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Abstract

In mobile robotics it is necessary to predict a robot pose on a terrain to guarantee
its stability when traversing an obstacle. Usual methods are based on an exact sim-
ulation of a robot-surface interaction, but this requires a precise physical model,
which can be hard to solve or can be too much complex. The aim of this thesis is
to propose and experimentally evaluate an algorithm, based on machine learning
methods, which predicts attitude of the robot (roll and pitch angles) in natural
environment. The main contribution of this work lies in development and eval-
uation of models, which can be used for predicting the safety of robot states and
actions while interacting with the environment. Three models based on different
multidimensional regression methods (linear, piecewise constant and Gaussian
process) were trained and compared. As a part of this work, testing dataset was
created and will be relased for the robotic community.

Abstrakt

V mobilní robotice je nezbytné předpovídat postoj robota vůči terénu, aby se
zaručila jeho stabilita při překonávání překážek. Běžně používané metody jsou
založeny na přesné simulaci interakce mezi robotem a povrchem, ale vyžadují
precizní fyzikální modely, které může být těžké spočítat, nebo mohou být příliš
komplexní. Cílem této práce je navrhnout a experimentálně ověřit algoritmus
založený na metodách strojového učení, který bude předpovídat polohové úhly
robota (náklon a sklon) v přirozeném prostředí. Hlavním přínosem této práce je
vytvoření a ověření modelů, které mohou být požity k predikci bezpečných stavů
a akcí při interakci robota s prostředím. Úspěšně byly naučeny a porovnány tři
modely založené na rozdílných vícerozměrných regresních metodách (lineární,
po částech konstantní a pomocí Gausovských procesů). Součástí této práce bylo
rovněž vytvoření testovacího datasetu, který bude uvolněn pro robotickou komu-
nitu.
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1 Introduction

1.1 Motivation

In the recent years, lot of work was made in the field of reinforcement learn-
ing (RL) for robots. Inspiration sources from nature, where babies come to the
world equipped only with a few reflexes and learn the rest of their behavior, like
walking, from their interaction with an environment. Every time they fall they
remember what was wrong and try to beware of doing that the next time, but
if everything goes right, they try to repeat it and optimize their movements for
better efficiency. This is, in short, the principle of the reinforcement learning. For
right actions (e.g. getting closer to the end-state), an agent gets positive reward,
for wrong actions (e.g. obstacle hit, wheel slip, etc.), the agent gets negative re-
ward. Simply, the strategy of the agent is solving an optimization problem which
maximizes its reward.

The ideal application of the RL for a robot can be imagined as an arena in which
this robot is placed with specified goals and reward rules. The robot randomly
tries various actions and gets rewards for them. Progressively it learns how to
interact with the environment efficiently.

In the real applications, there is no problem with situations that should be
granted with the positive rewards, because everything goes right. In the opposite
situations, which are granted with the negative rewards, the robot could be in
danger and because no damage during the training phase is allowed, it is not
possible to teach the robot these situations (it must not fall into a hole and destroy
itself).

Motivation of this work is to guarantee safety for mobile robots by predicting
their attitude (pitch, roll) in the future when traversing an obstacle. It is a task of
predicting proprioception from exteroceptive data which is, practically, a difficult
problem. However, it partially solves the problem of negative rewards in the RL
training phase by not allowing the robot to move into the potentially dangerous
places where the robot could overturn itself (the pitch and roll angles must not
exceed desired thresholds). Presented approach should be used independently on
the robot platform, especially in situations where the conventional numerical ap-
proach for computing a robot contact points with the surface is difficult. Final im-
plementation will be used as a module for the autonomous adaptive traversability
(AT) learning which is currently being developed to extend the training dataset of
the state-of-the-art AT method [1] based on the RL principle.

1.2 State of the Art

Although the safe traversability of the mobile robots on a flat surface was solved [2,
3, 4, 5], on a rough terrain it is still a hot topic. Unfortunately most of the natural
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(forest, cave, etc.) or disaster environments, like collapsed buildings, are unstruc-
tured. After the Fukushima disaster in 2011 a lot of attention was payed to the
robotic projects focusing on the urban search and rescue (USAR) which led to an
increase of funding in this field and to projects like NIFTi [6], TRADR [7], DRC [8]
and others.

The traversability on an uneven surface is closely related to the robot platform
attitude which is associated with a vehicle stability. Classical approach for predict-
ing the robot attitude and configuration uses analytical solution to compute the
contact point of the robot with a surface represented by the DEM (digital elevation
map) [9].

The Demo III experimental Unmanned Vehicle project [10] presented a four-
wheel platform, which was able to autonomously avoid obstacles and traverse
in highly unstructured outdoor environments, tested by the U.S. Army. Among
others it computes support surface (even in high grass) from a stereovision system
combined with a LADAR data for computing the pitch and roll angles by placing
the vehicle mask on this surface.

Tharok et al. [11] proposed a general approach for kinematics modeling of
n-wheel articulated rovers which is used for current Mars rovers. Weak part of
this method is that it relies on a perfect knowledge of the underlying terrain
which is always uncertain because of a sensor uncertainty. Ho et al. extended this
approach using the Gaussian Processes (GP) to also predict the traversability in
places, where sensors do not provide enough data (due to a sensor occlusion, etc.)
and which were previously marked as untraversable for the lack of gaps in the
terrain data [12]. GP can handle sensor uncertainties and include them into the
traversability prediction. In the following work the authors have improved their
approach using GP regression for the terrain features to predict the traversability
on an unstable terrain, where the rover-terrain interaction causes deformation of
the terrain [13].

