 58

7.4 Experiment and results . 58

8 Conclusion 61

iii

CONTENTS Demonstration Tasks

iv

LIST OF FIGURES Demonstration Tasks

List of Figures

2.1 The SyRoTek arena (view from the camera above) 7

2.2 Stage Simulator . 10

2.3 Rviz empty . 11

3.1 The Braitenberg vehicle . 15

3.2 The PID controller . 18

3.3 The PID controller in SyRoTek . 21

3.4 The wall following . 24

3.5 Target point on the trajectory . 25

3.6 Two intersections . 27

3.7 Circular trajectory . 28

3.8 The pure pursuit . 29

5.1 Transformation graph from the Stage simulator 34

5.2 Transformations in RVIZ . 35

5.3 Transformations in the SyRoTek . 36

6.1 Obstacle avoidance . 40

6.2 Follow the carrot . 41

6.3 Occupancy Grid . 42

6.4 One measure from the laser. 43

6.5 Mapping in the simulator . 45

6.6 Demonstration of Dijkstra’s algorithm on a small graph, showing two relaxation
operations [1] . 46

6.7 Graph representation of an occupancy grid 48

6.8 Expanded obstacles . 49

v

LIST OF FIGURES Demonstration Tasks

6.9 Cleaning the trajectory . 51

6.10 Exploration in simulator . 52

6.11 Exploration in SyRoTek . 53

7.1 Navigation local planner [2] . 56

7.2 Original and new transformation trees . 59

7.3 Exploration with Gmapping and Navigation Stack 59

7.4 The map created by Gmapping with 40 particles and 7 iterations 60

vi

LIST OF TABLES Demonstration Tasks

List of Tables

8.1 CD Content . 65

vii

LIST OF TABLES Demonstration Tasks

viii

CHAPTER 1. INTRODUCTION Demonstration Tasks

Chapter 1

Introduction

SyRoTek is a system for distant learning of mobile robotics and related areas developed
by the Department of Cybernetics and located at E-132 laboratory. The system consists from
an Arena with dimensions of 3.5 × 3.8 m and mobile robots. Each robot has several sensors
(including laser rangefinder, sonar or accelerometer) and can be charged in docking stations
within the Arena. The user can access the SyRoTek via internet and use it for developing and
testing robotic (or multi-robotic) applications. Each robot has a large set of sensors onboard
and there are cameras on top of the arena as well. That allows the user to create a wide variety
of tasks.

The SyRoTek has been used in courses taught at the CTU in Prague (Introduction to Mobile
Robotics and the Practical Robotics) and the University of Buenos Aires. In the time of writing
[3] about ten students already used SyRoTek during their thesis in the areas of multi-robot
exploration, formation control and swarm robotics [3]. For example, the SyRoTek was recently
used to experiment with autonomous snow shoveling of an airport model.

There are manuals explaining the work with the SyRoTek but they are obsolete and not
complete as the system is being continously developed, moreover they do not contain a guide
that would show future users, how to write applications and test them on practical examples.
The aim of this work is to create a set of demonstration tasks in which the basic functions of
the SyRoTek are shown. This thesis can serve as a guide for beginner users and help them with
creating their own robotic applications.

All tasks are implemented in the ROS1 framework. The C++ programming language is used
because it has probably the best support by ROS. The tasks show main functionalities of the
SyRoTek and the ROS as well as their interconnection.

At the beginning of the thesis the basics of working with the ROS (Section 2.1) and the
SyRoTek (Section 2.2), simulating robot’s behaviour in a Stage simulator2 (Section 2.3) and
visualising data in the Rviz3 (Section 2.4) are explained .

1ROS - Robot Operating System, http://wiki.ros.org/
2Stage is 2D multiple - robot simulator, http://playerstage.sourceforge.net/?src=stage
3Rviz is 3D visualization tool for the ROS, http://http://wiki.ros.org/rviz

1/65

http://wiki.ros.org/
http://playerstage.sourceforge.net/?src=stage
http://http://wiki.ros.org/rviz

Demonstration Tasks

This is followed by a description of particular demonstration tasks in the Chapter 3. The
initial tasks are very simple applications. They teach the user the basics of the communication
with the robot. The difficulty of the tasks increases gradually, so that even more experienced
users can find some inspiration for their own applications.

The ROS system has many interesting features for more efficient work. This thesis mentions
parameter server and launch files (Chapter 4). More attention is also devoted to transformations
and problems with their timing (Chapter 5). The transformations and the parameter server are
used in an autonomous exploration. The goal of this task is to create a map of an unknown
environment (using external localization).

Finally 2D navigation stack4 and Gmapping5 packages are used with a part of the original
exploration task to run an autonomous exploration with its own localization. It uses the data
from the laser rangefinder and the odometry measured by the robot itself (Chapter 7).

This paper contains only shortened explanation of demonstration tasks. Complete explanation
is attached on the CD.

4The 2D Navigation Stack safely guides the robot to the target position, http://wiki.ros.org/navigation
5The Gmapping creates a map and provides a localization of the robot, http://wiki.ros.org/gmapping

2/65

http://wiki.ros.org/navigation
http://wiki.ros.org/gmapping

CHAPTER 2. ROS, SYROTEK AND SIMULATOR Demonstration Tasks

Chapter 2

ROS, SyRoTek and simulator

This chapter is not a complete guide to ROS or SyRoTek as good sources exist [4][5].
Instead, it aims to provide first aid to users with some experience with these systems. The main
goal of this chapter is to explain the necessary parts of ROS and SyRoTek for the following
demonstration tasks.

2.1 ROS (Robot Operating System)

The Robot Operating System (ROS) is a flexible framework for writing robot software. It is
a collection of tools, libraries, and conventions that aim to simplify the task of creating complex
and robust robot behavior across a wide variety of robotic platforms [6].

ROS is officialy supported only on Ubuntu, but runs on many operating systems (other Linux
distributions, Windows, OS X). Groovy Galapagos on Ubuntu 12.04 LTS has been used in this
work.

Each process running under the ROS can be interpreted as a graph node. These processes
are loosely coupled by ROS communication infrastructure [7]. Nodes in ROS use ROS client
libraries, which allow communication of nodes written in different programming languages.
Nodes can communicate by using topics (send messages to a topic or subscribe a topic to
receive messages, more information in Section 2.1.5). A node can also provide or use services
[8]. ROS has one master node, which provides name service - helps the other nodes to find
each other. It starts, when the roscore is launched. It can be done by using command:� �
roscore� �

Other nodes could be started by launch file1 or by using command:� �
rosrun <package_name> <executable_name> <parameters>� �

1ROS launch file is a file written in xml that can launch one or multiple nodes (more in Section 4.2).

3/65

2.1. ROS (ROBOT OPERATING SYSTEM) Demonstration Tasks

2.1.1 Creating packages

To create programs for ROS, it is necessary to prepare a package first. In ROS, there are two
ways how to create and compile packages. The first one is through rosbuild, which was used
in older versions of ROS and is still supported. Another tool – catkin – is used from the Groovy
Galapagos version. It provides easier work on different operating systems, easier compilation of
large projects, faster build and other improvements [9]. The catkin will be used in this thesis
(therefore the programs will not be able to compile under older versions of ROS than Groovy
Galapagos).

To create a package in catkin, open your cakin workspace first2. Then move to src/

directory. Following command will create catkin package [10]:� �
catkin_create_pkg <package_name> [dep1] ... [depN]� �

This command creates a new directory named <package name> in src/ and sets dependence
on another packages. Almost every application in this thesis depends on packages roscpp

and std msgs. The roscpp allows you to write applications in C++ language (for writing in
python you can use rospy, other languages are not recommended because they do not have so
extensive support). The package std msgs lets you to use standart ROS messages. There are
other packages with messages (for example geometry msgs), but it is best to use them only if
you need them.

As a dependence on the package roscpp is included, there are 2 files in the new directory
(package.xml, CMakeLists.txt) and 2 directories (src/, include/). In package.xml you
can fill information about package (author, version, name, description, ...). Place header files
into the /include directory and source files into src/.

2.1.2 Preparing CMakeLists.txt

In order to compile program, you need to set up CMakeLists.txt. Usually, it will be only
few lines at the end of the file. First you must tell, which files need to be compiled. You can
create variable (in this case SRCS1), which contains all necessary source files. Add following
lines to the end of CMakeLists.txt:� �
set (SRCS1 ${SRCS1} src/file_1.cpp)

set (SRCS1 ${SRCS1} src/file_2.cpp)� �
Next include catkin directories by the following line:� �

include_directories(include ${catkin_INCLUDE_DIRS})� �
Now create executable and link catkin libraries to it.

2If you do not have prepared catkin workspace, follow this tutorial:
http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment

4/65

http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment

CHAPTER 2. ROS, SYROTEK AND SIMULATOR Demonstration Tasks

� �
add_executable(executable_name ${SRCS1})

target_link_libraries(executable_name ${catkin_LIBRARIES})� �
Everything is now prepared and you can start programming [10].

2.1.3 Building a program

When the programming is done, open your catkin workspace in a terminal and call:� �
catkin_make� �

This command compiles all packages in your catkin workspace. If there are problems with
compilation, make sure, that you have a path to your catkin workspace in ROS PACKAGE PATH

variable. If you do not, export it by using command:� �
export ROS_PACKAGE_PATH+=":<path_to_your_catkin_workspace>/src/"� �

If the catkin make fails after processing packages and returns error: make: illegal option

-- l, you should be able to compile the project by calling:� �
catkin_make --cmake -j24� �

The catkin make uses by default parameters -j243 and -l244. If the parameter -l24 is
not accepted by compiler, use only -j24.

2.1.4 ROS and C++

The C++ language was chosen for this thesis and all programs will be written in it. To write
programs in C++, the package must have roscpp in its dependencies. First include all the
headers necessary for common pieces of the ROS system [11]:� �
#include "ros/ros.h"� �

Before any part of the ROS system can be used, you must do initialization:� �
ros::init(argc, argv, "name_of_the_node");� �

3The -j parameter tells make to run multiple parallel processes and the integer defines how many processes
can be executed at once.

4The -l parameter limits the number of jobs to run at once based on the load average. The floating-point
number after the parameter sets maximal load (if the load is higher, make will not start parallel processes).

5/65

2.1. ROS (ROBOT OPERATING SYSTEM) Demonstration Tasks

The ros::init() function needs argc and argv to process ROS arguments and remap
names according to parameters set in the command line. Usage of ROS parameters will be
explained in Section 4.1. When ROS is initialized, create NodeHandle, which manages commu-
nications between the node and the ROS system [11].� �
ros::NodeHandle n;� �

When all this is done it is possible to work with the ROS system.

2.1.5 Messages and topics

As mentioned before, communication between separate nodes is managed through topics.
Every node can publish messages (of the right type) to that topic and every node can receive
those messages by subscribing. There are many default type of messages in ROS and it is
possible to create new types as well. As was mentioned in Chapter 2.1.1, basic messages are in
the std msgs package. Most of messages used in this thesis will contain std msgs::Header

so the princip will be explained on that example. You can find out more information about this
type of message by using command:� �
rosmsg show Header� �

The result is:� �
[std_msgs/Header]:

uint32 seq

time stamp

string frame_id� �
The message contains three variables. Variable seq represents the sequence number (if

you are sending multiple messages, this variable helps to keep them in the right order). The
stamp represents time in epoch5 format (usually when the message was created) and the
frame id will be explained with transformations (Chapter 5). This message can be accessed as
the std msgs::Header class in C++.

To publish messages, you must create a publisher object first:� �
ros::Publisher pub = n.advertise<std_msgs::Header>("topic_name", 1000);� �

This creates the publisher object for Header messages. The number 1000 represents a size
of the buffer6. Now you can prepare messages and send them by publish function:� �
pub.publish(message);� �

5http://www.epochconverter.com/
6Each publisher and subscriber has a buffer that contains predefined number of previous messages.

