
CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF ELECTRICAL ENGINEERING

DIPLOMA THESIS

Bc. Vladislav Vávra

System for analysis of damages of cultural heritage objects

Department of Computer Graphics and Interaction

Supervisor: Doc. Ing. Zdeněk Kouba, CSc.

Prague, 2014

Abstrakt

Diplovomá práce se zabývá návrhem a implementací softwarového systému
pro analýzu poškození kulturních objektů. Tato úloha je motivována projek-
tem MONDIS, který je zaměřen na vývoj informačního systému určeného pro
analýzu poškození kulturních památek a vztahů mezi poškozeními a jejich příči-
nami. Vyvinutý systém je určen pro pomoc neexpertních uživatelů v analýze
poškození památek, například zobrazení, která intervence odstraňuje nějaké
projev poškození. Systém je postavený na MONDIS ontologii, což je ontolog-
ická reprezentace zpracované domény. Systém je schopný reprezentovat více pří-
padů použití a jeden konkrétní případ užití, Intervenční, byl implementován.
Tento případ použití je určen k popsání projevů poškození, jejich příčin a in-
tervencí jim zabraňujícím. Je formálné popsán Deskripční Logikou a později je
tento popis vyjádřen v jazyce OWL2. V práci je představena navržená architek-
tura systému a jako důkaz její správnosti je prezentována její implementace. Tato
implementace byla otestována jednotkovými testy s pokrytím řádek kódu přes
75 % v průměru. Uživatelské rozhraní bylo implementováno jako webová ap-
likace a bylo otestováno automatizovanými Selenium testy.

Abstract

The main goal of this thesis is to design and implement a software system for
the analysis of damage to cultural heritage objects. This task is motivated by
the MONDIS project that is focused on the development of an information sys-
tem aimed at analyzing damage to cultural heritage objects and the relations be-
tween them. The system developed in this thesis is designed to help non expert
users to see relations in the domain, for example which intervention is stopping
which manifestation of damage. The system is built on top of the MONDIS on-
tology, which is an onological model of the represented domain. The system is
able to represent more use cases and one such a use case - the Intervention use
case - is implemented. This use case aims to describe the causes of manifestation
of damages and interventions preventing them. It is formally described using
description logic and then this description is refined into OWL2 language. The
architecture of the proposed system is presented and as a proof of concept an im-
plementation of this architecture is given. Implemented solution is tested by unit
tests with average test line coverage over 75 %. The user interface is implemented
as a web application and it was tested by Selenium automated tests.

I would like to thank my supervisor, Mr. Kouba, for his great help and patience with
this thesis. I would also like to thank Mr. Blasko for his help with the design of the imple-
mented component and for his advice regarding ontologies. And I would also like to give
thanks to Zuzka, my girlfried, for her patience with me over last few months.

Contents

1 Introduction 1

1.1 Intervention Use Case . 2

1.2 Design and Implementation . 2

2 Knowledge Representation 4

2.1 Intuition . 4

2.2 Description Logic . 5

2.2.1 Syntax . 6

2.2.2 Semantics . 7

2.2.3 Examples of usage . 8

2.2.4 Queries . 9

2.2.5 Intervention Use Case - Formal definition 10

2.3 RDF(S), OWL2 And Semantic Web . 12

2.3.1 RDF . 12

2.3.2 OWL2 . 14

2.3.3 SPARQL . 16

2.3.4 Intervention Case One - Semantic web representation 18

3 Architecture 25

3.1 Typographical conventions . 25

3.2 Overall architecture . 26

3.3 Knowledge-Matrix-Server . 27

3.3.1 Data Transfer Objects . 28

3.3.2 Query Objects . 30

3.3.3 Service Objects . 34

3.3.4 Class relationships . 36

3.4 Knowledge-Matrix-Component . 39

3.4.1 Tree-Matrix-Component . 39

3.4.2 Info-Card . 43

3.4.3 Auto-Complete-Tree . 43

i

4 Implementation And Testing 50

4.1 Knowledge-Matrix-Server . 50

4.1.1 Knowledge Framework . 50

4.1.2 Testing . 51

4.2 Knowledge-Matrix-Component . 52

4.2.1 Web Framework . 54

4.2.2 Testing of knowledge-matrix-component and auto-complete-tree . . 55

4.3 Knowledge-Matrix-User-Interface . 56

5 Conclusion 59

Attachment A: Content of CD 64

List of Figures

1.1 Example of a tree of manifestations of damage. 2

2.1 Visualization of Concepts of Intervention Use case and Roles between them. . 10

2.2 Example of an rdf triplet capturing relation hasMaterial between bridge
and oak. 13

2.3 Example of an rdf graph representing Material and Component classes and
their instances. 14

2.4 Example of Material, Component and Manifestation Of Damage represen-
tation. 18

3.1 Deployment diagram. 27

3.2 knowledge-matrix-component class diagram. 29

3.3 Data loading sequence diagram. 37

3.4 Getting axis and their values . 38

3.5 Example of getting content nodes . 40

3.6 Example of possible state of tree-matrix-component. 41

3.7 Class diagram of TreeMatrixComponent. 44

3.8 Example of visualization of info-card. 45

3.9 Example of possible state of auto-complete-tree. 45

4.1 knowledge-matrix-component deployed to Liferay portlet 58

iii

Chapter 1

Introduction

This thesis deals with the design and implementation of a software component that
aims to help users analyze damage to historical monuments. The component is a part of
the MONDIS project [3], which is an information system developed to help restorers and
students of cultural heritage with their professional work. There are already some existing
information systems that deal with cultural heritage, but they are mainly concerned with
cultural and historical information. The MONDIS project aims to describe the technical
state of monuments with respect to their damage and to help the users with an analysis
of the interventions that would prevent or repair the manifestation of damage.

There are already some implemented software artifacts in the MONDIS project. There
is an ontology that describes the domain of historical monuments and the manifestation
of their damage. This ontology is mainly concerned with technical knowledge about the
domain. It captures the relations between materials, constructions, their causes of damage
and preventative and reparatory interventions. This ontology is the main data source for
all other applications that are developed for the MONDIS project.

As expected, users of the MONDIS project are not experts about ontologies, a tool
that would help the users to update and modify the ontology was developed within the
MONDIS project. This tool is named OntoMind [25] and it is based on the idea of mind
mapping. Mind mapping is an intuitive approach used to sort ideas and thoughts but it
lacks formal semantics. OntoMind combines mind mapping with ontological semantics
which makes it usable by non technical users and yet keeps data semantically correct.

Another part of the MONDIS project that was already developed is a mobile applica-
tion. This application is named Mondis Mobile [4] and it is a multi-platform application
designed for tablets and other mobile devices to support gathering and processing data
related to on-site surveys. The goal of this application is to help restorers during their
on-site work. It can work online - connected to the central server, or offline working only
with a local data model.

The MONDIS project still lacks an application that would show general relations be-
tween the components of monuments, their materials, their manifestations of damage
and the mechanisms causing them. This thesis aims to design and develop such an ap-
plication. The goal is to help non expert users and students to see and understand the
relations that are contained in the MONDIS ontology. This component is termed Knowl-
edge Matrix and as its name suggest, it presents the knowledge in the form of a matrix.
Each column and row can represent one element of the ontology and the cells represent
relations between those elements. An example of such a matrix is rows representing ma-

1

1.1. INTERVENTION USE CASE

terials and columns representing components of monuments and each cell represents a
relation between an associated material and a component.

The Knowledge Matrix is designed to be a generic component that is configurable by
given use cases. A use case defines the meaning of columns and rows and specifies the
relations between them. The provided implementation is realizing one such use case. This
use case termed the Intervention use case and is informally described in the next section.

1.1 Intervention Use Case

The purpose of this use case is to present the relations between the manifestations of
damage of some material or component and associated interventions. The manifestations
of damage are hierarchically organized in a tree structure where the children of a node
represent more specific concepts and the parents represent more general concepts. An
example of such a tree is in figure 1.1. Each manifestation of damage is associated with
some material and/or some component. Materials and components are also organized in
tree structures.

Figure 1.1: Example of a tree of manifestations of damage.

Interventions are represented by three groups. The first group contains all interven-
tions that are directly stopping some manifestation of damage, but are not stopping the
cause of this manifestation. An example of such an intervention is water cleaning. The
second group represents all such interventions that are stopping some mechanism that is
causing some manifestation of damage. An example of this relation is salt crystallization,
which belongs to mechanisms, and cleaning, which belongs to interventions. The last,
third, group is concerned with an analysis of the relation between agents, mechanisms
and manifestations of damage. A manifestation of damage is caused by some mechanism
and this mechanism is triggered by some agent. An example of this relation is moisture (as
an agent) and condensation (as a mechanism) causing erosion (as a manifestation of dam-
age). The agent can be prevented by some intervention and when the agent is prevented,
the associated mechanism is mitigated and manifestation of damage is then eliminated.

1.2 Design and Implementation

The implementation of the component shall be as generic as possible in order to im-
plement more use cases and not only the Intervention use case. For this reason, the archi-
tecture of this component is given in this thesis and rationale explaining the applied deci-
sions is presented. As a proof of concept, an implementation that adhares to the proposed

2

1.2. DESIGN AND IMPLEMENTATION

architecture is given. This implementation was tested by unit tests and by automated tools
testing user interfaces.

The rest of this thesis is organized as follows: The second chapter describes the knowl-
edge representation used to store data and presents an introduction to description logic
and two technologies related to it: RDF and OWL. Description logic is the formalism that
is used in ontologies, and RDF and OWL are technologies that are used to represent on-
tologies in standard form. The third chapter describes the proposed architecture and the
decisions that are behind it. The fourth chapter describes the implementation, testing and
the technologies used in the implemented component. The last chapter contains the con-
clusion and presents results of this thesis.

3

Chapter 2

Knowledge Representation

The requirements for this thesis are to implemented use cases specified by the MONDIS
[7] project and yet this solution should be as generic as possible for the future reuse of the
implemented code. This task is not straightforward and it requires a more systematic ap-
proach to solving given problems. This chapter aims to describe how the knowledge of
this project is organized and stored. The first section of this chapter informally explains
the big picture: how data is represented, how data mutually corresponds, and how knowl-
edge can be extracted from it. After this section the reader should have a basic intuitive
idea about the data representation. The second section refines the intuition into a more
mathematical form using description logic [2]. Description logic is a well elaborated sub-
set of first order predicate logic and therefore there are many standard ways of represent-
ing knowledge within it. The intervention use case is expressed in description logic in this
section. When the formal description has been completed a technology that is backed by
description logic is introduced. This technology is based on the ideas of Semantic Web and
Linked Data. The utilitized technology is a standardized solution so there are many inde-
pendent projects and applications based on it. The technology is explained at the level of
detail required to understand the implementation of this thesis.

2.1 Intuition

This section is aimed at creating reader’s intuitive understanding of the basic idea
that stands behind the rest of this thesis. The idea of the proposed approach is based on
discussions with Miroslav Blasko [6]. The explanation of the this approach in this section
is not meant to be exact but rather to give the first idea of how the system is organized.
More formal explanation is given in the next section.

The whole knowledge organized by the proposed solution can be seen as a hypercube
in a coordinate system consisting of several axes. The dimensions of the hypercube is de-
fined by a number of axes. The axes represent concepts, like materials or components.
Those axes will from now on be termed TopCoordinates. A TopCoordinate is the root of
a tree that represents a hierarchy of concepts where the children of a node are specializa-
tions of their parent. An example of the specialization relation can be wood as a parent
and oak and spruce as children. The nodes of the tree are called Coordinates and one Co-
ordinate represents one concept, like wood or bridge. Each Coordinate can have a set of
children Coordinates that are specializations of the Coordinate.

4

2.2. DESCRIPTION LOGIC

The hypercube cell is a tuple of the form < coord1, coord2, . . . , coordn > when n is a
number less or equal to the dimension of the hypercube and each coordi (for i ∈< 1, n >)
represents one Coordinate. The cell content is a mapping of a cell to a set of all elements
that are associated together: < coord1, coord2, . . . , coordn >→ {e1, e2, . . .}. Elements rep-
resent the output of a query specified by the Coordinates. The association is defined by
the intersection of coord1, coord2, . . . , coordn. An example of such a cell can be the inter-
section of component and material that can result in "roof made of wood" or "bridge made
of stone". Any combination of TopCoordinates or Coordinates can be used in intersection
operation. An example of such a combination can be component and metal which can
result in "Bell made of bronze".

An intersection relation intuitively represents connectors or adjectives in sentences
like "bell made of bronze" or "rotting wood". The relation between any two axis has to be
defined either explicitly or implicitly. This definition can be intuitively done for example
by relation "made of" as was already suggested by the example "bell made of bronze". An-
other example of the relation between three axes (component, material and manifestation
of damage) is "rotting wooden roof".

2.2 Description Logic

The formalism that is used for the description of use cases that are implemented in
this thesis is description logic. At the time this thesis was written only one such use case
was defined - the Intervention use case. This use case is formally described in this section
and the relation to intuition from the previous section is given.

Description logic is a (typically) decidable subset of first order predicate logic. It has
historically evolved from semantic networks and frames [2]. Description logic is the for-
malism that stands behind some Semantic Web technologies [24] and for this reason this
section presents short introduction to it. Description logic is based on the following ideas
(taken from [2]):

• The basic syntactic building blocks are atomic concepts (unary predicates), atomic
roles (binary predicates), and individuals (constants).

• The expressive power of the language is restricted in that it uses a rather small set
of constructors for building complex concepts and roles.

• Implicit knowledge about concepts and individuals can be inferred automatically
with the help of inference procedures.

Concept can be understood as a set of somehow related objects, e.g. Car. Individual is
one element of a concept, e.g car_9H9_7903. One individual can belong to more concepts
at the same time. Role is a set of binary tuples that relate two concepts together. Exam-
ple of a such role can be hasColor that establishes relation between Car and Color. The
organization of Concepts , Roles and Individuals is contained in a so called knowledge base
that is composed of three mutually disjoint sets: The TBox that contains used terminology
(e.g. Cars), the ABox that stores assertions made about individuals (e.g. car_9H9_7903 is
a Car) and the RBox that stores relations between roles (e.g. hasColor is a subproperty of
hasProperty).

5

2.2. DESCRIPTION LOGIC

One important feature of description logic is called open world assumption. This as-
sumption says that if some piece of information is not known, it does not mean that it
is automatically false. For example let Parent be a concept of all individuals that have at
least one child and Mother be a concept of all individuals that are females with at least one
child. Then let state that Amanda is a mother (Mother(Amanda)), but no more information
about Amanda is provided. But because Amanda is a mother and all mothers have at
least of child, also Amanda has to have at least on child, although unknown. And because
Amanda has at least one child, she must also be a parent since parents are all individuals
with at least on child.

There are many dialects of description logic that differ in concept and relation con-
structors. An example of such a constructor for concepts is logical AND, denoted by u,
(Car u Red is a new concept representing all red cars). The dialect used in this thesis is
SROIQ(D). The reason for using this dialect is that OWL2 - a popular technology used in
Semantic Web (explained in the following section) is backed by this dialect [15].

An explanation of description logic is given precisely in [2]. The explanation given
in this thesis is meant as a quick introduction and serves to establish vocabulary used in
this thesis. The semantics of SROIQ is explained by equivalent formulas in set theory.
Note that SROIQ(D) is a language based on SROIQ with an additional feature - data
properties (D). The reason for presenting the simplified version is to make explanation
shorter and easier to understand.

The following subsection explains the used syntax and the next subsection defines
its meaning. The subsection 2.2.3 presents two simple examples of applied description
logic, the subsection 2.2.4 is about querying knowledge stored in a knowledge base and
the last subsection 2.2.5 formally defines the Intervention use case. Note that semantics is
explained by set theory and this explanation does not detail any precise method regarding
how to reason with this data. For information about reasoning algorithms please see [2].

