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Abstract

The most important factor in the successful outcome of the hematopoietic stem cell
transplantation is that a patient and a donor are matched for the Human Leukocyte Antigens (HLA).
Mismatching within HLA alleles (antigens) between a recipient and a donor increases the incidence
and severity of an alloreactive immune response. Because of financial and technological limits, HLA
data of donors are not complete, so we have to deal with fuzzy information. Therefore selection of
the potentially best donor is not an easy task. Information and communication technologies play a
key role in the donor search process in international registries of volunteer donors.

This work focuses on the development of a modern search algorithm, one of the major
challenges for donor registry computer systems. Our algorithm uses probabilistic matching that
predicts, for each donor, the probability to be HLA allele identical to the patient.

To achieve this goal, we have estimated HLA haplotype frequencies (population genetics
models) for several populations, studied properties and reliability of these models, run simulations
and validated the overall system.

Abstrakt

Uspéch transplantace krvetvornych bunék je nejvice zavisly na HLA genetické shodé mezi
pacientem a darcem. Pfipadné neshody HLA alel (nebo antigen(l) zvysuji riziko a zdvaznost selhani
transplantace. Kvdli finan¢nim a technologickym omezenim, registry darcli nemaji kompletni HLA
data o vSech darcich, takze nemdme k dispozici presné informace. Diky tomu neni lehké vybrat
nejvhodnéjsiho darce. Informacéni a komunikaéni technologie hraji ddlezitou roli pfi hledani
celosvétové nejlepsiho darce.

Tato prace se zaméruje na vyvoj moderniho vyhledavaciho algoritmu, coz je klicova funkce
pocitacového systému registrd darci  krvetvornych bunék. Na&s algoritmus pouZiva
pravdépodobnostni pfistup, ktery pro kazdého darce spocita pravdépodobnost, s jakou tento darce
bude HLA shodny s pacientem.

Abychom dosahli tohoto cile, tak jsme spocitali HLA haplotypové frekvence nékolika populaci a
vytvorili tak populacni modely. Dale jsme studovali vlastnosti téchto modeld, jejich spolehlivost,
provedli jsme simulace a nakonec jsme validovali cely systém.
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1. Introduction

Hematopoietic stem cell transplantation (HSCT) [1] (commonly referred to as bone marrow
transplantation) is a medical procedure in the field of hematology and oncology. HSCT is the
treatment of choice for people with hematopoietic malignancies (e.g. leukemia), bone marrow
failure and certain types of cancer (e.g. lymphoma) which result in a compromised immune system.
The principle is that intravenous infusion of stem cells collected from donor bone marrow, peripheral
blood or umbilical cord blood is used to replace the hematopoietic functions of a patient with these
conditions. The most important factor in the successful outcome of HSCT is that the patient and
donor are matched for the Human Leukocyte Antigens (HLA) [2]. Mismatching within HLA alleles
(antigens) between a recipient and a donor increases the incidence and severity of an alloreactive
immune response when transplanting hematopoietic stem cells. The level of the matching required
varies with the source of stem cells used for HSCT.

In most cases (in Europe) patients have no suitable HLA matched donor within their family, so
physicians must activate a ‘donor search process’ by interacting with national and international
donor registries who will search their databases for adult unrelated donors or cord blood units (CBU)

[3].

Information and communication technologies play a key role in the donor search process in
donor registries both nationally and internationally. One of the major challenges for the donor
registry computer systems is the development of a reliable search algorithm [4]. Our previous work
[5] had focused on design and implementation of combinatorial approach. In principle, the algorithm
compares patient with donors by counting all known and visible HLA mismatches. Implementations
of such algorithms are commonly used, including the Bone Marrow Donors Worldwide computer
system (BMDW) [6]. In 2011, the Information Technology (IT) working group of the World Marrow
Donor Association (WMDA) has issued recommendations [7] that summarize current knowledge
about implementation of this approach.

Nowadays, there are more than 20 million stem cell donors and cord blood units available
worldwide [6]. Due to character of HLA system, history of HLA typing techniques and limitation of
resources, we do not have full information about HLA types of these donors. Search coordinators
often see very long lists of partly HLA matching, partly HLA typed donors and they have to guess
which donors should be selected for further HLA typing or testing. Limitation of resources (time and
money) and risk of detours makes their choice tricky. An ‘expert system’ that would better lead the
coordinator is needed to make faster and more accurate decisions.

1.1 Goals of the work
This work implements the probabilistic matching method that can predict donor data even if
they are invisible or fuzzy at the moment. The main motivation [8] of the probabilistic matching is to
help search coordinators to:

e identify easy, difficult and (almost) futile searches

e predict the level of patient-donor matching realistically achievable

e speed up the donor search by choosing the most promising candidates and avoiding detours
e make ultra-urgent searches feasible in spite of ambiguous or missing HLA data
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In our previous work, we had used the combinatorial matching method that observes visible
donor data and analyzes them, especially HLA mismatches.

Currently, probabilistic matching systems are used in daily operations only by the biggest
registries in the World. The Zentrales Knochenmarkspender-Register Deutschland (ZKRD) has
pioneered this innovative technology and developed the OptiMatch® system [9] and the National
Marrow Donor Program (NMDP) uses HapLogic™ system [10]. These registries have invested huge
efforts into the development of the systems but their internals are not published. However, even if
they publish them or provide them to smaller registries for free, it is not clear if others can use them
and approximate local population by German or American models and what would be the reliability
of such predictions.

Stem cell donor registry database
BIstry Algorithm that
t ““““““““ createsthe @ [~"~- .
population model Properties and
Population model reliability of
v
algorithm
Donor data
. results,
Probabilistic | validation
Patientdata | R matching algorithm
A
Matching
predictions

(patient-donor)

v

User interface

Figure 1: Probabilistic matching system - structure of the work

We will systematically implement new probabilistic matching system, see Figure 1. In order to
do it, we have to answer these questions and satisfy the underlying goals:

e How can we design and implement algorithm that creates population model? The
population model will be represented by HLA haplotype frequencies estimates (HFE) and we
will focus on the problem of estimation of HLA gene and haplotype frequencies of a human
population. For this purpose, we want to use datasets of registries of unrelated
hematopoietic stem cells donors that are the biggest available databases of HLA data for
most of the populations in the world. These databases have been built and maintained for
more than 10 years. HLA typing of d onors were determined by different typing techniques
and a lot of data is missing. The combination with the complexity of HLA system and the size
of these databases (up to millions of individuals) brings the problem to another level.
Therefore the estimation of gene and haplotype frequencies in such conditions is a real
challenge.
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e What are the properties and reliability of the model (HFE) in general? Since we will
approximate the local population by its stem cell donor registry datasets of different sizes
and structures, we have to understand quality of the result. We need to study the
dependency on the size of the population, genetic properties of the population, size of the
sample (registry) and resolution of the donor typing. We are also limited by computational
time. In practice, we have to deal with all these factors together.

o How can we design and implement the probabilistic matching algorithm? We are looking
for a solution even to countries for which it is not possible to create own model. The
algorithm must be able to handle all types of cases, patient-donor pairs, even if the patient
or the donor does not fit to our model (e.g. other ethnic). It has to be fast enough and give
reliable results.

e How can we validate the whole system? Can we apply it for all registries and populations?
The whole system must be validated before its use. In some countries we can use historical
data for validation, but in most countries, we don’t have enough data. Therefore we need to
find novel method for validation, using simulation.

HFEs are useful not only to support search for unrelated donors, but could be used in other
applications, we will present some of them.

1.2 Structure of the work
The work is organized as follows: chapter 2 gives introduction to the HLA system, unrelated
haematopoietic stem cell transplantation, stem cell donor registries and selection of unrelated stem
cell donors. Chapter 3 focuses on the overview of computer algorithms in the search for unrelated
stem cell donors.

Chapter 4 is the overview of possible methods of HFE with focus on maximum likelihood
function and its solution by the iterative Expectation-Maximalization (EM) algorithm. A method that
can verify reliability of estimates is presented.

Main part of the work starts by Chapter 5 that discusses the implementation of the HFE
algorithm and its usage on datasets of stem cell donor registries — challenges, pitfalls and possible
solutions. Chapter 6 gives new methods for testing of reliability of the HFE algorithm with stem cell
donor registry datasets. Chapter 7 presents real results, using methods of chapters 5 and 6.

Chapter 8 presents some applications of HFE, but we focus on the prediction of the HLA match
in the chapter 9. Top-down design of the algorithm is described. We compare our approach with
other implementations in the world (ZKRD, NMDP).

Chapter 10 describes methods of validation of the HLA matching prediction algorithm and our
results.

Chapter 11 shows application of the algorithms and tools in daily operation of stem cell donor
registries.

Chapters 12 and 13 conclude the work.
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2. HLA and haematopoietic stem cell transplantation
This chapter gives introduction to the HLA system, unrelated haematopoietic stem cell
transplantation, stem cell donor registries and selection of unrelated stem cell donors.

2.1 Basic terms
In the following text, we will use the terminology with the following meaning:

e Locus —gene; HLA locus, e.g. DRB1

e Antigen - one of the alternative versions of a gene at a given location (locus) along a
chromosome; substances that are recognized by the immune system and induce an immune
reaction.

e Allele - one of the alternative versions of a gene at a given location (locus) along a
chromosome; an individual inherits two alleles for each gene, one from each parent. If the
two alleles are the same, the individual is homozygous for that gene. If the alleles are
different, the individual is heterozygous. [9]

e Haplotype — set of specific loci with antigen/allele designations. From each parent, a
haplotype is inherited as unit [10].

e Genotype — particular combination of two multi-locus haplotypes [10].

e Phenotype — multi-locus genotype whose haplotype phase is unknown a priori [10].

e Linkage disequilibrium — association of alleles at two or more loci, combinations of alleles in
a population that is more or less often than would be expected from a random formation
of haplotypes from alleles based on their frequencies [11].

2.2 HLA system
Human leukocyte antigen (HLA) genes are located on the short arm of chromosome 6. HLA
genes are extremely polymorphic and play critical role in immune recognition and response. Each
individual has two sets of genes; consequently, the combination of HLA markers of each individual is
rare or almost unique in various populations.

Polymorphism is beneficial for population studies, because it allows determination of genetic
affinities among different populations. Haplotype studies are also important in complex research of
genetic diseases, when we want to know association of diseases or risks with specific haplotypes.

2.2.1 Human Leukocyte Antigen

The major histocompatibility complex (MHC) [12] is a large genomic region or gene family
found in most vertebrates. It is the most gene-dense region of the mammalian genome and plays an
important role in the immune system, autoimmunity, and reproductive success. MHC genes are
some of the most genetically variable coding genes in mammals. The proteins encoded by the MHC
are expressed on the surface of cells in all jawed vertebrates, and display fragments of molecules
from invading microbes or dysfunctional cells (e.g. tumor cells) to a particular type of white blood cell
called a T cell that has the capacity to kill or co-ordinate the killing of the microbe, infected cell or
malfunctioning cell.

The best-known genes in the MHC region are the subset that encodes cell-surface antigen-
presenting proteins [12]. In humans, these genes are referred to as human leukocyte antigen (HLA)
genes.
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The most intensely-studied HLA genes (also called loci, sg. locus) are the nine so-called classical
MHC genes: HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, and HLA-
DRB1. In humans, the MHC is divided into three regions: Class I, I, and Ill. The A, B, and C genes
belong to MHC class I, whereas the six D genes belong to class Il.

Besides being scrutinized by immunologists for its pivotal role in the immune system, the MHC
has also attracted the attention of many evolutionary biologists, due to the high levels of allelic
diversity found within many of its genes. Indeed, much theory has been devoted to explaining why
this particular region of the genome harbors so much diversity, especially in light of its immunological
importance.
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Figure 2: HLA complex on human chromosome 6 [13]

2.2.2 Nomenclature of HLA System
Nomenclature of HLA system is under responsibility of the WHO Nomenclature Committee
[14]. Stem cell donor registries also follow the WMDA standards and recommendations [15]. Each
HLA allele name has unique two, three or four field names. Fields are separated by colon (”:”). The
length of the allele designation depends on the sequence of the allele and that of its nearest relative.
All alleles receive at least a two field name, three and four field names are only assigned when
necessary.

The first field (number) describes the type, which often corresponds to the serological antigen
carried by an allotype. The second field (number) is used to list the subtypes, numbers being assigned
in the order in which DNA sequences have been determined. Alleles whose numbers differ in the first
two fields must differ in one or more nucleotide substitutions that change the amino acid sequence
of the encoded protein [16].
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Full code

Abbreviation
(unofficial)

Description

HLA-A A A means locus name (HLA gene)
HLA-A2 A2 Serological antigen A2. Result of a serology typing
method.
HLA-A23 A23(9) or A23 is a split serological antigen of broad serological
A23 antigen A9. Result of serology typing method.
HLA-A*02:XX A*02:XX or Group of alleles (subtypes of antigen A2). Low
A*02 resolution (LR) result of a DNA typing method.
HLA-A*02:01 A*02:01 Allele A*02:01. An example of the high resolution

(HR) results of a DNA typing method.

HLA-A*02:01/02:02 A*02:01/02:02 or Group of two alleles A*02:01 and A*02:02. A*02:AB is
A*02:AB the NMDP multiple allele code that represents the

group. An example of intermediate resolution (IR)

results of DNA typing methods.

Table 1: Nomenclature of HLA System

In this work, we will use both official and abbreviated nomenclature.

2.2.3 Resolution of the HLA typing
Based on the quality of HLA typing we can get HLA typing results of five different levels:

e Broad serology antigen

Split serology antigen

Low resolution (LR) DNA typing
Intermediate resolution (IR) DNA typing
High resolution (HR) DNA typing.

Broad and split serology antigen results are based on serology typing methods, while others
are based on molecular biology typing methods.

Low resolution means the identification for the first two digits of the HLA nomenclature, i.e. all
alleles with the same first field. Intermediate resolution means selection of at least two allele codes,
all belonging to the same serological antigen groups. High resolution typically means one allele
designation with two or more fields (at least four digits). In some countries (e.g. Germany), multiple
allele codes are still considered as high resolution, if all the alleles covered are identical over exons 2
and 3 for HLA class | or over all of exon 2 for HLA class Il.

Nomenclature of locus names differs, if we speak about serology typing results or molecular
biology (DNA) typing results.

23




Serology

HLA-A

HLA-B

HLA-C

HLA-DR

HLA-DQ

DNA

HLA-A*

HLA-B*

HLA-C*

HLA-DRB1

HLA-DQB1

Table 2: Nomenclature of locus names of different typing methods

In general, relation between typing results of different levels of typing of one individual is quite

complex (see Table 3):

Broad serology antigen always represents a group of split serology antigens, so their relation
is 1:n. E.g. broad serology antigen A9 represents group {A23, A24}.

LR DNA code represents a group of HR resolution DNA codes and every HR DNA code belongs
exactly to one LR DNA code. l.e. A*01:XX represents group {A*01:01, A*01:01:01,
A*01:01:02, ..., A¥01:02, A*01:03, ..., A*01:20, ...}.

Other relations are more complicated (m:n). IR DNA codes (also called NMDP codes or
multiple-allele-codes) represent a group of HR DNA codes. l.e. A*01:AAXP represents group
{A*01:02, A*01:08, A*01:14}. But a HR DNA code can belong to many IR DNA codes. l.e.
A*01:01 belongs to A*01:AB, A*01:AC, A*01:AAJ, etc.

