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Abstrakt / Abstract
Tato bakalářská práce se zaměřuje

na aplikaci evolučního algoritmu na
dobře známý problém vývoje virtuál-
ních bytostí. Rozebírá vhodnost použití
hybridního algoritmu s diferenciální
evolucí pro obdobnou úlohu. V práci je
popsána struktura vytvořené abstraktní
vrstvy nad genotypem f0 volně pří-
stupného programu „Framsticks“, která
umožňuje snazší ovládání průběhu evo-
luce. Práce zkoumá vhodné hodnoty
parametrů v několika ukázkových expe-
rimentech s různým nastavením fitness
funkce. Závěr zhodnocuje podobu a
chování vzniknuvších jedinců.

Klíčová slova: Virtuální bytosti;
Framstics; evoluční algoritmy; diferen-
ciální evoluce.

Překlad titulu: Virtuální bytosti si-
mulované ve Framsticks

This bachelors thesis focuses on
application of evolutionary algorithm
to the well-known problem of virtual
creatures evolution. It analyzes the
capabilities of hybrid algorithm with
differential evolution on this task. This
thesis describes the structure of imple-
mented layer of abstraction above the f0
genotype of free program „Framsticks“,
which is designed to help control the
progress of evolution. It explores the
optimal values of parameters in several
exemplary experiments with various
settings of fitness function. The con-
clusion discusses the appearance and
behavior of resulting individuals.

Keywords: Virtual creatures; Fram-
stics; evolutionary algorithms; differen-
tial evolution.
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Chapter 1
Introduction

1.1 Structure of the thesis
In order to guarantee capable evolutionary algorithm we need to study both the theo-
retical and the implementationary side of things. We take a look at couple of interesting
studies in the area of virtual creatures in chapter 1 after this introduction. At first we
mention the initial work of Karl Sims and the consequential papers that expanded upon
his work. We mention the theoretical background of evolutionary algorithms in chapter
2. We study the possibilities and usage of differential evolution. In chapter 3 we talk
about the implementation of said algorithms and about the abstraction layer made on
top of Framsticks genotype. We show exemplary experiments in chapter 4 and discuss
the results and sample individuals. All is summarized in chapter 5 and possible future
studies are suggestes.

1.2 Karl’s Sims Virtual Creatures – How it all started
Karl Sims wrote his paper Evolving Virtual Creatures [1] in 1994 and since then many
other researches were inspired by his work in this field. He used the concept of creatures
living in virtual spaces. These creatures consisted both from body and brain. Physical
parts (boxes of various proportions) and neural system that controlled those physical
components.

He used the terms genotype and fenotype, where genotype represents code by which
are creatures completely described (sort of like human DNA, the source code for con-
struction of human being – with the exception, that virtual creatures created by code
are always the same). Phenotype is then what gets constructed – individual built from
the blueprints of genotype.

Karl Sims then used by nature inspired evolutionary algorithm to develop sophis-
ticated creatures from the absolute chaos of random generated initial population. He
used mutation and crossover of virtual creature genotypes to develop more complex
specimen. How exactly he did it, what representation he used for virtual creatures and
how he defined virtual world rules and fitness evaluation function can be read in his
paper [1].

In his second paper Evolving 3D Morphology and Behavior by Competition [2], he
adressed the idea of evolution through competition. In nature we can see this principle
as species are evolving in the way best suitable for survival in their habitat. This
evolution is usually very gradual and slow. Rate of evolution is majorly boosted when
the population is faced with some dangerous outside force. Then the very existence
of entire species is in danger and individuals are forced to change and adapt in order
to survive in this new environment. One can use this principle to make specimen of
various species compete each other. We expect to see evolution of strategies and counter
strategies in cycles of co-evolution.

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
There are many possible ways to approach this competition. Very important aspect

is the coupling of pairs from the entire population to compete each other. We may use
competition evaluation between creatures of only one class or we can have two or more
competing species that battle between each other while evolving amidst individuals of
the same species. Other problem we have to keep in mind is the possible time consump-
tion for each round of battles to be evaluated. For example having each creature combat
every possible opponent would be very time demanding. We can use randomized pairs
but that may yield random results. Perhaps the best approach is to have competition
of all creatures of one class to fight only the best specimen of other class.

His work inspired many other researches which used his altered concept. Many
tried following his visions and thoughts of future development of virtual creatures.
He suggested trying different fitness functions, evolution through competition and he
also mentioned the possibility of constraining creatures by the rule that they must be
constructible as real robots.

1.3 The story so far

1.3.1 Hardware creatures
Those limited by real world constrains but probably closest to practical usage. The
more specialized case of this approach would be some sort of autonomous workstation
that would adapt to its surroundings and perform various tasks by assembling real
world virtual creature robots from modular parts.

The best example of this principle would be the work Automatic design and Man-
ufacture of Robotic Lifeforms [3] which focused on evolution of virtual creatures that
were automatically manufactured by rapid prototyping machine. They willingly min-
imised the influence of human operators in order to have their system as autonomous as
possible. The only human input was the starting definition of simulated world (as close
to the reality as was computationally possible) and the assembling of printed robot
parts with motors. Their virtual creatures and then manufactured robots consisted
from bars, joints and linear actuators (they didn’t include any sensor parts). Their
reason behind autonomous behaviour of the entire system was that the most difficult
task is the planning and manifacture of robots. Apart from mass production it isn’t
cost efficient to design each robot and it would be useful to have them develop themselfs
in virtual space.

Figure 1.1. Example of virtual creature constructed in real world. Image used from web-
page of project Golem1)described in [3].

1) http://www.demo.cs.brandeis.edu/golem/

2

http://www.demo.cs.brandeis.edu/golem/


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 The story so far

1.3.2 Evolution limited to neurons and musles
In multiple papers the evolution is limited to certain part of virtual creature. We can
use bodies predesigned by human designer and bring them alive through the evolution
of neural network. In the work Evolving Physically Simulated Flying Creatures for
Efficient Cruising [4] we can see the task to learn how to fly in stable manner in an
avian-like bodies by evolution of wing shape and their controllers while wing root and
testing environment remains the same.

In the paper Flexible Muscle-Based Locomotion for Bipedal Creatures [5] we can
see the task of adapting a natural-looking motion of general bipedal bodies. This
could be used to animate human-like figure or even fictional body types into motion,
which is shown on the example of dinosaur creatures. For this evolutionary task there
is no need for solid data gain from motion capture, which would not be possible in
the case of dinosaurs. Furthermore this task was expanded by variating the fitness
function and world rules for several variants of generated movement. The parameter
of required target speed achieved the result of simply walking or running creatures. In
other experiment creatures had to follow path and learn how to steer properly or move
on uneven terrain. The last test was for creatures to adapt stable enough movement to
endure various external disturbances (in the form of randomly genereted boxes being
tossed at moving creature).

1.3.3 Different aproaches to task definition

1.3.4 Stairs and pylons
In the paper A New Step for Artificial Creatures by Nicolas Lassabe [6] we can see var-
ious experiments with the usage of evolved virtual creatures. We can see more complex
worlds having obstacles for creatures to pass through. Starting with the usual walking
creatures we see the experiment to generate creatures walking in one specific direction.
These creatures usually manifest far more symmetricity than those not constrained by
the rule of one direction movement. Other task was to climb stairs with various step
height and traverse across pylons with changing space between each other (where falling
from pylons is frowned upon and punished severely by dividing fitness by ten). Aspects
of these experiments are joined in one that forces virtual creatures to live and walk in
completely randomly generated terrain.

1.3.5 Skateboarding creatures
Very interesting is the experiment with skateboarding creatures from the same paper
[6]. These have to control predesigned block with the behaviour similar to skateboard
(movable box with wheels). Creatures have to develop the capability of riding and
pushing this foreign object without letting it go. Interesting here is the interaction
with unchanging tool – the evolutionary learning process to use tools correctly.

