
Czech Technical University in Prague

Faculty of Electrical Engineering

MASTER'S THESIS

2014
Petr Procházka

Czech Technical University in Prague

Faculty of electrical engineering

Department of Radio Engineering

Experimental Wireless Cloud TxR Testbed
Platform

May 2014 Author: Petr Procházka
Supervisor: prof. Ing. Jan Sýkora, CSc.

Proclamation

I declare that I have worked on my diploma thesis independently and only
sources stated in bibliography were used. I agree that my thesis or its parts can
be borrowed and provided to public.

Date: 12.5 2014

.............................

Signature

Task

Acknowledgement

I would like to thank to prof. Ing. Jan Sýkora for his very wise and useful advices
and comments, which helps to create this thesis. Also I would like to thank to
all doctoral students from DiRaC group for their help with many obstacles and
for very pleasant and friendly atmosphere establishment.

Abstract:

At this time Wireless Physical Layer Network Coding (WPNC) is a hot topic
in research community as a means to enhance the overall network throughput.
The main goal of the thesis is to develop, practically build and verify the experi-
mental wireless cloud network platform with multiple Tx/Rx for software radios.
The platform should be con�gurable to serve various topology and processing
scenarios including possibility to emulate simpli�ed processing options such as
perfect synchronization or symbol timing. This will involve the development of
AirInterface wrapper protocol in order to de�ne basic rules for communication
in wireless network. The platform should have a user interface which allows
to create a signal from data inputs and also direct work with signal samples
(IQ BB) for o�ine processing. Platform should be designed in such a way to
provide some smaller tasks as various modulations, NCM encoder, H-decoding,
synchronization options etc. The viability of the platform should be demon-
strated by example implementations and real radio hop experiments of selected
(both point-2-point, and cloud oriented) scenarios with simple forms of WPNC
components.

Key words:

Wireless Physical Layer Network Coding, Synchronization, Platform, AirInter-
face protocol

Abstrakt:

V sou£asné dob¥ je Wireless Physical Layer Network Coding (WPNC) st°edem
zájmu výzkumník· v oblasti bezdrátových komunikací jako jedna z moºností
jak docílit výrazného zvý²ení propustnosti t¥chto sítí. Cílem této práce je
navrhnout, vytvo°it a posléze ov¥°it experimentální platformu pro bezdrátové
sít¥ tvo°enou softwarovými radii, která umoºní spolupráci více p°ijíma£· a
vysíla£·. Tato platforma by m¥la slouºit k nastavení r·zných topologií sít¥
v£etn¥ moºnosti emulace ideálních proces· typu dokonalá synchronizace nebo
symbol timing. Dále by m¥l být vytvo°ený protokol pravidel pro komunikaci
v bezdrátových sítí. Platforma by dále m¥la obsahovat uºivatelské rozhraní
umoºnující vytvo°ení poºadovaného signálu ze vstupních dat a také práci p°ímo
se vzorky jiº p°ijatých signál· pro o�ine zpracování. Vytvo°ená platforma by
m¥la umoº¬ovat dal²í moºnosti v podob¥ r·zných forem modulací, synchro-
niza£ních moºností nebo hierarchického kódování £i dekódování. Sou£ástí této
práce je také ov¥°ení funk£nosti této platformy na názorných ukázkách realizace
r·zných scéná°· topologie sít¥ v£etn¥ základních prvk· WPNC.

Klí£ová slova:

Wireless Physical Layer Network Coding, Synchronizace, Platforma, Modulace,

Contents

I Theoretical background 6

1 Introduction 7
1.1 Motivation . 9
1.2 Thesis Outline . 10

2 Network Coding 11
2.1 Network Coding principle . 11

2.1.1 Network Coding Gain . 13
2.2 Wireless Network Coding . 13
2.3 Relaying strategies . 14
2.4 Hierarchical Decode & Forward 15

II Practical contribution 19

3 Interface protocol and framework platform 20
3.1 Current state-of-art network synchronization in wireless networks 20
3.2 Interface protocol . 22

3.2.1 Interface protocol model 23
3.2.2 Implemented protocol . 24

3.3 CAZAC codes . 27
3.4 Framework platform . 28

3.4.1 Real-time signal processing 29
3.4.2 Wireless cloud implementation 31
3.4.3 Sequential programming implementation 33
3.4.4 Parallel computing implementation 36
3.4.5 Multiple Matlab sessions 43

4 Framework implementation with GUI 45
4.1 Approaches of GUI development 45

4.1.1 Programmatic GUI construction 47
4.1.2 Graphical user interface development environment 49

4.2 Framework GUI . 51
4.2.1 Data management in multiwindow GUI 52

1

CONTENTS 2

4.2.2 Network Cloud Scenario GUI 53
4.2.3 Transmitter Settings GUI 54
4.2.4 Synchronization GUI . 56
4.2.5 Relay properties GUI . 58
4.2.6 Other GUIs . 59

4.3 Stand-alone application . 60
4.3.1 Utilization of framework platform 61

5 Results evaluation 63
5.1 2Tx - Rx network scenario . 63
5.2 1Tx -2Rx network scenario . 66
5.3 Tx - Rx network scenario . 67

6 Conclusion 69
6.1 Future work . 69

Bibliography 71

Nomenclature

3GPP 3rd Generation Partnership Project

AP Access Point

AWGN Additive White Gaussian Noise

CAZAC Constant Amplitude Zero Auto-Correlation

CFO Carrier Frequency O�set

CSE Channel State Estimation

DF Decode and Forward

DSP Digital Signal Processor

HNC Hierarchical Network Code

LTE Long-term evolution

MC Mutually coupled

MS Master-slave

NC Network Coding

OFDM Orthogonal Frequency-Division Multiplexing

PHY Physical Layer

PiAcq Acquisition Pilot

PiCSE CSE Pilot

PiHrc Hierarchy Pilot

PL Payload

SNR Signal-to-Noise Ratio

WNC Wireless Network Coding

WPNC Wireless Physical Layer Network Coding

3

List of Figures

1.1 Global Mobile Devices and Connections Growth [14] 8
1.2 Wireless data tra�c growth forecast [14] 8

2.1 Network coding butter�y scenario example. 12
2.2 Two-way relay channel . 14
2.3 2-Source Relay Network with side information 16
2.4 Capacity regions of HDF [13] . 18
2.5 MAC capacity for HDF [12] . 18

3.1 Di�erent synchronization scenarios [15] 22
3.2 Interface protocol model [15] . 23
3.3 Designed frame structure . 25
3.4 Cross correlation of CAZAC sequence shifted of 1 periode 27
3.5 Cross correlation of two CAZAC sequences with di�erent roots . 28
3.6 Real-time signal processing . 30
3.7 Network scheme . 32
3.8 Instruction chart �ow of sequential algorithm 34
3.9 Synchronization inaccuracy for simultaneous 2Tx-Rx 36
3.10 Zoomed frame synchronization slip 36
3.11 Basic parallel algorithm chart �ow 37
3.12 Sliced parallel algorithm for collision avoidance 38
3.13 Parallel algorithm with semaphores 40
3.14 Multiple Matlab sessions . 43

4.1 Hierarchy of basic graphical objects of Matlab system 46
4.2 Figure object example . 46
4.3 Raw main menu example . 48
4.4 Callback function execution and �gure adjustment 49
4.5 Main menu with GUIDE . 50
4.6 Framework GUI core structure with data �ows 51
4.7 Cloud scenario GUI . 53
4.8 Transmitter settings GUI structure 55
4.9 Transmitter settings GUI . 55

4

LIST OF FIGURES 5

4.10 Transmitter Data GUI: a), Transmitter properties GUI: b) Su-
perframe properties: c) . 56

4.11 Synchronization interface . 57
4.12 Frame synchronization interface: a) Packet synchronization in-

terface: b) . 58
4.13 Relay interface . 59
4.14 Simulaton interface . 59
4.15 Building of stand-alone application 61
4.16 Multiple access to USRPs . 61

5.1 a) PSD of recieved signal, b) PSD of designed signal 64
5.2 Packet synchronization with CAZAC sequences: a) recieved sig-

nal, b) signal model . 65
5.3 Packet synchronization with ML codes: a) received signal, b)

designed signal . 65
5.4 PSD of 1Tx-2Rx scenario . 66
5.5 Packet sycnhronization in 1Tx-2Rx scenario 66
5.6 PSD with REC pulse in Tx-Rx scenario: a) received signal, b)

designed signal . 67
5.7 Tx-Rx scenario: a) frame synchronization, b) packet synchroniza-

tion . 68

Part I

Theoretical background

6

Kapitola 1

Introduction

In today's modern society, wireless communications is one of the most active
areas of technology development, and the fastest growing communication - based
division of our time. Wireless communication has been developed to provide so-
cietiy services for di�erent applications and purposes. This developement made
a huge progress from it's very beginning where wireless was just a medium for
supporting vioce telephony up to a medium for supporting other services, for in-
stance transmission of data streams or internet connectivity. Thus, similarly to
development in wired line capacity in the 1990s, the demand for current wireless
capacity is rapidly rising. But these increasing demands rise many others techni-
cal problems to be solved. In case of wired line capacity, where the demand can
be ful�lled for instance with addition of new wired line, or new infrastructure
such as optic �bre and so on. But in case of wireless systems the only resour-
ces that have been used to increase capacity are transmitter power and radio
bandwidth. Unfortunately, these two resources are in fact very restricting.

Transmitter power can be higher, but when we consider the fact that most of
the wireless devices (phones, laptops or tablets) require the use of battery supply,
it make this classical trade-o� problem between performance and device live
time. So this solution would not be optimal. Second option - Radio bandwidth
is also very resticting, with regard to useful radio bandwidth, which is limited
by number of devices (common bandwidth) or it's very expensive to rent extra
bandwidth. Main reason of increasing demand on capacity of wireless networks
is extreme growth of mobile devices (smartphones, laptops, tablets etc.) over
the world.

The increasing number of wireless devices that are accessing wireless net-
works worldwide is one of the primary contributors to global wireless data tra�c
growth. Each year several new devices in di�erent form factors and increased ca-
pabilities and intelligence are being introduced in the market, for instance GPS
systems in cars, asset tracking systems in manufacturing sectors and shipping,
or medical applications to provide patient records and status more available.
This forecast also predicts that North America and Western Europe are going
to have the fastest growth in mobile devices and connections. If few years ago

7

KAPITOLA 1. INTRODUCTION 8

was one device using wireless networks mean per person, in very close future it
could be doubled or maybe tripled due to relatively low cost of mobile devices
and market expansion. I allowed to gather two exemplary �gures to prove my
arguments from Cisco Global Mobile Data Tra�c Forecast [14]. First �gure 1.1
shows growth in number of devices accessing wireless networks which directly
a�ects wireless data tra�c growth depicted in �gure 1.2. This growth of wire-
less data tra�c with time seems to be exponential for the upcoming few years.
These circumstances motivate engineers all over the world to develope methods
how to improve wireless network throughput and channel capacity to satisfy
very rapidly growing demand on wireless data transfers.

Figure 1.1: Global Mobile Devices and Connections Growth [14]

Figure 1.2: Wireless data tra�c growth forecast [14]

KAPITOLA 1. INTRODUCTION 9

Nevertheless there is one positive fact left, processing power. Moore's Law,
which predicts doubling of processor capabilities every two years, has been quite
accurate over the past 20 years and its accuracy promises to continue for upcom-
ing years. Given by these circumstances, there has been considerable research
e�ort in recent years focused to enhance the wireless capacity and throughput
to satisfy increasing demands without attendant increases radio bandwidth or
power requirements.

1.1 Motivation

Traditional approach of the routing information is that routers are operating
with �store and forward� strategy, which is very simple.The node (router) is
only deciding whether the recieved information is intended to it then send it
further to the next hop device, and if it's not it decide where to sent it further
on. The information is routed by the network nodes from the sources through a
web of the conncected networks till it reaches it's destination. They just bu�er
received packets and forward them (almost)unmodi�ed, but the information
carried by the packet is the same all the way from source to destination.

