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CHAPTER 1

Introduction

The early alert monitoring system for an effective scheduled maintenance
strategy based on a wireless technology requires reliable transfer of di-
agnostic information between the sensor and the gateway. The thesis
presents WSN-based machine condition monitoring (MCM) system ca-
pable of overcoming a false indication caused by temporary loss of data,
signal interference or invalid data.

We establish multi-sensor fusion driven by a quality parameter, pro-
duced by each sensor node according to the data history outliers and
the actual state of the node. The fusion node also provides a quality
evaluation on its output.

This novel approach enables the propagation of information about
the uncertainty of a measured value from the source node to the sink
node. Thus potential degradation of acquired or transferred diagnostic
information is minimized. Instead of raw data the signal features are
transferred, so that bandwidth savings are improved considerably.

The proposed concept was experimentally verified on real WSN hard-
ware. The performance evaluated using the Signal-to-Noise ratio and
false alarm rate detection demonstrates the effectiveness of the proposed
approach. The results confirm that the proposed system has similar
reliability to a sensor connected by wire to a central unit.

The machine condition monitoring system based on WSN with multi-
sensor fusion is able to monitor a critical application, and even to monitor
light aircraft powerplants.



CHAPTER 2

State of the art

Commercial air transport is one of the safest forms of travel. This has
been proved by data collected and published by national, union and inter-
national aviation safety authorities like ICAO (International Civil Avia-
tion Organization) and EASA (European Aviation Safety Agency) |1H3].
However, light aircraft (Maximum Take Off Mass below 2250 kg) with
the very rapidly growing subcategory of microlights (also called ultra-
lights) used for recreational, personal and sports flying do not show such
positive safety records as for larger aircraft. For example, EASA data
records 129 fatal accidents in 2010 and 169 fatal accidents in 2011 in the
EU countries.

One of the factors affecting the progress in commercial aircraft safety,
alongside improved aircraft design, engineering, the evolution of nav-
igation aids and avionics, has been the development of maintenance
schemes [4]. In contrast to the highly-developed maintenance scheme
and the strict inspection processes for CAT operation aircraft, light air-
craft do not use any condition-based approach to maintenance.

2.1 Machine condition monitoring (MCM)

Present-day machine condition monitoring (MCM) techniques are able
to detect many types of mechanical faults in the industrial field. Early
fault detection of a rotating device, e.g. imbalance, misalignment, bear-
ing faults, and mechanical looseness protects the device against a fatal
accident.

The increasing number of light and very light aircraft for personal
use (i.e. sightseeing, sports activities, or private flights) has led to an
increased number of accidents. Hence the general idea of this thesis is
to introduce a low-cost early warning system into newly-produced and
also currently operating light aircraft.

The adoption of network communication technologies in factory mon-
itoring and automation systems also establishes new technologies for
MCM systems. Recent research papers refer to wireless MCM tech-
niques [5]. Wireless sensors and their networks can offer very attractive
progress not merely in factory monitoring but also in the aerospace area.



2.2 Wireless MCM

The main benefit of a wireless approach, as opposed to a wired system,
is that there is unrestrained sensor placement, installation and mainte-
nance. A wireless sensor can be freely mounted on moving, rotating parts
and in many types of environments, including hazardous areas. In addi-
tion, a wireless sensor is easier to install in new or already-functioning
machinery equipment.

Technology with sensing, data processing and communication capa-
bilities is referred to as a Wireless Sensor Network (WSN) [6]. WSNs
are characterized by flexibility, self-organization, self-configuration, in-
herent intelligent-processing capability, and the ability to be deployed
rapidly [7]. The sensor nodes employ miniaturized hardware design,
miscellaneous sets of energy-efficient communication protocols [81/9], var-
ious communication technologies [10], suitable power sources and energy
management |11]. However, sensor nodes have constrained hardware re-
sources due to power supply from batteries or from energy harvesting
systems. This has a significant effect on transfer rate and computing
complexity.