1.3.6 Behavioral approach
Its often useful to think about how the programmer of these evolving systems can in-
fluence (by chance or by willful attempt) the result of evolutionary algorithms. The
obvious bottleneck would be the evalutation fitness function, ways how the world around
creatures functions or even the computational limitations brought by chosen represen-
tation of creature’s genotype. This control of virtual population can be reduced in

3



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
order to find the most general solution to our solved problem – leaving doors opened
for designs that we would not think about ourselves.

On the other hand, this control can be admitted and used to create creatures of
more complex behaviour that suits our needs. In the recent work of Dan Lessin [7]
named Open-Ended Behavioral Complexity for Evolved Virtual Creatures we can see the
effort to construct some high-level program for creatures to evolve into. There we have
the syllabus that contains small broken-down tasks of the complex behaviour and the
order in which creatures learn these small fragments. Once creature has mastered one
individual task sufficiently enough then comes the encapsulation process in which we
lockdown created body and neuron parts. Then we go to next task and we make crea-
tures evolve new neural connections and parts that will fulfill this next task. We cannot
break-down already encapsulated segments of our creature. This leads to approach of
human to control the very abstract task creation of syllabus that leads to emergence
of behavioral encapsulated functions this creature is capable of. By the brute force of
evolution creatures learn how to complete this abstract program.

4



Chapter 2
Evolutionary algorithms

So from the first chapter we know about virtual creatures, what they are and how can
they be developed with the help of evolutionary algorithms. In this chapter, we will
be using the terminology and general idea of evolutionary algorithms from sources like
[8–9].

2.1 Evolutionary algorithms
Evolutionary algorithms are often used in optimalization tasks and we can look at
the task of finding the best specimen, virtual creature, as search in world of many
dimensions (corresponding with the number of parameters of creature’s genotype) with
one maximized value – fitness. It can be said, that we are maximizing function that is
a simulator with input of genotype and one output of fitness.

Given the fact, that individual can be represented by very high number of parameters,
the space that this fitness function represents can be very irregular or even pathological.
There are no guaranties of its continuity, there can be great quantities of local extremes
and there even might not be one global extreme and solution. Imagine a situation when
changing one parameter to greater value will always lead to better fitness – for example
while building the tallest creature. If simulator permits tall creatures to exist (and
doesn’t for example force them to collapse under its weight), the creature will grow
infinitely.

 

Body evolution 

body iterations 

body population size 

Brain evolution 

Differential evolution 

brain iterations 

brain population size 

for each individual: 

… Differential evolution 

brain iterations 

brain population size 

while end condition not reached 

individual 1 

individual 2 

Figure 2.1. Scheme of separated body and brain evolution. Each phase has its own set
of parameters – here we can see the most basic ones, number of iterations and population

size.
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2. Evolutionary algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
And for these kinds of tasks are evolutionary algorithms suitable. There is of course

vast majority of different approaches to evolutionary algorithms and we must choose
carefully, which one is the best for our case. For this bachelor’s thesis the task is to
implement hybrid evolutionary algorithm.

2.1.1 Hybrid algorithms
Hybrid algorithms combine mutation and crossover process with local search methods.
Evolutionary algorithm can be seen as implementation of natural model of genetic
evolution. The actual life of each individual, learning how to live can be understood
as finding local optimum. This idea is implemented for example in Memetic algorithm
which uses local search to improve each crossovered or mutated individual. We use
the same idea in separating body and brain evolution. Brain evolution serves us as
tuning phase, where we use Differential evolution 2.3. The general idea is, that for each
individual from current population, we start new evolutionary algorithm in which we
have multiple configurations of brain (matrix of weights) for population. See schematic
representation of this idea in figure 2.1 (for more details see [8, 10]).

2.2 Generic evolutionary algorithm
In evolutionary algorithms we often follow the process inspired by nature’s evolution
and its simple form can be seen on attached diagram 2.2.

 

selection 

crossover & mutation 

evaluation 

end condition check 

evaluation 

Initialization of starting population 

parent population 

offspring population 

Figure 2.2. General evolutionary algorithm diagram (structure which is commonly used
in literature [8–9, 11]).

We start with couple of randomly generated (or carefully designed) individuals in
what we call a starting population. We evaluate it (assign fitness to each individual)
and then we come into the algorithm’s main cycle.

Between states which virtual creature comes through (and we can think of these like
specific configurations of parameters) there are what we call genetic operators. These
often are mutation or some kind of crossover process. Mutation corresponds to asexual
reproduction in nature, when the individual is modified by mutation of one or more of
its parameters. Crossover on the other hand takes group of parents (usually a couple)
and creates from them new offspring. All these new individuals are now part of the
new population.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Differential evolution

This is the part of algorithm that differentiates the most with currently solved task.
Here we can use heuristics, here we are bound by limitations and here we can choose
different approaches. Usually we use the process called elitism which means, that
we always take certain number of best individuals from parent population and force
their way into the next population unchanged. The more sophisticated version of this
could be implementing aging process and allow survival of only parents younger (in
“iterations” years) that certain age. In the process of determining which individuals
in parent population will be chosen for mutation and which couples will be used as
parents, we use methods of selection and sampling.

2.2.1 Alterations on generic evolutionary algorithm
While working with virtual creatures and standalone evaluator Framsticks (for more
details see next chapter 3) its more convenient for us to evaluate whole populations of
creatures than to evaluate every single one separately (the reason here is the number of
communications with Framsticks client), however they are still simulated in separated
instances (so members of population cannot influence themselves amongst population).
In this case we can call genetic operator the whole transition between parent population
into next iteration’s population.

To ensure having non decreasing fitness over the course of iterations, we implemented
elitism of minimal one individual from parent population. For greater diversity and to
avoid dominance of one creature’s clones (the one with the best fitness) we implemented
fitness function transformation into ranking. Instead of depending on fitness alone,
which could lead to unwanted preference of one individual with fitness much higher than
the rest, we sort them by their fitness and associate new ranking by their order. Then
we count a new fitness in proportion to its ranking. With N creatures in population we
would use this formula to assign transformed fitness to i-th creature (with i ∈ 1→ N):

fitnessi = orderi∑N
k=1 k

(1)

With the transformation of fitness function we used the roulette selection as sampling
method. This method places all fitness (or all transformed values) into roulette space
of 0–1 in ratio to their transformed fitness.

fitnessi = fitnessi∑N
i=1 fitnessi

(2)

Instead of selecting for example the first N best ones, this gives chance even to the
seemingly bad individuals. For more detailed analysis of selection methods see relevant
chapters in [10]. That leaves us open for solutions other than the current best one is
following and helps the diversity of evolution. Roulette selection in hand with fitness
transformation by ranking should be enough. Of course the discipline of evolutionary
algorithms often gives us many possible approaches and this chosen combination could
be tested with other possible implementations (see future work chapter 5).

For more in-depth information and alternative possible approaches please take a look
into literature such as [8–9, 11].

2.3 Differential evolution
Next topic will be differential evolution which can be used for what we need as brain
evolution – working with vectors and fine tuning of correct continuous values. This
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2. Evolutionary algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
algorithm is described in great detail in many sources, but let’s sum up the basic
principle and its properties. In the work Differential Evolution Training Algorithm for
Feed-Forward Neural Networks [12] this algorithm has been successfully used for neuron
training and its legibility as optimalization method is discussed and confirmed.

In our case we have separated phases of body and brain evolution. Body evolution
follows already mentioned general evolutionary algorithm and for brain evolution we
use differential evolution.

At the start of brain evolution phase, we take each individual in current generation
and perform separated differential evolution. In this evolution we use the same body
during the whole process of evolution and we change values of weights in creature’s
neural network which works as its brain. For more detail on creature’s structure see
chapter about implementation 3. For now let’s just assume we have fully connected
graph of neurons and we store weight setting in matrix – see figure 2.3. Here we store
weights for neural network inputs, connection weights inside network and threshold
values of neurons. Having this matrix allows us to unfold it into vectors of the same
dimensions, which we can use in differential evolution.

 

        
 

                    
 

       

       

 Sensors “1” Neurons  
neurons ∙ ( sensors + 1 + neurons) 

fold per row 

Figure 2.3. Weights setting of neural network stored in matrix.