6/65

http://www.epochconverter.com/

CHAPTER 2. ROS, SYROTEK AND SIMULATOR Demonstration Tasks

Figure 2.1: The SyRoTek arena (view from the camera above)

When subscribing to a topic, create callback function. It should have as a parameter constant
pointer to the right type of message, for example:� �
void callback(const std_msgs::Header::ConstPtr& msg);� �

Now create a subscriber. It calls this function each time when some message is published to
the topic.� �
ros::Subscriber sub = n.subscribe("topic_name", 1000, callback);� �

The first two parameteres are the same as for the publisher and the last one is a name of
the function to be called. It is possible to call a method of a class instance:� �
ros::Subscriber sub = n.subscribe("topic_name", 1000, &SomeClass::callback

, instanceOfThatClass);� �
Finally use the following line to start subscribing messages:� �

ros::spin();� �
2.2 SyRoTek

The SyRoTek (”System for RoboTic E-learning”) allows you to remotely (via internet) con-
trol a multi-robot platform in a dynamic environment [5]. The SyRoTek has an Arena with
dimensions of 3.5×3.8 m. In the Arena there are 13 docking stations, where robots can charge.
There are reconfigurable obstacles (some could be controlled remotely, others are fixed). Several
cameras are placed above the Arena. SyRoTek has localization system based on processing im-
ages from the camera above the arena. This localization provides global odometry. The robots

7/65

2.2. SYROTEK Demonstration Tasks

in SyRoTek arena are called S1R. They have dimensions 174× 163× 180 mm. Each robot can
also measure locally its own position (local odometry). The S1R robot has many sensors, but
the most important for this thesis is a laser rangefinder which measures distance to obstacles
around robot [12].

The SyRoTek is world-wide available platform, but due to limited capacity, the access to
robots is for registred users only. If you are not registred yet, you are requested to fill the
registration form at the SyRoTek main page7. There (after you login) click on the Courses
section. Enroll some course first (Demos and tasks of IMR members course is used in this
thesis), open it and choose a task (One robot with a laser rangefinder is compatible with all
demonstration tasks). Finally you can create a reservation, which allows you to control the
robot [5].

2.2.1 Running ROS on SyRoTek

Let’s assume you have an active reservation and one robot with laser rangefinder (the guide
to work with SyRoTek is in the ”Practical Guide to the Syrotek System” [5]). Connect to the
SyRoTek via ssh and use the following command to launch roscore and nodes to operate the
robot:� �
roslaunch /opt/syros/syros.launch� �

If there are problems with GLIBCXX, one of the solution is:� �
export LD_LIBRARY_PATH=/usr/local/lib/gcc46:$LD_LIBRARY_PATH� �

When the roscore is running, let’s look at the topics provided by SyRoTek.

2.2.2 Topics and messages from SyRoTek

To look at all the topics use command:� �
rostopic list� �

The result is:� �
/rosout

/rosout_agg

/syros/base_cmd_vel

/syros/base_odom

/syros/base_pose

/syros/global_cmd_vel

7https://syrotek.felk.cvut.cz/

8/65

https://syrotek.felk.cvut.cz/

CHAPTER 2. ROS, SYROTEK AND SIMULATOR Demonstration Tasks

/syros/global_odom

/syros/global_pose

/syros/laser_laser

/tf� �
From these topics only the following ones will be necessary for demonstration tasks:

• /syros/base cmd vel - This is the topic for controlling robot’s movement.

• /syros/base odom - This topic provides messages with local odometry (measured by
robot)

• /syros/global odom - Global odometry from the localization system

• /syros/laser laser - Data from the laser scan

• /tf - Transformations

To obtain detailed information about a topic (including type of message) use command:� �
rostopic info <topic_name>� �
2.3 Stage simulator

The behaviour of a robot in the SyRoTek arena could be simulated in Stage simulator. In the
file eci-arena.world is a world file with the model of SyRoTek Arena. The original file was
modified to work with the version for ROS. The simulator could be run by using the following
command:� �
rosrun stage stageros <path_to_the_world_file>/eci-arena.world� �

After executing this command, a window should appear (as in Fig. 2.2). If you would like to
change some things in the Arena, you can simply drag obstacles or the robot using a mouse.

2.3.1 Topics and messages from the simulator� �
/base_pose_ground_truth

/base_scan

/clock

/cmd_vel

/odom

/rosout

/rosout_agg

/tf� �
9/65

2.4. RVIZ Demonstration Tasks

Figure 2.2: Stage Simulator

If you look at the topics, you can see that there is no global or local odometry just /odom. The
simulator has only one odometry, which is usually ideal (it is possible to set up some odometry
error in the world file). The data from a laser rangefinder are published to the /base scan

topic and the /cmd vel topic is used for controlling robot’s movement.

2.4 Rviz

Rviz is a visualization system in the ROS. You can view odometry, transformations, map,
path and many more. Use the following command to start rviz [13]:� �
rosrun rviz rviz� �

After running this command a windows should appear similar to Fig. 2.3. Set fixed frame
to /odom in the simulator or /arena in the SyRoTek. Press add to set up what should be
viewed. By default, you should add a grid with the same reference frame as the fixed frame
in global options. Add TF next. That should show the transformation tree (see more about
transformations in Chapter 5).

To visualize data from the laser rangefinder add it as well and set its frame to /base scan

in the simulator or /syros/laser laser in the SyRoTek.

If there are problems with visualizing data from the SyRoTek in RVIZ, it might be caused
by bad time sychronization. Some versions of the RVIZ also crash when try to view data from

10/65

CHAPTER 2. ROS, SYROTEK AND SIMULATOR Demonstration Tasks

Figure 2.3: Rviz empty

the laser rangefinder.

11/65

2.4. RVIZ Demonstration Tasks

12/65

CHAPTER 3. THE DEMONSTRATION TASKS Demonstration Tasks

Chapter 3

The demonstration tasks

This chapter focuses on the simpler demonstration tasks. On these tasks are shown the
basics of working with ROS and SyRoTek. Processing the data from the laser rangefinder and
publishing Twist messages (commands for robot) are explained in the Braitenberg vehicle
task (Section 3.1). The work with odometries is shown in PID controller and Dead Reckoning
(Sections 3.2 and 3.3). The Wall Following and the Trajectory Following tasks are slightely
more complex, but they still use only the basics of the ROS system.

3.1 Braitenberg vehicle

The goal of this task is to show how to write a simple application in ROS. Braitenberg
vehicle uses a very simple algorithm so it is good to start with it.

The Braitenberg vehicle is an autonomous vehicle. It usually has two primitive sensors, which
are directly connected to the motors. It means, that if the right sensor sends higher values, the
right motor runs faster and the robot turns left. By this simple algorithm an obstacle avoidance
behavior can be achieved [14].

Assume, you have a robot with only a laser scanner, which measures distances from the
robot to obstacles. To simulate behavior of the Braitenberg vehicle, the algorithm finds the
minimal distances on the left and right side (the closest obstacles). You can not simply set
up the left and right motor to follow these values as ROS allows to set up linear velocity and
angular velocity, so some conversion is needed (see bellow).

3.1.1 Processing inputs and outputs

Vehicle behavior is implemented in the class NodeBraitenberg2. This class has two methods
(except constructor and destructor). The first method processes laser scan data and the second
one controls the robot.

13/65

3.1. BRAITENBERG VEHICLE Demonstration Tasks

Data from laser rangefinder are in message type LaserScan. It contains the following vari-
ables:� �
std_msgs/Header header

float32 angle_min

float32 angle_max

float32 angle_increment

float32 time_increment

float32 scan_time

float32 range_min

float32 range_max

float32[] ranges

float32[] intensities� �
Vector float32[] ranges contains raw data from the laser scanner. As mentioned above, you
can simulate Braitenberg vehicle by finding the minimal distances on the left and right side.
Assuming that the sensor is positioned symmetrically, you can find minimum value from the
first and second half of the ranges vector and use those values as the minimum on the left and
right side. Knowing angles corresponding to the minimum values might be useful. If you know
the index of the minimal value in the ranges, you can calculate angle by using this equation:

ϕ =

(
i− l

2

)
· θ, (3.1)

where ϕ is angle of i-th element of vector, l is lenght of the vector and θ is angle incrementation
(angle increment).

Commands for robot are sent through the Twist messages:� �
geometry_msgs/Vector3 linear

geometry_msgs/Vector3 angular� �
The Twist message contains two 3D vectors1 for linear and angular velocity, but the robot
moves only in 2 dimensional space so x in linear (for linear velocity) and z in angular (for
angular velocity) will suffice. You can leave other values equal to zero.

3.1.2 Conversion

Assuming that you have the minimum values, the only problematic part is to make conver-
sion of these values to linear and angular velocities. Because the linear velocity has no effect
(theoretically) on the direction of movement, it can be set to a constant value. You can use
the following equation to calculate the angular velocity:

|ω| = c · dlong
dshort

− c,

1The geometry msgs/Vector3 has elements float64 x,y,z.

14/65

CHAPTER 3. THE DEMONSTRATION TASKS Demonstration Tasks

(a) The experiment in simulator (b) The experiment in SyRoTek arena

Figure 3.1: The Braitenberg vehicle

where

|ω| is the absolute value of the angular velocity,

c is a constant coeficient representing sensitivity of the ratio of the minimal distances,

dlong is the greater value from the minimal distances on the left and right side and

dshort is the smaller value from the minimal distances on the left and right side.

As you can see, this formula provides the absolute value of the angular velocity only. That will
be sufficient, because the sign is determined by a simple if/else construction.

You can now process input data, make conversion to linear and angular velocity and send
commands to the robot.

3.1.3 Experiments

The Braitenberg vehicle was first tried in the simulator. As you can see in Fig. 3.1a, the
robot is succesfully avoiding obstacles. It keeps the minimal distance on the left equal to the
minimal distance on the right.

The Braitenberg vehicle was also tested in the real Arena (Fig. 3.1b). The robot in Sy-
RoTek balances distances slower, which causes going closer to the obstacles and sharper turns
afterwards. The video record of this experiment can be found on the SyRoTek website2.

2https://syrotek.felk.cvut.cz/about/videos

15/65

https://syrotek.felk.cvut.cz/about/videos

3.2. PID CONTROLLER IN ROS Demonstration Tasks

3.2 PID Controller in ROS

The aim of this tutorial is to show how to write a PID3 controller in ROS. It controlls the
position and orientation of a robot. The robot should be able to move forward x meters where
x is a reference value or to turn around by ϕ radians where ϕ is a reference value.

Input to the PID controller are global odometry messages. First you need to calculate the
difference between the reference value and the actual value. Next thing to do is calculating
intervention from the PSD4 controller. All of this is implemented in the NodePID class. Input
is gathered by using message callback.

3.2.1 Processing inputs and outputs

Commands for the robot are sent through the Twist messages. You can find more information
about this type of message in Section 3.1.1.

Input to this program is global odometry, which uses messages called Odometry:� �
std_msgs/Header header

string child_frame_id

geometry_msgs/PoseWithCovariance pose

geometry_msgs/Pose pose

geometry_msgs/Point position

geometry_msgs/Quaternion orientation

float64[36] covariance

geometry_msgs/TwistWithCovariance twist

geometry_msgs/Twist twist

float64[36] covariance� �
You need only information about actual position and time. Position in x and y axis is stored
in pose.pose.position5. Time of measurement is in header.stamp. The only problem is to
get the orientation of the robot. As you can see, there is a quaternion called orientation6.
This quaternion is used to describe 3D rotation, but the robot operates only in 2D space. The
elements x, y and z in a quaternion are related to rotation about these axes. Rotation in 2D
space is the same as rotation about z axis. Relation between the angle (ϕ) and z element in
the (Qz) quaternion in 2D is as follows [15]:

ϕ = 2 · arcsin(Qz)

3The PID controller contains three parts (proportional, integral and derivative). Sum of these parts creates
an action intervention (see equation 3.3).