Some producers of MCM systems already offer a wireless monitoring
solution where the wire connection is replaced by wireless technology.
Two basic approaches are used:

e A broadband wireless technology (e.g. Wi-Fi): This re-
places signal cables from sensors to a central processing unit. The
power supply remains wired due to the high energy consumption
of broadband wireless sensors (Wi-Fi uses up to 100 mW transmit-
ting power). This enables high-speed data transfer from sensors to
a freely mounted central unit. The benefit is a constantly unclut-
tered workspace even if many sensors are engaged.

e A self-powered wireless sensor: This type of system has to be
composed from low-energy consumption hardware, an optimized
software code and adapted signal processing methods. For exam-
ple, the sensors acquire signals in time slots or react to specific
excitation (some event occurs or the threshold of a measured value
is exceeded), otherwise they are in sleep mode to save energy. The
sensors are then wire-free stand-alone units.

Recent research papers refer to wireless sensors and their net-
works for industrial deployment as Industrial Wireless Sensor Networks
(IWSNs) [12/13]. IWSN ideas result from an effort to introduce and



adapt already known wireless sensor network (WSN) technology into in-
dustrial applications. The centralised star topology that many systems
currently use does not utilize the sophisticated networking available un-
der a WSN system. The WSN concept is based on a large mesh network
between nodes equipped with a sensor to ensure a reliable measurement
task over a wide area. The sensor nodes employ a miniaturized hard-
ware design, miscellaneous sets of energy-efficient communication proto-
cols [8,/9] and communication technologies [10], suitable power sources
and energy management [14]. The sensor node is able to carry out only
simple computing tasks due to restrained resources, but if signal and da-
ta processing distribution among nodes is engaged, the network achieves
robustness and sophisticated functionality.

Various already published subsystems can be well utilized in MCM.
However, propagation of maximum information content picked up from
a device by sensors to a sink node, while the system complexity and the
energy consumption of each node remain reasonable, remains a major
challenge for WSN application in the CM area. To the best of the au-
thor’s knowledge, several studies for high-sampling IWSN systems have
been presented in the literature, but no complex solution is available,
not even in another application than MCM.



CHAPTER 3

Aims of the doctoral thesis

Sudden loss of aircraft power plant power is a very stressful situation in
which pilots have a tendency to make an incorrect judgment leading to
an accident. A warning signal or a message from an aircraft condition
monitoring system can alert the pilot to oncoming failure in advance.
A well-informed pilot can make a more confident decision [15]. The
system has to detect a fault before it develops into a serious failure. In
addition, comfortable installation and maintenance are required, without
increasing the overall weight and complexity of the avionics. This type
of situation is a major challenge for wireless sensor networks, where it is
attractive to have a simple mounted sensor node capable of monitoring
abnormal device behavior, communicating with neighboring sensors in
order to process data, and transferring the results to an indicator on the
instrument panel of an aircraft.

3.1 Specific aims of the doctoral thesis

The early alert monitoring system for an effective scheduled maintenance
strategy based on wireless technology requires reliable transfer of diag-
nostic information between the sensor and the gateway. This thesis aims
to improve WSN reliability to the level achieved with a wired connection,
by means of:

e WSN-based MCM system design: The present-day WSN
scheme used for monitoring purposes (presence of enemies, forest
fires, etc.) is not feasible for signal monitoring using high sample
rates. The aim is to propose a new scheme based on distribut-
ed signal processing methods, taking into account the nature of
diagnostic signals.

e WSN reliability improvement: A redundancy-based fusion
concept is capable of overcoming a false indication caused by tem-
porary loss of data, signal interference or invalid data. This is
especially true if multi-sensor fusion is driven by a quality parame-
ter corresponding with sensor node imperfections (signal jamming,
health of a sensor node - battery discharging).



¢ WSN bandwidth savings: A raw diagnostic signal represents
a huge number of samples in addition to the redundancy concept,
which increases the amount of data in the input section of the
network. Instead of raw data, the signal features will be transferred
and a compression method will be engaged.

e Verification: The proposed methods will be simulated in a high-
level interpreter language (e.g. Matlab) to optimize the efficiency.

e Performance evaluation: The proposed multi-sensor fusion sys-
tem will be implemented in real WSN hardware and performance
tests will be carried out.