1.3 Proposed Method

To predict the attitude of a rover, the near to far approach is used. In learning
phase, any 3D sensor (like lidar, RGB-D camera or stereo vision system) observes
the terrain ahead of the robot and constructs a DEM from it (see the section 3.1).
As the robot moves forward, the previously measured data in the form of DEM
are slides under the robot body and the new data from the 3D sensor update the
DEM in its frontal area. Later on, when the robot is on the DEM filled with known
data (composed from multiple measurements), its attitude (position angles of the
center of mass) obtained from the inertial measurement unit (IMU) is associated
with corresponding DEM features (extracted from this DEM (see the section 3.2)
in a similar way as in the image processing), which together forms the training
pair (see the section 4.1.1). Pairs obtained in this way are processed and used as
samples for the machine learning (ML). Three ML methods are used: the linear
regression, piecewise constant regression and the Gaussian process regression.
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These trained regression functions are then used for the prediction in testing
phase, where the DEM from a desired distance in front of the robot is used as an
input, and the robot attitude for that distance is computed (see the section 3.3).
This attitude is then compared with the ground truth data obtained from IMU in
future time samples, where the robot has moved its center of mass to the desired
distance. The root mean square (RMS) error in the testing data is then computed
for every ML method and they are compared.

Training and testing dataset took place in both, outdoor and indoor environ-
ment. Indoor environment consisted of stairs and corridors, outdoor environment
was formed from various palettes formations. The rover crossed over these obsta-
cles several times in different modes operated by a skilled operator. For better
description of these environments see the section 5.1.
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2 Resources

In order to provide the reader some important background information, this chap-
ter briefly describes the robotic platform and software used in this work.

2.1 Hardware

Fig. 2.1 shows an Unmanned Ground Vehicle (UGV) [14] designed by BlueBotics1,
originally developed for the NIFTi [6] project and is currently used in the TRADR
project [7]. The robot has two main tracks and four subtracks (called flippers) for
better stabilization so it can traverse over various obstacles (e.g. stair climbing).
For a better imagination of the robot size, Fig. 2.2 shows dimensioned blueprint
of the robotic platform.

The robot has following sensors: rotating SICK LMS-151 laser scanner (which
can provide a 3D point cloud composed of rotated planar scans), Point Grey La-
dybug 3 omnicamera and X-sens MTI-G inertial measurement unit (IMU) with
a GPS module (placed in the robot center of mass). It can be also equipped with
4-DOF (Degrees of Freedom) robotic arm with mounted ASUS Xtion PRO RGB-
D camera and the thermoIMAGER TIM160 infrared camera. Finally, every motor
has a position encoder for odometry measurement, as well for a detection of the
actual robot configuration. The force in each flipper is measured individually from
currents in those motors. Combination of all of these sensors provides a sufficient
position and orientation accuracy of the robot.

Figure 2.1: BlueBotics UGV [14] used in the TRADR project [7]

1Swiss robotics company http://www.bluebotics.ch/
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Figure 2.2: Side view of the robot

Inside the robot there is an embedded Kontron R© PC equipped with the Intel R©
CoreTM2 Quad Mobile processor (Penryn) Q9100, which has sufficient computing
power for a realtime image processing. Powered by a battery the robot can operate
nearly 4 hours. For longer missions there is a possibility of a hot-swap battery
replacement allowing an uninterrupted operation.

2.2 Robot Configuration Modes

The robotic platform we used has a great terrain traversability potential but it
also has a large number of degrees of freedom which have to be controlled. To
reduce the complexity of robot control, there are five predefined modes for the
most common situations like for going up the obstacle, down the obstacle, etc.
They are showed in the Fig. 2.3 and in detail described in table 2.1. Every mode is
lateral symmetric which means that left and right flippers have the same angle.

Table 2.1: Front and hind flippers angles in different modes and its typical usage.

mode typical usage front [deg] hind [deg]
1 unstable terrain with holes 0 0
2 compact for the best lidar view -165 115
3 front obstacle -45 10
4 back obstacle -10 45
5 edge (peak) traversing 40 -40
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(a) mode 1 (b) mode 2

(c) mode 3 (d) mode 5

Figure 2.3: Robot configuration modes. Mode 4 is reversed mode 3. Images taken
from [1].

2.3 Software

In this section the third party software used in this work is described. It is mainly
the open source software developed for the Robot Operating System (ROS) [15]
by researches from all around the world including my colleges on CTU in Prague.

2.3.1 Robot Operating System

ROS is the state-of-the-art collection of tools, libraries and conventions that aim
to simplify the task of creating complex and robust robot behavior across a wide
variety of robotic platforms. It is maintained by the Open Source Robotics Foun-
dation (OSRF) [16] which is an independent non-profit organization founded by
members of the global robotics community. ROS provides an automatic manage-
ment system for message-passing between nodes [17] using TCP/IP protocol.
A node is an executable that uses the ROS to communicate with other nodes using
topics [18]. Topics are named buses through which nodes exchange their data in
a form of messages.

2.3.2 Octomap Server

Octomap server [19] is a ROS package based on the OctoMap library [20]. It
builds and distributes volumetric 3D occupancy maps in various ROS-compatible
formats. Created multi-resolution map represents occupied areas as well as free
space. It is updatable with new sensor readings in a probabilistic fashion and dy-
namically expands if needed. Detailed information can be found in [21]. In this

6



work it is used as an alternative representation of pointclouds obtained from
a laser scanner. Points are recomputed to voxels from which centroids the DEM is
computed. Example of an octomap representation is in the Fig 2.4.

Figure 2.4: Pointcloud from laser data (grey) and octomap (green) build on its base
after 360◦ robot rotation.