2.2.1 Syntax

This section presents the syntax commonly used in description logic. The meaning of
the symbols used is given in the section 2.2.2. Atomic Concept is a Concept that is defined
when a domain that is described is defined. Atomic Concept is denoted by the letter A.
Atomic Role is a Role that is defined when the described domain is defined. Let C, D be
Concepts , R, R1, . . . Rm, L Roles , a, b Individuals and n,m natural numbers.

Then TBox can be defined by the following relations:

C v D | C = D

RBox can be defined by the following relations:

R v L | R1 ◦R2 ◦ . . . ◦Rn v L | Func(R)
Sym(R) | Asy(R) | Tra(R) |
Ref(R) | Irr(R) | Dis(R,L)

ABox can be defined by the following relations:

C(a) | R(a, b)

A new Concept E can be defined by using the already defined Concepts by the following
rules:

6

2.2. DESCRIPTION LOGIC

E := A | ⊥ | > |
¬C | C u D | C t D |
∀R.C | ∃ R.C | {a} |
∃C.self | ≥nR.C | ≤nR.C

2.2.2 Semantics

The semantics of the SROIQ dialect of description logic is explained by the set theory.
The set theory was used because it is well known and the explanation is straightforward.
Interpretation I is a tuple of ∆I and interpretation function .I . ∆I is called the domain
of interpretation and it represents objects from "real world". The interpretation function
.I maps Individuals , Concepts and Roles to this set and thus it gives meaning to them. It
formally maps Individual a to aI ∈ ∆I , Concept A to AI ⊆ ∆I and Role (a, b) to (a, b)I =
(aI , bI) ∈ ∆I ×∆I .

Table 2.1 shows interpretation of relations in TBox, RBox and ABox in the set theory
and table 2.2 shows semantics of concept and relation constructors. The table is inspired
by [24].

TBox Relation Interpretation .I Description

A v B AI ⊆ BI Subset of
A = B AI = BI Equality

RBox Relation Interpretation .I Description

R v L RI ⊆ LI Subset of
R1 ◦R2 ◦ . . . ◦Rn v L R1

I ◦R2
I ◦ . . . ◦Rn

I ⊆ LI Role hierarchy
Func(R) (a, b) ∈ RI ∧ (a, c) ∈ RI → a = c Functionality
Sym(R) (a, b) ∈ RI → (b, a) ∈ RI Role symmetry
Asy(R) (a, b) ∈ RI → (b, a) /∈ RI Role asymmetry
Tra(R) (a, b) ∈ RI ∧ (b, c) ∈ RI → (a, c) ∈ RI Transitivity
Ref(R) ∀a : (a, a) ∈ RI Reflexivity
Irr(R) ∀a : (a, a) /∈ RI Irreflexivity
Dis(R,L) RI ∩ LI = ∅ Disjointness

ABox Relation Interpretation .I Description

C(a) aI ∈ CI Individual assertion
R(a,b) (aI , bI) ∈ RI Role assertion
{ a } ≈ { b } a I = b I Individuals are same
{ a } 6≈ { b } a I 6= b I Individual difference

Table 2.1: Semantic of TBox, RBox and ABox.

7

2.2. DESCRIPTION LOGIC

Concept C Interpretation CI Description

> ∆I Universal Concept
⊥ ∅ Unsatisfiable Concept
¬A ∆I \AI Complement
A uB AI ∩BI Conjunction
A tB AI ∪BI Disjunction
∀R.C {a ∈ ∆I | ∀b : (a, b) ∈ RI → b ∈ CI} Universal qualification
∃R.C {a ∈ ∆I | ∃b : (a, b) ∈ RI ∧ b ∈ CI} Existential qualification
{a} aI Nominals
∃R.self {a ∈ ∆I | ∃a : (a, a) ∈ RI} Reflection
≥ nR.C {a ∈ ∆I |

∣∣∣∃b : (a, b) ∈ RI ∧ b ∈ CI
∣∣∣ ≥ n} Qualified number restriction

≤ nR.C {a ∈ ∆I |
∣∣∣∃b : (a, b) ∈ RI ∧ b ∈ CI

∣∣∣ ≤ n} Qualified number restriction

Role R Interpretation RI Description

>R ∆I ×∆I Universal role
R− {(a, b) | (b, a) ∈ R} Inverse role

Table 2.2: Semantics of Concept and Role constructors.

2.2.3 Examples of usage

The following text presents an example of a knowledge base and its interpretation. Note
that Individuals start with prefix a_ and they represent some particular objects from the
described domain.
Let

• ∆I be a domain of interpretation defined as:
∆I = {a_roof, a_bridge, a_church, an_oak, a_granite}.

• Component, StoneMaterial, WoodenMaterial be Atomic Concepts and hasMaterial
a Role.

• ComponentI = {a_roof, a_bridge, a_church}.

• WoodenMaterialI = {an_oak}.

• StoneMaterialI = {a_granite}.

• Material = WoodenMaterial t StoneMaterial.

• hasMaterialI = {(a_roof, an_oak), (a_bridge, an_oak), (a_bridge, a_granite)}.

Notice that a_church has no associated material. This information can be understood
that the material of a_church was not known during the definition of the interpretation
domain. The statement ∃ hasMaterial.Material is interpreted as a set that is composed of
elements that are in binary relation with Material. Such elements are {a_roof, a_bridge}
because
(∃ hasMaterial.Material)I =

= {a ∈ ∆I | ∃b : (a, b) ∈ hasMaterialI ∧ b ∈ MaterialI} =

8

2.2. DESCRIPTION LOGIC

= {a ∈ ∆I | ∃b : (a, b) ∈ hasMaterialI ∧ b ∈WoodenMaterialI∪ StoneMaterialI} =

= {a ∈ ∆I | ∃b : (a, b) ∈ {(a_roof, an_oak), (a_bridge, an_oak), (a_bridge, a_granite)} ∧
b ∈ {an_oak} ∪ {a_granite}} =

= {a ∈ ∆I | ∃b : (a, b) ∈ {(a_roof, an_oak), (a_bridge, an_oak), (a_bridge, a_granite)} ∧
b ∈ {an_oak, a_granite}}

= {a_roof, a_bridge}

On the other hand, the statement ∀hasMaterial.WoodenMaterial results in {a_roof, a_church}.
This might seem to be strange that a_church, that has no material, is a part of the result of
the evaluation of the given expression. The following equation gives the explanation:
∀hasMaterial.WoodenMaterial =

= {a ∈ ∆I | ∀b : (a, b) ∈ hasMaterialI → b ∈WoodenMaterialI} =

= {a ∈ ∆I | ∀b : (a, b) ∈ {(a_roof, an_oak), (a_bridge, an_oak), (a_bridge, a_granite)} →
b ∈ {an_oak}} =

= {a ∈ {a_roof, a_bridge, a_church, an_oak, a_granite} |
∀b : (a, b) ∈ {(a_roof, an_oak), (a_bridge, an_oak), (a_bridge, a_granite)} → b ∈ { an_oak} } =

= {a_roof, a_church}

The reason why the a_church is a part of the result is because it belongs to ∆I and it
does not have any associated Role in hasMaterialI at the same time. Interpretation of ∀R.C
is defined by implication and because a_church has no associated Role in hasMaterialI it
is evaluated as part of the answer. This is an example of the open world assumption.

2.2.4 Queries

Any knowledge representation system would be of little use if there was no way of
extracting data out of it. A description logic knowledge base contains explicit data, the
one that the designer created, and implicit data, one that can be inferred by a reasoner
from explicit data. There are many types of queries but only three of them are introduced
here and this introduction is very brief. For more information please see [2].

For all inferences introduced here let T be a TBox, .I an interpretation function and C,
D Concepts .

The first type of inference is a satisfiability check. As the name suggests, this type
of query checks whether the given knowledge base is satisfiable, i.e. if every Concept con-
tained in TBox has a non empty interpretation set. This type of query is very useful during
the design of the knowledge base and is also used in other types of queries that can be
transformed into a satisfiability check. This type of query can be formally expressed as
∃.I : ∀C ∈ T : CI 6= ∅.

The second type of inference is called a subsumption problem. This inference checks
whether the all interpretations of one Concept (C) are subset of the all interpretations of
other Concept (D), formally if CI v DI for all possible interpretation functions .I . This
way it is possible to sort Concepts by their interpretation sets and it can be used for ex-
ample in the optimization of execution of queries. This inference can be transformed into
satisfiability check by checking if the following TBox is not satisfiable: T ′ = T t (¬D uC)

9

2.2. DESCRIPTION LOGIC

The third type of query introduced here is called an instance check. This query answers
true or false based on whether an Individual a belongs to certain Concept C. Formally
whether the following statement is satisfiable: T ′ = T t C(a).

2.2.5 Intervention Use Case - Formal definition

This section defines the Intervention use case specified in the chapter 1 using descrip-
tion logic. The definition by description logic is useful because it is a formal definition and
is independent of any particular technology. The following text slightly abuses notation
by mutually exchanging Individuals and Concepts in plain text. For example when the text
describes a relation between material and component, it describes it as "Component that
has associated Material" although it should be "Individuals that are instances of Compo-
nent are associated with Individuals that are instances of Material". The later case would
make the text too long and hard to read so this shortcut is used. Also, when the text is
presenting examples of some Concepts , like the example of Wood is oak, those examples
are particular individuals that are instances of the concept.

The first step in the process of definition is to identify Atomic Concepts and Atomic
Roles. The interpretation of those Concepts is defined by the designer of represented data.
Such Atomic Concepts and Atomic Roles are then used for building more complex Concepts .
The relations between Atomic Concepts and Atomic Roles are visualized on figure 2.1, where
rectangles represent Atomic Concepts and edges represent Atomic Roles.

Figure 2.1: Visualization of Concepts of Intervention Use case and Roles between them.

The Component is a Concept that represents a set of all cultural components, like
churches and bridges. Material is a Concept that defines a set of all materials, like wood
or stone. The relation between Component and their Material is defined by a Role hasMa-
terial. Not all individuals that belong to Component have to have an associated Material
as this knowledge might be unknown at the time the knowledge base is specified. Those
subclasses are not listed here but they can be found in the [7] ontology (explained later).

ManifestationOfDamage defines a Concept of all visible or somehow detectable man-
ifestations of damage to some Components and Materials. Examples of individuals that
belong to this Concept can be crack and lichen.

10

2.2. DESCRIPTION LOGIC

Intervention defines a Concept of all repairing interventions that either (i) directly stop
some manifestation of damage, or (ii) stop mechanism causing some manifestation of
damage, or (iii) stop an agent causing a mechanism. Examples of such a repairing in-
terventions can be cleaning or desalination. A relation between ManifestationOfDamage
and its repairing Intervention is represented by hasRepairingIntervention Role . Relations
between Intervention and Mechanism or Agent are explained in the next paragraph. It is
possible that some Intervention requires additional Material or Component to be applied.
For example cleaning would require water to be applied. Such relations are expressed by
hasEmployedMaterial and hasEmployedComponent Roles .

Mechanism Concept defines a set of all mechanisms that lead to certain Manifesta-
tionOfDamage. Example of such a mechanisms are condensation or oxidation. The rela-
tion between Mechanism and ManifestationOfDamage is determined by Role leadsToM-
anifestationOfDamage. Mechanism can be prevented by certain Intervention. The relation
that defines this prevention is Role isStoppedByIntervention.

The last Concept that is left to define is Agent. Agent represents a set of all carrying
factors (agents) that have some associated mechanism (leading to some manifestation of
damage) that they causes. Example of such an agent is moisture that causes oxidation
(that leads to erosion). The association between Mechanism and Agent is represented by
hasAgent Role . Agent can be eliminated by Intervention and this information is encoded
in isEliminatedByIntervention Role . Example of such an elimination is jacketing that is
eliminating moisture.

All Concepts defined in this paragraph can have appropriate subsumed concepts, for
example Component can have a Construction v Component and Material can have a
Wood v Material.

With the Concepts and Roles above it is possible to define new Concepts that simplifies
definitions of the Intervention use case:

• ComponentWithMaterial = Component u ∃hasMaterial.Material

• MaterialWithComponent = Material u ∃hasMaterial−.Component

• RelevantMoD = ∃hasManifestationOfDamage−1.ComponentWithMaterial t
∃hasManifestationOfDamage−1.MaterialWithComponent

With the definition above it is already possible to define main Concepts that contain
the elements needed for the Intervention use case. The first Concept to define is Repairing-
Intervention. This Concept contains all reparative interventions that are associated with a
manifestation of damage that is associated with some component or material. Repairing-
Intervention Concept can be seen as an intersection of Material, Component, Manifesta-
tionOfDamage and Intervention. This notion of intersection was introduced in the section
2.1. The Concept RepairingIntervention can be defined as follows:

• RepairingIntervention = Intervention u ∃hasRepairingIntervention.RelevantMoD

The second Concept to define is MechanismIntervention. This Concept represents a set
of all individuals that prevent some mechanism that leads to RelevantMoD. Mechanis-
mIntervention Concept can be seen as an intersection of Material, Component, Manifesta-
tionOfDamage, Intervention and Mechanism axes. To simplify the definition of Mechanis-
mIntervention a new Concept , RelevantMechanism, that represents a set of all mechanism

11

2.3. RDF(S), OWL2 AND SEMANTIC WEB

that leads to RelevantMoD, is defined. MechanismIntervention Concept is defined as fol-
lows:

• RelevantMechanism = Mechanismu ∃leadsToManifestationOfDamage.RelevantMoD

• MechanismIntervention = Interventionu ∃isStoppedByIntervention.RelevantMechanism

The last Concept that is left to define for the Intervention use case is AgentIntervention.
This Concept represents a set of all interventions that are stopping some agent. A stopped
agent has to be associated with some RelevantMechanism by hasAgent Role . The formal
definition of AgentIntervention follows:

• MechanismAgent = ∃ hasAgent−.RelevantMechanism

• AgentIntervention = Intervention u ∃isEliminatedByIntervention.MechanismAgent

2.3 RDF(S), OWL2 And Semantic Web

This section introduces two technologies related to Semantic Web. Those technolo-
gies are used in the provided implementation of the thesis and for this reason they are
introduced briefly here. The first technology to be mentioned is called RDF(S). RDF(S)
is a framework designed to describe resources and their relations (RDF(S) means Re-
source Description Framework (Schema)). The expressivity of RDF(S) is similar to entity-
relationship or class diagrams in the sense that it establishes relations between resources.
The semantics of RDF(S) is simple and is not able to perform much of inferences such as
relation transitivity.

OWL2 addresses this problem. This technology is backed by SROIQ(D) Description
Logic, which makes it able to do all inferences as in SROIQ(D). OWL2 is build on the
top of RDF(S) so anything that is valid in RDF(S) in also valid in OWL2 (with slightly
modified syntax). RDF(S) is also used for the serialization of OWL2 ontologies.

2.3.1 RDF

RDF(S) is combination of two technologies: RDF and RDFS. While RDF is aimed at
establishing a simple framework for resource definition, it does not provide any way how
to perform metamodeling, that is, how to state that something is a class and something
is a property. This problem is addressed by RDFS which establishes simple constructs for
specifying classes and their relations. The formal specifications of both technologies are
defined in [9] and [11]. This section presents an intuitive explanation of RDF(S) that is
needed to understand the implementation of this thesis. Not all features of RDF(S) are
explained here as it is not part of this thesis. For detailed information about RDF(S) the
reader is asked to consult [9], [30] and [11].

An RDF(S) document can be intuitively seen as a graph, where nodes are either (i) re-
sources identified by their IRI; (ii) literals; or (iii) blank nodes. A resource is anything that
can be identified by it’s IRI. IRI (internationalized resource identifier) is an string literal
similar to URI except that it allows for Unicode characters. An example of an IRI is

12

2.3. RDF(S), OWL2 AND SEMANTIC WEB

http://kbss.felk.cvut.cz/ontologies/2011/monument-damage-core.owl#
hasEmployedComponent.

Literals are used to represent concrete values, like strings or numbers. Their form is
"literal"ˆˆ"type" where literal is Unicode representation of a value and type ref-
erences to the type of the value. An example of such a literal is "128"ˆˆxsd:integer
representing integer value of 128.

