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Abstrakt

Efektivńı numerická analýza vyzařuj́ıćıch struktur je předmětem výzkumu již několik dekád

a s rostoućı popularitou bezdrátové komunikace se jej́ı aplikace dále vyv́ıjej́ı. Pro velké a

komplexńı struktury jsou jsou velmi významné metody umožňuj́ıćı separaci jednotlivých část́ı

vysokofrekvenčńıho zař́ızeńı, nebo poskytuj́ıćı hlubš́ı pochopeńı fyzikálńıch princip̊u. Mezi

takovéto př́ıstupy patř́ı i modálńı metody.

Tato práce se zabývá teoríı charakteristických mod̊u, která definuje množinu funkćı,

ortogonálńıch vzhledem k vyzářenému výkonu, která je jednoznačně definovaná geometríı

vyzařuj́ıćı struktury. Kĺıčovou vlastnost́ı je, že pro dostatečně přesný popis vyzářeného pole

elektricky malé a středně velké struktury, obvykle postačuje pouze několik mod̊u. Charakteris-

tické mody již byly použity pro návrh r̊užných typ̊u antén, mimo jiné MIMO, širokopásmových,

nebo elektricky malých antén.

V této disertačńı práci je popsán kompletńı návrh, zač́ınaj́ıćı specifikaćı anténńıch pa-

rametr̊u až po vyrobený a změřený prototyp dvoupásmové planárńı antény pomoćı teorie

charakteristických mod̊u. Závislost modálńı resonančńı frekvence a vyzařovaćıho činitele ja-

kosti na rozložeńı proudové hustoty a výšce nad nekonečnou elektricky vodivou rovinou je

vysvětlena na základě informace poskytnuté modálńı analýzou. Dále je prezentován proto-

typ aktivńı, diferenčně napájené antény, včetně měřeńı diferenčńıch rozptylových parametr̊u.

Přednosti, omezeńı a možnosti použit́ı charakteristických mod̊u jsou diskutovány s ohledem

na návrh aktivńıch diferenčně napájených antén.

V rámci disertace byl vyvinut nástroj pro tvorbu povrchové mř́ıže, který spolupracuje s

modálńım řešičem vyv́ıjeným na Katedře elektromagnetického pole FEL ČVUT a umožňuje

efektivńı analýzu parametrizovaných antén. Bylo ukázáno, že nástroj je flexibilńı a vhodný

pro implementaci nových výzkumných př́ıstup̊u souvisej́ıćıch s numerickým výpočtem cha-

rakteristických mod̊u. Práce popisuje vliv chyby numerické integrace a aproximačńı chyby na

numerický výpočet charakteristických mod̊u pomoćı metody moment̊u. Provedená odvozeńı

byla verifikována numerickou konvergenćı resonančńı frekvence, činitele jakosti a maximálńı
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směrovosti s rostoućı hustotou mř́ıže. Na základě analýzy chyb byla formulována doporučeńı

pro postup zahuštěńı mř́ıže, která byla aplikována na modálńı řešič a také na komerčńı im-

plementaci v programu FEKO.

Byla odvozena metoda výpočtu vazebńıch a budićıch modálńıch koeficient̊u pro elektricky

vázané struktury. Metoda vykazuje velmi dobrou shodu s př́ımým řešeńı integrálńı rovnice

pro elektrické pole.
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Abstract

Effective numerical analysis of radiating structures has been a relevant topic over the last

few decades and applications are constantly being developed as wireless communications

become increasingly popular. For large and complex structures, methods which can separate

the independent effects of particular parts of a high-frequency device, or provide deeper

understanding of physical principles are of great interest. One class of such methods are the

modal methods.

This thesis deals with the theory that when uniquely defined by the scattering surface,

characteristic modes for conducting bodies define a complete set of basis functions orthogonal

with respect to radiated power. The key property is that only a small number of modes for

electrically small and intermediate bodies usually suffices to characterize the radiated or

scattered fields with sufficient accuracy. These modes have already been used for various

antenna designs, such as multiple-input multiple-output, ultra-wideband, and electrically

small amongst others.

A complete work-flow from antenna specifications to the final manufactured and measured

dual-band antenna using modal information is presented in this thesis. The characteristic

modes are used to interpret the effect of current distribution and height over an infinite

conducting plane on a modal resonant frequency and radiation quality factor. A prototype of

a low-noise active differential antenna, including differential S-parameters measurements, is

described. The strengths, weaknesses and possible usage of characteristic modes are discussed

with respect to active differentially fed antenna application.

To enable the efficient analysis of various antenna geometries, a tool for surface mesh

generation was developed to be used in conjunction with an in-house modal analyzer. The

tool was shown to be versatile and suitable for implementing new research approaches related

to the numerical aspects of computation of characteristic modes. The effect of quadrature

errors on the numerical computation of characteristic modes by the method of moments

is described. The derivations have been verified by the numerical convergence of modal
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resonant frequency, radiation quality factor and maximal directivity with increased mesh

density. Recommendations for mesh refinement strategy, based on the error analysis, have

been successfully applied to the in-house tool, as well as to a commercial FEKO package.

A method of computing modal excitation coefficients for capacitely coupled conducting

bodies has been derived and good agreement between the proposed and direct electric field

integral equation solution was observed.
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1

Introduction

Antenna analysis is the process of determining of an antenna’s reaction to an excitation. The

reactions are manifested primarily through electric and magnetic fields, or current density,

which are sufficient for computing of all other antenna properties, such as input impedance

or a farfield pattern. This problem is too complex for analytical solution in most practical

cases, therefore numerical methods are utilized to find approximate solutions to Maxwell’s

equations (or equations derived from them) which will satisfy boundary and initial conditions

[1, Ch. 3].

The most popular numerical techniques, such as the finite-difference time-domain (FDTD),

finite element method (FEM), method of moments (MoM) or finite integration technique

(FIT) have been in development for over 40 years and are available in commercial software

packages, such as CST MWS [2], Ansys HFSS [3] or EMSS FEKO [4].

All these methods share the common property of approximating field quantities by a

finite set of basis functions [1, Ch. 3]. The basis functions can be an entire domain or, more

commonly, subsectional, thus the structure is discretized into small elements (hexahedrons,

tetrahedrons, triangles, rectangles etc.). It is desirable to approximate the the problem

geometry and variations of the field within the elements as closely as possible.

Effective electromagnetic field simulation has been a relevant topic over the last few

decades and the number of applications is constantly growing with the increasing popularity

of wireless communications. Highly developed numerical methods, in conjunction with the

capabilities of modern computers, have enabled engineers and scientists to simulate larger

structures more than ever before. Moreover, it is possible to simulate full-wave behavior of

not only separate parts of a wireless device, but of the system as a whole. On the other

hand, for larger and more complex structures, cut and try methods, brute force optimization

and design, based on an engineer’s experience, becomes increasingly inefficient. For instance,
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designing an antenna array without using the pattern multiplication principle would become

quite complex. Thus, methods which can separate the independent effects of particular parts

of a high-frequency device, or provide deeper understanding of physical principles are of great

interest. One class of such methods are the modal methods which compute field solutions for

a particular structure without an excitation. Consequently, they provide a different viewpoint

on antenna operation and contribute to the understanding of physical principles.

There are several definitions of modes of a structure and corresponding numerical compu-

tation techniques. One is the well-known cavity model [5, Ch. 14] which can be numerically

computed with the FEM in COMSOL Multiphysics [6]. The obvious disadvantages are the

approximations made during the derivation of the method. Notably, no variations in the

vertical component of the field are assumed and the cavity is closed to ideal (non-radiating)

boundaries which means that inner couplings are neglected.

Another approach solves the homogeneous Helmoltz equation and finds the resonant fre-

quencies of the structure and corresponding field distribution and can compute the unloaded

quality factor [3]. This method is well-suited for cavity or dielectric resonators. However,

there are several limitations concerning radiating problems including the difficulty of defining

the radiating boundaries for eigenvalue problems. A similar approach in solving the Hemholtz

equation is through discrete representation of the curl operator where the obtained matrix

eigenvalue equation can be solved by Krylov-Subspace or the Jacobi-Davidson method [2]. It

is well-suited for resonators despite the limitations for antenna problems described above.

Next modal method is the theory of characteristic modes (TCM) [7]. Since the theory was

developed for radiation and scattering it bodes well for antenna analysis. The comparison

between the cavity model and the TCM can be found in [8].

The bases of currently used numerical methods were established several decades ago and

the formulations are extensively described in the literature, e.g. FDTD [9], FEM [10], MoM

[11]. They are, however, attracting attention today due to their widespread usage by many

companies. The research focuses mainly on reducing computation time, memory require-

ments, or increasing convergence and accuracy e.g. by using higher order basis functions

(FEM, MoM [12]) or conformal techniques (FDTD).

Each of the methods has its strengths and weaknesses and is suitable for different types

of problems, for an overview see e.g. [1]. Thus, another current research field is combining

methods on parts of the computation domain to cover a wider variety of problem types. One

such example is the domain decomposition method FE-BI which combines FEM with integral

formulation [10].
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Design procedures tailored for specific applications also exist. Antenna array synthesis

procedures or the complete filter synthesis theory may serve as an example. These methods

are not necessarily as flexible as the full wave methods, nonetheless, they provide design

solutions which would otherwise be extremely difficult, or even impossible, with the general

purpose techniques.

The theory of characteristic modes, which has a solid theoretical basis with few limitations

sits amid these methods. However its results can be used for improved design procedures as

demonstrated in [13, 14, 15, 16] and numerous other publications.

1.1 Review of the Literature

The concept of characteristic modes was developed by Garbacz and Turpin [17, 18, 19], who

showed that it is possible to expand the fields radiated or scattered by a surface S, made from

the perfect electric conductor (PEC), into a set of eigenfunctions (characteristic modes). The

key properties of these modes are that they are real (equiphasal) on the surface, orthogonal

with respect to the radiated power, and only a few modes are usually necessary to characterize

the radiated or scattered fields with sufficient accuracy.

The theory was formulated from an alternative viewpoint by Harrington and Mautz [7],

whose approach is to diagonalize the electric field integral equation (EFIE) operator. This

formulation of the TCM provides explicit formulas for determining the characteristic functions

(modes). A numerical computational method with a convergence study of the sum of the

modal radiation patterns is also provided by the same authors in [20].

The TCM was also generalized to include dielectric and magnetic bodies [21], where the

polarization and the magnetization current has to be considered in a volume of a material

body. In the case of lossless materials the eigenvalues and modes are real and preserves

orthogonality with respect to radiated power, as do the modes of perfectly conducting bodies.

When the losses are present, the modes can be either defined as orthogonal with respect to

radiated power, or as real [21]. The TCM for both dielectric and magnetic bodies was

formulated using six-vector notation in [21]. An alternative approach to studying modes of

dielectric and magnetic currents is through equivalent surface currents [22]. This approach

is valid on condition that the materials are homogeneous. Characteristic modes for aperture

problems were defined in [23].

The consequences of symmetry in the TCM were studied in terms of group theory in

[24]. It was concluded that a symmetry causes degeneracy of the modes. If the proper MoM
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expansion functions are selected the symmetry enables block diagonalization of the impedance

matrix and, thus, a more efficient computation of the modes [24].

Increased interest in the practical application of TCM is observed in journal articles

published in the last 10 years. The work [13, 25] showed advantages of modal approach

in antenna design, particularly for circularly polarized antennas, multiple-input multiple-

output (MIMO) antennas, electrically small antennas (ground plane radiation) as well as

wire antennas and reflectarrays. Usage of characteristic modes as basis and testing functions

in the MoM procedure was investigated in [25] and a poor convergence of the imaginary part

of input impedance was reported. To solve this issue a so-called source mode was proposed

to be added to the set of modes. The source mode can be obtained by subtracting the sum

of the modes from the direct solution of EFIE. Since the modes change with frequency, they

have to be recalculated at each frequency before they can be used as basis/testing functions.

This issue was overcome by defining a set of frequency independent characteristic modes

(computed by singular value decomposition). It is then assumed that the source mode is

frequency independent and, thus, its recalculation at each frequency point is not necessary.

Good convergence of the method was observed for the dipole and also for the rectangular

patch antenna [25].

Application of the TCM on an ultra-wideband (UWB) antenna design was studied in

[25] and based on the modal approach a two-feed rectangular UWB monopole with increased

bandwidth was proposed, manufactured and measured. The results have inspired several

other authors in their designs [25, p. 151]. The correspondence of the spherical modes and

characteristic modes on a perfectly conducting sphere were studied in [26], then analytical for-

mulas for a conducting cylinder were presented. It was noted that the close form expressions

can be used as frequency dependent basis functions. The excitation of characteristic modes

was studied from a practical point of view with the main goal being the combination of mul-

tiple feed locations to excite desired modes and suppress undesired ones. The multiple feed

approach was found especially useful for circularly polarized antennas, where a combination

of two orthogonal modes is necessary, and for MIMO antennas to achieve low correlation of

received signals. Characteristic modes were fully utilized in the design of the UWB monopole

antenna with notched band functionality [26, 27, 16]. The notched band was made tunable

by varactor loading of the slot inside the monopole body and highly satisfactory agreement

was observed between the full-wave simulation and measurement [16].

Typically, a small antenna is mounted on a metallic support structure, such as a PCB,

thus the current is induced on the support structure as well. If the dimensions of the support
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structure are bigger than the antenna body, the structure may become a more efficient radi-

ator than the antenna itself. In the context of modal decomposition the small antenna can,

therefore, be understood as an excitation or coupling element for the modes of the support

structure. Possibilities of exciting PCB modes by an inverted-F antenna and coplanar metal-

lic plate were studied in [26, Ch. 6] and the result was a folded antenna for mobile terminals

with 69% fractional bandwidth (S11 lower than -6 dB).

The suitability of TCM for fractal antenna analysis and design was studied in [8]. The

TCM was also compared with the cavity model (CM) and it was concluded that CM is quite

efficient for computing a large number of modes despite its limited accuracy mostly due to

approximations considered in the CM formulation. On top of that, TCM eigenvalues provide

additional information regarding the physical behavior of the radiating surface, thus, TCM

is the preferred modal method. It is interesting to note the relation of the MoM matrix

inversion and its spectral representation [28].

The detailed procedure and recommendations on antenna design using modal information

can be found in [8]. The L-probe feeding mechanism used for broad-banding a planar antenna,

including the equivalent circuit model, is well described in [8]. Radiation efficiency was studied

in terms of characteristic modes in [29, 30], however, since the skin effect was not included,

the accuracy of the method was limited.

The ongoing question is the dominance of the modes which determine how modes con-

tribute to the overall performance. Related to the issue of dominance is the question of how

many modes are necessary to obtain the desired accuracy in a chosen parameter (e.g. input

impedance or quality factor). Several modal significance measures were proposed to address

the issues. First, the smaller the magnitude of the eigenvalue itself - which corresponds to

the ratio of net reactive power to radiated power - the better a mode radiates energy [7].

The next proposed measure is the modal significance which represents normalized cur-

rent amplitude [13, 14]. But neither modal significance nor the eigenvalue magnitude take

into account the feeding position or the magnitude of the current which may vary greatly

for different modes due to the normalization of the currents to unit radiated power. The

significance measure proposed in [31] represents the case of each mode being excited in the

region of its maximal amplitude.

The radiation quality factor, in terms of characteristic modes, was studied in [32] and more

extensively in [33] and [34]. The latter work specializes in the coupled usage of characteristic

modes and the theory of matching networks to improve antenna bandwidth. It starts with

utilizing the modal radiation quality factor for estimating the bandwidth, then, the behavior
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of input impedance and equivalent circuit representation are studied. The work concludes

that characteristic modes are responsible for series resonance while a combination of two

ChM is necessary to create a parallel resonance. This is in contrast to CM modes which are

responsible for parallel resonances.