2.3.3 The Inertial Navigation System Aided by Odometry (INSO)

INSO [22] is a ROS node for the Extended Kalman filter based data fusion of
odometry and inertial data (acceleration and angular rates) provided by IMU.
This node provides a reliable dead reckoning navigation which is used in the oc-
tomap server for merging multiple 3D sensor measurements from different loca-
tions. In the future it will be extended by data from the visual odometry which
will even improve the long-term accuracy.

2.3.4 GPML Matlab Toolbox

For a quick implementation of GP, the Matlab/Octave toolbox from [23] was used.
It includes the main algorithms from [24] for regression and classification, con-
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taining set of mean, covarience and likelihood functions also as various infer-
ence methods. Everything from the previous is integrated into the function gp(),
which does posterior inference, learns hyperparameters, computes the marginal
likelihood and makes predictions.
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3 Theory

In this chapter the theoretical analysis of methods used in this work is described.

3.1 Digital Elevation Map

Digital elevation map is an approximation of a real surface. A 3D sensor provides
information about position of many points with a various spatial density. Because
it is difficult to interpret these raw data, a suitable approximation is used. The
surface is separated into grid cells of a same size. Elevation of each cell is the
mean elevation of all points inside plus two times their variance. In this work,
one cell is 10 x 10 cm which is a sufficient approximation of the terrain because
the width of a main track of the robot used has also 10 cm. Complete DEM image
used in this work (see the Fig. 3.1) consist of 20 x 5 cells, having the same width
as the rover without flippers. It is defined in the robot body frame but with the
compensation from the pitch and roll to stay parallel with the x-y plane of the
global navigation frame, so it stays horizontal even if the robot inclines. It begins
one meter before the front edge of the rover and continues one meter behind it.

DEM
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id
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]

 

 

2 4 6 8 10 12 14 16 18 20

1

2
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4

5
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−0.6−0.5−0.4−0.3−0.2−0.10

Figure 3.1: DEM image showing the stairs showed in the Fig. 3.2.

Because the rover footprint is a part of the DEM, it is invisible for the robot
sensors. Actually, the sensor scans only a limited area in front of the rover. As the
robot moves forwards, the known scanned area slides under the robot. The newly
measured data are in the probabilistic manner joined together with those previ-
ously scanned using the octomap server (see the section 2.3.2) and fills the missing
cells. The rest of the missing values is approximated from the neighborhood us-
ing a plane fitting. For better imagination the figure 3.3 shows the robot on the
octomap of a same resolution as the DEM has (the octomap used for constructing
the DEM had one order higher resolution).

9



Figure 3.2: Stairs as seen from the robot omnicamera in a spherical projection.

Figure 3.3: Robot on the similar stairs as in the Fig 3.1. Green voxels are obtained
from the octomap server, red line is a border of the constructed DEM.

3.2 Features Extraction

DEM is processed in a similar way as the images in the machine learning. Instead
of using pixels intensity values (heights of the DEM cells), computed Haar-like
features are taken into account. The reason is that they are more general and ro-
bust to the noise. Finally, they reduce the dimension of the problem which leads to
a faster algorithm operation. Computed feature vector contains Haar-like features
computed from elevation of each DEM cell also as from the variance of detections
inside each cell.
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3.2.1 Haar-like Features

Haar-like features were introduced by Viola and Jones [25] as a fast feature for
cascade face detector. In this work, only two kinds of edge features are used as
shown in the Fig 3.4. The value of this feature is the difference between sums of
heights of cells within two rectangular regions. These regions have the same size
and shape and are horizontally (for pitch) or vertically (for roll) adjacent.

(a) pitch feature (b) roll feature

Figure 3.4: Haar edge features used to describe DEM

The fast way of computing Haar-like features uses computer vision method
called integral image. The integral image at location x, y contains the sum of the
heights of cells above and to the left of x, y, inclusive:

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′) (3.1)

where ii(x, y) is the integral image and i(x, y) is the original image (DEM). Once
the integral image is computed, it requires only three additions to compute the
sum of heights of any rectangular area (see figure 3.5).

3.2.2 Feature Selection

Features are computed on the part of the DEM - called the region of interest (ROI)
- which is affected by the robot footprint (see the figure 3.6). Because there is no
prior knowledge of which features at which regions are suitable for the prediction,
the features are computed over the all ROI and the greedy feature selection is used
to determine, which features have a significant impact. It iteratively searches the
full feature pool X̂ for the feature X̂k∗ with lowest residual error ∆y (predicted
value − reference value) and adds it to the feature pool X , which is then
used in the next iteration. This method is inherited from [1] and is summarized
in Alg. 1. The lower index Xk means the k-th feature from n features, the upper
indexX i is the i-th sample from m samples.
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Figure 3.5: Using integral images, it takes only three additions to calculate the sum
of heights inside a rectangular region of any size. The image is taken
from [26].

3.3 Regression

Regression is one of the crucial method from the machine learning which is used
for predicting continuous quantities. For given training samples (x, y) it tries to
estimate the function h(x) (hypothesis), that maps the input variable x to the target
variable y and fits the training data with a minimal error. The function values of
this function are called predictions. As there exist many functions there also exist
many regression types reckoning desired function types.

In this work, the multivariate regression is used, which means that every out-
put value y (pitch or roll) is computed from the input vector x called the feature
vector. This vector consist of scalar quantities (features) computed from the DEM

Figure 3.6: Robot on the ROI (green squares) of DEM (red squares) in the default
position. ROI is used for computing Haar-like features. For predicting,
the ROI is shifted forward by the length of prediction.
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Algorithm 1 Feature selection procedure

//Initialization
1: ∆y = y, n = 1
2: while (validation error is decreasing) do

// Select the feature X̂k∗ with the lowest residual error from the feature pool.
3: X̂k∗ = arg min(k)

∑m
i=1 ‖h([Xi

1 . . .X
i
n−1X̂

i
k])−∆yi‖2

// Add the selected feature X̂k∗ intoX .
4: X = [X X̂k∗ ]

// Update residuals
5: ∆y = y − h(X)
6: n = n+ 1
7: end while

(see the section 3.1).

