
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

Bachelor’s thesis

Martin Fadrhons

Software for embedded module for image processing

Department of Cybernetics

Thesis supervisor: Ing. Tomáš Krajńık Ph.D.

fi,^,;L'
prof. Ing. *0,r,,. Maiik, DrSc.

eesk6 vysok6 udeni technick6 v Praze
Faku lta elektrotechnick6

Katedra kybernetikY

ZADANI ENTNLARSKE PRACE

Studen t : Ma r t i n Fad rhons

Studijni program: Kybernetika a robotika (baka16iskV)

Obor: Robotika

Nizev t6matu: Software pro vestavny modul pro zpracov6ni obrazu

Pokyny Pro vypracov6ni:

1. Seznamte se s vestavnym modulem pro zpracovani obrazu vyuZivanym v r6mci katedry
kybernetiky.

2. Seznamte se s metodami typu ' teach and repeat' pro navigaci mobilnich robot0.

3. Upravte software FPGA modulu tak, aby mohl implementovat vybranou metodu.

Seznam odborn6 l i teratury: Dod6 vedouci pr5ce'

Vedouci bakal6isk6 pr6ce: lng. TomirS Krajnlk, Ph.D.

Pfatnost zad6ni: do konce zimnlho semestru 201312014

vedouci katedry

Y Praze dne 10 . 1 .2013

Czech Technical University in Prague
Faculty of Electr ical Engineering

Department of Gybernetics

BACHELOR PROJECT ASSIGNMENT

Studen t : Ma r t i n Fad rhons

Study programme: Cybernetics and Robotics

Special isation: Robotics

Title of Bachelor Project: Software for Embedded Module for lmage Processing

Guidel ines:

1. Get to know the embedded module for image processing used by Department of Cybernetics.
2. Get to know the'teach and repeat' methods for mobile robot navigation.
3. Modify FPGA module's software so that it can implement the chosen method.

Bibliography/Sources: Wil l be provided by the supervisor

Bachelor Project Supervisor: lng. Tom55 Krajnik, Ph.D.

Vaf id untif : the end of the winter semester of academic vear 201312014

t/

/tttau
prof lng. v[oir i , Mai ik, Drsc.

Head of Department

Prague, January 10,2013

Acknowledgement

I would like to thank my family for support during my studies at the Czech Technical
University in Prague. I also would like to thank supervisor of my thesis Tomáš Krajńık for
his help and during work on this thesis.

Abstrakt

Tato práce popisuje úpravy provedené na zařizeńı zvaném SCHVAB
MiniModule, které zat́ım slouž́ı jen jako nástroj pro zpravováńı obrazu.
Ćılem úprav je, aby modul mohl implementovat navigačńı systém SURF-
Nav. Modul má naimplementovaný detektor význačných bod̊u v obraze
Speeded Up Robust Feature (SURF). Součásti úprav je i implementace
nového deskriptoru detekovaných význačných bod̊u Binary Robust In-
dependent Elementary Features (BRIEF). Na začátku práce se věnuji
obecně metodam v mobilńı robotice. Po té následuje diskuze navigačńıch
algoritmů. Daľśı kapitola se věnuje algoritmu SURF a deskriptor̊um
význačných bod̊u, následována kapitolou o MiniModulu. Na závěr jsou
vyhodnoceny provedené změny řadou experiment̊u.

Abstrakt

This thesis describes changes made on device called SCHVAB MiniMod-
ule which now only works as image processing tool. Goal of modifications
is implementation of SURFNav navigation algorithm. MiniModule have
implemented feature extractor algorithm Speeded Up Robust Features
(SURF). Part of modifications is implementation of new feature descrip-
tor Binary Robust Independent Elementary Features (BRIEF). Ad the
beginning of thesis I speak about methods in mobile robotics. After that
follows discussion of navigational methods. Next chapter is dedicated to
SURF algorithm and feature descriptors, followed with chapter about
SCHVAB MiniModule. It the end are modifications evaluated with ex-
periments.

CONTENTS

Contents

1 Introduction 1

2 Methods in mobile robotics 2

2.1 Localization . 2

2.1.1 Dead reckoning . 3

2.1.2 Beacon based localization . 3

2.1.3 Map based localization . 3

2.2 Motion planning . 4

2.3 Mapping . 4

2.4 Navigation . 6

2.5 Exploration . 6

3 Teach and repeat navigation methods 7

3.1 Methods discussion . 7

3.2 SURFNav . 8

3.2.1 Teaching phase . 8

3.2.2 Repeat phase . 9

4 Speeded Up Robust Features 12

4.1 Feature detection . 12

4.1.1 Integral image generation . 12

4.1.2 Interest point detection . 13

4.2 Feature description . 14

4.2.1 SURF descriptor . 14

4.2.2 BRIEF descriptor . 15

5 Device description 17

5.1 Hardware . 17

5.2 FPGA configuration . 18

5.3 Linux implementation . 19

i

CONTENTS

6 Experiments 21

6.1 BRIEF execution time . 21

6.2 Long-term navigation test . 22

6.3 Distinguishability measurements . 23

7 Conclusion 24

ii

LIST OF FIGURES

List of Figures

1 Basic navigation tasks interconnections. Courtesy of [1] 2

2 Maps examples . 5

3 Maps examples . 6

4 Integral image usage. Courtesy of [2] . 13

5 Discretised Gaussian kernel and their 2D approximations. Courtesy of [2] . 14

6 Example of BRIEF descriptor pairs. 16

7 SCHVAB MiniModule . 17

8 Hamming distances histogram and distribution. 22

9 Example of seasonal changes. Courtesy of [3]. 22

10 The dataset locations. Courtesy of [3]. 22

11 Heading estimation success rates. 23

iii

LIST OF TABLES

List of Tables

1 Executing time comparison. 21

2 Distinguishability . 23

3 Obsah CD . 28

iv

LIST OF SOURCE CODES

List of Source codes

1 Hamming distance computation function. 21

List of Algorithms

1 Learn one segment. Courtesy of [4]. 9

2 Traverse one segment. Courtesy of [4]. 10

v

1. INTRODUCTION

1 Introduction

If we want to make mobile robot autonomously move there are three main tasks that
must be solved. Even for the simplest tasks as moving from location A to location B robot
needs to know location of itself in the environment. Therefore localization is a must. But
it is not the only need, mapping creates map from robot’s sensor data. Finally, moving the
robot is called motion planning.