HR DNA typing result DRB1*11:16 can have corresponding split serology antigen DR11(5) or
DR13(6) [17], but DR11(5) have many corresponding DNA typing results (DRB1*11:01,

DRB1*11:02, ..., DRB1*11:16, ..., DRB1*11:60).
e Other relations (m:n) are derived from previous facts.

Resolution Split LR IR HR
Broad 1:n m:n m:n m:n
Split m:n m:n m:n
LR m:n 1:n
IR m:n
HR

Table 3: Relation between levels of HLA typing (m:n —many to many, 1:n — one to many)

2.2.4 Examples of HLA typing results

Individual A Individual B Individual C
HLA-A*01:01, 26:01 HLA-A*03:01,32:BYJT HLA-A1,9
HLA-B*38:01, 57:01 HLA-B*35:01,38:01 HLA-B17,40

HLA-C*06:02, 12:03
HLA-DRB1*04:02,15:01
HLA-DQB1*03:02,06:02

HLA-C*04:BRXU,12:03
HLA-DRB1*01:01,13:03
HLA-DQB1*03:01,05:01
(tested by molecular biology (tested by serology typing
methods)

(tested by molecular biology

typing methods) typing methods)

Table 4: Examples of HLA typing results
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2.3 Unrelated donor selection process

Search for unrelated stem cell donors typically follows these steps [18] [19]:

1.

Patient HLA typing is determined. At least HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1
loci are tested. Sometimes also HLA-DRB3/4/5. Patient should be typed at intermediate or
high resolution.

Search coordinator runs the search algorithm in national and international registries.

A
03:.02

03:02

ECB:

320 08:01 15:01 03.03 07.01 13 14 05 05:03

B HLA-C considered ® HLA-DQ considered ® Addition data included ® Only identical and 1 allele/antigen mismatch ® Sorted on TNC

B C DRB1 DQB1 Reg # Additional details
TNC Vol. CD34+MN  Sex Age CMV CMV date ABORh

(107 (M 108y 107y

HLA-A Antigen Mismatched: 1

1 2 15 13:01 14:54 NY'CB 2111585 79103 23 M 0
HLA-B Antigen Mismatched: 2

3 32 2 35 13:01:01 14:BCAD ECB SPUCMADD022135 149 81

03223 32K 153 _ 13:6VA  14:PRK LVCB CBs132 91 96

HLA-DR Antigen Mismatched: 1
3201 08:01 15:BMJ 03:AH 13:XR u1CB $98503752 85 54

Registry Code Information:

Spain CORD ## ULCE: USA-NMDF CORD #
LWCB: Belgium-Leuven CORD

NYCBE: USA-New York CORD

Multiple Allele Code Information:

AH: o107 PRK: 01/07/28/39
BCAD: 01/54 ¥R 0127
BMN1:  15:01/15:04-15:0715:20/15.24/15:25
M5:26N/15:27M5:28/ 15:30115:32-15:35
GVA:  01/0216/28/35

= = CB registered in NetCord
== = CB registry partly registered in NetCord

Hybrid cord blood banks are listed in bold and italic

Figure 3: Example of donor search result [6]

3.

List of potential donors (see Figure 3) typically contains a lot of gaps (missing HLA typing
results) or HLA ambiguities. Based on transplant protocol, consultation with transplant
centres and local experience (or expert system predictions!), the search coordinator can
select several (3-10+) potential donors for additional typing. These tests could be done by
local or remote laboratories. Number depends on frequency of patient’s alleles & haplotypes
(if rare, more donors are selected), clinical urgency (more urgent case requires simultaneous
testing of several potential donors) and may be also limited also by patient’s financial
situation (i.e. limited funding by healthcare insurance company) — requested services have to
be paid by the applicant (hundreds of Euros).

Some potential donors will be unavailable, so missing results will never be obtained.
Contacting the donor, logistics of the blood sample and execution of the requested tests will
take several weeks.

Requested donor HLA typing results could show mismatch with the patient, so next rounds of
additional typing procedure may be initiated. Common patient HLA types can usually find
donor on first match run, less common may require a more sophisticated search using HLA
expert help to prioritize donors/cords. Unfortunately, some searches are finished without
finding a match. Then, other solution has to be found — physician has to change transplant
protocol (e.g. mismatched donor or cord blood unit) or select non-transplant treatment.
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6.

If a suitable donor is found, the transplant centre — donor centre handshaking process is
started (formal work-up requests, donor is examined, etc.), that may end up with the
transplant operation.



3. Computer algorithms in the search for unrelated stem cell

donors
This chapter gives an overview of computer algorithms in the search for unrelated stem cell
donors.

3.1 Search algorithm
The purpose of the donor search algorithm is to find and present a selected list of potential
donors and/or CBUs, in which the most likely an optimal stem cell source for the patient are sorted
to the top of the list [7]. Selection and sorting criteria are based on HLA compatibility and may also
take into consideration secondary preference criteria, such as CMV antibody status, gender and age.

Basic requirements for the search system used by stem cell donor registries are:

e Deterministic behavior that ensures the same results with the same input. This
means, the algorithm has to reproduce exact decisions at every step.

e Clear ranking order results.

e Exhaustive - all donors available for transplant in the source database should be
included in the search algorithm. Exceptions must be clearly indicated to the end-user.
For example some algorithms exclude donors that are typed only at HLA-A and HLA-B.

e Scalable - the system should be able to handle databases of varying size and type.

e Fast — search algorithms are also used in user-interactive systems, so the results
should be received in seconds.

e Configurable — search coordinator must be able to define patient-donor HLA match
criteria and secondary preference criteria (CMV status, gender, age).

e Consistently matched [20] - The data presented should be uniformly matched as a set
for a given instance of a patient search. Different primary algorithms or matching
criteria shall not be used within a single patient search.

The search algorithm is usually implemented as the key component of the stem cell donor
registry software system. It has several inputs and a single output. The following input data are
essential:

e Patient’s data: HLA type (minimum HLA-A, HLA-B and HLA-DRB1 typing).

e Patient’s match criteria (position and number of allowable mismatches)

e Database of adult unrelated and cord blood units (CBUs) (optional)

e HLA nomenclature code-lists

e Allele and haplotype frequencies (optional, depending on type of the algorithm)

The algorithm itself usually follows these steps:

a. Pre-processing: fast pre-selection of donors based on predetermined internal indices

b. Processing: comparison of every (pre-selected) donor with the patient, calculation of match
grades, matching probabilities and filtering

c. Post-processing: linking corresponding donor/CBU details.

The search output, which returns a sorted list of potential donors and CBUs can be presented either
in the user interface, on a printed report or transmitted to other systems (EMDIS). The presentation

27



output may be calculated within in the search engine software. e.g. it is common practice to highlight
patient-donor HLA mismatches. As well as match grade and matching probability this may require
additional data extraction from internal information calculated during the execution of the
algorithm.

HLA nomenclature code-

Database of .
lists, allele and

donors and .
haplotype frequencies
CBUs
Patient’s
o User interface
match criteria
Patient’s data  Search . N " Printed report
Algorithm Search results (potentia
donors and CBUs),

sorting and filtering Interfaces to
other systems

J

Figure 4: Basic concept of the donor search algorithm

3.1.1 Patient’s data
Patient’s HLA typing data must correspond to the valid HLA nomenclature and WMDA
guidelines [15] and should be typed at the highest possible resolution, i.e. least intermediate
resolution. According to some algorithms may return unexpected search results, if low resolution

HLA typing data is provided.

Example: B*35:76 has no mapping to ‘Unambiguous Serology’ [16], but is mapped to ‘Possible
Serology’ B35 and B22. B22 is the broad HLA code with splits B54, B55 and B56. Therefore a patient
carrying B*35:XX is a potential match with a donor carrying B*56:XX. Such a result is likely to be
confusing for healthcare professionals. This problem would not appear if the patient was typed at
higher resolution (the B*35:76 allele is excluded). An alternative solution would be to apply an
exceptions or filter by application of additional criteria, e.g. matching probabilities with threshold (it
is very unlikely the B*35:XX will become B*35:76).

3.1.2 Patient’s match criteria
Some algorithms have hard-coded or fixed match criteria, but more sophisticated search algorithms
allow users to define matching preferences for each individual search. EMDIS Matching Preferences
[21] define these criteria:
e Counting method for mismatches: count graft-versus-host (GvH) mismatches only or host-
versus-graft (HvG) mismatches only
e Maximum number of antigen/allele mismatches for adult donors
e Maximum number of antigen/allele mismatches for CBUs
e Maximum number of antigen/allele mismatches at loci A/A*, B/B*, C/C*, DR/DRB1*,
DQ/DQB1*
e Maximum age of the donor, gender matching, CMV matching
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3.1.3 Database of donors and cord blood units (CBUs)
Database of unrelated stem cell donors and CBUs should correspond to these requirements
[20]:

e Current - The data used by the algorithm should be up to date.

e Detailed - The data presented should contain all relevant fields to the determination
of match. The set of data elements should be consistent amongst the registry
community.

e Integrated - The data presented should be considered as a set and should be available
to the matching party as a part of a singular search event.

e Recognizable - The data presented should uniquely reference individual sources using
the identifier that is directly associated with the donor/CBU or would appear on any
biological samples associated with the product.

e Comprehensive - The data presented should represent a consolidated view of the
inventory. Uniform depth of access to all donors is needed.

Good implementation of the donor database is essential for acceptable performance of the
search algorithm. Not all database structures of HLA applications are suitable as the data source for
the algorithm.

Many small to middle size registries are co-located in a single centre with the HLA typing
laboratory and there is a need for data integration of these two departments. It may seem the
registry system stores and manages the HLA typing results in the same way as the HLA laboratory
information management system (LIMS), and some registries have implemented such data storage. It
is a mistake to use these in search algorithms. The main differences between registry database and
HLA LIMS database are:

o The registry system needs fast access to the most current and comprehensive HLA typing
results, which does not always mean the last test typing. This may be combination of
multiple tests performed in the past by multiple typing techniques. The registry system
always needs access to the full set of all loci that should be stored at one place, while the
HLA lab system order includes only requested tests and loci, so HLA typing results of an
individual may be spread in multiple typing orders.

e When the HLA lab supervisor approves the order results, it cannot be changed in the lab
system. However, the registry system has to keep historical HLA typing results up-to-date
according to the latest HLA nomenclature, so it needs to update them (deleted and renamed
alleles, new HLA nomenclature).

Database of donors/CBUs can simply be organized in a single relational database table. Even
this may be problematic. A logical database approach is to organize HLA code-lists in separated tables
(multiple-allele-codes, alleles, antigens and their relations) and define master-detail relationship
between donor data and HLA codes. These systems have been implemented in some registries. The
storage of donor record is using only primary keys of HLA codes (as foreign keys). The disadvantage
of the master-detail storage is that retrieval of donor’s HLA typing is inefficient. Often the solution
for data retrieval in such a structure is cumbersome, because the database system has to join data
(database natural join) from tens of tables .The advantage is easy manipulation with the properties
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of HLA codes or even the renaming of HLA allele codes. But such operations are much less common,
compared to data retrieval.

3.1.4 HLA nomenclature code-lists
In all cases, the algorithm has to recognize the description of HLA typing codes (e.g. multiple-
allele-codes) and relations between HLA codes, especially DNA to serology mapping. Some
algorithms even use antigen recognition site matching, amino acid sequences or nucleotide
sequences. It is recommended that code-lists and code attributes are downloaded from specialist
reference web sites [16] and [22].

Donors have been typed by various different typing techniques and many of them are
registered with HLA serological assignments. The database of donors could be pre-processed, so all
interpretations and mapping of HLA codes could be saved in advance, but generally, the patient’s
HLA type is known only at the time of the search, so HLA nomenclature code-lists are needed. Of
some concern is that a minority of patients are still typed only by serologic typing techniques! This
means that search algorithms must be capable of using these in the search process.

3.2 Pre-processing
Several variants of search algorithms are being used by stem cell donor registries. Selection of
the algorithm is influenced by available resources, size of the donor database, availability of
haplotype frequencies of the supported population(s), etc. We will discuss commonly used search
algorithms.

I. Simple pre-selection

The goal of the algorithm is to find potential donors for one patient. The phenotype of the
patient is compared with all donors phenotypes in the donor registry database that are ‘available’ for
transplantation purposes (simple pre-selection).

For every donor D in the database
Count Match Grade (patient P - donor D)
If the Match Grade is acceptable, store
data of donor D in the list of
potential donors of patient P

This kind of algorithm can be used only for small to middle sized registries. Implementation
enhancements can help to improve this situation. For example, increasing current capacities of
server memories allows caching of all donors in the random access memory (RAM) of the server. The
advantage of this algorithm is mainly in its simplicity and simple validation process. It also has very
straightforward implementation of distributed or parallel computing. The drawback is the speed and
memory limitation, especially where donor database is growing

This algorithm could be extended to multiple patient searches [5] that might be useful, for
example, for EMDIS repeat searches [21], when search results from several thousands of donors have
to be generated and compared with previous results. Again, the list of all patients could be cached in
the server memory with one additional loop.
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For every donor D in the database
For every patient P in the database
Count Match Grade (patient P - donor D)
If the Match Grade is acceptable, store
data of donor D in the list of
potential donors of patient P

1. Search determinants

Databases from Registries and cord blood banks store the HLA types in many formats
depending whether typing was by serology or by DNA-based methods. Registries must take these
different assignments to create a match algorithm to search for a patient. This comparison is usually
facilitated by the conversion of phenotypes to "search determinants" prior to development matching
algorithms.

The phenotype of the patient/donor is mapped to ‘Search Determinants’ (SD) [23] [24]. The SD
is a data record, based on serological antigens, corresponding to the original HLA phenotype. For
example, it might be a group of six HLA serologic-based assignments — three pairs for HLA-A, HLA-B
and HLA-DRBL1 loci. An individual can have multiple SDs. SDs are used as an index to select the set of
matching phenotypes. Then, more precise match grades are counted and the list of donors is filtered.

The main application of SDs is the speeding up of the match process by using SDs as keys
values in conjunction with a database and a matching algorithm [25]. The main disadvantage is the
need for regular checks and updates of SDs of all donors in the database, due to changes of donor
data, HLA nomenclature updates and changes in the “DNA to serology” mapping. There are particular
problems where there is no serological equivalent for a DNA allele.

I1l. DNA matching only

The National Marrow Donor Program (NMDP) in the United States has developed an algorithm
[26] that does not use SDs for the initial matching step as this is done by directly comparing patient
DNA type to donor DNA type. The algorithm is able to account for all serologic typing possibilities
with the use of a special table called the "Serology to DNA Allele Table".

3.3 Processing
The key element of the processing step of the algorithm is the ‘match grade function’ that can
compare data (HLA, ethnic group) of two individuals (usually patient and donor) and return their
match grade and/or matching probabilities. The threshold function then filters out donors that do
not match patient’s match criteria.

HLA nomenclature Patient’s match

code-lists, allele and criteria

haplotype frequencies

Donor’s data \ ¢
v
Match grade Threshold

Patient’sdata |_—"| fynction | function
Figure 5: Match grade function

!
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Original versions of matching algorithms compared HLA typing only at HLA-A and HLA-B loci.
DNA typing was not performed. Later generations added other loci, especially HLA-DRB1, but also
HLA-C and HLA-DQB1. Today, some algorithms even use HLA-DRB3/4/5, HLA-DPB1 and other loci.

Earlier versions of matching algorithms also used only serological assignments; DNA typing
either did not exist or was not taken into account. Later versions have converted DNA typing results
into serological assignments or vice versa, so the algorithm has a uniform typing technique view on
all donors. Current search algorithms use DNA typing results as much as possible and switch to
serology comparisons only if DNA typing is not provided or if they want to refine DNA to serology

mapping.