Scenario of common wireless network can be decomposed to a set of distin-
guishable point-to-point oriented nodes. Destination point is prepared only for
signal from one particular device and all other signals are treated as harmful
interferences and have to be prevented by the processing procedures. But these
suppressed signals can obtain very useful information, for instance information
about network topology, channel estimation etc.

When we consider these circumstances we have to ask question, if the current
routing solution is the optimal one for multi nodes complex networks or if we
could do it better ?

Can we built more sophisticated solutions in wireless networks for the crucial
points of routing-based approach? These crucial points are:

1. Complex network nodes works only on Store & Forward strategy.

2. The whole network, no matter how complex or huge the network is, is
formed by a set of point-2-point links.

3. The rest of the network is ignored (relative to picked up random point-2-
point segment of complex network) included any knowledge of the topology
of network we could possibly have.

All those assumptions generally degrades performance of the network and net-
works designed with properties like these are highly non-optimal, compared to
the network performance based on better than Store & Forward strategy. Other
possible strategies are shown in chapter two as we show further in this work.

In this work we try to change this standard approach and create nodes
(relays) with ability to �code� information from several sources before forwarding

KAPITOLA 1. INTRODUCTION 10

them and broadcast this coded information further into wireless cloud. User at
the destination point then can be able to decode original information from the
sources. It can be done at di�erent layers that means on level of packets, symbols
or signals. This method improving network capacity is called Network Coding.

1.2 Thesis Outline

Second chapter of this thesis is dedicated to fundamentals about network coding
and its bene�ts. After that is network coding principle aplicated into wireless
networks. Aslo there are mentioned basic relaying strategies and introduction
into Hierarchical & Froward strategy. Third chapter is focused on establishment
of interface protocol to provide a communication rules in wireless networks.
In the same chapter are also provided information about pilot signals used in
testbed platform. Next part of third chapter is focused on implementation of
framework platform into choosen environment which serves for testbed design.
Main goal of fourth chapter is to create a stand-alone application from designed
framework with user friendly Graphical User Interface. Chapter �ve is dedicated
to remote access to designed framework application. Also there is mentioned
another techniques of remote access. Chapter six serves to demonstration of
results of various network scenarios. These results are physically recieved signals
from designed testbed compared with signal model at the transmitter side in
order to demonstrate negative environmental in�uences on signal propagation.

Chapter 2

Network Coding

This chapter is dedicated to a basic network coding idea. In introduction was
sign about increasing demands on capacity of wired networks in 1990s, which
among others, leads to research of new approaches of forwarding data through
the networks to the destination point e�ectively. A signi�cant breakthrough
came in 2000 when Ahlswede introduced Network Coding (NC) [1]. Instead of
conventional way of Store & Forward information in networks, which degrades
its performance, Ahlswede came up with idea to mix messages from di�erent
sources into one in order to achieve multicast capacity. Section 2.1 is an in-
troduction to network coding basic principle. In Section 2.2 we apply this new
approach to Wireless networks. The next section 2.3 is dedicated to possible
relaying scenarios. Section 2.4 is dedicated to Hierarchical Decode & Forward
strategy. This relying strategy is signi�cant for the rest of this work.

2.1 Network Coding principle

The best way how to demonstrate principle of Network Coding is through the
famous butter�y example as shown in �gure 2.1.

11

CHAPTER 2. NETWORK CODING 12

Figure 2.1: Network coding butter�y scenario example.

Scenarion in �gure 2.1 can be described this way. Source S1 wants to deliver
packet P1 to both destinations D1 and D2 as well as source S2 wants to send
packet P2 to the same pair of receivers. For this example let's assume that all
links have a capacity of one packet per second. If routers R1 and R2 only store
and forward the packets they recieve, the middle link be overwhelmed cause
both routers for every second can either deliver P1 to D2 or P2 to D1 but not
both variants. Compare this with situation where the router feeding the middle
link with XORs (XOR operation is denoted by ⊕) of the two packets from the
sources and sends P1⊕P2, as its shown in �gure 2.1. In that case both receivers
can obtain both packets. Destination D1 can get P2 by XORing packet P1

received on the direct link from S1 with broadcasted P1 ⊕ P2 from the router
R2. And analogically D2 recovers packet from source S1.

This solution is optimal in the sense of the maximal throughput, in this case
is �nal throughput two packets per channel usage. This approach is simply
better than the routing approach which can, at best possible scenario, achieve
1.5 packet throughput per channel usage. In this example is used XOR for the
encoding routine to combine two packets from sources S1 and S2, but it could
be replaced by a liner combination (in general it can be nonlinear combination
as well, but in this work we will mention only linear combination for simplicity)
of the data, interpreted as numbers over some �nite �eld. This approach is
called Linear Network Coding and provides very useful tool since the linear
NC operations for encoding and decoding can be easily rewriten in form of the
matrix equations. From these equation can be easily veri�ed invertibility of
global encoding function into decoding function (the inverse matrix) via the
matrix ranks and tools of linear algebra [2].

Although linear encoding functions seems to be optimal for solving single

CHAPTER 2. NETWORK CODING 13

source multi-cast problems, paper [3] showed that linear NC is insu�cient for
solving network of many sources in general.

2.1.1 Network Coding Gain

We shown in example from section 2.1 that NC allows to internal networks
increase throughput by combining incoming streams rather than the simple
storing and forwarding operations. So far we were considered NC only from a
theoretical point of view, but NC was also proven in practical implementation.
In wired form it makes revolution in telecommunications complex networks.
Also WNC was already implemented. The paper [4] de�nes a protocol named
COPE, but it is not pure implementation of WNC because COPE is operating
between Medium Access Control Layer (MAC) and network layer instead of
directly at the physical layer (PHY). And this is a nowadays trend in WNC
research, and also our goal in this work, to move NC principle as close as posible
to PHY i.e. at level of electromagnetic waves.

2.2 Wireless Network Coding

Principle of network coding can be applied to a wide variety of scenarios not
only on wired networks but also for wireless networks even for an ad-hoc mobile
wireless networks. The �rst idea of implementing network coding on wireless
network is probably in paper by Shengli Zhang et al. [5] in 2006. It's whole six
years after the origin of the network coding approach [1]. The main goal of this
section is to describe di�erences between Wireness Network Coding (WNC) and
Network Coding (NC).

The very important thing is to de�ne where (on which layer) combination
of input data streams occur. In the case of wired NC is very simple to dis-
tinguish data input from several sources, because there exist �physical� wired
connection with every node in network. But in case of wireless interface we are
not able to distinguish incomming data inputs so simply. The main and crucial
di�erence between WNC an NC is that WNC devices sharing same medium to
communication so in case of multiple sources are transmitting simultaneously,
at the PHY of communication link (i.e. receiving antenna) we are receiving su-
perpossition of these signals. This is the most challenging issue compared to a
wired communications, if we were able to handle this superpossition of incoming
signals right, we can get additional potential throughput bene�t.

CHAPTER 2. NETWORK CODING 14

Figure 2.2: Two-way relay channel

Figure 2.2 shows all the scenarios previously mentioned now on a simply
two-way relay channel. This network consist of two transmitters A,B that
want to exchange information to each other via relayR in such a way, that
each serves as a receiver for the opposite side partner. For highlighting bene�ts
of the WNC let's assume that di�erent transmissions are separated into time
slots for simplicity. Classical routed solution needs for delivering 2 packets 4
time slots so the throughput of this solution is 1/2 packets per channel use. In
the NC approach throughput is 2/3 packets per channel use. In case of WNC
throughput is 1 packet per channel use.

Other signi�cant di�erence between NC andWNC is that WNC's domain are
electromagnetic waves instead of discrete values (bits) where data d ∈ {0, 1} on
PHY of NC. The very last and also very important di�erence is in unpredictable
behaviour of channel. In NC are channels (copper wires/optic �bres) mostly
quite stable, error-less and interference free. On the other hand wireless channel
is highly unstable and full of di�erent types of interferences caused by multipath
spreading, dispersion in frequency, phase rotation, etc.

2.3 Relaying strategies

We can divide several kinds of signal processing methods performed by the relay
into three families. This procedures are called Relaying Strategies and we can
separate them by the fact whether is decision to be made by the relay about
incoming signal or not.

1. Amplify & Forward (AF) is a strategy where is no decision needed. Re-
lay only scales/amplify incoming (superpossed) signal and transmits it
towards the other nodes. This method is very simple, but due to amply-
fying received signal we also increase its noise that is forwarded further
into network.

CHAPTER 2. NETWORK CODING 15

2. Compress & Forward (CF) is a strategy where relay does not make a full
decision about the signal and only partial (compressed) information is
broadcasted towards the other nodes in network.

3. Decode & Forward (DF) in these strategies are some decisions needed. We
can further divede this category into:

• Hierarchical Decode & Forward (HDF) strategy processes superpossed
codewords - Hierarchical codewords directly in signal space representa-
tion. HDF is described in more details in next subsection.

• Joint Decode & Forward (JDF) is similar to Physical Layer Network Cod-
ing (PLNC) [6,7]. In these scenarios relay decodes all signals separately
and applies a network code upon those estimates.

• Compute & Forward (CmpF) [8,9] which uses properties of lattice codes
in order to process superpossed signals at PHY

• De-Noise & Forward (DNF) strategy similar to HDF but more focused on
symbol by symbol relay processing with channel parametrization.

2.4 Hierarchical Decode & Forward

Purpose of this section is to shortly introduce Hierarchical Decode & Forward
strategy, its basic principle and properties. This relaying strategy was �rstly
presented in [10], but more informations with simulation results and constrains
respectively conditions of HDF are contained in [11,12,13]. In the research
community, multi-node and multi-source wireless communication scenarios are
under intensive investigation mainly how to e�ectively provide data �ows and
network coding by relay nodes without routing. And that's a reason why was
HDF created.

Basic principle of HDF can be metaphorically and in very simpli�ed form ex-
plain this way. Let's assume that we need create a function for nodes (relays) to
provide data �ows without an explicit routing. This routine can be described as
a �ood of the information having di�erent �colors� (each source has data stream
with unique color) at the input of the node in network. The node based on HDF
relaying strategy processes the �rainbow� mixture-color from not distinguishing
individual sources of data streams. The destinations pick a particular �color�
from the received �ood with the help of various forms of the side-information on
other data streams available at the destination. Since the mixture-data �ow rep-
resents jointly (but not necessarily, in more complicated networks, individually
distinguished) data stream, we call those data hierarchical data.

This approach holds the principle of Network Coding, but with two major
di�erences.

1. The information transfer is achieved through signal-space wireless links. It
means that are phenomena like signal superpositions, fading and channel
parametrization are included.

CHAPTER 2. NETWORK CODING 16

2. The distributed source coding joint with distributed channel coding can
play important role when we don't fully decode and re-code the hierarchi-
cal codewords at relays due to the latency constraints.

We can demonstrate above mentioned concept on the simplest possible network
scenario with two sources and one relay. This scenario with ilustrated Hierar-
chical side information and Complementary side information is shown in �gure
2.3.

Figure 2.3: 2-Source Relay Network with side information

A 2-Source Relay Network (2-SRN) consist of two data sources SA and
SB and both want to send their data to two destinations DA and DB via
shared relay R. During the �rst (MAC) stage sources A and B simultaneously
transmitting towards the relay and also destination B collects C − SI on the
data A and destination A C − SI on the data B. The crucial feature that
distinguishes HDF strategy from other Decode & Forward methods is the fact
that the relay does not decide about the individual source codewords (packets,
data, symbols, etc.) at all.