3.3.1 Linear Regression

The basic regression model uses linear function. The hypothesis is defined by:

h(x) = ΘTx (3.2)

where ΘT is the transposed (n+1)×1 parameter vector, n is the number of features
and x0 from a (n + 1) × 1 feature vector x is equal to 1. The parameter vector is
obtained in the learning phase from the training pairs in the form (x, y) using
the closed form solution of the least squares problem called the normal equation
method:

Θ =
(
XTX

)−1
XTy (3.3)

ΘT = yTX
(
XTX

)−1
(3.4)

where y is a m × 1 vector of target variables, m is the number of the training
samples and X is the m × (n + 1) feature matrix where each row corresponds to
one feature vector from (x, y) pairs.

In cases where the redundant features (linearly dependent) are selected or
when there is more features than training samples theXTX becomes non-invertible.
Even pseudoinverse method based on the singular value decomposition (SVD)
can fail. To solve this problem, the regularization [27] is used as follows:

ΘT = yTX

(
ε

cov (y)
I +XTX

)−1
(3.5)

where ε is small number and I is the (n+ 1)× (n+ 1) identity matrix.
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3.3.2 Piecewise Constant Regression

To approximate nonlinear functions, the piecewise constant (PWC) regression is
used. PWC function f(x) consists of B locally constant regions fi(x) joined to-
gether at breakpoints b1, b2, . . . bB. In this work, these regions are equally sized
except the border parts which are (−∞, min_value) and (max_value,∞). Let
the indicator function CE = 1 when the event E is true and CE = 0 otherwise.
Then the regression model for f(x) is:

f(x) = f1C{b0≤x<b1} + f2C{b1≤x<b2} + · · ·+ fBC{bB−1≤x<bB} (3.6)

Every feature from a feature vector x has its own PWC function which are
aggregated together the same way as function parts in (3.6). The indicator function
is then described using the m×B ·n indicator matrixC and the m× 1 hypothesis
vector h(X) can be obtained using:

h(X) = CΘ (3.7)

where Θ is B · n × 1 parameter vector. This parameter vector is obtained during
the learning phase using the Moore-Penrose pseudo-inversion:

Θ = (CTC)−1CTy. (3.8)

Similarly to the linear regression (section 3.3.1), there is a problem with exis-
tence of inversion to the matrixC. For that case, the regularization is made similar
way:

Θ =

(
CTC +

ε

cov (y)
I

)−1
CTy (3.9)

where ε is small number and I is the n× n identity matrix.

3.3.3 Gaussian Process Regression

GP regression is a general nonlinear interpolation method. GP defines a distribu-
tion over functions p(f), where f is a function mapping from input space to out-
put. From a definition, p(f) is a GP if for any finite subset of inputs {x1, . . . , xm} the
marginal distribution over finite subset p(f) has a multivariate Gaussian distribu-
tion. The f = (f(x1), . . . , f(xm)) is an m-dimensional vector of function values
evaluated at m points xi. Every GP is parametrized by a mean function µ(x) and
covariance function (kernel) K(xi, xj):

p(f(x1), f(x2)) = N (µ,Σ) (3.10)
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where

µ =

[
µ(x1)
µ(x2)

]
(3.11)

Σ =

[
K(x1, x1) K(x1, x2)
K(x2, x1) K(x2, x2)

]
. (3.12)

In general, µ is m× 1 vector and Σ is an m×m matrix.

In this work, the kernel with squared exponential function with Automatic
Relevance Detemination (ARD) distance measure is used. It is characterized by:

K(xp, xq) = σ2
fe
−

(xp − xq)TP−1(xp − xq)
2 (3.13)

where theP matrix is diagonal with ARD parameters l21, ..., l2D (characteristic length-
scales), where D is the dimension of the input space and σ2

f is the signal variance.
The hyperparameters:

θ = {log(l1), . . . , log(lD), log(σf )} (3.14)

can be learned from the marginal likelihood function (showed below). As the
li → ∞ the function f varies less and less on the i-th dimension and it becomes
irrelevant. The ARD approach is used instead of feature selection (section 3.2.2)
which is crucial for other types of regression. Thanks to this, the GP regression
uses all features available.

For the regression assume the model:

yi = f(xi) + εi (3.15)

where f ∼ GP(·|0, K) and the noise εi ∼ N (0, σ2). Considering the training
dataset D = {(xi, yi)ni=1} = (X,y) the predictions are then:

p(y∗|x∗,D) =

∫
p(y∗|x∗, f,D)p(f,D)df = N (µ∗, σ

2
∗) (3.16)

µ∗ = Ky∗y
(
Kyy + σ2I

)−1
y (3.17)

σ2
∗ = Ky∗y∗ −Ky∗y

(
Kyy + σ2I

)−1
Kyy∗ + σ2 (3.18)

where the asterix ∗marks the testing samples.

The marginal likelihood function can be also computed for comparing the co-
variance functions:

p(y|X) =

∫
p(y|f,X)p(f)df = N (0,Kyy + σ2I) (3.19)

p(y|X, θ) = N (0,Kθ + σ2I). (3.20)

The higher likelihood means better regression fit. Since it is a function of θ and σ,
it can be optimized to find optimal hyperparameters θ. The closed form solution
minimizes the log likelihood:

ln (p(y|X, θ)) = −1

2
ln det(Kθ + σ2I)− 1

2
yT (Kθ + σ2I)−1y − ε

2
ln(2π) (3.21)
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More information about the Gaussian processes can be briefly found in the
Zoubin Ghahramani’s lecture [28] or detailed in [24].