The Information Technology (IT) Working group of the World Marrow Donor Association
(WMDA) has issued two key resources that describe the correct handling of HLA data and key
patient-donor matching procedures:

e Framework for the implementation of HLA matching programs in hematopoietic stem cell
donor registries and cord blood banks [7]. This article gives a bottom-up approach to the
design of search algorithms: comparison of individual HLA codes, then HLA single-locus
phenotypes and eventually HLA multi-locus phenotypes.

e Guidelines for use of HLA nomenclature and its validation in the data exchange among
hematopoietic stem cell donor registries and cord blood banks [15]

A common mistake in the design of search algorithm is the violation of the rule 2.1 of the
guidelines [15]: “Laboratories must assign DNA nomenclature to results obtained using DNA-based
methods and serologic nomenclature to results obtained using antibody reagents.”. Some computer
systems need to permanently store serology derived results of DNA codes, usually because of simple
DNA-serology matching. However, the mapping should be done automatically by the system and not
by the user. Derived serology values must be clearly distinguished from real serology results obtained
using antibody reagents. Where mapping has changed, the registry system has to know if stored
serologic results should be updated or not. Moreover, some alleles are mapped to multiple serology
equivalents and the system has to take this into account.

In addition to match grade, some information can be calculated. In these, the probability of
HLA matching at the allele level based on local population haplotype frequencies in the underlying
population can be calculated. Such prediction algorithm system has been developed and validated
by the NMDP (HapLogic™ 11) [27].

The latest, state-of-the-art versions of search algorithms (OptiMatch®, HapLogic™ I11) use these
probability calculations to determine the rank order of HLA matches as the main searching and
sorting criteria.

3.4 Post-processing
At this stage, the system retrieves corresponding donor details of all selected donors that will
be displayed in the search results. If the matching probabilities are not used as the main sorting
criteria, the search system can apply them at this stage (ProMatch [28], Hap-E [29] and EasyMatch
[30]).
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3.5 Validation of the search algorithm
All implementations of the search algorithms need to be validated before being used. The
WMDA Information Technology Working Group provides validation sets of patients and donors that
are used for matching trials and comparison of results with expected outcomes [31] [7]. Algorithms
that do not use simple pre-selection approach, but use more complex pre-selection, have to be
validated for completeness. It is important not to miss any relevant donors in the pre-selection [7].

Validation of the processing phase, especially the match grade function, can be done by
running several automated unit tests, addressing all kinds of matches and mismatches, exceptions
and rare cases. Interfaces to software source code classes, modules or libraries are tested with a
variety of input arguments to validate that the results that are returned are as expected [32].
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4. Haplotype Frequencies Estimation
This chapter gives an overview of possible methods of HFE with focus on maximum likelihood
function and its solution by the iterative Expectation-Maximalization (EM) algorithm. A method that
can verify reliability of the estimates is presented.

4.1 Number of genotypes

The number of genotypes (Cj) leading to the j-th phenotype is a function of the number of

heterozygous loci §;:

L)
297 if s, >0
C; = )
1 ifs;=0

Example 1

Assume the following phenotype of an individual (Sj =3):A1,2B7,8DR1,4

Then all possible genotypes are (C; = 2% =4):

Al B7DR1 Al B7 DR4 Al B8 DR1 Al B8 DR4
A2 B8 DR4 A2 B8 DR1 A2 B7 DR4 A2 B7 DR1
O

Only one of these C; genotypes is the proper one.

4.2 Problem formulation
Typing techniques allow the survey of many polymorphic loci, but do not allow distinguishing
gametic phase of haplotypes. For heterozygous diploids the direct sequencing of the PCR
(polymerase chain reaction) product results in the amplification of both alleles and does not allow
resolving the haplotypes when the diploid individual is heterozygous at more than one locus.

The data set consists of individuals (sample of a population) and their unphased HLA typing
results at one or more loci.

The goal is to find the best estimates of the haplotype frequencies in the population using
only limited information included in the phenotype (unphased genotype) sample data.

4.3 Methods

The main methods of solution of the problem are:

1. Family studies — adding some additional information.
2. Remove heterozygous individuals —ignoring the problem.
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Parsimony method — counting phase known individuals
Two by two tables — solution only for two loci

Bayesian methods

Maximum likelihood approach

oukuWw

4.3.1 Family studies
Multi-loci haplotypes can be usually determined by additional genealogical study of the
individual. [35]

Family members of many individuals could not be reachable for tests. Therefore the family
studies of all individuals in the data set are not possible. Moreover, to avoid redundant information
and possible bias, some members of the families must be excluded from the data set, so the costs
would be extremely high. This approach is not scalable for large data sets.

4.3.2 Remove heterozygous individuals
The easiest possibility would be to remove all heterozygous individual from the sample and
keep only homozygous ones. Then calculate haplotype frequencies by direct counting.

This approach is problematic, because it might lead to a bias.

4.3.3 Parsimony method
Clark’s algorithm [33] and its variation [34] start to examine complete homozygotes and single-
locus heterozygotes and creates list of haplotypes that must be present unambiguously in the
sample. If such individual does not exist, then the algorithm cannot start. Then other individuals are
screened for a possible occurrence of previously recognized haplotypes. For each positive
identification, the complementary haplotype is added to the list of the recognized haplotypes, and so
forth. Problems of the approach are:

(a) homozygous individuals are not always present in stem cell donor registry databases or there
can be only few of them;

(b) the final result depends on the order of individuals in the sample as shown in [35].

(c) inthe end there could remain unresolved individuals.

4.3.4 Two by two tables
The estimation method [34] [36] counts the phenotype frequencies of each antigen in the
sample for both (two) loci and uses these to calculate the linkage disequilibrium of each haplotype
consisting of two alleles i and j as follows:

d; _\/bij +d; ¢ +d,
n n
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in which a, b, c and d are the phenotype frequencies of the +/+, +/-, -/+ and -/- combinations of the
allele in each haplotype and n is the sum of g, b, c and d. The haplotype frequency of allele i from the
first locus and allele j from the second locus is then:

Pij :Dij+gixgj

where §;and §; are gene frequencies of allele , resp. j.

This method is computationally simple, but unfortunately it works only for two loci and gives
worse results than maximum likelihood approach [34].

4.3.5 Bayesian methods
The PHASE algorithm [37] threats haplotype configuration for each unresolved individual as an
unobserved random quantity and aims to evaluate their conditional distribution, given a sample of
unphased data. Goal of the Bayesian framework is to approximate posterior distribution of haplotype
configurations f(G|P), where

G = (G, ..., G,) denote to unknown corresponding haplotype pairs (genotypes), n is number of
individual in the sample and P = (P, .., P,) are known unphased phenotypes. The method
implements Markov chain Monte Carlo (MCMC) methods (Gibbs sampling) to sample from f(G|P). It
starts with random configuration G, repeatedly selects unresolved individuals at random and
samples from their possible haplotype configurations, assuming all other individuals to be correctly
resolved. Repeating this process enough times results in an appropriate sample from f(G|P). In other
words, it constructs Markov chain G, G, G\, ... with stationary distribution f(G|P) on the space of
possible haplotype reconstructions.

The output of the PHASE algorithm is haplotype frequency estimation and reconstruction of
haplotypes of each individual in the sample.

We have cooperated with Mr. Urban on his Master’s thesis [38] regarding the problem of
haplotype frequency prediction and haplotype resolution using statistical methods in general, and
specifically in the context of HLA data. Mr. Urban has proposed a new Bayesian approach that uses
the available prior knowledge to solve this task. The algorithms has been compared with our
approach (EM algorithm) and even though it gave worse results in terms of accuracy, its robustness
in speed when faced with large datasets with missing or ambiguous information in principle allows
for processing of register data on a massive scale.
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4.3.6 Maximum likelihood approach
Under of the assumption of the Hardy-Weinberg equilibrium [39] and random mating, the

probability F’j of the j-the phenotype is given by the sum of the probabilities of each of the possible

Cj genotypes:

(2)

C:

P, = z P(genotype i)= ijl: P(h.h,)

i=1

where P(h.h,) is the probability that the i-th genotype is composed of haplotypes k and /:

(3)

P(hyhy—{ P k=]
2p, p, If k=l

and P, denotes the frequency of the i-th haplotype hi in the population.

The probability of a sample of n individuals, conditioned by phenotype frequencies

P,P,,...,P, is given by the multinomial expression

n! N "
(4) P(sample|F’l,PZ,...,Pm)_mel X P % x P!

where m denotes the total number of phenotypes and N; is the number of individuals carrying the j-

the phenotype observed in the sample:

Substituting equation (2) into equation (4), we obtain the probability of the sample as a
function of the unknown the haplotype frequencies. Therefore, the likelihood of the haplotype
frequencies given phenotypic counts is:

(6) SUT ph)=L.xlm[(CZj P(hh, )J“j

ntnyl---n. b 5a\03

h
7 D.p=1
i=1
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4.4 Solutions of maximum likelihood function
Possible methods of solution of the maximum likelihood function are:

1. Analytic solution [42]

2. Genetic algorithms (own attempt)
3. EM algorithm [43]

4.4.1 Analytic solution
We can logarithmize the equation (6) and get:

8  logL(py, Pyue.. Py)=2,+ Y 0 log P,
i=1

where 4, is a constant incorporating the multinomial coefficient.

The maximum likelihood estimates of haplotype frequencies could be, in principle, found
analytically or numerically by solving a set of equations resulting from the h —1 partial derivatives
equated to O:

(9)

However the nonlinearity of (9) and a large number of equations when practical data are
analyzed (tens of thousands for real data) make this approach prohibitive. Moreover the h is often
unknown a priori.

Numerical methods must be used to solve these equations and find the maximum. Many numerical
methods are sensitive to rounding errors and they are usually not able to prove that a particular
solution is the global maximum. Procedures based on analytical solution are limited to a few loci and
polymorphism.

4.4.2 Genetic algorithms
Maximum likelihood approach is an optimization problem, so we can consider genetic
algorithms (GA) to solve it. Fitness function is very straightforward, because it is the Maximum
likelihood function.

But we are in troubles with the definition of GA-chromosome. It should store the result of the
algorithm, which is the list of haplotypes and their frequencies. Maximal length of the list is nx 2™,
where m is number of heterozygous loci in the sample (M=mMmaxs;). Every item of this list
(haplotype frequency estimation) is a real number (the frequency) and m loci with allele designations

defining the haplotype. Each HLA locus can have approx. up to 1000 different alleles, so we can
encode them to 10 bits. If we encode a real number to 32 bits (frequencies could be very small

numbers) we get the size of the GA-chromosome to max. Nx 2" x (Mx10+32). For real data (

n=10°% and m = 3) we get the GA-chromosome bigger than 0.5 MB which is not feasible for GA. GA
could solve only small instances of the problem and is not applicable in our situation.
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4.4.3 EM algorithm
One of the most widely used methods of haplotype reconstruction is Expectation-
Maximalization (EM) algorithm, which estimates haplotype frequencies iteratively. Since we have
used this approach as a basis of our solution, we will describe this algorithm in the following chapter.

4.5 Expectation-Maximalization (EM) algorithm
Association of haplotype structures and sample of unphased genotypes can be expressed by
likelihood function (see also section 4.3.6). The relation (6) is complicated and cannot be maximized
by standard techniques, as has been discussed before.

The Expectation Maximalization (EM) algorithm was formalized by Dempster A.P. et al. in 1977
[40]. Dempster has proven the monotone behaviour of the likelihood and derived the convergence of
the algorithm. Its application to the problem of haplotype reconstruction was formulated in 1995 by
several authors [10] [35] [41]. Since then the method and its properties were further analyzed by
several studies [42] [43] [44]. They have shown it can be used for wide variety of population and
data-set scenarios.

4.5.1 Algorithm description
The EM algorithm is an interactive method of computing sets of haplotype frequencies

Pis Py, ..., Py, starting with arbitrary initial values pl(o), éo),..., p,ﬂo) . These initial values are used to

estimate genotype frequencies Is(hkh,) as if they were the unknown true frequencies (the

expectation step). These expected genotype frequencies are standardized and used, in turn, to
estimate haplotype frequencies p at the next iteration (the maximization step), and so on, until

convergence is reached.

4.5.2 Initial conditions
There are several possibilities of initializing the haplotype frequencies pl(o), éo),..., p,(]o) with

respect to equation (7). They can be summarized as follows:

e (IC1) All haplotypes are equally likely

(10) t(°>:i, t=12,...,n,.
r]h

e (IC2) All possible genotypes of each phenotype are equally likely

(11) P,-(hkh.)“”:Ci, j=12,...,m.

j

e (IC3) Initial haplotype frequencies are chosen at random.

e (IC4) All initial haplotype frequencies are equal to the product of the corresponding single-locus
allele/antigen frequencies (complete linkage equilibrium).

e (IC5) The input data influence the initial haplotype frequencies.
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4.5.3 The expectation step
e Estimation of genotype frequencies, given haplotype frequencies:

(9)2 i =
_ @ _ Py if k=1
(12) P(hkh|) ’ _{Zp(g) @9 jf k=1

4.5.4 The maximization step
e Estimation of phenotype frequencies, given genotype frequencies

(13) P9 = ZJ: P(genotype i)* = ZJ: P(h.h, )
i=1

i=1

e Standardization of genotype frequencies

n, P (h.h )
(14) P(hkh.)(g’=7’—(Pk_<g'))
J

e A genotype has one or two specific haplotypes, so genotype frequencies can be used to estimate
haplotype frequencies by direct counting of all occurrences of a haplotype within all sample
genotypes.

(15) PO = ZZ&HPJ (heh )

j=1 i=1

where 5“ is an indicator variable equal to the number of times haplotype t is present in the genotype

i

0 if t=k)A(t=l)
(16) 5,=41 if (tzk)Alt=1)v((t=Kk)At=1)
if t=k=1I

4.5.5 The stopping criterion
The stopping (convergence) criterion can be defined as:

e (SC1) the relative difference between the consecutive ML function values is less than an arbitrary
parameterg > 0.

e (SC2) the absolute value of difference between the consecutive ML function values is less than an
arbitrary parameter & > 0 [43].

e (SC3) when the changes in haplotype frequency in consecutive iterations are less than an
arbitrary parameter& > 0:

(17)  |peP - p@|<e t=12,...,h.
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4.6 Properties of EM algorithm
Sample size

As expected, the algorithm performs better for larger samples sizes, i.e. give better estimates,
as shown in [10].

Multiple local maxima

EM algorithm climbs the multidimensional likelihood surface, but there is no guarantee that
the surface is convex, i.e. there is no proof for uniqueness of a likelihood function maximum, so the
likelihood surface may have multiple local maxima [43].

To ensure finding global maximum likelihood, the EM algorithm should be started from several
initial conditions [10].

Deviation from HWE

Departure from HWE may be a substantial source of error, because the algorithm relies on
HWE in its expectation step. However, deviation from HWE will not result in a significant
differentiation in the haplotype frequency estimation [45]. Also linkage disequilibrium does not
impact highly on the common haplotype frequencies [42].

Convergence speed

Most studies confirm high convergence speed of EM algorithm, e.g. in less 20 iterations by [43]
or in less than 50 iterations by [42].

Other properties that could be studies are: shape of log-likelihood graph, sensitivity to
stopping criteria, LD and departures from HWE and sensitivity to different initial conditions.

4.7 Reliability of haplotype frequency estimation
There is no single measure of performance of EM algorithm, because there are many possible
uses of it and the choice of a measure depends on the intended purpose [10]. Anyway some
properties could be observed.