Theoretical part of [34] was followed by a design of a V-antenna for an unmanned aerial

vehicle (UAV) with a maximum diameter of 1/17 of the wavelength in [34, Ch. 4]. In the

following chapters, a systematic procedure of computing loads for input ports making a

desired mode perfectly matched is developed. It was found, however, that for a fixed number

of ports, a maximal frequency for which the procedure holds exists. At higher frequencies,

the higher order modes are excited and distort perfect matching to the desired mode. It

was also found that an ideal broadband matching network should have a negative slope of

reactance against frequency. Consequently, non-Foster elements were investigated as the most

appropriate loads [34].

Radiation and coupling modes (different from characteristic modes) were defined on sub-

structures in [35]. The newly defined modes can be used to optimize coupling between several

structures which influence each other. The method was demonstrated on coupled dipoles and

a Yagi-Uda antenna with 3 and 6 elements. The drawback of the approach is the necessity

of performing two decompositions and mapping the coupling and radiation modes to each

other. A similar idea, with different goals and consequences, is to define sub-structure modes

[36, 33] whose advantage lies in their ability to optimize a part of the antenna which can be

accessed by an excitation. The latter reference also shows the interesting consequences of

a single dominant mode, within a certain frequency range, which were successfully used for

excitation-free antenna optimization.

After the modes are computed for a radiating structure, the excitation of desired modes

have to be considered. For this purpose several feeding geometries were considered by different

authors. First, the usual feeding mechanisms, such as coaxial feeding, proximity coupling and

aperture coupling were considered [25]. To widen antenna bandwidth, an L-probe feeding

mechanism, which can be regarded as a type of proximity coupled element, was investigated

in [8]. Electrically small antennas, such as PIFA or small cubes mounted on a PCB, can be

considered as feeding geometries [25, 26, 15]. Specialized feeding (or coupling) structures were

developed to excite PCB modes [37] and utilized to design a MIMO antenna with reduced

channel correlation [38].

Papers on numerical aspects of characteristic modes are more uncommon. Mode tracking

algorithms connect the modes computed at different frequencies and are of high value for
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broadband modal analysis. One proposed algorithm, which reduces a correlation matrix into

a permutation matrix and is capable of wideband tracking of hundreds of eigenvalues, was

presented in [39, 40]. It uses an adaptive tracking scheme, i.e. the modes are subsequently

calculated in smaller frequency intervals until all relationships are resolved or the smallest

frequency step is reached [40]. Another tracking algorithm has been developed in [41]. The

advantage of this method is that it does consider that, the TCM decomposition may be

ill conditioned and the impedance matrix may be numerically non-symmetrical, at certain

frequencies.

The most recent papers are dedicated to the reconstruction of characteristic modes from

a far-field pattern [42]. The key input of the method is the choice of the equivalent surface

and it is not yet clear which geometry details can be omitted to obtain reliable results.

Another recent paper is focused on the creation of an equivalent circuit model from

characteristic modes and eigenvalues [43]. An advantage of the model is that broadband

behavior of input impedance as well as of antenna radiation can be extracted. Rather than a

series RLC circuit, the paper uses a high pass circuit of different orders to model broadband

behavior of eigenvalues. The theory was tested on a dipole and rectangular patch antenna.

Behavior of the model for more complex geometries has yet to be analyzed.

There are also papers dedicated to the application of the TCM for antenna design. Specif-

ically the MIMO antennas can be found in [27, 44, 45, 46, 47, 48, 38, 49] electrically small

or multiband antennas using ground plane modes [15, 50] the usage of TCM for arrays and

reflectarrays [51, 52, 53, 54] antenna integrated on a UAV [55, 56], multiband antennas [57]

LTCC antenna [58], logarithmically periodical antenna [59], reconfigurable antennas [60, 61]

and other [62, 63].

1.2 Thesis Goals

The general aim of the thesis is to contribute to the theoretical as well as practical knowledge

of the theory of characteristic modes. The particular goals are specified as:

• To use the TCM for practical patch antenna design and study physical properties,

especially resonant frequencies and the quality factor of patch antennas through modal

decomposition (Chapter 3). Part of this goal is to pinpoint the limitations and fields

of possible study for the rest of the thesis.

• To outline the possibilities of using characteristic modes for an active differentially fed

antenna design (Chapter 4).
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• To contribute to the development of an in-house modal analyzer. More specifically

to develop a mesh generation tool which will enable further research of the numerical

aspects of characteristic modes computation (Chapter 5).

• To study the effect of mesh density on modal results and to give recommendations for

mesh refinement strategy (Chapter 5).

• To study the principle of exciting characteristic modes and to develop a method for

determining an excitation coefficient for a scatterer coupled to a particular feeding

geometry (Chapter 3 and 6).

1.3 Thesis Outline

The thesis is structured as follows: Chapter 2 aims to review the theoretical knowledge of the

theory of characteristic modes. While similar theories have been developed for dielectric and

magnetic bodies [21, 22] and apertures [23], the description will be restricted to the TCM for

conducting bodies, utilized throughout this thesis. Characteristic currents and eigenvalues

are considered as primary results, other (secondary) modal parameters such as characteristic

angle, modal input admittance, modal radiation pattern and others can be computed from

the primary results. An overview of the secondary modal parameters and their properties

such as orthogonality and superposition will be also discussed in Chapter 2.

The first part of Chapter 3 is based on journal paper [64] which followed the author’s

master’s thesis [65] and presents the design of a compact dual band antenna using TCM.

The antenna has a self-affine U fractal motif and a dual L-probe feeding mechanism, which

was developed to excite the desired modes in the two bands of interest. The second part of

Chapter 3 is based on journal paper [66] and is dedicated to the analysis of modal resonant

frequencies and the quality factor of chosen planar motifs. The paper utilizes expressions

for radiation quality factor [67] and builds on the results published in [68]. Throughout the

chapter, modal analysis tool, which uses the Rao-Wilton-Glisson (RWG) basis functions for

expansion and testing is used [69, 70, 71] .

The work contained in Chapter 4 has been conducted in cooperation with the group

of Prof. Daniel Segovia-Vargas of Carlos III University of Madrid and was presented in a

conference contribution [72]. The ultimate goal of the research, which is utilizing the TCM

for active antenna design, is still a topic for future work. Nonetheless, Chapter 4 presents a

practical design of prototype of an active, differentially fed antenna. The design highlighted
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the most critical aspects of active antenna design, some of which may be solved effectively

by modal decomposition.

Chapter 5 introduces a tool for surface mesh generation in MATLAB called MeshGen.

The motivation to implement a mesh generation algorithm was the lack of a serious TCM

simulation tool which would enable scientists to create parametrized geometries, as well as to

cope with our in-house modal analyzer [71]. The situation changed in September 2012, when

FEKO released their modal analyzer [4]. Nevertheless, for research purposes it is invaluable

to have the source code of a complete tool which can be modified to implement new ideas.

The code structure and capabilities of the MeshGen tool are discussed at the beginning of

Chapter 5.

As in other methods, mesh plays a crucial role in TCM since it influences both the speed

of a simulation and its accuracy. These aspects were studied using MeshGen and the in-house

tool and the results can be found in the second part of Chapter 5. The most important results

are summarized in the paper [73] (in review process).

One of the important features of TCM is the possibility of summing the modes to obtain

the total current as it would be computed by the direct solution of the electric field integral

equation (EFIE). Summation formulas for various antenna parameters such as radiation

pattern or input admittance are available when the excitation electric field is defined. The

formulas are however valid only on condition that the structure does not change. Thus it is the

purpose of Chapter 6 to review the mechanism of the excitation of characteristic modes and

to propose a technique for determining excitation coefficients for particular feeding geometry,

which will enable fast evaluation if the geometry is moved.

The conclusions and discussion of the achievements and future work possibilities are given

in Chapter 7.
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2

Theoretical Background

2.1 Theory of Characteristic Modes

Although the complete theory including the orthogonality relations and the superposition of

the modal currents and fields is given in [7], this chapter is focused on the derivation and the

important properties of modal solutions. It also aims to point out some steps which were not

explicitly mentioned in the article and to link the derivations made by other authors with

the theory basis.

First consider conducting body (or bodies) defined by surface S. If S is in the presence of

an impressed electric field EEEi the electric current density JJJ will satisfy the following operator

equation for tangential components on S:

[ZJJJ −EEEi]tan = 0, (2.1)

where the operator Z has the dimensions of impedance and is defined as [74, 7]:

ZJJJ = EEE(rrr) = jωAAA(JJJ) +∇φ(JJJ), (2.2)

AAA(JJJ) = µ

‹
S
JJJ(r′r′r′)G(rrr,r′r′r′) ds′, (2.3)

φ(JJJ) = − 1

jωε

‹
S
∇′ · JJJ(r′r′r′)G(rrr,r′r′r′) ds′, (2.4)

G(rrr,r′r′r′) =
e−jk|rrr−r′r′r′|

4π|rrr − r′r′r′|
. (2.5)

Vector AAA is the magnetic vector potential, φ is the electric scalar potential, µ is the per-

meability of the surrounding medium and ε is the permittivity of the surrounding medium.

Next define the symmetric product (or a reaction) [74]

〈XXX,YYY 〉s =

‹
S
XXX · YYY ds. (2.6)
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Note that symmetric product is not the inner product, however the inner product for the

complex Hilbert space can be written as 〈X∗X∗X∗,YYY 〉s, where asterisk denotes a complex conju-

gate. It follows from the reciprocity theorem [74] that Z is symmetrical, but not Hermitian

i.e.

〈XXX,ZYYY 〉s = 〈ZXXX,YYY 〉s, (2.7)

〈X∗X∗X∗,ZYYY 〉s 6= 〈Z∗X∗X∗X∗,YYY 〉s. (2.8)

The Hermitian parts of Z are

R =
1

2
(Z + Z∗),

X =
1

2j
(Z − Z∗),

(2.9)

thus

Z = R+ jX . (2.10)

Next formulate a complex power balance1 for an infinite sphere S∞ enclosing S [74, 7].

Pi = Pf + jω(Wm −We), (2.11)

where the powers and energies are defined as follows. The power imposed by current sources,

Pi = 〈JJJ∗,ZJJJ〉s = 〈JJJ∗,RJJJ〉s + j〈JJJ∗,XJJJ〉s. (2.12)

The power leaving the region is

Pf =

‹
S∞

EEE ×H∗H∗H∗ dsss, (2.13)

and the time averaged electric and magnetic energies are

We =
1

2

˚
V
ε|EEE|2 dV, (2.14)

Wm =
1

2

˚
V
µ|HHH|2 dV. (2.15)

Note, that there is no dissipated power in (2.11) since we suppose the PEC surface in a

lossless linear media. It can be concluded from the real and the imaginary part of (2.11) that

〈JJJ∗,RJJJ〉s is equal to radiated power and 〈JJJ∗,XJJJ〉s is equal to reactive power .

1Throughout this thesis, the time harmonic and complex quantities are related by FFF (rrr, t) = ={FFF (rrr)ejωt}
which explains factor j2ω in the power balance in [74].
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Let’s consider diagonalizing the operator Z according to the generalized eigenvalue equa-

tion [74]

ZJJJn = νnMJJJn, (2.16)

where νn are the eigenvalues, JJJn are the eigenfunctions (modes) andM is a weight operator to

be chosen. For any symmetric weight operator all the eigenfunctions will satisfy orthogonality

relation 〈J∗J∗J∗n,MJJJn〉s = 0 for m 6= n. For radiation and scattering problems it will be

beneficial if the radiation patterns are orthogonal i.e. M = R. Then (2.16) becomes

RJJJn + jXJJJn = νnRJJJn. (2.17)

Setting νn = 1 + jλn the formulation of the TCM is obtained

XJJJn = λnRJJJn. (2.18)

Since R and X are real and symmetric both the eigenvalues λn and modes JJJn are real. The

modes are usually normalized to a unit radiated power i.e. 〈JJJn,RJJJn〉s = 1. Obviously inter-

nally resonant modes (cavity modes) cannot be normalized in this way [74]. All normalized

modes satisfy the following orthogonality relationships

〈JJJm,RJJJn〉s = δmn, (2.19)

〈JJJm,XJJJn〉s = λnδmn, (2.20)

〈JJJm,ZJJJn〉s = (1 + jλn)δmn, (2.21)

where δmn = 0 for m 6= n and δmn = 1 for m = n is the Kronecker delta function. Throughout

the rest of the thesis, it is assumed that modes are normalized to the unit radiated power.

2.2 Interpretation of Modal Results

The primary results of eigendecomposition (2.18) are the characteristic numbers λn and

corresponding modes JJJn. From these primary results other quantities such as the modal

electric and magnetic field, modal radiation pattern, modal admitance and others can be

computed. These properties will be referred as the secondary results. The overview and

interpretation of these results will be given in this section.

Taking the symmetric product of both sides of (2.18) we can interpret the characteris-

tic number as a ratio of modal reactive power to modal radiated power. Considering the

normalization of characteristic currents we obtain [7, 75]
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λn =
〈JJJn,XJJJn〉s
〈JJJn,RJJJn〉s

= ω(Wm,n −We,n). (2.22)

Variational interpretation of the TCM considers minimizing the functional (2.22) by JJJn [8,

Ch. 4.6], [75].

The Characteristic angle is defined2 as [76]

αn = π − arctan(λn). (2.23)

As mentioned in [13], αn represents a phase of the characteristic current. To be more specific,

consider a port located at arbitrary point on the antenna with excitation voltage Uin = 1 V.

Then the input power delivered to the mode will be Pin,n = UinI
∗
in,n and using the power

balance (2.11) and (2.22) we can write

λn = −={Iin,n}
< {Iin,n}

. (2.24)

Form (2.24) and (2.23) the input current due to mode JJJn is

Iin,n = |Iin,n| ej(αn−π). (2.25)

Because the characteristic modes are equiphase, αn − π represents also a phase of the mode

excited by a voltage with zero phaseshift. At resonant frequency f0, characteristic number

satisfies the condition λn(f0) = 0 i.e. the characteristic angle αn(f0) = π, as follows from

(2.22). Modal bandwidth can be defined by frequencies where characteristic number or angle

reaches a threshold value. For instance, relative half power radiating bandwidth is defined in

[25] as a difference of frequencies, at which αn reaches 135◦ and 225◦, divided by the resonant

frequency.

The concept of radiation quality factor has long been studied in the literature, yet there

remain unsolved questions, e.g. its exact relation to impedance bandwidth. Several different

definitions can be found in literature

Q =
ω(Wm +We)

Pr
conventional definition from fields (2.26)

QZ =
ω

2Rin

∣∣∣∂Zin

∂ω

∣∣∣ impedance definition [77], (2.27)

QJ =
ω(Wm(JJJ) +We(JJJ))

Pr(JJJ)
current density definition [67]. (2.28)

2Characteristic angle is often plotted in degrees. Note that an idea of inspecting the angle of the eigen-

number was allready mentioned in [19].
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While the conventional definition is the most widely accepted, for time-harmonic fields the

electric and magnetic energy in the whole space are infinite, but the infinities may be sub-

tracted leaving a finite Q value [67]. The impedance formula QZ had been defined as an

estimation of Q [77] and it can be prooven that QZ = QC for series and parallel RLC circuit

[67]. Interestingly, the impedance quality factor can be computed also from source current

density and used without knowledge of feed location or impedance [78]. It is possible to

compute QJ from currents flowing in a finite volume, for more details see [67].

Probably the most useful application of quality factor is the determination of physical

limitations of electrically small antennas and the connection to the impedance bandwidth

[77]. The latter purpose will be considered in this thesis. The modal radiation quality factor

Qeig,n was derived in [79] by taking a frequency derivative of matrix Rayleigh quotient formula

for λn on condition that the dominant frequency change is due to matrix representation of

operator X .