In other words navigation of robot is complicated task. But with growing computational
power it is possible to invent more sophisticated ways of robot navigation. However some-
times we want robot to be small, that means that it can’t carry powerful computer. Exactly
for that case was developed SCHVAB MiniModule. It is a small Field Programmable Gate
Array (FPGA), with PowerPC processor. This device is small and with relatively low power
consumption, which means longer battery life. The FPGA is configured to process images
from camera. Processed images are about to be used for visual navigation. Visual navi-
gation may be used as cheaper version of navigation systems based on laser radars that
are scanning environment. Application of this robot system may be found in military and
manufacturing industry.

Aim of this thesis is to continue on work started by Jan Šváb. Whole module concept
was designed to become a autonomously navigated robot. However not everything is ready
to make it happen. At the beginning we will take a look on global view of methods used in
mobile robotics. After that comes discussion of navigation methods suitable for SCHVAB
MiniModule. MiniModule will implement SURFNav navigation method and it is compared
to Simultaneous Localization and Mapping (SLAM), because it is very popular method
used in various applications. Afterwards will be SURFNav algorithm described.

In next chapter I will describe SURF and feature description methods. This is on of the
key components in visual navigation. Extracting features or landmarks is needed to create
visualize relations between robot an surrounding environment. Later in paper will reader
find description of SCHVAB MiniModule and information about done modifications. End
of the paper is dedicated to experiments and evaluation of made modifications.

1/28

2. METHODS IN MOBILE ROBOTICS

2 Methods in mobile robotics

For navigation purposes three main tasks need to be solved. We, the people, solve this
tasks every now and then and in the context of robot navigation these tasks remain the
same. These tasks are

• localization,

• motion planning,

• mapping.

All these parts of navigational process are closely related to each other, as we can see on
following diagram 1

Intelligent
Navigation

SLAM

Navigation Exploration

MappingLocalization

Motion Planning

Figure 1: Basic navigation tasks interconnections. Courtesy of [1]

2.1 Localization

If we want to be able to navigate robot we need to determine its position, this problem
solving is called localization. We can distinguish two major types of localization by absolute
and relative reference[5]. Localization may be continuous, where the initial position of
vehicle is a priori known or global localization, where the initial position of robot is not
known. Very special case is called kidnapped robot problem. In this case robot is suddenly
moved to another location.

2/28

2. METHODS IN MOBILE ROBOTICS

2.1.1 Dead reckoning

Dead reckoning (also known as deduced reckoning) is technique, which estimates current
position of vehicle from previously known position, speed over elapsed time and course[5].
Speed and course are measured with sensors. This is where the main disadvantage of
dead reckoning comes from. Even with very precise sensors there will be cumulative error.
This error is integrated over time which makes dead reckoning not suitable for long term
localization. But still dead reckoning is often used for estimating position in a context of
complex localization systems[6].

Odometry is the most frequently used dead reckoning method. It calculates speed and
position from signals of sensors connected to actuators. Most common method is IRC
(incremental rotary sensor) linked to wheel axis. From sensors’s signals is computed speed
or distance traveled by wheel, from this information we can estimate course. In this method
error can be increased due to wheel slip. Another method uses optical mice to estimate
position from speed and direction[7] or doppler sensors[8].

In aviation there are often used methods, that make use of accelerometers[9] or gyroscope[10].
These methods are called inertial localization. Inertial methods are used to supplement
GPS localization, it can be found in many new smart phones.

2.1.2 Beacon based localization

This method of localization is based on beacons, artificial objects, which are added to
the environment. There are two possible ways of approach. First is placing beacons in the
environment with known position and robot carries detection system. Second approach
locate detection system in the environment and beacon on the robot[11]. For determining
position of robot is used triangulation or trilateration[5]. Moreover these methods also can
provide heading of robot.

The most spread beacon method is GPS (Global Positioning System). Active beacons
are floating on the orbit of the Earth. Position computation is based on distances from each
satellite, whose positions is known. Disadvantage of GPS is that its signal is easily absorbed
or reflected. This is being solved by combining GPS with dead reckoning methods, usually
inertial ones, as mentioned before.

2.1.3 Map based localization

Map based localization is based on very clear procedure. Data from sensors are compared
to map. Map based localization is dependent on the interpretation of map, but the main
difference can be found in the ways of sensor data processing. In one case all data from
sensors create local map, which is consequently compared to global map[12]. This approach
is very conditional on sensitivity to changes of environment.

3/28

2. METHODS IN MOBILE ROBOTICS

In the other case are first detected well distinguishable patterns, these are called features
or landmarks[13]. Patterns are being matched with corresponding patterns contained in
map[14]. For better results there is a possibility to use beacons as landmarks. With this
approach you can get rid of noise from sensors.

2.2 Motion planning

Under the term motion planning we can find two major tasks: path planning and motion
control. The goal of the whole process is to move robot through path. The path planning
task finds suitable path without collisions. We can have other requirements such as the
cheapest way or if we want to explore to move only on unexplored places. Motion control
task just sends signal to actuators (e.g. wheels, legs or tracks).

2.3 Mapping

Maps are used as a tool for robots to establish their position in environment and they
are also used for motion planning. Maps are being built from robots sensors. Due to many
types of localization and motion planning, different types of maps are used in robotics[15].
We can divide maps to two groups - metrical and topological. Metrical maps have fixed
coordinates and are represented by sensor, geometrical, grid, meshes and landmark maps.
Topological maps contain only spatial relations.

Sensor maps

Sensor map is a recording of all sensory measurements. Collected data are not further
processed, however sensory maps are usually created for further processing of measured
data. Very popular method for gathering environment data is through laser scanners, also
radar or sonar are commonly used for gathering information. Typical representative of
sensor map is point cloud 2a.

Geometrical maps

These maps represent information about environment with the use of basic geometrical
shapes. For two-dimensional space it is usually lines (example in figure 2b) or polygons and
planes for three-dimensional space. Geometrical maps are suitable for use in environment
with high amount of flat surfaces such as indoor and urban ones. In comparison with
sensory maps significantly lesser amount of data needs to be stored into memory.