4.7.1 Haplotypes with low frequency

When we run haplotype frequency estimation algorithm, we might get list of tens of thousands

0—500

of haplotypes, but some of them could have very low frequency (e.g. p; <1 ). The question is if

these low frequencies are reliable or not.
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We use similar approach as [46], which estimates the minimal registry size in order to calculate
reliable haplotype frequencies. In our case, we have fixed size of the sample (registry) and we want
to know the reliability of haplotype estimates.

Reliable estimation of the frequency of a haplotype should be supported by at least one

individual in the sample carrying the haplotype. If the frequency of i-th haplotype is P; and the

sample size is n, then the probability that the individual hasn’t the j-th haplotype is F_’I = (1— p; )2,

because the individual has two haplotypes. The probability Q that at least one individual with i-th
haplotype is found in n individuals is:

(18) Q=1-R"=1-(L-p)"
If we want to reach certain probability Q, we can fix it as constant and we get
In(l-Q)=2nIn(1-p,)

In1-Q)
(199 p,=1-e

Table 5 shows examples of minimal reliable P, values for different n and Q values.

Q
N 0.95 0.99 0.999

10° 1.487x107% | 2.276x107 | 3.395x10°°
10° 1.498x10° | 2.300x107° | 3.448x10°°
10* 1.498x10™* | 2.302x10™* | 3.453x107*
10° 1.498x10° | 2.302x107° | 3.454x10°°

Table 5: Minimal reliable value of haplotype frequency estimation.

On the other hand, if a haplotype exists in the sample, then at least one individual has to carry it.
Since number of haplotypes in the sample is 2n, the minimal frequency of any haplotype must be

1
20 =
(20) p; on

Combining these two approaches, we get

2n
(21) Q=1—F_>i“=1—(1—ij ~1-1
2n e

The calculated value of Q is 0.63 for all values of n mentioned in Table 5.
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4.7.2 Lab-based verification of the EM algorithm
Verification of the algorithm can be done by this scheme [42]:

1. Generate a model of “true” population, including “true” haplotype frequencies T.

2. Do the sampling process, i.e. select or generate individuals according to the population
model. As a result, we have phase-known sample and sample haplotype frequencies S.

Hide the phase information in the sample, i.e. convert genotypes to phenotypes.

4. Estimate haplotype frequencies E.

w

If we compare estimated haplotype frequencies E with “true” population haplotype
frequencies T, we get the assessment of the validity of the final haplotype frequency.

If we compare S and T, we get the sampling error. As confirmed in [42], the accuracy of the
frequency estimation depends on the proper sampling procedure.

4.7.3 Distance from true frequencies
To examine how close estimated frequencies E are to “true” frequencies T, we can use the

similarity index | [10]:

h
le = me(pir pOi)
i=1
where [, are the estimated frequencies, P,; are the true simulated frequencies and h is the number

of unique haplotypes in the union of both sets (estimated and true). It varies between zero, when the
sets of “true” and estimated haplotypes with non-zero frequency have empty intersection and one,
when true and estimated frequencies are identical. This index gives more weight to the high-
frequency haplotypes.

h h h h

szm(f)i' pOi)+Z|bi - p0i| = Z f)i +Z Poi = 2

i=1 i=1 i=1 i=L

holds, so we can express similarity index in other form:
h

h
. n 1
(22) 1o =Y min(p, py)=1-=)
i=1

23

- p0i|

Other possibilities of comparison of T, S and E, include Goodness of fit, Pearson’s r and
Spearman’s coefficient tests.
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5. Design and implementation of HFE algorithm for stem cell donor

registry datasets
This chapter discusses our own design and implementation of the HFE algorithm and its usage
on datasets of stem cell donor registries — challenges, pitfalls and possible solutions.

5.1 HLA data from stem cell donor registries
Databases of stem cell donor registries are unique and very valuable sources for population
genetic studies. The most of the HLA typing results were obtained in accredited HLA laboratories with
high quality control standards, which is very important. These data are not “dead”, but they are daily
used and continuously updated by stem cell donor registries staff in order to find unrelated donors
for stem cell transplantation.

On the other hand, HLA haplotype estimation from a sample of a stem cell donor registry is
demanding because of the following reasons:

e Missing data.

e Registry data contain HLA results that have been done by different typing techniques, so it
contains different typing resolution (see chapter 2.2.3).

o HLA system is extremely polymorphic and people still find a lot of new alleles, see Table 6
and Table 7.

e There are quite a lot of HLA loci for which it would be useful to estimate haplotype
frequencies: A, B, C, DRB1, DRB3, DRB4, DRB5, DQA1, DQB1, DPA1 and DPB1. Reliable and
unbiased data of DRB3, DRB4, DRB5, DQA1, DPA1 and DPB1 are rare and insufficient for
haplotype frequency calculation, therefore for practical reasons, we will consider only A, B, C,
DRB1 and DQB1. Consequently, haplotypes could have up to 5 loci.

Number of possible values
Resolution HLA-A HLA-B HLA-C HLA-DRB1 HLA-DQB1
Missing data 1 1 1 1 1
Serology broad 11 32 8 10 4
Serology split 28 61 10 21 9
DNA low resolution 21 36 14 13 5
DNA interm. Resolution >10* >10° >10* >10° >10*
DNA high resolution 853 1249 361 659 99

Table 6: Number of possible values (antigens/alleles) in the HLA system (August 2009) [47]

Number of possible values
Resolution HLA-A HLA-B HLA-C HLA-DRB1 HLA-DQB1
Missing data 1 1 1 1 1
Serology broad 11 32 8 10 4
Serology split 28 61 10 21 9
DNA low resolution 21 36 14 13 5
DNA interm. Resolution >10° >10° >10° >10° >10*
DNA high resolution 2188 2862 1746 1285 193

Table 7: Number of possible values (antigens/alleles) in the HLA system (January 2013) [47]
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5.2 Input and output typing resolution
Our goal is to design and develop a general method that takes as the input a population
sample data, a stem cell donor registry database, and calculates haplotype frequencies that cover
user-defined set of loci and each locus is calculated at user-requested resolution.

When we start to “play” with different typing resolution, we must keep in mind that all
haplotypes entering the EM calculation and appearing in the result set must be disjoint.

Example A/A* B/B* c/c* DR/DRB1* DQ/DQB1*
configuration

#1 Low res.

#2 High res. High res.

#3 Serol. broad | Serol. broad Serol. broad

#4 Low res. Low res. Low res.

#5 High res. High res. High res. High res. High res.

Table 8: Examples of configuration of HLA haplotype frequency estimation

Table 8 shows examples of desired settings. This variability of configuration is quite
challenging. Let us breakdown all possible combinations of input-output relations at any locus, see
Table 9.

Output data - Required resolution of HLA haplotypes
Input data Serology Serology DNA low DNA DNA high
Broad Split res. interm. res. | res.
Missing data {01} {02} {03} {04} {05}
Serology Broad {11} {12} {13} {14} {15}
Serology Split {21} {22} {23} {24} {25}
DNA Low res. {31} {32} {33} {34} {35}
DNA interm. res. {41} {42} {43} {44} {45}
DNA high res. {51} {52} {53} {54} {55}

Table 9: Input and output HLA typing resolutions.

Most of HLA studies work with uniform input level of typing resolution of all individuals. In
order to have such uniform dataset, they:
e Exclude volunteers with different typing resolution (e.g. donors without HLA-DR typing) or

e Collapse serology split level antigens to broad level (e.g. A23 to A9).

We can use datasets with multiple level of typing resolution, because it is not necessary to
require the level of typing resolution to be statistically independent on the HLA type [48].
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In fact, the situation about input data is more complicated, because an individual can have two
HLA codes of different resolution at one locus and we must have solution that can deal with it. We
could get results like DRB1*01:XX, 07:01 (mix of low and high resolution). Nevertheless we will
expect the input HLA typing complains WMDA guidelines for use of HLA nomenclature [15] that is
true for databases of stem cell donor registries. Therefore we do not have to deal with mix of
serology and DNA typing results at one locus (e.g. DR1, DRB1*04:XX).

Table 9 defines 30 different situations that could happen at a locus:

e (Cases {X4} make no sense, neither for practical purposes nor for extreme diversity of
intermediate resolution HLA codes.

e (EQ) Cases {XY}, where X =Y, are the easiest ones, because we do not have to convert input
and output HLA codes.

e (LO) Cases {XY}, where X < Y, mean conversion of codes from lower to higher resolution. In
other words, it is expectation of higher resolution typing, given a lower resolution typing.
Special cases {0Y}, i.e. first row of the table, handle missing data.

e (HI) Cases {XY}, where X > Y, mean conversion of codes from higher to lower resolution. In
other words, it is degradation of HLA typing results to lower resolution.

Cases (HI) are also important. The most of studies performing HLA haplotype frequency
estimation on serology broad/split level just ignore DNA typing results of individuals in the sample.
But this information should not be ignored, because it can improve the serology typing results of an
individual. This approach is also in harmony with findings of the study [48].

5.3 Missing data
We consider a phenotype to present a missing value when no antigens/alleles are reported at
a particular locus. We assume that the presence of missing values is independent on hidden values
and other reported values.

Example: The typing result of an individual could be Al1,2 B7,8, so just A and B loci are HLA
typed. Locus DR is not typed, therefore contain missing values.

There are several methods how to handle missing values in population data:

(MI-1)  Ignoring individuals with incomplete information (EH software). This approach introduces
sampling error and overestimates common haplotypes.

(MI-2)  Treating a missing antigen/allele as any other antigen/allele (ARLEQUIN software). This
approach generates unreal haplotypes.

(MI-3)  Consider missing value as any allele. The best approach, but computationally demanding. It

means to generalize definition of C;in equation (1), so now the EJ- is number of all

possible genotypes that could lead to phenotype j. Then sums in equations (13) and (15)
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(MI-4)

(MI-5)

(MI-6)

iterates through all pseudo-haplotypes, i.e. haplotypes compatible with the given
phenotype.

Consider missing value as any allele that is already found associated with the observed
alleles at the other loci in the dataset where considered to substitute missing values [49].
This approach is an optimization of the previous one. The idea behind is based on the fact
that EM algorithm in the previous approach will gradually withdraw those haplotypes that
are not directly observed in the sample (in complete phenotypes). This method therefore
provides the same result as the previous one.

The study [49] shows that the MI-4 method is better than MI-1 and MI-2, especially when
the study is focused on rare haplotypes.

An enhanced approach of MI-4 (Henk van der Zanden, personal communication, 2008):

e Transform input dataset with missing values to new one, without missing values

e Missing values are guessed according to analysis of phenotypes without missing
values.

e One phenotype with missing values is substituted by more phenotypes without missing
values and the original number of individuals of this phenotype is proportionally
divided between new phenotypes.

Problem of this approach is there could be missing values which cannot be substituted.

Advantage of this approach is it simplifies the computation. On the other hand it tries to
do some work in advance that should be done by the EM algorithm. Its influence on the
accuracy of haplotype frequency estimation should be tested, but we think it will not
provide better estimates, maybe the same ones.

An enhanced approach of MI-1 [50]: Calculate full (3-locus) haplotype frequencies ignoring
individuals with incomplete information (like MI-1). Then correct these haplotype
frequencies by adjusting them according to the ratio of the resulting (2-locus) marginal
frequencies and the direct estimate from the full registry.

5.4 Lower to higher typing resolution

HLA typing techniques often give results as ‘ambiguities’, which means the result is not

perfectly determined (high resolution), but some of the known alleles could be discarded. Such result

could be a list of possible alleles or multiple allele code. In fact the missing value according to

approach MI-3 (resp. MI-4) is also a kind of multiple allele code that represents all existing alleles

(resp. all observed allelic combinations in the sample). The study [49] suggests ambiguities “could

easily be handled using the same statistics as those presented for missing values”, but “this

theoretically simple process becomes complicated to implement”.

5.4.1 Mapping serology broad to split values

These cases refer to the cell {12} in the Table 9. The study [51] is the first one that maps broad

antigens to all possible split antigens in order to generate all possible genotypes to be considered. It
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is similar to the approach MI-3 and shows the complexity of HLA system even for serology
haplotypes.

Example 2

A9 is mapped to split group {A23, A24}. An individual with phenotype A2, A9; B8, B35 could
have one of these (split) genotypes:

e A2-B8/A23-B35
e A2-B8/A24-B35
e A2-B8/A23-B35
e A2-B35/A24-B8

The worst case for calculation of HLA-A, HLA-B, HLA-DR haplotypes is the phenotype A10,19;
B15,22; DR5,6 (six broad antigens), resulting in 3456 different possible genotypes.

5.4.2 Overlapping mapping of multiple allele codes
But the situation with ambiguities is more complex than with missing values. Both MI-3 and
MI-4 map a missing value to exclusive set of alleles.

Missing
01:AB 01:AC

l l /

01:01 01:02
01:03 etc.

Figure 6: Comparison of missing value and other ambiguities.

On the other hand, multiple allele codes are mapped to sets of alleles that have nonempty
intersection, see Figure 6. Other problem is multiple allele codes can contain only few special alleles
which are not observable in the registry database as high resolution result. This leads to the
conclusion that MI-3 and MI-4 do not give the same result for ambiguities, as shown in the following
experiment.
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Experiment 1
Data set:

e One individual with A*01:AB (=01:01/01:02)

e Oneindividual with A*01:AC (=01:01/01:03)

e One individual with A*01:AG (=01:01/01:06)

e One individual with A*01:02

e One individual with A*01:03

e As we can see A*01:01 and A*01:06 are not directly represented in the dataset, so MI-4
would not work for A*01:AG.

Required HLA haplotypes:

o A* (high resolution)
Results: After 16 iterations of the EM algorithm with MI-3 strategy, the A*01:01 is the most frequent
allele (0.447), followed by A*01:02 (0.276) and A*01:03 (0.276) and A*01:06 (<0.001).

O
Experiment 2

Data set:

e 10 individuals with A*01:AB (=01:01/01:02)

e 1individual with A*01:AC (=01:01/01:03)

e 1lindividual with A*01:02

e 1lindividual with A*01:03

e As we can see A*01:01 is not directly represented in the dataset, so MI-4 would ignore it.

Required HLA haplotypes:

e A* (high resolution)

Results: After 19 iterations of the EM algorithm with MI-3 strategy, the A*01:02 is the most frequent
allele (0.498), followed by A*01:01 (0.410) and A*01:03 (0.090).

O

As conclusion, for ambiguities we should use similar strategy as MI-3, take into account all
possible alleles.

5.4.3 Overlapping serology to DNA mapping
Serology to DNA mapping is very practical, but its impact on EM algorithm hasn’t been
previously studied. S. GE Marsh publishes mapping of HLA alleles to antigens [52], so in order to get
HLA serology to alleles mapping, we should calculate the reverse index. Other mappings, such as
serology to low resolution DNA, can be obtained from the previous one. But it also raises some
problems.
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Example 3 (HLA nomenclature as of January 2013 [52])

A*02:65 could be A31, therefore A31 should be mapped to A*02:65, A*31:01..A*31:71,
A*33:09. Reducing this list to low resolution we get A31 mapping to A*02, A*31, A*33. But:

e EM algorithm would prefer A*02 mapping of A31, because A*02 is more common than A*31
and A*33.
e It seems like A31 could be potentially A*02:01, which is not true.
m]

Example 4

Broad A28 has splits A68 and A69. A*02:55 could be A28 or A2 (assumed). Therefore A28 could
be A*02, A*68 or A*69. In context of A28, the A*02 group contains just one allele (A*02:55), the
A*68 group contains at least 40 alleles and A*69 contains just one allele (A*69:01). So it is very likely
the A28 will be A*68. In order to observe how the EM will deal with a phenotype containing A28 in
the context of real data, we have tried the following experiment.