Blank nodes are special types of nodes that can represent any other resource that is
unknown in the time the document is being created. They are useful, for example, in
order to state that something exists but is not known yet or when it is needed express a
relation that is of arity greater than two.

An RDF(S) document is composed of triples of the form subject-predicate-object. Sub-
ject and object represent two nodes of the graph that are connected by an edge labeled
with a predicate. The subject can be either a resource or a blank node and the object can
be either a resource, a literal or a blank node. An example visualization of such a triplet
is on figure 2.2. Notice that IRI prefix http://kbss.felk.cvut.cz/ontologies/
2011/monument-damage-core.owl# is abbreviated on the figure to mondis:, which
is a standard way how to make IRIs shorter in RDF(S).

Figure 2.2: Example of an rdf triplet capturing relation hasMaterial between bridge and
oak.

There are several syntaxes regarding how an RDF(S) document can be stored. The
most simple one is called N3 [36] and has form:
subject1 predicate1 object1.
subject2 predicate2 object2.
. . .
subjectn predicaten objectn.
Where one line represents one statement and n is a number of statements.

RDF(S) is able to provide a simple language for metamodeling. The dictionary for
such modeling is composed of the objects and predicates listed in table 2.3 with an in-
cluded explanation given by description logic. Note that C, C1, I, R, R1 are symbols
representing RDF(S) resources. The first column represents RDF(S) symbols. The second
column declares if the symbol in the left column is an object or an predicate. The third
column shows example of the usage of the symbol and the last column shows an equiv-
alent example in description logic. The description logic explanation is meant only as an
intuitive explanation but is not exact because RDF(S) allows resources to be a class and an
instance of a class at the same time, which is not directly possible in description logic.

An example of the usage of RDF(S) metamodeling language is on figure 2.3. The mid-
dle column of resources represents classes and a property as is defined by the right col-
umn. The left column specifies concrete instances of the classes. An instance of a class is a
resource that has an edge labeled with rdf:type starting in the resource and leading to
a resource representing the particular class.

RDF(S) has several methods of how to extract data from a graph. Those ways are called
RDF(S) entailment regimens and there are four types of them: (i) Simple entailment; (ii)

13

2.3. RDF(S), OWL2 AND SEMANTIC WEB

Predicate Type Usage DL equivalent

rdfs:Class Object C rdf:type rdfs:Class. C is a Concept
rdf:type Predicate I rdf:type C. C(i)
rdfs:subClassOf Predicate C1 rdfs:subClassOf C. C1 v C
rdf:Property Object R rdf:type rdf:Property. R is a Role
rdfs:subPropertyOf Predicate R1 rdfs:subPropertyOf R. R1 v R
rdfs:range Predicate R rdfs:range C. ∃ R.> v C
rdfs:domain Predicate R rdfs:domain C. ∃ R−.> v C

Table 2.3: Table of RDF(S) metamodeling predicates and objects.

Figure 2.3: Example of an rdf graph representing Material and Component classes and
their instances.

RDF entailment; (iii) RDF(S) entailment; and (iv) D entailment. Each entailment regime is
explained in [30], but they are not directly used in this thesis and for this reason they are
not explained here. If the reader is interested, detailed information can be found in [30].

2.3.2 OWL2

RDF(S) is able to express classes and simple relations between them, but is not able to
express more complex relations like transitivity or qualified number restrictions. Such re-
lations is are possible to be expressed in the OWL2 language family [14], which is built on
top of RDF(S). There are several dialects of OWL2 language differing in expressivity and
therefore in reasoning complexity and decidability. OWL2 dialects, ordered by expressiv-
ity, are OWL2 (Full), OWL2 DL, OWL2 Lite. OWL2 (Full) is not a decidable language. The
one that is used in this thesis is OWL2 DL, which is backed by SROIQ(D) description
logic, which makes it decidable in exponential time. The last dialect is less expressive and
therefore are not suitable for this thesis.

Because OWL2 DL is based on SROIQ(D) description logic, there is direct mapping
between OWL2 DL constructs and description logic terms. Note that this thesis does not
explain data properties, for the same reason as was in the section 2.2. OWL2 syntax used
in this chapter is called Manchester syntax [26], but it is not the only possible syntax for
OWL2 DL, see [14] for more information. OWL2 DL is based from the following basic
building blocks.

14

2.3. RDF(S), OWL2 AND SEMANTIC WEB

Class

OWL2 class is an equivalent to description logic Concept . It is a basic building block
for describing a domain. OWL2 class is not semantically equivalent to RDF(S) class in a
way that RDF(S) allows a resource to be a class and individual at the same time. This
is not directly possible in OWL2. OWL2 supports a mechanism that can create an indi-
vidual from a class whose name is same as the class name, but such an individual is not
semantically related to the class.

Let C1 and C2 be Description Logic Concepts . OWL2 class can be defined as a subclass
of another class. This is equivalent to the C1 v C2 in description logic. Two classes can be
declared as disjoint, which means that C1 v ¬C2. A class can also be directly stated to be
equivalent to another class, which means that C1 = C2. An example definition of a class
in Manchester syntax is:

Class : :Roof
SubClassOf: :Component
EquivalentTo: :Strecha
DisjointClasses: :Floor

This class definition can be expressed in Description Logic in a TBox as:

Term in Description Logic Description

Roof v Component Roof is a subclass of Component

Roof = Strecha Roof and Strecha are the same class

Roof v ¬Floor Roof is disjoint with Floor

Individual

OWL2 individual is an equivalent to description logic Individual . An individual can
also be called an instance of a class and can belong to more classes at the same time. An
individual can be related to some other individual by some object property. This is equiv-
alent to Roles in description logic. It is possible to state that some individual is different
from other individual or is the same as another one. Individuals can also have proper-
ties. Properties are explained in the following paragraph. An example of definition of an
individual is:

Individual : :PragueCastleRoof
Types: :Roof
DifferentFrom: :CharlesBridge
SameAs: :StrechaPrazskehoHradu
Facts: hasMaterial :PragueWood

This class definition can be expressed in Description Logic in a ABox as:

15

2.3. RDF(S), OWL2 AND SEMANTIC WEB

Term in Description Logic Description

Roof(PragueCastleRoof) PragueCastleRoof is an instance of Roof

PragueCastleRoof 6≈ CharlesBridge PragueCastleRoof is different individual
than CharlesBridge

PragueCastleRoof ≈ StrechaPrazskehoHradu PragueCastleRoof is the same individual
as StrechaPrazskehoHradu

hasMaterial(PragueCastleRoof, PragueWood) PragueCastleRoof is in the relation with
PragueWood named hasMaterial

Object property

Object properties in OWL2 are generally statements made about two individuals de-
scribing their relation. Their equivalent in description logic is Role . Unlike RDF(S), OWL2
properties are much richer constructs and are able to express more information about the
described domain. Basically everything that SROIQ(D) is able to express about a rela-
tion OWL2 is able to express too. It is possible to describe characteristics of properties like
transitivity, functionality and all others defined in description logic section. Like RDF(S)
properties, OWL2 properties can have a domain and a range. Properties can be expressed
in a hierarchy where one property is a subproperty of another. This is equivalent to Roles
subsets in description logic. Two properties can be declared either equal or disjoint.

DataProperty : :hasMaterial
Characteristics: Asymmetric, Irreflexive
Domain: :Component
Range: :Material
InverseOf: :isContainedIn
DisjointWith: :hasManifestationOfDamage
EquivalentTo: inverse :isContainedIn

This property definition can be expressed in Description Logic in a RBox as:

Term in Description Logic Description

Asy(hasMaterial) hasMaterial is an asymetrical relation

Irr(hasMaterial) hasMaterial is an irreflexive relation

∀ hasMaterial.> v Component Domain of hasMaterial is Component

∀ hasMaterial−.> v Material Range of hasMaterial is Material

isContainedIn = hasMaterial− isContainedIn is an inverse of hasMaterial

hasMaterial = isContainedIn− hasMaterial is the same as inverse
of isContainedIn

2.3.3 SPARQL

SPARQL [34] is a language similar to SQL in that it is used for retrieving data. SPARQL
is aimed at retrieving data from RDF(S) graphs. Since OWL2 is usually serialized into
RDF(S), it is also possible to query OWL2 ontologies. In that case SPARQL-DL is used as

16

2.3. RDF(S), OWL2 AND SEMANTIC WEB

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
2 PREFIX mod-core: <http://kbss.felk.cvut.cz/ontologies/2011/

monument-damage-core.owl#>

4 SELECT DISTINCT ?COMPONENT ?MATERIAL
5 WHERE {
6 ?MATERIAL rdfs:subClassOf mod-core:Material.
7 ?MATERIAL_INSTANCE a ?MATERIAL.

9 ?COMPONENT rdfs:subClassOf mod-core:Component.
10 ?COMPONENT_INSTANCE a ?COMPONENT.

12 ?COMPONENT_INSTANCE mod-core:hasMaterial
?MATERIAL_INSTANCE.

13 }

Listing 2.1: Component and Material query

a name for this language. A SPARQL query consists of triple patterns and conjunctions
and junctions between them. SPARQL queries are executed against an SPARQL endpoint.
A SPARQL endpoint is a service that accepts a SPARQL query string, executes it against
associated RDF(S) graphs and returns the appropriate result.

The syntax and semantics of SPARQL is not fully covered in this thesis, but only rele-
vant parts of the specification are presented here. The explanation given here is based on
examples, for an exact description of SPARQL 1.1. please see [34].

The first example 2.1 selects all such components that have associated material. This
query represents the intersection of material and component TopCoordinates as was
explained in the Intuition section 2.1. The first two lines are a declaration of prefixes of
used namespaces. Those namespaces are used in the associated RDF(S) graph. The fourth
line declares the output variables of the query. Each variable name starts with a ques-
tion mark followed by the variable’s name. The DISTINCT keywords states that all re-
sults should be unique among the answer. The next line opens a WHERE clause. This
clause specifies the triples that should be present in the RDF(S) graph. One triple is of the
form subject-predicate-object. Variable names are replaced by actual values of matched
triplets of the RDF(S) graph. Line six states that ?MATERIAL should be a subclass of
mod-core:Material and line seven states that ?MATERIAL_INSTANCE should be an
instance of this class. Lines nine and ten say the same thing only about ?COMPONENT and
the line twelve says that the instance of COMPONENT should have associated MATERIAL
by relation mod-core:hasMaterial.

The next query 2.2 shows an example of a selection of components with associated
material that have associated manifestations of damage. This query represents the inter-
section of material, component and manifestation of damage TopCoordinates as was
explained in the Intuition section 2.1. The lines from 1 to 3 are a declaration of used
namespaces as was explained in the previous example. The line 5 declares that output
of this query should be values of variables ?COMPONENT, ?MATERIAL and ?MOD (Mani-
festation Of Damage). The new syntax construct, VALUES keyword, is used on lines 8 and
13. Those lines say that the values of variable ?COMPONENT_RESTRICTION are one of the

17

2.3. RDF(S), OWL2 AND SEMANTIC WEB

values specified in the brackets, in this case mod-taxonomy:Tower. The same holds for
line 13 except that the restricted variable is MATERIAL_RESTRICTION and the value is
mod-core:Material. The lines from 20 to 24 represents the union of two subqueries. It
states that manifestation of damage can be associated with either component or material.
The line 26 says that the instance of manifestation of damage belongs to class ?MOD.

2.3.4 Intervention Case One - Semantic web representation

This subsection presents a simplified version of the [7] ontology in OWL2 language.
The full ontology is part of an appendix to this thesis. This ontology defines all data
needed for the Intervention use case. Data for this use case is extracted from Mondis-
Ontology by SPARQL-DL queries. Those queries are also presented in this subsection.

The definition of main OWL2 classes are in the listing 2.3. Their names directly corre-
spond to the part of the monument domain they represent. For each class there are indi-
viduals that belong to it. A visualized example of such individuals is contained in figure
2.4. Note that individuals are omitted from listing 2.3 in order to make the listing shorter
and more readable. Classes and their relations correspond to the ones that are depicted on
figure 2.1. Each class can be considered as a TopCoordinate from Intuition section. The
intersection of TopCoordinates and their Coordinates are realized by SPARQL-DL
queries that are presented later in this subsection.

Figure 2.4: Example of Material, Component and Manifestation Of Damage representa-
tion.

18

2.3. RDF(S), OWL2 AND SEMANTIC WEB 19

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
2 PREFIX mod-core: <http://kbss.felk.cvut.cz/ontologies/2011/

monument-damage-core.owl#>
3 PREFIX mod-taxonomy:

<http://kbss.felk.cvut.cz/ontologies/2011/
monument-damage-taxonomies.owl#>

5 SELECT DISTINCT ?COMPONENT ?MATERIAL ?MOD
6 WHERE {

8 VALUES ?COMPONENT_RESTRICTION
9 { mod-taxonomy:Tower }

10 ?COMPONENT rdfs:subClassOf ?COMPONENT_RESTRICTION.
11 ?COMPONENT_INSTANCE a ?COMPONENT.

13 VALUES ?MATERIAL_RESTRICTION
14 { mod-core:Material }
15 ?MATERIAL rdfs:subClassOf ?MATERIAL_RESTRICTION.
16 ?MATERIAL_INSTANCE a ?MATERIAL.

18 ?COMPONENT_INSTANCE mod-core:hasMaterial
?MATERIAL_INSTANCE.

20 {
21 ?COMPONENT_INSTANCE

mod-core:hasManifestationOfDamage ?MOD_INSTANCE.
22 } UNION {
23 ?MATERIAL_INSTANCE mod-core:hasManifestationOfDamage

?MOD_INSTANCE.
24 }

26 ?MOD_INSTANCE a ?MOD.

28 }

Listing 2.2: Component Material and ManifestationOfDamage query

2.3. RDF(S), OWL2 AND SEMANTIC WEB

Prefix: : <http://kbss.felk.cvut.cz/ontologies/2011/
monument-damage-simplified.owl#>

Ontology: <http://kbss.felk.cvut.cz/ontologies/2011/
monument-damage-simplified.owl>

Class : :Component

Class : :Material

ObjectProperty: :hasMaterial
Characteristics: Asymmetric, Irreflexive
Domain: :Component
Range: :Material
InverseOf: :isContainedIn

Class: :ManifestationOfDamage

ObjectProperty: hasManifestationOfDamage
Range: :ManifestationOfDamage

ObjectProperty: hasComponentManifestationOfDamage
SubPropertyOf: :hasManifestationOfDamage
Domain: :Component
Range: :ManifestationOfDamage

ObjectProperty: hasMaterialManifestationOfDamage
SubPropertyOf: :hasManifestationOfDamage
Domain: :Material
Range: :ManifestationOfDamage

Class : :Intervention

ObjectProperty: hasRepairingIntervention
Domain: ManifestationOfDamage
Range: Intervention

Class : :Mechanism

ObjectProperty: leadsToManifestationOfDamage
Domain: :Mechanism
Range: :ManifestationOfDamage

ObjectProperty: isStoppedByIntervention
Domain: Mechanism
Range: Intervention

Class: :Agent

20

2.3. RDF(S), OWL2 AND SEMANTIC WEB

ObjectProperty: hasAgent
Domain: Mechanism
Range: Agent

ObjectProperty: isEliminatedByIntervention
Domain: Agent
Range: Intervention

Listing 2.3: Simplified MONDIS ontology

With simplified MONDIS ontology it is already possible to define SPARQL-DL queries
that return such individuals that correspond to the definition of Intervention use case. The
following paragraphs slightly abuse notation by mutually exchanging Individuals and
Classes in plain text. The reasons are the same as were in the definition of the Intervention
use case by description logic.

The first query 2.4 is used for retrieving all such interventions that have associated
manifestations of damage that have associated material or component. An additional
ontology is used in this query: mod-taxonomy. This ontology contains additional sub-
classes of components, materials and manifestations of damage. Tower is a subclass of
Component, Brick of Material and Leaning and Erosion are subclasses of Manifestation-
OfDamage. This ontology was not listed here as is it simple to understand and is part of
the attachment to this thesis.