Qeig,n =
ω

2

∣∣∣∂λn
∂ω

∣∣∣. (2.29)

The same formula was derived in [32] from QZ on condition that ∂JJJn/∂ω is small compared

to ∂λn/∂ω. Note that despite the fact that (2.29) was derived for a particular port location,

the resulting equation is independant on port location which is in accordance with the modal

approach. Considering, that the variation of the current with frequency is negligible,

Qeig,n = QX,n =
ω

2

∂Xin,n

∂ω
, (2.30)

where Xin,n is the input reactance corresponding to mode n.

The electric field EEE due to current density is computed by (2.2) and in the far field region,

the expression reduces to [80, Ch 14]

EEEFF(rrr) ≈ −jωµ
e−jkr

4πr
[θ̂θθFθ(rrr) + φ̂φφFφ(rrr)], (2.31)

where θ̂θθ and φ̂φφ are the unit vectors in spherical coordinates directions, r is the distance

between the origin and the observation point and the radiation pattern FFF = θ̂θθFθ(rrr) + φ̂φφFφ(rrr)

is related to current density as

FFF (r̂rr) =

˚

V

JJJ(rrr′)ejkr̂rr·rrr′ d3r′. (2.32)

Note that FFF is considered in the far-fiel region3 and thus it can be rewritten in terms of

spherical coordinates as FFF (θ, φ).

3Ideally the distance from source |rrr − rrr′| → ∞.
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The radiation intensity is computed as U(θ, φ) = kωµ(|Fθ|2 + |Fφ|2)/(32π2) and the

radiated power [80, Ch 15]

Pr =

π̂

0

2πˆ

0

U(θ, φ) sin(θ) dθ dφ (2.33)

To compute a modal radiation pattern FFFn one can simply replace JJJ with JJJn in (2.32).

2.3 Orthogonality and Modal Superposition

It has been shown, that characteristic modes form a complete orthogonal set in the Hilbert

space [18], thus any current on surface S can be expressed as an infinite sum of characteristic

modes. Considering that an infinite sum produces a finite radiated power, some modes must

radiate a negligible power and thus we may, in practice, consider a finite sum of N modes

[19, 7]

JJJ ≈
N∑
n=1

anJJJn. (2.34)

The modal expansion coefficients an can be computed by performing method of moments

procedure [11, 81] with the modes as basis and testing functions. In other words, combining

(2.1) with (2.34), then taking a symmetric product with JJJm and considering the orthogonality

(2.21) we arrive to

an =
〈JJJn,EEEi〉s
1 + jλn

. (2.35)

The term 〈JJJn,EEEi〉s is called the modal excitation coefficient [7].

If the excitation is present, modal characteristics can be summed based on the current

expansion (2.34) and (2.35). Since the modal decomposition is computationally demanding,

the traditional solution of (2.1) using the method of moments is preferred from the numerical

point of view. On the other hand, the knowledge how each mode contribute to the antenna

characteristics (such as input impedance, radiation pattern etc.) is extremely valuable and

can be used to improve traditional designs.

Any scalar linearly related to current is called a linear measurement ρ and is summed in

a straightforward way [7].

ρ ≈
N∑
n=1

anρn. (2.36)

A linear measurement is for instance the input current at a port excited by voltage Uin

produced by imposed electric field EEEi. Knowledge of port current and voltage is sufficient to
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compute input admitance:

Yin =
Iin

Uin
≈ 1

Uin

N∑
n

anIin,n, (2.37)

where the modal contribution to the current through the port is Iin,n =
´

port JJJn dsss. We shall

call the term Yin,n = anIin,n/Uin the modal admittance [19, 82, 13, 43].

Considering, that each component of a vector linearly related to the current density is a

linear measurement, we may express the electric field at every point in space rrr as

EEE(rrr) ≈
N∑
n=1

anEEEn(rrr). (2.38)

The magnetic field HHH(rrr) and the radiation pattern FFF defined by (2.32) can be summed

equivalently to (2.38). Note that EEEn and HHHn are orthogonal both on the surface S and

sphere at infinity S∞ [7].

Summation of quantities, which are not linearly dependent on modes is also possible, but

the derivation and interpretation is not as straightforward. The radiation quality factor of

an antenna tuned to have zero reactance is such quantity. It can be expressed as a ratio of ω

times the total stored energy to the radiated power, and in terms of modes, it is expressed

as [68]

Q = 2ω0

max

{
M∑
m=1

N∑
n=1

βm,nWe,m,n,
M∑
m=1

N∑
n=1

βm,nWm,m,n

}
M∑
m=1

N∑
n=1

βm,nPr,m,n

, (2.39)

where We,m,n and Wm,m,n are the modal electric and magnetic energies respectively and the

coupling matrix β = [βm,n] is defined as

βm,n = <{ama∗n} . (2.40)

Note that orthogonality of the reactive power (2.21) does not imply orthogonality of We,m,n

and Wm,m,n. More details and computation of these energies is described in [68].

If the formulation of the TCM assumes no losses, both the orthogonality of the radiation

patterns (2.20) and real currents and eigenvalues will be obtained. If the losses in metalization

were considered, the TCM could have been reformulated to make either radiation patterns

or reactive power orthogonal, in a similar manner as described in [79, 21].

On the other hand, the losses in the metal can be approximated by the following pro-

cedure developed in [83] without the need of reformulating the TCM. We suppose that the

current density on a common metal surface S of conductivity σ will be very similar to the
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current density on the same surface S but made of the PEC. If the surface current density

JJJ is computed for a thin metal, the skin-effect is taken into account by introduction of an

equivalent volume current density JJJeq such that

JJJeq,(z) = JJJeq,(0)e−(1+j)γz, (2.41)

where it is assumed, that the metal is oriented in the coordinate system, such that JJJ flows

in the XY plane. The attenuation constant γ for a highly conductive material [74] reads

γ =

√
ωµσ

2
. (2.42)

Then the equivalent volume current density is related to the surface current density of the

perfect conductor ∣∣∣∣∣∣
tˆ

0

JJJeq(z) dz

∣∣∣∣∣∣ = |JJJ | , (2.43)

where t is the thickness of the metalization. From the volume current density the loss power

PL is computed

PL =

ˆ

Ω

EEE · JJJ∗eq dV = F (ω, σ, t)

ˆ

S

|JJJ |2 ds, (2.44)

where factor F is independent on S or surface current density:

F (ω, σ, t) =
γ

σ

(1− e−2γt)∣∣1− e−(1+j)γt
∣∣2 . (2.45)

The assumptions made in the derivation were validated on the following antennas: coupled

dipoles, an electrically small meandered dipole, and PIFA in a wide frequency range with a

very satisfactory result [83].

Next lets define the modal power loss for thin metals4

PL,m,n = F (ω, σ, t)

ˆ

S

JJJm · JJJn ds. (2.46)

Interpretation of the modal power loss is somehow difficult, since the modal currents are

not orthogonal with respect to the losses and therefore there is a contribution to the total

loss from all combinations of the considered modes. However, substituting (2.34) into (2.44),

modal loss can be summed as

PL ≈ F (ω, σ, t)
N∑
m=1

N∑
n=1

ama
∗
nPL,m,n. (2.47)

4Note that characteristic modes are real vectors.
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Using the orthogonal property of characteristic modes (2.20), the radiation efficiency is finally

written as

η =
1

1 + PL
=

N∑
m
βm,m

N∑
m
βm,m +

N∑
m

N∑
n
βm,nPL,m,n

. (2.48)

The modal radiation efficiency may be defined through a self-contribution of modal power

loss as

ηn =
1

1 + PL,n,n
. (2.49)

We would achieve η = ηn if only the mode n was excited. But a nonzero contributions to the

PL from all modes implies that at the resonant frequency of mode n, the radiation efficiency

will always be lower than ηn.

A finite sum of modes is considered in practice. For the purpose of determining which

modes should be included in modal superposition, so called modal significance measures were

defined. The simplest is the magnitude of an eigenvalue [79], which, according to (2.22), is

equal to the reactive power of a normalized mode. Consequently the closer the eigenangle to

180◦ the smaller is the reactive power. However, λn appears also in the expansion coefficient

(2.35) which directly enters the summation of modes. Thus modal signifficance MSn was

defined as [14, 13]

MSn =

∣∣∣∣ 1

1 + jλn

∣∣∣∣ . (2.50)

The major drawback of modal significance is that it does not account for an excitation and

thus does not fully represent the significance of a mode in modal superposition. This issue

have been pointed out in [31] and a new measure was defined

Mn =
max
rrr
{JJJn(rrr)}√
1 + λ2

n

. (2.51)

The measure Mn would represent a magnitude of modal complex power if the mode was

excited by EEEi at its maximum. Advantage of this measure is that it partially accounts for

the excitation, and simultaneously no a priori knowledge of the port location is needed. A

more precise measure, when actual feed position is known, is inspecting the contribution of

each mode to the power budget [19, 31, 42]

P ≈
N∑
n=1

|an|2(1 + jλn). (2.52)
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3

Using the TCM for Antenna

Analysis and Design

3.1 Design of a Dual-Band Orthogonally Polarized L-Probe-

Fed Fractal Patch Antenna Using Modal Methods

A dual-band antenna was originally developed in [65] and further studies and improvements

from the construction point of view were made. These improvements resulted in a very good

agreement between the simulation and the measurement of both S-parameters and radiation

pattern cuts. The motivation was to develop a dual-band antenna with compact dimensions

and to widen its bandwidth as much as possible. The antenna uses the self-affine ’U’ (SAU)

fractal motif to ensure a dual-band performance and to lower the resonant frequency.

In order to analyze parametrized fractal shapes (including the effect of the iteration), the

well-known cavity model (CM) [5] was used. Whereas the CM is faster than the TCM1, it is

restricted to low substrate heights h and low complexity of a motif shape (inner couplings are

neglected by definition). Therefore, the CM results were refined by the TCM. The presented

procedure follows the same steps as in [8] and shows its application on a dual-band antenna

with a fractal motif.

The bandwidth potential is increased by feeding the antenna via an L-probe [84]. The

probe was modified to match the antenna in both bands and to excite the corresponding

modes. A negative effect is that the radiation pattern is slightly asymmetrical (5◦-8◦ shift

from the normal in main lobe direction).

1And produces a different set of modes than TCM, however the current distribution and the resonant

frequency computed by CM are used as an estimate of the respective parameters computed by the TCM.
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The antenna design procedure is described in the following sections 3.1.1 - 3.6, reprinted

from author’s article [64], c© 2011 IEEE.

3.1.1 Analysis Procedure

At first, an analysis of a parametrized fractal motif was conducted using fast CM in order to

find a suitable shape for dual mode (dual-band) operation with the desired ratio of resonant

frequencies. The results were subsequently refined by the TCM, which is also suitable for

arbitrary air substrate heights (an infinite ground plane is considered). The CM and the

TCM routines were programmed in MATLAB [85, 86].

The modal results were validated by a full-wave simulation, where the current distribution

on patch is a superposition of all modes i.e. theoretically an infinite series [28]. On the other

hand, it is possible to obtain full-wave simulation results similar to the modal results if we

choose feeding which predominantly excites the desired mode at its resonant frequency.

3.2 Fractal Motifs

3.2.1 Fractal Generation

A fractal is generated by the Iterated Function System (IFS) [87] implemented in MATLAB

[86]. The IFS is defined by a finite family of contractions S1, S2, ..., Sm where m ≥ 2. For

microstrip antennas (the 2 dimensional case), each transformation is described by coefficients

a, b, c, d, e, f : (
xi+1

yi+1

)
=

(
a b
c d

)(
xi
yi

)
+

(
e
f

)
, (3.1)

where x, y are Cartesian coordinates and i is an iteration order. The zeroth iteration

(IT0) denotes the chosen initial shape, e.g. triangle, rectangle, circle etc. Each following

iteration is a union of results of transformations S1, S2, ..., Sm applied to the previous one.

Rigorously, a fractal is generated after an infinite number of iterations. The nth iteration as

an approximation of fractal will be used in the following text.

3.2.2 Chosen Fractal Motif

Based on previous experience, the fractal published in [88] was chosen as a potential candidate

and will be called SAU (Self-affine ’U’). The original motif was parametrized according to

Fig. 3.1. The overall dimensions of the fractal were restricted not to exceed 50 x 50 mm.

The SAU fractal is created from a rectangle by 4 parameter dependent IFS transformations

according to Table 3.1, see Fig. 3.1.
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Table 3.1: IFS transformations for a generalized SAU fractal, b = c = 0

Tn a d e f

T1 W1 1-L1-L2 0 L(L1+L2)

T2 1-W 1-W 2 1-L1-L2 W (W 1+W 2) L(L1+L2)

T3 W1 L1+L2 0 0

T4 W2 L2 W ·W1 L · L1

T5 1-W 1-W 2 L1+L2 W (W 1+W 2) 0

W

L

x

y

IT0

L1*L

L2*L

W1*W

IT1

W2*W

IT2

Figure 3.1: Iterations of the SAU motif (W1 = 0.3,W2 = 0.3, L1 = 0.2, L2 = 0.4).

3.3 Modal Results

Modal analysis revealed that modes 1 and 2 radiate in a normal direction if parameter L1

approaches 0 (the motif then resembles the letter ’U’). Calculated characteristic currents are

shown in Fig. 3.2 and the corresponding modal radiation patterns in Fig. 3.3-3.4.

(a) Mode 1 (b) Mode 2

Figure 3.2: Surface current on the SAU IT2 motif with dimensions W = L=50mm, W1 =

0.25,W2 = 0.5, L1 = 0, L2 = 0.5 (TCM).

Radiation patterns were also calculated in CST MWS [89], where the patch was fed by

a discrete port. Modal radiation patterns can quite accurately predict polarization and the

direction of maximal radiation, Fig. 3.3-3.4. Orthogonality of polarizations could easily be
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explained by inspecting the dominant current lines for modes 1 and 2 from Fig. 3.2.

(a) horizontal - MATLAB (b) horizontal - CST MWS

(c) vertical - MATLAB (d) vertical - CST MWS

Figure 3.3: Mode 1 Ludwig3 components of radiation pattern for the motif from Fig. 3.2,

5mm air substrate and a discrete port used in CST MWS.

According to a parametric study of the SAU fractal, it is possible to achieve the modal

ratio (CM) of f2/f1 to be approximately 1.6 - 3.5. The main influence on f2/f1 has the ratio

W/L because the major part of the mode 1 current is orientated in the X axis direction and

mode 2 forms a standing wave in the Y axis direction (Fig. 3.2).

It is known [90] that the higher the iteration the lower the resonant frequencies. A simple

explanation is that higher iteration produces a more complex shape with a longer path for

current. This effect is not linear with iteration and also affects different modes differently,

Fig. 3.5.

The fractional antenna bandwidth FBW [77] is inversely proportional to the quality

factor Q, which consists of contributions caused by different types of loss [5], [77]. The

only reasonable option is the lowering of the radiation Qrad, otherwise radiation efficiency

η = Prad/Pin decreases. The Qrad of microstrip antennas depends on current distribution

and is inversely proportional to the substrate height h and directly proportional to substrate
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(a) horizontal - MATLAB (b) horizontal - CST MWS

(c) vertical - MATLAB (d) vertical - CST MWS

Figure 3.4: Mode 2 Ludwig3 components of radiation pattern for the motif from Fig. 3.2,

5mm air substrate and a discrete port used in CST MWS.

relative permitivity εr [5]. The same effect of substrate height on modal Qrad,n could be seen

in Fig. 3.6.
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Figure 3.5: Effect of iteration, SAU motif, W = L = 50mm, W1 = 0.25,W2 = 0.5, L1 =

0, L2 = 0.5, h=30mm (TCM).
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Figure 3.6: Effect of substrate height on modal quality factor of SAU IT2, W = L = 50mm,

W1 = 0.25,W2 = 0.5, L1 = 0, L2 = 0.5 (TCM).

