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Abstract. In this paper, we use a formal analogy of the electromagnetic wave
equation and the Schrödinger equation in order to study the phenomenon of
perfect tunnelling (tunnelling with unitary transmittance) in a one-dimensional
semiconductor heterostructure. Using the Kane model of a semiconductor, we
show that this phenomenon can indeed exist, resembling all the interesting
features of the corresponding phenomenon in classical electromagnetism
in which metamaterials (substances with negative material parameters) are
involved. We believe that these results can pave the way toward interesting
applications in which metamaterial ideas are transferred into the semiconductor
domain.
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1. Introduction

The tunnelling of electrons through a potential barrier is a phenomenon that has been known
to physicists for a long time [1, 2]. Initially, the tunnelling amplitudes were known to take
appreciable values only on atomic scales. Later, however, use of the resonant tunnelling found
in semiconductor layered structures [3] opened the way to high tunnelling amplitudes even in
macroscopic devices, such as resonant tunnelling diodes.

Phenomena equivalent to quantum tunnelling are also known in other fields of physics, one
example being classical electromagnetism [4]. There, for example, a section of a hollow metallic
waveguide above the cutoff frequency can serve as the environment where the wave propagates,
while the section of the waveguide below the cutoff frequency can serve as the potential
barrier through which the photons can tunnel. In the field of electromagnetism, so-called
perfect tunnelling, i.e. tunnelling with a unitary transmission coefficient, has been proposed [5],
theoretically studied [6, 7] and experimentally proved [8] with the help of metamaterials [9],
which are substances that at some frequency offer negative permittivity and permeability values.

The aim of this paper is to show that perfect tunnelling, like other metamaterial-inspired
phenomena, such as negative refraction [10], can also exist in the quantum domain. The proposal
is based on the mathematical similarity of the Schrödinger equation and the electromagnetic
wave equation.

2. Maxwell–Schrödinger analogy

In order to proceed to perfect quantum tunnelling, let us first show an example of a perfect
tunnelling setup in the case of electromagnetic waves. The structure is sketched in figure 1,
and follows the idea presented in [6]. The layers are assumed to be laterally infinite, and the
plane waves are assumed to propagate perpendicular to the layers. The structure is fed by an
incident wave from vacuum region 1, which potentially also contains some reflected wave.
Regions 2, 3, 4 support only evanescent waves, due to the negative values of the constitutive
parameters. Any wave that tunnels the structure will appear in region 5. It has been shown [6]
that it is always possible to find such d1, d2 for which the tunnelling (transmission) through this
structure is equal to unity and can thus be called perfect, although the structure may contain
potential barriers of theoretically any thickness. A realistic example of this structure has been
experimentally studied [8] with the use of metamaterials. Note also that this perfect tunnelling
setup is not limited to three layers. Any number of such alternating negative parameter layers can
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Figure 1. Sketch of the electromagnetic perfect tunnelling setup.

be used [11, 12], leading to the same result. At this point it is important to note that the above-
described perfect tunnelling is strikingly different from usual Fabry–Perot resonance, where
phase propagation plays an essential role. On the contrary, in the described system, the phase
propagation in regions 2, 3, 4 is null and Fabry–Perot resonance cannot occur. Furthermore, by
proper settings of permittivity and permeability, the phase difference between input and output
can be made zero, which is impossible in the Fabry–Perot case.

The way to transform this structure into a quantum structure uses an analogy between the
electromagnetic wave equation and the Schrödinger equation [13–15]. More specifically, if the
longitudinal axis in figure 1 is denoted as the z-axis, the Maxwell equations for a monochromatic
plane wave with angular frequency ω propagating along this axis can be written as

∂

∂z

[
Ex

Hy

]
=

[
0 iωµ

iωε 0

] [
Ex

Hy

]
. (1)

Equation (1) has to be accompanied by proper boundary conditions for each boundary between
different material regions, namely

E+
x = E−

x (2)

and
1

µ+

∂E+
x

∂z
=

1

µ−

∂E−

x

∂z
. (3)

In the uniband approximation, however, the time-independent Schrödinger equation for the
wavefunction envelope ψ can be written as [16–18]

−h̄2

2m

∂2ψ

∂2z
+ Vψ = Eψ, (4)

where m is the effective mass of the particle in a given material, E is the energy of the particle,
and V is the potential step on the boundary between two adjacent materials. Equation (4) can
be further rewritten as