The second query 2.5 is used to retrieve all interventions that are stopping some mech-
anisms causing manifestation of damages. The manifestation of damage has to have an
associated material or component. For simplicity, all restrictions are set to UNDEF which is
a keyword that states that the restriction matches everything. The UNDEF can be replaced
by any valid restriction.

The last query 2.6 that is left to define is retrieving such interventions that are elimi-
nating some agents. An agent is cause of a mechanism that is in turn the cause of a mani-
festation of damage. Eliminating such an agent eliminates the associated manifestation of
damage.

21

2.3. RDF(S), OWL2 AND SEMANTIC WEB 22

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
2 PREFIX mod-core: <http://kbss.felk.cvut.cz/ontologies/2011/

monument-damage-simplified.owl>
3 PREFIX mod-taxonomy:

<http://kbss.felk.cvut.cz/ontologies/2011/
monument-damage-taxonomies.owl#>

5 SELECT DISTINCT ?COMPONENT ?MATERIAL ?MOD ?INTERVENTION
6 WHERE {

8 VALUES ?COMPONENT_RESTRICTION { mod-taxonomy:Tower }
9 ?COMPONENT rdfs:subClassOf mod-core:Component.

10 ?COMPONENT rdfs:subClassOf ?COMPONENT_RESTRICTION.
11 ?COMPONENT_INSTANCE a ?COMPONENT.

13 VALUES ?MATERIAL_RESTRICTION { mod-taxonomy:Brick }
14 ?MATERIAL rdfs:subClassOf mod-core:Material.
15 ?MATERIAL rdfs:subClassOf ?MATERIAL_RESTRICTION.
16 ?MATERIAL_INSTANCE a ?MATERIAL.

18 ?COMPONENT_INSTANCE mod-core:hasMaterial
?MATERIAL_INSTANCE.

20 {
21 ?COMPONENT_INSTANCE

mod-core:hasManifestationOfDamage ?MOD_INSTANCE.
22 } UNION {
23 ?MATERIAL_INSTANCE

mod-core:hasManifestationOfDamage ?MOD_INSTANCE.
24 }
25 VALUES ?MOD_RESTRICTION {
26 mod-taxonomy:Leaning
27 mod-taxonomy:Erosion
28 }
29 ?MOD rdfs:subClassOf mod-core:ManifestationOfDamage.
30 ?MOD rdfs:subClassOf ?MOD_RESTRICTION.
31 ?MOD_INSTANCE a ?MOD.

33 VALUES ?INTERVENTION_RESTRICTION { UNDEF }
34 ?INTERVENTION rdfs:subClassOf ?INTERVENTION_RESTRICTION.
35 ?INTERVENTION_INSTANCE a ?INTERVENTION.

37 ?MOD_INSTANCE mod-core:hasRepairingIntervention
?INTERVENTION_INSTANCE.

38 }

Listing 2.4: Intervention query

2.3. RDF(S), OWL2 AND SEMANTIC WEB 23

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
2 PREFIX mod-core: <http://kbss.felk.cvut.cz/ontologies/2011/

monument-damage-simplified.owl>
3 PREFIX mod-taxonomy:

<http://kbss.felk.cvut.cz/ontologies/2011/
monument-damage-taxonomies.owl#>

5 SELECT DISTINCT ?COMPONENT ?MATERIAL ?MOD ?INTERVENTION
?MECHANISM

6 WHERE {
7 VALUES ?COMPONENT_RESTRICTION { UNDEF }
8 ?COMPONENT rdfs:subClassOf mod-core:Component.
9 ?COMPONENT rdfs:subClassOf ?COMPONENT_RESTRICTION.

10 ?COMPONENT_INSTANCE a ?COMPONENT.

12 VALUES ?MATERIAL_RESTRICTION { UNDEF }
13 ?MATERIAL rdfs:subClassOf mod-core:Material.
14 ?MATERIAL rdfs:subClassOf ?MATERIAL_RESTRICTION.
15 ?MATERIAL_INSTANCE a ?MATERIAL.

17 ?COMPONENT_INSTANCE mod-core:hasMaterial
?MATERIAL_INSTANCE.

19 {
20 ?COMPONENT_INSTANCE

mod-core:hasManifestationOfDamage ?MOD_INSTANCE.
21 } UNION {
22 ?MATERIAL_INSTANCE

mod-core:hasManifestationOfDamage ?MOD_INSTANCE.
23 }
24 VALUES ?MOD_RESTRICTION { UNDEF }
25 ?MOD rdfs:subClassOf mod-core:ManifestationOfDamage.
26 ?MOD rdfs:subClassOf ?MOD_RESTRICTION.
27 ?MOD_INSTANCE a ?MOD.

29 VALUES ?MECHANISM_RESTRICTION { UNDEF }
30 ?MECHANISM rdfs:subClassOf mod:core:Mechanism.
31 ?MECHANISM rdfs:subClassOf ?MECHANISM_RESTRICTION.
32 ?MECHANISM_INSTANCE a ?MECHANISM.

34 ?MECHANISM_INSTANCE
mod-core:leadsToManifestationOfDamage ?MOD_INSTANCE.

35 ?MECHANISM_INSTANCE mod-core:isStoppedByIntervention
?INTERVENTION_INSTANCE.

36 }

Listing 2.5: Agent query

2.3. RDF(S), OWL2 AND SEMANTIC WEB 24

1 \thisfloatpagestyle{empty}
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX mod-core: <http://kbss.felk.cvut.cz/ontologies/2011/

monument-damage-simplified.owl>
4 PREFIX mod-taxonomy:

<http://kbss.felk.cvut.cz/ontologies/2011/
monument-damage-taxonomies.owl#>

6 SELECT DISTINCT ?COMPONENT ?MATERIAL ?MOD ?INTERVENTION
?MECHANISM ?AGENT

7 WHERE {
8 VALUES ?COMPONENT_RESTRICTION { UNDEF }
9 ?COMPONENT rdfs:subClassOf mod-core:Component.

10 ?COMPONENT rdfs:subClassOf ?COMPONENT_RESTRICTION.
11 ?COMPONENT_INSTANCE a ?COMPONENT.

13 VALUES ?MATERIAL_RESTRICTION { UNDEF }
14 ?MATERIAL rdfs:subClassOf mod-core:Material.
15 ?MATERIAL rdfs:subClassOf ?MATERIAL_RESTRICTION.
16 ?MATERIAL_INSTANCE a ?MATERIAL.

18 ?COMPONENT_INSTANCE mod-core:hasMaterial
?MATERIAL_INSTANCE.

20 {
21 ?COMPONENT_INSTANCE

mod-core:hasManifestationOfDamage ?MOD_INSTANCE.
22 } UNION {
23 ?MATERIAL_INSTANCE

mod-core:hasManifestationOfDamage ?MOD_INSTANCE.
24 }
25 VALUES ?MOD_RESTRICTION { UNDEF }
26 ?MOD rdfs:subClassOf mod-core:ManifestationOfDamage.
27 ?MOD rdfs:subClassOf ?MOD_RESTRICTION.
28 ?MOD_INSTANCE a ?MOD.

30 VALUES ?AGENT_RESTRICTION { UNDEF }
31 ?AGENT rdfs:subClassOf

mod-core:Agent.
32 ?AGENT rdfs:subClassOf

?AGENT_RESTRICTION.
33 ?AGENT_INSTANCE a ?AGENT.

35 ?MECHANISM_INSTANCE
mod-core:leadsToManifestationOfDamage ?MOD_INSTANCE.

36 ?MECHANISM_INSTANCE mod-core:hasAgent
?AGENT_INSTANCE.

37 ?AGENT_INSTANCE
mod-core:isEliminatedByIntervention
?INTERVENTION_INSTANCE.

38 }

Listing 2.6: Agent query

Chapter 3

Architecture

This chapter informally explains proposed architecture that solves the problems given
in the previous chapters. The architecture is a set of principle design decisions [31]. Those
decisions are explained in this chapter and there is a rationale given as to why this ap-
proach was used and what the advantages of it are. This chapter is not meant to describe
any implementation but rather propose the basic principles of the architecture. A descrip-
tion of the implementation provided in this thesis is given in chapter 4.

The text in this chapter is divided into several sections and subsections. The first sec-
tion gives a high-level overview about the architecture and describes its basic principles.
The following sections describe each part of the architecture in greater detail and explains
the relations between components of the architecture. UML diagrams are also provided
to help understand the explained architecture.

3.1 Typographical conventions

The following text uses several typographical conventions to simplify reading. All
names of components of the architecture are written in verbatim text, lower case letters
(if they are not starting a statement) and words are separated by hyphens. Example of
such a component is knowledge-matrix-server.

All the names of classes and interfaces are written in verbatim text, starting with
upper case letter and words are separated by camel case convention. An example of such
an interface is TopCoordinate. When the text uses a name of a class or interface in a
statement as a subject or object, this subject (or object) represents an instance of that class
or interface. If this notation is not clear from the text, it is explicitly stated what is a class
and what is an object of the class.

Methods of an interface or class are written in verbatim text, starting with lower case
letter and words are separated by camel case convention. When the name of the associated
class is expressed, it precedes the name of the method and their names are separated by a
dot. An example of such a method is Coordinate.getLabel().

25

3.2. OVERALL ARCHITECTURE

3.2 Overall architecture

The proposed architecture is based on the client-server architecture pattern. This ap-
proach allows for splitting responsibilities and therefore keeping the code clean and eas-
ily manageable. Interfaces are designed to be independent of the underlying knowledge
framework. The reason for this is not to limit any implementation by a knowledge frame-
work and let the implementers to choose any framework that would satisfy their needs.
Although the interfaces are able to use any knowledge framework, there are still some
limits placed on them:

1. The knowledge framework has to be able to execute queries that are represented as
plain text.

2. The knowledge framework has to be able to represent and work with hierarchies of
concepts.

The whole system is composed of three basic components. The first one is called
knowledge-matrix-server. This server is responsible for managing data processing
queries. The server provides read-only access to data so it can not change any data in an
underlying knowledge framework which greatly simplifies implementation and allows
for better scalability. The server can support more use cases that can be specified in some
other code than the server’s.

The second component is named knowledge-matrix-component. This is a set of
user interfaces for knowledge-matrix-server. It is generally use case specific. This
component is meant to be plugable into other user interfaces in order to be able to com-
pose the final application from several knowledge-matrix-components. It can be
statefull but not necessarily.

The last part of the architecture is knowledge-matrix-user-interface. This is a
component that the end user will interact with. It is composed of possibly more knowledge-
matrix-components and it is generally statefull from the perspective of the user. Be-
cause this component is not limited by any principal design decision it is not described in
this chapter, but is explained in the chapter about implementation 4.

The deployment of this architecture can be seen on figure 3.1. The knowledge-matrix-
server can be deployed on a separate server or possibly more servers in order to increase
throughput. Knowledge-matrix-component should be deployed on the same server
as knowledge-matrix-user-interface and those components have to have a con-
nection to the knowledge-matrix-server. Those components can be also deployed
on more servers but care has to be taken as they might keep users sessions and the re-
quests from one user must always go the the same server in that case.

Most of the interfaces and classes explained in the rest of this chapter are realized
by static polymorphism (in Java it is called generics). The template parameter should
be instantiated with appropriate class taken from the underlying knowledge framework.
But for simplicity the template parameter is omitted in the explanation. If the reader is
interested, they can find the details in the provided source codes where it is used.

26

3.3. KNOWLEDGE-MATRIX-SERVER

Figure 3.1: Deployment diagram.

3.3 Knowledge-Matrix-Server

This component is the main data source of this project. Its overall structure can be seen
on class diagram 3.2 which depicts used classes and their relations. The server accepts
users queries and returns appropriate answers. It is stateless from the perspective of the
user so it can accept any query from any user. Knowledge-matrix-component must
not be aware of any knowledge-matrix-components that use it. The reasons for this
are scalability and independence between components of the whole system.

Knowledge-matrix-component can be statefull from a data layer perspective. If it
is statefull or not depends on the underlying knowledge framework. At start up knowledge-
matrix-server loads data from given data sources and preprocesses it. The prepro-
cessed data is then kept in the memory for the whole lifetime of the server. When data
is preprocessed, Scenarios that the knowledge-matrix-server will provide are in-
stantiated. One Scenario represents a list of all axes that are available for queries. Each
Scenario can access preprocessed data during its instantination.

After data is loaded and preprocessing is done the knowledge-matrix-server
is ready to accept queries. Communication with knowledge-matrix-server is done
by sending requests and replying by appropriate responses. Objects that are used in
knowledge-matrix-server are explained in the following subsections. Those objects
can be split into three groups. The first is called data transfer objects (dto). Objects from
this group are used to transfer data from knowledge-matrix-server to its client and
they are independent of the underlying knowledge framework. The second group is called
the query group. This group contains all classes that are related to querying the encapsu-
lated knowledge framework. Objects from this groups are used for preparing and pro-
cessing the queries. The last group is called the service group. Objects from this group
are used to prepare and execute queries and create answers by transforming objects from
the underlying knowledge framework into appropriate dto objects. They represent the

27

3.3. KNOWLEDGE-MATRIX-SERVER

interface that is used by clients.

The rest of this section is organized as follows: The first subsection describes data
transfer objects and their methods. The second subsection explains classes that are respon-
sible for communication with the knowledge-matrix-server- service classes. The last
subsection shows relations between data transfer objects and service classes. UML se-
quence diagrams are used to help the reader understand relationships.

3.3.1 Data Transfer Objects

Main purpose of data transfer objects is to shield users of knowledge-matrix-
server from implementation details, especially from the underlying knowledge frame-
work. Other reason is to make a uniform and simple interface that separates a data source
and a date usage. This is done by encapsulating data retrieved from the underlying knowl-
edge framework in objects that are independent on used knowledge framework. This is
useful for example when objects from the underlying knowledge framework use transac-
tions and it is not effective to keep the transactions open on the client side.

Coordinate, TopCoordinate

Those classes represent Coordinates and TopCoordinates as were explained in the sec-
tion 2.1. The class Coordinate is composed of a URI, which is a unique identification of
the represented object, a label, which is a string object used for the visualization of the
Coordinate, and a reference to a TopCoordinate that represents main axis of the Co-
ordinate. Coordinate class is immutable which allows it to be cached and reused
later.

TopCoordinate class is a specialization of Coordinate class. TopCoordinate rep-
resents a main axis while Coordinate represents some element of a main axis. An ex-
ample of usage can be the following: TopCoordinate object represents Material and
Coordinate object represents some element of that Material, e.g. Wood. Wood itself can
have some child Coordinates, like OakWood.

TopCoordinate class is a specialization of Coordinate class that is designed to
represent a main axis. It contains one additional method, getTopCoordinateName(),
which returns name of the TopCoordinate object that is used in the underlying knowl-
edge framework query. This name has to be unique among one Scenario (that is ex-
plained later) , but this requirement does not need to be checked by knowledge-matrix-
server so the implementator has to take care about it. TopCoordinate objects can be
instantiated only by a Scenario object and each TopCoordinate can be instantiated
only once during the Scenario’s instance lifetime. This requirement ensures that only
valid TopCoordinates are used and any possible changes in their configuration can be
easily done in their associated Scenario.

Both classes are use case independent but instances of those classes are use case spe-
cific as they represent some concrete part of the use case. Their methods can be seen on
3.1.

28

3.3. KNOWLEDGE-MATRIX-SERVER 29

Figure 3.2: knowledge-matrix-component class diagram.

3.3. KNOWLEDGE-MATRIX-SERVER

Coordinate Methods

• boolean isSubClassOf(Coordinate coordinate)
This method determines if the given coordinate is a subclass of this coordinate. The
subclass does not need to be direct but can be represented by a chain of Coor-
dinates: If a.isSubClassOf(b) is true and b.isSubclass(c) is true then
a.isSubClassOf(c) is also true, where a, b, c are instances of the Coordi-
nate.

• URL getURI()
Returns an URI that uniquely identifies an instance of Coordinate in the repre-
sented domain.