As starting population of this brain evolution we generate random values, which are
derived from currently evolved creature’s initial brain configuration. In certain number
of iterations we change vectors, thus matrixes of weight setting and we tune these values
in order to work with current body structure the most efficiently.

One of the basic ideas of differential evolution is that we do not have any selection
process – we use the same algorithm for all vectors in one iteration population.

For each vector we randomly select three more from this population – let’s call
them ~r1, ~r2, ~r3 and lets call the currently processed vector ~x target vector. Combining
these three vectors in formula (3) we create new vector called mutant vector. We used
predefined parameter F, the scale factor which is positive float number that controls
the rate of population’s evolution.

~v = ~r3 + F · (~r1 − ~r2) (3)

For creation of trial vector we use uniform crossover (sometimes referred to as dis-
crete combination) stated in formula (4) in which we use uniform random generator
randj(0, 1) for each field of vector and parameter CR, the crossover probability which
determines the amount of values that are copied from newly created mutant vector to
trial vector. One random index jrand is always used to differentiate vectors in at least
one field.

yj =
{
vj if randj(0, 1) ≤ CR ∨ j = jrand

xj else (4)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Summary

Finally we take this offspring trial vector ~y, put it in our creature’s body and test
its fitness. If the fitness of this offspring ~y has improved upon parent target vector ~x,
we use it in the next iteration instead of its parent. We repeat this process for a given
number of iterations and at the end, we use the best evolved brain to insert back into
this creature’s body. We can see the whole algorithm hinted in pseudocode in figure
2.4.

As it is with all evolutionary algorithms, there are many variations of this basic
principle (as can be seen in 1) and [13–14]), some of which are less prone to stagnation
or converge faster. This is one of areas where this thesis could be built upon as is
consulted in future works chapter 5.

1 function DifferentialEvolution(brainIterations, Creature)
2 initialize starting population X from Creature, where
3 x0 ← Creature.brainV ector
4 xi ← randi(−0.1, 0.1) ∗ Creature.brainV ector for i ∈ 1..PopSize

5 while iterations < brainIterations do
6 for i = 0 to PopSize do
7 select random distinct vectors ~r1, ~r2, ~r3 from X
8 combine ~v = ~r3 + F · (~r1 − ~r2) . mutant vector

9 crossover yi = v ∨ xi . trial vector

10 end
11 evaluate population Y
12 xi ← BetterFitness(xi,yi) for i ∈ 0..PopSize . next generation

13 iterations ++

14 end
15 return best individual

16 end

Figure 2.4. Differential Evolution pseudocode of implementation.

Also this brain evolution cycle often consumes more time than the body evolution.
This is because during differential evolution we process all possible parent vectors and
there are no selection rules active. We also tune brain of each creature in current
population and we have to evaluate popSize of body evolution times popSize of brain
evolution different configurations of virtual creatures.

2.4 Summary
The important things you should take from this chapter are that for the task of finding
the best virtual creature structure the evolutionary algorithms are often used and are
the right ones for this task. In our evolutionary algorithm implementation we used
elitism to prevent deterioration of fitness, for selection we used transformation of fitness
by order and roulette wheel selection. Basic evolutionary algorithm is also enriched by
local search optimalization – this principle is used in hybrid algorithms. We are using
differential evolution for brain tuning of virtual creatures. Generally genetic operators
work with the mutation or crossover creation of single individual, however here we are
operating with whole populations in each iteration step. The exact implementation
follows in segment 3.6.

1) http://icsi.berkeley.edu/˜storn/code.html
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Chapter 3
Implementation

3.1 Implementation of virtual creatures
The overall idea of evolution and what fascinates us while theorizing about it is the
process that starts in the absolute chaos of random initialization and transforms it
into order, by finding viable solution in current system. Emergence of order from
chaos. However, in most cases when we implement ideas of evolution into algorithmized
programs (including this work) we have to consider our influence to the system which
inherently influences how and which order will we find. That’s why chapter about
implementation is important.

Great part of implementing evolutionary algorithm is evaluation, in our case simu-
lator which works as physical engine for our virtual creatures to live in. Its evaluation
in a sense, that we provide it genotype of virtual creature and receive its fitness. Sim-
ulator imposes sets of rules for world where virtual creatures live. Its role is crucial.
Physical engine should be close to reality, in order for our created creatures to be usable
and plausible in real world. It also must not contain any glitches, because it’s in the
nature of evolutionary algorithms to find these and exploit them to maximize fitness.
Also choice of simulator dictates the form in which we represent our creatures (or at
least dictates the convertibility of our creatures into simulator’s genotype). However
selecting already working physical engine framework saves our time and protects us
from reinventing the wheel.

From many possible engines we chose the experiment friendly program Framsticks 1)
created in Polish Poznan University of Technology for studying the virtual life. It offers
us great customizability of experiments, allows us to use their scripting language in rule
definitions and the basic version is free. Part of Framsticks is a client program runnable
under Windows, Linux and MacOS. For visualization it allows us to use version with
graphical interface seen in figure 3.1 and Theater for displaying single creatures.

It also brings us constrains of compatibility with their chosen genotype representation
and the stick-natured structure of created creatures.

3.2 Framsticks representation
Framsticks provides us with multiple ways how to represent a creature, but most of them
differentiate only in genotype code structure and not the actual phenotype realization.
In this work we chose the so called f0 representation, because it’s the most general
one (for more information see 3.3). For all Framsticks representations we can say, that
creatures are stick-like constructs which use neuron objects as sensors, effectors and
neural network structure as brain.

1) http://www.framsticks.com/
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Framsticks representation

Figure 3.1. Framsticks graphical version.

3.2.1 Body representation
Body of virtual creature consists of objects of two types – parts and joints. Parts
are points in space that can have weight and radius for collisions. Joints connect two
parts and serve as basic edges in virtual creature’s body. They have limited reach (by
default 2.0 units of Framsticks measurement unit) and unlike parts they don’t cause
any collisions. Simple creature can be built by these components following simple rules.
Each part must be connected into one component, each joint connects exactly two parts
that are not yet connected by other joint and all joints are shorter than distance limit.
With these rules in mind we could build creatures that are awarded in fitness by their
height, which we indeed did in the first experiment (see 4.2).

3.2.2 Brain representation
For more complex creatures we need the ability of acting in reaction to their surround-
ings and movement of limbs. We also need brain structure consisting of neural network.
In Framsticks we solve all these problems with objects called Neurons. There are many
different types of neurons that vary by their effect and properties. Basically we could
think of them as function black boxes with mandatory number of inputs and outputs.
One of these functions is made after the artificial neuron model and is what we usually
understand under the term neuron. Regarding their properties, the difference between
Framsticks neuron objects is in their position in creature’s body, number of inputs and
number of outputs. Neuron location can be positioned into part – for example as a
sensor function that monitors the state of certain part. It can be positioned into joint
in the case of effector function that bends said joint. Or in some cases, it can be left
without position.

We can implement unofficial classification into categories of sensors, effectors and
neurons. Sensors don’t need any inputs and on the contrary they provide us with
monitored value as output. Multiple outputs copy the same value. Their location is
dependent on their type and on what they are monitoring. Effectors on the other hand
don’t have any outputs, only inputs that they use to change the joint’s properties in
which they are positioned. If there is more than one input, value is averaged from
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3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
connected inputs. For neuron category we use only one Framsticks object, the one that
is made after artificial neuron model.

In our thesis I use structure that comes from this classification. Core creature’s brain
is made from fully connected graph of neurons. Each neuron can have multiple inputs
and one output that can be connected with all other neurons. Neural network has an
additional input layer of sensors, which can be connected to each neuron. Neural net-
work outputs are connected with layer of effectors where each effector can be connected
to one or none neuron from neural network. See visualization of this structure on figure
3.2.
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 S2 

 N1 

 N2 

 N3 

“1” 

“1” 

“1” 

Neuron network Sensors 

 E1 

 E2 

Effectors 

 

 

        
 N3 
 N2 

 

       

       
 

sensors neurons “1” 

effectors 

Figure 3.2. Sensor, neuron and effector structure of brain.