3.4 RMS Error

To measure a quality of predictions, the Root Mean Square errors are computed
and compared. It is defined by:

ERMS =

√√√√ 1

n

(
n∑
i=1

(yi − f(xi))2

)
(3.22)

where n is a number of samples, y is a desired value and f(x) is a function value
computed from a input value x.
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4 Implementation

In this chapter implementation of algorithms proposed in this work is introduced,
divided into these two main parts: learning and predicting. The data are recorded
during the robot experiments, then processed in the MATLAB [29] where the re-
gression coefficients are learned and then deployed for predicting the rover atti-
tude.

4.1 Learning Phase

4.1.1 Extracting Data

One of the ROS (see the section 2.3.1) key features is the ability to record every
topic (or their subset) on the robot and save them to a container called bagfile.
It is done using ROS component rosbag [30] which can be used also for off-line
replaying of these topics on any other system with ROS. During the experiment,
the robot only records the sensory data to achieve a higher frequency of measure-
ments. The DEM calculation (see the section 3.1), mapping and other commonly
on-line running computations are made off-line on a desktop computer and the
result is MATLAB readable file containing timestamped sequence of sensory data,
the DEM and operators commands.

Building the Training Dataset

Each training sample consists of an angle acquired by the IMU and a vector of
features obtained from a DEM ROI which is computed from 3D data acquired
by lidar. It is important to note, that these two measurements (IMU and lidar)
correspond to the same spatial area but are not acquired at the same time. Their
precise alignment as a result of correct DEM composition in the octomap server
using the navigation data from the INSO is therefore crucial for a quality of the
machine learning. For the training samples the ROI lies under the robot footprint
so the DEM features are calculated in the same time sample as the corresponding
angle.

Building the Testing Dataset

The situation is more complicated for testing samples where the corresponding
angle to the current DEM is in the future time sample. The solution is to bind
data not by the time but by a distance traveled in the navigation frame which is
computed during the data extraction for each sample by:

dt = dt−1 + vxt−1 ·∆t · cos θt−1 (4.1)
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where di is the distance traveled from the beginning to the i-th sample in the
navigation frame, vx is the current robot speed according to the x-axis in the body
frame obtained from the INSO node (see the section 2.3.3), ∆t is a time difference
between two samples and θ is the pitch angle.

Because the measured data were sampled almost equidistantly in the time do-
main, the dependency between sample index and time is almost linear. In con-
trast, the spatial domain is generally non-linear because the robot is not moving
by a constant speed. As a next step, the testing samples are obtained as shown
in the Alg 2. The input parameter is a prediction distance D which is an integer
value specifying, in decimeters, how far the robot predicts (difference between the
current and future position of the robot center of mass). This decimeters sampling
was chosen because it is the size of one DEM cell and hence there is a minimal
shifting value for the ROI over the DEM.

Algorithm 2 Testing sample composing procedure

Require: 0 ≤ D ≤ 7 //the prediction distance in decimeters

1: D =
D

10
//convert it to meters to be in the same unit as the rest of distances

2: idx = 1
3: for i = 1 to ( the number of input samples m)− 1 do
4: if vxi > 0 and DEM ROI missing values cells ≤ T then
5: F = Haar-like features computed on the DEM ROI shifted by 10 ·D cells

forwards in the direction of motion
6: for j = i to m do
7: if dj − di +D > −ε and dj − di +D < ε then
8: tst_data[idx].pitch = θi
9: tst_data[idx].roll = ψi

10: flipper_angles = desired front and back flippers angles accord-
ing to the mode at i-th sample

11: tst_data[idx].pitch = [F, flipper_angles]
12: idx = idx +1
13: end if
14: end for
15: end if
16: end for
17: return tst_data[]

The samples where the robot does not move are skipped because they do not
provide any new information. Also the samples where the DEM ROI is incomplete
(has more than empirically assessed T = 2 empty cells) are skipped because it is
dangerous to drive the robot to a place of unknown elevation (sensor detected
nothing). In a real application, these places would be marked as untraversable
because it is probably a hole or a puddle, but it could be a very reflective or dark
paving, safe for traversal as well.

The Haar-like features are computed on the DEM ROI (see the Fig. 3.6) which
is shifted by the prediction distance (rounded to the DEM resolution) forwards
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in the direction of motion. This is the reason why the maximal prediction dis-
tance limit is 70 cm. The future corresponding sample is found by searching in the
“traveled distance” fields di of future samples. This principle fails when the robot
starts to move backwards, but this restriction was considered during the data col-
lection, and in all experiments used in this work the robot moves only forwards.
When searching for the corresponding samples a tolerance coefficient ε is taken
into account because the sampling of the spatial domain is not continuous. The
value of the ε was empirically set to be 5 cm which is a half of the DEM cell size.
Once the corresponding pair is found, the features are associated with roll and
pitch angles.

4.1.2 Model Training

Before training the linear and PWC model, the features are normalized to have
zero mean and unit covariance. The reason is that during the training, the inver-
sion of feature matrix is computed and the order differences causes a precision
loss. As a next step, the feature selection is made, as described in the section 3.2.2.

The output of the learning phase consists of six trained models divided in two
main groups, the first for a pitch angle and the other for a roll angle. Each group
contains linear, PWC and GP regression model. The linear and PWC regression
models contain a parameter describing selected features and parameters describ-
ing training features means and covariances, which are used for normalization
the testing data. For computing the GP regression, training data must be in the
used implementation provided as an input parameter, therefore these normaliza-
tion parameters are computed online and are not stored in the model. The liner
model has a parameter Θ, describing a magnitude of each feature, which is ob-
tained using the equation (3.5).