3.4 Full Wave Simulation

The SAU IT2 motif was chosen as a compromise between low resonant frequency and low

modal quality factor, Fig. 3.5. Modes 1 and 2 satisfy the demand on low resonant frequency

and normal radiation. Here we choose the patch with W = L which corresponds to the modal

f2/f1 ≈ 1.8. However, the resonant frequency and the current density depend not only on

patch shape, but also on substrate height h.

The selected motif is considerably electrically small (0.208 x 0.208 λ at f1), therefore the

FBW is quite narrow. To compensate this effect (Fig. 3.6) the patch is placed high enough

above the ground plane and fed by an L-probe which acts also as a matching circuit. The

optimal L-probe length and bend position is different in both bands [84], thus a modification

leading to the dual L-probe (DL-probe) was proposed.

(a) f = 1.25 GHz (b) f = 2.1 GHz

Figure 3.7: Current density on the dual L-probe in both bands (CST MWS).

Fig. 3.7 shows that the current density in both bands is concentrated on specific and more

or less independent parts (arms) of the DL-probe. This allows us to design the arms separately

for each working band. An overall view of the CST model with the actual orientation of the

DL-probe is shown in Fig. 3.8.

The proper feeding position can be guessed from the current density computed by the

TCM (or CM). The horizontal part of the DL-probe arm should be orientated parallel to the

modal current on the patch surface (see Fig. 3.2 and Fig. 3.8).
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Figure 3.8: SAU IT2 CST model with dimensions in mm.

3.5 Measurement and Comparison of Results

An antenna with the SAU IT2 fractal motif was fabricated (see Fig. 3.9) and measured at

the Department of Electromagnetic Field of FEE, CTU in Prague. The simulated and the

measured S11 are in very good agreement, Fig. 3.10. In the lower band the motif dimensions

are 0.208 x 0.208λ which leads to quite a narrow bandwidth. This disadvantage was partially

compensated by using DL-probe feeding, which allows 10dB FBW to be 4.18%. The motif

is electrically larger in the higher band (0.34 x 0.34λ), therefore the situation is easier and

the measured FBW is 11.4%.

The antenna feeding is optimized to maximal bandwidth in the lower band. However, by

changing dimmensions of the DL-probe an antenna with the FBWlower = 3.42 % and the

FBWupper = 18.7 % was designed in the CST MWS.

Farfield cuts for horizontal an vertical polarization are in Fig. 3.11. Due to unbalanced

feeding, the radiation pattern is distorted and the maximal directivity is slightly (5◦ and

8◦) shifted from the normal direction (Fig. 3.11). Radiation pattern measurement confirms

mutually orthogonal polarizations in both bands.

Figure 3.9: Manufactured antenna.
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Figure 3.10: Comparison of simulated and measured S11 of SAU IT2.

−200 −150 −100 −50 0 50 100 150 200
−40

−30

−20

−10

0

θ [°]

[d
B

]

 1.25 GHz φ=0°

 

 
measured hor.
measured ver.
CST hor.
CST ver.

−200 −150 −100 −50 0 50 100 150 200
−40

−30

−20

−10

0

θ [°]

[d
B

]

 2.1 GHz φ=0°

 

 

measured hor.
measured ver.
CST hor.
CST ver.

Figure 3.11: Measured and simulated farfield cuts for horizontal and vertical polarization.

3.6 Conclusion

This article summarizes the procedure of planar antenna design using modal methods. They

provide information about motif behavior and its suitability for the desired antenna. Because

only patch motif is considered, it is possible to effectively analyze even quite complicated

shapes like fractals. More importantly, modal decomposition shed some light on the physical

behavior of the planar antenna. The last step is a design of patch feeding and a full wave

analysis.

Following the above mentioned procedure, a dual band antenna was developed, manufac-

tured and measured. It was found that modal radiation patterns could successfully predict

antenna radiation properties such as polarization or main lobe direction. Motif dimensions
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are noticeably smaller than a λ/2 rectangular patch in both bands. The narrow bandwidth

was partially compensated by the dual L-probe feeding structure. CST MWS simulation is

in very good agreement with measurement.

The possible antenna applications are in point to point dual band systems which could

operate with linear polarization. Suggested structure is, after some dimmension adjustments

of the DL-probe and the motif, able to cover both WLAN bands 2.4GHz and 5GHz with

FBWlower > 3.2 % and FBWupper > 17 %.
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3.7 Radiation Quality Factor and Modal Resonant Frequency

Further studies of modal properties of chosen motifs over an infinite PEC plane were made.

These studies utilizes a rigorous expressions for radiation QJ derived in [67]. The chosen

motifs were: a rectangle, a SAU fractal in the first and the second iteration and a fractal clover

leaf (FCL) motif. Several important observations were made: the difference between the QJ

computed from modal currents and the Qeig computed from the slope of the characteristic

number is less than 1%, providing, that the triangles are small compared to the height over

the finite ground. The increase in the error for small heights is probably caused by the

centroid approximation in the QJ calculation. Next it was confirmed on the SAU and FCL

motifs that opposing currents increases the radiation quality factor. It was also observed that

the resonant frequency of the dominant TM01 rectangular patch mode is quite complicated

function of height for air substrates thicker than approx. 0.5λ. Finally it was observed that

the resonant frequency of the low-Q modes is much more sensitive to the substrate height

than of the high-Q modes. This can be explained by intensity of neaf-fields which are kept

close to the radiating structure in case of the of high-Q modes.

The above stated results and computation procedure are described in the following sec-

tions 3.8 - 3.12, reprinted from author’s article [66].

3.8 The Radiation Q Factor

In [67] a novel theory able to rigorously calculate radiated power and stored energies directly

from currents flowing along the antenna has been presented. The radiation Q-factor is then

readily evaluated by the definition [91]:

Q = 2ω
max(W̃m, W̃e)

Pr
. (3.2)

The equations for radiated power Pr and stored electric and magnetic energies are:

Pr =

(
1

8πωε0

)ˆ
Ω1

ˆ

Ω2

[k2JJJ(rrr1) · JJJ(rrr1)−∇ · JJJ(rrr1)∇ · JJJ(rrr2)]
sin(kr21)

r21
dΩ1 dΩ2, (3.3)

W̃e =
1

16πω2ε0
(Ie − IR), (3.4)

W̃m =
1

16πω2ε0
(Im − IR), (3.5)
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where

IR =
k

2

ˆ

Ω1

ˆ

Ω2

[
k2JJJ(rrr1)JJJ(rrr2)−∇ · JJJ(rrr1)∇ · JJJ(rrr2)

]
sin(kr21) dΩ1 dΩ2, (3.6)

Ie =

ˆ

Ω1

ˆ

Ω2

∇ · JJJ(rrr1)∇ · JJJ(rrr2)
cos(kr21)

r21
dΩ1 dΩ2, (3.7)

Im = k2

ˆ

Ω1

ˆ

Ω2

JJJ(rrr1) · JJJ(rrr2)
cos(kr21)

r21
dΩ1 dΩ2, (3.8)

where k is a free-space wavenumber, JJJ is the surface current density and r21 is the distance

between interacting current elements. The tilde denotes that the radiation contribution IR

has been subtracted from the stored energies at every point in space [92]. It is assumed that

the currents are flowing in a vacuum.

3.8.1 The Modal Radiation Q Factor

The modal radiation Q factor may be evaluated from the slope of modal eigenvalues [79]:

Qeig =
ω0

2

dλ

dω
. (3.9)

In [79], (3.9) is supposed to be an approximation of the radiation Q, but in resonance it

is actually exact. Since characteristic modes are normalized to radiate unit power Pr = 1 [7],

(3.2) reduces to:

Q = 2ωmax(W̃m, W̃e). (3.10)

For parallel or series RLC circuit (hence, for one mode), the “impedance QZ” equals the

exact “current Q” [67]:

Q = QZ =
ω0

2

∣∣∣∣∂Z∂ω
∣∣∣∣ =

ω0

2

∣∣∣∣∂R∂ω +
∂X

∂ω

∣∣∣∣ . (3.11)

Inserting

Z = R+ jX =
1

|I2|

[
Pr + j2ω

(
W̃m − W̃e

)]
, (3.12)

valid for lossless antennas [74] and using the fact that Pr = 1, (3.11) results in

Q = QX =
ω0

2

∣∣∣∣∂X∂ω
∣∣∣∣ =

ω0

2

∂

∂ω

[
2ω
(
W̃m − W̃e

)]
=
ω0

2

∂λ

∂ω
= Qeig, (3.13)

providing that

λ = 2ω
(
W̃m − W̃e

)
. (3.14)

It is therefore concluded that the modal Qeig equals the QX by definition and it can be

proven (using the reactance theorem [93, 94]) that in resonance it also equals the radiation

Q defined from energies by (3.10).
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3.8.2 Software Implementation

The above equations were implemented in MATLAB for the RWG triangular mesh where

two different interaction situations occur:

(a) Distant Elements. When the triangular elements are not overlapping, current density

on triangles may be simply approximated as point sources located at the centre of triangles

[95], see Fig. 3.12. No actual integration is then needed. This centroid approach is very fast

with satisfactory accuracy as will be shown later (however it may fail for patches located very

close to the ground plane).

Figure 3.12: Distance between non-overlapping current elements [68].

(b) Overlapping (Self) Elements As known from the method of moments, the so-called

“self” contributions are of great importance when dealing with calculations on discrete el-

ements (meshes). Here, the self-interaction occurs when two triangles are overlapping each

other. Due to the behavior of integral kernels, only rapidly varying term has to be carefully

treated. Since k0R21 → 0 (R21 being the longest side of the triangle T ) is satisfied, one needs

only to use the first term in the Taylor series expansion. The dominant singular static part

is 1/r21 and the integral to be worked out is

I =

ˆ

T

ˆ

T ′

1√
(x− x′)2 + (y − y′)2

dx dy dx′ dy′, (3.15)

where T = T ′ is a triangular area. Using simplex coordinates transformation (Fig. 3.13), the

result is [68, 96]:

I = −4

3
A2

[
ln(1− 2h12/L)

h12
+

ln(1− 2h13/L)

h13
+

ln(1− 2h23/L)

h23

]
, (3.16)

where A is the triangle area, hij are the edge lengths (see Fig. 3.13) and L is perimeter of

the triangle.
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Figure 3.13: Self-term evaluation. a) original problem, b) simplex coordinates transformation,

[68].

3.9 Applications: Rectangular Patch Antenna

Let us first concentrate on a rectangular patch antenna of dimensions L = 50 mm, W = 30

mm (further noted as R50x30) placed in air at a heightH above an infinite ground plane. Only

the dominant TM01 mode will be studied. The reason for choosing a patch with L/W 6= 1 is

that we do not have to deal with degenerated modes. Using the image theory, the radiator

in the XY plane at height z = H above an infinite electric ground plane is modelled as

two patches separated by 2H. The total number of triangular elements is 676. In the TCM

analyser, a proper out-of-phase mode is selected (Fig. 3.14).
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Figure 3.14: Model of MPA above infinite ground plane for H = 10 mm, dominant mode

TM01 shown.
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The resonant frequency of the dominant mode is shown as a function of height H,

see Fig. 3.15. It has been evaluated from a modal resonant condition for eigenvalues as

2ω
(
W̃m − W̃e

)
= 0 employing an adaptive frequency sweep for each height. The be-

haviour is quite peculiar, especially for greater heights. For low heights (H < 10 mm or

H/λres < 0.08), the resonant frequency decreases “regularly” and quasi-analytical formulas

(see e.g. [97, 98]) based on the fringing field concept are valid below this range. For H ≈ 25

mm (H/λres ≈ 0.188) there is absolute minimum of the TM01 resonant frequency. Further

on, the resonant frequency rises to reach its maximum for H ≈ 40 mm (H/λres ≈ 0.51 ).

Around this specific height the patch also shows the minimum of the radiation Q. The above

described process repeats periodically. It is yet unclear to the authors as what is the physical

background to the resonant frequency discontinuity around H/λres ≈ 0.5.
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Figure 3.15: R50x30 resonant frequency of the dominant TM01 mode. The dashed red curve

is a quasi-analytical equation from [97].

The terms 2ωW̃m, 2ωW̃e, and 2ω(W̃m − W̃e) obtained from (3.4) - (3.8) and eigenvalues

λ are plotted at Fig. 3.16 for H = 25 mm as a function of frequency. There is excellent

agreement between the difference in stored energies and the eigenvalues, both obtained in a

completely different manner.

There is also very good agreement between the exact QJ and Qeig confirming the validity

of the proposed algorithm via (3.13), see Fig. 3.17. Note that Qeig in (3.9) does not require

the currents to be calculated on the structure while QJ is evaluated in a rigorous way from

modal currents (3.10).

From Fig. 3.17 it is seen that the radiation Q has a minimum for a specific height. It is

deduced that the reason lies in the cancelling of the radiated power between the two out-of-

phase currents. Similar behaviour has been observed in the case of two half-wave thin-wire
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Figure 3.16: Reactive energies and their differences for an R50x30 patch at height of 25mm.
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Figure 3.17: The radiation Q for dominant mode of an R50x30 patch as a function of H.
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dipoles with opposite sinusoidal currents, separated by d = 2H, see [99] for details. Actually

these two out-of-phase dipoles may serve as a very simple model for a patch antenna with a

dominant mode. When the dipoles are reduced to elementary (Hertzian) ones, an approximate

analytical solution is available and in [99] we shown that the Q is led by the function:

fQ(H) ≈ 2H

k2H − sin k2H
. (3.17)

After deriving (3.17), the condition worked-out

tan(k2H) = k2H, (3.18)

and the first non-trivial root of (3.18) could be approximated as [99](
H

λ min

)
≈ 3

8
− 1

6π2
= 0.358. (3.19)

For sinusoidal currents on dipoles the minimum (evaluated numerically) occurs for H = 0.36λ.

The minimum of the patch under study is obtained at H ≈ 0.4λ , a value that is remarkably

close to the simple dipole model.

3.9.1 Algorithm Convergence

Since no other methods for calculating modal Q are available, Qeig is taken as a reference

and the relative error percentage is defined as:

relative error =
|QJ −Qeig|

Qeig
100, (3.20)

where QJ is calculated from the currents using (3.10). Four different heights H were chosen,

H = 1 mm (0.01λ), H = 2 mm (0.0185λ), H = 10 mm (0.0803λ) and H = 20 mm (0.151λ)

and the relative error evaluated as a function of total triangular elements (including the

mirror), see Fig. 3.18. All quality factors were evaluated at the resonant frequency of the

dominant mode for the R50x30 patch. As discussed earlier, the centroid approximation

became more inaccurate with low heights H. However, even for the lowest analyzed value

H = 0.01λ, the relative error is in the order of a few percent for reasonable mesh density

(hundreds of elements). Further improvements to the integration routine are considered for

the future.
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Figure 3.18: Relative error of the Q-factor as a function of triangular elements (mesh density).

3.9.2 Fractional Bandwidth of the R50x30 Patch Antenna

It is known that the fractional bandwidth (FBW) is related to the unloaded Q factor and

the desired matching VSWR level. For VSWR< s we have [77]

FBW ≈ s− 1

Q
√
s

[%] (3.21)

Using a full-wave simulator CST-MWS [89], an R50x30 patch has been simulated and the

FBWCST for VSWR < 2 was calculated as:

FBWCST =
f2 − f1

f0
, (3.22)

where f2 and f1 are margins for VSWR < 2 and f0 is the centre frequency. Only very low

heights were studied since we have used a simple probe feed which introduces an inductance

component to the total input impedance. The comparison at Fig. 3.19 shows good agreement

of both fractional bandwidths.