We can translate this entire brain structure into matrix of weights of each connection.
This is an useful representation, because we can use the folded matrix as vectors in
differential evolution (see 2.3). From this matrix we can also generate connections and
attach them to creature’s genotype.

3.3 Framsticks syntax f0
Each object is fully described by one line starting with letter that determines type of
this object. This letter is followed by number of properties and their values.

CLASSID: Property1name=Property1value, Property2name=Property2value, …

3.3.1 Part object
Is described with letter p as CLASSID and in our implementation it can have following
properties:

Property Genotype name Default value Accepted range
mass m 1.0 < 0.1; 999.0 >
collision radius s 1.0 < 0.1; 10.0 >

Table 3.1. Framsticks part properties we used.

3.3.2 Joint object
Connects two parts and carries information about offset between these two parts. Prop-
erties p1, p2 are mandatory and must point to reference number of parts. CLASSID letter
is j.
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Property Genotype name Default value Accepted range
reference number of source part p1 -1
reference number of target part p2 -1
distance offset of joint dx, dy, dz 0 < −2.0; 2.0 >
rotation in joint rx, ry, rz 0 < −π;π >

Table 3.2. Framsticks joint properties we used.

3.3.3 Neuron object
Here it gets little more complicated, because this Framsticks object contains all possible
function types, all sensors, effectors and what we usually classify as artificial neuron.
Type of neuron is stored in property d that has value with another structure.

d=" NEURON_CLASS_NAME: Property1name=Property1value, … "

Positioning of neuron into part or joint is determined by properties p and j. These
contain reference number of part or joint (see individual examples in section 3.4 or
whole genotype in figure 3.5). In some cases these properties can be empty when
neuron doesn’t require location.

3.3.4 Connection object
It connects two neuron objects. In our implementation that means connecting sensors
to neurons, neurons in neural network and neurons to effectors. Its only property is
connection weight. Genotype lines for these connections objects can be generated from
matrix indicated in figure 2.3.

3.4 Framsticks neuron objects
Here is a list of used Neuron objects classifies into categories by usage. In Framsticks
there are more Neuron objects usable in different tasks (for example for worlds with
water), see full list in here 1).

3.4.1 Sensors

Gyroscope (G)
This sensor must be located in joint and doesn’t have any properties. It serves as a

gyroscopic sensor placed between two parts. When strictly horizontal it produces signal
0 and as it gets to vertical position it varies between range of < −1; 1 >.

n: j=1, d="G"

Touch (T)
Touch sensor is located in part and reacts to proximity of other material objects (for

example floor or another part). It can be imagined as a whisker attached at the end of
stick segment. Its relaxed value is -1, when whisker is out of reach of its range of 1.0
Framsticks distance measurement. Value 0 is reached when segment directly touches
ground and greater values up to +1 are gained when whisker is pushed into the ground
by physical engine computations.
1) http://www.framsticks.com/neurons_summary
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n: p=2, d="T"

Constant (*)
Doesn’t have to be located in any parts or joints, only produces constant value, which

can be altered by changing weight of connection that leads from this sensor into neural
network.

n: d="*"

3.4.2 Effectors

Bend (|)
Bends attached joint depending on incoming signal from neural network. Bend ef-

fector rotates the second part around the first part’s Z axis. It has two parameters –
power and range that affect the movement velocity and can limit its movement range.
On default range value of 1 the movement is unaffected and can reach full range of
< −180◦; +180◦ >. For visualization see figure 3.3 used from the Framsticks webpage
1).

Property Genotype name Default value Accepted range
power p 0.25 < 0.1; 1.0 >
range r 1.0 < 0.0; 1.0 >

Table 3.3. Framsticks bend neuron properties.

n: j=2, d="|: p=0.75, r=0.54"

Figure 3.3. Bend neuron’s effect of rotation around first part’s Z axis (figure used from
Framsticks webpage 1)).

Rotation (@)
Rotation effector influences the relative orientation of joint’s second attached part

around the first part’s X axis – in a sense it twists the joint. It again has parameter

1) http://www.framsticks.com/muscles_and_receptors
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Property Genotype name Default value Accepted range
power p 1.0 < 0.1; 1.0 >

Table 3.4. Framsticks bend neuron properties.

Figure 3.4. Rotation neuron’s effect of rotation around first part’s X axis (figure used from
Framsticks webpage 1)).

genotype phenotype
Figure 3.5. Sample virtual creature encoded in Framsticks f0 syntax.

power that influences the velocity of rotation. Rotation effector is not limited in range
and can perform full 360◦ rotation from input signal of < −1; +1 >.

Rotation and bending is usually both used for relative rotation of second attached
part.

3.5 Genotype abstraction
Above this f0 syntax we created our layer of representation, which can be converted
into f0 and provided to Framsticks client program for evaluation. We use the struc-
ture of sensors, neurons and effectors (see 3.2) for better understanding and for better
compatibility with evolutionary algorithms.

We could have worked directly with these Framsticks objects and as genetic operators
use addition, mutation and deletion of entire lines, but that would bring us many
difficulties while evaluating genotype. Most of these object combinations wouldn’t be
1) http://www.framsticks.com/muscles_and_receptors
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3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
valid or even sensible in sense of virtual creature’s structure. For that reason we used an
abstraction layer that produces only valid genotype and allows us to use more complex
genetic operators.

3.5.1 Joints and parts
First task was the implementation of parts and joints structure, the tricky part was
to make it easily accessible for future code, mutation and crossover operations and for
genotype export. We chose the representation of arrays of Parts, Joints and matrix with
relationship information. The matrix simply holds Boolean indicators of connection
between two parts and direction of joint. Whereas the arrays hold objects with all
information on properties attached to these parts and joints. See figure 3.6.

p2

p4...

mass,
collision
radius,
...

Parts
dx,
rx,
...j1

...

Joints

Joints

Parts ⇒

//0
p:
p:
p: m=2
p:
p: m=3, s=1.5
p:
...
j: p1=2, p2=4, dx=4
...

genotype

⇒

phenotypeinternal representation

0
1
2 X p2
3
4 X p4
5

j1

↓
p2

p4dx=4

Figure 3.6. Translation of abstraction layer into f0 genotype.

3.5.2 Mutation
As mutation operations we allow addition of new objects into Parts and Joints arrays
and we allow changes to interconnection in the matrix structure. Of course in changing
the joint-part relationship matrix we have to follow certain rules that apply for joints in
chosen genotype syntax. One joint can connect only two parts and there can’t be other
similar joint connecting the same parts. In our matrix that means that we can’t allow
the same columns. Other rule concerns parts. All parts in genotype must be connected
to one main body, we can’t allow more than one component in graph (see figure 3.7).

j0 j1 j2
0 X X
1 X
2 X
3 X
4 X

⇒
2

0 1

3

4

j1

j0

j2

component 0

component 1

parts

joints

Figure 3.7. Example of more than one component in creature.

We can solve these issues either by repairing – connecting all components into one
during genotype export, or we can take different approach. Only the first component
(the one that contains part 0) is valid and exported into genotype. We seemingly forget
about the other ones. But we also allow in our mutation operators the creation of
new connections and the severing of existing connections between parts. This way we
allow our creature to get rid of entire body segment which is not currently usable and
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store it in temporary abstraction layer space. When this creature finds good solution
for composition of its body, it can reconnect the orphaned body segment and reuse it.
Properties for this whole segment (mass, collision radius and later neuron structures
connected with it) are stored, because they can be used later. Of course the existence
of remove part mutation allows creature to get rid of the whole unwanted segment part
by part. In properties of joints we have stored offsets that they connect two parts with
(see 3.3.2 and properties dx, dy, dz). During conversion to genotype these relative
numbers are recalculated into absolute values and assigned to positions of parts. We
start with part 0, giving it location of (0,0,0) and we go through graph and assign
positions to parts. We have to watch for cycles and like in figure 3.8 we have to assign
the correct values. For this we use breadth-first traversal method and we ignore offset
values in joints connecting two parts that already have their place in x,y,z coordinates
assigned. Imagine situation similar to figure 3.8, but with distance values dx and dy
exactly the maximum allowed size for joint (by default 2.0). After connecting all parts
we suddenly have joint of distance exceeding this maximum – therefore we have to check
our creature after assigning position values and if needed scale it accordingly.