This novel approach will enable information about the uncertainty of
a measured value to be propagated from the source node to the sink node.
In this way, potential degradation of acquired or transferred diagnostic
information will be minimized.



CHAPTER 4

Proposed methods

A wide-ranging wireless diagnostic system monitoring fast-changing sig-
nals (e.g. mechanical vibrations) based on the advantages of WSN tech-
nology is not feasible without engaging distributed signal processing
methods.

The key idea for introducing these systems is based on distributed
signal processing methods, mainly information fusion, see Fig.

e The entry level consists of sensor nodes equipped with a built-
in sensor or ADC with an externally connected sensor. If more
sensors of the same type are connected to a sensor node, raw data
fusion can be performed to reduce the information produced by
the sensor node.

e To reduce drawbacks caused by wireless data transfer or restricted
power capabilities (battery discharging), the sensor nodes can be
placed in redundant fashion. Several sensors sense the same phe-
nomenon. Due to the feature fusion node, correct information is
transferred, even if one or more sensors are corrupted.

e Various phenomena can be classified, and partial results can be
combined into a final condition evaluation of the monitored device.

This concept ensures efficient information transfer through a wireless
sensor network, suppressing node resources overload and/or communi-
cation channel overload.

We focus especially on the segment between the sensor nodes and
the feature fusion node. Established redundancy in a number of sensors
suppresses the disadvantages of WSN systems (susceptibility to sensor
degradation, unreliable RF links, etc.), see Fig.

4.1 Sensor Node

The proposed sensor node software design is depicted in detail in a block
diagram in Fig. 4.3l The initial node settings (referred to as “preset”
in the figure) are executed by a dissemination message in connection
with the node identification number (ID). The feature extraction method
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and the invariables are determined. Raw signal data picked up by an
integrated sensor or (in this case) by an ADC connected sensor enter the
node. The first processing method uses feature extraction. The output
of the feature extraction method is an output of the sensor node if the
data compression method is not engaged. The same data are saved into
the memory buffer as part of overall quality computation based on trend
monitoring. Further quality computation sources are the sensor node
inner status and checks on whether a feature is within a physical limit
or within a predefined pattern.
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Figure 4.3: Sensor node scheme

4.1.1 Feature Extraction Methods

On the basis of signal features used in MCM, we adopt RMS, the crest
factor and the discrete Fourier transform (DFT) of vector x, computed
with a fast Fourier transform (FFT) algorithm. The block labeled as “1”
does not perform any extraction method. This option transfers raw time
signal data into the node mainly for testing and verification purposes.



4.1.2 Data compression methods

Data compression methods lead to radical bandwidth saving when only
the main spectral components are transferred via the network, instead
of the original full spectrum. The data compression block provides a list
of frequencies and amplitudes of spectral components with amplitudes
higher than threshold value T:

T=Fk-RMS (4.1)

where the £ is a constant depending on the amplitude distribution

of the noise, and RMS is a root mean square value. We propose the

RMS function because of its presence in the sensor node (see the RMS

block in Fig . Another method for setting the threshold could be a

level (e.g. a minimal bin) at the position of the first n harmonics, i.e.

multiples of the rotating frequency. However, the definition of n requires
expert knowledge about the monitored device.

4.1.3 Quality evaluation

The state of the node is represented mainly by the supply voltage (pri-
marily from a battery) and the strength of the RF signal to a neighbor
node/s. Both of these quantities have a significant impact on the trans-
ferred signal. Although each node is equipped with a voltage regulator,
fluctuation in the input voltage and discharging near to low level has a
negative influence on the voltage reference of ADC, RF power and all
other circuits of the node. RF signal strength could not be used to com-
pute directly in the sensor node because of its absence. The RF received
signal strength indication (RSSI) is read directly from the CC2420 Radio
and sent with every radio packet. It is possible to use a previous RSSI
datum or additionally the current RSSI at the fusion node input.