When we assume recieved signal (superposed signals from sources A and B)
at relay input in form

u = hAsA + hBsB + w (2.1)

where hA, hB are appropriate channel scaling coe�cients and w is circularly
symmteric complex Additive White Gaussian Noise (AWGN) with variance σ2

w

per complex dimension. The only decision that is made by the relay is directly
on signal space representation and this decision is about so called hierarchical
symbols. The rule for relay's decision making is strictly given by

ˆdAB = argmax
dAB

µ(dAB) = argmax
dAB

µ

(
∪

dA,dB :χ(dA,dB)=dAB

{dA, dB}
)

(2.2)

Maximum of metric µ(.) is sought among hierarchical symbols dAB not like at
others Decode & Forward methods (namely JDF) where is metric µ(.) sought
among pair of individual source symbols dA, dB . This is very important to
noticed, for comparison with JDF is shown decision rule of JDF relaying strategy

CHAPTER 2. NETWORK CODING 17

in eq.2.3. Individual symbols dA and dB are �combined� into the hierarchical
symbols dAB by so-called Hierarchical Network Code (HNC) fuction χ(.).[

d̂A, d̂B

]
=

[
arg max

dA,dB
µ (dA, dB)

]
(2.3)

To achieve ability to decode the imposed HNC at the destination the applied
HNC have to ful�l a condition called an exclusive law [10,11]. This exclusive law
is de�ned as a property of the joint representation of two data symbols through
the function χd(dA, dB). It must hold that

χd(dA, dB) 6= χd(d
′
A, dB), ∀dA 6= d′A, (2.4)

χd(dA, dB) 6= χd(dA, d
′
B), ∀dB 6= d′B , (2.5)

The functions ful�lling exclusive law will be called exclusive maapping and
denoted by the operator χd(. , .) specifying also the corresponding symbol for
which it applies (in this case d). In other words the exclusive mapping allows
invert the mapping function provided with a side information on one of the data
symbols. Assuming that the destination node B has perfect H-SI on the node's
own data dB it can then decode the message dA(and analogicaly for node A).
We will call data dB complementary data from the perspective of the data dA
operations. The exclusive mapping can be applied at various levels for instance
in a level of symbols we de�ne Hierarchical eXclusive Alphabet (HXA). But in
this example on a level of data symbols it is de�ned like a Hierarchical eXclusive
Code (HXC) as two-source codebook ful�lling the exclusive law.

The exclusive law can be extended to the complex scenarios of much more
complicated networks that (2-SRN), but the number of equations grows im-
mensely. In this work we will not discuss about methods how to select appro-
priate HNC at each node in the network neither how to check invertibility of
the HNC. These topics are shown in [11,12,13] and related works.

It seems that HDF o�ers signi�cant advantage, because HDF signal process-
ing is much more complex. In [11] is shown that HDF can o�er a rectangular
capacity region that can exceed beyond the capacity regions of the other strate-
gies. This example of capacity regions is shown in �gure 2.4 and the capacity
is shown in �gure 2.5. Nevertheless this improvements are done at the expense
of signi�cantly increasing processing complexity. In addition this processing
complexity grows exponentially with increasing number of devices in network.

CHAPTER 2. NETWORK CODING 18

Figure 2.4: Capacity regions of HDF [13]

Figure 2.5: MAC capacity for HDF [12]

Part II

Practical contribution

19

Chapter 3

Interface protocol and

framework platform

This chapter is focused on de�ning of interface protocol wrapper. It should be
designed generic enough to serve for di�erent network cloud scenarios used in
platform. Creation of platform itself is desribed in chapter 4. The second goal
of this section is choice of enviroment for this platform which provide su�cient
computing performance to handle all wireless network requirements and also
adequate conditions for programming part of this platform.

In beginning of this section are fundamentals about wireless network syn-
chronization and distribution of synchronization in these networks. There are
described related problems and current state-of-art approaches. Next part is
dedicated to de�nition of interface protocol that properly addresses multiple
cloud stages and provide synchronization preferences. After that is explained
choice of basic enviroment for platform including possible other solutions for
given network scheme. In this chapter will be also provided implementation of
each approaches of transmission routines with further informations and results.

3.1 Current state-of-art network synchronization

in wireless networks

Synchronization is very important in every network. In general is main tar-
get of network synchronization equal distribution of time and frequency to all
devices in network. Synchronization also de�ne symbol timing and distinguish
data from a additive signals used for signalisation. It is necessary for proper
communication especially from receiver point of view.

In wireless networks time and frequency synchronization also serves for a
schedule of multiple access to a shared wireless medium. Generally is every
device in network equiped with its own local oscilator that generates periodic
signals. But these oscillators have limited stability and accuracy which cause

20

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM21

that every oscillator have a slightly di�erent properties. It is commonly given by
manufacture processes and temperature conditions. Therefore is necessary to
coordinate all these oscillators for establishment of common frequency reference.

In wireless network are two basic approaches how to establish and distribute
frequency reference.

1. Master-slave (MS) solution is based on hierarchical principle when every
network or subnetwork has a node with precise reference clock (master
node). The master node stays at the top of hierarchical topology and all
other nodes belonging to a lower priority just adjust their local precise
clocks.

2. Mutually coupled (MC) network synchronization is based on peer-to-peer
arranged nodes, where each node controls its local clock with the infor-
mation received from all its neighbours.

To introduce basic de�nitions about synchronization regimes, let's consider a
simple harmonic oscillator with output

x(t) = A(t) sin(ωt+ φ) (3.1)

where φ is the oscillator phase at t = 0 in radians, f is frequency of the oscillator
and t is absolute time. In this case we can neglect amplitude scaling A(t) = A
because it has no in�uence on frequency or phase. Then we can claim that
phase of generated signal increments with a speed proportional to the oscillator
frequency in rad/s ω, dΘ(t)/dt = 2πf . Local time function associated with x(t)
is then

τ(t) =
f

f0
t+

φ

2πf0
(3.2)

where f0 is the nominal frequency of the oscillator. Actual frequency is always
di�erent from the nominal one f 6= f0 . It is given by heating, manufacturing
processes or environmental in�ueces. Due to these circumstances following three
possible synchronization scenarios depicted in 3.1 can occur for couple of local
clocks τ1(t), τ2(t) .

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM22

Figure 3.1: Di�erent synchronization scenarios [15]

1. Asynchronous mode: clocks run indenpendently with di�erent phases β1 6=
β2 and frequencies f1 6= f2.

2. Frequency synchronization: clocks run at the same frequency f1 but with
di�erent phases β1 6= β2

3. Frequency and phase synchronization: phase synchronized clocks naturally
implies frequency synchronization.

Most wireless communication systems in operation is based on centralised net-
work structure, whereby access point (AP) manages the nodes that are within its
transmission range. Therefore AP serves as a master node and provide natural
reference for synchronization processes. In cellular based systems is necessary
frequency synchronization bacause of handovers. After that could be done car-
rier frequency o�set estimate (CFO) at each nodes from APs preamble. The
time synchronization is necessary whenever medium access is organized into
time slots - TDMA based communications.

The limited accuracy and stability of real oscillators have a very bad impact
on transmitted signal. It's caused by di�erence between nominal and actual fre-
quency of transmitter which leads to relevant signal distortion. Therefore is one
of the main tasks of synchronization in nowadays wireless networks compensate
carrier frequency.

3.2 Interface protocol

In digital communications generally protocol is a system of rules for data ex-
change between devices in network. Main purpose of protocol in communication

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM23

systems is to use well-de�ned formats for exchanging data messages. Each mes-
sage has an exact meaning intended to provoke a particular response of the
receiver. Thus, a protocol must de�ne the syntax, semantics, and synchroniza-
tion of communication. Therefore is necessary that all devices in network have
to strictly keep this de�ned protocol as common rules for communication.

The main purpose of de�ning our interface protocol is to create a container
of PHY solutions speci�c to the Wireless Network Coding based communication
introduced in 2.2. It should be disigned generic enough to serve for all possible
solutions and scenarios using modular implementation with respect to these key
features:

1. Slot synchronization for packet based operations.

2. Frame synchronization that properly addresses multiple cloud stages.

3. Hierarchy signalisation carrying information about network scenario and
other relays operations.

4. Node-local Channel State Estimation (CSE).

5. Actual useful information carried by payload (PL)

Protocol ful�ls these conditions is a theoretical one, it serves as a model for
implemented protocol described in next text of this document.

3.2.1 Interface protocol model

Model of ideal protocol for general wireless networks is shown in �gure 3.2. It
is general enough to provide all functionality depicted in section 3.2.

Figure 3.2: Interface protocol model [15]

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM24

Structure of ideal protocol can be diveded into two main parts. First part
is signalisation of superframe start consists of number of unmodulated symbols.
This part is called frame synchronization, and for this task are recommended by
[15] CAZAC sequences due to its properties. The second part consists of pilot
signals and modulated data symbols. From this point of view synchronization
section and payload can be assumed as two separated entities.

Very important part of this model are pilot signals. These pilots should be
designed in such a way to enable all synchronization and signalisation needed
for WPNC PHY layer processing. Separation procedure of pilot signals from
payload have to be generally done without payload codeword decoding process,
which should be realized only at the �nal destination. This property is speci�c
to WPNC. Reliable pilots must use enough �energy� to provide its function even
in condition which doesn't guarantee correct payload codeword decoding, but
signalisation must be provided.

Acquisition Pilot (PiAcq)

This pilot serves for identi�cation of the node's activity. It means that every
node have to have assigned unique �signature� in form of PiAcq. The second
purpose of PiAcq is synchronization of slots/packets which corresponds to the
transmitters activity stage slot. In other words slot synchronization means the
alignment of the packet inside the slot.

Hierarchy Pilot (PiHrc)

This pilot should provide signalistation of graph fragments of predecessor nodes,
in case of more advance network scenarios, directly at PHY layer. It should con-
tain information about hierarchical functions of the node itself and all preceding
nodes as well as information about network topology. This feature is necessary
for more complex wireless networks. It also should provide information about
relay operations and ID of HNC map. This pilot signal is very speci�c to HDF
relaying strategy.

Channel State Estimation Pilot (PiCSE)

PiCSE should serve for node-local CSI estimator. However in case of multisource
setup there will be channel parametrisation with higher complexity. The WPNC
decoding processes are strongly dependent on the relative channel coe�cients.
Therefore the CSE pilots must be designed in such a way to be resistant to
the non-orthogonal superposition while still providing a high quality relative
channel fading coe�cient estimates.

3.2.2 Implemented protocol

In this subsection is de�ned interface protocol with respects of desired function-
ality. To simplify our situation in this solution of protocol are not considered
hierarchical or CSE pilot signals, because it is beyond scope of this work. We

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM25

can also neglect all stage scheduling processes which arise in advance ad-hoc
dynamic networks due to a priori known network topology and cloud scenario.
In order to simplify situation even more, we can assume frame synchronization
and symbol timing due to synchronous transmitters/receivers respectively. But
this is not completely correct statement for reasons shown in 3.4.2. We can also
neglect time of signal propagation due to short distances between Tx/Rx. So
there is no need of any timing advance based methods.

Functionality of interface protocol like this should be su�cient enough to
provide communication in wireless network scenarios used in this framework
with respect to half-duplex constraint. The structure of frame for this framework
is shown in �gure 3.3.

Figure 3.3: Designed frame structure

It can be seen, that beginning of each superframe is signalised with Frame
Sync pilot signals, for this particular case were choosen CAZAC codes. Each
node in the network has given unique CAZAC sequence, which is known by
all other network's nodes. CAZAC codes are thoroughly described in section
3.3. For packet signalisation can be used CAZAC codes or gold codes in this
framework. Packet contain superposition of unique informations from every
transmitting node. The creation of the payload before modulation or coding
processes is following:

Algoritmus 3.1 Payload design algorithm

tx1_payload = zeros(symbols_per_packet, superframe_length);
for i = 0:superframe_length-1

tx1_payload(:,i+1) =
data_input_Tx1((i-1)*symbols_per_packet+1:i*symbols_per_packet)];

end
end

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM26

This unique data inputs are then modulated, interpolated and after that is
being made complex envelope. General linear modulation can be descripted as

s(t) =
∑
n

g (dn, σn, t− nTs) =
∑
n

g (qn, n− Ts) (3.3)

where g is modulation function, dn are data symbols dn ∈
{
q(i)
}Md−1
i=0

and σn
are inside states of modulator (memory of modulation, state equation σn+1 =

σ (dn, σn) de�ne evolution of modulator in time). In general σn ∈
{
σ(i)
}Mq−1
i=0

where
Mq is number of modulator states. Ts is symbol period.