4PSD is a discrete version of the PID controller. The integral part is replaced by a sum (see equation 3.4).
5The geometry msgs/Point structure contains elements float64 x,y,z.
6The geometry msgs/Quaternion contains elements float64 x,y,z,w.

16/65

CHAPTER 3. THE DEMONSTRATION TASKS Demonstration Tasks

3.2.2 Angle and distance

To calculate the difference between reference and actual values, you need to calculate dis-
tance and angle between the start and actual position (distance and angle between two points).

d =
√
(y2 − y1)2 + (x2 − x1)2 (3.2)

θ = atan2(y2 − y1, x2 − x1)

To simplify the code in NodePID class create class MyPoint, which stores data about position
and has methods to calculate the distance and the angle.

3.2.3 Errors

To calculate the error (difference between the reference and the actual value) you need to
calculate the actual value. For rotation it is simple:

ϕa = ϕo − ϕs,

where ϕa is the actual value, ϕo is the value measured from odometry and ϕs is the angle
measured at the start of the program. For translation you need to calculate a distance between
the start and the actual position, which can be done by using equation 3.2.

3.2.4 PID (PSD) controller

You can imagine PID controller as a sum of P-controller, I-controller and D-controller:

vA(t) = kP e(t) + kD
de(t)

dt
+ kI

t∫
0

e(t)dt, (3.3)

where

xA(t) is intervention from PID controller,

e(t) is error,

kP is proporcional constant,

kD is derivative constant and

kI is integral constant.

17/65

3.2. PID CONTROLLER IN ROS Demonstration Tasks

(a) The experiment in the simulator (forward
by 1.0 meters)

(b) The PID controller in SyRoTek

Figure 3.2: The PID controller

Which could be transfered to discrete spectrum (PSD):

vA(tn) = kP e(tn) + kD
e(tn)− e(tn−1)

tn − tn−1

+ kS
n∑
i=0

e(ti) · (tn − tn−1), (3.4)

where tn is the time of n-th iteration and kS is sum constant (corresponds to kI in PID).

The same equation can be used for controlling translation as well as rotation. Each controller
will have it’s own constants. Results from the translation controller and the rotation controller
are sent through the Twist message (see more in Section 3.1.1) as commands for the robot
(translation and rotation velocity).

Constants used in equation 3.4 were obtained by creating a model of the robot (transfer
function) and by using an appropriate function in Matlab. If you use SyRoTek or Stage simulator
with a model of SyRoTek Arena, you can use constants predefined in the code. Complete
explanation is in appendix of the file syrotek tutorials.pdf on the CD.

3.2.5 Experiments

The PID controller uses two arguments. The first is -f or -r for movement forward or
rotation. The second is value which is in meters for movement forward or radians for rotation.
As you can see in Fig. 3.2a, the robot was set to move forward by 1.0m. The robot moved from
position [1.00, 2.00] to position [2.00, 2.00]. Tolerance was set to 0.01m and it was maintained.
In the second experiment the robot was set to rotate by π/2 radians with tolerance 0.02 radians.

18/65

CHAPTER 3. THE DEMONSTRATION TASKS Demonstration Tasks

It turned by 1.556 radians, which is smaller than π/2 by 0.015 radians so the tolerance was
also maintained.

When testing the application in SyRoTek, robot was set to move forward by 1 meter, turn
around by π radians and this was repeated 8 times. In the Fig. 3.2b you can see the deviation
from the start position. The tolerance in translation movement was set to 0.01 meters and the
tolerance in rotation movement to 0.04 radians.

Behaviour of this algorithm depens on precision and frequency of odometry measurement and
on constants for the controller. Tolerance should not be set to be more precise than odometry,
because the robot might never achieve the reference value. The video record of this experiment
can be found on the SyRoTek website7.

3.3 Dead Reckoning

The aim of this tutorial is to write a program that measures the error of the odometry. The
robot goes several times through a simple geometric shape (in this case square) and at the end,
it compares the start position with the end position (which should be ideally the same) and
the position in local odometry (measured by the robot) with the position in global odometry
(provided by the localization system).

Note: Stageros simulator provides only one odometry (which is ideally precise) so it is not
be possible to test this program in a simulator.

The Dead Reckoning is implemented in the NodeDeadReckoningI class. Before you start
sending commands to the robot, you need to know the start position from local and global
odometry. Until both of these positions are received, the robot should not move. To ensure
that, create two boolean variables (globalOdomReceived and localOdomReceived). After
both messages are received, start movement.

To follow square trajectory, you need commands like ’’move x meters’’ and ’’turn

around by x radians’’, but commands for the robot are sent through Twist messages,
which allow only to set up angular and linear velocities. You can use PID (PSD) controller that
was explained in the previous tutorial. The only change in the controller will be in usage of local
odometry instead of global one.

After the robot stops its movement, it waits again for local and global odometry and calcu-
lates differences from the start position.

3.3.1 Following square trajectory

When odometry for the start position was received, call method commander(), which starts
repeatedly calling the PID controller (move forward by x meters and than turn around by π/2

7https://syrotek.felk.cvut.cz/about/videos

19/65

https://syrotek.felk.cvut.cz/about/videos

3.3. DEAD RECKONING Demonstration Tasks

radians). The robot should make several squares this way. After this is done, set boolean variable
evaluate to true and wait for the odometry data.

3.3.2 Evaluating results

After both odometry data are received, call the evaluateResults() method. To calculate
the difference between the end and start positions you need only to calculate the difference
in x, y and ϕ. A problem occurs when you need to calculate the difference between local and
global odometry. The coordinate system of local odometry is shifted and rotated relative to the
global odometry.

In both coordinate systems you need to calculate the difference between final and initial
position so you need to set the initial position of local odometry to correspond with the initial
position of global odometry. Calculate the difference between robot positions so the coordinate
system shift will not affect the outcome.

Let θ be an angle between local and global odometry in the initial position.

θ = ϕloc−start − ϕglob−start

You can use rotation matrix to transfer coordinates from the system 1 (local odometry) to the
system 0 (global odometry):(

x0
y0

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x1
y1

)

therefore

x0 = x1 cos θ − y1 sin θ
y0 = x1 sin θ + y1 cos θ

3.3.3 Experiment

As mentioned above, it is not posibble to test this program in a simulator. The robot in
SyRoTek was set to make 2 squares with the lenght of an edge 0.6 meters. You can see robot’s
trajectory in the Fig. 3.3.

The difference between the local and the global odometries is as follows:� �
DIFF_X = 0.049710

DIFF_Y = 0.055682

DIFF_ANGLE = -0.192555� �
The difference between the final and the initial positions in global odometry is as follows:

20/65

CHAPTER 3. THE DEMONSTRATION TASKS Demonstration Tasks

Figure 3.3: The PID controller in SyRoTek

� �
DIFF_X = -0.004052

DIFF_Y = -0.046150

DIFF_ANGLE = 0.100000� �
As you can see from the results, localization using local odometry was by ∼ 5 centimeters

(in each axis) and ∼ −0.2 radians different from global odometry.

The video record of this experiment can be found on the SyRoTek website8.

3.4 Wall Following

The aim of this tutorial is to implement an algorithm that drives the robot along the wall.
The robot should keep the same distance from the wall. The first problem is to find, where
is the wall. You can use laser rangefinder and find minimal values (as in Braitenberg vehicle
tutorial). This way you have the distance from the closest obstacle and the angle relative to
the robot.

To succesfully follow the wall, you need to keep the same distance and angle (π/2 or −π/2
depending on position of the wall - the left or right side of the robot). You can use two PID
like controllers (which will change angular velocity) to maintain these values. Wall following is
implemented in the NodeWallFollowing class.

8https://syrotek.felk.cvut.cz/about/videos

21/65

https://syrotek.felk.cvut.cz/about/videos

3.4. WALL FOLLOWING Demonstration Tasks

3.4.1 Processing input and output

Input to this algorithm are the data from laser rangefinder (Section 3.1.1) and output is
Twist message (Section 3.1.1). You need to know the angle of minimal value from the ranges

vector in laser data. Use the equation 3.1 to calculate it.

If the minimal value was determined from the whole ranges vector, the robot could start
following the oposite wall in tight spaces. To ensure this does not happen, find minimum only
from the appropriate half of ranges vector. Finding the minimal value is done in a loop so you
can adjust its start and end according to these equations:

i0 = l · d+ 1

4

in = l · d+ 3

4
,

where

d is direction (1 for following wall on left side of robot, −1 for wall on right side),

i0 is an index of the element in the vector, where the loop starts,

in is an index of the element in the vector, where the loop ends and

l is a lenght of the the vector.

3.4.2 PD controller of the direction

You need to calculate error value first:

e(tn) = rmin(tn)− rwall,

where

e(tn) is error value,

rmin(tn) is the distance of the closest obstacle (minimal value from the ranges vector)
measured from laser scan position and

rwall is the desired distance from the wall (reference value).

You can use discrete PD controller to keep desired distance from the wall. The following equation
is based on equation 3.4, but only proportional and derivative part is used.

ωA(tn) = kP e(tn) + kD
e(tn)− e(tn−1)

tn − tn−1

,

where

22/65

CHAPTER 3. THE DEMONSTRATION TASKS Demonstration Tasks

ωA(tn) is intervention from PD controller,

tn is time of n-th iteration,

kP is proporcional constant and

kD is derivative constant

To simplify calculation you can assume, that tn − tn−1 is a constant value (in reality it is not,
but small diferences will not have significant effect on the controller).

ωA(tn) = kP e(tn) + k̃D(e(tn)− e(tn−1)),

where k̃D is equal to kD
tn−tn−1

.

3.4.3 P controller of the angle

For controlling the angle of the closest wall suffices a simple proportional controller. Calculate
error value first:

eϕ(tn) = ϕmin(tn)− d ·
π

2
,

where eϕ(tn) is the error value, ϕmin(tn) is the angle of the closest wall and d is a direction (1
for following wall on left side of robot, −1 for wall on right side). Now you can use simple P
controller to calculate the intervention:

ωB(tn) = kP2eϕ(tn),

where ωB(tn) is intervention from PD controller, tn is time of n-th iteration and kP2 is propor-
cional constant. The final angular velocity could be calculated as a sum of interventions from
PD and P controller:

ω(tn) = ωA(tn) + ωB(tn)

3.4.4 Linear velocity

If the linear velocity would be constant, robot would not manage to turn in corners in time
or the velocity would have to be too low. This could be solved by checking the distance of a
point in front of the robot and if it is too close, robot slows down (or stops linear movement
completely). Than it has enought time to turn around.

Another issue may occur when the wall ends. The robot might not be able to turn around
in time and it could go forward and start following another wall. You can solve it by checking
angle of the closest obstacle and if the absolute value of that angle is bigger than 1.75 (which
means the obstacle is already the behind the robot), lower the linear velocity.

23/65

3.5. TRAJECTORY FOLLOWING - PURE PURSUIT Demonstration Tasks

(a) The experiment in stage simulator (b) The experiment in SyRoTek

Figure 3.4: The wall following

3.4.5 Experiments

In Fig. 3.4a you can see that the robot is succesfully following a wall in a simulator and
it is keeping the same distance. The same experiment as in simulator was done in SyRoTek.
As you can see in Fig. 3.4b, precision is lower than in simulator, but the robot still managed
to succesfully follow the wall. The real precision is higher than in the image, because image is
slightly deformed from camera. The robot did not hit or loose the wall. The video record of this
experiment can be found on the SyRoTek website9.

3.5 Trajectory Following - Pure Pursuit

The aim of this task is to show how to write a pure pursuit algorithm in ROS, which is the
algorithm for following the predetermined trajectory. A control target point is generated on the
trajectory (in a constant distance from the robot), which represents an actual target. The robot
calculates a circular trajectory, which crosses the control point and an actual rotatation of the
robot is tangent to that trajectory.[16]

9https://syrotek.felk.cvut.cz/about/videos

24/65

https://syrotek.felk.cvut.cz/about/videos

CHAPTER 3. THE DEMONSTRATION TASKS Demonstration Tasks

Figure 3.5: Target point on the trajectory

Pure pursuit algorithm is implemented in the NodeTrajectoryFollowing2 class. To make
calculation easier, create a class for positions called MyPoint (you can use the one created in
PID controller, but it needs to add few methods). The input trajectory is stored as a queue.