Data history outliers compare a few previous records with a current
value by the trapezoidal membership function (4.2).

0, s(i) <a
S(bil;a, a<s(i)<b
f(s;a;b5¢,d) = q 1, b<s(i)<c (4.2)
120 e <s(i) <d
0, d < s(i)

The current sample is described as s(i). The parameters a, d locating
the ‘feet’ and b, ¢ locating the ‘shoulders’ of the trapezoid are computed

10



by a proposed method introduced in the thesis. Previous data records
are collected in the memory block described as MEM. If time-domain
features are used, the current RMS value or crest factor value is com-
pared with the previous feature record. If frequency domain features are
applied, the current sample is compared with the sample at the same
position in the previous spectrum record.

The Physical limits block contains a simple comparison between the
current data and pre-set physical limits. In specific applications where
the frequency domain is engaged, simple threshold checking can be sub-
stituted for a comparison with an amplitude spectrum pattern.

Quality computation here involves all partial qualities combined into
a single overall quality. We model the quality of the physical limit using
a two-state logic. If the sample is outside the physical limit, quality ql
is strictly zero. For other qualities we use the geometric mean that one
quality term which is equal to zero does not drop overall quality ¢ to
Z€ro:

q=q1-vmean (qz...qn) - 2ndpercentile (qz . . . qn) (4.3)

Overall quality q is computed from partial qualities q1 to g5. With
the exception of quality ql, strictly assigned to zero if the value is out-
side defined physical limits, other partial qualities are computed by a
membership function. Quality q2 representing battery discharging uses
a sigmoidal membership function. Other qualities use trapezoidal mem-
bership functions. The membership curve depends on scalar parameters.

If RSSI is computed in the fusion node the final quality equation
takes on the form:

4 = \/Qreceived " qRSST (4.4)
where ¢receivea 1S (4.3) without a readout on RF signal strength.

4.2 Data Fusion Node

The data fusion node consists of a data fusion block with the implemen-
tation of a data fusion algorithm. We verified DST-based fusion and
fuzzy-based fusion. The idea of a fusion node requires an algorithm that
produces a quality estimate of the fusion process in addition to the fusion
result. The other blocks correspond to the sensor node structure.

11
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4.2.1 Dempster-Shafer theory based fusion method

Our interpretation deals with Barnett’s algorithm 16|, which is a special
case of belief functions focused on singletons (one-element subsets), so
the computation requires only linear time.

poi =ax [ glae (4.5)

pa({ih) =1 - T]( = i ({}) (4.6)

S

|A| 1Al

Kl — [[1(1 —mi({ 1+ Z - uz (4.7)
HlAl

'L'

m({q}) = K-p, [[ di = m({i} = K- p,22=2—

i7#q

) (4.8)

The fusion algorithm can be divided into four blocks, according to
the main computation tasks, see Fig.

1. The input data range is delimited (min, max value) and is frac-
tioned into segments of constant width. Optionally, we establish a
dynamic range correction so that the median of all valid values lies
in the middle of a segment. Finally, the Gaussian function g(z) is
constructed over the value from a node (the Gaussian interprets
the distribution of the measurement uncertainty in addition to the
fact that the area of the bell curve is always equal to 1).

12



2. Each item of evidence is represented as a mass function p;;(A), the
value of which on segment i is the area under the Gaussian bell
curve multiplied by the evaluation quality (4.5). Then the basic
probability assignment p; is computed as the orthogonal sum of
i; by using .

3. The combination of evidence is processed by Dempster’s rule, so
that it produces the final mass function m(A), using (4.8). The
quantity m(A), is called A’s basic probability number. It repre-
sents our exact belief in the proposition represented by A (the
most credible segment). In other words, this quantity represents
the fusion quality in our scheme.

4. As aresult of fusion the most credible segment loses precision, since
it is wider than a single input value. We therefore adopt a weighted
average to regain precision for the fusion result f according to .