Next operation in this process is upsampling of modulated signal. Input
signal X is upsampled by inserting N − 1 zeros between input samples. After
that is needed to �lter upsampled data by a modulation pulse and this data
reshape into superframe structure to keep designed protocol rule.

Implementation of these routines is shown in following algorithm.

Algoritmus 3.2 Modulation, upsample and complex envelope implementation

% modulator object
M=tx1_Mod;
hMod = modem.qammod(M);

% modulation
tx1_symbols = modulate(hMod,tx1_payload);

% interpolation
tx1_upsample = upsample(tx1_symbols, samplespersymbol);

% creation of complex envelope divided into two steps
step1=�lter(REC_�lter,1,tx_upsample_vectorized);
tx1_CE = reshape(step1,symbols_per_packet*nSamp/log2(M),SF_length);

Following algorithm shows addition of unmodulated CAZAC sequences to a
upsampled generarlly modulated data inputs now in form of complex envelope.
The constant k ∈ {0.25, 1} used to mupltiply amplitude of created complex
envelope is standard procedure to improve ability to detect CAZAC sequences
even in condition with low SNR ratio. This structure now corresponds with
�gure 3.3 and this superframe is prepared for transmition.

Algoritmus 3.3 Frame and Packet Sync addition

for i = 0:superframe_length-1
if i == 0

Superframe1(:,i+1) = [FrameSync1;k*tx1_CE(:,i+1)];
else

Superframe1(:,i+1) = [PacketSync1;k*tx1_CE(:,i+1)];
end

end

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM27

3.3 CAZAC codes

This part is focused on CAZAC codes and its properties suitable for purposes of
frame and packet sycnhronization. Constant Amplitude Zero Auto-Correlation
code (CAZAC) is complex-valued periodic signal with modulus and out-of-phase
periodic auto-correlation equal to zero. This code is generated by cyclically
shifting the basic CAZAC code of a choosen length and as the name of this code
prompts this shifted CAZAC codes are always orthogonal to its base CAZAC
code.

CAZAC sequences allow precise estimation of the frame-start position in
time and also in frequency domain, which is very convenient for our purpose.
CAZAC sequences are de�ned as a samples of a complex exponential function
wich can be seen from following formula

xN,r(n) =

{
exp(−j rπn

2

N) for N even

exp(−j rπn(n+1)
N) for N odd

(3.4)

where xN,r (n) denotes a sequences of length N and root of r. This root have
to be prime number for ability to provide following properties.

1. CAZAC sequences are periodic with period N if N is odd. It is given by

x (n+N) = x(n)

2. Auto correlation function of CAZAC sequence with a cyclically shifted
version of itself is zero, it is non zero in one and only case when this shift
corresponds to the cyclic shift (length of the sequence). It can be seen on
following �gure 3.4 that CAZAC sequence with r = 13 and N = 127 is
the same sequence like sequence with r = 140 and N = 127.

Figure 3.4: Cross correlation of CAZAC sequence shifted of 1 periode

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM28

3. The cross correlation between two CAZAC sequences with di�erent root
values r is always constant 1√

N
, see �gure 3.5. On this �gure are two cross

correlation functions. Blue one is convolution of one period of CAZAC
sequence with itself, where N = 127 and r = 13 . The red one is cross
correlation between two CAZAC sequences with r1 = 13, r2 = 17 and
common length N = 127. Note that peak at m = 127 has an amplitude
in maximum at |c(m)| = 127.

Figure 3.5: Cross correlation of two CAZAC sequences with di�erent roots

It is worth noticing that CAZAC sequences is also very resistant against noise
in�uences. In addition CAZAC sequences have reduced inter-symbol interfer-
ence, that helps to avoid of interferences between multiple antennas and it also
lowers peak-to-average power ratio. Due to this properties, CAZAC sequences
�nd application in wireless communication systems very soon. For example
these sequences is used for channel estimation and sycnhronization routines (for
instance preamble signature) in long-term evolution (LTE) of 3rd Generation
Partnership Project (3GPP). In this framework CAZAC sequences serve for
frame and packet synchronization.

3.4 Framework platform

This section is focused on options of possible development environment for this
framework platform design. Choosen development tool have to provide comfort-
able enviroment to satisfy demands on this framework. It means that designer
of this framework should be able to build this testbed in such a way to ful�l
functionality described in section 3.2.1 and also to provide adequate enviroment
for implementation of interface protocol (included design of pilot signals) with

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM29

ability to expand this framework to a more complex application. Namely ability
to build user friendy graphical user interface to control whole framework and
expand this framework for instance to another application with remote access
if possible. After considering all of these features there only two meaningful
options left.

1. GNU radio is open-source software development toolkit that provides
signal processing blocks to implement software radios. It provide opti-
mized enviroment for management of Universal Software Radio Periph-
eral (USRP) for Tx/Rx in wireless network cloud scenarios. It also allows
to use external high-accuracy timing reference and distribution system
(OctoClock-G) for USRPs to ful�l condition of precise frame synchroniza-
tion and symbol timing in multi node cloud scenarios. On the other hand
GNU radio is open-source development toolkit with lack of o�cial support
or documentation.

2. MATLAB is a high-level language and interactive environment for numer-
ical computation, visualization, and programming. Matlab is also ideal
instrument for algorithm developement with various forms of additional
toolboxes (for instance Parallel Computing toolbox, Signal Processing and
Communications toolbox etc.). In addition Matlab allows to create ad-
vanced Graphical User Interfaces (GUI) to provide a comfortably and user
friendly solution how to control created applications or scripts.

Despite of no guaranty of frame synchronization or symbol timing was selected
Matlab as a base environment tool to design this framework. It can be problem-
atic but in next sections is an e�ort of algorithm developement to provide this
synchronization demand. In this point of view can be choice of GNU radio more
optimal, but to provide perfect synchronization is necessary to buy another ex-
pensive device. So the target of next section is to achieve same functionality
without spending another �nancial resources.

Both variants have advantages and disadvantages so the decision about which
enviroment select was very di�cult. The GNU radio provides a better perfor-
mance of USRPs control but Matlab allows to expand designed framework to
an e�ective GUI based application. In addition there is also possibility to make
a web based application in case of Matlab based platform. But this topic is
further descripted in chapter ??.

3.4.1 Real-time signal processing

Nowadays topology of wireless networks is generally dynamic due to portable
devices which are moving in real-time. This is a huge complication for stage
scheduling because time delay caused by signal propagation is constantly chang-
ing. This means that receiver in these networks can not operate in its relative
clock time given by a local oscillator, because there is no guaranty of receiving
any useful data. The method how to guarantee a recieving proper data sequence

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM30

is based on a pilot signal detector which continously in time bu�ers and com-
pares recieved signal with de�ned pilot signal indicating start of transmitted
signal. If pilot detector register a start of transmitted signal it gives an order
to a memory bank to store a de�ned number of incomming samples N . This
number of samples is strictly given by a protocol in current network. Stored
data then represents a useful data message from a transmitter object. The de-
coding routines have to start immediately after recieving the last symbol of the
usefull message. This routine is not so simple as it seems. The memory imple-
mentation allows to read and write simultaneously, but have to be prevented
a case when second data frame arrives. It can cause a situation when are cur-
rently processing data overwritten by a new data message. This is treated by
switching banks of memory that stores a whole message. When is one bank of
memory �lled with data, it is switched with the empty one and whole payload is
provided to Digital Signal Processor (DSP) to further processing. The common
approach how DSP access data in memory from is realized by direct memory
access (DMA). Meanwhile is �lled second bank of memory in case of the next
packet arrieved. This process in simpli�ed form is depicted in �gure 3.6.

Figure 3.6: Real-time signal processing

This approach is called real time signal processing. It does not mean that
processing is operated on every data symbol recieved in given time but simply
real time systems have to guarantee response within a strict time constraint
often this time is re�ered usualy in range from microseconds to miliseconds. In
other words real-time system have to recieve data, process them and return the
result fast enough to a�ect the environment at that time.

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM31

The term real-time is often confused with other usage of this terms. Namely
in the domain of simulations were this term means that simulation's clock runs
as fast as a real clock. In real-time based signal processing have to be ful�lled
one condition which is bounded processing delay even if the processing continues
for a unlimited time. In other words it means that the mean processing time
per sample is no greater than the sampling period.

Due to this circumstances real-time signal processing have to be implemented
as close as possible to physical layer to satisfy a very quick response. All syn-
chronization routines should be implemented in FPGA of the receiver in order
to guarantee a fast enough response. Because developed framework is based
on Matlab enviroment, which refers to an application layer, there is not in our
capabilities to attach a real-time signal proceessing via Matlab based platform.

Therefore in this work we were forced to step aside from the real-time model
and the real-time sycnhronization of Rx/Tx processes have to be reached oth-
erwise. Next sections are focused on routines developement to provide a strict
sycnhronization of devices in network. It should lead to a synchronized Tx/Rx
processes in order to guaranty of fully received frame segments. This approach
is not quite exact but it should be a su�cient for de�ning basic cloud scenarios
in order to developement and testing of synchronization routines such as CSE
and others.

3.4.2 Wireless cloud implementation

On the beginning of the framework development there were a questionable possi-
ble solutions of process synchronization which should guarantee a perfect symbol
timing and frame synchronization. This feature should substitude a real-time
synchronization of Tx/Rx processes. With consideration of all SW potentials
we decided that there are only three ways how to create a wireless network with
multiple nodes simultaneously communicating. This is in general quite prob-
lem, because every program written in conventional way is executed command
after command, in another words serially-executed. To provide simultaneous
communication of multiple (in this case three) devices, it's neccessary to �nd a
way how to parallelize this process. Very important feature of this task is the
realization of network scenario physically built in laboratory. Scheme of this
network is depicted in �gure 3.7.

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM32

Figure 3.7: Network scheme

Figure 3.7 shows that communication between PC (with invoked Matlab in-
stance) and individual USRPs is via LAN switch, that also causes unpredictable
long delay in the information path. But in mean this delay can be considered as
constant and uniformlly distributed to all USRPs. But in general this network
scheme degrades any synchronization procedures created in application layer.
In order to keep precise and time invariant synchronization of multiple devices,
it is necessary to implement this process directly on PHY layer. Unfortunatelly
Matlab does not provide a coordination of processes by an external precise clock
source. Therefore following sections are focused on approaches how to reach the
same result with curent state-of-art resurces.

There is three general approaches how to ful�l condition of frame synchro-
nization and symbol timing for three devices simultaneously in Matlab based
framework platform:

1. Sequential programming: This approach in its nature can never ful�l the
condition of simultaneous control of three devices. The main idea of this
approach is that time di�erence between two transmitters is given only by
one command execution in Matlab. The question is if this method will
be su�cient enough for this framework or if is needed another solution
of device synchronization. Implementation of this approach is thoroughly
descripted in subsection 3.4.3.

2. Parallel Computing: Matlab enviroment includes Parallel Computing Tool-
box. This toolbox provide ability to solve computationally and data-
intensive problems using multicore processors. This parallelization is de-

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM33

signed to o�er boost in data processes. It is e�ective especialy with array
operations and parallelized numerical algorithms. Athough this toolbox
is not developed for synchronization of peripheral devices as USRPs, in
section 3.4.4 we try to design algorithm in such a way to be able provide
synchronnous operational mode of active devices.

3. Invoke multiple Matlab instances: This method can be implemented but
it su�ers with lack of frame and symbol synchronization. In basic form
of this method is guaranted only simultaneous communication of multi-
ple nodes (based on how many instances of matlab are invoked). There
is possible improvement of this method to satisfy demand of frame syn-
chronization and symbol timing by a clock counter routine with higher
priority than matlab instances. If this �clock� allows to send command
to all matlab instances simultaneously, it will provide frame and symbol
timing synchronization.