O
Experiment 3
Data set:

e The Cord Blood Bank Czech Republic, November 2008, n = 2825
e Additional individual with the phenotype P,: A11,28 B*35:XX, DRB1*01:XX.

Required HLA haplotypes:

e A*-B*-DRB1* (low resolution - low res. - low res.)
Results: Table 10 shows distribution of possible genotypes of the phenotype during EM iterations and

behavior of maximization step (14).

P (hk h )(g)
pj(g)
Iteration GENOTYPE 1 GENOTYPE 2 GENOTYPE 3

h,: A*02,B*35,DRB1*01 h,: A*68,B*35,DRB1*01 | h,: A*69,B*35,DRB1*01

h;: A*11,B*35,DRB1*01 h;: A*11,B*35,DRB1*01 h;: A*11,B*35,DRB1*01
1 79,642% 19,055% <0,001%
2 80,609% 19,348% <0,001%
3 81,737% 18,261% <0,001%
4 83,170% 16,830% <0,001%
5 84,432% 15,568% <0,001%
6 85,379% 14,621% <0,001%
7 86,044% 13,956% <0,001%
8 86,496% 13,504% <0,001%
9 86,806% 13,194% <0,001%
10 87,023% 12,977% <0,001%

Table 10: Distribution of possible genotypes of the phenotype during EM iterations in the
experiment

50



This experiment shows the test phenotype “helps” more genotype 1 than the more accurate
genotype 2. And the EM tends to prioritize the genotype 1 during its iterations. This behavior will
lead to the overestimation of the haplotype A*02,B*35,DRB1*01 and underestimation of the
haplotype A*68,B*35,DRB1*01.

]
This problem comes from two facts:

o HLA-A antigens are mapped to set of HLA-A* alleles that are overlapping.
e The maximization step does not reflect relations between HLA alleles of different typing
resolution. Therefore all feasible genotypes of a phenotype are handled in the same way.

This problem comes from the equations (12) - (14) in combination with MI-3 approach,
because they do not reflect HLA nomenclature and handle all mapping values in the same way.
Therefore we propose to change the equation (12) to the extended form:

P2 x P(genotype hh|phenotype j)  if k =1

23)  P(hh)® =
(23) (hchy) {2 P p(® xP(genotype hh| phenotype j) if k=1

Unfortunately we do not know these conditional probabilities. But if we assign
. 1
(24) P(genotype h,h|phenotype J)z .
i

the EM algorithm will behave in the same way as original approach, because it does not affect the

. 1
equation (14). If the value of P(genotype hkh||phenotype j) is higher than o the genotype hhis
i

“promoted” over other possible genotypes of phenotype j. If it is lower, the genotype hkh| is

suppressed. It does not affect convergent properties of the EM algorithm.
If we know “true” haplotype frequencies, we could easily calculate P(genotype h.h, | phenotype j)
This leads to the following algorithm:
. 1
1. Assign P(genotype hh,|phenotype J)z —
C.
j

Run EM algorithm, using equation (21).
Calculate new P(genotype hhy| phenotype j).
4. Repeat steps 2 and 3 until P(genotype hkh||phenotype j) is “stable” — e.g. until maximal

relative change of any P(genotype hkh||phenotype j) is lower than €.

This approach would be very computationally demanding, since it runs the EM algorithm several
times.

51



Other possibility is to approximate P(genotype h.h, | phenotype j) by HLA nomenclature relations.

Example 5

A31 is mapped to {A*02:65, A*31:01...A*31:71}. The size of the set is 72 alleles (two fields only).
Therefore the probability the A31 will be A*02:65 is 1/72. Consequently the probability the A31 will
be A*02 is also 1/72. Genotypes containing A*02 are suppressed among all genotypes of phenotype
with A31.

O
Experiment 4
Data set:

e The Cord Blood Bank Czech Republic, November 2008, n = 2825
e Additional individual with the phenotype P,: A11,28 B*35:XX, DRB1*01:XX.
Required HLA haplotypes:

e A*-B*-DRB1* (low resolution - low res. - low res.)
Results: Table 11 shows distribution of possible genotypes of the phenotype after run of the EM

algorithm and behavior of adjusted maximization step using equation (21).

P (hh )
p(9)

J

Iteration GENOTYPE 1 GENOTYPE 2 GENOTYPE 3
hy: A*02,B*35,DRB1*01 h: A*68,B*35,DRB1*01 | hy: A*69,B*35,DRB1*01
h: A*11,B*35,DRB1*01 h: A*11,B*35,DRB1*01 | h;: A*11,B*35,DRB1*01

38 14,69% 85,31% <0,01%

Table 11: Distribution of possible genotypes of the phenotype after run of the EM algorithm in
the experiment

This experiment shows the correction by equation (21) managed to prioritize genotype 2 over
the genotype 1.

O

5.5 Higher to lower typing resolution
Mapping of higher resolution to lower resolution is quite straightforward. Split serology
antigen can be easily mapped to broad. Allele codes could be mapped to serology code(s) by [52].
Other mapping could be obtained by combination of these two. Therefore we can always get set of
lower typing resolution codes that are assigned to higher typing resolution code.
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Example 6

A*01AB is mapped to A*01 (intermediate to low resolution)
A*01AB is mapped to Al (intermediate to split/broad resolution)
O

5.6 Data preprocessing
For practical implementation of the algorithm, data preprocessing steps are necessary.
Challenges and problems of the input database are described in the chapter 5.1

5.6.1 Checking of input data
As the first step, the preprocessor should check input data for errors and bring them to the
consistent form [51].

5.6.2 Grouping of phenotypes
Summarization in equation (15) runs over all phenotypes. In highly polymorphic system, it is
more efficient to sum over individuals, because there are fewer individuals sampled than potential
phenotypes. It is also very useful to group all the same phenotypes in the sample into one record and

count number of occurrences N; of such phenotype. This is especially useful for individual with

missing data (e.g. HLA-AB typed donors).

5.6.3 Feasible genotypes and haplotypes
The probabilities appearing in equations (12)-(16) are indexed by both haplotype and genotype
numbers. Given the observed phenotypes, we can generate and index list of all feasible genotypes
and haplotypes as proposed in [43].

The indexing of haplotypes is natural since a haplotype could be shared by many genotypes
and phenotypes. However we have found the indexing of genotypes does not substantially increase
the performance of the EM algorithm on typical HLA samples, because there is almost no
redundancy.

Experiment 5

Data set: The Cord Blood Bank Czech Republic, November 2008, n = 2825
Required HLA haplotypes: A*-B*-DRB1* (low resolution - low res. - low res.)
Results:

e 3887 possible haplotypes
e 20198 feasible genotypes
e 20153 unique genotypes
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During initialization phase of the EM algorithm all possible genotypes derivable from an input
phenotype should be generated. This includes finding mapping of all input HLA codes (including
missing values) to list of output typing resolution codes. Generating such list is time consuming
procedure (e.g. HLA antigen to list of alleles mapping) and the list occupies a lot of memory space.
Therefore we have found useful to cache these lists and reuse them. This is especially useful with the
mapping of missing values to output typing resolution codes.

5.7 Computational problems
The EM algorithm can theoretically handle an arbitrary number of polymorphic loci and
arbitrary level of polymorphism. But in practice it is limited by the number of possible genotypes that
could be handled by computers.

Number of possible genotypes is influenced by:

e Number of polymorphic loci — exponential relation, according to equation (1)

e Sample size

e Homozygosis — degree of homozygosis of individuals, number of heterozygous individuals
e  Missing data or typing of individuals at different resolution than required

e Degree of polymorphism at observed loci

Addressing these issues is the main challenge of the EM algorithm implementation.

5.8 Our implementation
Our object-oriented implementation of the EM algorithm was built by 64bit version of the
Embarcadero Delphi XE2 compiler. HLACORE library [53], kindly provided by ZKRD, was used as the
low level library for handling HLA data according to the HLA nomenclature [15].

5.8.1 Universal configuration
We have implemented uniform solution of input-output typing resolution options, see chapter
5.2.

The software covers all desired input-output configurations, see Table 12. Since serology
typing is declining and less accurate, the serology as output resolution is not our point of interest. It
is better to map serology data to DNA than vice-versa.
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Output data - Required resolution of HLA haplotypes
Input data Serology Serology Split | DNA low res. | DNA interm. DNA high res.
Broad res.
Missing data Not needed Done. Done. Does not Done.
make sense.
Serology Mapping is Done. Done. Does not Done.
Broad not needed. make sense.
Serology Split | Not needed. Mapping is Done. Does not Done.
not needed. make sense.
DNA Low res. Not needed. Not needed. Mapping is Does not Done.
not needed. make sense.
DNA interm. Not needed. Not needed. Done. Does not Done.
res. make sense.
DNA high res. | Not needed Not needed. Done. Does not Mapping is
make sense. not needed.

Table 12: Input and output HLA typing resolutions.

5.8.2 Data preprocessing
The program implements data preprocessing ideas described in this work, including:

e During initialization phase, conditional probabilities P(genotype h.h, | phenotype j) are

calculated, see chapter 5.4.3. This is used mainly for low resolution output.
e Memory sharing of haplotypes and genotypes, caching of input-output resolution HLA code
mappings, see chapter 5.6.3

In order to limit the computational complexity, the user can set limit - maximum acceptable

C.

number of genotypes per donor ( 1), for example 10°. This will exclude donors with the poorest
information about background haplotypes. This approach has to be used carefully as discussed in
[48] and [54].

5.8.3 Haplotype data structure and indices

One of the key issues in the design of HFE algorithm is development of efficient data structure
that keeps lists of all relevant haplotypes. Fast access to these haplotypes is essential for good
performance of the HFE algorithm. With the data structure, we perform two critical operations:
adding new haplotypes (INSERT) and searching for specific haplotype without knowledge of the
haplotype index (SEARCH). These two operations are frequently called even in the initialization phase
of the EM algorithm, when the final number of all haplotypes is not known. Then the Expectation
step of the EM algorithm needs to quickly access specific haplotype with known index (GET) and the
Maximization step loops though all haplotypes (LOOP) and updates their frequencies.

In general, a haplotype is a vector of HLA allele/antigen codes, see (26) in chapter 9.2. These
HLA allele/antigen codes are alpha-numerical strings that can be up to 12 characters long
("01:01:01:01N").
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Jan Hofmann [55] uses rooted three structures that store antigens/alleles in nodes of the tree.
First locus is stored in nodes with distance one to the root, second locus in the next level, etc. (see

Figure 7).
|
\
PL 1 ROOT
| HLA-A 02:01 E
f=0.3
1
HLA-B 08:01
=03
HLA-C 0701 | [ |os:02
=02/ | |f=0.1
£ 0
HLA-DRB1 11:04 15:01
=02 f=01
HLA-DQB1 03:01 03.01 03:03 03:02
202 =02 _{f=0.1 __Jr=04

Figure 7: Haplotype data structure as a tree [55]

Data structure of an individual node needs to hold up to thousands of edges to the next level.
So we still need to address the issue of fast indexing of HLA antigens/alleles in the node and fast
INSERT operation. The GET operation is now more complicated. So we have rather focused on linear
data structures.

Easiest possibility is to index all relevant haplotypes by consequence integers and then store
them in a list, array or matrix. This is quite easy implementation, requires just O(1) for the INSERT
and GET operations and LOOP is also easy. But the SEARCH operation requires O(N), which is not
acceptable.

We can sort the list of haplotypes by their vector of HLA codes (e.g. alphabetical order). By this
approach, the SEARCH operation has the complexity O(log(N)), but the INSERT operation has
increased to O(N log(N)), which might be problematic. We have implemented this approach, but we
do lazy sorting, e.g. the sorting is not done after every INSERT operation, but after every 100 INSERT
operations. This decreases 100 times number of calls of the slow sort operation, but increases the
SEARCH operation by a constant, maximally 100, because these unsorted haplotypes have to be
checked if SEARCH operation fails on the sorted lists. Constant 100 has been chosen experimentally.

We have found out the k constant in the SEARCH operation O(log(N)) = k x log(N) is too high,
because comparison of two haplotypes requires comparison of several HLA antigen/allele codes, i.e.
several string operations. Therefore we have encoded haplotype into single integer and reduced the
haplotype comparison operation by single processor cycle. Encoding is done in this way:
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All existing HLA allele and antigen codes at a locus are alphabetically sorted. For example, for
locus A/A*, we get sequence: “01:01”, “01:02”, etc.

We assign them integers, starting from 0. So “01:01” gets 0, “01:02” gets 1, etc.

Since there are less than 3000 known alleles at a single locus, all HLA codes at a single locus
could be encoded by 12 bit integer.

Haplotype index is created by concatenation of these HLA code integers. For 5 loci haplotype,
we get 60 bit integer. Current processors can handle 64 bit integers in single operation.

5.8.4 Allele list reduction

Exponential growth of HLA nomenclature allele list in recent years complicates the EM

algorithm and dramatically increases the computational complexity. However, most of these new

and rare alleles will never be observed in the sample. Therefore it is good idea to reduce considered
HLA alleles. This could be done by:

1.

Applying additional knowledge of the sample population or ethnic group and usage of known
allele list estimated in the past on similar population or ethnic group (e.g. Caucasian). This
could be for example list of “Common and Well-Documented HLA Alleles” (CWD) [56].

Several runs of the EM algorithm on the sample. We can calculating allele frequencies first,

1
then filter less likely ones (e.g. with probability lower than P, = n )

The greedy algorithm that begins with a set of reference alleles defined for particular
population and adds additional alleles in order by which allele allows the most new donor
typings to be interpreted. Reinterpretation is done at each cycle and the allele list grows until
all donors have valid genotype lists. This algorithm has been implemented by NMDP [57].

In our implementation, we use the second option, because it is more universal. In case the

data preprocessing phase finds an HLA code that cannot be interpreted by reduced allele list, it takes

the first compatible allele outside the filtered range, i.e. it find the most likely allele with the

probability bellow P; that interprets the problematic HLA code.

5.8.5 Partial haplotype list reduction

Similarly, partial haplotypes (see chapter 9.4) could be pre-estimated and the algorithm can

reduce haplotype list by filtering those haplotypes that do not match to any of the pre-selected

partial haplotypes (probability bellow ;).

Thanks to strong linkage disequilibrium (see chapter 2.1) we have used this method for B-C

and DRB1-DQB1 haplotypes.

5.8.6 Haplotype list reduction

In extreme case, we can run the EM algorithm with already known list of output haplotypes.

The EM algorithm ‘just’ estimates their probabilities.