C ion of a p it Co ion of evi Dempster’s rule of combination

o delimit input data range (min, max) « each evidence is represented asa | | » JyfA) is combined to a new mass function
o fraction range into the same width mass function gyfA) HA)EQ. 2)

segments «  HyfA)is given by the area under * Dempster's rule of combination is then
T meaan o ol vali valocs i the | | e “bell curve” over the value of | | appied o mass uncion f4A4)

middle of one range section (optional) node fin segment / multiplied by | | 4 the result Eq. 4 is a final mass function
+ Gaussian function gjX) is constructed quality g/(Eq. 1) mA)
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Figure 4.5: The Dempster-Shafer-based data fusion process
ZS /Jij({zmax m(A }) X Sj . .
f= ) S={ll<j<k}  (49)

ZS Hij ({imax(m(A)) })
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4.2.2 Fuzzy logic-based fusion method

Fuzzy logic-based data fusion is an effective paradigm for mapping an
imprecise input space to an output space. The general fuzzy system
is defined by inputs, outputs, membership functions associated with a
given fuzzy set and a list of IF-THEN statements, called rules.

Our problem has 2j input variables (j feature data, j quality data)
and two output variables (fusion, quality of fusion). Input feature sam-
ples are normalized, i.e. the highest sample value is equal to 1. We use
the Mamdani scheme for the fuzzy system in Fig. We have proposed
two sets of rules. The first set is for the fusion output, and the second
set is for the quality output. To create a general set of rules we proceed
from a generic truth table (established according to Boolean logic) and
simple expert knowledge.

Let us assume two sensor nodes. The value of the first node is high
(1), and the second also has a high value (1). The quality indicator of
the first sensor node is high (1) and the quality of the second is also high
(1). The fusion result and the quality of the fusion have to be high, or
both have to be low in the opposite situation. It is evident that a few
contradictory statements occur. For example value 1 — high, quality 1 —
high and value 2 - low, quality 2 — high. If we repeat this approach for
all alternatives we get the complete truth table. To simplify the logic
expressions - i.e. to write a minimal Boolean expression representing the
required logic - we use the well-known Karnaugh map.

We therefore prepare a “moderate” version and a more “radical”
version of the rules. The moderate approach, unlike the radical approach,
means that in the event of a contradictory statement the result is high.
These rules can be verbalized as follows:

Moderate fusion output — is high

e If at least one half of the sensors declare both feature and quality
high.

e If a minority of the sensors declare both feature and quality high
and at least one half of the other sensors have quality low.

e If a minority of the sensors declare both feature and quality high
and the same number of sensors have quality high and feature low.

14



Radical fusion output — is high

e If more than one half of the sensors declare both feature and quality
high.

e If a minority or one half of the sensors declare both feature and
quality high, and more than one half of the other sensors have
quality low.

e If exactly one half of the sensors declare both feature and quality
high and one half of the other sensors have quality low and feature
high.

Moderate quality of fusion output — is high

e If at least one half of the sensors declare the quality high and their
features have the same value (0 or 1), and if the other exact half
of the sensors are not in direct contradiction (f1 — high, q1 — high;
2 — low, g2 — high).

Radical quality of fusion output — is high

e If more than one half of the sensors declare the quality high and
their features have the same value (0 or 1).

The next step is to combine these rules into a rule-based system (e.g.
nine rules for the moderate fusion output). We define the membership
functions for fuzzification as trapezoidal-shaped for feature input and
quality input, and also for both defuzzification outputs.

Finally, both outputs of fuzzy fusion lie in the interval (0,1). This
range is adequate for quality evaluation of the fusion, but the amplitude
of the fusion output has to lie within the same range as the feature input.
This is arranged by multiplying the highest input feature sample by the
resultant sample of fuzzy fusion (see Fig. [4.6)).