3.4.3 Sequential programming implementation

This approach has very strightforward advantage in form of implementation
simplicity. But on the other hand it su�ers with lack of ability to ful�l a key
requierement for this framework platform i.e. synchronous Tx/Rx operational
mode. This is crucial disadvantage of this method. The question is if the delay
between two transmitting processes will be long enough to disable usage of
HNC decoding processes. This inserted delay between transmissions is given
by one command execution in Matlab. Theoretically it can be processed in
such a way, that the machine cycles of matlab will have almost zero impact of
synchronization error. But this is only theoretical assumption, in reality is this
delay caused by one machine cycle shown in �gure 3.9.

The instruction �ow chart for this approach of sequential algorithm is de-
picted in �gure 3.8.

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM34

Figure 3.8: Instruction chart �ow of sequential algorithm

Implementation of this algorithm into Matlab can be done with di�erent
ways via di�erent cycles. In algorithm 3.4 is implemented algorithm with cycle
while which stops after super frame is three times send. This makes a framework
more robust and resistible against unpredictable enviroment in�uences.

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM35

Algoritmus 3.4 Sequential algorithm implementation

frameLength=180;
R=zeros(frameLength,3*SuperFrame length); %preparation matrix for received
data
i = 1; j = 1; k=1; %initialization of cycle indexes
nStop = 3*SuperFrame length;
while(j<nStop)

step(hTx1,�nal1(:,i)); %Transmission of packet(i) for Tx1
step(hTx2,�nal2(:,i)); %Transmission of packet(i) for Tx2
[Y, LEN]=step(hRx); % Recieved superposed packet(i) from Tx1 and Tx2
data=Y;

if mod(i,nPacket)==0 %end of super frame, start again with packet 1
i = 0;

end
if LEN==frameLength

R(:,k)=data;
k=k+1
if k == nStop

break;
end

end
i = i+1; j = j+1
end

We are able to distinguish start of packets from each transmitters only if
we know root number assigned to each transceiver at destination point. This
number have to be unique for each Tx, as mentioned in section 3.3. Lets assume
that samples of received signal arex[m] and a priori known CAZAC sequence for
Tx1 is cz1[m]. In order to �nd a start of packet Tx1 we apply cross correlation
function 3.5 to �nd the beginning of frame sent from Tx1. The physical meaning
of this function is comparing a mutual energy of two sequences. If is the one
sequence contained in second one (it can be shifted) it causes a maximum of
cross correlation function. Position of this maximum is given by a mutual shift
of these sequences.

(x ? cz1) [n] =

∞∑
m=−∞

x∗[m] cz1 [m+ n] (3.5)

Analogically we can get starts of packets from Tx2. In order to demonstrate
this delay between transmissions, both cross correlation functions are depicted
into one �gure 3.9 where could be seen synchronization inaccuracy. In �gure
3.9 overleaping blue and red peaks represents a signalised beginnings of packets
from each source. It is also noticible that red peak is slightly ahead of blue
peak from time �ow point of view. Other two blue side peaks are caused by non
optimal select of root of CAZAC code.

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM36

Figure 3.9: Synchronization inaccuracy for simultaneous 2Tx-Rx

In order to further analyzation of this time interval between transmissions is
provided zoomed �gure of the same scenario and received signal in �gure 3.10.

Figure 3.10: Zoomed frame synchronization slip

This method is not entirely exact, but has its own advantages. Besides al-
ready mentioned implementation simplicity, with this approach can be designed
all network cloud scenarios for this framework. The synchronization slip is un-
avoidable in this method but is stabile so future designer of synchronization and
decoding routines can involve this delay to his algorithms.

3.4.4 Parallel computing implementation

The days when was main target of processor design its frequency are gone.
Multicore processors are the new direction manufacturers are focusing on. Using
multiple cores on a single chip is advantageous in raw processing performance
with ability to handle more processes simultaneously. This trend lasts over

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM37

�ve years and brings new opportunities and solutions to program designers.
And multicore processing is a key feature in this method. We try to use all
resources of Matlab enviroment to design algorithm in such a way, to achieve
synchronization of all devices used for this task.

Matlab Parallel Computing Toolbox can split execution of program on paral-
lel parts using multicore processors. This toolbox let us use the full processing
power of multicore processors by executing applications on workers (Matlab
computational engines) that run locally.

With this toolbox we can theoretically parallelize two or more (based on
number of cores of particular PC) by a creating multiple Matlab workers which
should operate indenpendently of each other. This method is to the eye very
so�sticated and easy to implement. But the parallel routines provided in this
toolbox does not allow to user assign commands to individual cores. This un-
ability to allocation of individual processes to workers can be crucial and in
worst case it can makes this method unrealizable.

The �rst and most easy way how to discover behaviour of parallelization of
Matlab is to rewrite algorithm 3.4 to a parallel for loop provided by a Parallel
Computing Toolbox. Assumption that just a change of loop cycle type for
parallel one is very naive, but it is good start point of algorithm developement.
The chart �ow of this basic algorithm is shown in the �gure 3.11.

Figure 3.11: Basic parallel algorithm chart �ow

Implementation of this algorithm is basicly the same like algorithm 3.4.
During testing procedure of this algorithm error immediately occurs. It was
caused by worker collision on step instruction which reserves a USRP object for
a short period of time and multiple workers try to communicate with the same
USRP. And because there is no rule or authority to avoid this collision, this
method is impracticable.

One of the routines which should avoid this collision is based on partition of

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM38

transmision routines into individual functions. This can be done by a function
array, which will be processed within parallel loop. The chart �ow of this
algorithm is shown in �gure 3.12.

Figure 3.12: Sliced parallel algorithm for collision avoidance

This algorithm in its nature does not provide a fully synchronization of
processes but only parallelization of transmission routines. But it is only way
how to check if the routine for allocating workers for each called function is
working or not. It was done by replacing step functions by an easy display
functions. It was proven that each cycle there were three displayed messages
in matlab workspace. After this testing phase was algorithm implementd in
Matlab as shows following algorithm.

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM39

Algoritmus 3.5 Sliced parallel algorithm

matlabpool (number_of_devices);
funList=(@func1,@func2,@func3);
i=1;j=1;k=1;

while(j<nStop)
parfor l=1:length(funList)

funList{l}(�nal1,�nal2,hTx1,hTx2,hRx);
end

if mod(i,nPacket)==0
i = 0;

end
data=Y;

if LEN==frameLength
R(:,k)=data;
k=k+1

end
i=i+1,j=j+1,k=k+1;

end
% example of func1
function func1(�nal1,~,hTx1,~)
step(hTx1,�nal1(:,i));
end

We have to send variables and objects to every function as an arguments
because called functions have a independent workspaces. Unfortunatelly this
algorithm has a one crucial problem i.e. initialization of USRPs every loop cy-
cle which causes ridiculously long delay between each cycle. This can be solve
by creation of the same loops within the each function. But anyway this par-
allelization also does not guarantee an sycnhronization of the parallel cycles.
These features should be treated in next algorithm adjustment. The lack of
synchronization of these parallel loops will be treated by a barrier routine. Be-
cause we cant use a Matlab barrier routine provided by a spmd function in form
of labBarrier command, we have to �nd out another solution of parallel tasks
sycnhronization. For this purpose is used a semaphore routine. Semaphore is
program written in C to provide semaphore routine in Matlab enviroment by
compiling this C program into a MEX �le. This semaphore works on rela-
tive easy principle and manipulation with semaphore is similar to function. In
following algorithm will be described semaphore functionality.

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM40

Algoritmus 3.6 Semaphore functionality

semaphore('create',uniquekey,init_value)
% for example uniquekey=3; init_value=2;

semaphore('wait',uniquekey)
% init value decremented by one

semaphore('wait',uniquekey)
% init value decremented by one (0 - locked)

semaphore('post',uniquekey)
% init value incremented by one

semaphore('post',uniquekey)
% init value incremented by one - unlolck processes

The algorithm char�ow with used semaphores to synchronize all transmission
routines is depicted in following �gure 3.13.

Figure 3.13: Parallel algorithm with semaphores

This algorithm have to use extra one loop to control semaphores which
are used to create a barrier right before each step function. Therefore is key
feature of this algorithm barrier function which create a barrier for the �rst
three workers accessed this function till the forth one unlocks all these workers
at once. Implemented barrier function is shown in following algorithm 3.7.

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM41

Algoritmus 3.7 Barrier function

function barrier()
semaphore('wait', cntMutexKey); % separation of parallel tasks
barrierCnt = barrierCnt + 1;
if(barrierCnt == 4) %We now know that func1,func2,func3 are waiting
barrierCnt = 0; %reset count
semaphore('post', cntMutexKey);
semaphore('post', barrierKey); %Increment barrier count, so a func will

run.
semaphore('post', barrierKey); %Increment barrier count, so a func will

run.
semaphore('post', barrierKey); %Increment barrier count, so a func will

run.
else
semaphore('post', cntMutexKey);
semaphore('wait', barrierKey); %Wait for other threads (this is a barrier).

end
end

Unfortunatelly this algorithm isn't realizable due to unability to set a counter
of barrierCnt. It is necessary to pass this variable via an argument to this
function so every worker who access this function sets this variable again to value
1. Therefore is necessary to �nd another solution then via parfor loop. This
functionality could be provided via function spmd wich allows to execute the
body of this function in parallel. In addition it should provide more sophisticated
allocating of tasks to each worker. In following algorithm we divide workers by
special labindex command which is provided by function spmd. This index
refers to a unique number of parallel worker created in Matlab. Therefore it
is very convenient tool how to separate tasks via switch-case nesting function.
At top of that, the body of spmd can work with base workspace therefore is
no need to passing variables via arguments. The following algorithm represents
implementation into Matlab.

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM42

Algoritmus 3.8 Adjusted parallel algorithm with barrier

barrierKey = 4; % initialize value of barrier semaphore
semaphore('create', barrierKey, 3); % has count of 3 (devices) +1 to controll
semaphore('wait', barrierKey); % 2
semaphore('wait', barrierKey); % 1
semaphore('wait', barrierKey); % now it has 0 (next 'wait' is barrier)
matlabpool(4)
spmd
switch (labindex)
case 1
while(j<nStop)
semaphore('wait', barrierKey)
step(hTx1,�nal1(:,i));
if mod(i,nPacket)==0
i = 0;

end
i = i+1;j = j+1;

end
case 2
while(j<nStop)
semaphore('wait', barrierKey)
step(hTx2,�nal2(:,i));
if mod(i,nPacket)==0
i = 0;

end
i = i+1;j = j+1;

end
case 3
while(j<nStop)
semaphore('wait', barrierKey)
[Y, LEN]=step(hRx1);
data=Y;
if LEN==frameLength
R(:,k)=data;
k=k+1; j = j+1;

end
end

case 4
while(j<nStop)
pause(0.1) % protection interval other workers should wait on barrier
semaphore('post', barrierKey)
semaphore('post', barrierKey)
semaphore('post', barrierKey) % unlocks the USRPs
j=j+1;
end

labBarrier;
end

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM43

During testing of this algorithm several errors occurs randomly. It means
that sometimes transmitting process of two transceivers pass without any errors
but usualy an error occured. In cases when error occurs, it was due to unability
of Matlab to provide data for USRPs and in couple of cases again due to an
unability to reach USRP in particular time of error. The cause of this behaviour
may be the fact, that in spite of three/four matlab parallel workers were created,
it does not guarantee an physical allocating of processor cores to each worker.
This schedulling is strictly in control of OS scheduler.