4/28

2. METHODS IN MOBILE ROBOTICS

Grid maps

We can also think of environment as grid of cells. Then we can assign to each cell
information about its inner space. One of the most common types of information is whether
cell is occupied or not in probabilistic way. It is called occupancy grid [16], [17]. Example
of two-dimensional occupancy grid can be seen in figure 2c. White colour represents cell
with high probability of being occupied, in other words it shows where obstacles are, black
colour represents free to roam area. Grey represents unexplored area.

(a) Sensory map. [4] (b) Geometrical map. [18] (c) Occupancy grid map. [18]

Figure 2: Maps examples

Meshes

In mobile robotics it is usually required to create map with as little as possible memory
consumption but with as many as possible information. But in other applications of map
building we might want to build exact models of environment. Purpose of these maps may
be for visualizing areas of interest. Mesh map can be built from point cloud sensory map
using triangulation [19]. Example of this technique is shown in figure 3a, original point
clouds can be seen in figure 2a.

Landmark maps

Landmark map consists of well distinguishable salient objects with known position.
This type of map is very popular in visual localization/navigation systems [20], [15]. In
this case landmarks are detected in images compared with ones already stored in the map
and afterwards the location is determined.

Topological maps

Topological map is graph representing environment. In this graph nodes stand for dis-
tinctive locations and edges link these locations. Additional information can be bound with

5/28

2. METHODS IN MOBILE ROBOTICS

node and edges, most common case is adding path to edges. Topological maps are suitable
for easy path planning. Well known example of topological is public transport scheme.
Another instance of topological map can be seen in figure 3b.

(a) Mesh map. [4] (b) Topological maps. [4]

Figure 3: Maps examples

2.4 Navigation

One of the key tasks in mobile robotics is navigation. Similar to using GPS navigation
in a car, when man is told where to ride, robots need to be told the same way. Basically
navigation tasks methods can be split into three groups: map based, map-less based and
map-building based navigation[21].

Map based navigation have two possible approaches. One are systems that need complete
map of environment before starting the navigation. The other type is called teach and
repeat method. Principle of those methods is described in chapter 3.

Map-less navigation systems only reacts on current observation of surroundings of robot.
They don’t use any map for navigation. Typical representative of last group map-building
navigations is SLAM which is also more described in chapter 3.

2.5 Exploration

Process of building mapping surroundings is called exploration. Most known exploring
application is connected with mapping of extraterrestrial surfaces [22]. We can describe
exploring process as a sequence of several repeating steps. First robot maps envinronment
and builds a map. Afterwards path is planned on the edge between known and unknown.
After that robot moves to given location and starts mapping again. Exploring can be also
performed in cooperative manner such as in [23].

6/28

3. TEACH AND REPEAT NAVIGATION METHODS

3 Teach and repeat navigation methods

The aim is to find suitable navigation method for SCHVAB MiniModule device. For
that purpose it was decided to use teach and repeat navigation method which is providing
a simple form of telling the robot which way to go. This method divides navigation in two
phases:

teach phase in which robot is driven along the path. Robot is recording signals from its
sensors and builds a map.

repeat phase in which robot compares sensor inputs with the map and moves along the
taught path.

There are many various teach and repeat navigation methods. In paper by Paul Furgale
and Timothy D. Barfoot [24] is used stereovision camera to store and postprocess images to
submaps. Since the SCHVAB MiniModule is processing images I was looking for navigation
methods based on image processing. Mainly we can find two different approaches. One
option is to build three-dimensional map of features [25] or create topological maps [26, 27].
A very popular solution is Simultaneous Localisation and Mapping (SLAM) [28]. For our
use would be most suitable so-called MonoSLAM [25] which uses single camera. There are
other versions of SLAM using stereo vision [29]. Another method that seems suitable for our
purpose would be SURFNav [26]. To decide which method would be better to implement i
will briefly describe each method and compare them. Subsequently chosen method will be
described in detail.

3.1 Methods discussion

MonoSLAM algorithm is building probabilistic 3D map of features. This map is used
to acquire position of robot. The process of map building uses feature extraction
algorithms. For each feature is estimated its position and uncertainty of estimation.
Generated map is evolving and updated using Extend Kalman Filter (EKF). During
update features can be even added or removed from the map. To gain data for update
estimates of position and uncertainty camera motion is needed. With growing number
of features N grows size of map in order O(N2).

SURFNav algorithm is building topological map, where edges of map contain information
about detected features. This map is only used to correct heading direction of robot.
Traveled distance is measured with odometric measurements. Map is just a set of
features with information of their location and distance where they were detected.
In repeat phase are compared features detected from camera image with the ones on
the map and horizontal difference of matched features is calculated. This difference
is used to correct robot’s heading.

7/28

3. TEACH AND REPEAT NAVIGATION METHODS

To decide which method would be better we have to take into consideration compu-
tational demands. Since SCHVAB MiniModule have only PowerPc 440 processor unit we
will choose method with lower computational demands. In this case SLAM based algorithm
has a disadvantage. With mapping of large environments would extremely grow compu-
tational time due to great number of detected features. This can be partially solved by
dividing maps into smaller segment with known mutual position [30]. Still SLAM contains
computation of estimated position and uncertainty. The SURFNav is in repeat phase com-
paring only two sets of features and computing modus of horizontal differences. Thus it
was decided that SURFNav will be suitable for implementation.

3.2 SURFNav

As mentioned before SURFNav creates topological map of surroundings, that is created
for later autonomous navigation. SURFNav uses proprioceptive sensors to estimated length
of traveled segment and camera sensor for building map and heading control. Images from
camera are processed with Speeded Up Robust Features (see Chapter 4) algorithm in order
to identify landmarks in the image. Those detected landmarks are used to build map.

Map is created when robot is driven by operator, this is teaching phase of this algorithm.
Robot is guided so that it moves straight forward or turn on spot. Generated topological
map edges consist of local landmark map build of detected salient features. This local map
provides information about location of feature in image and traveled distance where it was
detected. And of course it provides feature descriptor.

Mathematical proof of robot position uncertainty having its bound can be found in
paper [27].