2

0 1

dy = 1

dx = 1
depth

 0

depth 1

x

y (dx, dy, dz ignored)

Figure 3.8. Cycle connection of joints.

3.5.3 Crossover
Next task we reached was the topic of crossover. We somehow needed to take two
parents, crossover their internal representation of joints and parts and create new indi-
vidual. Our first approach was inspired by what is often used in binary chain crossover,
which is cutting two parents in halves (or more segments) and joining them to form
offspring individuals. When we take a look at figure 3.9 we see that this leads to
crossovered creatures C either with joint crossover (in case a.)), parts crossover (in case
b.)) or both (in case c.)). In case c.) we can follow this procedure with connecting two
segments, by activating some joints in areas with 0 (symbolic mark of no connections).

However this approach had bad results – we often created too large individuals with
chaotically connected parts. In experiment to grow the tallest creature (when our fitness
depends solely on vertical position and we don’t subtract any penalties for number of
joints and parts used – see chapter 4.2) it was often useful to take the most from both
parents and somehow interconnect it to grow large creatures rapidly. The second and
more important reason this approach is bad is because proximity and adjacency in sense
of matrix (which we are cutting in halves) doesn’t necessarily mean adjacency of real
parts in constructed phenotype. Thus we are not cutting creature’s body in half, this
operation cuts parts more randomly – for example see figure 3.10.

Therefore we implemented more graph related approach, where we select components
of certain depth (by breadth-first traversal of parts) and interconnect these by random
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Figure 3.9. Initial crossover of parts and joints connection matrix.
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Figure 3.10. Example of incorrect crossover cutting in half.
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Figure 3.11. Example of subgraph crossover.

number of connections (but always at least one). As we can see in figure 3.11 this
approach is resilient against chaos in referential numbers of selected parts and joints.

We can also influence how big creature we aim to create by changing the depth of
selection (even though this control is limited, because small step in depth can lead to
large amount of parts selected). After this selection we construct new matrix using
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selected rows (parts) and columns (joints) in parent matrixes. We also use Parts and
Joints objects of selected subgraph of parent’s body to copy their properties (and carry
for example their settings for mass).

3.5.4 Neuron, sensor, effector
Our next task consisted of implementing neural network and giving our creatures brains.
This is closely connected with the second experiment, where we breed creatures capable
of walking (see 4.3). Framsticks implements neuron objects, which we can classify
into three usable categories – sensors, effectors and standard neurons (see section 3.4).
We have already discussed brain evolution implementation and we are using the same
structure as in figure 3.2. In creature’s body we place several sensors to monitor its
status (for example gyroscopic position of joints), which will serve as inputs for certain
neuron in creature’s brain. In other parts and joints we place effectors that can change
joints properties and move creature’s body and that take role of outputs. Standing apart
from body we have fully connected graph of standard neurons that have their connection
weights and individual neuron’s properties set by brain evolution. From theoretical
standpoint we are using differential evolution with vectors made from connection matrix
of neurons (see 2.3), but from the implementation point of view its useful to think of
brain evolution as of function, that tweaks all our creatures in current population of
body evolution.

Implementation of sensors and effectors influences mutation operators we are using.
As these are part of body, we have to allow appropriate operators of adding, removing
and parameter mutation of both sensors and effectors connection. To make our task
easier we implemented our brain to consist of predefined number of neurons and our
body to have predefined expected number of sensors and effectors. These don’t have to
be connected with the neural network and similarly neurons don’t have to be connected
with each other (however they often end up being all connected). Instead we allow
these connections from sensors and effectors into neural network to emerge during body
evolution by correct mutation operators. Internal representation and interconnection of
neural network can be left solely upon differential evolution, we only determine which
inputs and outputs are used and where.
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Figure 3.12. Crossover method used for sensors, neurons, effectors.

More difficulties arose with crossover – we have to try to carry functionality of sensor
and effector constructs used in parents into their offspring. As sensors and effectors are
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located inside parts and joints, we could carry them over into offspring with selected
parts and joints (selected by subgraph method 3.11), however that would lead to un-
wanted sensor and effector multiplication. Instead we used the unchanging nature of
neural network’s dimensions and also the limited number of used sensor and effector
objects in creature’s body. From parents we crossover the whole sensor-neuron-effector
structure as we demonstrate in figure 3.12. We uniformly crossover (in another term we
use discrete combination) sensors and effectors and determine offspring’s neural network
weight matrix by combining matrixes of parents.

3.6 Evolutionary algorithm implementation
It has already been said in section 2.1 that we decided to split body and brain evo-
lution. Body evolution phase is done through altered generic evolutionary algorithm
and brain evolution phase with differential evolution. This combination of evolutionary
algorithm and optimalization method can be called hybrid algorithm 2.1.1. For better
understanding we provide pseudocode 3.13 that accompanies scheme from figure 2.1.
It references other functions with their pseudocode – DifferentialEvolution in 2.4
and BodyEvolution in 3.14.

function Evolution(bodyIterations, brainIterations)
initialize startingPop
evaluate startingPop
parentPop ← startingPop
while !EndCondition do

for iteration = 0 to bodyIterations do
parentPop ← BodyEvolution(parentPop)

end
foreach Creature ∈ parentPop do

Creature ← DifferentialEvolution(brainIterations, Creature)
end

end

end

Figure 3.13. Pseudocode of used evolutionary algorithm.

3.7 Framsticks world definitions
Framsticks as a physical engine and evaluator gives us great variety in world rule set
definition. We can use the basic referential code and only slightly adjust one vari-
able if we need to, or we can write our own entire scripts in Framsticks scripting
language FramScript for custom evaluator behavior (for more informations on Fram-
Script visit 1)). For our needs we can sufficiently use the preset experiment definition
file standard-eval.expdef and change only couple of variables. The most important
change here is the choice of parameters that are used for fitness computation and their
individual weights. For our experiments we needed at first to evaluate height of creature
(vertical position) and somehow include the number of used parts and joints (in exper-
iment 4.2). In our next task, we wanted to evaluate the distance traveled by creatures
over their lifetime (in experiment 4.3).
1) http://www.framsticks.com/common/script/framscript-lang.html
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function BodyEvolution(parentPop)
order creatures by fitness
offspringPop = []
while |offspringPop| < explorationSize do

select one method:
- mutation:

select one creature with roulette selection
mutate creature
return as offspring

- crossover:
select two creatures with roulette selection
crossover creatures
return as offspring

- crossover + mutation:
select two creatures with roulette selection
crossover creatures
mutate crossovered creature
return as offspring

add offspring to offspringPop

end
evaluate offspringPop
selectedPop = []
selectedPop ← first | Elitism | best creatures from parentPop
selectedPop ← first | PopSize− Elitism | best creatures from offspringPop
return selectedPop . as parentPop for next iteration

end

Figure 3.14. Pseudocode of used evolutionary algorithm for body evolution.

We must keep in mind that the manner in which Framsticks computes creature’s
fitness, can determine the shape and structure of created creature quite significantly.
This can result into creatures cabaple of living only in this simulation environment and
not being viable for real world assemly. For some information we can look on Framsticks
webpage [15] or in appropriate chapters in [16].

Framsticks also allows the usage of multiple physical engines. This choice is also
made in experiment definitions file. First possible choice is their simple internal engine
called Mechasticks (its processing of body simulation can be seen here 1)). The second
engine is called Open Dynamics Engine (an open source library for simulation of rigid
bodies 2)) and was implemented into Framsticks with the hope of evolving more credible
creatures with engine closer to reality then the internal one. We used the second one
for the same reason and also because in Mechasticks large creature structures crumbled
under their weight (thus not allowing to breed creatures taller than certain height in
the first experiments).

In this experiment definition file we can also set several parameters that influence
the speed of evaluation. If we used non-deterministic noise neurons, we could repeat
evaluations for certain number of iterations and get fitness averaged. We also determine
the lifetime of created creatures which determines how long the simulation is running.