The first PWC model parameter is B and describes a number of locally con-
stant regions. This parameter was empirically set to 10, where the width of each
region is 0.5 except for the border parts, which are on intervals (−∞,−2) and
(2,∞). The second PWC parameter is Θ and describes a magnitude of each region
and is obtained using the equation (3.9).

Thanks to the ARD, the GP regression does not need the feature normalization,
nor the feature selection. However, it needs a hyperparameters vector which is
obtained by a gradient descent optimization of the function (3.21). The GP model
hence contains only these hyperparameters.

4.2 Predicting Phase

The trained models are used for predicting the angles. Before the regression is
made, features are normalized according to a training dataset:

Fnormi
=
Fi − µi
σ2
i

(4.2)
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where Fi is the i-th testing feature, µi is a mean value of the i-th training features
and σ2

i is a variance of the i-th training features. Than the linear regression is
computed using the equation (3.2), the PWC regression using the equation (3.7)
and the GP regression using the equation (3.16).
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5 Evaluation

5.1 Datasets

To provide machine learning with training and testing data, the expert operator
traversed the robot repeatedly across urban-type obstacles: wooden pallets and
various types of stairs (see the Fig. 5.1). Most of experiments used in this work
were made for the autonomous traversability learning [1], where the requirements
for a dataset are similar. Each single experiment (called maneuver) is formed by
a situation where the robot is successfully moving forwards across the obstacle us-
ing multiple modes (see the section 2.2). There are, in total, 17 maneuvers used for
training, that consist of crossing the wooden pallets. Further there are two levels
of testing: simple and complex. The simple testing consists of two maneuvers where
the robot crosses pallets. The complex testing consists of a single long maneuver at
stairs that were not used for training. This long maneuver is in the Fig. 5.2, where
the stair hall from Fig. 3.2 is traversed. The roll and pitch angles from all datasets
are in the Fig. 5.3, Fig. 5.4 and Fig. 5.5.

Figure 5.1: The wooden pallets used for training which images are taken from [1]
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Figure 5.2: Robot trajectory (red arrows) during the long maneuver at stairs.
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Figure 5.3: Training data

22



0 100 200 300 400 500

−20

−10

0

10

20

30

sample index

a
tt
it
u
d
e
 [
d
e
g
]

 

 

pitch

roll

maneuvers sep.

Figure 5.4: Simple testing data
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Figure 5.5: Complex testing data
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5.1.1 Incomplete DEM

For predictions at longer distance there is a problem with incomplete DEM, as
shown in the Fig. 5.6. Although plain fitting technique is used to cover the missing
cells, the real surface is uncertain. Therefore, a restriction for maximal number of
the missing cells was set that maximally two of them are allowed in the ROI.
This leads to a diminishing size of datasets for longer prediction, as shown in the
Fig. 5.7.

(a) Almost flat surface

(b) Stairs

Figure 5.6: Missing values in DEM (red cells)

5.2 Proof of the Concept

To verify the possibility of predicting the position angles according to the feature
vector chosen in this work (which means that feature vector contains features,
which are altogether sufficient for a correct computation of position angle) the
prediction of the current measured attitude from the newest previously measured
data is made. This verification is done on data obtained in the same way as the
training data, but on testing dataset, i.e., angles measured by IMU are compared to
angle computed from DEM ROI in the same time sample. It is not the time sample,
when the data were acquired by a 3D sensor (they were acquired when the robot
was a half its longitude backwards). The prediction is computed with a zero shift
of the ROI against the DEM and therefore the Alg. 2 is not used. Because the DEM
ROI contains the newest data that are available, it is expected, that the prediction
error will be the lowest possible. Therefore a definite number of features suitable

24



0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

prediction distance [dm]

n
u
m

b
e
r 

o
f 
te

s
ti
n
g
 s

a
m

p
le

s

 

 

simple

complex

Figure 5.7: Diminishing number of training samples with longer prediction dis-
tance.

for linear and PWC regression, which minimizes testing RMS error, is chosen, and
this number of features is used for other distances, where this prediction is used.

The Fig. 5.8 shows the RMS errors for linear and PWC regression for the pitch
and roll angles. The optimal number of features based on this experiment is set
as 28 for the linear regression (both angles), and 60 for the PWC regression of
pitch and 15 for the PWC regression of roll. It should be noted that these numbers
are not strict, because selecting for example 40 features for the PWC regression
of pitch does, with respect to the angles measurement accuracy, almost the same
prediction errors. The linear regression results are in the Fig. 5.9 and 5.10, PWC
regression in the Fig. 5.11 and 5.12, and the GP regression in the Fig. 5.13 and 5.14.
The GP regression also estimates variance of its prediction which is plotted in the
figures as a 2σ neighborhood.
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Figure 5.8: Linear and PWC regression RMS errors for various number of features.
GP regression uses all features as mentioned in the section 3.3.3.
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Figure 5.9: Linear regression for the zero ROI shift on the simple testing data.
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Figure 5.10: Linear regression for the zero ROI shift on the complex testing data.
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Figure 5.11: PW regression for the zero ROI shift on the simple testing data.
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Figure 5.12: PW regression for the zero ROI shift on the complex testing data.
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Figure 5.13: GP regression for the zero ROI shift on the simple testing data.
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Figure 5.14: GP regression for the zero ROI shift on the complex testing data.
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5.3 Results

The next sections describe the experimental results of all trained models on the
testing (simple and complex) datasets for pitch and roll for individual prediction
distances. Prediction distance is the difference between the actual and future po-
sition of the robot center of mass. The table 5.1 summaries all the results. The
lower errors for the roll angle are a consequence of lower angle deviations in the
training and testing dataset. It is also a reason for the better results of the linear re-
gression in predicting roll angle, because non-linear property of the used features
is insignificant.