3.10 Applications: Fractal Antennas

In this section a bit more complex structures will be studied. The first one (The “Self

Affine U” fractal, SAU, has been described in [88] and further analyzed in [64]. This kind

of radiating motif is employed as a dual-band radiator with mutually orthogonal radiation

patterns at both bands. Therefore we are analyzing the first two modes, where the currents

are orthogonal. These are depicted at Fig. 3.20 and Fig. 3.21 for first (SAU1) and second
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Figure 3.19: Fractional bandwidth FBW (VSWR < 2) for a R50x30 patch.

(SAU2) fractal iteration respectively. The current of the first (lower) mode JJJ1 has two out-of-

phase components (see Fig. 3.22 for schematic current paths) while the second mode comprises

in-phase currents only. As we know from previous studies, opposite currents contribute to a

rapid increase of the radiation Q and it is expected that JJJ1 will have a much higher Q than

JJJ2.

Figure 3.20: The first two characteristic modes (currents and charges) for the SAU1 structure.

Fig. 3.22 presents a very simple concept showing the main current paths for the JJJ1 and

JJJ2 modes discussed above including the mirroring effect of the infinite ground plane. It could

be simply stated that more opposing current paths lead to significant increase in Q.

We show detailed behaviour only for SAU2 (the situation is similar for SAU1) - see

Fig. 3.23 that confirms high-Q for the JJJ1 mode. Characteristic angles are calculated for
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Figure 3.21: The first two characteristic modes (currents and charges) for the SAU2 structure.
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Infinitegroundplane
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Figure 3.22: The main current paths for the first two modes of the SAU1/2 structure.
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H = 29 mm, the actual height for which the dual-band antenna was designed [64].
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Figure 3.23: Characteristic angles (left) and radiation Q for the SAU2.

3.10.1 The FCL-2 Fractal Antenna

The second presented structure is the so-called Fractal Clover Leaf (FCL) of the second

iteration, [86]. The antenna is fed by an L-probe [100] that excites its dominant mode

and is located at height H = 36 mm. Actually, the dominant mode is composed of two

degenerated modes JJJ1 and JJJ2 (Fig. 3.24). The second higher mode JJJ3 is shown at Fig. 3.25

for completeness. Fig. 3.26 shows the main current paths of these modes and we can again

deduce that the dominant mode will exhibit lower Q compared to JJJ3. This is confirmed by

Fig. 3.27 - JJJ3 has more than 200x higher radiation Q.

3.11 Resonant Properties of Studied Antennas

The properties of studied antennas are summarized in this section. At first we observed

that microstrip antenna could support different kinds of modes regarding their Q factors (see

Fig. 3.28):

a) Low-Q modes with the current flowing in one direction and not changing its phase

(dominant modes of simple shapes like rectangular, circular patch etc..)

b) High-Q modes with part of the currents flowing in the opposite direction. These modes

exist even on simple “U” shaped patch (Fig. 3.20 left) and on complex (fractal) geometries.

Secondly it has been observed that resonant frequency is quite a complicated function of

height. Unfortunately we do not yet have any physical explanation as to why some modes

present minimum values of fr.
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Figure 3.24: Degenerated dominant mode JJJ1, JJJ2 of the FCL2 antenna (currents and charges).

Figure 3.25: Second higher mode JJJ3 (currents and charges).
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Figure 3.26: Schematic depiction of the dominant current paths for the dominant (JJJ1+JJJ2)

and the second higher JJJ3 modes together with their modal radiation patterns.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
80

100

120

140

160

180

200

220

240

260

280

f (GHz)

Mode1
Mode2
Mode3

Qeig3= 226.3

Qeig1=Qeig2= 10.5

×109

α n

Figure 3.27: Characteristic angles for the FCL2 structure at H = 29 mm.
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Looking at Fig. 3.29 it is clear (and interesting) that the resonant frequency behaves

quite differently for low-Q and high-Q modes. The resonant frequency of low-Q modes is

much more sensitive to the height, whereas high-Q modes exhibit almost constant fr when

the height is varied. The proposed explanation is that the opposite currents (responsible for

high Q) keep reactive fields very close to the radiating structure so the effect of a fringing

field coupled to the ground plane becomes almost negligible.
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Figure 3.28: Radiation Qs for different antennas / modes.
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3.12 Conclusions

Modal resonant properties of selected microstrip patch antennas have been studied with

the help of Characteristic modes and the novel theory published by G. Vandenbosch. It

has been found that the resonant frequency of a simple rectangular patch antenna is quite

a complicated function of its height above the infinite ground. Moreover, the dependency

of resonant frequency is also found to be a function of the radiation Q-factor (which it

is now possible to calculate in a rigorous way). Due to the complexity of the problem,

no physical explanation for the resonant frequency behaviour has yet been found. It is

observed that the radiation Q-factor decreases for “standard” heights (<∼ 0.1λ), however

there exists an absolute minimum value of Q that has already been predicted by simple

modeling of two elementary out-of-phase dipoles. Using proper feeding techniques (like with

the L-probe) allows us to design wideband compact antennas. The theory now puts current

distribution and the radiation Q factor into objective context. Whenever the current mode

exhibits opposite components, high-Q may appear. Future work is needed to connect the

presented theory with parameter sweeps or even optimization, so we will be able to design

novel wideband / multimode compact antennas.
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4

Active Differential Antennas

4.1 Introduction

A classical approach to the RF front end design of a wireless terminal is to create an antenna

and match its impedance to a chosen line impedance Z0 which could be the impedance of a

connector e.g. SMA approximately 50 Ω. Then usually an amplifier or a low-noise amplifier

(LNA), which is matched to the same reference impedance Z0, is necessary. Since there is

a common interface between the antenna and the LNA, their construction is independent

and they can be designed by different persons or companies. The main drawback is that two

matching circuits are necessary which can be a problem if there is a limited space for the RF

circuit such as in mobile devices. Another drawback is that the matching circuit represents

certain loss connected to the input of the LNA and thus it limits the minimal equivalent noise

temperature of the device [101].

The differential circuits have been used for decades in analog circuits, however they were

usually studied under the lumped element assumptions. In recent two decades the limits

of differential circuits were pushed to the RF and microwave frequencies. Because of the

increasing complexity and density of today integrated circuits the signal integrity becomes

an issue [102]. The differential circuit can provide a low-cost solution in the noisy environment

because of several reasons. Among other benefits, in an ideal differential circuit, no signal is

propagating through the ground, thus the coupling to the neighboring lines is lowered. Also

the crosstalk usually forms a common mode and can be suppressed by the differential circuit

[102]. Drawbacks of the differential approach are increased power demands and an increased

complexity of the circuit, resulting in longer design and verification times.

At RF and microwave frequencies a suitable tool for distributed element assumptions was

necessary. This tool are the mixed-mode S-parameters [103]. They ’decompose’ the n-port
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circuit into n/2 mixed-mode ports which are excited by a mode specific waves; the common

mode (CM) and the differential mode (DM). Note, that these modes refer to transmission

DUT

i1

v1

i2

v2

i3
v3

i4
v4

Figure 4.1: Mixed-mode S-parameter definition.

line waves, not the currents on the antenna, as is the case of characteristic modes.

The input mixed-mode port consists of single-ended ports 1 and 2, Fig. 4.1. Then the

differential mode is defined for voltage v1 = −v2 and current i1 = −i2 and the differential

voltage, current and impedance are:

vd = v1 − v2 (4.1)

id =
1

2
(i1 − i2) (4.2)

Zd =
vd

id
. (4.3)

The common mode is defined for voltage v1 = v2 and current i1 = i2 and the common voltage,

current and impedance are:

vc =
1

2
(v1 + v2) (4.4)

ic = i1 + i2 (4.5)

Zc =
vc

ic
. (4.6)

From the above equations it can be concluded that for a line impedance Z0 the common mode

line impedance is Z0c = Z0/2 and the differential line impedance is Z0d = 2Z0. The mode

specific S-parameters are defined in a similar manner as single-ended S-parameters i.e. as

ratios of mode specific normalized waves. Detailed explanation including the transformation

between the single-ended and differential S-parameters is available in [102].

The recent progress in active antennas exploits the differential feeding mechanisms, e.g.

in [104] the patch antenna is fed by a push-pull power amplifiers avoiding an output balun.

The topology can be regarded as a differential feeding of the antenna. Another interesting

technique - aperture differential coupling - was published in [105]. It is a modification of
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aperture coupling technique used for increasing the bandwidth of patch antennas [106]. The

antenna is in a stacked configuration where a virtual short circuit in a microstrip line is

located under the coupling aperture (slot) and on top of the aperture is the patch.

Since the differential active antennas achieves significantly lower noise temperature and

high gain, they find applications especially in wireless communication systems or as array

elements in direction detecting systems or radio detection experiments.

4.2 Advantages and Limitations of the TCM for Active An-

tenna Design

It has been shown, that the TCM can be used in conjunction with non-Foster elements to

design electrically small antennas with increased bandwidth [34]. In the reference, it was

realized, that the ideal load has necessary negative slope of reactance vs. frequency.

In this chapter, slightly different possibility will be investigated. The idea is to use

characteristic modes to design a differentially fed active antenna. The impedance bandwidth

will be inherently wider due to the usage of amplifiers while the farfield bandwidth is mainly

determined by the passive part of the antenna. In fact, farfield properties of a single mode

remain fairly constant over very wide BW. An example may be triangular patch with a slot

in Fig. 5.17, in frequency range 4.5 - 6.5 GHz. The maximal directivity of the antenna fed by

a discrete port varies from approximately 8 to 10 dBi, while the first and the second mode

directivity is within 9.14 and 9.51 dBi. Therefore characteristic modes can be used to improve

active antenna properties by widening the single mode operation bandwidth.

The sections 4.3 - 4.3 describe an active printed dipole antenna with a very low equivalent

noise temperature and a natural suppression of common mode noise and are reprinted from

author’s conference contribution [72]. After completing the prototype, it was intended to

use the TCM to modify the passive part of the active antenna. The goal was found to be

problematic to achieve, since the input impedance of the passive part plays a crucial role in

the design. It has to be optimized to ensure wideband stability of the amplifier for both the

common and differential modes. Moreover, tuning the input impedance of the passive part

can significantly improve its equivalent noise temperature and gain [102]. To be able to benefit

from modal analysis, a method for effective recalculation of the input impedance for different

position of antenna excitation is necessary. Therefore the work on the active differential

antenna is has directed the following work to to the procedure presented in Chapter 6.
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4.3 Printed Dipole Antenna

A printed dipole antenna will be used as a radiating element of the active antenna. The

printed dipole is mainly chosen for demonstrating the active antenna benefits since the dipole

is well-known with predictable behavior. Its input impedance at resonance is 88 Ω but it is not

possible to achieve broadband impedance matching without additional matching circuit. The

length of the dipole is 70 mm which corresponds to 0.5λ0 at the center frequency 2.15 GHz,

the width is chosen 4 mm to lower the conduction losses and increase the bandwidth. The

substrate is 0.508 mm RO4350B. While the antenna is fed through a coplanar strip line

(CPS), the amplifier input is connected through 2 microstrip lines which could be considered

as a coupled microstrip line (CML), see Fig. 4.2. Although the ground plane is present only

under the CML it affects the dipole radiation pattern, which becomes more directive. It is

known that the presence of a ground plane will reduce the radiation efficiency and radiation

resistance. However the distance between the dipole and the ground plane is 30 mm which is

significantly larger than the substrate height and the radiation efficiency is higher than 91%

in the frequency range of interest. The dipole was designed in the CST MWS [89] using the

waveguide port for feeding and electric symmetry plane. The symmetry plane ensures that

only differential mode will be excited by the waveguide port. It is clear that the ground plane

represents a discontinuity in the transmission line, Fig. 4.2. Thus a transition between CPS

and CML will be considered next. Both lines can be described by two parameters: the gap

width Wg and strip width Ws (the substrate height and metallization thickness is considered

constant). These parameters are sufficient to describe both lines in terms of line impedance.

The line impedance of a CPS is mainly defined by the width Wg between both stripes. On

the other hand the differential impedance of the CML is mainly dependent on the impedance

of the microstrip i.e. the width Ws. However the differential line impedance of the CML

is not independent of Wg and the line impedance of the CPS is not independent of Ws.

Nonetheless it is possible to design both transmission lines with the same dimensions and

with only a small difference in the line impedance. Here it was chosen Ws = 1.08 mm and

Wg = 0.4 mm which corresponds to 102 Ω for CPS and 75 Ω for CML. Another degree of

freedom is the distance between the dipole and the ground plane. The segment of coplanar

strip line is terminated by the dipole on one side and on the other side by the CML. This

means it acts as a resonator and adjusting its length the S11 can be improved (according to

the needs of the active part). The effect of the ground plane on the radiation pattern is clearly

visible in Fig. 4.3. Further improvements in the input matching are also possible, however

they will not lead to broadband matching in the frequency range from 1.7 - 2.6 GHz. The
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input impedance of the active antenna will be dominantly defined by the amplifier output.

On the other hand it is important to design the passive element to represent a suitable input

load for the amplifier. Here we should consider the amplifier gain, noise figure as well as

the broadband stability. The directivity of the dipole in the frequency range of interest is

less dependent on frequency than the input impedance. This is useful for broad banding the

antenna with an active part. In this case the maximum directivity varies from 7.15 dBi at

1.7 GHz to 4.58 dBi at 2.6 GHz (CST MWS).

Figure 4.2: Printed dipole connected to CPS, CST MWS.

Figure 4.3: Radiation pattern of printed dipole connected to CPS at 2 GHz, CST MWS.

4.4 Differential Amplifier

The active part of the antenna is a single stage differential amplifier. The amplifier is studied

in terms of the mixed-mode S-parameters. The goal of the design process is a low noise

unconditionally stable amplifier with as high gain as possible. The amplifier will be directly

connected to the printed dipole antenna. Since both the passive and the active parts have the

differential topology there is no need for symmetrization or conversion to the single ended
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mode. This is quite beneficial for low noise applications because symmetrization circuit

represents a loss connected to the input of the amplifier. Due to the well-known Friis formula

this loss has a very negative impact on the equivalent noise temperature Te of the whole

system. Other benefit is reduction of circuit size. The dominant mode of a dipole is the

differential mode. However the antenna will also receive a spurious common mode signal.

Therefore it is necessary to ensure both the common and the differential mode amplifier

stability. The stability criteria used is the geometrical stability factor µ [107]. The proposed

amplifier has a fully differential topology which has certain advantages. They are a reduction

of common mode noise and a high common mode rejection ratio (CMMR) [102]. This ratio

describes how much of the common mode signal representing the interferences will appear at

the output. The CMMR is defined as:

CMMR = S21dd − S21cc (4.7)

Where S21dd is the differential to differential mode gain and S21cc is the common to common

mode gain in dB. Both the above mentioned properties are crucial especially in systems where

a high coupling between RF and power lines can be expected. The amplifier was designed

with AWR Microwave Office [108]. A circuit representation of the proposed amplifier is

shown in Fig. 4.4. Both transistors used are the low noise HEMT ATF-34143 from Avago

Technologies. The transistors are biased by Rg, Rd end Rs resistors. The DC voltage supply

is separated from the RF part by capacitors Cin, Cout and Cd. Their values are chosen

to be 33 pF which represents a good shortcircuit for the RF signal. The value of Cin is

10 pF to realize a better match between the dipole and the amplifier. Inductors Lg, Ls and

Ld helps to stabilize the amplifier at high frequencies. They also affect the input and the

output impedance. A particularly difficult part of the design is the broadband stabilization

of the amplifier for both differential to differential mode (DD) and common to common mode

(CC) operation. Here the R1, R2, L2 and C2 are used for that purpose. Their values were

optimized to minimize the noise figure and maximize the gain. The ATF-34143 transistors

were successfully used to design a two stage differential amplifier for lower frequency band

(0.3-1 GHz) [109]. The two stage topology presented in [109] is more complicated and has

higher power consumption (and higher gain) but it solves the problems with the stability.