Commands for the robot are sent through the Twist messages. You can find more information
about this type of message in Section 3.1.1. Input of this program are the Odometry messages.
To see the detailed description look at the Section 3.2.1.

3.5.1 Positions and vectors

As was mentioned before, there is a separate class MyPoint to store informations about
positions. This class behaves as a 2D vector (it has x and y variables and methods for vector
operations) and has several new methods (apart from those in MyPoint class from PID con-
troller). These methods represent operations like norm, multiplication by real number, adding
and substracting. They are used mainly for easier work with vectors in the calculation of the
control target point (Section 3.5.3).

3.5.2 Trajectory

The trajectory is stored as a queue of objects (MyPoint). First (before the movement starts,
in the constructor) remove a front point from the trajectory and save it to the new variable
(lastRemoved). After that you need to start removing points from the trajectory, which are
already considered as achieved (they are closer to the robot than the predefined constant
distance of the target control point). This step ensures that the robot does not start following
the trajectory backwards.

25/65

3.5. TRAJECTORY FOLLOWING - PURE PURSUIT Demonstration Tasks

Always keep the last removed point in the lastRemoved variable. If none point (except for
the one removed in the constructor) was removed, the robot goes first to the point removed in
the constructor. Otherwise the algorithm finds the control point on the trajectory (between the
lastRemoved and the front one in the trajectory). For the better understanding look at Fig.
3.5.

3.5.3 Control target point

As you can see from Fig. 3.5, the control point lies on the intersection between the line
(defined by two points - the last one removed and front one in the trajectory queue) and the circle
(with a center in the actual position of robot and the radius equal to the targetDistance).
To avoid calculation of line-circle intersection (which would provide two intersections and one
of them would have to be chosen), you can approximate the position of the target point.

d = ||~l + ~s · 2−i + ~v − ~a||,

where

~l is the last removed point from trajectory,

~s is equal to ~f −~l (~f is the front point in the trajectory queue),

~v is contribution of previous iterations,

~a is the actual position of the robot,

~d is a distance between the actual position of the robot and the estimated position
of the target point and

i is the number of the current iteration.

If d is smaller than targetDistance, add ~s to ~v before the next iteration:

~vi+1 = ~vi + ~si

After several iterations (∼ 10) you have an approximated position of the target point with
sufficient accuracy (∼ 1/210 · ||~s||):

~t = ~l + ~v

If the robot would be so far from the trajectory, that it would not remove more points than
the first one, which is further from the robot than targetDistance, vector ~v would remain ~0
and robot would go to the first removed point.

If the trajectory would have its points far from each other and the robot would be positioned
as in Fig. 3.6, the algorithm explained above might find a second intersection, which would

26/65

CHAPTER 3. THE DEMONSTRATION TASKS Demonstration Tasks

Figure 3.6: Two intersections

cause the robot to go backwards. The robot always needs to go to the itersection closer to the
front point in the trajectory so set up the vector ~v before approximation so that the algorithm
starts approximating from the point between these two intersections (the unwanted one will be
skipped). The easiest way to do that is to find an intersection between the trajectory and the
line perpendicular to the trajectory passing through ~a.

xv =
||~a−~l|| · cos(ϕ~f−~l − ϕ~a−~l)

||~s|| · xs

yv =
||~a−~l|| · cos(ϕ~f−~l − ϕ~a−~l)

||~s|| · ys
,

where ϕ~f−~l is the angle between ~f and ~l and ϕ~a−~l is the angle between ~a and ~l.

3.5.4 Circular trajectory

Now you need to calculate the circular trajectory, which crosses the target point and the
actual rotatation of the robot is tangent to that trajectory. First you need to get the angle
between the vector from the actual position to the target point and the direction of the robot
(ϕ in Fig. 3.7).

ϕ = ϕ~t−~a − α,

where ϕ~t−~ais the angle between the target and the actual position.

Next you need to know the radius of the circle on which the new trajectory lies.

rnew = | ||~t− ~a||
2 · cos(π

2
− ϕ)

|

Now set up the angular velocity (the linear velocity is constant) to follow the calculated
trajectory. Find the distance between the actual and the target position (on a circular trajectory).

27/65

3.5. TRAJECTORY FOLLOWING - PURE PURSUIT Demonstration Tasks

Figure 3.7: Circular trajectory

To do that, you need to know the angle of the circular section, which will be 2ϕ(at the end
should be the robot’s direction again tangent to the circular trajectory so it needs to rotate the
angle ϕ twice).

dnew = 2πrnew

(
|2ϕ|
2π

)
= 2πrnew

(
|ϕ|
π

)

The linear velocity is constant so you can simply get the time that the robot will need to go
through the entire circular trajectory to the target point.

t =
dnew
v
,

where t is time and v is linear velocity.

The robot needs to rotate twice the angle ϕ in time t. That gives you the angular velocity:

ω =
2ϕ

t

The linear and angular velocities can now be sent through the Twist message to the robot.

3.5.5 Experiments

The program was tested on a repeating square trajectory ([1.0; 1.9], [1.0; 2.9], [2.0; 2.9],
[2.0; 1.9]) which is marked as a green square in Fig. 3.8a.

As you can see from Figs. 3.8a and 3.8b, deviation from the predefined trajectory is much
bigger on SyRoTek than in a simulator. This might happen, because the real robot is not able
to turn as quickly as the robot in a simulator while maintaing constant linear speed and the
real angular velocity of robot is smaller than the one sent through Twist message. The video
record of this experiment can be found on the SyRoTek website10.

10https://syrotek.felk.cvut.cz/about/videos

28/65

https://syrotek.felk.cvut.cz/about/videos

CHAPTER 3. THE DEMONSTRATION TASKS Demonstration Tasks

(a) The experiment in the Stage simulator (b) The experiment in the SyRoTek

Figure 3.8: The pure pursuit

29/65

3.5. TRAJECTORY FOLLOWING - PURE PURSUIT Demonstration Tasks

30/65

CHAPTER 4. PARAMETER SERVER AND LAUNCH FILES Demonstration Tasks

Chapter 4

Parameter server and launch files

In large projects you need to run several nodes and set up many parameters. In order to
simplify work with large projects, the ROS provides parameter server and launch files. The
parameter server provides a way to set up the variables (even in runtime) without parsing
arguments and the launch files are used for starting large projects with several nodes through
one file in xml format.

4.1 ROS Parameter Server

According to the authors of ROS, the parameter server is a shared, multi-variate dictionary
that is accessible via network APIs. Nodes use this server to store and retrieve parameters at
runtime. As it is not designed for high-performance, it is best used for static, non-binary data
such as configuration parameters. It is meant to be globally viewable so that tools can easily
inspect the configuration state of the system and modify if necessary [17].

The parameters can be of different types (integers, booleans, doubles, strings, ...). They
have the hierarchy corresponding with the names of nodes and topics, so the parameters of the
node named node1 would be: /node1/parameter1, /node1/parameter2, ...

To get private parameters (parameters that belong to the node, from which you are accessing
them), you can also use tilde ~ instead of the name of a node. Accessing /node1/parameter1

from node1 would be simply through ~parameter1. To set the parameter, you can call
rosparam set in the command line or you can use remapping arguments when starting node
from the command line (this time the tilde ~ would by replaced by underscore) [17].� �
rosrun <package> <executable> _parameter1:=1.0 _parameter2:=true� �

Only local parameters are used in this thesis. To access them in C++ program, it is best to
start NodeHandle in tilde ~ namespace.� �
ros::NodeHandle n("~");� �

31/65

4.2. ROSLAUNCH Demonstration Tasks

To access parameteres you can use the function ros::NodeHandle::getParam [18].� �
double tol;

if (!n.getParam("tolerance", tol))

tol = 0.05;� �
This is an example of reading parameter from the server. Function getParam() saves a

value from the tolerance parameter to the tol variable. If this fails, the default value (0.05)
is used. The parameters could also be set or deleted from the C++ program.

4.2 Roslaunch

If you need to run multiple applications in the ROS, starting a new command line for each
of them might be confusing. Fortunately ROS provides a roslaunch package to run multiple
applications and set up their parameters through one single launch file (in XML format). It
can also read yaml files with parameters. The roscore is actually specialized a roslaunch that
brings up all the core parts of the ROS system.[19]

You can launch the XML configuration file by using the command:� �
roslaunch file_name.launch� �

To see a detailed description how to write launch files, look at [19]. The simple launch file
could look like this:� �
<launch>

<node name="how_to_name_node" package="package_name" type="

executable_name" args="arguments">

<param name="parameter1" value="1.0"/>

<rosparam file="parameters.yaml" command="load"/>

</node>

</launch>� �
The parameters for a node could be set by three ways. The first one is to write them into

arguments in the way described in Section 4.1. The second one is to write them by using
<param> tag. The third one is recommended for a large number of parameters and it consists
in including yaml file. The parameters in the yaml file would be written like this:� �
parameter1: 0.1� �

The work with parameters is very simplifed if you use launch file together with the parameter
server. You do not need to write parameters into a command line or to compile a program each
time when some parameter changes. You can simply set up all parameters in the launch file.

32/65

CHAPTER 5. TRANSFORMATIONS Demonstration Tasks

Chapter 5

Transformations

Because ROS is programmed as a universal system, it needs to work on more types of robots
than a simple mobile robot (as used in the SyRoTek). If some robot has one or more joints,
it also has more than one coordinate frames. It is possible to keep track of these frames by
using multiple odometry topics, but it would not be easy for a programmer to get for example
transformation between last two joints of a robot. To simplify work with these transformations,
ROS provides the tf package. It is a package, that maintains relationship between particular
coordinate frames in a tree structure [20].

Even though robots in SyRoTek do not have any joints, transformations might be still usable
(for example transformation between robot’s position and a laser rangefinder or between a map
and robot’s position).

5.1 How transformations work

To see a simple example of a transformation, start the Stage simulator in ROS (with a model
of SyRoTek arena) and use the command:� �
rosrun tf view_frames� �

This command generates a pdf file which shows information about actual transformations
in a graph (figure 5.1). The Stage simulator provides three transformations. The first one is
between the /odom (the odometry coordinate frame is fixed) and the /base footprint frame.
This transformation should correspond with the position of the robot transmitted through the
/odom topic. The second transformation is in this case equal to the vector of zeros. The third
transformation is however very useful, because it describes the position of the laser scanner
(which is in this case positioned 4 cm forward from the center of robot).

The main benefit is that ROS automatically calculates all reverse transformations and even
transformations through several steps. For example the one from the /odom frame to the
/base laser link frame.

33/65

5.1. HOW TRANSFORMATIONS WORK Demonstration Tasks

Figure 5.1: Transformation graph from the Stage simulator

To look at some transformation use the command [20]:� �
rosrun tf echo <source_frame> <target_frame>� �

For example:� �
rosrun tf echo /odom /base_laser_link� �

The result is:� �
At time 1395.200

- Translation: [1.240, 2.000, 0.150]

- Rotation: in Quaternion [0.000, 0.000, 0.000, 1.000]

in RPY [0.000, -0.000, 0.000]� �
The transformation is in a similar format as odometry messages. It contains a translation

vector and a quaternion representing rotation. It also provides rotation in the ”roll-pitch-yaw”
format. To create new static transformation you can simply use the command [20] :� �
rosrun tf static_transform_publisher x y z yaw pitch roll <frame_id> <

child_frame_id> <period_in_ms>� �
or� �

rosrun tf static_transform_publisher x y z qx qy qz qw <frame_id> <

child_frame_id> <period_in_ms>� �
34/65

CHAPTER 5. TRANSFORMATIONS Demonstration Tasks

Figure 5.2: Transformations in RVIZ

5.2 Viewing transformations in RVIZ

The transformations could be viewed by using RVIZ. You simply add TF, set the fixed frame
(in this case /odom) and RVIZ automatically visualizes all coordinate frames and updates them
in real time (Fig. 5.2).