5.3.1 Linear Regression

Fig. 5.15-5.22 show the linear regression predictions for distances from 10 cm to
40 cm for simple and complex testing dataset for pitch and roll.
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Figure 5.15: Linear regression for the 10 cm distance on the simple testing data.
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Figure 5.16: Linear regression for the 10 cm distance on the complex testing data.
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Figure 5.17: Linear regression for the 20 cm distance on the simple testing data.
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Figure 5.18: Linear regression for the 20 cm distance on the complex testing data.
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Figure 5.19: Linear regression for the 30 cm distance on the simple testing data.
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Figure 5.20: Linear regression for the 30 cm distance on the complex testing data.
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Figure 5.21: Linear regression for the 40 cm distance on the simple testing data.
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Figure 5.22: Linear regression for the 40 cm distance on the complex testing data.
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5.3.2 PWC Regression

Fig. 5.23-5.30 show the PWC regression predictions for distances from 10 cm to
40 cm for simple and complex testing dataset for pitch and roll.
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Figure 5.23: PWC regression for the 10 cm distance on the simple testing data.
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Figure 5.24: PWC regression for the 10 cm distance on the complex testing data.

43



0 50 100 150 200 250 300 350 400
−30

−20

−10

0

10

20

30

sample index

p
it
c
h
 [
d
e
g
]

 

 

original

prediction

error

maneuvers separator

0 50 100 150 200 250 300 350 400
−8

−6

−4

−2

0

2

4

6

sample index

ro
ll 

[d
e
g
]

 

 

original

prediction

error

maneuvers sep.

Figure 5.25: PWC regression for the 20 cm distance on the simple testing data.
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Figure 5.26: PWC regression for the 20 cm distance on the complex testing data.

45



0 50 100 150 200 250 300
−30

−20

−10

0

10

20

30

sample index

p
it
c
h
 [
d
e
g
]

 

 

original

prediction

error

maneuvers separator

0 50 100 150 200 250 300
−8

−6

−4

−2

0

2

4

6

sample index

ro
ll 

[d
e
g
]

 

 

original

prediction

error

maneuvers sep.

Figure 5.27: PWC regression for the 30 cm distance on the simple testing data.
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Figure 5.28: PWC regression for the 30 cm distance on the complex testing data.
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Figure 5.29: PWC regression for the 40 cm distance on the simple testing data.
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Figure 5.30: PWC regression for the 40 cm distance on the complex testing data.
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5.3.3 GP Regression

Fig. 5.31-5.38 show the GP regression predictions for distances from 10 cm to
40 cm for simple and complex testing dataset for pitch and roll.
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Figure 5.31: GP regression for the 10 cm distance on the simple testing data.
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Figure 5.32: GP regression for the 10 cm distance on the complex testing data.
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Figure 5.33: GP regression for the 20 cm distance on the simple testing data.
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Figure 5.34: GP regression for the 20 cm distance on the complex testing data.
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Figure 5.35: GP regression for the 30 cm distance on the simple testing data.
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Figure 5.36: GP regression for the 30 cm distance on the complex testing data.
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Figure 5.37: GP regression for the 40 cm distance on the simple testing data.

56



0 20 40 60 80 100 120 140 160
−30

−20

−10

0

10

20

30

40

sample index

p
it
c
h
 [
d
e
g
]

 

 

original

prediction

error

prediction 2 σ

0 20 40 60 80 100 120 140 160
−25

−20

−15

−10

−5

0

5

10

15

20

25

sample index

ro
ll 

[d
e

g
]

 

 

original

prediction

error

prediction 2 σ

Figure 5.38: GP regression for the 40 cm distance on the complex testing data.
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Table 5.1: Comparison of all regression methods for the pitch and the roll for the
prediction distances up to 40 cm.

dataset prediction pitch RMS error [deg] roll RMS error [deg]
distance [cm] linear PWC GP linear PWC GP

training 0 8.75 5.95 0.99 1.87 1.50 0.04

simple

0 8.95 5.24 3.52 2.43 2.36 3.02
10 8.59 5.68 4.71 2.60 2.47 3.23
20 9.17 6.15 7.09 2.66 2.61 3.30
30 9.63 6.77 7.40 2.71 2.60 3.39
40 9.51 6.72 7.29 2.51 2.44 3.24

complex

0 7.04 5.45 10.26 2.82 3.07 2.57
10 7.06 5.63 9.21 2.87 2.99 2.56
20 7.41 5.41 9.66 2.88 2.96 2.58
30 8.46 5.84 10.52 2.57 2.53 2.26
40 8.84 5.51 10.27 2.28 2.43 2.00
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6 Discussion

This chapter highlights some of the issues and unsolved problems, which are yet
interesting but exceed the scope of this thesis.

6.1 ROS Implementation

The implementation of the proposed algorithm has not been deployed on the
robot because the experiments have taken more time than expected and because
a more complex ROS node for the autonomous robot safety is currently under
development. It will contain other modules based on the reactive architecture as
well as high level functionality, like presented in this thesis. The final specification
was not established yet, so the C++ or Python implementation for ROS is left for
the future work.

6.2 Wider DEM

The DEM used in this work had width of 50 cm, which covers the area between
the flippers (see the Fig. 3.6). The reason is that the detection of points under flip-
pers could be limited in some flipper modes and this absence of points should
have an impact on the learning. The prediction might depend on the mode se-
lected, instead of the real surface under flippers. This assumption was not tested
primarily because the training samples used in this work contained mostly the
horizontal obstacles wider than the robot, and the effect of DEM expansion to the
sides should be minimal. However, in a future work it would be interesting to
test the DEM widened to cover the width of the robot (60 cm), according to the
Fig. 6.1, and see the consequences.