15
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CHAPTER 5

Results

The achievements of this doctoral project are well summarized in
Fig. [5.1] The ball bearing housing is measured by three WSN sensor
nodes (accelerometers). All sensors are mounted at one place in re-
dundancy fashion. All sensors make improper measurements of physical
phenomena (i.e. vibration) to simulate imperfections in the wireless mea-
surement chain. This means that the redundant sensors are improperly
mounted, temporarily terminated, overloaded, etc. Raw signals, in the
top row in the figure, demonstrate invalid measurements in the time-
domain. WSN technology is limited in bandwidth (250 kbps), which
means that it is not feasible to acquire raw data samples and transfer
them to a central unit to analyse all of them. Therefore each sensor
node extracts a signal feature (the middle row of the figure). In this
case, it is an amplitude spectrum, where the data are reduced whereas
MCM useful information is maintained. However, the imperfection of
individual measurements persists. This is solved by the next level of the
nodes, where the sensor nodes transfer their data. We have called this
level the feature fusion level, where the data are aggregated. The output
of the feature fusion level node is demonstrated in the bottom row of the
figure. We have proposed two independent aggregation methods based
on information fusion. The first is based on Dempster-Shafer theory (we
refer to it as DST fusion), while the second is based on fuzzy-logic (we
refer to it as fuzzy-logic fusion).

Both algorithms making information fusion are driven by a quality
indicator produced by the sensor nodes according to the validity of the
acquired data and the health of the sensor node. This concept was first
published by Hermans et al. [17] to improve temperature monitoring.
We adopted this idea for signals using high sampling rates, and we im-
prove it for signal feature extraction and quality indicator heuristics. We
have introduced a new fuzzy-logic based fusion algorithm. All proposed
methods have been verified via simulation and via real WSN experiments
numerically summarized in table

All experiments summarized in table demonstrated rapid signal
improvement when multi-sensor fusion was applied. In the case of the
first two experiments, where an artificial signal with artificial imperfec-

17
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Figure 5.1: Data fusion from three sensor nodes (top row — degraded
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spectrum produced by the nodes, bottom — fused spectrum produced by
the fusion node. The red line is the reference from a sensor connected
by wire).

Table 5.1: Summary of results

SNR(-), FAR(-), std
Simulation Simulation HW Real test

Raw feature data 28.16, 12.16, - 33.71, 13.31, - , 2.57 X 10~4

(average)
Fuzzy-logic fusion 60.4, 1.91, - 47.15, 3.48, - ,5.84 x 107°

(moderate)
Fuzzy-logic fusion 61.2, 1.64, - 49.54, 3.34, - 5.17 x 107°

(radical)
DST fusion 56.6, 0.86, - 42.29, 2.12, - -,6.12x107°
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tions (cut off, steps, jumps, overloading etc.) was used, the best result
was for the DST fusion method when FAR evaluation was engaged. In
the case of the SNR evaluation, however, both fuzzy-logic approaches
had better results. The better fuzzy-logic SNR results were due to the
extremely low level of amplitude outside the effective frequency bins be-
cause of signal normalizing between 0 and 1, followed by mapping logic
where the low amplitude levels are near to zero. The FAR results are of
greater importance for further feature analysis. They indicate whether
correct information is present or not. By optimizing the DST fusion pa-
rameters (i.e. sigma and length of segment) we achieve a very low value
of error occurrences in the features that are produced.

Real signals / features were compared by the average standard de-
viation of each sample position over 150 waveforms. The improvement
ratio (approximately five times) is very similar to the results from the
simulations.

Algorithmic implementation of the proposed fusion approaches is
simple and computationally inexpensive for use in wireless sensor net-
work nodes. Both algorithms take a similar amount of memory - approxi-
mately 30 KiB of ROM without optimization (the sensor node code takes
50 KiB of ROM). DST fusion parameters should be adapted to the mea-
sured signal / features. Fuzzy-logic based fusion is more general-purpose,
and mainly requires a definition of the logic rule strictness to define what
type of input is acceptable to transfer as output. However, an improper
setting of the rules or another part of the fuzzy-logic algorithm leads to
false results. DST fusion is more robust to an improper setting of the
input parameters.