Component values for proposed single stage amplifier are listed in Table 4.1.

The final design was optimized using Simplex and Pointer AWR Microwave Office build-in

optimizers. It was found that microstrip line TLd (Fig. 4.5) is beneficial for the stability.

Therefore, the output L2, R2, C2 resonant circuit was omitted in the final design (Fig. 4.5).
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Table 4.1: Component values for proposed amplifier

Component Value

Cout,Cd 33 pF

Cin 10 pF

C2 0.5 pF

Lg 3 nH

Ld 47 nH

Ls 2.75 µH

L2 12 nH

Rg 270 Ω

Rd 47 Ω

Rs 3 Ω

R1 27 Ω

R2 330 Ω

Figure 4.4: Circuit schematic of the proposed differential amplifier.

The distance between both transistors is critical both for the stability and differential gain

and it should be as short as possible. The transistors are rotated 45 degrees for that reason.
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The layout of proposed differential amplifier designed on RO4350B 0.508 mm substrate

is in Fig. 4.5. The differential gain S21dd is higher than 11.2 dB and the common mode

gain is lower than -22.97 dB (from 1.7 to 2.6 GHz). This means that the CMRR is at least

34.17 dB. The noise figure predicted by the simulation is better than 0.73 dB (equivalent noise

temperature smaller than 53 K) for ideally matched amplifier input i.e. 100 Ω differential

load. For the actual antenna the amplifier noise figure is smaller than 2 dB (Te is smaller

than 169 K in the whole frequency range), Fig. 4.6. The S21dd with the dipole load is higher

than 10 dB.

TLd

Figure 4.5: Layout of the differential amplifier.

The layout of the proposed active antenna with printed dipole antenna directly connected

to the amplifier is in Fig. 4.7. The simulated S11 of the active antenna was obtained by

importing the S11 of the dipole in to AWR and using it as an input load for the amplifier.

The return loss is better than 10 dB in the band of interest (1.7 - 2.6 GHz) which means that

relative bandwidth is at least 41.86%.

4.5 Measurement

The amplifier and the active antenna were manufactured and measured; the prototypes are in

Fig. 4.8, 4.9. The mixed mode S-parameters were obtained in a true differential measurement

with Rohde and Schwarz ZVA 67. The measured S21dd is in a very good agreement with the

simulation - the discrepancy is less than 0.5 dB, Fig. 4.10. The measured CMMR is a little

lower than predicted (at least 31.8 dB), which is still a very good value. There is a difference
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Figure 4.6: Noise figure of the amplifier with input load corresponding to antenna impedance.

Figure 4.7: Layout of proposed active antenna.
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in S11 of the active antenna prototype, Fig. 4.11, however it is below -10 dB in the band of

interest.

Figure 4.8: Measurement of amplifier prototype.

Figure 4.9: Measurement of the active antenna.

4.6 Conclusion

An active antenna is a very promising concept for broad banding a narrow band passive

antenna. Furthermore it is possible to design a system with a very low equivalent noise

temperature by optimizing both the passive and the active part. The active antenna presented

in this paper has a fully differential topology. This means high CMRR (high suppression of

spurious CM signals). It has a very low equivalent noise temperature (lower than 169 K) and

gain higher than 15 dBi. It is shown that by the active approach it is possible to achieve a

very good performance in a wide frequency band (relative bandwidth 41.86%) even with a
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Figure 4.10: Comparison of simulated and measured S21 of the amplifier.

Figure 4.11: Comparison of simulated and measured S11dd of the active antenna.
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passive radiating element with a narrow band performance. A very good agreement between

the measurement and the simulation was obtained.

Characteristic modes may become beneficial for differential active antenna design, because

of their small dependance on frequency. On the other hand, input impedance is crucial and

needs to be effectively optimized. It directly affects stability, gain, noise figure and S11.

The capabilities of current TCM tools have to be improved with regard to input impedance

optimization to fully utilize modal approach in active differential antenna design.
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5

Mesh Generation for TCM

5.1 Introduction

Researchers studying the TCM usually develop their in-house tools for modal analysis, e.g.

[25, 33]. One of the tools has been developed in MATLAB at the Department of Electromag-

netic Field by M. Capek and P. Hazdra and also the author of this thesis [86, 71]. Nowadays,

a coomercial implementation of the TCM is available in the FEKO [4].

As in the case of other methods, in the MoM and the TCM the mesh is one of the crucial

inputs which significantly influences both computation efficiency and the accuracy of the

results. Thus the aim of this chapter is to present a tool for surface mesh generation, which

cooperates with the in-house modal analyzer [71]. Then a simple error analysis is presented

for the TCM and using the mesh generation tool, the numerical properties of the solution

are verified. This chapter will also present a practical study of the convergence of different

modal parameters with mesh density. The important parameters are resonant frequency, the

eigen radiation quality factor Qeig, and maximal directivity. The main output of the study

is a recommendation for mesh generation for TCM. Sources of the error will be discussed in

the following and will be applied to the in-house tool [71] and also the FEKO commercial

software [4].

The inputs for the in-house tool [71] are matrices p and t, containing the surface mesh.

Each column of p contains Cartesian coordinates of a mesh node, and each column of t

contains the indices of three points creating a triangle. There are several mesh generators

both commercial and free available. Let’s briefly compare some of them in terms of their

potential to be used for the in-house TCM tool. The Partial Differential Equation Toolbox

(pdetool) [110] for MATLAB offers a mesh generator which is easy to integrate into established

tools. However some tests on fractal geometries revealed an unnecessary mesh density in the
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regions of overlapping shapes. Also a full mesh density control is rather complicated, because

pdetool was designed for partial differential equations with adaptive mesh refinement. The

FEKO contains a surface mesh generator designed for MoM. It is possible to run FEKO task

from MATLAB i.e. automatically generate the mesh. The NetGen [111] is a C++ code with

input geometry defined either by CSG or STL format. It uses the advancing front method

to create an initial mesh which is then refined. The mesh density is controlled by assigning

a maximal allowed edge length to a piece of the geometry. The CGAL [112] package is

written in C++ and contains a plenty of distinct tools for various geometry computations.

Among them is a mesh generation package based on the Delaunay refinement algorithm. The

distmesh algorithm [113] is based on a force equilibrium idea which produces meshes of high

quality. The basic distmesh is only one page of a MATLAB code, however this algorithm is

not entirely robust. The mesh density is controlled by a mesh density function. The inputs

of the distmesh routine are the signed distance function, representing the geometry, and the

element size function, representing the relative distribution of desired edge lengths inside

the geometry. Although the geometry can be defined implicitly (by an analytical function)

we prefer defining the geometry as a set of polygons and compute the distance from their

boundaries.

Important properties of the mentioned generators are listed in Tab. 5.1.

Table 5.1: Comparison of selected mesh generators.

Program name Input License MATLAB code

pdetool [110] Polygon points Retail YES

FEKO [4] Prefeko file Retail NO

NetGen [111] CSG, STL LGPL NO

CGAL [112] Polygon points
Open Source

License
NO

distmesh [114,

113]
Distance function GNU GPL YES

5.2 Mesh Generation for TCM

A tool called MeshGen was developed in MATLAB in order to easily define and parametrize

the geometry and generate its surface mesh. A suitable algorithm for mesh generation is

distmesh [113], written in MATLAB. It allows full mesh control (fixed points, mesh density

control), but the biggest advantage is that it is simple to understand and to integrate into
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our MATLAB tools. On the other hand, unlike the advanced version of the code, written in

C++, the basic version is not fully robust and the generation of the initial set of nodes is not

deterministic [113].

MeshGen is capable of surface meshing of 3D planar structures by executing the following

steps for each 2D plane of the structure1:

• Automatic fixed points are placed on the border to respect the mesh density function,

and to avoid small distance from user defined fixed points.

• Mesh points from previously generated 2D planes are used as fixed points.

• An initial set of mesh points is created.

• The mesh point distribution is optimized by the distmesh algorithm.

• The 2D mesh is validated to be conformal with the shape boundary. If the validation

is not successful, the mesh will be refined.

• Transformations are applied to the 2D mesh and the result is merged with the previously

generated mesh.

Due to the distmesh algorithm, MeshGen produces meshes of high mean triangle quality

as well as high minimal triangle quality2.

The following improvements to the basic MATLAB code [113] have been implemented:

• A deterministic algorithm to generate the initial point set.

• A check that the mesh is conformal with boundary.

• A function which moves points in the proximity of shape boundary to the boundary.

• A posibility to add points to the center of the edge which is longer than the required

edge length.

• An edge, which is shorter than the required edge length is replaced with a center point.

All of these features rapidly increase the convergence of the algorithm to a high quality mesh,

as well as the algorithm robustness. The initial mesh and the optimized mesh, including

simple examples of the local mesh improvements, are plotted in Fig. 5.1.

1It is possible to create a mesh of an arbitrary non-planar surface in 3D, e.g. on a Beziér surface, by

applying a transformation on p, as was done in [114, p. 64].
2The triangle quality q = 2rin/rout; q ∈< 0, 1 > , where rin is the radius of the biggest inscribed circle and

rout is the radius of the smallest circumscribed circle [114].
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distmesh

Move to boundary

Add 

Remove

Figure 5.1: Initial mesh (left), triangles with low quality are marked with a red contour.

Operations improving algorithm convergence to a high quality mesh (middle). Final mesh

(right).

The progress of the generation is plotted in Fig. 5.2, where it can be seen that mean

triangle quality is improved with the increasing iteration. The minimal triangle quality

is generally improved as well, but there are step increases in the curve due to local mesh

improvements and retriangulation if the nodes change position.

Mean quality

Minimal quality goal

Best cost value

Iteration

Minimal quality

5626 Edges, 3853 Triangles,
Actual minimal quality 0.700314

Iteration 63 / 262
Elapsed 12.26 s

Remaining 38.74 s

Close this window to terminate meshing.
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Figure 5.2: Graphical representation of the mesh generation progress.

The structure is implicitly parametrized, so it is not need to write any additional function

to change the structure. Instead an internal parameter of the MeshGen object is modified.

All features of MeshGen can be started from MATLAB command line and therefore used

in a parametric sweep or optimization. MeshGen also supports import and export of the

NASTRAN mesh format, so the meshes can be exchanged with other computational tools.

The interested reader can download MeshGen from [115]. An example of a mesh generated

for an L-probe fed patch antenna is shown in Fig. 5.3.
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Figure 5.3: Example of the mesh generated by MeshGen: L-probe fed patch antenna (left),

detailed view on the connection between the ground plane and the probe (right).

5.3 MeshGen Tool Description

MeshGen is a collection of MATLAB classes and functions3 dealing with geometry definition,

parametrization, boolean operations, transformations and mesh generation. Specifically, the

core of the tool is a structure description class CsDesc. This class is responsible for geometry

definition, parametrization and mesh generation. For generalized polygon description (i.e.

polygon including holes) class Cpd has been created. The class is also responsible for plotting

and manipulation with the polygon. Closely related class Cmerge provides polygon merging

in 2D.

The whole geometry is created by combining several distance functions (geometry ele-

ments). There are predefined distance functions to create a rectangle, a circle, a polygon, an

IFS fractal, and a strip. A distance function can be any function with one arbitrary input

parameter (usually a vector or a matrix) and two output parameters: Cpd object and a set

of mesh fixed points organized into a two column matrix. Therefore, distance functions can

be defined by user with the advantage of parametrization by CsDesc class. Such distance

function may represent e.g. a meandred dipole. Graphical representation of the structure of

the code in in Fig. 5.4.

The mesh generated for particular geometry is organized in p, t matrices. A class Cmesh is

responsible for mesh operations, such as plotting, merging, duplicate points removal, import

and export to NASTRAN format, mirroring and other. Once a final mesh is prepared,

characteristic modes or a direct EFIE solution can be computed by the in-house tool [71].

It is also possible to fix the mesh of one or more geometry cuts, while changing dimmen-

sions (or mesh settings) of another part. This can be especially useful for testing sensitivity

of numerical methods to mesh changes. Transformations can be applied on the mesh points

to produce e.g. conformal or symmetrical meshes. All features of MeshGen are available from

3Current version is v03p and contains more than 5000 lines of code.
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Figure 5.4: Relation between classes and functions in MeshGen.

command line for an optimization or a parameter sweep. The most often used operations

can be also defined by a simple graphical user interface meshGenGUI. Examples of meshes

generated by MeshGen are in Fig. 5.5.

(a) Monopole (b) SAU fractal motif (c) Spatial loop antenna

(d) Modified loop antenna (e) L-probe fed patch antenna (f) Bowtie antenna

Figure 5.5: Example of meshes generated by MeshGen.
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5.4 Numerical Computation of Characteristic Modes

Characteristic modes JJJn of surface S satisfy the operator equation

XJJJn = λnRJJJn, (5.1)

where X and R are the imaginary and real parts of the EFIE operator relating tangential

components of the surface current and scattered electric field. Corresponding to each mode

is the eigennumber λn. Harrington and Mautz [20] proposed to numerically solve (5.1) by

the method of moments. Thus the current density of mode n is approximated by a set of

basis functions wwwv multiplied by unknown coefficients In,v.

JJJn ≈
∑
v

Iv,nwwwv. (5.2)

Applying the usual MoM procedure with testing functions wwwu we obtain the following matrix

equation [20]

XIIIn = λ̂nRIIIn. (5.3)

Note that λn is not exactly equal to λ̂n due to an approximation made in (5.2).

The integrals involved in calculating matrix elements are usually evaluated by numerical

quadrature and thus contain errors. Such errors (perturbations) have been mathematically

studied in [116] with the following result. Consider a perturbed problem

X̃ĨIIn = λ̃nR̃ĨIIn, (5.4)

where the matrices are of the form X̃ = X + εG and R̃ = R + εH, and ‖G‖ = ‖H‖ = 1.

Supposing that λ̂n is a simple eigenvalue, R is nonsingular4 [116] and considering that both

R and X are symmetrical,

λ̃n − λ̂n = ε
IIIT
n (G− λ̂nH)IIIn

IIIT
nRIIIn

+O(ε2). (5.5)

Omitting the higher order terms

λ̃n − λ̂n ≈ ε

∑
u

∑
v
In,uIn,v(Gu,v − λ̂nHu,v)∑
u

∑
v
In,uIn,vRu,v

. (5.6)

From (5.6) it is evident that for minimizing the difference λ̃n − λ̂n one should minimize the

term (Gu,v − λ̂nHu,v) in the regions with high IIIn. Note that the value of In,u is related to

4Note that for certain frequencies, EFIE impedance matrix can be close to singular [81].
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the dot product of the JJJn vector and the vector basis function wwwu. Thus it is more robust to

refine regions with high JJJn than to refine regions with high In,u.

In the in-house tool [71],wwwv andwwwu are the RWG basis functions [69] and (5.3) is computed

by direct decomposition or by an iterative method in MATLAB. FEKO uses the Implicitly

Restarted Arnoldi Method [117], an iterative procedure to obtain several most significant

characteristic numbers and vectors. The time consumption of both approaches for one fre-

quency is plotted in Fig. 5.6. The in-house tool uses a 9-point barycentric subdivision and

centroid approximation [70, Ch. 2] in the computation of Z matrix elements, thus it is a bit

faster than FEKO, however one can expect more accurate results for the same mesh from

FEKO.
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Figure 5.6: Computation time as a function of the number of basis functions, two modes are

required in FEKO. Computations performed in single-core mode, on an Intel Core i7-3770K

@ 3.5GHz CPU.