5.8.7 Genotype list reduction

If output haplotypes are known before the EM algorithm starts and even their probabilities are

known (at least approximately), we can filter less likely genotypes (see chapter 5.6.3) with low

probability.
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5.8.8 User interface

ﬁ‘ Prometheus Haplotype Freguencie imati Only (Version 2.0

Input and Options | Filters | Results | Experiments |

Input
Input file localhost:C:\Sharethaplo\BMDW. GDB

Regcodes S
Processed file c:'\Sharethaplo\HPE_Sample_Proc.csy

File format | gMDWY Firebird Database v |

Input file filtering (DMA)

Al v 8 ) < v) or| 7 ool v

Lod and output resolution

s (o +) 8 [se <] c [Aowm v) okl <] 0o e o)

EM Algorithm Options

Max. length of sample size (number of individuals): 100000 &

Finizh criteria - Epsilon: ~ 0.000001

Max, number of iterations: 500 %
Extended Options

]
Used phenotypes - max. length of genotype lists: 32768 & [¥|Use precalaulated values
[ ser->DMA weighted mapping {only for DMNA low)

[ Use genotype list repository {memory optimization)
[ validation test: compare EM Results vs. True and Sample haplotype frequencies

validation file ©:\Sharethaplo\HPE_Sample4000_HaplFreqg.csv

Distance test: compare EM Results vs, other haplotype frequendes

Distance file c:\Share\HPE_ABCDRB1DQB1.csv

[ Multi-thread initislization

Mumber of phenotypes: Remaining time: I[teration:
Free memory status: 957456 [ 2097151,999 kB Memary used: § 404 kB

(R | o | [save | [_ciose ]

Figure 8: User interface of our HFE implementation

The algorithm is run via user interface implemented under Windows OS. Figure 8 shows
screenshot of the window with most important settings:

e Input: input file with the sample, registry ID selection, file format of the input file (CSV,
BMDW file format or relational database)

o Input file filtering: by default, all input phenotypes are accepted, but user can filter out
phenotypes that do not meet minimum desired level of typing (e.g. low resolution). For
example, this can be used to filter out donors without DRB1 typing.

e Loci and output resolution: selection of loci and requested resolution of output haplotypes.
Resolution can be set individually at each locus (see also chapter 5.2).
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e EM algorithm options: maximum number of individuals in the sample, finish criteria (see
chapter 4.5.5), maximum number of iterations
e Other options:

Maximum length of genotype list ¢ (see chapter 5.8.2).

Serology to DNA weighted mapping (see chapter 5.4.3)

Genotype list repository (see chapter 5.8.7)

Validation tests and distance calculations between result and reference frequencies
Multi-thread initialization: possibility to use parallel computing during the data
preprocessing phase (see chapter 5.6.3)

O O O O O

e Optional filters:
o Allele list reduction (see chapter 5.8.4)
o Partial haplotype list reduction (see chapter 5.8.5)
o Haplotype list reduction (see chapter 5.8.6)

5.8.9 Hardware
We have run experiments on a PC with Windows 7 Professional SP1 64bit, Intel Core i3-2120

CPU @ 3.30 GHz, 16 GB RAM.

5.9 Other studies and implementations of the HFE algorithms

5.9.1 Small samples
Computer programs described in most papers work with quite small instances:

e [58] (EH): max. 30 alleles per loci

e [35] (HAPLO): up to 114 haplotypes, 114 observed phenotypes, and 500 genotypes.

e [42]: 8-14 biallelic markers per gene in 300 individuals

e [10]: 2-8 highly polymorphic loci with 20 possible alleles. They have considered samples
where the total number of possible haplotypes did not exceed 16384.

e [41]: 619 individuals, three loci HLA-A, HLA-B, HLA-C, serological testing

One of the first analyses of stem cell donor registries [59] calculated ABDR haplotype
frequencies of registries in the 22™ edition of the Bone Marrow Donors Worldwide (1997):

e HLA-A, HLA-B and HLA-DR

e broad antigens have been preferentially used instead of their splits

e some registries were excluded from the analysis because of various problems (e.g. deviation
from HWE).

e Maximal size of a registry dataset was about 50,000 individuals.

5.9.2 State-of-the-art HLA studies
HLA system is much more complex, see Table 6. The biggest state-of-the-art HLA studies are
performed in Germany and the United States, which have the biggest databases of bone marrow
donor registries:
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2003 - German Blood Donors [51]: three loci HLA-A, HLA-B and HLA-DRB1; conversion of
broad to split antigens, 13,000 individuals, about 10,000 haplotypes; a single individual with
the typing result A10,19; B15,22; DR5,6 (six broad antigens), has 3456 possible genotypes.

2005 - German registry ZKRD [60] [61]: three loci HLA-A, HLA-B and HLA-DRB1; about 1
million donors, 412,494 of these individuals were typed for HLA-DRB1 at low or intermediate
resolution and another 90,673 at high resolution level. HLA-A and B were analyzed using
serological nomenclature without associated antigens. For high res. frequencies donors only
typed for A and B were excluded due to algorithmic limitations. Low resolution data were
then used to correct a possible selection bias in the restricted data set. Computation took 2
resp. 9 days.

2006 — ZKRD (presented at the WMDA conference 2006): HLA-A, HLA-B and HLA-DRB1 high
resolution haplotype frequencies estimations; 120,000 individuals; 10’ haplotypes to
consider; up to 5 x 10® diplotypes per phenotype to consider; description matrix (specifying
which pairs of haplotypes are to be considered for a given phenotype) has 10" elements,
10" of them are positive

2007 — NMDP [62]: three loci HLA-A (max. 21 antigens), HLA-B (max. 42 antigens) and HLA-
DRB1 (max. 250 alleles); 3.5 million individuals; 21 x 42 x 250 = 220,500 total haplotypes; a
single individual with the typing result A10,19; B15,22 (DRB1 not tested), has more than 9.5
million possible genotypes. 5.5 hours running on a cluster of five Sun Fire V100 servers (2 GB
RAM).

2007 — NMDP [62]: five loci HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1; high resolution;
comparison of US ethnic groups; up to 6,500 individuals in one ethnic group. Because of
limitation of the EM algorithm at greater than three loci with registry data, four- and five-
locus haplotype frequencies were estimated using initial EM runs on the two tightly linked
locus clusters (C-B and DRB1-DQB1) followed by a second three-locus EM run that
considered the tightly linked clusters as a single locus.

2008 - ZKRD (Carlheinz Muller, personal communication): five loci HLA-A, HLA-B, HLA-C, HLA-
DRB1 and HLA-DQB1; tens of thousands individuals; high resolution; computed on server
with 64 GB RAM; program runs more than ten hours.

2010 — ZKRD [63] [64]: five loci HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1; hundreds of
thousands of individuals; high resolution.

2011 - DKMS [65]: 20 thousand Polish stem cell donors, four loci: HLA-A, HLA-B, HLA-C and
HLA-DRB1.

2012 - NMDP (Loren Gragert, presented at the 16" IHIWS conference in Liverpool):
o five loci HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1
o NMDP can run EM algorithm on BMDW database, for every registry and every
country
o only DNA based typing is considered, but donors without C and DQB1 typing are still
included



o Experience: genotypic ambiguity of BMDW HLA typing is too high for conventional
EM to be practical. Two main strategies were implemented to reduce ambiguities,
reducing ambiguity: Allele list reduction by greedy algorithm and Blocks /
Imputation.

5.10 Comparison of our implementation with others
For comparison between the main HFE implementations, including our algorithm, see the
Appendix D. The table shows applications of HLA HFE algorithms of research groups that cooperate in
the Registry Diversity Subcommittee of the World Marrow Donor Association (WMDA) Information
Technology Working Group. It gives overview of technology (platforms, programming languages),
limitations of the algorithms (maximum number of loci, maximum number of phenotypes, accepted
input), initial and terminating conditions, internal methods (mapping of alleles, handling of

ambiguities), running time on common tasks and practicalities (output format).
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6. Reliability of HFE algorithm on registry datasets
This chapter describes own research results of the reliability of HFE algorithm on real registry
datasets. The reliability of HFE depends on typing ambiguities of registry donors, computational
complexity and used heuristics, population size, sample size and population homogeneity. We will
study these parameters independently in controlled data environment and finally, we will combine
them together, like in real registry dataset.

6.1 Typing ambiguities and computational complexity
Key factors that influence the reliability of HFE are the structure of the registry and ambiguity
of HLA typing results of donors in the sample. This also influences computational complexity of the

C.
HFE algorithm, especially values /.

Previous studies have also pointed out this important aspect. ZKRD has visualized structure of
the registry [63] by three-dimensional graph. Every field represents different combination of
missing/low-resolution/intermediate-resolution/high-resolution typing at five loci (A*, B*, C¥*,
DRB1*, DQB1*). The horizontal axe shows the first class loci and the vertical axe shows the second
class loci. The more dark blue, the relative number of donors is higher.
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Figure 9: Visualization of the HLA typing ambiguities in ZKRD [63]

We need different visualization that would better represent computational complexity and

C . L .
value !- number of genotypes per donor. Computational complexity is one of the main obstacles
when someone tries to calculate HFE. Following example demonstrates the problem.

Example 7

e OQOutput: A*-B*-C*-DRB1*-DQB1* high resolution haplotypes

e HLA nomenclature: April 2012

e An individual with HLA type A*01:01, B*08:01, C*07:01, DRB1*03:01, DQB1*02:01 is high
resolution typed, homozygous, so there is just one possible genotype, Ej =1

e An individual carrying HLA type A2, B7,62 was typed by serology techniques, so there are
many possible genotypes, EJ- ~6x10%°. CSCR registry has more than 20 individuals with this

HLA type.
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C.
This example shows ! can grow to more than 25 digits. In the same way, we have analyzed all

donors in a registry and visualized number of genotypes per donor |_Ig(5j) vs. number of donors
carrying such level of ambiguity D(I_Ig(Ej )ﬁ E.g. the first donors in the Example 7 has |_Ig(Ej )J=0
and the second has |_Ig(6j ) =26.
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Figure 10: Visualization of the HLA typing ambiguities and computational complexity in CSCR,
May 2012
The graph shows huge number of donors with (~:j ~10%. Most of these donors are only serologically

AB typed.
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Figure 11: Visualization of the HLA typing ambiguities and computational complexity in ZKRD,
May 2012
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Figure 12: Visualization of the HLA typing ambiguities and computational complexity in DKMS
Polska, May 2012 [67]
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Figure 13: Visualization of the HLA typing ambiguities and computational complexity in CSCR,
May 2012

The graph shows the most of the donors have Ej >10"'. There are only relatively few donors with

reasonable number of genotypes.
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Figure 14: Visualization of the HLA typing ambiguities and computational complexity in ZKRD,
May 2012

The graph shows different the ZKRD registry has much more donors that are better typed than CSCR.
There are more than 500 000 donors with Ej <10°.
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Figure 15: Visualization of the HLA typing ambiguities and computational complexity in DKMS
Polska, May 2012
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Figure 16: Visualization of the HLA typing ambiguities and computational complexity in CSCR,
May 2012 (extract from previous graph)

The graph shows in detail all donors with reasonable level of HLA ambiguities. Only few hundred
donors are relevant for HFE algorithm (5 loci, high resolution).

Ambiguity rank of the dataset
lg(c.
If we calculate the mean of g( ! ), we get interesting ambiguity rank of the whole dataset.

(25)

Following table shows comparison of the datasets.

Dataset / registry R

CSCR, May 2012 23.3
ZKRD, May 2012 15.3
DKMS Polska, May 2012 7.3

Table 13: Ambiguity rank of selected registries

6.2 Typing ambiguities
Previous graphs show extremely big computational complexity of the HFE problem on real
registry data. Donors with high level of ambiguity (> 10'°) do not bring a lot of specific information
about two underlying haplotypes, because these haplotypes are “hidden” in the set of all compatible
genotypes (up to 10”). HFE benefit of such donors is very poor, but they bring extreme increase in
the computational expenses.

Since 2008, we participate in the Registry Diversity Subcommittee of the Information
Technology Working Group of the World Marrow Donor Association (WMDA). The group, lead by
Martin Maiers (USA), Steven GE Marsh (UK) and Carlheinz Muller (Germany) is a great platform for
discussion, research and development of HFE methods. [56]
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We have compared different programs for HLA haplotype frequency estimation in a controlled
data environment. Simulated data set of the same sample size (100 000 individuals) contained the
same donors, but with different proportions of typing ambiguities.

The work, summarized below, was presented at the 15" IHIWS conference [66]. Our HFE
implementation has number 1.
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l Introduction _

Haplotype frequencies estimation (HFE) is an indispensable tool
for many applications in biomedicine including the HLA demain.
Therefore, the estimated haplotype frequencies (HF) must be
reliable, valid and the many variables influencing their accuracy
should be known qualitatively and quantitatively.

The two studies presented here are working steps towards
validated tools for population analysis specifically designed to
address issues of datasets from large donor registries.

' Mmaterials and Methods [

We have compared the results from six different implemen-
tations of the Expectation Maximisation (EM) algorithm when
2pplied to two different tasks with known ideal results. In

each task. the algorithms were challenged with 100 simulated
datasets of 100,000 individuals randomly created using a set of
3938 haplotypes with defined frequencies modeled after the
French population. The simulation process allows the possibility
for rare haplotypes to be missing by sampling effects. The
average number of haplotypes in a simulated data set is 3730,
ranging from 3698 to 3759.

For task 1 samples were provided with complete HLA-A-B-DR
typing in order to measure the estimation error introduced by
the EM and to separate it from the sampling error.

For task 2 data sets with an increasing rate of missing HLA-DR
typings were generated. The HLA-DR types in these sets were
revealed in different proportions after undergeing simulated pa-
tient driven typing or random selection. In the data set designa-
tion below the first number indicates the percentage of random
DR typing and the secand the percentage of patient driven DR
typing in the simulated data set

Here, each data set was used for two estimations, the first in-
cluding only donors with complete typing and the second in-
cluding all donors allowing the EM to handle missing values
{abbreviated with c and a below). For cross-validation, a data
set with complete DR typing was analysed in the same way as
in task 1

For the error quantifications we used the established identity

coefficient | transformed into a distance measure D = 1 - | with
: 1
I=3 min(fy0)=1-5x 3 |fi — gl
i = i

D=3 xS lhi-sl
i
where the range of i is the union of all haplotypes in the vee-
tors fand g. For the exploratory data analysis of task 2 we have
used the individual frequency differences between estimation
and sample for each data set plotted in the order of their fre-
i

I Results [T

Task 1

As expected from an earlier study for the 14% IHIWS, task 1 did
not reveal serious discrepancies in the results of the different EM
implementations but helped to remove seme subtle errors and
allowed for further calibration of the individual tocls. The aver-
age distance between the frequencies of the haplotypes actu-
ally used in the 100 samples and the theoratical values is 0.037
(min: 0.035, max: 0.038)

I Results (continued) -

The average distance between the estimated frequencies and
the real frequencies in the samples is 0.035 (0.034 - 0.037),

and the average total estimation error i.e. the distance of the
estimated from the true theoretical frequencies is 0.05 (0.035 -
0.054). So the relation between sampling and estimation error is
not additive (figure 1)
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Figure 1: Distances of estimates/samples from theoretical (true) fre-
quencies and distances of estimates from samples for task 1.

The log likelihood (LLH) of the frequencies obtained by the six
implementations alsa did not differ substantially. The average
difference between the maximum and minimum of the LLH is
0.59 which reflects a distance between the estimates of about
10%. The biggest fraction of the LLH differences can be account-
ed to differences of the stopping criteria, output precision and

starting values used

Task 2

Task 2 revealed the problems missing typing data can create for
implementations of the EM although the ability of dealing with
incomplete information is one of its major features. Only four
algorithms fully completed task 2, one algorithm reported only
results for about 10 of the 100 simulations in the missing data
situation. The cross-validation results were censistent with task

1 for all algorithms
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Figure 2 Differences of estimates from the sample fraquencies for the
100 simulations with 20% patient driven DR-typing. Haplotypes or-
dered by sample frequency.

I Results (continued) -

Figure 2 depicts the difference between the estimated and true
frequencies from the biased (bottom; ¢) and full (top; =) data
sets in the most complicated situation: ne random typing and
only 20% DR patient driven typing. It demonstrates that algo-
fithms 1-3 efficiently make use of the full data set to compen-
sate the striking bias shown by the large discrepancies on the
Ieft (frequent haplotypes) of all five bottom plots (see the five
red and three green arrows). The analysis of the other DR ratios
showed the same picture but less blur especially for the frequent

haplotypes.