The error where is not supported data for ettus had a key part �requested
number of samples. Expected 3597, Found 0� that can be caused by two features.
The �rst one is the unability of Matlab to give a high amount of data to all
USRPs at once. But it is highly unlikely. Therefore we were also testing the same
algorithm with half packet length and after that with quarter of packet length.
But the result was be the same. The second variant can be limitation of current
state-of-art network scheme depicted in �gure 3.7 because it could be caused
by a limitation from an IP packet structure, where is the MTU (Maximum
Transmission Unit) for Ethernet de�ned as 1500 bytes per instance. That could
be solved by a workstation equipped with three ethernet cards directly connected
to each USRP.

3.4.5 Multiple Matlab sessions

This approach is based on invoking multiple Matlab sessions. The transmission
routines are wholly independent and in this approach is guaranted avoidance
of Matlab collision in communication with USRP. The principal scheme of this
approach is depicted in �gure 3.14.

Figure 3.14: Multiple Matlab sessions

The huge disadvantage of this method is lack of any sycnhronization of these

CHAPTER 3. INTERFACE PROTOCOL AND FRAMEWORK PLATFORM44

processes. Therefore is no guaranty of recieving an usefull data. But it can be
compensated by a very long cycle where is multiple times transmitted the same
superframe. This method is realizable but not optimal one.

Due to these circumstances the frame synchronization and symbol timing
seems to be unrealizable via the Matlab platform. However, the sequential al-
gorithm were not provide so bad results and therefore is the framework platform
based on this algorithm. It is su�cient enough to provide tool for a design of
synchronization algorithms and other experiments.

Chapter 4

Framework implementation

with GUI

Main goal of this chapter is to develope a Graphical User Interface (GUI) for
framework. We will descibe two basic approaches how to buit GUI in Matlab
with examples. We also try to mention basic Matlab graphical control units and
describe hierarchy of Matlab graphical structure. This hierarchical structure is
key factor for understand data �ows between multiple GUIs and scripts. Final
product of this chapter should be creation of stand-alone application which
provide full functionality and also brings portability of this framework to another
devices. In addition, functionality of this application will sustain even on devices
without Matlab installation. This fact had relevant role during decision making
about suitable platform for this framework.

When is program used by a several persons the raw script is can be confusing
for those which have knowledge about used language.

4.1 Approaches of GUI development

A graphical objects were already mentioned but these objects weren't de�ned
yet. Graphical object is every basic elements used for displaying any kind of
graphical output. For clearly understanding core of this topic is very important
to know mutual organization and subordination of these objects - hierarchy.
Matlab graphical objects hierarchy is shown in following picture4.1 and is very
important for data management in more advanced GUIs.

45

CHAPTER 4. FRAMEWORK IMPLEMENTATION WITH GUI 46

Figure 4.1: Hierarchy of basic graphical objects of Matlab system

A Matlab GUI is a �gure window to which designer can add user-operated
graphical components. Designer of GUI have to select type, size and position
of graphical components as he likes, but generaly it should be designed in such
a way to provide well-arranged tool for end users. The functionality of any
graphical component is given by a property called Callback. Using callbacks
allows the components do its function by only clicking on that object.

System Handle Graphics was implemented to Matlab to provide a e�ective
control of all graphical objects. The main feature of Handle Graphic system is
a unique number assigned to every graphical object in Matlab.

In �gure 4.1 is depicted objects hierarchy and if some graphical object is
created then is uniquely determined by a handle value. Except of the tobject
Root at a top of hierarchy which has strictly given handle value 0. For example
we create a new graphical object �gure by a command h=�gure and the following
�gure object appears.

Figure 4.2: Figure object example

CHAPTER 4. FRAMEWORK IMPLEMENTATION WITH GUI 47

By command h=�gure was unique handle number assigned to variable h
wich helps with further work with �gure. Now we can check value of variable h
and the result is h = 1. In other words Handle of object Figure in this case is
number 1. We can imagine �gure object like a window with some name (Figure
1) which is ready to de�ne underling graphical objects (Uicontrol, Uimenu,
Uicontexmenu) in Matlab hierarchy depicted in �gure 4.1.

Another important feature of GUI is a fact that every GUI has its own
workspace independent of other worskpaces where are stored variables and ob-
jects in form of local variables. For instance if we declare variable or object
in GUI, these objects are invisible to Matlab's base workspace and vice versa.
This feature brings several obstacles which will be described in following text.

There are only two basic approaches of developing GUI in Matlab:

1. Programmatic GUI construction: created code �les generates GUIs as a
functions or scripts.

2. GUIDE (GUI Developement Enviroment): is an interactive GUI constuc-
tion kit.

The code �les of these two approaches look di�erent. Programatic GUI �les are
generally longer, because they explicitly de�ne every property of the �gure and
its controls (position, visibility, name, etc.), as well as the callbacks for these
objects. GUIDE GUIs de�ne most of the properties of objects within the �gure
itself. All these properties are stored in its FIG-�le instead of directly in its
code �le. The code �le then contains only callbacks and other functions that
initialize the GUI when it opens. If is GUI builded via GUIDE there is possibility
to modify it programmatically. However GUI created programmatically can not
be then modi�ed with GUIDE. Ways how to build a GUI is shown in following
text.

4.1.1 Programmatic GUI construction

Using this approach, designer creates a code �le that de�nes all component prop-
erties and behaviors. When a user executes the �le, it creates a �gure, populates
it with components, and handles user interactions. It can be demonstrated on
following example where will be created a main menu similar to main menu of
framework created later in this work. It can be done by following algorithm.

CHAPTER 4. FRAMEWORK IMPLEMENTATION WITH GUI 48

Algoritmus 4.1 Programmatic main menu example

function example()
% initialization part

f = �gure('Visible','o�','Position',[360,500,450,285]);
hcloud = uicontrol('Parent',f,'Style','pushbutton','String','Cloud',...
'Visible','on', 'Position',[170,220,80,25]);

hTx = uicontrol('Parent',f,'Style','pushbutton','String',...
'Transceivers','Position',[170,190,80,25]);

hsync = uicontrol('Parent',f,'Style','pushbutton',...
'String','Sync','Position',[170,160,80,25]);

hR_strat = uicontrol('Parent',f,'Style','pushbutton',...
'String','Relay Strategy', 'Position',[170,130,80,25]);

hrelay = uicontrol('Parent',f,'Style','pushbutton',...
'String','Relay', 'Position',[170,100,80,25]);

hreceiver = uicontrol('Parent',f,'Style','pushbutton',...
'String','Receiver','Position',[170,70,80,25]);

hSim = uicontrol('Parent',f,'Style','pushbutton','String','Simulation', ...
'Position',[170,40,80,25]);

align([hcloud,hTx,hsync,hR_strat,hrelay,hreceiver,hSim],'Center','None');
% Make the GUI visible.

set(f,'Visible','on') end

This code creates a �gure with default uicontextmenu and uimenu and sev-
eral pushbuttons as shows �gure 4.3.

Figure 4.3: Raw main menu example

This GUI has no functionality yet because there are no callback functions
de�ned. Also name is default and objects uimenu and uicontextmenu are ir-
relevant here. Next algorithm provide change name of �gure, de�ne callback
function of Cloud pushbutton and also hide uimenu and uicontextmenu.

CHAPTER 4. FRAMEWORK IMPLEMENTATION WITH GUI 49

Algoritmus 4.2 Callback function and adjustment of �gure

% uimenu and ui contextmenu removal
set(f,'Name','Main menu','MenuBar','none');

% de�nition of callback function to object property
set(hcloud,'Callback',{@cloudbutton_Callback});

% execution of callback function
function cloudbutton_Callback(source,eventdata)

f2=�gure('Visible','on','Position',[800,400,600,600], ...
'MenuBar','none','Name','Cloud');

end

The Cloud pushbutton callback function was de�ned to invoke another �gure
object. Demonstration result of GUI and pushbutton behaviour with invoked
second �gure object is shown in �gure 4.4.

Figure 4.4: Callback function execution and �gure adjustment

This is simple demonstration of programmatic GUI developement in Matlab.
Advantage is that designer de�ne only properties and callback function which
is necessary for desired functionality of GUI, but on the other hand, in more
complicated and advanced GUIs with multiple windows, created codes is very
large. Due to this feature orieantation in this code is then more di�cult. Hence
is prefered way to build a GUI with using GUIDE.

4.1.2 Graphical user interface development environment

Matlab have a tool designed especially for developement of GUIs and it is called
GUIDE. Key feature of GUIDE is a graphic layout editor, where is created �gure
and a source code is then automaticly generated.

This approach starts with a �gure that can be populated with components
from within a graphic layout editor. GUIDE creates an associated raw source
code �le containing callback functions for the GUI and its components. GUIDE
saves both the �gure (as a FIG-�le) and the code �le. Opening either one also
opens the other to run the GUI. Navigation in this approach is very easy, only by
clicking in layout editor on desired graphical object, it redirects on the callback

CHAPTER 4. FRAMEWORK IMPLEMENTATION WITH GUI 50

function of the same object in source code �le. In spite of little complicated �le
structure in form of two �les on every GUI, is this approach easy manageable.

In previous section were mentioned that GUIDE approach was prefered to
design GUI for framework testbed. So for the demonstration of this method
is choosen example how to create main menu for this framework. In section
4.1.1 we build a main menu programmatically now we build the same one with
GUIDE.

Seven pushbuttons were putted in �gure represented in form of layout editor
with equal distribution to ful�l design norm as it shown in �gure 4.5.

Figure 4.5: Main menu with GUIDE

After save this �g. �le it automatically generate prepared raw source code
with callbacks functions of all graphical objects in �g. �le. But the structure
of automatically generated GUI code �le is more complicated. Besides callback
functions it contain core, initialize and output functions. Core function is used
to association with �g. �le designed in layout editor and to de�ne singleton.
Singleton means that this particular GUI can be invoked only once in contrast
with programmatic GUI were defaultly created �gure can be invoked multiple
times.

Initialize function serve for initialization of graphical components or other
variables before the GUI turns to visible. It is useful when some graphical
objects have variable base properties dependent on other GUI for instance.
In this work is initialize function used to check already de�ned properties for
framework platform.

Main menu serve for navigation in framework platform. It designed in such
a way, to provide all settings necessary to run simulation. From this menu is
invoked another GUI that serves for particular purposes mentioned in following

CHAPTER 4. FRAMEWORK IMPLEMENTATION WITH GUI 51

sections. Algorithm 4.3. shows implementation of callback function generated
by GUIDE. This function opens another GUI namely Cloud GUI which provide
selection of desired cloud scenario.

Algoritmus 4.3 Callback function in GUIDE

% � Executes on button press in pushbutton_mm_cloud_scenario.
function pushbutton_mm_cloud_scenario_Callback(hObject, eventdata,

handles)
% hObject handle to pushbutton_mm_cloud_scenario (see GCBO)
% eventdata reserved - to be de�ned in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Cloud; %Calling GUI Cloud

4.2 Framework GUI

In previous section was designed main menu of this framework platform. This
menu serves for coordination of all GUIs created and to store data from these
GUIs. In other words main menu in this platform only invokes other GUIs which
serve for particular function. But main menu in this case has no in�uences on
the �nal simulation. Framework simpli�ed structure with data �ows between
individual GUIs is shown in following picture 4.6 .

Figure 4.6: Framework GUI core structure with data �ows

This framework is designed in such a way that user have a various options
how to con�gure his desired wireless network cloud.

CHAPTER 4. FRAMEWORK IMPLEMENTATION WITH GUI 52

It provide:

• Variable wireless network scenarios.

• Variable Tx properties (gain, frequency, o�set, etc) included variable pay-
load for transmission.

• Adjustable SuperFrame structure namely lenght of packets or SuperFrame
length.

• User can select one of two supported modulations and also one of the two
modulation pulses.

• Relaying strategies

• Adjustable relay properties included �le name of recieved signal to be
saved.

• Variable Rx properties

• User can select and choose various synchronization options.

4.2.1 Data management in multiwindow GUI

The main issue of data management between individual GUIs is the fact that
every GUI has its own workspace where are stored variables and objects in a
form of local variables. This makes a data sharing a little bit complicated.
There are two approaches how to store data from GUI and after then load this
data in another GUI.