• N getPayload()
Returns underlying knowledge framework object that is encapsulated by an in-
stance of Coordinate. This object should be used only in situations where there is
no other way how to obtain required information about the Coordinate because
it makes the client’s code knowledge framework specific.

• TopCoordinate getParentAxis()
Returns main axis to which the Coordinate object belongs. TopCoordinate class
is explained in the following paragraph.

• String getLabel()
Returns a string that should be used for rendering this Coordinate.

Method List 3.1: Coordinate Methods

OutputNode

The OutputNode class represents part of a result of a single query. This class encap-
sulates an associated Coordinate object and gives few more methods for processing
the result. Those methods return additional information about the answer. Methods of
OutputNode can be seen on 3.2.

KnowledgeMatrixTreeModel

The Coordinate class does not store any information about relations between in-
stances of Coordinates. It can only support determination if one instance of Coordi-
nate is a subclass of another. KnowledgeMatrixTreeModel is supposed to represent
this relation. It represents this relation as a tree for which the following invariant holds:
For each child (child), either direct or indirect, of any node (parent) in the tree is
parent.isSubclassOf(child) true. This class has methods listed in 3.3.

3.3.2 Query Objects

Objects from this group are used to build queries, hold results of those queries and
prepare OutputNodes. They are similar to data transfer objects, but they differ in the di-

30

3.3. KNOWLEDGE-MATRIX-SERVER

OutputNode Methods

• Coordinate getCoordinate()
Returns a Coordinate that represents this OutputNodeand that was returned by
the executed query.

• List<N> getIndividuals()
Returns a list of all individuals that belong to this OutputNode. Returned objects
are instances of some class of the underlying knowledge framework that represents
objects from the represented domain.

• N getConcept()
Returns an object of the underlying knowledge framework that represents this
OutputNode. This object should be used only in situations where there is no
other way how to obtain the required information about the Coordinatebecause
it makes the client’s code knowledge framework specific. Use getProperty()
method with custom OutputNodeBuilder (explained later) instead.

• GraphQueryResult<N> getGraph()
Returns a graph that represents additional information about this OutputNode.
This information can represent for example text description of the OutputNode,
author of that description and so on.

Method List 3.2: OutputNode Methods

rection of data they pass. Data transfer objects are used to transfer data from knowledge-
matrix-serverto the client, query objects are used to transfer query parameters from
the client to knowledge-matrix-server.

QueryPair

This class implements a tuple of TopCoordinate and a set of Coordinates. This
tuple represents a main axis and a set of coordinates that belong to this axis. QueryPair
has methods listed on 3.4.

KnowledgeMatrixQuery

This class represents a single query for the KnowledgeMatrixService. It is com-
posed of a set of QueryPairs which specify which axes are going to be used for inter-
section. Any main axis in the query can be also limited by a set of Coordinates which
specifies limits of possible values of the associated TopCoordinate. Those Coordi-
nates are encapsulated in the associated QueryPair. If more Coordinates are pro-
vided in the query logical disjunction between those Coordinates is performed. Objects
of KnowledgeMatrixService class should not be created directly, but Knowledge-
MatrixQueryBuilder should be used for creating instances. KnowledgeMatrixQuery’s
methods can be see in 3.5.

31

3.3. KNOWLEDGE-MATRIX-SERVER

KnowledgeMatrixTreeModel Methods

• int getChildCount()
Returns a number of children of this particular node.

• KnowledgeMatrixTreeModel getChildAt(int index)
Returns a child at the given index. If an invalid index is provided (e.g. index < 0
or index >= getChildCount() an exception is thrown.

• KnowledgeMatrixTreeModel getParent()
Returns parent of this tree. For any KnowledgeMatrixTreeModel obtained by
KnowledgeMatrixTreeModel child = anyTree.getChildAt(i) must
hold child.parent == anyTree where anyTree and child are instances
of KnowledgeMatrixTreeModel and i is a valid index.

• boolean isLeaf()
Returns true if and only if anyTree.getChildCount() == 0 where anyTree is
an instance of KnowledgeMatrixTreeModel.

• Coordinate getPayload()
Returns the encapsulated Coordinate object.

Method List 3.3: KnowledgeMatrixTreeModel Methods

QueryPair Methods

• TopCoordinate getTopCoordinate()
Returns encapsulated TopCoordinate.

• Set<Coordinate> getCoordinates()
Returns a set of encapsulated Coordinatesthat belong to the encapsulated Top-
Coordinate.

Method List 3.4: QueryPair Methods

KnowledgeMatrixQueryBuilder

KnowledgeMatrixQueryBuilder should be used for creating objects of Knowledge-
MatrixQuery. This class is an implementation of the builder design pattern. This de-
sign pattern is a convenient way how to create a KnowledgeMatrixQuery instance
and separate the implementation and the interface. The instances of this builder shall
be created and returned by KnowledgeMatrixInstance. KnowledgeMatrixQuery-
Builder has methods listed on 3.6.

KnowledgeMatrixQueryResult

This interface represents a result of executed KnowledgeMatrixQuery. It encapsu-
lates all rows that are returned by the underlying knowledge framework. One row is

32

3.3. KNOWLEDGE-MATRIX-SERVER

KnowledgeMatrixQuery Methods

• void addQueryPair(QueryPair pair)
Adds one QueryPair to the KnowledgeMatrixQuery instance. If more Query-
Pairs with the same TopCoordinate are added their Coordinate sets are
unioned.

• TopCoordinate getOutputCoordinate()
Returns the TopCoordinate that represents result of this query. This method may
be unused if an OutputNodeBuilder is used (explained later).

• TopCoordinate getTopCoordinateByName(String name)
Returns an TopCoordinate that was added to the query by addQueryPair()
method that has the given name.

Method List 3.5: KnowledgeMatrixQuery Methods

KnowledgeMatrixQueryBuilder Methods

• KnowledgeMatrixQueryBuilder addCoordinate(TopCoordinate topCo-
ordinate, Coordinate coordinate)
Adds the given TopCoordinate that is limited by the given Coordinate to the
query.

• KnowledgeMatrixQueryBuilder addCoordinate(TopCoordinate topCo-
ordinate, Set<Coordinate> coordinates)
Adds the given TopCoordinate that is limited by the given set of Coordi-
nates to the query.

• KnowledgeMatrixQueryBuilder removeCoordinate(TopCoordinate
topCoordinate)
Removes given TopCoordinate and all its associated Coordinates from the
query.

• KnowledgeMatrixQueryBuilder mergeBuilders (KnowledgeMatrix-
QueryBuilder other)
Merges given KnowledgeMatrixQueryBuilder to this Knowledge-
MatrixQueryBuilder. This operation is equivalent to adding all Top-
Coordinates and Coordinates from the other KnowledgeMatrixQuery-
Builder to this.

Method List 3.6: KnowledgeMatrixQueryBuilder Methods

presented as a set of Coordinates. Rows are sorted the in same order as they were re-
turned by the underlying knowledge framework. This interface is mainly meant to be
used by OutputNodeBuilder that creates OutputNodes from it. KnowledgeMatrix-
QueryResult has methods listed in 3.7.

33

3.3. KNOWLEDGE-MATRIX-SERVER

KnowledgeMatrixQueryResult Methods

• void addRow(Set<Coordinate> row)
This method adds one row from executed query to the instance of this object. It is
supposed to be executed by KnowledgeMatrixService when the the underlying
knowledge framework is queried.

• List<Coordinate> getSpecificResult(TopCoordinate topCoordi-
nate)
Returns a list of Coordinates that are associated with given TopCoordinate.

• Iterator<Set<Coordinate> > iterator()
Returns an Iterator that gives sequential access to retrieved rows. One row is
represented as a set of Coordinates.

Method List 3.7: KnowledgeMatrixQueryResult Methods

OutputNodeBuilder

The OutputNodeBuilder is used to transform KnowledgeMatrixQueryResult
into a list of OutputNodes. This transformation can process all rows of Knowledge-
MatrixQueryResult and perform additional operations on it including additional queries.
An example of such a usage is building OutputNodes for Interventions, where an Inter-
vention is associated with some Material that is required to perform that intervention, and
the OutputNodeBuilder can be used for the additional query. Methods of Output-
NodeBuilder are listed in 3.8.

OutputNodeBuilder Methods

• List<OutputNode> buildOutputNodes(KnowledgeMatrixQueryResult
result, KnowledgeMatrixService service)
This method accepts an instance of KnowledgeMatrixQueryResultand
KnowledgeMatrixServiceand produces list of OutputNodes.

• TopCoordinate getMainOutputCoordinate()
Returns a TopCoordinatethat should be encapsulated by all Output-
Nodesproduced by buildOutputNodes() method.

Method List 3.8: OutputNodeBuilder Methods

3.3.3 Service Objects

Service objects are objects that directly interacts with the underlying knowledge frame-
work. They also represent an interface between the user and the underlying knowledge
framework and they create instances of data transfer objects. Generally said, they contain
all the data related logic of this whole project.

34

3.3. KNOWLEDGE-MATRIX-SERVER

KnowledgeMatrixService

The KnowledgeMatrixService class is a component encapsulating the underly-
ing knowledge framework. It is able to construct KnowledgeMatrixQueryResult by
querying the underlying knowledge framework. This request is represented by a Knowledge-
MatrixQuery object and a Scenario object. The request is then transformed to the
query string for the underlying knowledge framework. The transformation is done by set-
ting appropriate attributes of the StringTemplate obtained from the Scenario object.
KnowledgeMatrixService is parametrized by a list of ModelDataSources (objects
that represent sources of data) and a list of Scenarios that implement supported use
cases.

All string queries to the underlying knowledge framework must go only from this
class, i.e. is it not allowed to perform any string based call to the knowledge frame-
work outside this class. This restriction reduces dependency on the underlying knowl-
edge framework as it is called from only one place. Reduced dependency simplifies mod-
ifications of the code of whole knowledge-matrix-server and possible bug fixing.
KnowledgeMatrixService has methods listed in 3.9.

KnowledgeMatrixInstance

KnowledgeMatrixInstance is an interface that is used to communicate with the Knowledge-
MatrixService. An instance of this interface is user specific because it holds the user’s
Scenario as well as a reference to the KnowledgeMatrixService instance. The object
of this class should be stored on the client side as it keeps state (reference to the used Sce-
nario and KnowledgeMatrixService). It is also responsible for closing connections
between data transfer objects and the underlying knowledge framework. This is done
in order to prevent any unpredictable interactions between the user and the underlying
knowledge framework. KnowledgeMatrixInstance has methods listed in 3.10.

Scenario

An object of this interface represents one use case, e.i. is use case specific. The use
case is defined by a list of main axes which are used to make queries. The main axis is
defined by its associated TopCoordinate. Any supported main axis can be found by its
TopCoordinate’s name.

The class itself may or may not be use case specific. This decision is left for an im-
plementation. A Scenario object is represented by its name, the list of main axis, a list
of all used namespaces and a StringTemplate containing a query for the underlying
knowledge framework. Name of the Scenario is used for identification of some concrete
Scenario. Any supported scenario can be acquired by its name or by its Class object.

The StringTemplate contained by the Scenario represents a resource for creating
queries for the underlying knowledge framework. The StringTemplate must be cus-
tomizable by any given set of TopCoordinates defined by the associated Scenario.
This set defines the intersection of the main axis as was explained in the chapter 2, section
Intuition 2.1. The methods of Scenario are listed in 3.11.

35

3.3. KNOWLEDGE-MATRIX-SERVER

ModelDataSources

This interface represents a single data source for KnowledgeMatrixService. Its
methods are executed by KnowledgeMatrixServicewhen KnowledgeMatrixService.load-
Data()method is called. ModelDataSourcesis responsible for adding data to Knowledge-
MatrixService. The interface has two methods listed in 3.12.

3.3.4 Class relationships

This subsection shows and describes some examples of possible scenarios of the com-
munication of objects from the previous subsections. Those examples are aimed to help
the reader to understand relationships between classes, but not to give a comprehen-
sive list of all possible interactions. The examples are expressed as UML sequence dia-
grams with brief textual description. The first example is about knowledge-matrix-
server initialization. The second example describes getting axes and their values and
the last example shows process of placing a query and retrieving OutputNodes.

Knowledge-Matrix-Server initialization

Knowledge-matrix-server initialization is shown on figure 3.3. Data loading is
done in inverse of control fashion where the ModelDataSources are responsible for set-
ting the knowledge-matrix-server data model. ModelDataSource accepts the data
model of knowledge-matrix-server and adds data to it independently on knowledge-
matrix-server. Kms-user represents a user of knowledge-matrix-server that
performs initialization. A list of ModelDataSources is passed from the kms-user to
the instance of KnowledgeMatrixService. KnowledgeMatrixService closes pre-
vious data sources (if such sources exists) and then it creates a new data model. Then it
calls loadModelData()method on each of passed ModelDataSource and this method
performs data loading to the newly created model. The general way how to add data from
ModelDataSource to KnowledgeMatrixService is to create a local data model in the
ModelDataSource and then add the data to this local data model. When the local data
model is ready it is added to the KnowledgeMatrixService’s data model. The creation
of the local data model may be skipped if the data source allows it and then data is added
directly to KnowledgeMatrixService’s data model. When the data from all Model-
DataSources is initialized KnowledgeMatrixService is ready to create passed Sce-
narios and to create KnowledgeMatrixInstance from a particular Scenario. This
process is labeled by messages numbered 2 and 3 in figure 3.3.

Getting axes and their values

Getting axes and their values is shown in figure 3.4. Return values and method pa-
rameters are omitted in the figure in order to make the figure more readable. Message
number one is used for getting the TopCoordinate of some main axis. This example
shows the variant where the TopCoordinate is retrieved by its name. Message number
two shows how the obtained TopCoordinate is used for getting all Coordinates that
are associated with the retrieved TopCoordinate. Message number two is composed of
one more call to the KnowledgeMatrixService which performs a query to the under-
lying knowledge framework.

36

3.3. KNOWLEDGE-MATRIX-SERVER

Figure 3.3: Data loading sequence diagram.

Getting valid axis values is shown by message number three. The first step in retriev-
ing valid axis values is creating an appropriate KnowledgeMatrixQuery. This Knowledge-
MatrixQuery is then passed to the KnowledgeMatrixService instance. Knowledge-
MatrixService then prepares the query string from the given KnowledgeMatrix-
Query by filling the StringTemplate obtained from the associated Scenario. When
the query string is ready it is passed to the underlying knowledge framework and the
KnowledgeMatrixQueryResult is created. When the instance of KnowledgeMatrix-
QueryResult is passed back to the KnowledgeMatrixInstance a KnowledgeMatrix-
TreeModel instance is created and returned to the originator of the whole query.

37

3.3. KNOWLEDGE-MATRIX-SERVER

Figure 3.4: Getting axis and their values

Retrieving output nodes

This diagram shows a situation when the user has already initialized knowledge-
matrix-server, has already retrieved KnowledgeMatrixInstance and is ready to
make queries. An example of retrieving output nodes is shown in figure 3.5. Return values
and method parameters are omitted in the figure in order to make the figure more read-
able. The first step is to obtain an instance of KnowledgeMatrixQueryBuilder. This
instance is created by the KnowledgeMatrixInstance.createQuery() as shown in
the figure by message number one. When the user has the instance they can specify the
TopCoordinates and Coordinates which is they interested in. An example of this
process is represented by messages number two and three. When the specification is done
the user creates a KnowledgeMatrixQuery object by the method KnowledgeMatrix-
QueryBuilder.createQuery(), message number four. The query object then can be
passed back to the KnowledgeMatrixInstance by the getOutputNodes() method.
This call starts the process of retrieving data from knowledge-matrix-server and an
example of it is represented by message number five. The process is composed of two
subroutines. The first subroutine prepares and executes the query string for the underly-
ing knowledge framework and the second transforms the retrieved KnowledgeMatrix-
QueryResult into more specific OutputNodes. The first subroutine, message number
5.1, is composed of two other subroutines. Message number 5.1.1 prepares the query
string from the template stored in the given Scenario and fills it with values that are

38

3.4. KNOWLEDGE-MATRIX-COMPONENT

specified in the KnowledgeMatrixQuery. When this step is done and the query string
is ready, the underlying knowledge framework is queried and the answer is stored in
an instance of KnowledgeMatrixQueryResult, as is shown by message number 5.1.2.
This object is then passed back to the KnowledgeMatrixInstance where it is trans-
formed into a list of OutputNodes (message number 5.2). This transformation is done
in order to shield the user from the complicated KnowledgeMatrixQueryResult and
prepare the OutputNodes as it is required by the use case in question.