The complexity of the direct solver is much higher than the complexity of the Z matrix

computation as well as the iterative method, Fig. 5.6. The iterative solver is, however,

preferred for structures larger than approx. 800 inner edges (i.e. RWG basis functions). All

simulations were computed in a single-core mode on an Intel Core i7-3770K @ 3.5GHz CPU.

5.5 Numerical relative convergence of modal parameters

This section presents a convergence study of modal resonant frequency fres,n, defined as the

frequency where λn = 0, modal radiation quality factor

Qeig,n =
ω

2

∣∣∣∂λn
∂ω

∣∣∣, (5.7)
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and maximal modal directivity Dmax,n with mesh density. The surrounding medium for all

structures is a vacuum.

Convergence studies are necessary to eliminate the effect of the error cancellation mech-

anism [118], which can be observed if several sources of error eliminate each other and the

result thus appears to be accurate.

Let us define a relative error as

ε(x) =
|x− xref|
xref

, (5.8)

where x is one of the quantities of interest: fres,n, or Qeig,n or Dmax,n. The reference value

xref should ideally be the precise value (as computed e. g. from an analytical formula)

or a measured value. Analytical formulas for modes on a conducting sphere can be found

in [26], however they will not be used here since an RWG mesh cannot fully describe the

geometry curvature. Measured values are not available for the modal quantities. Other full-

wave methods also cannot be used as a reference. For instance, the commonly used measure

of resonance (input susceptance of the antenna is equal to zero) is not equal to the modal

resonance unless only one mode is excited. Thus there are two options: to use a result from

much denser RWG mesh as a reference, or to use a solution using higher order basis functions

as a reference. Results from FEKO software using a relatively fine mesh and basis functions

denoted as order 2.5 are chosen as a reference in this paper.

In order to compare different mesh refinement schemes for different structures, we use the

following number associated with each mesh

m =
c0

fres,ref,n min(L)
, (5.9)

where c0 is the speed of light and fres,ref,n is the resonance frequency of mode n computed by

FEKO reference software and L is the set of lengths of edges inside the structure. Number

m has thus the meaning of the number of smallest edges per wavelength. Note that m does

not take into account the actual distribution of the edge lengths in the structure, and that

such criteria will be much more difficult to define, implement and understand.

Meshes will be generated using MeshGen requiring minimal triangle quality of 0.8. While

this criterion is not always satisfied (generation stops because the maximal number of itera-

tions is exceeded) the minimal quality for all the studied meshes is not lower than 0.6.

63



5.5.1 Strip Dipole

The first studied structure is a strip dipole 30 mm in length and 0.6 mm in width. The

structure was simulated using an adaptive frequency sweep [71] with increasing uniformly

distributed mesh density.

Fig. 5.7 shows that the dominant resonant frequency converges with increased number of

edges inside the structure. Even the coarsest mesh presents ε(fres,1) smaller than 1.5%, and

meshes with more than 91 edges have the relative error ε(fres,1) under 0.5%. However even

for 16557 edges, there is still a small difference of 4 MHz (0.096%) from the FEKO result

using 2.5th order basis functions. This fact can indicate either very slow convergence of our

tool for small relative errors, or that our tool converges to a slightly different value.

There is a very small dependance of the results on the number of triangles across the

strip, with the exception of the step increase from 1 triangle per strip width to two triangles

which appears between m = 107 and m = 223, Fig. 5.7. In other words proper discretization

of the edge singularity of the charge (see e.g. [119]) is not the crucial point for eigenvalue

precision.

In the next step, the central part of the dipole was meshed with higher or lower density

than the rest and the size of the central part was varied. However, the difference in conver-

gence was disputable and the uniform scheme converged more smoothly than the others, thus

it was recognized as the optimal refinement scheme for the dipole.
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Figure 5.7: Convergence of the resonant frequency of mode 1 of the dipole 30 mm in length

and 0.6 mm in width. Uniformly refined mesh.
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5.5.2 Rectangular Patch

The second structure is a rectangular patch 25 mm in length and 21.5 mm in width, placed

3 mm above an infinite PEC plane. Since the current density of the first mode is spread

over the patch, Fig. 5.8, the convergence of the uniformly refined mesh was generally better

than the locally refined mesh. The exception was the scenario denoted as V01, in which

the mesh was coarser in the regions with high magnitude of current density, Fig. 5.8. This

paradoxical behavior can be explained as follows. The two edges of the patch are discretized

by bigger triangles, thus the corresponding current density is lower, see Fig. 5.8. This means

that according to (5.5) these big triangles (with bigger error) become less significant for

computation of λ̃n, in other words the value of λ̃n will be more affected by smaller triangles

with smaller error.
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−30

−25

−20

−15

−10

−5

0

Figure 5.8: First mode of a rectangular patch 3 mm above ground plane at its resonance,

uniformly refined mesh (left) and V01 refined mesh (right). A normalized logarithmic scale

is used for both cases.

Fig. 5.9, 5.10 show very similar convergence of both uniform refinement (denoted as Uni)

and the V01 refinement of the resonant frequency and Qeig. This behavior was expected

since both results are related to the eigenvalue. In contrast, there is a difference in maximal

directivity, Fig. 5.11, which results from the difference in current density for Uni and V01

refinement. However the difference between them is reduced with increasing m.

5.5.3 U Shaped Patch

The next structure is the same patch as in the previous section with a slot 15 mm in length

and 2 mm in width. The dominant mode has a very localized current density, Fig. 5.12, thus

it is ideal for applying a non uniform mesh refinement scheme. To observe the differences

between a properly refined mesh and an ineffective refinement, two schemes were proposed.

Meshes that are properly refined in the regions with high amplitude of the modal current
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Figure 5.9: Convergence of the resonant frequency of the rectangular patch for different

refinement schemes.
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Figure 5.10: Convergence of Qeig of the rectangular patch for different refinement schemes.
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Figure 5.11: Convergence of maximal directivity at resonance of the rectangular patch for

different refinement schemes.
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density are denoted as V01, Fig. 5.12. By contrast, the scheme denoted as V02 is not refined

near the maximum of ‖JJJn‖, see Fig. 5.13, and is ineffective from the error minimization point

of view.
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Figure 5.12: First mode at its resonance, uniformly refined mesh (left) and V01 mesh (right),

normalized logarithmic scale.
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Figure 5.13: First mode at its resonance, V02 refinement scheme, normalized logarithmic

scale

The slow convergence of V02 is clearly visible in Figs. 5.14, 5.15, 5.16. On the other

hand, the V01 results are very close to Uni with similar minimal edge length. Note that the

total number of edges, which directly influences the simulation speed, Fig. 5.6, is reduced

approximately by a factor of 3-4 for the V01 mesh. Therefore computing 6 frequencies took

9.25 minutes and 1 minute for the uniform and V01 structures of Fig. 5.12, respectively. The

nice speedup of 9.25 is interesting, especially for an optimization. The difference would be

enormous for the direct solver: 15.41 hours versus 10.74 minutes (6 freq. samples).

5.5.4 Circularly Polarized Triangular Patch

In this section, a triangular patch with a slot will be analyzed and convergence graphs both

for the in-house tool and for FEKO will be presented. This type of patch can be used for
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Figure 5.14: Convergence of resonant frequency of the patch with a slot for different refine-

ment schemes.
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Figure 5.15: Convergence of Qeig of the patch with a slot for different refinement schemes.

0 0.2 0.4 0.6 0.8 1
−3.69

−2.86

−2.03

−1.21

−0.38

0.44

R
el
at
iv
e
er
ro
r[

%
]

0 100 200 300 400 500 600 700 800
7

7.06

7.12

7.18

7.24

7.3

m

D
m
ax

Uni
V01
V02
Reference (FEKO)

Figure 5.16: Convergence of maximal directivity of the patch with a slot for different refine-

ment schemes.
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circular polarization [120, Ch. 5]. For proper functionality, circularly polarized antennas

combine two orthogonal modes in a specific way. Thus in order to analyze (and design) such

antennas, accurate results for both modes have to be obtained.

While the first mode of the triangle with a slot has the current density localized near the

slot, the second mode is distributed over a dominant part of the patch, Fig. 5.17. From the

mesh refinement point of view, mode 1 will resemble the dominant mode of a slotted patch

and mode 2 will resemble the mode of a rectangular patch. The mesh refinement strategies

from sections 5.5.2 and 5.5.3 should therefore also apply for the triangle with a slot.

The mesh refinement appropriate for mode 1 is denoted as V01, Fig. 5.18, and it reduces

the number of edges by a factor of approx. 1.6-1.8 for a uniform mesh with similar accuracy.

The convergence of fres,1 is quite comparable for the Uni and the V01 mesh, Fig. 5.19, while

the convergence fres,2 is significantly better for Uni, Fig. 5.20. Although the absolute values

obtained for the same meshes imported into FEKO and using low order basis functions differ,

the trend of the curves in Fig. 5.19 - 5.20 is the same as the trend of the curves computed by

the in-house tool. The reason why fres,2 differs for V01 and Uni is that the mode 2 current

has high values in the regions with low mesh density of the V01 mesh Fig. 5.18.
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Figure 5.17: First mode at its resonance, uniformly refined mesh, normalized logarithmic

scale.

The Qeig of both modes is affected by the refinement strategy in the same manner as fres.

Note that the eigen Q factor is somehow more sensitive to mesh density than the resonant

frequency or the maximal directivity.

The V01 mesh is not suitable for obtaining the small ε of mode 2 results, therefore the

mesh is additionally refined in the lower part of the triangle denoted as V02, Fig. 5.18. This

refinement scheme preserves good convergence for both modes, Fig. 5.19 - Fig. 5.24, however,

the mesh density with respect to a uniform mesh is reduced only in the top part of the patch

and the reduction factor is only 1.1-1.2. Nonetheless for a high number of edges this factor
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Figure 5.18: First mode at its resonance, V01 refined mesh (left) and V02 refined mesh

(right), normalized logarithmic scale.
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Figure 5.19: Convergence of the resonant frequency of the triangle with a slot, mode 1.
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Figure 5.20: Convergence of the resonant frequency of the triangle with a slot, mode 2.
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will become more significant, e.g. a Uni mesh of 7625 edges was computed in 11.95 minutes

while a V02 mesh of 6521 edges took only 8.57 minutes (8 frequency points, iterative solver).

The V02 meshes were also imported to FEKO and the results are quite close to the

FEKO Uni mesh results. Thus we conclude that the presented results are applicable to the

commercial implementation of characteristic modes theory [4].
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Figure 5.21: Convergence of Qeig of the triangle with a slot, mode 1.
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Figure 5.22: Convergence of Qeig of the triangle with a slot, mode 2.

5.6 Conclusion

In this chapter a tool for surface mesh generation in MATLAB has been described. This tool

is used in conjunction with an in-house TCM tool to study the convergence of the numerical

implementation with increased mesh density. A simple error analysis of the TCM formulation

is presented. It reveals the interesting property that the eigenvalues are affected by the
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Figure 5.23: Convergence of Dmax of the triangle with a slot, mode 1.
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Figure 5.24: Convergence of Dmax of the triangle with a slot, mode 2.
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approximation errors in the matrix elements multiplied by In,uIn,v. This result indicates that

the mesh should be refined in the regions where the current magnitude is high.

The theory has been tested on the dominant mode of a dipole, a rectangular patch, and a

rectangular patch with a slot. Convergence curves for resonant frequency, Qeig and maximal

directivity for different mesh refinement schemes have been compared. The results are in

accordance with the theoretical derivation. It has also been observed that mesh refinement

is much more suitable for modes with localized current, where high simulation speedup can

be obtained for non-uniform mesh refinement with good relative accuracy.

Generally, the computation of characteristic modes by MoM converges with an increased

number of basis functions (we suppose that the round off errors were insignificant for all

presented computations). However, no rule of thumb for number of basis functions per

wavelength for a given relative error has been deduced. Specifically, the number m necessary

to obtain relative error ε(fres) < 1% for the dipole, the rectangular patch, the rectangular

patch with a slot and the circularly polarized triangle was (less than 100), 30, 109 and 53

respectively. Qeig tends to be the most sensitive parameter, and needs careful choice of the

mesh.

The recommendations for mesh refinement have been tested on a circularly polarized

patch in the in-house tool and also in FEKO (using low order basis functions). Although

they were slightly different in absolute values, which may be due to approximations in the

in-house tool, the results were qualitatively equivalent and preserved the same trends.
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6

Excitation of Characteristic Modes

6.1 Introduction

It is implied by the definition of characteristic modes, that they are computed without an

excitation, which is represented by an arbitrary impressed field EEEi. It have to be noted, that

once the geometry, on which current density can flow, is changed, the modes will change

as well. This fact complicates a usage of characteristic modes for quantitative analysis of

antennas. For instance, modes of a patch antenna with a discrete port (or a stub) of certain

dimensions are valid only for the particular position of the discrete port. On the other hand,

number of examples support the speculation, that the change of the position of the port, which

is electrically much smaller than the patch, actually does not dramatically change the modes

on the patch. Similar behavior was observed in [26, Ch. 6], where the input impedance of the

antenna correlates with the position of the feed with respect to the mode. Another example

may be the transmission line model of a rectangular patch antenna, which implies, that the

position of the edge connected microstrip line affects the input impedance in correspondence

with the current on the patch. Similar principle was utilized to develop specialized small

capacitive and inductive coupling elements to excite multiple modes for MIMO applications

[38, 37].

These examples, found in literature inspired the author to seek for a method which can

explain coupling of the modes to an excitation structure and to express it in a qualitative way.

So far, the modes have been used for qualitative and quantitative analysis of various wire

and planar antennas. While for wire antennas even the feed (port) position can be optimized

without the necessity to recalculate the modes, to be able to change feed position for planar

antennas, the modes have to be recalculated in general.
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The aim of this chapter is to review the mechanism of excitation of characteristic modes

and develop a method which will enable computing of excitation coefficients for a feeding

structure coupled to a planar motif. Consequently, it will become possible to take advantage

of one of the important features of TCM - summation formulas for various antenna parameters

such as radiation pattern or input admittance. The developed procedure should be faster

than a recalculation of the modes when the position of a feed with respect to a planar motif

is changed.

6.2 Modes of a System of Coupled Scatterers

The method determining a coupling between individual characteristic modes on a planar

structure uses the modes computed by the in-house TCM solver [71, 86] with the core im-

plemented by Miloslav Čapek. The individual structure at free space will be denoted as a

scatterer and several coupled scatterers will be called a system of scatterers (or simply a sys-

tem). The terms scatterer and system of scatterers in this sense was adopted from [33], where

they were used to describe a sub-structure modes. Note, however, that here both scatterers

may be excited, but it is assumed, that they are not electrically connected.

The idea presented in this section may resemble the characteristic basis function method

(CBFM) [121], where the structure is divided into blocks and basis functions are computed in

each of the blocks. The main difference is that CBFM is more general1 and computationally

effective but the basis functions does not provide an interpretation of scatterer physical

behavior.

Characteristic modes were used as expansion functions already in [7], with the difference,

that the modes of entire system were considered. The idea of using modes of a scatterer as

sub-sectional basis functions was investigated in [25, 122] with possible application to antenna

arrays. However a residue between the proposed method and the direct solution was reported

[122], and had to be suppressed by adding a ”source mode” to the set of characteristic modes.

We will demonstrate, that in our approach the source mode is not necessary.

Throughout this section, m,n will denote mode indexes, which may be on different scat-

terers and u, v will denote the indexes of RWG basis functions. First, consider expanding the

surface current density JJJ on a system of scatterers.