3.2.1 Teaching phase

Procedure that takes action during teaching phase is described in algorithm 1. Described
procedure is repeated for each segment of map. After creation map of one segment robot is
turned and whole procedure repeats. This algorithm is based on working with three sets of
landmarks: L is map of landmarks, T is set of tracked landmarks and S is set of currently
detected landmarks. The set S is updated each time new image from camera is processed.
For each landmark from set T are found two best matching landmarks in set S. More about
matching features is written in chapter 4.2. In case of one feature is significantly similar
than the other feature, tracked landmark information is updated. In other case tracked
landmark is moved to set L. Remaining landmarks from set S are added to set of tracked
landmarks T .

8/28

3. TEACH AND REPEAT NAVIGATION METHODS

Algorithm 1: Learn one segment. Courtesy of [4].

Input: α – initial robot orientation (compass value)
Output: (α, s, L) – associated data to segment, where s is traveled distance and

L is set of landmarks, a landmark is senary (e, k, u, v, f, g), where e is a
SURF descriptor, k is counter of feature detection, u and v is position
of feature in the image (at the moment of first, resp. last occurrence), f
and g denotes distance from segment start according to u, resp. v.

L← ∅ // set of learned landmarks

T ← ∅ // set of tracked landmarks

α← compas value // robot orientation at the beginning of segment

mapping

repeat
d← current traveled distance from the segment start
S ← extracted features, (u, e) ∈ S, u position, e feature descriptor
foreach ti = (ei, ki, ui, vi, fi, gi) ∈ T do

(ua, ea)←argmin{‖ei, e(s)‖|s ∈ S} // select the best matching

descriptor from S to ei
(ub, eb)←argmin{‖ei, e(s)‖|s ∈ S \ {(ua, ea)}} // select the next best

matching descriptor

if ‖(ei, ea)‖ � ‖(ei, eb)‖ then
ti ← (ei, ki + 1, ui, ua, fi, d) // update matched landmark

S ← S \ {(ua, ea)} // remove matched feature from current set of

detected landmarks

else
T ← T \ {ti} // remove ti from set of tracked landmarks

L← L ∪ {ti} // add ti to set of learned landmarks

foreach (u, e) ∈ S do
T ← T ∪ {(e, 1, u, u, d, d)} // add new feature to set of tracked

landmarks

set robot steering velocity to ω
until robot is in the mapping mode
s← d // total travelled distance along segment

L← L ∪ T // add current tracked landmarks to the learned landmarks

3.2.2 Repeat phase

Autonomous navigation process is based on retrieving set of landmarks from map and
matching them with landmarks retrieved from processed image to estimate their current
position in the image. Mode of differences between current and retrieved position is used to
correct robot’s heading. Whole procedure for traversing one segment of map is described
in algorithm 2.

9/28

3. TEACH AND REPEAT NAVIGATION METHODS

Algorithm 2: Traverse one segment. Courtesy of [4].

Input: (α, s, L) – associated data to segment, where α is initial angle of robot
orientation at segment start, s is traveled distance and L is set of land-
marks, a landmark is senary (e, k, u, v, f, g), where e is a SURF descrip-
tor, k is counter of feature detection, u and v is position of feature in the
image (at the moment of first, resp. last occurrence), f and g denotes
distance from segment start according to u, resp. v.

Input: c – steering gain parameter
turn(α) // turn robot in direction α
d← current traveled distance from the segment start
while d < s do

T ← ∅ // set of current tracked landmarks

H ← ∅ // histogram of horizontal position differences

d← current traveled distance from the segment start
S ← extracted features, (u, e) ∈ S, u position, e feature descriptor
foreach li = (ei, ki, ui, vi, fi, gi) ∈ L do

if gi ≥ d ≥ fi then
T ← T ∪ {li} // add landmark to tracked landmarks according to

traveled distance

while |T | > 0 do
(ei, ki, ui, vi, fi, gi)← argmaxt∈T k(t) // get landmark with maximal

number of occurrences k

p← d−fi
gi−fi (vi − ui) + ui // estimate its image coordinates

(ua, ea)← argmin{||ei, e(s)|| |s ∈ S} // select the best matching

descriptor from S to ei
(ub, eb)← argmin{||ei, e(s)|| |s ∈ S \ {(ua, ea)}} // select next the best

matching descriptor

if ||(ei, ea)|| � ||(ei, eb)|| then
H ← H ∪ {px − uax} // add horizontal difference to the

histogram

T ← T \ {(ei, ki, ui, vi, fi, gi)} // discard used landmark

ω ← c ·mode(H) // determine new robot steering velocity

set robot steering velocity to ω

At the beginning of each loop are retrieved landmarks S from processed picture and
traveled distance d from odometry. After that is set of tracked landmarks T filled with
landmarks from map L corresponding with traveled distance. That means that distance
of first detection f of landmark must be lower than currently traveled distance d and
distance of last detection of landmark g must be higher then d. For all tracked landmarks
is computed supposed position of landmark in image. The linear interpolation of u, v, f, g

10/28

3. TEACH AND REPEAT NAVIGATION METHODS

and d is used for that purpose. Now two sets of landmarks T and S are paired the same
way as in teaching phase. For each pair is added difference between horizontal coordinates
to histogram H. Histogram H consist of 31 bins. A mode of differences from histogram is
then used to correct robot’s heading. To make sure that the computed mode is trustworthy
it is needed to evaluate histograms quality with the notion of information I(H) defined as

I(H) = log2n+
n∑
i=1

hi
h
log2

hi
h

[bit], (1)

where hi is value of bin, h is sum of all bin values, n is number of bins. Mode of histogram
with low information value such as flat histogram is more likely to provide wrong ω value.
When robot reaches end of a segment it stops and loads map of next segment.

11/28

4. SPEEDED UP ROBUST FEATURES

4 Speeded Up Robust Features

For comparing images in meaning of translation, rotation or scale we need to detect
well distinguishable points, region or edges, these are called features. Basic demand for
feature extraction is repeatability, which means that features should be detected repeatedly.
Extracting features consist of two parts:

Interest point detection is process with goal to localize salient point in the image. To-
gether with location of points of interest additional information may be provided.
Such as Hessian determinant value, scale, Laplacian, etc.

Interest point description process is allowing matching features across several images.
Descriptor is generated by describing surroundings of point of interest.

In this thesis I will focus only on Speeded Up Robust Features (SURF) [31] algorithm
as it is implemented in Schvab Minimodule. Detecting features with SURF algorithm is
composed of three phases: integral image generation, interest point detection, descriptor
generation. First two phases are part of Feature detection and are described in following
section.