∂

∂z
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m
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0
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Figure 2. Sketch of the quantum perfect tunnelling setup.

and accompanied by proper boundary conditions, namely

ψ+
= ψ− (6)

and
1

m+

∂ψ+

∂z
=

1

m−

∂ψ−

∂z
. (7)

Note that (7) here replaces the usual condition for continuity of the derivative. This condition
arises from the electric current conservation on the material boundary [19], where the quantum
analogue of the electric current density is taken as j = es, with e as the electron charge and

s =
h̄

2im
(ψ∗

∇ψ −ψ∇ψ∗) (8)

as the probability density current.
Comparing (1)–(3) with (5)–(7), we can see that the Maxwell–Schrödinger analogy can

be made perfect and that the solution of (1) on the structure of figure 1 will be mathematically
identical with the quantum structure, where

Ex → ψ; µ→ m; ε→ 2 (E − V ) ; ω→ 1/h̄. (9)

It is also interesting to note that (8) gives another part of the Maxwell–Schrödinger analogy,
namely the analogy of the Poynting vector and the probability density current:

Re
[
Ex H ∗

y

]
→ sz. (10)

3. Theoretical analysis

We are thus about to study the structure shown in figure 2. Unfortunately, being rigorous, (4)
is not valid in any realistic semiconductor heterostructure. In fact, the heterostructure of two
materials A and B would be better described by the 8 × 8 Kane [20, 21] model:[

El0 −
h̄2

2m0

∂2

∂z2

]
fl (z)+

8∑
m=1

1

m0
〈ul0|

h̄

i

∂

∂z
|um0〉

h̄

i

∂ fm (z)

∂z
= E fl (z) (11)

with l = 1, . . . , 8, El0 as the double degenerate (spin) band edge energies (for k = 0) of the
conduction, light hole valence, heavy hole valence and split off valence bands (El0 is different
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for materials A and B), fl(z) as the corresponding envelope functions, m0 as the electron mass
and ul0 as the bulk material eigenfunctions for the mentioned bands at k = 0 that are assumed
to be the same in the entire heterostructure. In the following, we will denote the eight band edge
states by their symmetry properties: 06 as an s-like state with eigenvalues of angular momentum
J = 1/2, Jz = ±1/2, 08 as a p-like state with J = 3/2, Jz = ±1/2,±3/2 and07 as a p-like state
with J = 1/2, Jz = ±1/2.

The matrix system (11) represents the multiband nature of semiconductors, a phenomenon
that is not present in our electromagnetic problem. However, it has been shown [21, 22] that
the different spin states are not coupled in this model, and so the 8 × 8 system can be directly
reduced into two identical 4 × 4 systems. In addition, the heavy hole states are uncoupled to the
three light states (electron, light hole, split off hole), and thus the 4 × 4 system can be directly
separated into one heavy hole scalar equation and a 3 × 3 matrix system for the light states.
Finally, under a very reasonable approximation [22] of dropping the free space kinetic term
in the light hole and split off hole state equations (a very good approximation for the energy
and wave vector range of our interest), the 3 × 3 light states matrix system can be solved for
conduction states, leading to the scalar equation[

−
h̄2

2m

∂2

∂z2
+ E06

]
fc (z)= E fc (z) (12)

where
1

m
=

2P2

3

[
2

E − E08

+
1

E − E07

]
(13)

is the energy- and position-dependent effective mass. The quantities E06 , E08 and E07 are
the band edge energies of the 06, 08 and 07 bands, which are position dependent in a
step-like manner along the heterostructure. The quantity P =

−i
m0

〈S|
h̄
i
∂

∂x |X〉 =
−i
m0

〈S|
h̄
i
∂

∂y |Y 〉 =

−i
m0

〈S|
h̄
i
∂

∂z |Z〉 is the element of the Kane matrix where |S〉, |X〉, |Y 〉 and |Z〉 represent the s-like
and the three p-like eigenfunctions for k = 0.

The envelope equation (12) is accompanied by appropriate boundary conditions, which
read

fc(z
+)= fc(z

−) (14)

and
1

m+

∂ fc(z+)

∂z
=

1

m−

∂ fc(z−)

∂z
. (15)

Thus, the equation for fc(z) and its boundary conditions are analogous to (4), (6) and (7), with
the only difference being that the effective mass is now a function of the energy and some
adjustable parameters.