1) http://www.framsticks.com/a/al_simdetail.html
2) http://ode.org/
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Chapter 4
Experiments

4.1 Experiment preparations
With the implementation explained in previous chapter, we can try our algorithm on
several experiments and watch its behavior.

4.1.1 Referential settings
As the world of possible solutions for valid virtual creatures is highly multidimensional
we had to focus on one parameter per experiment. By selecting one parameter and
trying different values, we perform cutting through this multidimensional world in di-
rection of one dimension. We can’t allow ourselves to change several parameters at
once, because our results would be clouded and ambiguous. Therefor we implemented
referential settings, which consist of default values for all parameters and we alter only
one at time. We chose these so computation ends in sensible time and we can collect
results. These parameters also provide us with the list of possible experiments we can
carry out.

parameter description ref.value exp.
bodyIterations number of repetitions of body evo. 2 4.3.4
bodyPopSize population size of body evo. 8 4.3.5
bodyExpSize explored individuals in body evo. 2 ∗ bodyPopSize
bodyElite elitism 1 (minimum 1)
brainIterations number of iterations of DE 2 4.3.4
brainPopSize population size of DE 6 4.3.5
neuronNum (N) used neurons in neural network 4 4.3.3
sensorNum (S) inputs to neural network 4
effectorNum outputs from neural network 4
F DE scale vector 0.8
CR DE crossover probability 0.1
dimension DE dimension N ∗ (N + 1 + S)

Table 4.1. Referential parameters for experiments. Here we are using abbreviations DE
for Differential Evolution. Dimension is dependent on number of neurons and sensors used

and can’t be changed as other parametric values.

4.1.2 Experiment execution
In experiments we chose one of the parameters from 4.1 and we varied it in sensible
range. We wanted to see extreme behavior, when the parameter is set intentionally
imbalanced with the rest of the setting to see how it fares. We also wanted to know
what the most optimal settings would be and how important this parameter was in
comparison with others. We repeated each experiment and each parameter value over
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100 instances for predefined number of iterations. The results were averaged over 100
instances. We also took the final iteration of all instances and we used this final data
in several whisker box plot graphs. This is done with the idea, that in real life scenario
we don’t really care how the creature evolved, we will only use the final iteration’s best
creature.

We will try to comment the behavior of experiment, provide explanation for it and
compare it with other instances. We will show several graphs and reference the others
that manifest the same behavior. All interesting graphs will be attached in appendix
B.

4.2 Experiment 1, the tallest creature

4.2.1 Experiment summary
We started with the experiment of breeding the tallest creature. For this we don’t need
brain evolution and in fact we used this experiment as framework for our algorithm
during development. These results were of course calculated by the final version. As
we only need creature’s body structure to grow, we can disable the brain evolution
phase and forbid all neurons, sensors and effectors. We expect our creatures to grow in
building like structures that are balanced and can carry tall segments.

We can also expect our creatures to grow infinitely. If there isn’t any roof for creatures
to hit in number of parts or joints, they will grow into great structures. In order to
prevent this hungry approach (always create new parts and joints to attach on virtual
creature), we can alter the fitness function. To the basic positive evaluation for vertical
position of creature, we can add penalizations for number of used building blocks (joints
and parts). This will force the evolution to create space efficient creatures – taller and
thinner than without this rule. In some cases we could encounter negative fitness
(creature that has fallen over with too many joints and parts), but our algorithm is
resilient to this, because it transforms fitness by rank (see 2.2.1). For our graphs to
look nicely, we chose to set some small fitness offset. Also we didn’t alternate between
parameter settings in this experiment as it was only the first step for next experiment.

4.2.2 Experiment definitions
In experiment definition file we must set appropriate variables for fitness evaluation
(first 4 rows in 4.2).

parameter wanted value expdef var.
fitness for vertical position 1 ExpParams.cr vpos
fitness for number of parts -0.035 ExpParams.cr gl
fitness for number of joints -0.035 ExpParams.cr joints
constant fitness offset 0.5 ExpParams.cr c

physical engine 1 (ODE) World.simtype
lifetime value 50 ExpParams.Energy0

Table 4.2. Experiment definition for breeding tallest creature.

For this experiment it’s also important to set the physical engine to ODE. Because
we are not simulating movement in this experiment, we can spare some computational
time by setting the lifetime of individuals low. The simulation starts after the creature
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stabilizes in initial balanced position, so the eventual falling over creatures get low
fitness regardless on set lifetime value. We can also turn off all neuron evaluation, but
because our generated creatures are already constructed without them, the performance
gain is minimal.

4.2.3 Results
As we didn’t change any parameters in this experiment, the results are straightforward.
We repeated the same experiment 100 times and got resulting graph in figure 4.1.

Figure 4.1. Results of experiment 1, breeding the tallest creature (in graph legend we are
using abbreviation VC, which stands for Virtual Creature).

We can see that the fitness rises over number of iterations, which is consistent with
our expectations. To grow tall creature should be a simple task, achievable even with
simple mutation and crossover rules. Also the fact that we penalized creatures by
number of joints and parts didn’t endanger the growth. We could have encountered
some kind of stagnation in situation where the possible growth in vertical position would
be always counterbalanced by loss in fitness for newly attached joints and parts. That
would lead to maximal possible fitness value and even possibly in existence of global
extreme. However with settings of parameters following table 4.2 this hasn’t occurred.

4.2.4 Sample individuals
When we take a look at individuals produced by this experiment, we notice that the
majority of them looks like creature c.) in figure 4.2. They are indeed tall and they
seem to be balanced on one leg only. This is quite surprising – it’s due to the manner
in which Framsticks calculates vertical position fitness. It takes vertical position of all
parts and joints and uses the weighted average as vertical position of creature. So it’s
advantageous for our creatures to concentrate as many parts and joints as is possible
into upper body segments and gain grated calculated vertical position. This case is an

24



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Experiment 1, the tallest creature

example of physical engine dictating and influencing the shape of cultivated creatures.
However this approach has its disadvantages, because of situation illustrated in figure
4.3. Here we can see prosperous individual that is still balanced and one of its offspring,
which has lost this balance and has fallen and received significantly smaller fitness. This
could explain the large gap between the best average individual and the worst average
individual in figure 4.1 – it’s common for individuals of this experiment to lose their
balance and fall. However we can see that this doesn’t stop the evolution and the
growth itself in figure 4.4. Perhaps for purposes of balance, we can often notice the
emergence of multiple branches at top of creatures – similar to rich treetop.

a.) b.) c.)
Figure 4.2. Sample experiment 1 creatures.
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Figure 4.3. The problem of balancing out creatures. Fallen offspring will have significantly
lower fitness.

Figure 4.4. Sample experiment 1 growth with iteration numbers. Creature grows its tree-
top and relocates most parts and joints to its upper segment.
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4.3 Experiment 2, the fastest creature

4.3.1 Experiment summary
The second experiment is also heavily inspired by Karl Sims walking creatures. Unlike in
the first experiment, we now need brain evaluation and the usage of neurons, sensors and
effectors. We also tried changing several parameters in order to study this experiment
more thoroughly. Our fitness is now computed from distance creature manages to move
from initial position. We decided not to simply measure average velocity to prevent the
occurrence of creatures moving in circles. If we measure distance passed over the whole
lifetime, then the ones that move in one direction are more likely to obtain greater
fitness. Their movement speed is used more efficiently in surpassing distance.

We expect multiple ways of reaching this criteria to occur as movement can be per-
formed in various manners. We also expect emergence of movement in one direction
without much steering, as that would decrease passed distance. In bodies we inherently
anticipate usage of sensors, neurons and effectors constructs as effectors are the only way
to make creature moveable. The alternating phases of body and brain evolution should
complement each other and allow tweaking of weights of neural network for created
creatures. With limited number of iterations we can also expect some configurations
of parameters and random initial starting populations to do poorly and not develop
satisfactory method of moving. We chose several parameters for experimentation and
we discuss their specifications with their results.