1. Via guidata(hObject,handles): This method is based on handle structure
of GUI. The main disadvantage of this way of storing data is a ability
to managa only one variable at any time because another call guidata
(hObject,handles) overwrites the previously created version of GUI data.
Therefore is this variant higly non optimal and is not implemented in any
part of GUI.

2. Via setappdata(h,name,value): Setappdata stores values of val in a GUI
into a handle of a component h. The string of charakters name (second
argument in ' ') is name for the data. Stored data in this way are uniquelly
identi�ed. The value of h identify data location and name identify a name
of variable with stored value val. This data can be retrieved any time by
using command getappdata(h,'name'). This method of data management
in GUI is much more straightforward and is globally recommended for GUI
implementation. In this work are all variables obtained from edit_text
boxes or pop_up menus stored in this way.

CHAPTER 4. FRAMEWORK IMPLEMENTATION WITH GUI 53

4.2.2 Network Cloud Scenario GUI

This GUI serves to de�nition of desired scenario. User can arbitrarily select
topology as he likes but there is constrain in form of limited number of USRPs.
Available are three USRPs devices which can be used either like transmitter or
like receiver. This is caused because of half-duplex constraint. Cloud scenario
GUI design is depicted in �gure 4.7.

Figure 4.7: Cloud scenario GUI

Figure 4.7 represents a selected scenario with two transmitters and one re-
lay. This GUI is designed with respect to a limited number of devices. When
user selects third device, other selections are disabled and can be released by
unchecking of the last selected item. Algorithm 4.4 shows how is this routine
implemented in Matlab. Principle of this algorithm is implemented in check-
boxes callback functions as well but with di�erent device enabled as the last
one. The �nal function of this GUI is to store the number and type of selected
devices, to provide initialize functions of other GUI. When the user select cancel
button, the GUI is simply closed without stored any data and can be invoked
again later.

CHAPTER 4. FRAMEWORK IMPLEMENTATION WITH GUI 54

Algoritmus 4.4 Cloud scenario de�nition

function checkbox_Tx1_Callback(hObject, eventdata, handles)
global device
if (get(hObject,'Value') == get(hObject,'Max'))
% Checkbox is checked-take appropriate action
device=device+1;

if device == 3
set(handles.checkbox_cloud_tx2,'Enable','o�')

**Analogically the rest is disabled
else
set(handles.checkbox_cloud_tx2,'Enable','on')
**Analogically the rest is enabled
end
else
device=device-1;
set(handles.checkbox_cloud_tx1,'Enable','on')
**Analogically the rest is enabled
end

4.2.3 Transmitter Settings GUI

In this GUI is very important initializing function, which serves to de�ne pop-
up menus string properties. This string is given by result of �ndsdru function
which searches for available USRPs in LAN and provide list of IP addresses of
available devices. Implementation of initializing function in Matlab is described
in algorithm 4.5. This function provide list of all available USRP devices to
both pop-up menus of this GUI.

Algoritmus 4.5 Initializing function in GUI

function transmitters GUI_OpeningFcn(hObject, eventdata, handles, varargin)
set(gcf,'Name','Transmitter settings');
global IP
IP=�ndsdru;
for i=1:length(IP)
address{i} = IP.IPAddress;
end
address{length(IP.USRPs)+1}='none';
set(handles.popupmenu_tx_sdru1,'String',address);
set(handles.popupmenu_tx_sdru2,'String',address);

Next function of this GUI is ability to call another GUIs to de�ne data
segments, transmitter properties and super frame options. Structure of this
GUI is depicted in �gure 4.8.

CHAPTER 4. FRAMEWORK IMPLEMENTATION WITH GUI 55

Figure 4.8: Transmitter settings GUI structure

Transmitter settings GUI is designed in such a way to provide explicit de�-
nition of IP addresses of USRPs to create transmitter object. It also provide a
options to set transmitter properties, superframe properties and data contained
in payload of each transmitter device. Design of this GUI is depicted in �gure
4.9 where is demonstrated a function of previously created Cloud Scenario GUI.
In this case was selected in Cloud Scenarion GUI only one transmitter, therefore
is here enabled to modify only one transmitter object as well.

Figure 4.9: Transmitter settings GUI

Transmitter Data GUI This GUI is one of four GUIs that could be invoked
by Transmitter settings GUI. The main function of this GUI is to de�ne data
to payload of transmitter. Design of this GUI is the same for both transmitters
but the data inputs are entirelly separated and independent. This GUI is shown
in �gure 4.10. Data GUI allows to choose data inputs. It could be one of fol-
lowing options: black and white picture, random data, text message or already
modulated signal.

Transmitter Properties GUI This GUI allows to de�ne speci�c properties
of each transmitter (i.e. center frequency, gain, interpolation factor, etc.) and
also modulation pulse and modulation. But for safe program run is recom-
mended to use a default properties due to a gain variable. Wrong gain value

CHAPTER 4. FRAMEWORK IMPLEMENTATION WITH GUI 56

can destroy expensive USRP devices. However this possibility is treated by lim-
itation of gain value programatically. All properties that could be change are
depicted in �gure.

Super frame settings GUI The last GUI that could be called from Trans-
mitter settings GUI allows to modify structure of super frame. Design of this
GUI is very simple and is depicted in �gure 4.10. It is worth to notice that num-
ber of packet value is valid only for random data input. In order to guarantee
that all data will be contained in a one superframe it is necessary to adapt this
value to size of data input.

Figure 4.10: Transmitter Data GUI: a), Transmitter properties GUI: b) Super-
frame properties: c)

4.2.4 Synchronization GUI

This GUI enables to instantly de�ne default pilots for frame and packet synchro-
nization. If the user wants to de�ne his own sequences in order synchronization
testing routines, this GUI calls another interface which provide more options. In
the initializing function is implemented routine which enables graphical objects
used in this GUI only in case that is any transceiver de�ned in network cloud
GUI. This routine is described in following algorithm. Similar initialization is
done in the other GUIs as well.

CHAPTER 4. FRAMEWORK IMPLEMENTATION WITH GUI 57

Algoritmus 4.6 Initialization of GUI based on Network Cloud

if isappdata(0,'scenario')==0
set(handles.checkbox1,'Enable','o�')
set(handles.checkbox2,'Enable','o�')
set(handles.pushbutton_packet,'Enable','o�')
set(handles.pushbutton_frame,'Enable','o�')

else
set(handles.checkbox1,'Enable','on')
set(handles.checkbox2,'Enable','on')
set(handles.pushbutton_packet,'Enable','on')
set(handles.pushbutton_frame,'Enable','on')

end

This interface is shown on following picture where are is now checked frame
synchronization which further de�ne prepared CAZAC sequence as a frame syn-
chronization pilot signal. The packet synchronization is now allowed to modify
due to unchecked checkbox object.

Figure 4.11: Synchronization interface

Frame and packet synchronization interface serves for custom de�ni-
tion of frame or packet synchronization sequences. User can select his own
root number and length of this sequences and also number of repeats of this
sequences, which causes that pilot signal will have more energy in correlation
function therefore pilot signal designed in this way allows to signalize starts of
frames/packets even in conditions with lower SNR. In the packet sycnhroniza-
tion GUI is added option to de�ne Maximum-Length codes as a pilot sequences.
These two GUIs are depicted in following �gure.

CHAPTER 4. FRAMEWORK IMPLEMENTATION WITH GUI 58

Figure 4.12: Frame synchronization interface: a) Packet synchronization inter-
face: b)

4.2.5 Relay properties GUI

The main purpose of this GUI is to proper con�guration of relay which is strictly
given by stage schedule. In WPLNC principle relay serves as a receiver for
mutiple access stage where it have to process all signals and in next time step
relay �gures as a broadcaster of these superposed signals. This interface have
to handle both variants of relay operational modes. The very important feature
of this GUI is a storing and loading signals. Because we are bounded with half-
duplex constraint, therefore have to be provided ability to store recieved signal
on relay node, recon�gurate the network scenario and load this signal in order
to broadcast signal further into network. This routines is depicted in following
algorithm.

Algoritmus 4.7 Signal storing routines

global savesig
[signalname, pathname] = uiput�le('*.mat',... 'Pick a MATLAB program �le');
if signalname==0 && pathname== 0
clear [signalname, pathname]
else
savesig=[pathname, signalname];
end
%loading
[sigName, pathname]=uiget�le('*.mat');
if signalname==0 && pathname== 0
clear [sigName, pathname]
else
loadsig=[pathname, sigName];
end

The relay GUI is depicted in following picture, where is relay de�ned as a
receiver for MAC stage there fore is available graphical objects to store received

CHAPTER 4. FRAMEWORK IMPLEMENTATION WITH GUI 59

signal and con�gure receiver properties. The GUI of receiver properties is vry
similar to GUI of transmitter properties execpt of two little changes, therefore
is no need to demonstrate this interface again.

Figure 4.13: Relay interface

4.2.6 Other GUIs

One of remaining GUIs which were not been mentioned yet is Receiver GUI, but
the functionality of this GUI is pretty obvious and this GUI does not provide
any new or special method to operate. Therefore isn't necessary to mention
this GUI in graphical form. The very last GUI and very important one is a
GUI which runs the simulations in form of scripts. This GUI have two main
options in form of simply simulation and simulation with signal transmission i.e.
experimental wireless communication. This GUI is depicted in following �gure.

Figure 4.14: Simulaton interface

Simulation GUI also provides de�nition of number of frames which can be

CHAPTER 4. FRAMEWORK IMPLEMENTATION WITH GUI 60

transmitted and a very useful tool in form of frame synchronization which can
be turned of. This desycnhronization is designed in such a way to provide space
for sycnhronization algorithm developement and testing. The basic princip of
this routine is that frame does not starts with �rst packet which carry the frame
synchronization pilot, but randomly in the data sequences, therefore is needed
in this case to transmitts three or more frames. The mistakenly pressed start
button is treated by quest dialog window which needs second con�rmation.

4.3 Stand-alone application

In previous section we designed GUI for management of the main framework
platform. In this section we will expand this GUI into stand-alone applica-
tion which can be started directly from desktop without using Matlab. To
create standalone application is needed to invoke deployment tools which o�er
the choice of deploy standalone application. Every deployment which provide
Matlab with its scripts or programs are realized via Builders.

The Matlab Compiler and Builders allow to deploy applications as:

• Stand-alone executables

• C or C++ libraries

• Microsoft.NET or COM components

• Java classes

• Microsoft Excel add-ins

The options of creation C/C++ libraries, Java Classes and others is given by
Matlab license management. User have to have purchased for instance Matlab
Builder JA to deploy java class from Matlab function. But for our purpose we
select deployment of Standalone application.

A deployed application consist of a collection of Matlab-based functions and
data packages related with the main process of application which is being de-
ployed. Next step is creation of new project.prj and after that we select main
program of this framework (main_menu.m) and all related scripts and GUIs
which are associated with main �le.

After that we can choose if Matlab Compiler Runtime will be contained in
the builded project as side �le. This allows to portability of this application
on devices where is not Matlab installed. Matlab Compiler Runtime is a free
compiler wich provide execution of all Matlab commands and functions. The
building process duration is given by a number and complexity of involved �les
in project which is being deployed.

When is builder done with our application it should be indicated with this
message:

CHAPTER 4. FRAMEWORK IMPLEMENTATION WITH GUI 61

Figure 4.15: Building of stand-alone application

Now we have standalone application ready to use in Matlab home path in
folder with name of the project.prj. It contain two other subfolders src and
distrib. Src serves for computers with installed Matlab copy and the other one
is for distribution to other devices. But this will work only if is provided MCR
instalation �le together with deployed application.

4.3.1 Utilization of framework platform

The utilization of this framework platform is one of the purpose of this whole
task. It can serve for demonstration of basic sycnhronization algorithms. It
also provide a useful tool how to design signals and instead simple addition of
modeled AWGN, user can transmitt this signal in order to further experimental
processing. The advantage of this solution of standalone application is that in
its basic we created multiple access method to shared USRPs in local network.
The laboratory network scheme could be following.