5.3 Using the SyRoTek transformation tree

The robot in SyRoTek uses two localization systems: the global one (external localization by
the camera on top) and the local one (measured from movement of wheels - less precise, but
its behaviour is closer to the robot in open space without external localization). The /arena

frame is used as fixed instead of /odom as in a simulator. For each odometry is one frame
corresponding with /base footprint in a simulator. These frames are /syros/global odom

and /syros/base odom (see Fig. 5.3). Frame /syros should correspond with /base link and
/syros/laser ranger with /base laser link.

Usage of transformations in global odometry is similar as in a simulator (it is only necessary
to use corresponding frames). Using local (base) odometry might be more problematic, because
the frame of the laser scanner is in a global odometry subtree. The easiest way to fix this would
be publishing a static transformation (Section 5.1). The laser sensor is positioned 4 cm in front
of the center of the robot, therefore the ’x’ in a static transformation would be equal to 0.04.

35/65

5.4. TRANSFORMATION TIMING Demonstration Tasks

Figure 5.3: Transformations in the SyRoTek

5.4 Transformation timing

Each transformation sent to /tf topic has its own time stamp. Each time stamp is generated
by the machine, which sends the transformation. This might cause large problems when some
nodes are running on another machine than roscore. Some applications in ROS (like gmapping,
RVIZ, navigation stack) are comparing a time stamp with a time on local machine and some of
those applications have very small tolerance. If the time on the local machine is not synchronized
with the global machine, applications ussualy discard all transformations.

The last possible way to solve this issue (if synchronization fails and tolerance can not be
adjusted) is to resend all transformations from the local machine with its own time stamp.

36/65

CHAPTER 6. EXPLORATION WITH KNOWN POSE Demonstration Tasks

Chapter 6

Exploration with known pose

The goal of the exploration task is to create a map of an unknown environment. It contains
three separate programs: mapping (for creating map), planning (for finding a path in that map)
and following (for following the found path). Each one of them is independent and can be used
on its own. It is assumed that the position and rotation of the robot in this task is known (ideal
localization). Even though the external localization of the SyRoTek is not ideal, it is sufficient
for this task.

Originally all three exploration tasks were written to work only with external localization
through global odometry and did not use transformation or the parameter server. Later it was
necessary to use the planning part in exploration with its own localization (see Chapter 7). It
was rewritten (as well as the following part) to use transformations and the parameter server.

The process of each iteration in the exploration starts with acquiring the data from the laser
rangefinder and the odometry (lines 2-3, Section 6.2.1). These data are processed into the map
which is refreshed (lines 4-5, Section 6.2.3). The planning algorithm (lines 6-9, Section 6.3)
uses that map for finding the path to the nearest frontier1. The path is found through the
Djikstra’s algorithm (line 7, Section 6.3.6). Finally the path is sent to the following part, which
guides robot safely through that path (lines 10-13, Section 6.1).

1Frontier is a cell in the map, which is on the edge of an unknown space.

37/65

6.1. FOLLOWING - FOLLOW THE CARROT Demonstration Tasks

1 repeat
2 Input: laser data
3 Input: robot position
4 integrate measurement into the map;
5 Output: refreshed map
6 expand obstacles;
7 find a trajectory to the nearest frontier;
8 clean the trajectory;
9 Output: trajectory

10 repeat
11 find a control target point on the trajectory;
12 go to the control target point;

until13 the robot is at the end of trajectory ;

until14 a reachable unknown space does not exist;
Scenario 1: The exploration task

6.1 Following - Follow the Carrot

The program uses ”Follow the Carrot” algorithm for following the predetermined trajectory. A
control target point is generated on the trajectory (at a constant distance from the robot), which
represents the actual target. The robot calculates angular difference between its orientation and
the direction to the control point and regulates it to zero [16].

This task is based on the pure pursuit algorithm (Section 3.5) so only the different parts
are explained. In order to use this algorithm in the exploration task it is necessary to change
the trajectory at runtime and some simple obstacle avoiding should be used, because trajectory
calculated during the exploration might not be precise and there is a risk that the robot hits
some obstacle.

Follow the carrot algorithm is implemented in the TrajectoryFollow class. To simplify
calculations with vectors and points in 2D space, use MyNode class created in the pure pursuit
algorithm. The program calculates the position of the control target point (using the same
algorithm as in the pure pursuit) and then the angular velocity.

This time however the following does not use data from the odometry messages. To ensure
better compatibility with another programs, transformations are used in order to get the position
of the robot. First, when new path arrives, it is necessary to convert it from its own frame to
the odometry frame (in the case of using mapping from Section 6.2, the frames will be the
same). This conversion is necessary, because if the base of the path coordinate frame, which
is usually the same as the map coordinate frame, changes drastically, robot’s movement would
be too shaky.

When this is done, the program waits for the data from the laser scanner (necessary for
obstacle avoidance). After these data arrive, transformation from the odometry frame to robot’s

38/65

CHAPTER 6. EXPLORATION WITH KNOWN POSE Demonstration Tasks

frame is used in order to get the position. The data from this transformation should correspond
with odometry messages.

Apart from the pure pursuit algorithm, this time a simple obstacle avoidance is implemented.

6.1.1 Processing inputs and outputs

Commands for the robot are sent through the Twist messages. You can find more information
about this type of message in Section 3.1.1.

Input is from the LaserScan, which is necessary for the obstacle avoidance. For more detailed
information about this type of message look at the Section 3.1.1. To find the closest obstacle
find the minimum value from the ranges vector and calculate the appropriate angle of this
value by using the equation 3.1.

The third input is the path to be followed. The Path message contains the following variables:� �
std_msgs/Header header

geometry_msgs/PoseStamped[] poses

std_msgs/Header header

geometry_msgs/Pose pose

geometry_msgs/Point position

geometry_msgs/Quaternion orientation� �
In this case, the path only has positions in x and y coordinates. You can simply create

a new instance of MyPoint class for each element in the poses vector and add it to the
trajectory queue. Do not forget to empty the trajectory before adding new points. In this case
the trajectory changes every iteration and you need to follow always the newest one. Transform
each trajectory to the odometry frame.

6.1.2 Angular velocity

If you have found control target point (the algorithm is exactly the same as in pure pursuit),
now you need to calculate the angular velocity. First calculate the angle representing the error
value. It is the difference between the direction to control target point and the actual orientation
of robot:

ϕ = ϕ~t−~a − α,

where ϕ is error value, ϕ~t−~a is the angle between the target and the actual position and α is
robot’s orientation.

Now you have the angle. To transfer this angle to angular velocity use the equation:

ω = k · ϕ,

39/65

6.1. FOLLOWING - FOLLOW THE CARROT Demonstration Tasks

Figure 6.1: Obstacle avoidance

where ω is result angular velocity and k is constant equal to 1
t

(t - time for returning to zero
error value).

Higher value of constant k provides faster reactions on trajectory changes, but it may cause
unstable behaviour. Recommended value is k = 2.

6.1.3 Simple obstacle avoidance

The Follow the Carrot algorithm uses simple obstacle avoidance. First find the position of
the closest obstacle relative to robot. Then, if the obstacle is in the green zone (Fig. 6.1), slow
the robot to 80% of original velocity and set error angle to be:

ϕ = −0.3 · sign(β),

where β is angle of closest obstacle.

If it is in the blue zone, slow down the robot to 60% of original velocity and set the error
angle to be:

ϕ = −0.2 · sign(β)

If it is in the red zone, slow down the robot to 60% of original velocity and set the error
angle to be the same as in the green zone.

6.1.4 Experiments

The program was tested in Stage simulator with the prepared trajectory (which was submitted
through the /path topic). The trajectory was: [1.7; 2.9], [0.7; 2.4], [1.7, 1.9], [2.4, 2.4] repeated
several times. In Fig. 6.2a you can see that the robot was succesful in following that trajectory.

40/65

CHAPTER 6. EXPLORATION WITH KNOWN POSE Demonstration Tasks

(a) The experiment in the Stage simulator (b) The experiment in the SyRoTek

Figure 6.2: Follow the carrot

Program was also tested in the SyRoTek. The same trajectory as in a simulator was used
and you can see the result of this test in Fig. 6.2b.

The real trajectory of the robot is very similar to the simulated one. That did not happen
in the pure pursuit algorithm, because the robot was not slowed down there in sharp turns and
the behaviour of the simulator and the real robot is very different, when robot needs to rotate
fast while maintaining constant linear velocity.

6.2 Mapping

The mapping part of the exploration task creates a map of the unknown environment from
laser data. The main part of this algorithm is in the class named Grid. It contains an occupancy
grid2 and methods for input and output. This program has two inputs: odometry, which contains
information about the position of the robot and the laser scan. Each measured data from the
laser scan are processed into the occupancy grid and the final map is sent through the /map

topic.

6.2.1 Processing inputs

First input of this program are the Odometry messages. Processed data from odometry are
saved to the appropriate variables in the Grid class . Before doing that, you need to adjust x

2Occupancy grid is a grid of cells, where each cell has a value representing the probability of an obstacle on
the position of that cell.

41/65

6.2. MAPPING Demonstration Tasks

Figure 6.3: Occupancy Grid

and y position, because the sensor is positioned 4cm forward from the center of robot:

xnew = x+ 0.04 · cos(ϕ)
ynew = y + 0.04 · sin(ϕ)

Another input is from the laser scan. Data from the laser scan are used (together with the
odometry data) to create a map.

6.2.2 Occupancy grid

The main goal of using the occupancy grid is to represent the environment by a grid and
estimate the probability that a location is occupied by an obstacle (look at Fig. 6.3). To use
the occupancy grid you need two assumptions: occupancies of individual cells are independent
and the robot’s position is known [21]. In this case, you can store the occupancy grid as
std::vector<double>. Size of this vector is equal to size x*size y, where size x is a
number of cells in x axis and size y in y axis This vector represents a 2D grid so you need to
make representation of a cell in the two-dimensional grid to the one dimensional array:

k = j · lx + i, (6.1)

where [i, j] are coordinates of target cell, k is position in the vector (or 1D array) and lx is
size x.

Updating a value in the specified cell can be based on the Bayes rule:

p(A|B) =
p(B|A) · p(A)

p(B)

This equation can be modified for usage in the occupancy grid:

occ(i, j)n =
occ(i, j)n−1 · p(O)

occ(i, j)n−1 · p(O) + (1− occ(i, j)n−1) · p(F)
, (6.2)

42/65

CHAPTER 6. EXPLORATION WITH KNOWN POSE Demonstration Tasks

Figure 6.4: One measure from the laser.

where:

occ(i, j)n is probability that the cell (i, j) is occupied,

occ(i, j)n−1 is probability that the cell (i, j) is occupied according to the last iteration,

p(O) is probability that the cell (i, j) is occupied according to the last measurement (0.85
if this cell was evaluated as occupied in the last measurement, 0.35 if this cell was
considered as empty in the last measurement) and

p(F) is probability that the cell (i, j) is free according to the last measurement (p(F) =
1− p(O)).

6.2.3 Processing measurement

Each value in the laser scan data is processed separately. If you focus on one value, you have:

• the distance from the sensor according to k-th measurement: dk

• the angle relative to the sensor angle: ϕk

• the position and orientation of the sensor from odometry: [x, y, ϕR]

• lenght of an edge of the cell: s

Now transfer x and y coordinates for the position of sensor to the coordinates in the grid:

xg =
[
x

s

]
yg =

[
y

x

]

43/65

6.2. MAPPING Demonstration Tasks

Calculate the position of the obstacle in the grid:

xok = xg +
dk
s
· cos(ϕ)

yok = yg +
dk
s
· sin(ϕ)

and again round those values. Start in the [xg, yg] coordinates and in each iteration use the
equation 6.2 with p(O) = 0.35 and p(F) = 0.65 for the cell:

xcell = xg + i · cos(ϕk)
ycell = yg + i · sin(ϕk),

where i means the i-th iteration.