3.4 Knowledge-Matrix-Component

Knowledge-matrix-component represents a set of plugable user interface com-
ponents for the knowledge-matrix-server. This approach is used in order to make
the final application easily configurable for required use cases. Components may or may
not be use case specific. This decision is left to the designers and implementors of a par-
ticular component. Since there is no general description of the knowledge-matrix-
-component this section introduces an example of the three components that are im-
plemented as a part of this thesis

The first component represents the knowledge matrix visualization and is named
TreeMatrixComponent. This visualization is done as a matrix of OutputNodes which
represents the intersection of two or more axes. The second component is used for the
visualization of a particular OutputNode as was specified in section 2.2.5 and is termed
infocard. This visualization represents a particular OutputNode in greater detail and
represents particular information about the given OutputNode. The third component is
called auto-complete-tree. This component was adapted from [25]. The purpose of
this component is to show a tree and let the user select any subset of nodes of this tree
and help the user to filter those nodes.

For an easier explanation of all the implemented components, several figures are used.
Those figures are not meant to describe precisely the look and feel of the explained fea-
tures, but rather to help the reader to understand explained behavior and purpose. The
figures are taken from the implementation that was done as a part of this thesis.

3.4.1 Tree-Matrix-Component

This component implements the visualization of a matrix that represents the intersec-
tion of two particular axes. Other axes can be specified as well, but their intersection can
not be directly shown by this component. An example of how this component could look
can be seen in figure 3.6. Axes are represented by instances of GeneralAxis that are
composed of one or more instances of HeaderObjects. HeaderObject is a class that
encapsulates TopCoordinate. The axes have to be defined during the instantiation of
the component. This component is use case independent and therefore can be reused in
more use cases.

Axes are divided into two groups: One group is called drillable and is designed to tra-
verse KnowledgeMatrixTreeModel. KnowledgeMatrixTreeModel is represented by
a list of nodes and a parent of those nodes. The nodes themselves are represented by in-
stances of KnowledgeMatrixTreeModel. When the user clicks on a shown node this
node becomes the new parent and children of this node are shown as the new list (if
the clicked node has any children). This action is called drilling and because of it this

39

3.4. KNOWLEDGE-MATRIX-COMPONENT 40

Figure 3.5: Example of getting content nodes

3.4. KNOWLEDGE-MATRIX-COMPONENT

Figure 3.6: Example of possible state of tree-matrix-component.

group is called drillable. Besides this behavior, the actual path from the root node to the
actual parent is also shown. This is placed next to the table to help the user with ori-
entation. This path is also clickable so the user can return to any KnowledgeMatrix-
TreeModel that she already went through. When the user clicks on a node in the path
the clicked KnowledgeMatrixTreeModel becomes the new root of the actual path. The
size of the path can be limited to a given length (in the sense of visualized nodes). When
the number of visualized nodes is greater than this limit (named n), only the first and last
n nodes are visible and other nodes are replaced by dots. The drillable axis is the left one
on the figure 3.6.

The second type of axis is called filterable. This type of axis is designed to filter val-
ues of certain TopCoordinates where each TopCoordinate represents one main axis.
Filtering is done by selecting a subset of Coordinates that are valid for a certain axis.
This selection is done by auto-complete-tree that is described in section 3.4.3. When
the set is selected knowledge-matrix-component shows only those OutputNodes
that are returned by method KnowledgeMatrixInstance.getOutputNodes(). The
method call is parametrized by the selected set. The filterable axis is the top one in figure
3.6.

The general UML diagram of knowledge-matrix-component can be seen in fig-
ure 3.7. The design approach used for this component is model-view-controller. This ap-
proach allows for the splitting of the data model, data controller and view renderer. This
decomposition greatly simplifies the development and testing of the component. The data
model is represented by knowledge-matrix-server. The controller is implemented
by TreeMatrixModel and the view can be implemented by any graphical user interface
technology that satisfies the user’s needs.

41

3.4. KNOWLEDGE-MATRIX-COMPONENT

HeaderObject, DrillabeHeaderObject, FilterableHeaderObject

The class of type HeaderObject represents the header of the matrix. The purpose
of the header is to represent elements of the horizontal and vertical axes. Axes are spec-
ified by TopCoordinates that are encapsulated by HeaderObjects. Valid values of
associated TopCoordinates are also encapsulated. The abstract class HeaderObject
contains declaration of the methods listed in 3.13.

DrillableHeaderObject is used for representing objects of drillable axes. This
object encapsulates instance of KnowledgeMatrixTreeModel that stores information
about the tree that is represented by DrillableHeaderObject. It has one additional
method KnowledgeMatrixTreeModel.getNodeToDrillDown()which returns Knowledge-
MatrixTreeModel which is the root of the tree that is encapsulated by this class.

FilterableHeaderObject is used for representing objects of filterable axes. Each
instance of FilterableHeaderObject represents one main axis and contains all valid
values for this axis. The user can select any subset of those values and those values are
used for filtering the content of the intersection with this main axis. For a simpler selection
of the values, this class stores an auto-complete-tree model that helps the user with
the selection of required nodes (see 3.4.3). This class also stores an adapter class between
KnowledgeMatrixTreeModel and a class that is used for representing trees in some
graphical user interface framework that is used. The adapter allows the easy rendering of
the encapsulated KnowledgeMatrixTreeModel.

GeneralAxis, DrillableAxis, FilterableAxis

These classes are used to represent axes (in graphical sense) in the knowledge-matrix-
-component. The most general form is called GeneralAxis and it defines only one
method: List<HeaderObject> getHeaderElements(). This method returns a list
of encapsulated HeaderObjects which represents this axis. The returned list should be
implemented as unmodifiable.

DrillableAxis stores beside the list of HeaderObjects the root of the current tree
represented by the KnowledgeMatrixTreeModel object and it also stores the path from
the root of main axis to the the actual root. The label of the actual root of Drillable-
Axis is shown in the first column of the first row of the matrix. The DrillableAxis is
composed of the methods listed in 3.14.

FilterableAxis implements GeneralAxis and it contains a list of Drillable-
HeaderObjects where each DrillableHeaderObjects represents one row (or col-
umn) of the matrix.

TreeMatrixModel

TreeMatrixModel controls whole interaction between the user and knowledge-
matrix-server. This interaction is done either by direct communication with Tree-
MatrixModel or by horizontal or vertical axes that are stored in objects of General-
Axis. Direct communication can set any restriction on any axis that is supported by the
used knowledge-matrix-server. This is useful because TreeMatrixModel can hold
only two axes and by this way it is possible to perform the intersection with an arbitrary
number of axes. The interaction with the model through the use of horizontal or vertical

42

3.4. KNOWLEDGE-MATRIX-COMPONENT

axes is used to set limits of the visualized axes. TreeMatrixModel class has the methods
listed in 3.15.

3.4.2 Info-Card

This is a very simple component that is composed of only one screen. The purpose of
this component is to present detailed information about a particular OutputNode. The
OutputNode object is passed as an argument to the constructor and relevant data fields
are read from it and are visualized. The figure of visualization of such a component can
be seen in figure 3.8.

3.4.3 Auto-Complete-Tree

Auto-complete-tree is designed to help the user with the selection of nodes of
a given KnowledgeMatrixTreeModel. This feature is useful if there is a huge num-
ber of nodes and user can be easily confused. Nodes may for example represent valid
values of some axis (TopCoordinate). An example of a usage of auto-complete-
-tree can be seen in figure 3.9. Auto-complete-tree is able to filter nodes of encap-
sulated KnowledgeMatrixTreeModel by a string that is typed by the user (See string
"Se" at the top of the figure 3.9). All nodes that do not start with the typed string or are
not parent of a node that starts with this string are removed from the tree. This fea-
ture greatly simplifies the selection of desired nodes by the user when the Knowledge-
MatrixTreeModel contains a lot of nodes. Many users are familiar with this kind of
behavior from well known websites such as Google search. The architecture of auto-
complete-tree component can be found in [25].

43

3.4. KNOWLEDGE-MATRIX-COMPONENT 44

Figure 3.7: Class diagram of TreeMatrixComponent.

3.4. KNOWLEDGE-MATRIX-COMPONENT 45

Figure 3.8: Example of visualization of info-card.

Figure 3.9: Example of possible state of auto-complete-tree.

3.4. KNOWLEDGE-MATRIX-COMPONENT 46

KnowledgeMatrixService Methods

• void loadData(List<ModelDataSource> dataSources), void load-
Data()
This method loads data from the underlying knowledge framework. A list of
ModelDataSources objects can be passed as an argument which adds data to the
main model. If no argument is passed, data from the previous sources are reloaded.
This method must be executed before the first query.

• Scenario getScenario(String name), Scenario getSce-
nario(Class<Scenario> clazz), Scenario getScenarios()
This method returns the scenario with the given name (or Class object). If no
scenario with the given name is found ScenarioNotFoundExceptionis thrown.
This method returns the list of all supported Scenariosif no argument is passed.

• KnowledgeMatrixInstance createMatrix(Scenario scenario)
This method takes a Scenario object that was returned by loadData() method.
The outcome of this method is an instance of KnowledgeMatrixInstance which
is the main interface for querying the KnowledgeMatrixService by the user.

• Set<Coordinate> getAllAxisValues(TopCoordinate topCoordinate)
This method returns the set of all Coordinates that are subclasses of the given
TopCoordinate by means defined in 3.3.1. Returned set is unmodifiable.

• KnowledgeMatrixQueryResult executeQuery(KnowledgeMatrixQuery
knowledgeMatrixQuery, Scenario scenario)
This is the main point for placing queries. It takes a KnowledgeMatrixQuery in-
stance and a Scenario instance. The set of TopCoordinates is extracted
from the KnowledgeMatrixQuery along with sets of Coordinates for each
TopCoordinate limiting their possible values. Then the query for knowledge
framework is composed and is executed. The algorithm for creating the query is
implementation specific. The instance of KnowledgeMatrixQueryResult that
satisfies the given query is returned.

• GraphQueryResult executeStringQuery(String basicIRI, String
queryString)
The purpose of this method is to execute arbitrary query string and return the an-
swer in the form of a graph. The root of this graph is determined by the basicIRI.
The queryString should be written so that the underlying knowledge framework
is able to construct a graph from its result.

• Coordinate findCoordinateByName(List<String> namespaces,
String name),
Coordinate findCoordinateByName(String namespace, String name)
These methods find the Coordinate object by the given name. If a list of
namespaces is provided, those namespaces are used when locating the required
Coordinate. If only a single namespace is provided, behavior is the same as the
previous method with a list of size one.

Method List 3.9: KnowledgeMatrixService Methods

3.4. KNOWLEDGE-MATRIX-COMPONENT 47

KnowledgeMatrixInstance Methods

• Scenario getScenario()
Returns the Scenario object that is encapsulated by the instance.

• KnowledgeMatrixTreeModel getAllAxisValues(TopCoordinate topMa-
trixNode)
Returns all possible values of given TopCoordinate that are stored in the under-
lying knowledge framework model of KnowledgeMatrixService. Those values
may be invalid within the associated Scenario as they are not filtered.

• KnowledgeMatrixTreeModel getValidAxisValues(TopCoordinate top-
MatrixNode)
This method is similar to getAllAxisValues() except that returned values are
always valid within the associated Scenario.

• List<OutputNode> getOutputNodes(KnowledgeMatrixQuery query)
Executes the given query in the context of associated Scenario and return the an-
swer represented by the list of OutputNodes.

• KnowledgeMatrixQueryBuilder createQuery(TopCoordinate topCoor-
dinate)
Creates and returns KnowledgeMatrixQueryBuilder associated with the given
TopCoordinate.

• Coordinate findCoordinateByName(String name), TopCoordinate
findTopCoordinateByName(String name)
Returns Coordinate respectively TopCoordinate for the given name. If there is
no such Coordinate respectively TopCoordinate then null is returned.

Method List 3.10: KnowledgeMatrixInstance Methods

Scenario Methods

• String getName()
Returns name of the represented scenario.

• List<TopCoordinate> getMainAxes()
Returns the list of TopCoordinates that represents main axis of the Scenario.

• List<String> getAllNamespaces()
Returns names of all used namespaces by represented Scenario.

• StringTemplate getMainQuery()
Returns the object of StringTemplate that holds template for creating queries for
the underlying knowledge framework.

Method List 3.11: Scenario Methods

3.4. KNOWLEDGE-MATRIX-COMPONENT 48

ModelDataSources Methods

• loadModelData(Model model)
This method loads data from any source to the given model. This model is data
source for underlying knowledge framework.

• closeModel()
When data from the loaded model are no longer required this method is executed
and is responsible for terminating this data source. This is useful method for exam-
ple when a remote data source is used and network connection should be closed.

Method List 3.12: ModelDataSources Methods

HeaderObject Methods

• boolean isExpandable()
This method determines if the associated HeaderObject is able to perform any
action (e.g. expansion, explained later).

• TopCoordinate getTopCoordinate()
Returns the associated TopCoordinate.

• Set<Coordinate> getCoordinates()
Returns set of all valid values for encapsulated TopCoordinate. For each retrieved
Coordinate object must hold that coordinate.getParent() = getTopCoor-
dinate().

Method List 3.13: HeaderObject Methods

DrillableAxis Methods

• List<DrillableHeaderObject> getActualPath()
This method returns the path from the main axis root to the actual root. This list
should be unmodifiable.

• HeaderObject getLastElementInPath()
This method returns the last element from getActualPath(). It is useful in the
view for easier implementation of visualizing the last element of the path.

Method List 3.14: DrillableAxis Methods

3.4. KNOWLEDGE-MATRIX-COMPONENT 49

TreeMatrixModel Methods

• List<OutputNode> getValueAt(HeaderObject vertical, HeaderOb-
ject horizontal)
This method is used for getting data from the the model as a list of OutputNodes.
As its parameters suggest, it takes one element from the vertical axis and one from
the horizontal and performs their intersection. Restrictions that are set by setRe-
striction() method are taken into account.

• GeneralAxe getHorizontalAxe(), GeneralAxe getVerticalAxe()
These two methods are used for retrieving horizontal respectively vertical axis
from the TreeMatrixModel.

• void setRestriction(TopCoordinate topCoordinate),
void setRestriction(TopCoordinate topCoordinate, Coordinate
restriction),
void setRestrictions(TopCoordinate topCoordinate,
Set<Coordinate> restrictions)
These methods set additional restrictions that are used for the intersection. The
TopCoordinate specifies the main axis that is used and the second argument
specifies restrictions for this axis. Set restrictions are kept in the component until
they are removed by removeAllRestrictions() method.

• void removeAllRestrictions(TopCoordinate topCoordinate)
This method is used for removing restrictions that were previously set by setRe-
striction(). The given TopCoordinate is removed as well as any restrictions
that were specified for this TopCoordinate. If the given TopCoordinate was not
set before by setRestriction(), nothing happens.

• void init(KnowledgeMatrixInstance dataSource, TopCoordinate
verticalAxis,
List<TopCoordinate> filterAxes)
This method forces TreeMatrixModel to reload data from given Knowledge-
MatrixInstance and to reload new data to the visualized axes.

Method List 3.15: TreeMatrixModel Methods

Chapter 4

Implementation And Testing

The chapter 3 explained detailed information regarding the principles and design of
the system. This chapter aims to describe the implementation of this architecture and
presents results of it. Each implemented component is presented in a separate section
where the utilized technologies are introduced. A small overview of similar technologies
is presented and rationale is given on why the selected technologies were used. At the
end of each section, there is a subsection detailing the testing of the described component,
explaining the testing methods used and the results of those tests. Sections in this chapter
have the same order as in chapter 3.