Figure 6.1: Robot on wider version of DEM in its default position. The original
DEM size is indicated by a red rectangle.
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6.3 Incomplete DEM

Big problem of the presented methods is the incomplete DEM. Although the miss-
ing cells values are computed from their neighborhood using a plane fitting, this
approach can be used only for local defects. Current implementation is unable to
distinguish between local occlusions (due to a small stone) and missing parts of
the terrain (e.g. an edge of a cliff). For this reason a strict restriction were made in
this work for the count of allowed missing cell values which leaded to a reduc-
tion of usability training set to about one third. Another approach was recently
published by [31] where the GP reression is used to estimate the elevation of the
DEM missing cells. Besides the nonlinear interpolation, GP also computes the un-
certainty which can be used to distinguish between safe to interpolate areas and
potentially dangerous holes in the terrain.

6.4 Limitation of the Model

Even though the proposed algorithm is mentioned to cooperate with a robot plan-
ner, it cannot be used to mark untraversable areas. Example situation is a steel rod
sticking out of a concrete desk just before the robot. The desk is flat so it is suit-
able for safety traverse. A 3D sensor will detect the rod, it will be transferred to
the DEM, but because the robot had never been standing on a tight tall obstacle
before, it is eliminated as an outlier and the features describing the large flat area
around will overweight it.

6.5 Configuration Mode Change Impact

The configuration mode has an impact on the resulting attitude angles, as shown
in the Fig. 6.2 where the robot changes its pitch angle only by a change of the
flippers configuration, while not moving. This angle change can be up to 8◦ on
a same DEM and is the major source of the prediction errors. If this property is
included into a feature vector, the predictors generalize from a fact, that before an
obstacle, the robot operator often changed the configuration mode to one suitable
for that kind of obstacle, but this is not usable for the general predictions, because
other operator could change the mode in a different distance before the obstacle.

6.6 More Regression Types

In this work a PWC regression was used as a representative simple nonlinear re-
gression method because there was a function tested implementation from a pre-
vious work. It would be interesting to compare its results with a similar method
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Figure 6.2: Dependency of the distance traveled and pitch angle on the sample
index. On the index nr. 251 there is a change of 7◦ in pitch caused by
a mode change, because the robot was not moving (red line is con-
stant). Similar situation on the indexes nr.436 and 516.

called piecewise linear regression, which uses linear functions instead of constant
values in joined regions.

Also, for the GP regression there are other kernel functions besides the used
popular squared exponential, which would be interesting to test and compare
(e.g. Gabor, Matérn, neural network, rational quadratic, etc.).

6.7 Prediction for Non-Straight Trajectory

Prediction method presented in this work assumes, that the robot will continue
in a straight forward movement. For the real application, it would be interest-
ing to extend this method to be able to predict the robot attitude according to
an arbitrarily curved trajectory, that would be generated by a robot planner. This
involves rotations of the DEM and its recalculations for discrete trajectory points.
Prediction of the turning movement may be limited because of the sparser lidar
detections on the sides of the robot, but it could be solved by, for example, slowing
the rotation of the lidar (resulting in denser measurements but a slower response)
or by using an additional 3D sensor mounted on the robot arm.
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7 Conclusion

Three algorithms for predicting a robot attitude with respect to its stability, based
on the machine learning methods, were proposed, trained and evaluated on dif-
ferent obstacles than used for training. Each algorithm consists of two models:
one for predicting the pitch, second for the roll. Based on the results of the pitch
predicting models, the linear model is not recommended for future usage. Results
of the roll predicting models are not significant enough because the used training
samples do not capture the whole range of motion dynamics.

Although the GP regression provided worse results in comparison to the PWC
regression, it specifies prediction variance from which the precision of prediction
can be stated. It also provides more stable and less noisy predictions and due
to the automatic relevance detection no feature selection (and hence no cross-
validation) is needed. While evaluating the GP method we discovered a great
potential that can be exploited in the future work by expanding the training set
and by examining more complex kernels. Regarding the accurancy of the IMU
measurements, which is about one degree, the prediction error about 6◦ is accept-
able.

Datasets used in this work aimed to cover maneuvers made by a human oper-
ator during crossing stair-like obstacles (palletes, concrete block, etc.). Although
the training dataset contained about 3000 samples, it is insufficient to cover all the
terrain characteristic (e.g. a forest terrain is completely different from the training
samples) and further training will be necessary to improve the generalization of
the predictor before deploying in the robot as a reliable application. Especially
creation of dataset specialized on various roll angles is recommended, because it
is not well covered in this work.

The proposed method aims to predict the safety of the robot in the meanings
of stability by defining, that the robot is in danger of overturning, when its pitch
angle is greater than 45◦ and the roll angle greater than 35◦. This is not sufficient
to individually guarantee robot safety and assumes that it will be a part of a more
complex system. Only predictions in the forward straight direction are computed.
When the robot is, for example, on a narrow bridge, this method cannot ensure
that the robot will be safe when turning around. It is also good to note that the
behavior of the robot, when changing its configuration from one mode to another,
is unknown.

All source codes and datasets created during this work are stored on the CMP
[32] datagrid and after the end of the TRADR project will be opened to the world-
wide robotic community.
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CD content

Attached CD contains a text of this master thesis in the PDF format and source
codes of the whole text for the LATEX.

The directory tree is in the next table:

Table 1: Directory tree of the attached CD

Directory Label

LaTeX source codes for the text of the thesis
↪→ src directory containing individual chapters
↪→ fig directory with used images
↪→ plots directory with used plots

↪→ Makefile Makefile for building the thesis
↪→ thesisPrint.pdf printable version of the thesis
thesis.pdf CD version of the thesis
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