4.1 Feature detection

4.1.1 Integral image generation

Integral image is calculated according to equation 2. Where I represents luminance
component of the image.

IΣ(x, y) =
x∑
i=0

y∑
j=0

I(i, j) (2)

Purpose of integral image generating is to lower computational and memory require-
ments. For obtaining integral above part of image only four memory reads are performed.
For example given in figure 4 the integral over gray part of integral image will be equal to
equation 3.

IΣ(ABCD) = IΣ(A) + IΣ(D)− IΣ(B)− IΣ(C) (3)

12/28

4. SPEEDED UP ROBUST FEATURES

Figure 4: Integral image usage. Courtesy of [2]

4.1.2 Interest point detection

In this phase we compare local maxima across Hessian matrix determinants. Hessian
matrix consists of second order partial derivatives of multi-dimensional scalar function.
The determinant of Hessian matrix for two-dimensional scalar function f(x, y) is given by
equation 4.

H(x, y) = det (H(x, y)) =

∣∣∣∣∣ ∂
2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

∣∣∣∣∣ =
∂2f

∂x2

∂2f

∂y2
−
(
∂2f

∂x∂y

)2

(4)

In order to use equation 4 in computer vision is two-dimensional function is replaced
by luminance and second order partial derivatives are replaced with approximation made
with use of convolution of image with derivatives of corresponding Gaussian kernels. Then
Hessian matrix in equation 4 changes to following form.

H(x, y, σ) =

(
Lxx(x, y, σ) Lxy(x, y, σ)
Lxy(x, y, σ) Lyy(x, y, σ)

)
(5)

Matrix element Lxx(x, y, σ) stands for convolution of second order partial derivatives
of two-dimensional Gaussian /frac∂2f(σ)/partialx2, where σ is the variance parameter of
Gaussian kernels. These second order partial Gaussian derivatives have to be approximated
in order to be applied on integral image. Approximation is made by box filters. Figure 5
displays discretised second order derivatives of Gaussian kernels on upper line and their
representation using box filters on lower line.

If we establish Dxx, Dyy, Dxy as box filter approximations then equation 4 can be mod-
ified into form shown in equation 6.

H ∼ DxxDyy − (0.9Dxy)
2 (6)

13/28

4. SPEEDED UP ROBUST FEATURES

Figure 5: Discretised Gaussian kernel and their 2D approximations. Courtesy of [2]

Because of distortion due to approximation there is weighting mechanism compensating
this distortion. It is constant equal to 0.9. The approximation and integral image usage
brings SURF algorithm the biggest computation performance optimization.

Scale invariance of SURF algorithm is achieved by building scale space. To build scale
space we use box filters with different sizes, which builds three-dimensional space of Hes-
sian determinants. With built scale space the next step is comparing determinants with
threshold value. If determinant surpasses given threshold it is compared with all it neigh-
bours in scale space to ensure that it is local maxima. Passing both comparisons we have
established image feature.

4.2 Feature description

With established feature it is necessary to somehow describe its surroundings in order to
be able to match features. I will describe original SURF descriptor and BRIEF descriptor
since it was implemented in SCHVAB MiniModule.

4.2.1 SURF descriptor

SURF descriptor generation is original part of SURF algorithm. Output is defined as vec-
tor of 64 floating point numbers. Surroundings of interest point is divided into 16 squares.
If rotation invariance is required these squares are oriented in dominant direction.

14/28

4. SPEEDED UP ROBUST FEATURES

Dominant direction is generated using Haar wavelet responses weighted with Gaussian
centered at interest point. Responses are represented as points in two dimensional space.
Points are then summed creating vector of orientation window with defined width π

3
. Rota-

tion step of orientation window is π
18

. Orientation with the biggest summed vector is then
declared as dominant direction.

Each square is sampled with Haar Wavelet responses. Afterwards wavelet responses
are weighted with Gaussian centered at interest point with result of dx for horizontal
direction and dy for vertical direction. Terms vertical and horizontal are used with relation
to dominant orientation of interest point. The resulting values are united in form of a vector
[
∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|]. Those vectors from all 16 squares are then joined together and

normalized to achieve euclidean length equal to one. This gives us the main part of SURF
descriptor. Nevertheless there is yet another one useful component of SURF descriptor. It
is the sign of Laplacian, trace of the Hessian matrix, which distinguishes if blob is bright on
the dark background or the opposite case. This is very useful in matching features stage,
where Euclidean distance between two vectors is computed.

4.2.2 BRIEF descriptor

The Binary Robust Independent Elementary Features (BRIEF) is binary string feature
point descriptor which was proposed in paper [32]. This descriptor is based on comparison
of pixel intensities within image patch surrounding feature point. In other words on given
patch p with given coordinates of points to compare x,y the test τ result is defined as

τ(p,x,y) :=

{
1 p(x) < p(y)
0 otherwise

, (7)

where p(x) is pixel intensity on given position. Number of comparisons denotes length
of generated bitstring. In original paper they mention three version BRIEF-16, BRIEF-
32 and BRIEF-64. The number denotes bytes count used to generate descriptor. That
means BRIEF-64 length is 512 bits (512 tests). In comparison with SURF descriptor which
consumes 256 bytes of memory. Very important part of BRIEF descriptor generation is a set
of points which pixel intensities should be compared. Various types of set had been tested
in original paper with conclusion that the best result is provided with randomly generated
set of points. Example of this kind of set is shown on figure 6, where lines connects two
point whose intensities are compared.

Original BRIEF descriptor does not provide scale and rotation invariance. However some
modifications to BRIEF were made in order to implement scale and rotation invariance.
Result is Binary robust invariant scalable keypoints (BRISK) descriptor [33]. Another up-
grade of BRIEF is called D-BRIEF [34] made by authors of original BRIEF. D-BRIEF uses
discriminative projections and is long only 32 bits. Another binary descriptor is BinBoost
[35], which outperforms other binary descriptors and has comparable accuracy to floating
point descriptors with only 64 bits of length.

15/28

4. SPEEDED UP ROBUST FEATURES

−25 −20 −15 −10 −5 0 5 10 15 20 25
−25

−20

−15

−10

−5

0

5

10

15

20

25
BRIEF descriptor example

Figure 6: Example of BRIEF descriptor pairs.