Figure 4.16: Multiple access to USRPs

This solution is much more convenient from a data storage management
point of view. Lets consider a fact that multiple access is relized via remote
desktop or web based applications. In this cases have to be established rules
and privileges in order to allows storing and loading data from computer.

However multiple access to USRPs is very useful tool but it does not guar-
antee a scheduling of shared resources in form of USRPs. This devices does
not provide multitasking. Software radios can execute only one task at a time,
therefore have to be scheduling process realized by a human authority which
directly controls the multiple access.

CHAPTER 4. FRAMEWORK IMPLEMENTATION WITH GUI 62

Remote control of this framework in form of remote access for instance via
web based applications isn't been implemented yet. The main reason of this
is safety usage of the expensive USRPs. Moreover in case when error occur
it can cause that USRP get stucked and it is necessary to reboot this device.
In addition USRPs have separated antennas for Tx/Rx operations, therefore is
necessary to proper usage control this antenna inputs manually.

Chapter 5

Results evaluation

Next goal of this thesis is validation of designed platform on real radio ex-
periments. This veri�cation should contain both point-2-point and also cloud
oriented experiments in this case 2Tx-Rx and 1Tx-2Rx scenarios. Therefore is
this chapter focused on demonstration framework functionality. It this chapter
we provide confrontation between designed signal and real signal recieved by
USRP. All these results are processed o�ine in Matlab language.

5.1 2Tx - Rx network scenario

In this section we describe results for this particular scenario which is the �rst
half of the famous butter�y scenario depicted in �gure 2.1. Every process based
on receiving any kind of signal in practical use should do �rstly veri�cation if
any signal is received or not. Therefore is a good starting point spectral analysis
of received signal in o�ine signal processing like this. Because in this framework
are implemented only linear modulations we can de�ne power spectral density
for these modulations.

Power spectrum density of linear digital modulation is then de�ned as

ŜS(f) =
1

Ts
|G (f) |2Sdq (fTs) (5.1)

where G (f) = F [g(t)] and Sdq is power spectrum density of channel symbols
which is gained from

Sdq (F) =d FF
m [Rq [m]] =

∑
Rq [m] e−j2πFm

m

therefore shape of PSD is a�ected only by symbol pulse and modulation encoder.
In Matlab system is provided function for PSD evaluation called pwelch. Usualy
is this function called as

[Pxx, f]=pwelch(x, nwin, noeverlap, nfft, fs)

63

CHAPTER 5. RESULTS EVALUATION 64

where x is a vector with the time series (in our case received signal), nwin is an
integer (then a Hamming window of that length is used), noverlap is an integer
(a fraction of the FFT length) that indicates the desired overlap, n�t is and
integer giving the length N of the FFT (should corresponds with window length
nwin) and �nally sampling frequency fs. The results of this function are Pxx, a
vector with the PSD and f, a vector with the corresponding frequencies.

In this scenario is received signal created by superposition of two signals
from Tx1 and Tx2. Next �gure shows PSD of designed signal in comparison
with PSD of received superposed signal

Figure 5.1: a) PSD of recieved signal, b) PSD of designed signal

Now we know that recieved signal contains transmitted signal. In order to
prove that received signal contain any useful data we apply correlation function
to obtain packet synchronization which will be mainly demonstrated on this
example. This signal was designed with CAZAC sequences signalising starts of
packets. This signalisation is depicted in �gure 5.2. The CAZAC sequences for
this example have roots r1 = 31, r2 = 7 and common length N = 113.

CHAPTER 5. RESULTS EVALUATION 65

Figure 5.2: Packet synchronization with CAZAC sequences: a) recieved signal,
b) signal model

This picture shows that signal model is perfectly synchronized and every
peaks have same amplitude. On the other hand received signal is slightly shifted
due to time di�erence between Tx1 and Tx2. In the received signal are also
very high side peaks of packet synchronization which can caused complications
in further signal processing.

Next example is the same scenario but instead of cazac sequences for packet
synchronization are used Maximum Length codes. These codes have a length
N = 125 and are orthogonal to each other.

Figure 5.3: Packet synchronization with ML codes: a) received signal, b) de-
signed signal

In this picture is very well demonstrated stretched maximum of all synchro-
nization peaks in received signal therefore better results for synchronization pro-
vides CAZAC sequences. Also is very important to know that all these results
are with usage of RRC modulation pulse. The modulation pulse has in�uence
on the shape of PSD as it was mentioned on the beginning of this section.

CHAPTER 5. RESULTS EVALUATION 66

5.2 1Tx -2Rx network scenario

In order to completion of butter�y scenario, in this section are demonstrated
results of the second half of butter�y scenario. The reason why we have to
separate this processes into two wholy independent operations is half-duplex
constraint already mentioned in chapter 3. Due to this constraint we are forced
to slice more complex network scenarios on these triangles to be able emulate
advanced network scenarios. But this framework is not designed for emulating
of advanced network topologies.

The following �gure shows PSDs of recieved signals in both destination
points.

Figure 5.4: PSD of 1Tx-2Rx scenario

This picture shows that recieved signals are very similar to each other, but
this is due to network scenario. It can be seen that the received signals are
with lower power than in scenario 2Tx-Rx. This feature can cause a problems
with data decoding and maybe with proper synchronization as well. In the next
�gure is depicted packet synchronization of this scenario. It can be seen that
packet synchronization have not so sharp peaks like in the previous scenario.

Figure 5.5: Packet sycnhronization in 1Tx-2Rx scenario

CHAPTER 5. RESULTS EVALUATION 67

5.3 Tx - Rx network scenario

This scenario is elementary in common wireless systems but with one di�erence.
In the regular point-2-point wireless networks are generaly used directional an-
tennas, but in this case are USRPs equipped with omnidirectional antennas. It
should not a�ect this demonstration due to very short distances of signal trans-
mission. In this demonstration is used REC modulation pulse which is provided
option of this framework. The second change is the fact the transmitted signal
will be purposely desynchronized from the frame synchronization point of view.
Which is also provided option of this platform. The following �gure show PSD
of REC pulse in this scenario.

Figure 5.6: PSD with REC pulse in Tx-Rx scenario: a) received signal, b)
designed signal

This �gure shows that better spectral properties for wireless communication
have a RRC pulse. But in some cases REC pulse can provide properties suf-
�cient enough to implementation for instance in algorithm developement. for
sycnhronization. The following picture shows frame and packet synchronization
where is interesting �rst picture which shows two starts of frame. The trans-
mission was processed in such a way that beginning was not with the very �rst
packet which carry the pilot signal indicating frame synchronization. Due to
this feature this platform can be used for instance for synchronization algorithm
developement.

CHAPTER 5. RESULTS EVALUATION 68

Figure 5.7: Tx-Rx scenario: a) frame synchronization, b) packet synchronization

Chapter 6

Conclusion

In this thesis was designed framework platform which de�ne a basic interface
protocol in order to common rules establishment for proper communication in
wireless network. It provides functionality in multiple network scenarios for
experimental wireless transmission. Framework also provide selection between
two implemented modulations and two modulation pulses. It was designed user-
friendly Graphical User Interface in order to provide comfortable solution of
framework controling. This framework was also extended into standalone appli-
cation which provides portability of this testbed to any other devices which also
provide multiple access to shared Universal Software Radio Peripherals. But
unfortunatelly the main purpose of this framework i.e to serve for demonstra-
tion of basic WPLNC techniques such NCM encoder is not properly provided.
Despite of high amount of e�ort was spent in order to guaranty a perfect frame
synchronization and symbol timing necessary for correct HDF relaying strat-
egy, I was unable to achieve these properties. The cause of this unability to
achieve su�cient synchronization properties is an non-optimal choice of based
developement environment for this platform. This choice I made in virtue of
my philosophy of obstacle solving processes. The key feature of this philosophy
is that before any investment in device which will lead to solution, is �rstly
necessary to investigate all possible ways how to achieve the desirable result
without necessity of investment. If there is no other way how to accomplish the
task, then is a right moment to investment.

6.1 Future work

In order to ful�l desired synchronization of Tx/Rx processes which also warrants
the perfect frame sycnhronization and symbol timing, framework should be
implemented into GNU radio software developement toolkit which allows usage
of external clock source to provide precise process sycnhronization directly on
physical layer as it requested in WPLNC fundamentals. Unfortunatelly this
solution is conditioned on investment in to an expensive synchronization device.

69

CHAPTER 6. CONCLUSION 70

Framework designed in this way should be able to provide proper WPLNC
techniques namely HDF decoding processes.

The next goal for future work should be remote access not only via ssh and
other remote desktop solutions but via web based programs written in Java
based languages. This solution of remote access will be very sophisticated. But
complexity of this task is enourmous and if we consider the fact that the results
from sophisticated solution and easy realizable solution will be the same, nobody
will hesitate.

Bibliography

1. R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, �Network information �ow,�
Information Theory, IEEE Transactions on, vol. 46, no. 4, pp. 1204
�1216, Jul. 2000.

2. S.-Y. Li, R. Yeung, and N. Cai, �Linear network coding,� Information
Theory, IEEE Trans- actions on, vol. 49, no. 2, pp. 371�381, 2003.

3. R. Dougherty, C. Freiling, and K. Zeger, �Insu�ciency of linear coding
in network information �ow,� Information Theory, IEEE Transactions on,
vol. 51, no. 8, pp. 2745�2759, 2005.

4. S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft, �Xors
in the air: Practical wireless network coding,� Networking, IEEE/ACM
Transactions on, vol. 16, no. 3, pp. 497�510, 2008.

5. S. Zhang, S. C. Liew, and P. P. Lam, �Hot topic: physical-layer network
coding,� in Proceed- ings of the 12th annual international conference on
Mobile computing and networking, ser. MobiCom '06. New York, NY,
USA: ACM, 2006, pp. 358-365

6. B. Rankov and A. Wittneben, �Achievable rate regions for the two-way re-
lay channel,� in Information Theory, 2006 IEEE International Symposium
on, 2006, pp. 1668�1672.

7. P. Popovski and H. Yomo, �Physical network coding in two-way wireless
relay channels,� in Communications, 2007. ICC '07. IEEE International
Conference on, 2007, pp. 707�712.

8. B. Nazer and M. Gastpar, �Compute-and-forward: Harnessing interference
through structured codes,� Information Theory, IEEE Transactions on,
vol. 57, no. 10, pp. 6463 �6486, Oct. 2011.

9. R. Zamir, �Lattices are everywhere,� in Information Theory and Applica-
tions Workshop, 2009, 2009, pp. 392�421.

10. J. Sykora and A. Burr, �Network coded modulation with partial side-
information and hierarchical decode and forward relay sharing in multi-
source wireless network,� in Wireless Conference (EW), 2010 European,
2010, pp. 639�645.

71

CHAPTER 6. CONCLUSION 72

11. Sykora, J.; Burr, A., "Layered Design of Hierarchical Exclusive Code-
book and Its Capacity Regions for HDF Strategy in Parametric Wire-
less 2-WRC," Vehicular Technology, IEEE Transactions on , vol.60, no.7,
pp.3241,3252, Sept. 2011

12. Sykora, J.; Jorswieck, E.A., "Network Coded Modulation with HDF Strat-
egy and Optimized Beam-Forming in 2-Source 2-Relay Network," Vehic-
ular Technology Conference (VTC Fall), 2011 IEEE , vol., no., pp.1,6, 5-8
Sept. 2011

13. Hynek, T.; Sykora, J., "Hierarchical Decode & Forward strategy in IR-
UWB communication systems," Future Network & Mobile Summit (Fu-
tureNetw), 2011 , vol., no., pp.1,8, 15-17 June 2011

14. Cisco Visual Networking Index: Forecast and Methodology, 2012�2017

15. DIWINE - Dense cooperative wireless cloud network - http://www.diwine-
project.eu