JJJ ≈
N∑
n=1

cnJJJn (6.1)

1There is no restriction with regard to the electrical connection of the blocks.
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where JJJn are the characteristic modes of individual scatterers. Note that the modes are not

equal to the modes of an entire system. Then the usual method of moments procedure is

applied on (2.1) and a matrix equation reads

Zccc = ggg, (6.2)

where ggg is an excitation vector with elements 〈JJJm,EEEi〉s and the Z matrix elements are

Zm,n = 〈JJJm,ZJJJn〉s. (6.3)

Characteristic modes of a scatterer are computed numerically by method of moments

using RWG basis functions www for expansion and testing, i.e. the modes are approximated as

JJJn ≈
V∑
v=1

In,vwwwv. (6.4)

Next it is necessary to compute the elements of Z matrix. By comparing (6.3) with (2.21)

we find a simple relations if the modes m and n are on the scatterer:

Zm,n =

{
1 + jλm, m = n
0, m 6= n.

(6.5)

If the modes are located on a different scatterer, elements Zm,n have to be evaluated numer-

ically

Zm,n = 〈JJJm,ZJJJn〉s =

ˆ

Ω

JJJm · ZJJJn dS =
U∑
u=1

V∑
v=1

Im,uIn,v〈wwwm,u,Zwwwn,v〉s. (6.6)

Notice that 〈wwwm,u,Zwwwn,v〉s is the u, v-th element of RWG impedance matrix. There is no

singularity in the integral kernel of (6.6), since for different scatterers m 6= n.

The result of the described procedure is vector of modal expansion coefficients ccc, thus

if the modes expansion vector in (6.4) is known, the port current Iin can be computed.

Interestingly, characteristic modes of entire system can be reconstructed from the modes of

individual scatterers. Following the notation of (6.2)

={Z}ccca = λa<{Z}ccca, (6.7)

where ccca are expansion coefficients of mode a of the system and with eigenvalue λa. If the

structure is changed, only the Zm,n for different scatterers need to be recalculated and Z

inverted. It is expected, that number of modes necessary to approximate the system is much

smaller than total number of RWG basis functions, the inversion time will be negligible. The

time required for recalculation will be thus determined by the evaluation of matrix elements
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in (6.6). It is interesting to note, that storage requirements for characteristic modes of a

scatterer are much smaller than storage requirements of a scatterer’s impedance matrix. The

methods of obtaining direct solution and characteristic modes described in this section will

be called ChMBF2 method.

6.3 Verification of the ChMBF Method

It will be shown in this section, that characteristic modes of a scatterer in free space can

be used as basis functions for an antenna consisting of a system of coupled scatterers. The

results will serve as a verification of the derivations of the previous section and of the numerical

implementation. Coarse meshes are used for comparison purposes to speedup the simulation.

The ChMBF code is not yet as optimized as the in-house tool, which has been developed

for much longer time. Nonetheless, the complexity of the algorithm is lower than the full

TCM when a sweep or an optimization of relative position of the scatterers is in concern, as

discussed in the end of Section 6.4.

First, consider a rectangular patch 56 x 37 mm, placed in the height H = 22.5 mm above

an infinite PEC plane and excited by a strip L-probe of width Ws = 2 mm, vertical part

length Lv = 15 mm and horizontal length Lh = 22.5 mm and probe offset D = 0, Fig. 6.1(a),

[8]. Using the method of images, the geometry will be modeled in a mirrored configuration3,

Fig. 6.1(b).

Lv

Lh

D

H

Lp

Wp
Ws

(a) Dimensions

161 Edges, 136 Triangles, min(L)=2 mm,
mean(L)=8.64 mm, max(L)=14.5 mm

(b) Mesh

Figure 6.1: Mirrored configuration of a rectangular patch, excited by an L-probe.

2Characteristic modes as basis functions.
3The mirrored configuration is chosen because the in-house tool currently does not support meshes touching

the infinite PEC plane.
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The structure is meshed by MeshGen, Chapter 5, excited by a voltage gap, connected to

the middle of the mirrored L-probe. Input impedance is computed by the RWG MoM. Than,

characteristic modes of individual scatterers - the patch and the L-probe - are computed.

Note, that the mesh of the scatterers is kept the same in all simulations. For comparison

purposes, maximal number4 of numerically obtained modes is used. All modes which has

nonzero current in the middle of the L-probe are used for structure excitation represented by

vector ggg in (6.2) and the input impedance is computed by the ChMBF method, Fig. 6.2. The

real and imaginary part of input impedance of the L-probe fed rectangular patch antenna is

in perfect agreement wit the RWG MoM solution. The coupling between the two structures

plays important role, Fig. 6.2, and is taken into account by both approaches.
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(a) All modes used in ChMBF method.
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(b) One mode on the patch and one mode on the probe was used (denoted as ChMBF*).

Figure 6.2: S11 and input impedance computed by a direct moment solution of EFIE and by

ChMBF method. The reference impedance for S-parameters is 100 Ω, which is equivalent to

50 Ω in the case of infinite PEC plane.

It is expected, that for the ChMBF method, excitation of higher order modes, together

with a strong coupling between the structures will become a challenging problem. Therefore

4Equal to the dimension of the impedance matrix.
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the second considered example is the second iteration SAU fractal motif from Fig. 3.2, closely

coupled to an asymmetrically placed L-probe. The gap between the motif and the probe is 1

mm (0.0083 wavelengths at 2.5 GHz).

185 Edges, 176 Triangles, min(L)=2 mm,
mean(L)=6.89 mm, max(L)=13 mm

Figure 6.3: Mirrored configuration of a SAU motif, excited by an L-probe.

Moreover the probe is placed asymmetrically and provides a localized coupling, which will

excite higher order modes of the self-affine motif. This can be easily checked by inspecting the

current distribution in Fig. 6.4, which is highly asymmetrical and different from the several

first modes, see Fig. 3.2.

The input impedance is plotted in Fig. 6.5, and a difference between the two methods

is observed. On the other hand, its magnitude is quite small, thus it is probably due to

finite numerical precision of the method5. Note, that the impedance is a nontrivial function

of frequency, which confirms, that several modes are strongly contributing to the antenna

performance in the selected frequency range.

6.4 Correlation between Scatterer ChM and System ChM

It was demonstrated, that the total current on a system of scatterers can be understood

as a weighted sum of individual scatterer’s characteristic modes. It has been observed that

the modes of a system often resemble the modes of a single scatterer. This effect will be

investigated in terms of the correlation of a current density distribution in this section. The

tests will be performed on the same antennas as in the previous section.

Consider an a-th mode of the system of scatterers, represented by RWG expansion co-

efficient vector IIIsys,a, see (6.4). Then the correlation coefficient ρ with the m-th mode of a

5Also matrix condition number can play important role, further investigation of the discrepancy have not

been yet undertaken.
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Figure 6.4: Top view of the current distribution on the SAU, highly coupled to the L-probe

at 2, 3, and 3.5 GHz. The small difference between RWG MoM and ChMBF is noticeable in

the amplitude of the currents and in the lower left part of the motif.
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Figure 6.5: Input impedance computed by a direct solution of EFIE and by ChMBF method

using all numerically obtained modes.
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scatterer is computed by MATLAB function corrcoef [123, p. 41]. The correlation coefficients

are computed for all modes considered on the patch motif at all frequencies.
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Figure 6.6: Correlation of all modes on SAU motif with modes 1, 3, and 12 of the system in

Fig. 6.3.

Selected cases of the correlation coefficients are plotted in Fig. 6.6. Similar graphs can be

generated for each mode of the system. It was observed, that the modes of the system may

be dominantly correlated with a single mode of a scatterer. On the other hand, it is common,

that there exist a frequency range, where a mode of the system is in fact constituted by a

combination of several modes of its scatterers.

The above mentioned combining of the scatterers’ modes may be confirmed by another

approach. If the TCM is performed using the ChMBF method, we will obtain the expansion

coefficients ccca, which represent how the scatterer’s modes are summed to constitute a system

mode.
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6.5 Investigating the Effect of an Infinite PEC and PMC Plane

The ChMBF method can be used to investigate the effect of a height of a planar motif over

an infinite PEC or PMC6 plane. These two cases are computed at once if the structure is

mirrored over XY plane. The out-of-phase currents correspond to the PEC plane and the

in-phase currents correspond to the PMC plane.

The ChMBF method can be applied on a single mode of a planar motif placed in height

H over an infinite conducting plane. The eigenvalue equation (6.7) for single mode takes a

simple form of

(
X11 X12

X12 X22

)(
ca,1
ca,2

)
= λa

(
R11 R12

R12 R22

)(
ca,1
ca,2

)
, (6.8)

where X11 = X22 = λm and R11 = R22 = 1 and the off-diagonal elements are evaluated by

(6.6). There exist two solutions of the equation, ca,1 = ca,2 and ca,1 = −ca,2 which represents

the in-phase and out-of-phase currents (PEC and PMC planes). Associated with these two

eigenvectors are the eigenvalues

λ+
a =

λm +X12

1 +R12
, λ−a =

λm −X12

1−R12
. (6.9)

The eigenangles computed by TCM and by (6.8) are plotted in Fig. 6.7. It can be seen

that the eigenvalues of a mirrored mode (PEC and PMC cases) oscillate about the eigenvalue

λm of the mode in free space. With the increased height, more oscillations with smaller

amplitude are observed within a fixed frequency range.
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Figure 6.7: Eigenangles of the mirrored configuration of scatterers.

6Perfect magnetic conductor.
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While the eigenvalues computed by (6.8) and (6.9) are exactly the same, the second

equation is more suitable for explaining the oscillations. It is intuitively expected, that the

oscillations are caused by the evolution of coupling between the two modes with height.

Using ChMBF, the coupling may be computed in terms of the off-diagonal terms of the

modal impedance matrix, Fig. 6.8. It seams, that the oscillations occur independently on the

current distribution, at least for the first two modes of a rectangular patch and the SAU motif,

Fig. 6.8. It is therefore possible to address the behavior of the modal resonant frequency in

Fig. 3.15 to the evolution of coupling, which for certain heights causes a very high sensitivity

of fres on H.

1 1.5 2 2.5 3 3.5 4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

f [GHz]

M
od
al
Z 1

2

Mode 1 (Re)
Mode 1 (Im)
Mode 1 (Mag)

Mode 2 (Re)
Mode 2 (Im)
Mode 2 (Mag)

(a) Rectangular patch, H = 50 mm.

1 1.5 2 2.5 3 3.5 4
−0.4

−0.2

0

0.2

0.4

0.6

f [GHz]

M
od

al
Z 1

2

Mode 1 (Re)
Mode 1 (Im)
Mode 1 (Mag)

Mode 2 (Re)
Mode 2 (Im)
Mode 2 (Mag)

(b) SAU, H = 90 mm.

Figure 6.8: Frequency dependency of real part, imaginary part and magnitude of Z21 = Z12.

6.6 Conclusion

A method of computing modes and antenna response to an excitation of a system of scatterers

was derived and verified in this chapter. The key advantage of the ChMBF method is that it

is able to quantify the coupling between individual modes of scatterers creating an antenna.

The method can give accurate results if all modes were considered, which was demonstrated

on a rectangular patch antenna and a SAU fractal motif fed by an L-probe. The procedure

is particularly useful for antennas, where only several modes are dominantly excited. Than

the ChMBF method provides information about relative amplitude of each mode, which can

be clearly interpreted. It is possible to use the information e.g. to ensure equal excitation of

two orthogonal on a motif to achieve a circular polarization.

The method has already been utilized for explaining the behavior of eigenvalues (and

resonant frequency) of a patch above PEC and PMC infinite plane. A very good match
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between ChMBF and TCM was observed and the oscillatory behavior of eigenvalues was

addressed to the frequency behavior of mutual coupling between the patch and its image.

Although, numerical efficiency is not the main purpose of the method, it is interesting

to note, that the smaller is the number of modes considered, the smaller matrix have to be

inverted. Nonetheless, the elements of the modal Z matrix, which relate modes on different

scatterers, have to be computed numerically. This fact may present computational advantage

if the relative position of the scatterers have to be optimized.
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7

Conclusion

7.1 Contributions of the Thesis

The most important contributions of the thesis are listed below:

• Designing a dual-band fractal antenna using the modal information and proposing a

dual L-probe to match the antenna simultaneously in both bands, journal paper [64].

• Designing an active differentially fed antenna with a very low equivalent noise temper-

ature, high CMMR, and wide bandwidth, conference paper [72].

• Explaining the effects of current distribution and height over an infinite PEC plane on

resonant frequency and radiation quality factor of high-Q and low-Q modes through

modal decomposition, journal paper [66].

• Developing a versatile surface mesh generation tool for the in-house modal analyzer,

journal paper [73] (in review).

• Analyzing the effects of quadrature errors on the numerical computation of character-

istic modes by the method of moments, journal paper [73] (in review).

• Formulating recommendations for a mesh refinement strategy, based on the error anal-

ysis, which have been verified in the in-house tool, as well as in the commercial FEKO

package, journal paper [73] (in review).

• Deriving the ChMBF method for computing coupling coefficients between modes of

individual scatterers.
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7.2 Future Suggestions

Literature review, as well as the work contained in this thesis, indicate a rapidly increasing

interest in the theory of characteristic modes. Significant attention is given to the usage of

the TCM for MIMO antenna design and electrically small antennas. However, the potential

application of TCM for intermediate size antennas, where several modes usually need to be

used in combination, be is worth exploring. Frequency selective surfaces are also a lesser

explored application of the TCM. Another appealing goal of modal design procedures is the

utilization of TCM for active differentially fed antennas. Wideband stability, noise figure,

gain and mixed mode S-parameters of such antennas have to be optimized simultaneously, and

therefore, modal results may speedup the design process. To address these issues, ChMBF

method has been proposed, however further research is necessary to solve the challenging

problem of active antenna design.

From a computational point of view, routines for combined conducting bodies and di-

electrics would increase the applicability of the modal approach and allow us to model more

realistic geometries. Since the characteristic modes are closely related to the integral equa-

tions and method of moments, techniques, such as higher order basis functions or layered

dielectrics, can be readily applied to TCM. Computation of modes by numerical techniques

other than MoM is another largely unexplored research area. Certain improvements can also

be reached in the eigenvalue tracking algorithms and criteria of modal significance in the sum

of the modes. In particular, a method for obtaining the relative contribution of each mode

without the necessity of computing all modes or direct EFIE solution will be of high interest.

Further research can also build up-on other authors’ recent definitions of sub-structure

and sub-system modes. It has already been shown, that these modes have similar properties

to characteristic modes and can be utilized to design of antennas mounted on a PCB, or

to reduce coupling between antenna elements. Rigorous study with regard to the physical

meaning of parameters of these modes has yet to be conducted.

The work described in this thesis opened another area of research - a numerical conver-

gence of the computational method based on EFIE and method of moments. It has already

been shown that eigenvalue dependency on certain sources of error is quite different from

the properties of a direct solution. However, rigorous handling of error sources in the TCM

remains a challenge.
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Index

attenuation constant, 17

Characteristic angle, 13

complex power balance, 11

correlation coefficient, 79

coupling matrix, 16

eigenfunctions, 12

eigenvalues, 12

equivalent volume current density, 17

inner product, 11

Kronecker delta function, 12

linear measurement, 15

modal admittance, 16

modal excitation coefficient, 15

modal expansion coefficients, 15

modal power loss, 17

modal radiation efficiency, 18

modal radiation pattern, 15

modal radiation quality factor, 14

modal signifficance, 18

modal significance measures, 18

modes, 12

power imposed by current sources, 11

power leaving the region, 11

primary results, 12

radiated power, 11

radiation intensity, 15

radiation pattern, 14

reaction, 10

reactive power, 11

resonant frequency, 13

scatterer, 75

secondary results, 12

symmetric product, 10

system of scatterers, 75

time averaged electric and magnetic energies,

11
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