Both proposed algorithms evaluate their own results. Information
about the quality of the signal and the condition of the network can
be transferred to a further network level. The presence of a quality
indicator in the data fusion node output also enables redundancy at this
level. Thus very reliable wireless systems are feasible, although high
sampled signals are monitored.

Finally, we attempted to increase the number of sensor nodes to
obtain a DST fused spectrum without any error (within both thresholds).
This situation for artificial signal sequence occurred when 8 sensor nodes
were engaged. Obviously, the more redundant the sensors were, the
higher the resistance to disturbances and imperfections in the transferred
signal. The experiments carried out in this thesis engaged three sensor
nodes in redundant fashion. Both proposed fusion algorithms produce
valuable results, while the complexity of the system remains reasonable.
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The number of redundant sensor nodes that is used should be a com-
promise between robustness and network size, based the demands for
particular applications. The main limitation of WSN multi-sensor fusion
system proposals, which has to be taking into account, is the bandwidth
of the IEEE 802.15.4 systems.
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CHAPTER 6

Conclusion

This thesis has worked on feature level fusion in the WSN-based early
warning monitoring MCM system to improve reliability. Feature lev-
el fusion deals with multi-sensor fusion, where a group of sensor nodes
measure the same physical phenomena at the same place in redundant
fashion. Instead of raw data, the sensor nodes transfer extracted fea-
tures such as diagnostic information contained in the measured signal.
Together with the features, each sensor node produces an uncertainty
evaluation of the transmitted information (referred to as quality). The
sensor node data are received by a fusion node, where the data are ag-
gregated to the most appropriate result with respect to the quality of
the received feature. The fusion node also evaluates its output by the
quality indicator.

The design described here has been verified by means of simulation
and real WSN experiments. For three independent nodes sensing the
same randomly degraded signal, the improvement in SNR is higher when
fuzzy fusion is applied. The radical approach produces slightly better
results than the moderate approach. The improvement is almost 1.5 X,
due to the extremely low level of amplitude outside the effective frequen-
cy bins. Fuzzy fusion consumes less than 50% of the computing time for
DST fusion. However, DST fusion is more efficient for preventing false
alarms (in our experiment 6 x fewer errors on an average). Moreover,
DST fusion does not contain inner variables (rules, membership function
settings, etc.) that strongly influence the results, as in fuzzy-logic based
fusion. DST fusion is influenced by the length of the segment and by the
sigma value, but this method produces appropriate results in a relatively
broad range of value settings between the apparent limits.

6.1 Accomplishment of the aims of the thesis

The aim of our project was to propose a quality-based data fusion
approach to propagate maximal information content picked up from
a device by a wireless sensor network to a sink node, while retaining
reasonable system complexity. This objective was addressed in the
following way:
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WSN-based MCM system design

making a review of the literature on aircraft MCM techniques and
WSN technology, summarising key issues for the establishment of
a WSN-based early warning monitoring system,

establishing an essential system design, taking into account the
character of the diagnostic signals, mainly vibrations, acquired
from various mechanical devices by conventional wire systems,

applying distributed signal processing methods, mainly informa-
tion fusion, see Fig. [41]

focusing on the feature fusion section of the scheme,

designing the structure of a sensor node and a fusion node,

Improving WSN reliability

utilizing redundancy - an information fusion scheme referred to as
multi-sensor fusion, as developed in the thesis,

proposing a quality indicator to drive the fusion based on signal
imperfections and the health of the acting WSN node,

composing a suitable heuristics for finding signal imperfections,
i.e. for identifying samples varying in comparison with previous
records,

establishing a fusion algorithm based on Dempster-Shafer theory
able to produce data aggregation and quality evaluation of fusion,

proposing a new fusion algorithm based on fuzzy logic in addition
to the DST fusion algorithm,