Skip the cells, that would be evaluated twice. That might happen (if ϕ 6= k · π
2
; k ∈ Z).

dg =
√
(xok − xg)2 + (yok − yg)2

If j ≥ dg or xcell = xok and ycell = yok, stop the cycle and use the equation 6.2 for [xok, yok]
with p(O) = 0.85 and p(F) = 0.15. This means, that all cells until this one are considered as
free (in this iteration) and this cell [xok, yok] is considered as an obstacle.

If j in the cycle would be bigger than is the reliable distance from sensor (∼ 0.7m converted
to cells), stop the cycle and do not save value for the obstacle. You can see the behaviour of
this algorithm in Fig. 6.4. The red line is connecting the position of the robot (red cell [xg, yg])
with the position of the obstacle (black cell [xok, yok]). The length of the red line is equal to the
measured value. The white cells are cells from each iteration considered to be empty [xcell, ycell].

6.2.4 Preparing output

Output of the mapping part of the exploration task will be OccupancyGrid:� �
std_msgs/Header header

nav_msgs/MapMetaData info

time map_load_time

float32 resolution

uint32 width

uint32 height

geometry_msgs/Pose origin

geometry_msgs/Point position

geometry_msgs/Quaternion orientation

int8[] data� �
44/65

CHAPTER 6. EXPLORATION WITH KNOWN POSE Demonstration Tasks

(a) The path in the simulator (b) The created map

Figure 6.5: Mapping in the simulator

This message must be prepared with all variables, if you want to be able to use another
applications (like RVIZ). For the header and map load time in info you can use the data from
the message with laser scan. It might be good to have same seq number in both messages
(you can see immediately, which belongs to which). Set the frame id to odom in Stageros or
/syros/global odom in SyRoTek, because global odometry uses the same coordinate system
as OccupancyGrid.

The resolution variable should be equal to the size of one cell in meters and the width

and the height are number of cells in x and y direction. The origin is in the point [0; 0] with
rotation 0 radians so fill it with zeros. The actual values from the grid are saved in the data

variable (in percents) as a signed char. To transfer the values from the saved grid (which is
in < 0; 1 >) multiply it by 100 and convert it to a signed char.

6.2.5 Experiments

The mapping part of the exploration task does not control robot’s movement. For that use the
planning (which will be in the next Section) and the following (from the previous Section). To
check, if everything is working correctly, another program for controlling the robot’s movement
was used (wall following).

The map was observed by RVIZ. To see the map there add a Map with /map topic.

As you can see in the Fig. 6.5, the program succesfully created the map of the environment
and the occupancy grid transmitted through /map topic was displayed in rviz (the right image

45/65

6.3. PLANNING Demonstration Tasks

Figure 6.6: Demonstration of Dijkstra’s algorithm on a small graph, showing two relaxation
operations [1]

in Fig. 6.5).

6.3 Planning

The goal of this task is to find the path to the nearest frontier (which is the cell between a
free and unknown space). This program uses the map from the mapping part in order to make
a plan. Dijkstra’s algorithm (Section 6.3.1) on a connection graph of grid cells is used.

The planning algorithm is implemented in the Planner class. Input to this application is
the OccupancyGrid from the mapping (Section 6.2). First you need to process the input data.
The robot is considered as a point in planning, therefore the obstacles have to be enlarged.
This is done by expanding obstacles to the free space in the map. Next comes the main part of
planning, which is the Djikstra’s algorithm.

Expanding obstacles on the whole map before the start of planning was very computationaly
demanding, mainly in cases, when the map was much larger than the arena3. The program was
modified to add new nodes to the graph representation of the map (Section 6.3.3) and expand
obstacles around them simultaneously with the actual planning. This modification significantly
lowered demands on the computer performance in cases, when the closest frontier is not far
from the robot.

The Dijkstra’s algorithm finds a path from the robot to the target point (in this case the clos-
est reachable frontier). If the path was found, you need to clean it (remove nodes, which lies on
the line between the other two nodes). Finally you can convert the path to the nav msgs::Path

(see the Section 6.1.1) and publish it.

46/65

CHAPTER 6. EXPLORATION WITH KNOWN POSE Demonstration Tasks

6.3.1 Dijkstra’s algorithm theoretically

Djikstra’s algorithm is a graph search algorithm that finds the shortest path in a graph with
non-negative edge path costs. First it expands the start node and marks expanded nodes as
”opened”. Next it finds an opened node with the lowest cost from the start, expands it and
marks it as ”closed”, which means, it can not be expanded again. If the target is found, the
algorithm can trace back the shortest route. It is possible to find a way to all frontiers, but it
is not necessary for this program [22].

6.3.2 Processing inputs

The input is OccupancyGrid from the mapping part. For detailed description look at the
Section 6.2.4. The size of the map (number of cells in a row and column) can be found in
the variables info.width and info.height which are stored in the OccupancyGrid message.
The size of one cell is stored in the variable info.resolution. The data vector (containing
occupancy grid) is one-dimensional, but it represents a two-dimensional grid so you need to
make a representation of a cell in a two-dimensional grid to a one-dimensional array. Use the
equation 6.1. Keep the origin of the map4, because it is necessary for calculating the position
of the robot in the map and publishing the path.

To get the position of therobot, look up transform between the map and the robot frame.
Convert that position into cell coordinates. This is the moment, when the origin of the map is
used. Transform the robot position according to the origin:

(
x
y

)
=

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)−1 (
xrobot − xorigin
yrobot − yorigin

)
· 1
s
, (6.3)

where ϕ is the rotation of the origin and s is the size of one cell.

6.3.3 Graph

In order to use the Djikstra’s algorithm you need to have a graph representation of the
occupancy grid. The representation is made by a node structure (for a cell in the map) and
unordered map5 which contains all nodes. The key in the map is a location of the node
converted to 1D coordinates (6.1). Each cell has connection to its neighbours according to
the Fig. 6.7. Longer connections (the green lines) should have the cost equal to

√
2 of shorter

3If you use some external mapping (for example Gmapping - Section 7.2), it might automatically expand
the map far beyond borders of the arena. This situation does not occur when you use mapping from previous
section.

4The origin from mapping is equal to ~0. It might seem unnecessary to work with it, but it ensures compatibility
with another packages (like gmapping 7.2).

5The unordered map is a C++ structure representing the map and allowing to access the elements by a
key.

47/65

6.3. PLANNING Demonstration Tasks

Figure 6.7: Graph representation of an occupancy grid

connections (the yellow lines). In order to simplify the calculation you can store the cost of path
as an integer. Calculate the cost by the following equation:

c = 5 ·
√
(x− xpar)2 + (y − ypar)2,

where c is the calculated cost, xpar is the coordinate of 0 th node (see in Fig. 6.7) and x is the
coordinate of node on the other side of connection.

After calculating this cost, convert it into integer. Shorter connections has cost 5 and longer
connections has 7.

Each node in the graph is stored in the Node structure, which contains its position in the grid,
information about the occupancy, its parent (the node from which was this node expanded),
the cost from start (sum of costs of all edges that were used to get here) and the information,
wheter this node is opened, closed or neither.

If the grid would be transfered to the graph this way, the planner would try to find the shortest
path and it might go too close to the obstacles, which might be dangerous. The solution is to
use higher cost of connections near obstacles (see more in the Section 6.3.4).

6.3.4 Expanding obstacles

Robot is in Dijkstra’s algorithm considered as a point so the obstacles must be expanded
minimally by the radius of robot. In order to find a safer trajectory through tight spaces, you
can expand the obstacles further, but do not block that space, only increase the cost of going
through these nodes. You can see an example of expanding obstacles in the Fig. 6.8. The original
obstacles are black. The basic expansion (robot is not able to go to these cells) is grey and the
cells (nodes in graph) with high cost are orange.

The cost modifier variable in the Node structure has predefined values for each case:

−2 Unmapped

48/65

CHAPTER 6. EXPLORATION WITH KNOWN POSE Demonstration Tasks

Figure 6.8: Expanded obstacles

−1 Occupied (the robot can no go through this place)

0 Free

< 1; 10 > How much is the cost of going through this node increased (x · 40%, where x is
the value in the occupancy variable)

As was mentioned above, obstacles are expanded only for the nodes used in planning. It means,
that if the planning algorithm reaches a node, which is not yet in the graph (unordered map),
it calculates the node’s cost modifier and adds it to the graph.

If the value in the occupancy grid is higher than 90, the node is already obstacle so set
cost modifier to −1. Otherwise start for cycles that will go through all cells in an occupancy
grid in the distance smaller than or equal to 2*robotRadius. If the obstacle (cell with value
higher than 90) is in the distance smaller than or equal to the robotRadius, set cost modifier

as well to −1. If no obstacle has been found, use the value 0 - free. If the obstacle is in the
distance between robotRadius and 2*robotRadius, calculate the cost increase by using the
following equation:

oc(i,j) = max(

√
(i− x)2 + (j − y)2 − r

r
; oc(i,j)),

where

x, y defines the position of an occupied cell in the occupancy grid,

i, j defines the position of a cell, for which you are calculating the increased cost,

oc(i,j) is an occupancy of cell in (i, j) position and

r is the radius of robot.

Finally check, if the node is a frontier (unknown space with value between 10 and 90 or equal
to −1). If it is a frontier and it is reachable, set the cost modifier to −2.

49/65

6.3. PLANNING Demonstration Tasks

6.3.5 Expanding nodes

Before you start the Djikstra’s algorithm, you need to prepare a method for expanding , i.e.
to find neighbour nodes which are possible to reach and calculate their costs. To expand a node
look at 8 neigbours (Fig. 6.7). If some of those has the occupancy equal to −1 (occupied), skip
them. Nodes with the occupancy equal to −2 (unknown space - you are getting there always
from the space you know so it will be a frontier) are not affected by the cost increase from
expanding the obstacles. The other nodes have their cost calculated from following equation:

c(x,y) = c(xp,yp) + k ·
100 + oc(x,y) · 40

100
,

where

c(x,y) is the calculated cost,

c(xp,yp) is the cost of the node from which you are expanding (node 0 in Fig. 6.7),

k is either 5 or 7 (explanation is in the Section 6.3.3) and

oc(x,y) is the value in the variable occupancy.

6.3.6 The Dijkstra’s algorithm

The open nodes are stored in a priority queue6. Before starting the Dijkstra’s algorithm, find
a node corresponding with the actual position of the robot (according to the transformation).
Set up the parent node to a point at itself and cost to 0. Start a cycle which ends if the
occupancy of an actual node is equal to −2 (the closest frontier is found). Expand the actual
node (in the first iteration it is equal to the start node). Then push all nodes gained from the
expansion into the priority queue.

Set the close variable in the actual node to true (this node may never be expanded again)
and pick the first node from the priority queue which is not closed to be the actual node for the
next iteration. After the first frontier is found, the cycle ends. Retrace the route to this node
by looking at its parent, parent of its parent, etc. until you find the start node.

6.3.7 Cleaning the route

The route from the Djikstra’s algorithm contains many superfluous nodes. If r would be the
resolution of the map, than the distance between nodes would be in the interval < r,

√
2 ·r >. A

direct line 1 m long would ussualy have ∼ 50 nodes (depending on resolution). In order to lower
computation requirements, the cleaning algorithm is implemented. It removes all superfluous
nodes (the grey ones in Fig. 6.9) from the trajectory.

6The Priority queue is a queue, in which are items ordered by their value (using comparator). The one with
the lowest value is picked from the queue first.