The overall D comparison in figure 3 summarises the findings so
far and additionally illustrates the effect of patient driven typing.
Apart from an outlier of algorithm 3 for simulations 1 to 69 of
task 0-60c, it becomes clear, that the trials with a random part
yield better results for any given DR ratio. Algorithm 4 is cen-
sored in figure 3 since the spreading of the differences seen in
4a of figure 2 finds its continuation in the distance analysis and
would show far outside the plotting area.
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Figure 3: Distances of estimates from samples for 100 simulations and

all 6 DR-typing ratios tested.

I Discussion I

Our analysis allows us to measure the quality and validity of HFs
and provides insight into intrinsic properties of EN. This poster
describes the current interim results of this 15th IHIWS compo-
nent while the work is stil continuing. The experience of the
group from the last workshop shows that by refining the indi-
vidual programs a broad consensus on the best practice will be
achieved. In particular, we are working on general recommen-
dations for the implementation and application of the EM for
HFE in HLA and related systems

A further analysis with random DR typing only would be inter-
esting with regard to bias and estimation error due to total DR
rate. The results of these studies will be the basis to investigate
more complex situations such as deviation from Hardy-Weinberg
equilibrium, population substructures and molecular HLA data
with varying resolution.

' correspondence [T

Carlheinz R. Miiller, MD, PhD
Phone: +49-731-1507-00

Fax: +49-731-1507-51

E-Mail: Carlheinz.Muellergzkrd de
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6.3 Population and sample size
Let’s now focus on sample size and its influence on the reliability of HFE. For this purpose, we have
done the following experiment (see also chapter 4.7.2):

e Generate population of N individuals (genotypes). Calculate “Population HF”.

e Simulate the registry by sampling the population. Take random subsets of 500, 1000, 2000,
4000, etc. individuals. Calculate “Sample HF”.

e Convert genotypes to phenotypes (hide phasing information). Estimate HFE, using the
sample by EM algorithm.

e Compare distance (22) between HFE of the EM algorithm, “Sample HF” and “Population HF”.

Results of these experiments are shown in the following graphs.
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Figure 17: Sample size and reliability of HFE: Artificial population of 8 000 individuals based on
[HPE-2010], five loci high resolution typing (A-B-C-DRB1-DQB1).
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Figure 18: Sample size and reliability of HFE: Artificial population of 512 000 individuals based
on [HPE-2010], five loci high resolution typing (A-B-C-DRB1-DQB1).
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Figure 19: Sample size and reliability of HFE: Artificial population of 10 000 000 individuals
based on [HPE-2010], five loci high resolution typing (A-B-C-DRB1-DQB1).

This graph simulates population of 10 million individuals, similar size like the population of the Czech
Republic and other Central European countries. The experiment gives us very good understanding of
the sampling error of the small to middle size stem cell donor registry. The sampling error of all
donors recruited in the Czech Republic (less than 100 thousand donors) is more than 0.1.

We can also compare HFE of the EM algorithm (on the sample) and the Sample HF.
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Figure 20: Comparison of HFE and the sample HF: Artificial population of 8 000 individuals
based on [HPE-2010], five loci high resolution typing (A-B-C-DRB1-DQB1).

In general, the sample itself outperforms the EM algorithm, especially with growing sample size.
When the sample size reaches 100% of the size of the population, there is no sampling error, because
the sample contains the whole population. But the beginning of the curve might bring unexpected
(and unreliable) results. With small sample sizes (up to 17% of the population), the EM algorithm
may outperform the sample itself. This paradox could be observed mainly in small populations. If we
increase the size of the population, we get the following result.
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Figure 21: Comparison of HFE and the sample HF: Artificial population of 512 000 individuals
based on [HPE-2010], five loci high resolution typing (A-B-C-DRB1-DQB1).

For small sample sizes, the EM algorithm may be still slightly better than the sample itself, but only
until the sample size reaches about 1% of the population. For the population of the size of the Czech
Republic, this drops to 0.05% of the population size.
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Figure 22: Comparison of HFE and the sample HF: Artificial population of 10 000 000
individuals based on [HPE-2010], five loci high resolution typing (A-B-C-DRB1-DQB1).

This behavior on very small sample sizes looks strange, but could be explained. Let’s imagine
extreme case, a sample of single heterozygous individual. In fact, there are two haplotypes and
estimations of population frequencies of these two haplotypes are 0.5. Since true haplotype
frequencies are close to 0, the distance of these estimates from true frequencies is almost 1. The EM
algorithm does not know these two correct haplotypes, so in case of 5 loci typing, it will consider 16
haplotypes with frequencies 0.0625. Only two of them are correct and there is a high chance their
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true frequency is less than 0.0625, so the algorithm overestimates frequencies of these two
haplotypes. But there is a quite good chance at least one of remaining 14 haplotypes exists in the
population. Then EM algorithm finds a haplotype that does not exist in the sample, but exists in the
population and the overall HFE is better estimates of the sample itself.

We have discussed this topic with Carlheinz Muller which results in two additional comments:

e Observations for small sample size depends on ignoring confidence intervals which are
extremely wide in such cases. Small sample sizes have big sampling error and therefore
observations related to such samples are not reliable.

o “The major drawback of EM is that it incorrectly works on a continuous instead of a discrete
number space. In a sample, all allele or haplotype counts must be integers and the maximum
should only be sought within such an integer valued domain. ... anything depending on
seriously ignoring this constraint refers to artifacts or useless or unreliable numbers produced
by this algorithm. This refers in particular to the accuracy of estimates and the low-frequency

estimates (low = "count in the sample < 3").”

6.4 Population homogeneity
All experiments in the previous chapter were done using artificial population based on [HPE-
2010]. But other populations, represented by other HF sets, are more homogenous (see Appendix A).

To test this influence, we have generated several artificial populations using different datasets
in the Appendix A. We have found out the HFE depends on the population homogeneity — higher
homogeneity of the population results in better HFE. The following graph shows the extreme case of
artificial population based on [FI-2010]. HFEs are 2-10x better than those shown on the Figure 18.
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Figure 23: Sample size and reliability of HFE: Artificial population of 512 000 individuals based
on [F1-2010], five loci high resolution typing (A-B-C-DRB1-DQB1).

We expect the Czech population is slightly more homogeneous than the German population
(see Appendix A). This is probably caused by smaller population and country size. It means
simulations of Czech HFEs could be done using [HFE-2010] and our conclusions are the same or
slightly worse than the reality (e.g. Figure 19). This means we are on the save side.
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6.5 Computational complexity
As discussed earlier, donors with high level of ambiguity (> 10'°) do not bring a lot of specific
information about two underlying haplotypes, but bring extreme computational complexity. Can we
exclude them? What is the influence on the HFE?

In order to simulate this dependency, we have selected all German phenotypes [BMDW-
201205] that are at least intermediate resolution typed at loci A*, B*, C*, DRB1* and DQB1*. There

C.
were 380567 of such records. We have sorted them by growing !. Then, a subset of N first records

was selected, HFE was performed and results were compared to [HFE-2010].
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Figure 24: Growing sample size, computational complexity vs. reliability of HFE. Used data: the
ZKRD registry (May 2012), at least intermediate resolution typing (A-B-C-DRB1-DQB1), 5 loci
high resolution HFE, reference haplotype frequencies [HPE-2010].

The Figure 24 shows results of the simulation on ZKRD registry data. First estimate uses just

about 1 300 donors who are high resolution typed and homogeneous (Ej =1). The third estimate

uses all high resolution typed donors (Ej <16, about 90 000 individuals) and the estimate is very

good. Mixture of high and intermediate resolution typed donors increase the distance from [HPE-
2010], but with growing sample size, the distance gets closer and closer to [HPE-2010]. However,
computational costs (time and memory) grow exponentially, so at final stage we managed to include
451 190 donors with algorithm running time 7,5 hours (PC with Windows 7 Professional SP1 64bit,
Intel Core i3-2120 CPU @ 3.30 GHz, 16 GB RAM) and the distance to [HPE-2010] was just 0.1.

6.6 Simulation of real dataset
We have seen the reliability of HFE algorithm depends on several factors, such as typing
ambiguities of registry donors, computational complexity (and limitations of hardware), population
size, sample size and population homogeneity. But real live registry dataset has combination of all

72



these factors. What is the reliability of HFE for a real population? Especially, what is the reliability of
HFE for the Czech population?

In order to simulate the reliability of HFE on a registry dataset, we need to have similar data in
a controlled data environment.

Therefore, we have designed and run this complex simulation:

1. Population homogeneity (see chapter 6.4): Take appropriate high resolution HF, with similar
homogeneity as real population. These are “background haplotype frequencies”.

2. Population size (see chapter 6.3): Generate the artificial population - create individuals
according to the population model (HFE). As a result, we have phase-known population and
its “true haplotype frequencies”. Size of the artificial population will be the same as the real
population.

3. Sample size (see chapter 6.3): Simulate the recruitment process - do the sampling of the
artificial population. Sample size will be the same as the registry dataset. We get “sample
haplotype frequencies”. Hide the phase information in the sample, i.e. convert genotypes to
phenotypes. Every real donor has corresponding artificial donor in the simulated dataset
(donor pair).

4. Typing ambiguities (see chapters 6.1 and chapter 6.2): For every real donor, analyze the
typing ambiguity. Simulate the HLA typing of the corresponding artificial donor to the similar
level of typing ambiguity as the real donor. We get simulated dataset.

5. Computational complexity (see chapter 6.5): Estimate haplotype frequencies on the
simulated dataset (“estimated haplotype frequencies”) using the same techniques,
algorithms and heuristics as on the real registry dataset.

6. Reliability of HFE: Count the distance (22) between “estimated haplotype frequencies” and
“true haplotype frequencies”. This is also approximation of the reliability of HFE of the real
registry dataset. If “estimated haplotype frequencies” do not contain all loci as “true
haplotype frequencies” or some of these loci are not estimated at high resolution level, we
need to convert “true haplotype frequencies” to the same resolution as “estimated
haplotype frequencies”, before the distance can be counted.

The first step is difficult, because we need to take some HFs with similar homogeneity as real
population. But we may not know precisely the homogeneity of the real population. As discussed in
the chapter 6.4, it is better to take HFs of a population with lower homogeneity than the real
population.

But the trickiest is the fourth step that has to be done very carefully. Artificial donor virtual
HLA typing process must maximally correspond to real donor HLA typing techniques. But the artificial
donor is different individual (from different population) than the real donor, which complicates this
step.

We can do virtual intermediate resolution typing by applying commercial SSOP typing kits and
their characteristics. This technique has been implemented by NMDP (not published). A problem
could be selection of the vendor, since we don’t know by what typing technique (serology, SSP, SSO,
SBT) and what typing kit the real donor was typed.
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We have implemented different approach that will be demonstrated by the following example.

6.6.1 Example: Simulation of the CBB Czech Republic
In this example, we will simulate HFE of the Czech population, using the real dataset of the Cord
Blood Bank Czech Republic. Simulation steps are:

1.

5.
6.

We take German population and [HPE-2010] as background haplotype frequencies.
Germany is neighbor country, has the biggest registry in Europe and both populations are
Caucasian. We expect the homogeneity of the German population is lower than the
homogeneity of the Czech population, because Germany is about 8x bigger country. This
is also confirmed by HFE (see the Appendix A).
The Czech population has about 10 million people (May 2012), generate artificial
population of 10 million individuals.
The CBB has less than 4000 CBUs (May 2012). Simulate recruitment process of 4000
individuals.
(A) Replace artificial (German) donor by reference donor phenotype in the (German)
registry.
i. Select all donors in the reference (German) registry [BMDW-201205] with no
HLA mismatch [7] (HLA-A, -B, -C, -DRB1, -DQB1) against the artificial donor.
ii. In the set of these donors, find a donor with the most similar typing
ambiguity as the real donor (CBU) in the simulated dataset (CBB Czech

~

Republic) - take the one with the smallest absolute distance of ¢ between
reference (German) donor and real CBU. This reference donor has our
simulated HLA typing of the artificial donor.

Estimate HF of the simulated dataset.

Count distance between “estimated haplotype frequencies” of the simulated dataset and

“true haplotype frequencies” of the artificial population.

By this approach we get following key properties of the simulated dataset:
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Similar population homogeneity, maybe little bit more pessimistic than the reality.
Same population size.

Same sample size.

C.
Similar typing ambiguities ( '), based on real HLA typing techniques.
Similar computational complexity, see Figure 25.
Similar reliability of HFE, see Figure 26.
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Figure 25: Simulation of the real registry (Cord Blood Bank of the Czech Republic) by artificial
population (based on German HFE) and virtual recruitment and virtual donor typing. Used
data: the ZKRD registry (May 2012), [HPE-2010], CBB Czech Republic (May 2012). 5 loci high
resolution genotypes (A-B-C-DRB1-DQB1).

The sampling error of 4000 individuals in our artificial 10 million population is 0.275. The HFE
algorithm is limited mainly by computational complexity, so not all donors could be considered in the
estimation. The Figure 26 shows dependency between number of donors considered by HFE
algorithm and reliability of haplotype frequency estimates.
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Figure 26: Simulation of reliability of HFE of the Cord Blood Bank of the Czech Republic (May
2012).
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The implementation (A) of the step 4 in this example does very realistic virtual HLA typing of
the artificial donor and it keeps typing relations between loci as it was done by real HLA typing
techniques — for example using ABDR SSP typing kits.

However, this approach has also some drawbacks. It may lead to replacement of low

C.
resolution ABDR typed donor by intermediate resolution AB typed donor with the same !. We can
improve the virtual HLA typing by searching only ABDR typed donors, if the donor was ABDR typed
and other similar improvements, but it would be difficult to cover all possibilities and exceptions.

Other option would be to “type” loci individually, which is also common practice in the HLA
laboratories that use typing kits focused only on one locus. We can also do virtual HLA typing at each
locus independently. This means we need several real donors to simulate HLA typing of one artificial
donor.

The alternative implementation (B) of the step 4:

4. (B) For every locus (HLA-A, -B, -C, -DRB1, -DQB1), simulate the HLA typing process by
replacing artificial donor typing by reference donor type at the loci.

i. Select all donors in the reference (German) registry [BMDW-201205] with no
HLA mismatch [7] at the locus with the artificial donor.

ii. In the set of these donors, find a donor with the most similar typing

ambiguity at the locus as the real donor (CBU) in the simulated dataset (CBB

Czech Republic) - take the one with the smallest absolute distance of ELj
between reference (German) donor typing at the locus and real CBU typing
at the locus. This reference donor has our simulated HLA typing of the
artificial donor at the locus.

Both approaches (A) and (B) are extremely computationally demanding and such simulation takes
several days. We have to:

e Analyze and calculate length of the genotype lists for all donors in both the real and the
reference dataset. In our case, it means more than 4 million donors for approach (A) and
more than 20 million loci for approach (B).

e Run the search for all donors of the simulated dataset in the reference dataset. For the
registry like in our example (4000 donors only), it means to run 4000 donor searches in the
file of 4 million donors. For approach (B) it is even 20 000 donor searches in the reference
dataset. These results must be sorted by decreasing smallest absolute distance of genotype
list length, which is also not trivial procedure.