Before moving to practical implementation, it is worth mentioning that the simple Kane
model presented above is mostly qualitative. Its qualitative validity has been confirmed in the
past by a more sophisticated tight binding method [23, 24]; however, quantitative differences
from reality are expected.

4. Practical implementation

Comparing the scheme of figure 2 with the above-mentioned mathematical formalism, we can
arrive at a possible implementation of the perfect tunnelling setup using the Hg1−xCdxTe ternary
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Figure 3. E−x plane of Hg1−xCdxTe ternary alloy. The solid lines correspond to
E06 and E08 as functions of mixing parameter x and divide the plane into four
fields with different signs of mass and energy difference. The dotted lines define
the band of energies of possible perfect tunnelling.

Figure 4. Band diagram sketch of the realistic quantum tunnelling structure. Note
that in regions 2, 3, 4 the energy line lies inside the bandgap.

alloy. The heterostructures of this alloy have been extensively studied [25–27] for the possibility
of the existence of interface states that are indeed closely related to the perfect tunnelling. The
parameters needed for calculating the envelope function via (12) and (13) can be obtained from
reliable measurements or from first principles calculations [28–30], which suggest 2m0 P2

≈

18.5 eV, E06 ≈ (1.47x + 0.08) eV, E08 ≈ (−0.36x + 0.36) eV and E07 ≈ (−0.36x − 0.59) eV,
where x represents the Hg1−xCdxTe mole fraction. These values are also in agreement with a
recent review [31] of HgCdTe alloys.

The possibilities of the Hg1−xCdxTe alloy are graphically represented in figure 3. The
proposed perfect tunnelling requires three different combinations of m and (E − V ) at a
given energy value, a condition that is satisfied for any energy between the two dotted lines
in figure 3. An obvious possibility is thus the setup depicted in figure 4, which is also the
setup with the highest energy band of operation, thus allowing a looser choice of structural
dimensions.
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Figure 5. Amplitude of the transmission coefficient through the structure of
figure 4 for d1 = 1.26 nm, d2 = 10 nm.

Figure 6. Amplitude of the envelope function (12) in the structure of figure 4 for
the energy of maximum transmittance.

The transmission coefficient in the perfect tunnelling energy band and the amplitude
of the envelope function at the transmission maximum were calculated for d1 = 1.26 nm,
d2 = 10 nm, and are depicted in figures 5 and 6. The transmission coefficient was obtained
by the transfer matrix method and the envelope function amplitude was obtained by backward
unfolding of the matrix cascade. The dimensions were chosen so that the perfect tunnelling
occurs at E = 0.34 eV, which corresponds to the effective mass and potential difference in each
layer [m, E06] given by [0.0027 m0, 0.30 eV], [0.024 m0, 1.55 eV], [−0.0016 m0, 0.08 eV] for
regions 1 (5), 2 (4), 3, respectively. Any reasonably small change in dimensions will lead to a
shift in the tunnelling energy; however, at that energy the phenomenon will be the same. This
means that in the real experiment the structural dimensions need only be moderately precise,
but the source has to be fine tuned in energy.

Both figures 5 and 6 clearly present the perfect tunnelling that we are looking for, including
the interface states maxima [25–27] at the boundaries where the effective mass changes its
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sign. By analogy with the electromagnetic problem, it can also be shown that at the energy
of unitary transmittance the probability density current (8) will be constant along the whole
heterostructure. At this point it is important to stress that unitary transmission is achieved at
energies for which regions 2, 3, 4 support only evanescent waves. This phenomenon is thus
very different from the usual resonant tunnelling, for which region 3 is propagative with either
m > 0, (E − V ) > 0 (resonant tunnelling diode) or m < 0, (E − V ) < 0 (interband resonant
tunnelling diode).

5. Conclusions

In summary, we have exploited the formal analogy of the electromagnetic wave equation and
the Schrödinger equation to transfer the idea of electromagnetic perfect tunnelling into the
semiconductor domain. Using the well-accepted Kane model of a semiconductor, we have
particularly shown that perfect tunnelling can be found in one-dimensional semiconductor
heterostructures composed of HgCdTe ternary alloys exhibiting all the features of the
electromagnetic phenomenon. We think that the results reported here can stimulate greater
interest in extending the physical concept of metamaterials into the semiconductor domain,
leading to interesting new applications.
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