In general, the provided implementation is based mainly on the Java language and en-
vironment. Java was chosen because it is a statically typed language, it supports generic
types, is portable among different environments and there is great number of open-source
projects that support development in this language. Project management is performed by
Maven [13]. This tool allows to split the source codes and libraries that this project de-
pends on which makes it ideal for a source code management tool like svn or git. Maven
also has support for many plugins like JUnit or Cobertura, which help with project devel-
opment. Those tools are explained in the following text. The implementation is not limited
by any dependency injection framework (like Spring) but can be easily incorporated into
one that is used by a project that would use the implemented components.

4.1 Knowledge-Matrix-Server

The implementation of the Knowledge-matrix-server component is based on
RDF(S) and OWL2. The reason for this decision has already been given in chapter 2. The
implementation of the knowledge-matrix-server raised several questions. The first
question was the selection of an appropriate knowledge framework that would satisfy
the requirements of this project and that would also make the development as simple as
possible. The second question was about the testing methods of the implemented project,
the tools that were used for these tasks, and how to measure the results of those tests.

4.1.1 Knowledge Framework

There are several frameworks that support cooperation between Java programs and
OWL2 ontologies. These frameworks can be generally split into two groups: direct and

50

4.1. KNOWLEDGE-MATRIX-SERVER

indirect.

The direct group aims at direct mapping of Java classes to OWL2 classes and vice
versa. This approach is very similar to the object relation mapping that is used for relation
databases, e.g. JPA [29]. An advantage of this solution is the simple access to ontology
data through java beans that represent business objects. An example of such a framework
is Jastor [5]. This framework generates POJOs from a given ontology that represent OWL
classes. It is only a one way conversion, so the changes made to POJOs are not propagated
back to the ontology. Classes are generated during the development time from the ontol-
ogy and therefore the classes have to be known before implementation. This limitation
represents a disadvantage for this thesis because generated classes are usable only for its
original ontology and therefore are not general. Other example of such an approach are
Owl2java project [37] and Kazuki project [1]. The Jenabean project [10] is based on a differ-
ent approach. It converts annotated Java classes and generates an appropriate RDF/OWL
representation. This approach is not suitable for this thesis because the used ontology is
already created and there is no need for creating a new one.

The indirect group takes a different approach regarding how to deal with ontologies.
It does not directly map Java classes to an ontology, but rather provides a universal in-
terface for interaction with it. This approach is similar to the one that is used in JDBC
API [28]. The advantages of this approach are its universal access to all ontologies and
its ability to use associated technologies like SPARQL [17]. These features fit more to the
requirements for knowledge-matrix-server and therefore a knowledge framework
based on this approach is used. OwlApi [27] is an project that implements this approach.
It is an open source project designed to work with OWL2 ontologies. It supports the cre-
ation, manipulation and serialization of OWL2 ontologies but it can not handle SPARQL
queries.

Another framework for indirect work with ontologies is Apache Jena [12]. It is mainly
designed to work with RDF(S) graphs but OWL2 ontologies can be handled as well. Sev-
eral associated technologies are supported by this framework including SPARQL queries,
which are realized by the ARQ library. ARQ can handle SPARQL queries up to version
1.1 which is the most recent version of SPARQL at the time this thesis was written. Be-
cause the architecture proposed in chapter 3 requires a framework that supports textual
queries and SPARQL is textual based language, the Jena framework was chosen as the
most appropriate underlying knowledge framework.

Jena can itself handle basic reasoning on RDF(S) graphs but it can not handle OWL2
DL. The lack of this feature can be overcome by an external reasoner. For the purpose of
this thesis, Pellet reasoner [8] is used, but is is possible to make some small changes to the
code and use any other reasoner that is able to process OWL2 DL. The project in this the-
sis also requires access to a remote triple store, namely Sesame [33]. This requirement was
realized by JenaSesameConnector provided by KBSS [23] which manages remote connec-
tions.

4.1.2 Testing

The knowledge-matrix-server was tested from two perspectives. The first per-
spective is about the testing of the proposed architecture of the knowledge-matrix-
server. The testing of the architecture should answers whether the proposed architec-
ture satisfies the requirements of this project and is flexible enough for some small changes

51

4.2. KNOWLEDGE-MATRIX-COMPONENT

that are inevitable in every project. This testing was done by specifying several use cases
and then modeling them as UML sequence diagrams. Modeled use cases included (i) an
initialization of knowledge-matrix-server, (ii) getting axes and their values and (iii)
querying knowledge-matrix-server and retrieving relevant results. Sequence dia-
grams of those use cases are shown in the chapter 3 as well as short descriptions of the
modeled processes. The testing was done as a discussion over the designed diagrams
between the author of the architecture and the supervisor of this project. This testing im-
proved the design process of the architecture and made the proposed interfaces simpler
to understand and yet generic enough for the future extension. Sequence diagrams show
that the proposed architecture is suitable for the requirements of this thesis.

The second perspective is concerned with testing the implementation that was pro-
vided as a proof of the concept of the proposed architecture. Knowledge-matrix-server
implementation was tested mainly by manual testing and unit tests. Unit tests allow the
separate testing of each implemented class and to test the interactions of those classes
together. Unit tests were written in JUnit 4.9 testing framework [32]. This framework al-
lows repeatable test execution and there is number of plugins and tools for visualizing
the results of executed tests. This approach not only tests the code that is under devel-
opment but also helps with regression testing. Regression tests help to detect bugs that
are created during the refactoring process and therefore allow for the speeding up of the
project development. For mockup generation mockito [35] framework is used. This sim-
ple framework supports the simple creation of mockups and allows for the encoding of
simple conditions for the generated mockups. For coverage measuring Cobertura tool is
used. This tool is designed to execute the implemented unit tests and determine which
lines and branches of developed code were tested and which not. After unit tests are com-
pleted Cobertura generates a HTML page or a XML document that presents the achieved
results.

All unit test that were implemented passed and the code coverage can be seen in table
4.1. The table is vertically divided into groups where each group represents one package
of source code. The first column shows name of tested class, the second column shows line
rate coverage in percent, the third column shows branch coverage in percent and the last
column show the McCabe cyclomatic code complexity of the tested class. Line coverage
describes how many lines were executed during the tests. Branch coverage describes how
many branches were passed during the tests out of total number of possible branches.
Cyclomatic code complexity measures how many decision points are contained in a tested
class. The higher this number is the more complicated the tested class is.

Unfortunately unit tests can not prove the absence of a bug but they can only prove the
presence of a bug. This means that although all tests passed and test coverage is good this
component may not be bug free. This proof can be only given by mathematical verification
but it would be too complex with respect to this thesis.

4.2 Knowledge-Matrix-Component

The knowledge-matrix-component is composed of three separate components.
The first component is knowledge-matrix-component which represents the visual-
ization of the intersection of two or more axes. The second component is infocardwhich
shows detail information about a particular OutputNode. And the last component is
auto-complete-tree that helps the user with the selection of values from a given tree.

52

4.2. KNOWLEDGE-MATRIX-COMPONENT 53

name line-rate[%] branch-rate[%] complexity

Package cz.cvut.kbss.kmserver.impl
KnowledgeMatrixInstanceImpl 89.19 100.00 1.750
KnowledgeMatrixServiceImpl 75.89 68.97 3.579
QueryUtils 85.71 100.00 2.000

Package cz.cvut.kbss.kmserver.impl.configuration
FileSystemDataSource 100.00 100.00 1.000
JenaSesameDataSource 100.00 100.00 1.000

Package cz.cvut.kbss.kmserver.impl.dto
CoordinateImpl 96.43 100.00 1.636
KnowledgeMatrixTreeModelImpl 84.72 80.00 2.688
OutputNodeImpl 70.83 32.14 2.600
TopCoordinateImpl 100.00 80.00 3.000

Package cz.cvut.kbss.kmserver.impl.query
GraphQueryResultImpl 83.33 73.33 4.000
KnowledgeMatrixQueryBuilderImpl 84.09 81.25 2.200
KnowledgeMatrixQueryImpl 93.94 75.00 3.364
KnowledgeMatrixQueryResultImpl 100.00 100.00 1.750
SimpleQueryPair 93.55 69.23 3.125

Package cz.cvut.kbss.kmserver.impl.usecases
InterventionOutputNodeBuilder 93.10 100.00 2.000
InterventionScenario 82.98 90.00 2.200

Table 4.1: Table of unit test coverage of knowledge-matrix-server

4.2. KNOWLEDGE-MATRIX-COMPONENT

As in the previous section the first subsection is concerned with selection of appro-
priate technology and the second subsection deals with testing the implemented solution
and presents the results of the tests.

4.2.1 Web Framework

One of the general requirements of this project was the request that the user interface
shall be implemented as a web application. There are many web technologies for Java and
this chapter shortly introduces a few of them and gives rationale as to why the selected
technology was utilized and what its advantages for this project are.

The first solution mentioned in this chapter are Servlets [19]. They were firstly intro-
duced by Sun Microsystems in 1997 and are considered as a low-level approach for web
applications. The servlet is a special class that is used to extend server capabilities through
communication with external clients by some protocol. Servlets are mainly implemented
using HTTP protocol but it is possible to use them for other protocols as well. They act
as an interface which shields the developer of the application from the implementation
details of the underlying protocol. When the user initiates an HTTP request, the servlet
wraps data from this request and presents it to the application as an instance of Http-
ServletRequest. The application then processes this request and writes an answer to
an instance of HttpServletResponse. How the answer should be composed is com-
pletely left to the application which gives a lot of variability to the developers but also
makes development very tedious. This technology is usually used by other web technolo-
gies that are built on top of it.

The first technology built on top of servlets introduced in this thesis is Java Server
Pages (JSP) [20]. This technology takes the template approach to generate web pages. The
web application developer specifies the page in a language that is a combination of HTML
and special JSP tags. Those special tags represent Java code snippets that are evaluated
during request and are replaced by their evaluated values. This way the developer can
easily combine static portion of pages like headers and styles with dynamically generated
content. Compared to servlets this technology allows much faster development. Imple-
mentation of this technology is done by compiling JSP into equivalent servlets when the
user firstly request the page.

While JSP allows to easily create dynamic web content it does not solve the way the
user enters data to the page and generally the way how user interacts with it. This prob-
lem is addressed by Java Server Faces technology (JSF) [21]. JSF is a Java specification for
building component based user interfaces in the form of web pages. The developer writes
pages using special JSF tags and those pages are translated by a JSF servlet into the re-
sulting web pages. The JSF servlet takes care of data validation and passes validated data
from the user’s input to the application, which makes application development faster.
The disadvantage when compared to JSF is performance, which is worse because of the
additional overhead.

Comparing the three mentioned web technologies, the most fitting one for this project
is JSF because it is capable of composing the final web page from partial solutions, it has a
simple approach to processing the user’s input and there are many already implemented
components based on JSF that can be reused in this project. Version of JSF specification
used is 2.2 [21] and used implementation of JSF servlet in this project is Mojarra 2.2.6 [16].

54

4.2. KNOWLEDGE-MATRIX-COMPONENT

name line-rate[%] branch-rate[%] complexity

Package cz.cvut.kbss.autocompletetree
TreeSelector 96.00 100.00 1.800

Package cz.cvut.kbss.autocompletetree.matcher
CaseInsensitivePrefixMatcher 100.00 50.00 3.000
TreeAutocompleteMatcherIface 100.00 100.00 1.000

Package cz.cvut.kbss.autocompletetree.model
AutocompleteTreeModel 86.96 73.08 2.000

Package cz.cvut.kbss.tree_matrix.model
TreeMatrixModel 83.33 50.00 1.300

Package cz.cvut.kbss.tree_matrix.model.axes
DrillableAxis 80.56 64.29 2.167
FilterableAxis 100.00 100.00 1.500
GeneralAxis 100.00 100.00 1.000
SwingToPrimefacesConverter 90.91 88.89 2.444

Package cz.cvut.kbss.tree_matrix.model.axes.headers
DrillableHeaderObject 86.67 50.00 1.857
FilterableHeaderObject 100.00 100.00 1.375
HeaderObject 100.00 100.00 1.000
HeaderObject$Action 100.00 100.00 1.000

Table 4.2: Table of unit test coverage of knowledge-matrix-component

4.2.2 Testing of knowledge-matrix-component and auto-complete-tree

These two components are tested together because knowledge-matrix-component
uses auto-complete-tree very intensively and thus it makes sense to test them to-
gether. The testing of implemented components was done partially by unit tests and
partially by automated web user interface testing tools. The purpose of unit testing was
mainly concerned with data models and the interactions between axes and and their asso-
ciated header objects. Automated web user interface testing was done because some JSF
features are easier to test this way than by unit tests.

Unit tests used the same technologies as were used in the testing of knowledge-
matrix-server. Line coverage, branch coverage and cyclomatic complexity can be seen
in table 4.2.

For automated web user interface testing Selenium tool was used. This tool simulates
user when performing testing. It follows predefined test scenarios and performs certain
assertions during the test run. This way the tests can be executed automatically and can
be used as regression tests during project evolution. For all test cases the following pre-
conditions must be met:

1. The utilized knowledge-matrix-servermust be filled with ModelDataSources that

55

4.3. KNOWLEDGE-MATRIX-USER-INTERFACE

represent data from the given testing set that is placed in the same folder as test
cases.

2. The DrillableAxis root must be set to the associated TopCoordinate.

3. No Coordinates must be selected for all used FilterableAxes.

4. No restriction on any used axis may be used.

The table 4.3 shows predefined test cases, describes what parts of knowledge-matrix-
-component are tested and how tests are performed. The last column is very brief and
does not cover all steps in detail, but rather gives basic ideas as to how the tests should be
performed. For detailed information the reader can look at the Selenium test implemen-
tation provided in this thesis. All tests were executed using Selenium 2.5.0 and Firefox
27.0.1 on Mac OSX 10.9.2.

4.3 Knowledge-Matrix-User-Interface

This component has integration character as it combines all previously described com-
ponents and makes the final application from them. The first question that has to be an-
swered is how and where the resulting application will be deployed. Because all com-
ponents of knowledge-matrix-component are implemented using JSF, a server con-
tainer that can work with this technology is required. All implemented components in this
thesis are mainly developed for the MONDIS project and this project already has several
applications developed so there is a need to integrate them all together. One of possible
solution how to do this task is to use Java Portlet technology.

"Portlets are web components, like servlets, specifically designed to be aggregated
in the context of a composite page. Usually, many portlets are invoked to in the single
request of a portal page. Each portlet produces a fragment of markup that is combined
with the markup of other portlets, all within the portal page markup." (from the Portlet
Specification [22], JSR 168)

Portlet technology is able to easily combine more independent applications and pro-
vide the same look and feel for them. Examples of such advantages are a common place
for loging in to the application, same ways as to how to configure common options like
size and borders of an window or same way how to add more applications to one partic-
ular page. The features of Portlet technology satisfy the conditions placed on the whole
MONDIS project and therefore Portlet technology is used.