Matching features using BRIEF descriptor is done by computing Hamming distance.
This is one of the factors why it was decided to implement BRIEF descriptor on SCHVAB
MiniModule. It was expected that it will be faster than computing euclidean distances,
results of experiments can be found in chapter 6.

16/28

5. DEVICE DESCRIPTION

Figure 7: SCHVAB MiniModule

5 Device description

I was working with the Schvab FPGA-based Computer Vision Embeded Module (SFCVEM)
designed by Ing. Jan Šváb [2]. It is based on AES-MMP-V5FXT70-G Avnet MiniModule
Plus board which is attached to custom designed Schvab Mini-Module Small BaseBoard.

5.1 Hardware

AES-MMP-V5FXT70-G Avnet MiniModule Plus board is populated with Xilinx Virtex-
5 XC5VFX70T-2FF665 FPGA. Following list summarizes the most important features of
Avnet MiniModule. I just would like to point out that there is ARM architecture based
PowerPC processor unit along with the FPGA.

– XC5VFX70T-2FF665

PowerPC 440 Processor Core

Auxiliary Processor Unit (APU) (automatically decode PowerPC floating-point
instructions)

– 64MB DDR2 SDRAM

– 32MB FLASH

17/28

5. DEVICE DESCRIPTION

– USB 2.0 PHY

– 10/100/1000 Ethernet PHY (RJ-45)

Avnet provides baseboards for their minimodules but the original board is big and with
unnecessary circuits thus custom board was built by Jan Šváb called Schvab Mini-Module
Small BaseBoard. This board was built with respect to lower power consumption and fit
needs of computer vision application. Schvab Mini-Module Small BaseBoard provides:

– JTAG Connector

– 4MB SSRAM

– SD Card Slot

– 2x SATA Connector

– Camera Module Connector

– Expansion Connector (23 pins)

– Power Supply

5.2 FPGA configuration

I will just briefly describe configuration and how data are processed. Main building
blocks are called intellectual property (IP) cores. Majority of IP cores are designed by Jan
Šváb and are fully described in [2]. Rest of IP cores are Standard Xilinx IP cores.

Schvab Pixel Bus (SPB) – Custom bus with single-master, multi-slave specification.
Creates connection between blocks that contributes to image processing.

SPB PDMAB – Creates bridge between SPB and PLB (Processor Local Bus). Allows
user to store data (e.g. integral image, Fast-Hessian response) into system memory.

SPB IIG – This IP core is generating the integral image. It has configurable bus widths
with maximum output width 32-bits.

SPB SAFHG – Provides computation of Fast-Hessian responses from integral image.
This is on of the fundamental tasks while generating SURFs.

SPB LMF – Purpose of this core is thresholding and non-maxima suppression of incoming
data from SPB. This core buffers data and performs comparison sequences when
buffer is full.

18/28

5. DEVICE DESCRIPTION

SPB RCSIC – Subsamples and/or crop images processed by SPB subsystem without
any delay.

SPB DCFG – Interface from CMOS camera interface to SPB. Also contains counter of
rows/columns for debugging purposes.

SSIO – GPIO core with 32 inputs and 32 outputs.

All these IP cores creates processing chain which is pipelined IP cores to perform some
task. During my work i was using the same design with one slight change, second UART

16550 for communication with MMP-5 Mobile Robot Platform [36] was added.

5.3 Linux implementation

To provide user-friendly interface GNU/Linux operating system was ported for this
device. Original Linux implemented is based on Linux kernel of version 2.6. With this
version I was working almost all the time, however I also tried to port latest version of
Linux kernel available at Xilinx git server1. To be able of cross-compiling Linux kernel
it is needed to build cross-compilation environment which consist of cross-compilation
toolchain, buildroot for creation of filesystem and kernel source code. I used same toolchain
as in original work described in [2], but i was also using ELDK that was recommended by
Xilinx.

Most important part of Linux implementation is spb subsys.ko kernel driver module.
This driver module sets up all IP cores that are part of processing chain correspondingly
to information about chain composition provided by user during the runtime. Part of
the driver is also device tree parser, it means that it is possible to control all configured
processing chains through device nodes in filesystem. Recognized processing chains are: the
SURF accelerator chain (chsa) and the frame grabber chain (chfg). Driver also contains a
memory manager. It is needed because image data need to be stored in continuous memory
block of size of approximately 4MB. To be sure that this memory will be available it is
allocated during the system boot and then distributed.

Processing chains

Detailed description of processing chains interfaces can be found in original thesis [2].
The frame grabber chain can be controlled through device nodes /dev/spbss/chfg%d.
This chain is used to grab images from camera. For my work was important the other
chain – SURF accelerator processing chain. Controlling device nodes can be found in
/dev/spbss/chsa%d. This chain controls the cores responsible for image feature extraction
and proceed in feature description. In order to implement BRIEF descriptor ssa get bd

1https://github.com/Xilinx/

19/28

5. DEVICE DESCRIPTION

and i sum functions was added. First mentioned function ssa get bd is called instead of
ssa get sd function to create BREIF descriptor. To generate BRIEF descriptor i used set
of points from OpenCV 2.4.2 examples it can be found on figure 6. Function i sum is just
a C code representation of equation 3. It computes luminance of area in surroundings of
input coordinates. Size of the area is defined as a KERNEL SIZE constant. Currently is set
to 9 pixels. This is done to reduce influence of noise in the image.

Other work

To device tree file was added second UART 16550 IP cores and it was tested with MMP-5
Mobile Robot Platform. Great number of time was spent in attempt to make memory card
slot working, however the spi core which is responsible for communication with memory
cards was not responding in expected manner. As another try to make it work I upgraded
to up-to-date linux kernel version 3.9.0. Since there are differences in driver management
original drivers had to be updated as well. Nevertheless it did not help in the matter of
memory card access, but sps subsys.ko driver was working fine.

20/28

6. EXPERIMENTS

6 Experiments

6.1 BRIEF execution time

I have done some measurements to find out if computing hamming distance would be
really faster than computing Euclidean distance, which includes multiplication of floating
point numbers. Results are summed up in table 1. For computing hamming distance I used
algorithm presented in [37]. Implementation of this algorithm in C language is shown in
source code 1. This method execution time is dependent on Hamming distance between
compared bitstrings, thus it was measured for different cases. Each test was comparing two
descriptors for million times.