50/65

CHAPTER 6. EXPLORATION WITH KNOWN POSE Demonstration Tasks

Figure 6.9: Cleaning the trajectory

First push a start node into the trajectory. Keep the knowledge about the last node that was
put in the cleaned route and node from the last iteration. Prepare the angle variable, which
contains angle between the last two nodes (inicialize its value to something that can never be
output of atan2 function - for example 20). Start a cycle, that goes through all nodes in the
original trajectory. Skip the first node, which represents the start node. In the beginning of each
cycle calculate the angle between the last and actual node by using the following equation:

ϕ = atan2(yactual − ylast, xactual − xlast)

Now check, whether the value in the angle variable is 20. If it is true, it means that you are
one iteration after the beginning. Save ϕ into the angle variable and continue with the next
iteration. If the angle is equal or very close (∼ 10−3) to ϕ, continue to the next iteration. An
angle between points did not change so the point from the last iteration will be expendable.

If the angle is not the same as ϕ, it means that the direction has changed from the last
iteration so push the node from the last iteration into the cleaned route and save ϕ into the
angle variable. After the cycle ends, you have finally the clean route to the closest frontier.

6.3.8 Converting the route to the output

Last remaining step is to convert this route into the Path message. For the deatiled infor-
mation about the Path messages look at the Section 6.1.1. First you need to fill in the header.
Set the frame id to the map frame and the seq variable to the number of sent trajectories.
Each cell in the data vector has the position (x,y,z) and the orientation quaternion. Into
the position.x and position.y fill the position of the node. This position can be calculated
as xrobot and yrobot from equation 6.3. The orientation could be set to angle between this and
the previous node in the path or to robot’s orientation.

51/65

6.4. EXPLORATION RESULTS Demonstration Tasks

(a) The path of the robot (b) The created map

Figure 6.10: Exploration in simulator

In order to use this program with the Navigation Stack7, add the publishing of goals. The
Navigation Stack does not accept the goal in (or near) the unknown space. The parameter
goal distance sets up, how far from the frontier (distance on the trajectory) should be the
target. The parameter should be bigger then radius of the robot, otherwise the navigation stack
would still consider the goal as unreachable.

6.4 Exploration results

The whole exploration task (mapping, planning and following) was tested in the simulator
first. The results are in the Fig. 6.10.

The same test as in the simulator was made in the SyRoTek arena on the real robot. As you
can see from the Fig. 6.11, the robot succesfully created the map, but the precision is lower
than in the simulator. That might be caused by slower publishing rate of the robot’s position
and less precise measurements of the rotation by SyRoTek localization system. The record of
the whole experiment is published on the SyRoTek website in the Videos section8.

7The Navigation Stack is a ROS package which uses the map and the laser data in order to guide robot
safely to a target position.

8https://syrotek.felk.cvut.cz/about/videos

52/65

https://syrotek.felk.cvut.cz/about/videos

CHAPTER 6. EXPLORATION WITH KNOWN POSE Demonstration Tasks

(a) The path of the robot (b) The created map

Figure 6.11: Exploration in SyRoTek

53/65

6.4. EXPLORATION RESULTS Demonstration Tasks

54/65

CHAPTER 7. EXPLORATION WITH LOCALIZATION Demonstration Tasks

Chapter 7

Exploration with localization

The exploration with localization has the same goal as the previous task, to create a map
of the unknown environment, but with the use of the local odometry (measured by the robot
itself) instead of the global one and with the use of the Navigation Stack instead of the ”Follow
the Carrot” algorithm. Simple mapping (like in exploration described in the previous section)
can not be used. Local odometry can be after a while very far from the reality. The Navigation
Stack can create its own map, but it also does not provide localization. It is necessary to use
some external SLAM (simultaneous localization and mapping). There are basicly two choices.
The Hector1 mapping and the Gmapping [23]. The Navigation Stack can also work with the
AMCL2, but it provides only a localization on the static map so it is not useful for an exploration.

The Hector mapping was tested, but the results were much worse than with Gmapping.
Whereas the Gmapping localization basically corrects the odometry, the Hector does not use
odometry at all and only a map is used for localization. That caused some serious errors in
localization so the Gmapping was chosen.

The data from the Gmapping are sent to the planning part of previous exploration, which
finds the target frontier (this is done each time the Gmapping publishes refreshed map). The
Navigation Stack uses that frontier and the map from the Gmapping to guide the robot safely
between the obstacles.

7.1 Navigation Stack

The main goal of the Navigation Stack is to guide a robot safelty to the target position. It
works with two trajectories. The first one (global) is planned on the map of the environment
and the second one (local) is prepared with the laser scan data (to avoid obstacles, which are
not precisely mapped) [24]. The Navigation Stack uses following components to run [25]:

1http://wiki.ros.org/hector mapping
2http://wiki.ros.org/amcl

55/65

http://wiki.ros.org/hector_mapping
http://wiki.ros.org/amcl

7.2. GMAPPING Demonstration Tasks

Figure 7.1: Navigation local planner [2]

• A static map of the environment (not necessary, Navigation Stack can create its own map
from laser scan data)

• Data from the laser scan (necessary for local planner)

• Position of the robot in the map

• A goal position

The Navigation Stack creates a global plan on the map. This global plan is sent to the local
planner. It is transformed from the map frame to the odometry frame. This transformation is
necessary, because the map frame does not change continously and that would make robot’s
movement very shaky. The local planner uses a DWA (Dynamic Window Approach) [26] to
create a value function around the robot (represented as an occupancy grid - a local map) from
the laser data. The controller uses this value function to calculate linear and angular velocities
that are sent to the robot [26]. The illustration of the local planner is in the Fig. 7.1.

7.2 Gmapping

The gmapping package in ROS implements a Rao-Blackwellized particle filter3, that pro-
vides simultaneous localization and mapping of the environment [23]. It receives data from the
laser scanner, odometry data (in the form of transformation between /base link and /odom

frames) and transformation between the frame attached to incoming scans and /base link.
It creates a map in a form of 2D occupancy grid and provides transformation between /map

and /odom frames. The Gmapping can be used even with a less precise odometry (for example
local odometry in SyRoTek - measured by robot itself), because it refines the position by fitting
actual laser scan into the occupancy grid.

3http://openslam.org/gmapping.html

56/65

http://openslam.org/gmapping.html

CHAPTER 7. EXPLORATION WITH LOCALIZATION Demonstration Tasks

The Hmapping is very sensitive to transformation timing. It can not be run directly on
the SyRoTek server through ssh4. Running Gmapping on another machine needs very precise
time synchronization with the master5. The synchronization needs to be precise, because ROS
applications use the time from their machine. The master uses the time from SyRoTek and the
Gmapping uses the time from the computer on which it is running.

If the time is not synchronized with the master, the Gmapping discards all transformations
(usually because they are too old). Even worse situation might appear, when the time from
SyRoTek is ahead of the machine Gmapping running. When this happens, the Gmapping might
actually wait for the old transformations and match them with newer laser data. Sometimes
even good synchronization is not enough. The Gmapping usually works, but throws away a lot
of data (probably due to latency) and the map might be worse or nearly useless.

The way to solve these issues is to resend all the necessary transformations and topics from
the machine, on which is running Gmapping. The relay command provided by ROS does not
help in this case, because it does not change the time stamp in messages. It is necessary to
create an application (in C++), which subscribes to messages, changes the time stamp to the
actual time and transmits new messages to the different topic.

In the newer versions of Gmapping the transformation between map and odom frames is
published with its time set a bit to the future. This way the transformation is still actual when
it arrives. The older versions sends only the actual time. When the messages arrive to the
Navigation Stack, it rejects them, because they are too old.

Updating Gmapping to the version from ROS Hydro Medusa solved the problem. That version
however has much bigger requirements on processing power, which causes delays in publishing
the map. Small improvement can be achieved by using less particles for localization using laser
scan. Too low amount of particles would break the localization so a compromise was found (10
particles, 5 iterations and 0.025m accuracy).

7.2.1 Using Navigation Stack with Gmapping

The map for global planner in the Navigation Stack needs to be set to static. It does not
mean, that the map can not change. It means, that the map is external and the Navigation
Stack should wait, until it is published to the /map topic. When the new map is published, it is
automatically updated in the global planner. The global frame should be set to /map and robot
base frame to /base link. The local costmap should not be static. It’s global frame should be
/odom. The path found by the global planner is transfered to this frame by using transformation
provided by Gmapping.

The complete setting is in the file exploration.launch and included yaml files provided
on the attached CD.

4This option was not available in the time of writing this thesis.
5The master is in this case SyRoTek server running the roscore

57/65

7.3. EXPLORATION IN THE SYROTEK Demonstration Tasks

When the Navigation Stack is connected to the Gmapping, the goals could be obtained from
the planning part of the exploration task. That would create autonomous exploration with its
own localization. The goal can also be set manually in RVIZ. When the Navigation Stack uses
static map of the environment, it consideres all unknown space as obstacles and refuses to go
there. This is solved by sending target, which is on the path in specified distance6 from the
frontier.

7.3 Exploration in the SyRoTek

To start an exploration with the local odometry in SyRoTek, modify and resend LaserScan

and Twist messages and all transformations (originally sent from the SyRoTek) from the ma-
chine which is running the Gmapping and Navigation Stack to the new topics. This needs to
be done because of these reasons:

• The time synchronization mentioned above

• The frame of a laser rangefinder is in SyRoTek placed under the global odometry.

• The minimal and maximal values in messages from the laser scan does not correspond
with the size of the data vector. This is caused by cutting values, where the robot would
see itself.

• The robot does not follow the angular velocity sent through the twist messages, but
rotates approximately at half the speed. The values in the Twist messages (commands
for the robot) needs to be increased.

The LaserScan and Twist messages are subscribed by C++ program, which modifies the
necessary variables and publishes messages to new topic.

The new transformation tree should look like the right one in the Fig. 7.2. The transformation
between /odom and /base link should correspond with the transformation between /arena

and /syros/base odom. The data for publishing new transformation could be obtained from
corresponding transformation or from the local odometry messages. The transformation between
/base link and /scan is static ([x, y, z] = [0.04, 0, 0], [qx, qy, qz, qw] = ~0) and the last one
between /map and /odom is published by Gmapping.

7.4 Experiment and results

The Navigation Stack, Gmapping and planning was used in SyRoTek to create a map. The
programs used only local odometry. To see the record of this experiment, look at the video

6The specified distance should be larger than robot radius. Otherwise it might still be considered as unreach-
able. Recommended value is 0.15m.

58/65

CHAPTER 7. EXPLORATION WITH LOCALIZATION Demonstration Tasks

Figure 7.2: Original and new transformation trees

(a) The path in the Arena (b) The created map

Figure 7.3: Exploration with Gmapping and Navigation Stack

59/65

7.4. EXPERIMENT AND RESULTS Demonstration Tasks

Figure 7.4: The map created by Gmapping with 40 particles and 7 iterations

Exploration localization 06 720p.avi. In the Fig. 7.3 you can see the traveled path and
final map.

The movement is not completely smooth. Error in transformations occur sometimes, even
though all transformations are resent. These errors causes the Navigation Stack to stop the
robot immediately, because it does not know its location. Computational demands of Gmapping
caused another stops. The robot needs to wait, until the refreshed map arrives.

Data from the experiment were replayed with slower clock. Gmapping was tested on these
data with 40 particles (instead of 10) and 7 iterations (instead of 5). In the Fig. 7.4 is the
result. The quality has slightly improved.

60/65

CHAPTER 8. CONCLUSION Demonstration Tasks

Chapter 8

Conclusion

The thesis presents a simplified guide to work with the SyRoTek and the ROS. A reader learns
how to create applications, execute them in the SyRoTek as well as in the Stage simulator and
visualise the results of experiments in RVIZ.

The serie of demonstration tasks was created so that novice users have the inspiration for
their own work. These are the following tasks:

• Braitenberg vehicle - The simulation of Braitenberg vehicle was created with the use
of data from laser rangefinder. In the experiment the robot was succesfully driving and
avoiding obstacles, but in some cases the algorithm was too slow. That lead to imple-
mentation of simple obstacle avoidance, which increased angular velocity and decreased
linear velocity in dangerous situations.