4.3.2 Experiment definitions
This time we only need one parameter evaluated for fitness, however we need to have
it processed with large delay, as we want to count the distance over whole lifetime. In
Framsticks experiment definition file we can arrange this by setting the perfperiod
close to the value of ExpParams.Energy0 (lifetime of creature in energy). This param-
eter influences how often is called the performance evaluation and thus setting it near
the moment when creature’s lifetime is nearly over, we get the distance traveled from
starting position. Also setting longer lifetime in this experiment allows us to test crea-
ture’s ability to walk on larger area. If we had it set up for too small value, creatures,
that only initially fling themselves and then remain still would be awarded with high
fitness. Therefor we had to increase this value even though the evaluation time of each
creature takes more time and the overall performance is slower.

parameter wanted value expdef var.
fitness for distance 1 ExpParams.cr di

performance period 9501) Population.perfperiod
lifetime value 1000 ExpParams.Energy0

Table 4.3. Experiment definition for breeding fastest creature.

4.3.3 Results – alternating neuron number
In the first variation of this experiment, we chose to alternate the number of used
neurons. We keep the same amount of sensors and effectors, in attempt to explore
1) Value of 950 is used as number which is close to creature’s lifetime. We didn’t want to risk the emulation
ending before performance evaluation, so we set it to a value little lesser than lifetime.
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the behavior of only one parameter (see figure 4.5). We expect this change to have
significance in resulting complexity of creature’s brain as it is fully connected graph of
neurons. Of course the higher number of used neurons raises the dimension of explored
space in differential evolution. This fact has two effects. The computation takes longer
and we can expect some difficulties of finding the correct solutions in vast area of
multidimensional space. Theoretically the higher count of neurons should mean more
complex brains and behavior, but the question is, whether these solutions will be found
in time period limited by number of iterations. Body and brain iterations are both
repeated twice, until they reach the ending 500th iteration, where the algorithm is
stopped. Both phases get their 250 iterations and therefore should be balanced.
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…
 

Figure 4.5. Alteration of neuron number x ∈ 1 → 50, the sensor and effector number
remains the same.

Figure 4.6. Whisker box plot graph comparison of all tested values. Neuron number values
are both detailed at first and extreme in case of 50 neurons.

When we take a look at results in figure 4.6, we may notice, that movement is clearly
achievable with all configurations of brain. However when we see the comparison of
individual fitness growth of for example configuration with 2 and 10 neurons in figure
4.7, we can see the difference. As expected, the success rate of configurations with
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Figure 4.7. Comparison between virtual creatures evolved with the limitation of neural
network size – 2 and 10. VC stands for Virtual Creature.

higher neuron numbers (10 or even greater extreme 50) is lesser. It seems that it’s
more difficult to find the correct weights matrix with higher dimension of problem. If
we balanced this by increasing population size or by extending the number of iterations,
we would possibly see more complex creatures to emerge and catch up or even surpass
the simple ones.

4.3.4 Results – alternating iteration ratio
In the second variation we tried altering the iteration number of body and brain evolu-
tion phases. This number represents for how many times each phase is repeated before
switching to the other one. The combined number of iterations remained the same –
after 500 iterations, the algorithm was stopped no matter in which phase it currently
was. By changing the ratio between these numbers, we are alternating the balance of
attention placed on each phase. Also changing the repetition number from referential 2
to for example 50 means, that there will be lesser number of switches between the two
phases, which could be disadvantageous. We expect to see how much does this balance
of brain and body evolution actually matter. For parameter values we chose 4 numbers
in range of 1 to 50 – 1, 10, 25, 50. We chose this range to test extreme values like 1
or 50 and also the more balanced ones as 10 and 25. This gives us 16 combinations of
configurations to be tested. For clarity purposes we chose to visualize four values in
each graph – displaying the cut of one parameter through multidimensional space and
having the second parameter set on one value.

When we take a look at results in figure 4.8, we can notice, that with growing brain
evolution iterations number, we receive better results of best individual in final iteration.
We can see similar, yet less significant growth in figure B.2. However when we compare
these results with the ones in figure 4.9, the witnessed behavior is different. With higher
number of brain iterations the overall performance of fitness is lowered. To explain this
behavior we must inspect the individual growth of the configuration of 1 body and 50
brain iterations in figure 4.10.

As we can see, the phases are extremely imbalanced – in this case the body evolution
phase occurs for only 9 iterations spread apart in graph. The same applies in other,
less extreme cases. There must be maintained balance between phases, otherwise no

29



4. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.8. Comparison of alternating brainIteration number with bodyIteration of 25.
Appears well-behaved and consistent with theory in 4.3.4.

Figure 4.9. Comparison of alternating brainIteration number with bodyIteration of 25.
Appears ill-mannered and inconsistent with theory in 4.3.4.

matter how good the brain evolution is, it can’t do much with badly constructed body.
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Figure 4.10. Sample A – graph of evolution with extremely unbalanced iteration ratios.
Yellow highlighted area corresponds to brain evolution phase. Notice that number of body

evolution phase is very low. VC stands for Virtual Creature.

Figure 4.11. Sample B – graph of evolution with slightly less unbalanced iteration ratios.
Even small change influences results. VC stands for Virtual Creature.

We can see, that even small step, when we chose 10 body iterations instead of just 1
makes significant difference in figure 4.11.

The best balance is achieved when the brain and body iteration number is the same
– as it was for example in our referential configuration. With greater and balanced
values, we can say that the number of switches between phases is lowered and it reflects
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in performance. If the iteration wasn’t limited by 500, we could see better results from
these configurations, where tweaking in each phase is done more thoroughly (for more
iterations).

The other extreme we could watch is on the other end of spectrum, with 50 body and
only 1 brain iteration in figure 4.12. Again the overall performance is not very good
in comparison with the more balanced ones. Also notice the apparent jump in fitness
after only one brain evolution iteration. It appears that the body is good enough for
even small brain tweaking to matter.

Figure 4.12. Sample C – graph of evolution with the other extreme – 50 body iterations
and only 1 brain iteration. VC stands for Virtual Creature.

4.3.5 Results – alternating popSize ratio
In the third and final variant we focused on parameter of population size in both phases.
Body popSize determines number of individuals, whereas brain popSize corresponds
with the number of tried brain configurations for each individual in each iteration
of brain evolution. Again we will change this ratio and try to determine its effect on
experiment. If we can imagine the previous variation of number of iteration as changing
the length of explored space, then changing the population size would be like changing
the width of this space. In a sense both variants influence the number of explored
individuals, only each one does it in different manner. We can expect the experiment
to show growth with higher population size. In this case, the chosen value doesn’t
influence the balance of body and brain iteration ratio, so higher values should always
be better. Of course in the aspect of computational and time requirements, higher
population will result in slower run of algorithm. Body popSize directly influences
even the brain evolution phase, because in differential evolution we tweak brain for
each individual in population. This experiment will probably be more interesting in
comparing the importance of body and brain phase (we already know from previous
variants, that having them both implemented in beneficial).

This time, we used parameter values of 5, 10, 15 and in special case 20. The popu-
lation size in referential solution is 8 for body popSize and 6 for brain popSize. As we
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Figure 4.13. Comparison of various population size ratio in body and brain evolution
phases. Growth in body evolution popSize seems to be more significant.

have fewer combinations, we can fit them all in one graph. We separated changes of
parameter body popSize by lines in figure 4.13.

We can clearly see that the increase in population size of body evolution is more sig-
nificant than the increase of brain population size. Changing popSize of brain evolution
phase doesn’t really have that significant effect. For example with body popSize of 5 the
brain popSize almost doesn’t matter. We could say that having correctly constructed
body is the prerequisite for optimal function of brain evolution. We can imagine the
situation, where we only have incorrectly placed sensors and effectors and no matter
what we do in neural networks, we can’t make it work. We also could say that the
reason for increased significance of the body population size parameter is due to its
usage in determination of exploration size (which is bodyPopSize * 2 ). Exploration size
is used solely in body evolution and it affects number of explored individuals. After
each iteration we keep only the first best bodyPopSize. Also the number of body pop-
ulation size matters when determining what individuals we try to tweak in differential
evolution. To confirm these finding we explored even the combination of 20 body and
brain population size. We can witness, that the gained increase in fitness is not as
significant as is in the case of jumping from 5 to 10 body popSize.We didn’t exhaust all
possible combinations, because it is quite computationary expansive. The same applies
to higher values of population size. For example in differential evolution of experiment
with 30 body and brain popSize, we would need to compute 30 ∗ 30 individuals in each
brain evolution iteration.
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4.3.6 Sample individuals

In attached figures we selected some interesting manners of movement, which was ac-
quired during evolution. For convenience the commentary is always placed in figure’s
description.