SURF
Euclidean dist. 23.33s

BRIEF
Hamming dist. time[s]

512 25.79
384 20.31
256 14.82
128 9.33
0 3.68

Table 1: Executing time comparison.

� �
int hammingDist(int * a, int * b){

int xor = *a^*b;

int dist = 0;

while(xor){

dist++;

xor = xor & (xor - 1);

}

return dist;

}� �
Source code 1: Hamming distance computation function.

As we can see only the worst case scenario of computing Hamming distances is more
time consuming than computing Euclidean distance. To be sure I also created program for
matching descriptors between following images on SCHVAB MiniModule and I gathered
data of all computed Hamming distances. On figure 8 we can see histogram for Hamming
distances from 0 to 512 and fitted normal distribution. Based on this data we can as-
sume that matching features with BRIEF descriptors is faster than with original SURF
descriptor.

21/28

6. EXPERIMENTS

0 50 100 150 200 250 300 350 400 450 500 550
0

100

200

300

400

500

600
Hamming distances histogram and distribution

Figure 8: Hamming distances histogram and distribution.

6.2 Long-term navigation test

This test is done to measure performance of feature detector in long-term scenario of
outdoor navigation. Methods of this test are described in [3]. The aim is to track results
of various feature detectors in matching algorithm to establish difference in heading. This
test basically uses methods described in chapter about SURFNav. The dataset consist of
images taken in five locations and through whole year each month. In figure 9 is shown
example of seasonal changes recorded in dataset. Figure 10 shows remaining locations used
in dataset.

(a) November 2009 (b) January 2010 (c) May 2010 (d) Semptember 2010

Figure 9: Example of seasonal changes. Courtesy of [3].

(a) Location I. (b) Location III. (c) Location IV. (d) Location V.

Figure 10: The dataset locations. Courtesy of [3].

22/28

6. EXPERIMENTS

Measured data are compared with data provided with thesis supervisor. We can see in
figure 11 that implemented BRIEF descriptor is only outperformed by BRIEF combined
with STAR feature detector [38]. And if we look for SURF we can see that there is a
significant gap between SURF and FADR, which is representing my BRIEF implementation
on SCHVAB MiniModule.

 BRIEF
 SIFT

 SURF
 BRISK
 ORB
 STAR
 FADR

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

H
ea

d
in

g
 e

st
im

at
io

n
 s

u
cc

es
s

ra
te

 [
%

]

Number of features [hundrets]

Essential matrix factorization

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16
Number of features [hundrets]

Histogram voting

Figure 11: Heading estimation success rates.

6.3 Distinguishability measurements

Distinguisability is understood as a chance of establishing valid correspondence. It was
measured on dataset counting 5000 images taken from drive of robot. Two following images
are always processed. At first are created tentative correspondences based on hamming
distance. After that is established fundamental matrix with the use of RANSAC [39].
Fundamental matrix is used to project points from tentative correspondences and those
point that are projected closer than 3 pixels to epipolar line are considered valid. Measured
value is ratio between tentative correspondences and correct ones. I have measured it for
two cases. In first case it is used also Laplacian sign to determine tentative correspondences,
in second one just Hamming distances.

Laplacian used Ratio
Y 0.98
N 0.97

Table 2: Distinguishability

23/28

7. CONCLUSION

7 Conclusion

In this thesis I have shown some improvement of originally implemented image pro-
cessing chain. SURF descriptor along with BRIEF descriptor provide much better results.
Moreover in feature matching phase will be BRIEF descriptor on most cases faster then
matching SURF descriptors.

Another serial port communication was added in order to be able control MMP-5 robot.
What bothers me is not working memory card slot. I have tried many things, but noth-
ing worked. This would be very useful for storing/loading maps for SURFNav. I have
also decided that that SURFNav is the most suitable navigation algorithm for SCHVAB
MiniModule.

During work on this thesis i learnt a lot of things about GNU/Linux and how it works
which i consider very useful experience.

24/28

REFERENCES

References

[1] Hana Szücsová. Computer Vision-based Mobile Robot Navigation. Master’s thesis,
Czech Technical University, Czech Republic, 2011.

[2] Jan Šváb. FPGA-based Computer Vidoin Embedded Module. Master’s thesis, Czech
Technical University, Czech Republic, 2011.

[3] Tomáš Krajnık1 Pablo Cristóforis2 Jan Faigl, Hana Szücsová1 Matıas Nitsche2 Libor
Preucil, and Marta Mejail. Image features for long-term mobile robot autonomy. 2013.

[4] Tomáš Krajńık. Large Scale Mobile Robot Navigation and Map Building. PhD thesis,
Czech Technical University in Prague, Faculty of Electrical Engineering, 2011.

[5] Johann Borenstein, HR Everett, Liqiang Feng, and David Wehe. Mobile robot
positioning-sensors and techniques. Technical report, DTIC Document, 1997.

[6] George J Geier, Ardalan Heshmati, Kelly G Johnson, and Patricia W McLain. Posi-
tion and velocity estimation system for adaptive weighting of gps and dead-reckoning
information, May 16 1995. US Patent 5,416,712.

[7] Lenka Mudrová, Jan Faigl, Jaroslav Halgaš́ık, and Tomáš Krajńık. Estimation of
mobile robot pose from optical mouses. In Research and Education in Robotics-
EUROBOT 2010, pages 93–107. Springer, 2011.

[8] Johann Borenstein, HR Everett, and Liqiang Feng. Where am i? sensors and methods
for mobile robot positioning. University of Michigan, 119:120, 1996.

[9] Chin-Woo Tan and Sungsu Park. Design of accelerometer-based inertial navigation
systems. Instrumentation and Measurement, IEEE Transactions on, 54(6):2520–2530,
2005.

[10] Hakyoung Chung, Lauro Ojeda, and Johann Borenstein. Accurate mobile robot dead-
reckoning with a precision-calibrated fiber-optic gyroscope. Robotics and Automation,
IEEE Transactions on, 17(1):80–84, 2001.

[11] Ubisense Real time Location Systems (RTLS). Rtls solutions - ubisense. http://www.
ubisense.net/en/rtls-solutions. Visited on 2013-11-04.

[12] Bernt Schiele and James L Crowley. A comparison of position estimation techniques
using occupancy grids. Robotics and autonomous systems, 12(3):163–171, 1994.