WSN bandwidth savings

proposing an asynchronous monitoring method that applies defined
time delay or event-based wake-up,

dealing with an enormous amount of raw data in the case of signal
monitoring with a high sample rate, using:

o extraction of features from the signal,
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o an FFT spectrum compression method executed by a thresh-
old limit driven by the RMS value,

Verification
e simulating the feature fusion WSN level in Matlab,

e evaluating sensor node heuristics that achieve the required perfor-
mance,

e establishing a False Alarm Rate (FAR) for evaluating the correct-
ness of the data,

e examining DST and fuzzy-logic based fusion algorithms influencing
the parameters,

e optimizing factors influencing feature fusion,
Performance evaluation

e arranging the proposed multi-sensor fusion system by implemen-
tation into real Crossbow Imote2 WSN hardware,

e conducting an experimental test showing the proper functionality
and feasibility of the proposed multi-sensor fusion in the WSN
system.

The results of this thesis have been published in two international
journals IEFEE Transactions on Industrial Flectronics, IEEE Transac-
tions on Industrial Informatics, and presented at three international ref-
ereed conferences. In addition, some partial results have been presented
locally, see the list of publications.

6.2 Future work

The weakest point of this thesis is the absence of a large-scale validation
campaign. The results of the proposed methods have been shown only
in the form of case studies on artificial signals and on one real device.
This problem is due to the difficulty in obtaining a large amount of real
data.

To complete the whole monitoring system, it is necessary to work
on the decision fusion part. This will involve proposing a suitable fault
classifier working in a constrained embedded system, as is required for
WSN nodes.
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Annotation

Strategie planované udrzby je zaloZzena na prubézném sledovani stavu
zafizeni se systémem vcasného varovani pfed nestandardnimi stavy v
chovani sledovaného zafizeni. Vyuziti bezdratové technologie WSN v
této oblasti by pfineslo fadu vyhod vychéazejicich z konstrukce sen-
zorového uzlu sité, ke kterému nevede zadny piivod. Takové feSeni
usnadni montaz senzoru na tézko dostupnd mista, ale zaroven otevira
moznosti pro zcela nové aplikace, napiiklad méfeni na pohyblivych
castech zafizeni.

Aby takovy systém mohl byt nasazen do prumyslové praxe, je
potieba zarucit spolehlivy pienos informace mezi senzorovymi uzly a
branou napojenou na nadiazeny kontrolér, ¢i pocitac. Tato préace
navrhuje systém pro sledovani stavu stroju zalozeny na technologii
WSN schopny piekonat falesné indikace zptisobené do¢asnou ztratou dat,
rusenim signalu nebo prenosem neplatnych dat a to za pouziti multi —
senzorové datové fuze rozhodujici se dle parametru kvality, zasilaném
senzorovym uzlem spolu s daty. Tento ukazatel je zalozen na stavu
senzorového uzlu (napédjent, sila signdlu) a porovnani aktudlni hodno-
ty s hodnotami v predchozich datovych zdznamech. Algoritmus datové
fuze rovnéz tento indikator poskytuje. Tento novy pfistup umoznuje
§iteni informace o nejistoté méfené hodnoty ze zdrojového uzlu az k
brané a zaroven vyfazuje neplatnd data na uzlech datové fuze. Tim
moznost degradace posilané diagnostické informace zna¢né klesa. Prenos
rychlych signali je zajistén extrakci a pfenosem piiznaku ze surovych
dat, tim dochézi k uspofe prenosové sitky pasma sité. Koncept byl ex-
perimentalné ovéren nejen matematickou simulaci, ale i na realném WSN
hardware (Imote2). Piedpoklddand efektivita systému byla vyhodnoce-
na pomoci poméru signdl / sum (SNR) a vlastnim detektorem ¢etnosti
vyskytu chyb (FAR).

Vysledky potvrzuji, ze se navrhovany piistup vyrovna dratovému
propojeni senzoru s méfici ustfednou. A proto lze takovy systém ap-
likovat i na kriticka zafizeni, jako jsou pohonné jednotky ultralehkych
letadel, kde se systém vcasné kontroly zdvad doposud nevyuziva.
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