Video presentation of the best individuals is also available on http://www.youtube
.com/watch?v=qRhW1NPRn0g or for convenience stored on attached CD.

Figure 4.14. Attempt to capture creature’s movement pattern. Creature walks with the
help of alternating contraction and relaxation of leg-like construct. This creature’s move-

ment is in a way similar to inchworm’s method of walking.

Figure 4.15. Crawling and synchronization of limbs. Several creatures have resorted to
crawling with the help of synchronized limbs, which push the whole creature forward.

a.) b.) c.)
Figure 4.16. Samples with rolling movement. Creature a.) adopted very efficient move-
ment in surprisingly simple body. It has both bend and rotation effectors in the middle
intersection of joints and uses slight bending accompanied with rotation to exhibit wheel-
like movement. Creature b.) has slightly longer body and rotates one ending leg segment.
Creature c.) has developed synchronous rotation movement in both legs and it rotates

very efficiently it’s whole body.
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Figure 4.17. Pushing and jumping. Several creatures use the method of contracting and
using stored potential to jump like spring. Sometimes this movement is used in galloping

manner.

Figure 4.18. Somersault-like manner of movement. This creature combines rolling and
periodical contraction and straightening to perform something similar to somersault.
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Figure 4.19. Example with high brain complexity yet simple body. Creature was created
when alternating neuron number, we can see, that the signal directed to three effectors

can be quite complex. This results in rolling movement of whole creature’s body.

Figure 4.20. Inspection of creature’s rotation effector. We can inspect input signal in each
individual sensor, effector and neuron in creature’s body. Here we can see sinus signal in
rotation effector in part that connects creature’s front and back segment of body. Creature

hops on two legs.
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Figure 4.21. Problem of exhaustion of neuron signal in neural network after the regular
lifetime period. Creature uses gyroscopic sensor in its own body to excite neural network’s
signals, which are then used by effectors. When certain threshold is achieved and the
creature steps in way, that it loses its momentum, the gyroscopic signal ends and so does
the neural network activity. This stumble occurs after the expected lifetime value, hence
it wasn’t solved during evolution. We can see it only when inspecting creature after

experiment.
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Chapter 5
Conclusion and future research

5.1 Conclusion
In this bachelor thesis I have followed the idea of Karl Sims work and successfully
implemented evolutionary algorithm to develop virtual creatures. Unlike in his work I
have used hybrid algorithm and different virtual creature structure. I have programmed
Java application which uses the Framsticks simulator for creature evaluation. It uses
Framsticks genotype language f0 for communication with the simulator, however in
our application we have developed and implemented abstraction layer, which helps us
control the behavior of experiments. This abstraction layer guaranties production of
valid virtual creatures and their conversion to genotype f0.

In our implementation of evolutionary algorithm we have created rules for mutation
and crossover operations. I have studied the possible usage of hybrid algorithm and im-
plemented altered version of evolutionary algorithm with the use of selection methods,
fitness transformation and elitism. For individual optimalization we have used differ-
ential evolution algorithm compatible with chosen representation of neural networks.
Possible two–phased structure of evolution which focuses on body and brain (neural
network) evolution was suggested. We have declared referential values for parameters
and proposed and carried out experiments to test the behavior of algorithm. Results
of experiments were discussed and few interesting individuals were shown.

5.2 Suggestions for future work
For future research we suggest the possible exploration of alternative configuration of
differential evolution. We could use different selection methods or population sizes to
spare some computational requirements. We could also alter the structure of used hy-
brid evolution algorithm, or try and compare different sampling methods than roulette
wheel selection.

Figure 5.1. Example of food location in simulated world for guidance of virtual creatures.
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In sense of experiment suggestions we propose the inclusion of food ingestion into
world simulation. We could build it upon our second experiment (section 4.3) with
walking individuals. We would need to allow appearance of smell receptors as usable
sensors in mutation operations. These would lead creatures towards food and allow
them to ingest food to refill their energy and live longer. Food ingestion is dependent
only on creature’s proximity to food. For fitness evaluation we could measure amount
of food ingested or award the ability to follow food trail. Simple approach would be to
depend on longer lifetimes of creatures walking in the direction of food and ingesting
it, which would reflect in longer walked distances. The support (food, sensors, etc.) for
such experiment is already included in the FramScript simulator, but the implemen-
tation of more complex fitness evaluation method would require some scripting done
in FramScript. For experiment definition we propose situation similar with figure 5.1,
where we placed food in predefined locations. This experiment would teach creatures
to either walk in straight line towards food or learn to steer and follow path made from
food.

We could implement learning process consisting from several worlds, where we would
teach virtual creatures more complex behavior in gradual task definitions. We could
start with walking and then use evolved individuals in several next worlds with the final
goal of traversal through unknown worlds.
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Appendix A
CD Content

A.1 CD Content
Following folders are placed on CD accompanying this thesis../Java source project

Folder with NetBeans project of VirtualCreaturesEvolution program, which
contains implementation described in chapter 3../Javadoc

Contains generated javadoc with class diagram../Ready-made distributions
Contains ready-made bundles for each experiment for easy repetion of experiments.

Java application is runnable with comand line:

java -jar VirtualCreaturesEvolution.jar
<experiment-name> <path-to-framsticks-folder>

Java application can be controlled by editing the experimentConfig.txt file (nec-
essary syntax is explained in readme files for each experiment). Both Linux and
Windows versions are provided../Thesis TEXsource

Folder contains sources for this thesis. Can be compiled with pdfcsplain of
attached TexLive bundle../Experiment results

Contains all individuals from performed experiments (100 per each configuration)../Matlab scripts
Attached Matlab scripts used for graph generation../Video presentation
Contains video presentation file of sample individuals. The same video can be

viewed on http://www.youtube.com/watch?v=qRhW1NPRn0g../References
Folder containing all publicly accessible papers in this thesis. We chose to provide

them in this folder for convenience purposes and for the case of their disappearance
from provided link.
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A CD Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.2 Software

These applications are available on corresponding webpages for free download, but the
exact versions used while working on this thesis are placed into /Software folder..Framsticks current official release 3.2.Java v1.7.NetBeans IDE in version 7.0.1..TeXLive and TeXworks for opening TEXsources of this thesis.
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Appendix B
Additional graphical content

Experiments often yielded multiple results and not all of them were significant for our
explanations. Also sometimes several graphs shown the same principle or behavior and
only the exemplary one was used for demonstration. Here we provide the rest of these
results.

B.1 Experiment 2 – the fastest creature – number of
neurons

Figure B.1. Experiment 2 graph with alterating number of neurons. Graph comparing
neuron counts of 2 and 10 is already on figure 4.7.
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B Additional graphical content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B.2 Experiment 2 – the fastest creature – iteration
ratio

Figure B.2. Alternating brainIteration number with bodyIteration of 10. Similar behavior
as 4.8.

Figure B.3. Alternating brainIteration number with bodyIteration of 50. Similar behavior
as 4.9.
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. . . . . . . . . . . . . . . . . . . . . . . . . . B.2 Experiment 2 – the fastest creature – iteration ratio

Figure B.4. Another unbalanced example – opposite extreme to 4.10. Compare with more
balanced version in B.5.

Figure B.5. Jump in efficiency when balance in body and brain iteration ratio is main-
tained. Balanced version as comparison for B.4.
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B Additional graphical content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure B.6. Experiment 2 growth graph with alternating body : brain iteration ratio.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . B.3 Experiment 2 – the fastest creature – popSize ratio

Figure B.7. Experiment 2 growth graph with alternating body : brain iteration ratio.

B.3 Experiment 2 – the fastest creature – popSize
ratio
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B Additional graphical content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure B.8. Experiment 2 growth graph with alternating body : brain popSize ratio.
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