[13] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[14] Margrit Betke and Leonid Gurvits. Mobile robot localization using landmarks.
Robotics and Automation, IEEE Transactions on, 13(2):251–263, 1997.

25/28

http://www.ubisense.net/en/rtls-solutions
http://www.ubisense.net/en/rtls-solutions

REFERENCES

[15] Sebastian Thrun. Robotic mapping: A survey. Exploring artificial intelligence in the
new millennium, 1:1–35, 2003.

[16] Thomas Collins, JJ Collins, and Conor Ryan. Occupancy grid mapping: An empirical
evaluation. In Control & Automation, 2007. MED’07. Mediterranean Conference on,
pages 1–6. IEEE, 2007.

[17] Sv Noykov and Ch Roumenin. Occupancy grids building by sonar and mobile robot.
Robotics and autonomous systems, 55(2):162–175, 2007.

[18] Miroslav Kulich. Localization and Map Building for Intelligent Robots. PhD thesis,
Czech Technical University in Prague, Faculty of Electrical Engineering, 2004.

[19] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Mihai Dolha, and Michael
Beetz. Towards 3d point cloud based object maps for household environments.
Robotics and Autonomous Systems, 56(11):927–941, 2008.

[20] Stephen Se, David Lowe, and Jim Little. Mobile robot localization and mapping
with uncertainty using scale-invariant visual landmarks. The international Journal of
robotics Research, 21(8):735–758, 2002.

[21] Francisco Bonin-Font, Alberto Ortiz, and Gabriel Oliver. Visual navigation for mobile
robots: A survey. Journal of intelligent and robotic systems, 53(3):263–296, 2008.

[22] RE Arvidson, SW Squyres, RC Anderson, JF Bell, D Blaney, J Brückner, NA Cabrol,
WM Calvin, MH Carr, PR Christensen, et al. Overview of the Spirit Mars exploration
rover mission to Gusev crater: Landing site to Backstay rock in the Columbia Hills.
Journal of Geophysical Research: Planets (1991–2012), 111(E2), 2006.

[23] Wolfram Burgard, Mark Moors, Cyrill Stachniss, and Frank E Schneider. Coordinated
multi-robot exploration. Robotics, IEEE Transactions on, 21(3):376–386, 2005.

[24] Paul Furgale and Tim Barfoot. Visual path following on a manifold in unstructured
three-dimensional terrain. In Robotics and Automation (ICRA), 2010 IEEE Interna-
tional Conference on, pages 534–539. IEEE, 2010.

[25] Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse. Monoslam:
Real-time single camera slam. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 29(6):1052–1067, 2007.

[26] T. Krajńık and L. Přeučil. A Simple Visual Navigation System with Convergence
Property. In European Robotics Symposium 2008, pages 283–292, Heidelberg, 2008.
Springer.

[27] T. Krajńık, J. Faigl, M. Vonásek, V. Kulich, K. Košnar, and L. Přeučil. Simple yet
stable bearing-only navigation. J. Field Robot., 2010.

26/28

REFERENCES

[28] MWM Gamini Dissanayake, Paul Newman, Steven Clark, Hugh F Durrant-Whyte,
and Michael Csorba. A solution to the simultaneous localization and map building
(slam) problem. Robotics and Automation, IEEE Transactions on, 17(3):229–241,
2001.

[29] Miguel Angel Garcia and Agusti Solanas. 3d simultaneous localization and modeling
from stereo vision. In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004
IEEE International Conference on, volume 1, pages 847–853. IEEE, 2004.

[30] Michael Bosse, Paul Newman, John Leonard, and Seth Teller. Simultaneous localiza-
tion and map building in large-scale cyclic environments using the atlas framework.
The International Journal of Robotics Research, 23(12):1113–1139, 2004.

[31] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust
features (surf). Computer vision and image understanding, 110(3):346–359, 2008.

[32] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: binary
robust independent elementary features. In Computer Vision–ECCV 2010, pages 778–
792. Springer, 2010.

[33] Stefan Leutenegger, Margarita Chli, and Roland Y Siegwart. Brisk: Binary robust
invariant scalable keypoints. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 2548–2555. IEEE, 2011.

[34] Tomasz Trzcinski and Vincent Lepetit. Efficient discriminative projections for compact
binary descriptors. In Computer Vision–ECCV 2012, pages 228–242. Springer, 2012.

[35] Tomasz Trzcinski, Christos Marios Christoudias, Pascal Fua, and Vincent Lepetit.
Boosting binary keypoint descriptors. 2013.

[36] Inc. The Machine Lab. Mmp-5 mobile robot platform. http://www.themachinelab.
com/MMP-5.html. Visited on 2013-12-15.

[37] Peter Wegner. A technique for counting ones in a binary computer. Communications
of the ACM, 3(5):322, 1960.

[38] Motilal Agrawal, Kurt Konolige, and Morten Rufus Blas. Censure: Center surround
extremas for realtime feature detection and matching. In Computer Vision–ECCV
2008, pages 102–115. Springer, 2008.

[39] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

27/28

http://www.themachinelab.com/MMP-5.html
http://www.themachinelab.com/MMP-5.html

Appendix

CD Content

In table 3 are listed names of all root directories on CD

Directory name Description
bp bachelor thesis in pdf format.
benchmark source code of benchmarks used to compare computing

Euclidean and Hamming distance
matchtest source code of picture matching test to obtain Hamming

distances
2.6-driver spb subsys driver for 2.6 linux kernel version
3.9-driver spb subsys driver for 3.9 linux kernel version
virtex440-sfcvem.dts updated device tree file

Table 3: Obsah CD

	Introduction
	Methods in mobile robotics
	Localization
	Dead reckoning
	Beacon based localization
	Map based localization

	Motion planning
	Mapping
	Navigation
	Exploration

	Teach and repeat navigation methods
	Methods discussion
	SURFNav
	Teaching phase
	Repeat phase

	Speeded Up Robust Features
	Feature detection
	Integral image generation
	Interest point detection

	Feature description
	SURF descriptor
	BRIEF descriptor

	Device description
	Hardware
	FPGA configuration
	Linux implementation

	Experiments
	BRIEF execution time
	Long-term navigation test
	Distinguishability measurements

	Conclusion