• PID controller - The PID position and orientation controller was implemented. The
controller’s accuracy was dependent on the accuracy of odometry. Application maintained
predefined accuracy (0.01 m and 0.02 rad) in the simulator as simulated odometry is
ideally precise. The robot in the SyRoTek was set to move forward by 1 meter, turn
around by π radians and repeat this 8 times. In the end, the robot was approximately 10
cm away from the original position.

• Dead reckoning - The goal of the dead reckoning was to measure difference between
local and global odometry and a distance from the start position. The PID controller
was used to controll the robot. This time the robot was going twice through a square
trajectory (length of an edge 0.6 m). The difference between local and global odometry
was approximately 5 cm in x and y axis and −0.2 radians. The difference from the start
position was only 0.4 cm in x axis, but in the y axis it was −4.6 cm and in the rotation
0.1 radians.

• Wall following - The wall following algorithm used the laser rangefinder data to drive
along the wall in the predefined distance. The robot managed to follow the wall without
loosing it in the simulator as well as in the SyRoTek.

61/65

Demonstration Tasks

• Trajectory following - pure pursuit - The pure pursuit algorithm follows the path by
calculating a circular trajectory to the control target point (the point on trajectory in a
constant distance from the robot). The robot managed to follow the predefined trajectory
in the simulator as well as in the SyRoTek, but the real robot was having bigger problems
in sharp turns.

• Autonomous exploration with global odometry - This task was implemented as three
separate programs - mapping, planning and following (using follow the carrot algorithm).
Communication between these programs was done through ROS topics. This task showed
more advanced parts of the ROS system like transformations or parameter server. The
result of the experiment was a map of the SyRoTek arena. The robot managed to create
a map of the complete arena on its own, but the map was a little inaccurate in some
areas due to imperfection of the SyRoTek localization system (see in Fig. 6.11).

• Autonomous exploration and localization - In the last task the Gmapping and the
Navigation stack were used with the planning part from the previous exploration in order
to create an exploration with its own localization. Localization and the map was provided
by the Gmapping package which used local odometry (measured by the robot itself). The
planning part found frontiers and the Navigation stack was guiding robot safely through
the arena. The Gmapping was very demanding on the hardware so it was set to use less
particles for the localization. In order to obtain a better map the Gmapping was used on
the recorded data from the experiment. These data were replayed with a slower clock.

Commented source codes and video records of the experiments are published on the SyRoTek
website1. The explanation of tasks in this thesis is only a part of the SyRoTek Tutorials2. That
document is more detailed and contains the explanation of the source code, which would be
too long for this thesis.

The Braitenberg vehicle task was also used in the Practical Guide to the SyRoTek System
[5]. New users of the SyRoTek can now use this thesis as a guide, that will help them to create
their own applications.

1https://syrotek.felk.cvut.cz/about/codes
2https://syrotek.felk.cvut.cz/data/files/

62/65

https://syrotek.felk.cvut.cz/about/codes
https://syrotek.felk.cvut.cz/data/files/

BIBLIOGRAPHY Demonstration Tasks

Bibliography

[1] Wikipedia.org user Dcoetzee. File:dijkstra’s algorithm.svg, 2007. [Online; ac-
cessed 15-February-2014] Available from http://commons.wikimedia.org/wiki/

File:Dijkstra%27s_algorithm.svg.

[2] ROS.org. Local plan, 2014. [Online; accessed 4-May-2014] Available
from http://wiki.ros.org/base_local_planner?action=AttachFile&do=

get&target=local_plan.png Licensed under Creative Commons - Attribution 3.0
http://creativecommons.org/licenses/by/3.0/.

[3] M. Kulich, J. Chudoba, K. Košnar, T. Krajńık, J. Faigl, and L. Přeučil. Syrotek - distance
teaching of mobile robotics. Education, IEEE Transactions on, 56(1):18–23, Feb 2013.

[4] ROS.org. ROS tutorials, 2014. [Online; accessed 18-May-2014] Available from http:

//wiki.ros.org/ROS/Tutorials.

[5] Intelligent and Mobile Robotics Group. Practical guide to the SyRoTek system. Tech-
nical report, CTU FEL, 2014. [Online; accessed 2-May-2014] Available from https:

//syrotek.felk.cvut.cz/data/files/guide.pdf.

[6] ROS.org. About ROS, 2013. [Online; accessed 1-May-2014] Available from http://www.

ros.org/about-ros/.

[7] ROS.org. Introduction, 2014. [Online; accessed 1-May-2014] Available from http://

wiki.ros.org/ROS/Introduction.

[8] ROS.org. Understanding ROS nodes, 2014. [Online; accessed 1-May-2014] Available from
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes.

[9] ROS.org. Catkin or rosbuild, 2013. [Online; accessed 1-May-2014] Available from http:

//wiki.ros.org/catkin_or_rosbuild.

[10] ROS.org. Creating a ROS package, 2013. [Online; accessed 1-May-2014] Available from
http://wiki.ros.org/ROS/Tutorials/CreatingPackage.

[11] ROS.org. Writing a simple publisher and subscriber (c++), 2013. [On-
line; accessed 2-May-2014] Available from http://wiki.ros.org/ROS/Tutorials/

WritingPublisherSubscriber(c++).

63/65

http://commons.wikimedia.org/wiki/File:Dijkstra%27s_algorithm.svg
http://commons.wikimedia.org/wiki/File:Dijkstra%27s_algorithm.svg
http://wiki.ros.org/base_local_planner?action=AttachFile&do=get&target=local_plan.png
http://wiki.ros.org/base_local_planner?action=AttachFile&do=get&target=local_plan.png
http://creativecommons.org/licenses/by/3.0/
http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/ROS/Tutorials
https://syrotek.felk.cvut.cz/data/files/guide.pdf
https://syrotek.felk.cvut.cz/data/files/guide.pdf
http://www.ros.org/about-ros/
http://www.ros.org/about-ros/
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/catkin_or_rosbuild
http://wiki.ros.org/catkin_or_rosbuild
http://wiki.ros.org/ROS/Tutorials/CreatingPackage
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(c++)
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(c++)

BIBLIOGRAPHY Demonstration Tasks

[12] J. Faigl, J. Chudoba, K. Košnar, M. Kulich, M. Saska, and L. Přeučil. SyRoTek - a robotic
system for education. First International Conference on Robotics in Education, Bratislava,
pages 37–42, 2010.

[13] ROS.org. Rviz user guide, 2014. [Online; accessed 3-May-2014] Available from http:

//wiki.ros.org/rviz/UserGuide.

[14] Wikipedia.org. Braitenberg vehicle, 2012. [Online; accessed 2-May-2014] Available from
http://en.wikipedia.org/wiki/Braitenberg_vehicle.

[15] Microsoft Developer Network. D3DXQUATERNION structure, 2013. [On-
line; accessed 6-February-2014] Available from http://msdn.microsoft.com/en-us/

library/bb205402%28v=VS.85%29.aspx.

[16] J. Faigl, J. Chudoba, M. Kulich, R. Mázl, K. Košnar, L. Přeučil, and P. Štěpán. Syrotek:
V003.2 - rámcová definice úloh. Technical report, CTU FEL, 2008.

[17] ROS.org. Parameter server, 2013. [Online; accessed 3-May-2014] Available from http:

//wiki.ros.org/Parameter%20Server.

[18] ROS.org. roscpp/overview/parameter server, 2011. [Online; accessed 3-May-2014] Avail-
able from http://wiki.ros.org/roscpp/Overview/Parameter%20Server.

[19] ROS.org. roslaunch/xml, 2013. [Online; accessed 3-May-2014] Available from http:

//wiki.ros.org/roslaunch/XML.

[20] ROS.org. TF - ROS wiki, 2014. [Online; accessed 13-April-2014] Available from http:

//wiki.ros.org/tf.

[21] Miroslav Kulich. Environment representation and modeling, 2011. [Online; accessed
13-February-2014] Available from https://syrotek.felk.cvut.cz/data/files/ECI/

mapping.pdf.

[22] Wikipedia.org. Dijkstra’s algorithm, 2014. [Online; accessed 15-February-2014] Available
from http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm.

[23] ROS.org. Gmapping, 2013. [Online; accessed 13-April-2014] Available from http://

wiki.ros.org/gmapping.

[24] ROS.org. Navigation, 2013. [Online; accessed 13-April-2014] Available from http://

wiki.ros.org/navigation.

[25] ROS.org. Navigation tutorials robot setup, 2012. [Online; accessed 13-April-2014] Avail-
able from http://wiki.ros.org/navigation/Tutorials/RobotSetup.

[26] ROS.org. Base local planner, 2014. [Online; accessed 4-May-2014] Available from http:

//wiki.ros.org/base_local_planner.

64/65

http://wiki.ros.org/rviz/UserGuide
http://wiki.ros.org/rviz/UserGuide
http://en.wikipedia.org/wiki/Braitenberg_vehicle
http://msdn.microsoft.com/en-us/library/bb205402%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/bb205402%28v=VS.85%29.aspx
http://wiki.ros.org/Parameter%20Server
http://wiki.ros.org/Parameter%20Server
http://wiki.ros.org/roscpp/Overview/Parameter%20Server
http://wiki.ros.org/roslaunch/XML
http://wiki.ros.org/roslaunch/XML
http://wiki.ros.org/tf
http://wiki.ros.org/tf
https://syrotek.felk.cvut.cz/data/files/ECI/mapping.pdf
https://syrotek.felk.cvut.cz/data/files/ECI/mapping.pdf
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/navigation
http://wiki.ros.org/navigation
http://wiki.ros.org/navigation/Tutorials/RobotSetup
http://wiki.ros.org/base_local_planner
http://wiki.ros.org/base_local_planner

Appendix

CD Content

The names of all root directories on CD are listed in table 8.1.

Directory name Description

/doxygen Documentation created in Doxygen
/navigation Launch files for the autonomous exploration task
/src Source code of applications
/thesis This thesis in pdf format
/thesissrc Source code of this thesis
/tutorials Extended description of the tasks
/video Video records of the experiments

Table 8.1: CD Content

	Introduction
	ROS, SyRoTek and simulator
	ROS (Robot Operating System)
	Creating packages
	Preparing CMakeLists.txt
	Building a program
	ROS and C++
	Messages and topics

	SyRoTek
	Running ROS on SyRoTek
	Topics and messages from SyRoTek

	Stage simulator
	Topics and messages from the simulator

	Rviz

	The demonstration tasks
	Braitenberg vehicle
	Processing inputs and outputs
	Conversion
	Experiments

	PID Controller in ROS
	Processing inputs and outputs
	Angle and distance
	Errors
	PID (PSD) controller
	Experiments

	Dead Reckoning
	Following square trajectory
	Evaluating results
	Experiment

	Wall Following
	Processing input and output
	PD controller of the direction
	P controller of the angle
	Linear velocity
	Experiments

	Trajectory Following - Pure Pursuit
	Positions and vectors
	Trajectory
	Control target point
	Circular trajectory
	Experiments

	Parameter server and launch files
	ROS Parameter Server
	Roslaunch

	Transformations
	How transformations work
	Viewing transformations in RVIZ
	Using the SyRoTek transformation tree
	Transformation timing

	Exploration with known pose
	Following - Follow the Carrot
	Processing inputs and outputs
	Angular velocity
	Simple obstacle avoidance
	Experiments

	Mapping
	Processing inputs
	Occupancy grid
	Processing measurement
	Preparing output
	Experiments

	Planning
	Dijkstra's algorithm theoretically
	Processing inputs
	Graph
	Expanding obstacles
	Expanding nodes
	The Dijkstra's algorithm
	Cleaning the route
	Converting the route to the output

	Exploration results

	Exploration with localization
	Navigation Stack
	Gmapping
	Using Navigation Stack with Gmapping

	Exploration in the SyRoTek
	Experiment and results

	Conclusion