Because this is a standardized solution there are independent implementations of port-
let servers which means that this implementation is not limited to any particular solution.
The implementation used in this thesis is deployed to the Liferay portlet implementation
[18]. This implementation is able to execute and render JSF pages and because of this all
of components developed for this thesis are deployed to Liferay portlet container, version
6.1.2. An example of deployed knowledge-matrix-component into the Liferay portlet
can be seen in figure 4.1

56

Sc
en

ar
io

N
am

e
W

ha
ti

s
te

st
ed

H
ow

is
it

te
st

ed

D
ri

ll
ab

le
A

xi
s

Te
st

•
D

ri
lli

ng
ac

ti
on

of
D
r
i
l
l
a
b
l
e
A
x
i
s

•
Pr

es
en

ce
of

co
rr

ec
te

le
m

en
ts

in
th

e
ac

tu
al

pa
th

vi
su

al
-

iz
at

io
n

•
C

or
re

ct
le

ng
th

of
th

e
ac

tu
al

pa
th

vi
su

al
iz

at
io

n

•
C

or
re

ct
na

vi
ga

ti
on

by
us

in
g

ac
tu

al
pa

th
vi

su
al

iz
at

io
n

C
lic

k
on

pr
ed

efi
ne

d
D
r
i
l
l
a
b
l
e
H
e
a
d
e
r
-

O
b
j
e
c
t
s

an
d

ob
se

rv
e

if
co

rr
ec

t
da

ta
lo

ad
in

g
is

be
in

g
pe

rf
or

m
ed

.
W

he
n

th
e

lo
ad

in
g

is
do

ne
,

ch
ec

k
if

th
e

ac
tu

al
pa

th
sh

ow
s

th
e

co
rr

ec
t

no
de

s.
D

o
th

is
op

er
at

io
n

se
ve

ra
lt

im
es

.C
lic

k
on

pr
ed

efi
ne

d
el

em
en

t
of

th
e

ac
tu

al
pa

th
an

d
ch

ec
k

if
co

rr
ec

td
at

a
lo

ad
in

g
is

be
in

g
pe

rf
or

m
ed

.
C

he
ck

if
th

e
ne

w
ac

tu
al

pa
th

an
d

th
e

ne
w

ro
ot

of
D
r
i
l
l
a
b
l
e
A
x
i
s

ar
e

co
rr

ec
t.

C
he

ck
th

at
vi

su
al

iz
ed

pa
th

is
re

nd
er

ed
co

rr
ec

tl
y

if
th

e
pa

th
is

lo
ng

er
th

an
n

.

Fi
lt

er
ab

le
A

xi
s

Te
st

•
Se

le
ct

io
n

of
C
o
o
r
d
i
n
a
t
e
s

fo
r
F
i
l
t
e
r
a
b
l
e
A
x
i
s

•
Fi

lt
er

in
g

of
ap

pr
op

ri
at

e
O
u
t
p
u
t
N
o
d
e
s

C
lic

k
on

se
le

ct
ed

fil
te

ra
bl

e
ax

is
an

d
w

ai
tf

or
th

e
se

le
c-

ti
on

w
in

do
w

to
op

en
.S

el
ec

to
ne

no
de

an
d

th
en

cl
ic

k
on

th
e

Fi
lt

er
bu

tt
on

.W
ai

t
fo

r
a

re
lo

ad
of

th
e

cu
rr

en
t

w
eb

pa
ge

an
d

th
en

as
se

rt
th

at
on

ly
se

le
ct

ed
va

lu
es

ar
e

lis
te

d
in

th
e

ap
pr

op
ri

at
e

ce
ll.

R
ep

ea
t

th
is

pr
oc

e-
du

re
m

or
e

ti
m

es
.

Ex
te

rn
al

A
xi

s
Te

st

•
Se

le
ct

io
n

of
C
o
o
r
d
i
n
a
t
e
s

fo
ra

xi
s

th
an

is
no

tp
re

se
nt

in
th

e
m

at
ri

x
he

ad
er

(e
.g

.m
at

er
ia

l)

•
Fi

lt
er

in
g

of
ap

pr
op

ri
at

e
O
u
t
p
u
t
N
o
d
e
s

C
lic

k
on

M
at

er
ia

ll
in

k
an

d
w

ai
tf

or
th

e
se

le
ct

io
n

w
in

-
do

w
to

op
en

.
Se

le
ct

so
m

e
m

at
er

ia
l

no
de

an
d

th
en

cl
ic

k
on

Fi
lt

er
bu

tt
on

.W
ai

t
fo

r
re

lo
ad

of
cu

rr
en

t
w

eb
pa

ge
an

d
th

en
as

se
rt

th
at

on
ly

se
le

ct
ed

va
lu

es
ar

e
lis

te
d

in
ap

pr
op

ri
at

e
ce

ll.
R

ep
ea

tt
hi

s
pr

oc
ed

ur
e

m
or

e
ti

m
es

w
it

h
m

or
e

di
ff

er
en

tn
od

es
.

A
ut

oC
om

pl
et

eT
re

e
•

Fi
lt

er
in

g
of

vi
su

al
iz

ed
no

de
s

•
A

ja
x

up
da

te
s

of
vi

su
al

iz
ed

no
de

s

C
lic

k
on

C
om

po
ne

nt
lin

k
an

d
w

ai
tf

or
se

le
ct

io
n

w
in

-
do

w
to

op
en

.
Ty

pe
"W

al
l"

in
to

te
xt

fie
ld

an
d

as
se

rt
th

at
on

ly
C

om
po

ne
nt

s
w

ho
se

na
m

e
st

ar
tw

it
h

"W
al

l"
ar

e
lis

te
d.

R
em

ov
e

"a
ll"

fr
om

"W
al

l"
an

d
as

se
rt

th
at

on
ly

C
om

po
ne

nt
s

w
ho

se
na

m
e

st
ar

t
w

it
h

"W
"

ar
e

lis
te

d.
Fi

lt
er

in
g

sh
ou

ld
be

ca
se

in
se

ns
it

iv
e.

Ta
bl

e
4.

3:
Ta

bl
e

of
pr

ed
efi

ne
d

Se
le

ni
um

te
st

ca
se

s

57

4.3. KNOWLEDGE-MATRIX-USER-INTERFACE 58

Figure 4.1: knowledge-matrix-component deployed to Liferay portlet

Chapter 5

Conclusion

The main goal of this thesis was to design and implement a software system for the
analysis of damage to cultural heritage objects. This software system should be able to
perform given use cases and should be generic so that a new use case can be easily incor-
porated into the implemented solution. At the time this thesis was written only one such
a use case was known: the Intervention use case. This use case analyzed manifestations
of damages, their causes, and interventions preventing them.

In order to satisfy these requirements, it was necessary to propose a general approach
to representing knowledge about the domain. The proposed solution is based on the idea
of intersection of arbitrary axes represeting part of the described domain. The implemen-
tation of this solution is backed by MONDIS ontology and therefore this ontology was
studied. The ontology is defined in OWL2 language and this language is based od De-
scription Logic. For this reason chapter 2 contains an introduction to this formalism and
to OWL2 language and to associated technologies. The intervention use case is described
using description logic and then this description is encoded into OWL2 and SPARQL-DL
languages.

Based on the knowledge gained from the previous steps a software architecture of
the system was designed and rationale for this design was given. The designed system
is generic so it can represent more use cases than the Intervention one. The system was
implemented according to this desing. The user interface was implemented using web
technologies, namely JSF and Liferay Portlet. Those technologies allow end users to use
this system simply through a web browser without a need to install anything.

This implementation was tested by unit tests and by Selenium, which is an automated
tool for testing user interfaces. More than 100 unit tests were written and code coverage
was over 75 %. Selenium tests were designed and a short intutivite description of those
tests was given in this thesis.

The reason why the test coverage was not 100 % was due to time limitations and
because of the changes to the data representation in the late phase of the project. Dur-
ing the project development the way how input data were represented was changed and
this change led to the necessity of modifying some parts of the implementation. The first
implementation represented individuals that belonged to some class by the name of the
associated class. This approach combined with OWL2 punning made SPARQL queries
simple and readable. But this approach was not comfortable for the end users who asked
for using the OntoMind tool (also developed in the MONDIS project). To accept this re-
quirement data representation was modified. Each class is now represented by one indi-

59

vidual that is the instance of this and only this class. So what the punning method did
implicitely in the previous data representation is now done explicitely. This change to the
code proved that the proposed architecture is flexible enough to incorporate such changes
as only one file was modified.

60

Bibliography

[1] ? The kazuki project. http://projects.semwebcentral.org/projects/
kazuki. Year: 2007.

[2] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, Cambridge, 2003.

[3] Knowledge Base and Software systems group on CTU Prague. http://www.
mondis.cz. Accessed: 2014-03-19.

[4] Knowledge Base and Software systems group on CTU Prague. http://www.
mondis.cz/en/web/portal/mobile. Accessed: 2014-03-19.

[5] Joe Betz Ben Szekely. Typesafe, ontology driven rdf access from java. http://
jastor.sourceforge.net. Accessed: 2014-03-13.

[6] Miroslav Blasko. Personal communication, 2014. A discussion of a desing and im-
plementation.

[7] Miroslav Blasko, Riccardo Cacciotti, Petr Kremen, and Zdenek Kouba. Monument
damage ontology. volume 7616 of Lecture Notes in Computer Science, pages 221–230.
Springer, 2012.

[8] LLC Clark & Parsia. http://clarkparsia.com/pellet/, 2005–2013. Accessed:
2014-03-13.

[9] R.V. Guha Dan Brickley. Rdf schema 1.1. http://www.w3.org/TR/2014/
REC-rdf-schema-20140225/, February 2014. Accessed: 2014-04-10.

[10] drdonohue@gmail.com. A library for persisting java beans to rdf. https://code.
google.com/p/jenabean/. Accessed: 2014-03-13.

[11] Guus Schreiber Fabien Gandon. Rdf 1.1 xml syntax. http://www.w3.org/TR/
2014/REC-rdf-syntax-grammar-20140225/, February 2014. Accessed: 2014-
04-10.

[12] The Apache Software Foundation. A free and open source java framework for build-
ing semantic web and linked data applications. https://jena.apache.org. Ac-
cessed: 2014-03-13.

[13] The Apache Software Foundation. http://maven.apache.org, 2002-2014. Ac-
cessed: 2014-03-19.

61

http://projects.semwebcentral.org/projects/kazuki
http://projects.semwebcentral.org/projects/kazuki
http://www.mondis.cz
http://www.mondis.cz
http://www.mondis.cz/en/web/portal/mobile
http://www.mondis.cz/en/web/portal/mobile
http://jastor.sourceforge.net
http://jastor.sourceforge.net
http://clarkparsia.com/pellet/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://code.google.com/p/jenabean/
https://code.google.com/p/jenabean/
http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://jena.apache.org
http://maven.apache.org

BIBLIOGRAPHY

[14] W3C OWL Working Group. Owl 2 web ontology language. http://www.w3.org/
TR/owl2-overview/, December 2012. Accessed: 2014-04-10.

[15] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic Web
Technologies. CRC Press, Boca Raton, FL, 2009.

[16] https://www.java.net. https://javaserverfaces.java.net. Accessed: 2014-
03-19.

[17] http://www.w3.org. Sparql query language for rdf. http://www.w3.org/TR/
rdf-sparql-query/. Accessed: 2014-03-13.

[18] LIFERAY INC. http://www.liferay.com, 2014. Accessed: 2014-03-19.

[19] Inc. Java Community Process, Oracle America. https://jcp.org/aboutJava/
communityprocess/final/jsr315/. Accessed: 2014-04-24.

[20] Inc. Java Community Process, Oracle America. https://jcp.org/aboutJava/
communityprocess/final/jsr245/. Accessed: 2014-04-24.

[21] Inc. Java Community Process, Oracle America. https://www.jcp.org/
aboutJava/communityprocess/final/jsr344/index.html. Accessed:
2014-03-19.

[22] Inc. Java Community Process, Oracle America. https://www.jcp.org/en/jsr/
detail?id=168. Accessed: 2014-03-19.

[23] KBSS. http://krizik.felk.cvut.cz/m2repo, 2014. mvn artifactId: backend-
jena-remote-sesame, mvn groupId: cz.cvut.kbss.ontomind, version: 1.1-SNAPSHOT.

[24] Petr Kremen. Building Ontology-Based Information Systems. PhD thesis, Czech Techni-
cal University in Prague Faculty of Electrical Engineering Department of Cybernet-
ics, february 2012.

[25] Petr Křemen, Pavel Mička, Marek Šmíd, and Miroslav Blažko. Ontology-driven
mindmapping. I-SEMANTICS 2012, 7th Int. Conf. on Semantic Systems, 2012.

[26] Peter F. Patel-Schneider Matthew Horridge. Owl 2 web ontology lan-
guage - manchester syntax (second edition). http://www.w3.org/TR/
owl2-manchester-syntax/, December 2012. Accessed: 2014-04-10.

[27] Sean Bechhofer Matthew Horridge. The owl api: A java api for owl ontologies. Se-
mantic Web Journal 2(1), Special Issue on Semantic Web Tools and Systems, pages 11–21,
2011.

[28] Oracle. Java database connector. http://www.oracle.com/technetwork/
java/javase/jdbc/index.html. Accessed: 2014-03-13.

[29] Oracle. Java persistence api. http://www.oracle.com/technetwork/java/
javaee/tech/persistence-jsp-140049.html. Accessed: 2014-04-24.

[30] Peter F. Patel-Schneider Patrick J. Hayes. Rdf 1.1 semantics. http://www.w3.org/
TR/2014/REC-rdf11-mt-20140225/, February 2014. Accessed: 2014-04-10.

[31] Eric M. Dashofy Richard N. Taylor, Nenad Medvidovic. Software Architecture Foun-
dations, Theory, and Practice. Wiley, 2010.

62

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
https://javaserverfaces.java.net
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.liferay.com
https://jcp.org/aboutJava/communityprocess/final/jsr315/
https://jcp.org/aboutJava/communityprocess/final/jsr315/
https://jcp.org/aboutJava/communityprocess/final/jsr245/
https://jcp.org/aboutJava/communityprocess/final/jsr245/
https://www.jcp.org/aboutJava/communityprocess/final/jsr344/index.html
https://www.jcp.org/aboutJava/communityprocess/final/jsr344/index.html
https://www.jcp.org/en/jsr/detail?id=168
https://www.jcp.org/en/jsr/detail?id=168
http://krizik.felk.cvut.cz/m2repo
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

BIBLIOGRAPHY

[32] David Saff, Kevin Cooney, Kent Beck, and Marc Philipp. Junit, a programmer-
oriented testing framework for java. http://junit.org. Accessed: 2014-04-24.

[33] Aduna Software. http://www.openrdf.org. Accessed: 2014-03-13.

[34] Andy Seaborne Steve Harris, Garlik. Sparql 1.1 query language. http://www.w3.
org/TR/2013/REC-sparql11-query-20130321/, March 2013. Accessed: 2014-
04-17.

[35] szczepiq@gmail.com. https://code.google.com/p/mockito/, 2010–2013. Ac-
cessed: 2014-03-19.

[36] Dan Connolly Tim Berners-Lee. Notation3 (n3): A readable rdf syntax. http://
www.w3.org/TeamSubmission/n3/, March 2011. Accessed: 2014-04-10.

[37] Michael Zimmermann. A java code generator for owl. http://www.
incunabulum.de/projects/it/owl2java. Accessed: 2014-03-13.

63

http://junit.org
http://www.openrdf.org
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://code.google.com/p/mockito/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/
http://www.incunabulum.de/projects/it/owl2java
http://www.incunabulum.de/projects/it/owl2java

Content of CD

Attached CD contains

Directorr Description
implementation implementation of the project
thesis source codes of the thesis
tests Selenium tests
thesis.pdf text of the thesis

Table 1: Directory structure of thesis

64

	Introduction
	Intervention Use Case
	Design and Implementation

	Knowledge Representation
	Intuition
	Description Logic
	Syntax
	Semantics
	Examples of usage
	Queries
	Intervention Use Case - Formal definition

	RDF(S), OWL2 And Semantic Web
	RDF
	OWL2
	SPARQL
	Intervention Case One - Semantic web representation

	Architecture
	Typographical conventions
	Overall architecture
	Knowledge-Matrix-Server
	Data Transfer Objects
	Query Objects
	Service Objects
	Class relationships

	Knowledge-Matrix-Component
	Tree-Matrix-Component
	Info-Card
	Auto-Complete-Tree

	Implementation And Testing
	Knowledge-Matrix-Server
	Knowledge Framework
	Testing

	Knowledge-Matrix-Component
	Web Framework
	Testing of knowledge-matrix-component and auto-complete-tree

	Knowledge-Matrix-User-Interface

	Conclusion
	Attachment A: Content of CD