Simulation by approach (B) is more demanding, but gets better results, especially for better typed
donors (see Figure 25). This is as expected — it might be difficult to find well typed reference donor,
HLA compatible with the artificial donor. However, if we search by individual loci, it is more likely we
will find a well typed reference donor, matching with the artificial donor at selected locus.
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7. Results of HFE on registry datasets
In this chapter we will present HFE of several populations, mainly in the Central Europe. Given
a stem cell donor registry dataset, the goal is to estimate the “best possible” haplotype frequencies
for the registry population. The “best” means:

e  Maximum number of loci, highest possible typing resolution. Gold standard is the estimation
of 5 loci high resolution haplotype frequencies (A-B-C-DRB1-DQB1).
e Maximum reliability of estimates, so they represent the whole population.

These two criteria go against each other — if we estimate higher resolution haplotype
frequencies with more loci, the reliability will be lower than haplotype frequencies with lower
resolution or with less loci.
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Figure 27: Visualization of the HLA typing ambiguities and computational complexity in the
Hungarian registry: 5 loci high resolution haplotype frequencies (A-B-C-DRB1-DQB1), May
2012.

The Hungarian registry (May 2012) has 6366 active potential stem cell donors in the registry.
There are almost no donors with small number of typing ambiguities, e.g. only 2 high resolution A-B-
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C-DRB1-DQB1 typed donors (see Figure 27). Even estimation of HLA-A allele frequencies is not
reliable, because only three high resolution typed HLA-A alleles can be found in the dataset (A*01:01,

A*02:01 and A*03:01).

This means we cannot estimate high resolution allele and haplotype frequencies. But we can
try to estimate low resolution A-B-C-DRB1-DQB1 frequencies.
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Figure 28: Visualization of the HLA typing ambiguities and computational complexity in the
Hungarian registry, 5 loci low resolution haplotype frequencies (A-B-C-DRB1-DQB1), May
2012.

This is computationally feasible, but not reliable, since there are only 28 donors typed at all
five loci by DNA typing techniques. HFE of the simulated dataset have distance 0.452 from the true
frequencies (estimation of the reliability of 5 loci low resolution haplotype frequencies).

So finally, we can estimate low resolution ABDR (A-B-DRB1) haplotype frequencies. The
registry has 3471 ABDR typed donors (54.5%), the rest is AB typed only.
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Figure 29: Visualization of the HLA typing ambiguities and computational complexity in the
Hungarian registry, 3 loci low resolution haplotype frequencies (A-B-DRB1), May 2012.
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Table bellow shows results of the HFE algorithm, considering all donors, including those AB

typed only.

Rank A* B* DRB1* Frequency
1[01:XX 08:XX 03:XX 0.056816
21 02:XX 18:XX 11:XX 0.0157
3]102:XX 44:XX 04:XX 0.014903
41 02:XX 13:XX 07:XX 0.012188
5]102:XX 44:XX 16:XX 0.011933
6| 02:XX 27:XX 16:XX 0.011915
71 02:XX 15:XX 04:XX 0.010172
8| 03:XX 07:XX 15:XX 0.009535
9| 03:XX 35:XX 01:XX 0,008859
10| 02:XX 08:XX 03:XX 0,008491

Table 14: Most frequent ABDR low resolution haplotype frequencies of the Hungarian registry
(May 2012).

The simulated datasets has average distance 0.13 from the population, which is also
estimation of the registry sampling error for ABDR low resolution haplotype frequencies. HFE of the
simulated datasets have avg. distance 0.324 from true frequencies — this is also rough estimation of
the reliability of ABDR low resolution haplotype frequencies.

7.2 Slovakia

There are two registries in the Slovak Republic — one for adult donors (SK) and one public cord
blood bank (SKCB). The adult donor registry has 3144 donors (May 2012) and the CBB has 1734 units
(May 2012). Together, we have 4878 individuals and almost all of them are ABDR typed.
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Figure 30: Visualization of the HLA typing ambiguities and computational complexity in the
Slovak registries (SK, SKCB), 5 loci high resolution haplotype frequencies (A-B-C-DRB1-
DQB1), May 2012.

As we can see from the graph, there are about 1200 very well typed donors. This number is
already comparable with African American, Hispanic and Asian ethnic groups used in the HFE of the
American study [62].

The simulated datasets have average distance 0.27 from the population, which is also
estimation of the registry sampling error for A-B-C-DRB1-DQB1 high resolution haplotype
frequencies. HFE of the simulated datasets have average distance 0.444 from true frequencies.
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Rank A* B* Cc* DRB1* DQB1* |Frequency
1 01:01 08:01 07:01 03:01 02:01| 0,043228
2 03:01 07:02 07:02 15:01 06:02| 0,025822
3 25:01 18:01 12:03 15:01 06:02| 0,012463
4 02:01 07:02 07:02 15:01 06:02| 0,012246
5 02:01 38:01 12:03 13:01 06:03| 0,01157
6 02:01 44:02 07:04 16:01 05:02| 0,010398
7 02:01 15:01 03:04 04:01 03:02| 0,008965
8 02:01 44:02 05:01 04:01 03:01| 0,007578
9 02:01 13:02 06:02 07:01 02:01| 0,006094

10 02:01 13:02 06:02 07:01 02:02| 0,006094

Table 15: Most frequent ABCDRDQ high resolution haplotype frequencies of the Slovak

population (May 2012).

Computational complexity of the estimation of low resolution ABCDRDQ haplotype frequencies is

shown on the Figure 31 and results are provided in the Table 16.
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Figure 31: Visualization of the HLA typing ambiguities and computational complexity in the

Slovak registries (SK, SKCB), 5 loci low resolution haplotype frequencies (A-B-C-DRB1-DQB1),
May 2012.
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Rank A* B* Cc* DRB1* DQB1* |Frequency

01:XX 08:XX 07:XX 03:XX 02:XX| 0,062804

03:XX 07:XX 07:XX 15:XX 06:XX| 0,027063

02:XX 18:XX 07:XX 11:XX 03:XX| 0,017698

02:XX 07:XX 07:XX 15:XX 06:XX| 0,015893

02:XX 44:XX 05:XX 04:XX 03:XX| 0,014746
02:XX 15:XX 03:XX 04:XX 03:XX| 0,012922
02:XX 13:XX 06:XX 07:XX 02:XX| 0,012229

02:XX 38:XX 12:XX 13:XX 06:XX| 0,011592
23:XX 44:XX 04:XX 07:XX 02:XX| 0,011306

V(N | |WIN |-

10 25:XX 18:XX 12:XX 15:XX 06:XX| 0,010862
Table 16: Most frequent ABCDRDQ low resolution haplotype frequencies of the Slovak
population (May 2012).

7.3 Czech Republic
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Figure 32: Visualization of the HLA typing ambiguities and computational complexity in the
Czech registries (CS, CS2), 5 loci high resolution haplotype frequencies (A-B-C-DRB1-DQB1),
May 2012.
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There are two adult registries (Czech Stem Cell Registry and Czech National Marrow Donors
Registry) and one public cord blood bank in the Czech Republic — together, they have 62 084
individuals (May 2012). We have already shown example of simulation of the CBB (see Figure 25).

Rank A* B* Cc* DRB1* |DQB1* |Frequency
1 01:01 08:01 07:01 03:01 02:01| 0,074842
2 03:01 07:02 07:02 15:01 06:02 | 0,048162
3 02:01 13:02 06:02 07:01 02:02| 0,022213
4 02:01 07:02 07:02 15:01 06:02| 0,019257
5 01:01 57.01 06:02 07:01 03:03| 0,014887
6 23:01 44:03 04:01 07:01 02:02| 0,014544
7 03:01 35:01 04:01 01:01 05:01| 0,01417
8 25:01 18:01 12:03 15:01 06:02| 0,011151
9 02:01 44:02 05:01 04:01 03:01| 0,010263

10 30:01 13:02 06:02 07:01 02:02| 0,009327

Table 17: Most frequent ABCDRDQ high resolution haplotype frequencies of the Czech
population (May 2012).

Average distance of high resolution HFEs of the simulated datasets to the true frequencies is 0.355.

Rank A* B* Cc* DRB1* |DQB1* |Frequency
1 01:XX 08:XX 07:XX 03:XX 02:XX| 0,064548
2 03:XX 07:XX 07:XX 15:XX 06:XX| 0,040355
3 02:XX 13:XX 06:XX 07:XX 02:XX| 0,019092
4 02:XX 44:.XX 05:XX 04:XX 03:XX| 0,017204
5 02:XX 07:XX 07:XX 15:XX 06:XX| 0,017202
6 23:XX 44.XX 04:XX 07:XX 02:XX| 0,012991
7 02:XX 18:XX 07:XX 11:XX 03:XX| 0,012938
8 03:XX 35:XX 04:XX 01:XX 05:XX| 0,012271
9 02:XX 15:XX 03:XX 04:XX 03:XX| 0,011751

10 01:XX 57:XX 06:XX 07:XX 03:XX| 0,010672

Table 18: Most frequent ABCDRDQ low resolution haplotype frequencies of the Czech
population (May 2012).

Average distance of low resolution HFEs of the simulated datasets to the true frequencies is 0.262.

The following results will be presented without simulated estimation of distance to the true
frequencies. It is not clear whether simulation can be used for populations that are far from
reference Caucasian population (north Europe, Cyprus, Africa, etc.). Finish population is much more
homogeneous than reference German population, but there could be also other hidden problems
(e.g. linkage disequilibrium).
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7.4 Finland

Rank A* B* Cc* DRB1* DQB1* |Frequency

03:01 35:01 04:01 01:01 05:01| 0,115949

01:01 08:01 07:01 03:01 02:01| 0,066685

03:01 07:02 07:02 15:01 06:02| 0,043546

02:01 27:05 02:02 08:01 04:02| 0,028982

02:01 07:02 07:02 15:01 06:02| 0,028114

02:01 15:01 03:04 04:01 03:02| 0,025415

03:01 07:02 07:02 13:01 06:03 | 0,023425

02:01 15:01 04:01 08:01 04:02| 0,021335

OO (NO|U | WIN |-

02:01 15:01 03:03 13:01 06:03 | 0,020245

10 02:01 13:02 06:02 07:01 02:02| 0,017724

Table 19: Most frequent ABCDRDQ high resolution haplotype frequencies of the Finnish
population (May 2012, 980 donors used, Fl and FICB datasets).

Rank A* B* Cc* DRB1* DQB1* | Frequency
1| 03:XX 35:XX 04:XX 01:XX 05:XX 0,096065
2| 01:XX 08:XX 07:XX 03:XX 02:XX 0,051767
3] 03:XX 07:XX 07:XX 15:XX 06:XX 0,036495
4102:XX 15:XX 03:XX 04:XX 03:XX 0,027472
5] 02:XX 07:XX 07:XX 15:XX 06:XX 0,026341
6| 03:XX 07:XX 07:XX 13:XX 06:XX 0,02582
71 02:XX 27:XX 02:XX 08:XX 04:XX 0,023214
8| 02:XX 15:XX 03:XX 13:XX 06:XX 0,021598
9102:XX 13:XX 06:XX 07:XX 02:XX 0,020913
10| 02:XX 15:XX 04:XX 08:XX 04:XX 0,016104

Table 20: Most frequent ABCDRDQ low resolution haplotype frequencies of the Finnish
population (May 2012, 3356 donors used, FI and FICB datasets).

7.5 Sweden

Rank A* B* Cc* DRB1* |DQB1* |Frequency
1 01:01 08:01 07:01 03:01 02:01| 0,053935

2 02:01 07:02 07:02 15:01 06:02| 0,033879

3 03:01 35:01 04:01 01:01 05:01| 0,026681

4 02:01 15:01 03:04 04:01 03:02| 0,026362

5 02:01 40:01 03:04 13:02 06:04| 0,021377

6 02:01 44:02 05:01 04:01 03:01| 0,018612

7 03:01 07:02 07:02 15:01 06:02 0,01501

8 02:01 15:01 03:03 04:01 03:02| 0,010864

9 02:01 40:01 03:04 01:01 05:01| 0,009709

10 02:01 27:05 02:02 01:01 05:01| 0,009526

Table 21: Most frequent ABCDRDQ high resolution haplotype frequencies of the Swedish
population (May 2012, 812 donors used, S and SCB datasets).
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Rank A* B* Cc* DRB1* DQB1* |Frequency
1| 01:XX 08:XX 07:XX 03:XX 02:XX 0,045838
2| 02:XX 44:XX 05:XX 04:XX 03:XX 0,04313
3] 02:XX 15:XX 03:XX 04:XX 03:XX 0,030709
4102:XX 40:XX 03:XX 13:XX 06:XX 0,022565
5102:XX 07:XX 07:XX 15:XX 06:XX 0,017791
6| 03:XX 07:XX 07:XX 15:XX 06:XX 0,017476
71 03:XX 35:XX 04:XX 01:XX 05:XX 0,017084
8(29:XX 44:XX 16:XX 07:XX 02:XX 0,011913
9102:XX 40:XX 03:XX 04:XX 03:XX 0,009044
10| 02:XX 08:XX 07:XX 03:XX 02:XX 0,008687

Table 22: Most frequent ABCDRDQ low resolution haplotype frequencies of the Swedish

population (May 2012, 3296 donors used, S and SCB datasets).

7.6 Cyprus

The Cyprus Bone Marrow Donor Registry and Cord Blood Bank register more than 120 thousand

individuals. It is one of the biggest registries in Europe.

Rank A* B* c* DRB1* DQB1* |Frequency
1|24:XX 35:XX 04:XX 11:XX 03:XX 0,031285
2| 32:XX 35:XX 04:XX 11:XX 03:XX 0,017396
3(33:XX 14:XX 08:XX 01:XX 05:XX 0,015306
4102:XX 35:XX 04:XX 14:XX 05:XX 0,013654
5(24:XX 18:XX 07:XX 11:XX 03:XX 0,012446
6 | 02:XX 44:XX 02:XX 16:XX 05:XX 0,01128
711:XX 35:XX 04:XX 11:XX 03:XX 0,011086
8| 02:XX 51:XX 14:XX 04:XX 03:XX 0,010685
9(24:XX 35:XX 04:XX 16:XX 05:XX 0,010259
10| 02:XX 35:XX 04:XX 11:XX 03:XX 0,009933

Table 23: Most frequent ABCDRDQ low resolution haplotype frequencies of the Greek Cypriot
adult population (October 2012).

Rank A* B* c* DRB1* |DQB1* |Frequency
1|33:XX 14:XX 08:XX 01:XX 05:XX 0,02768
2| 24:XX 35:XX 04:XX 11:XX 03:XX 0,024564
3132:XX 35:XX 04:XX 11:XX 03:XX 0,015889
4103:XX 35:XX 04:XX 11:XX 03:XX 0,010468
5(11:XX 35:XX 04:XX 11:XX 03:XX 0,010428
6| 24:XX 18:XX 07:XX 11:XX 03:XX 0,010153
7 | 24:XX 35:XX 04:XX 16:XX 05:XX 0,010093
8132:XX 40:XX 02:XX 16:XX 05:XX 0,009607
9| 01:XX 08:XX 07:XX 03:XX 02:XX 0,009271
10| 02:XX 39:XX 12:XX 16:XX 05:XX 0,009111

Table 24: Most frequent ABCDRDQ low resolution haplotype frequencies of the Greek Cypriot
young population (Cord Blood Bank, October 2012).

85



These results have been used by the Cyprus Bone Marrow Donor Registry to study genetic
changes of the Greek Cypriot population. The study has shown lower homogeneity of the young
Cyprus populations thanks to mixture with other nations (immigrants, mixed couples).

7.7 South Africa
The South African Bone Marrow Donor Registry (SABMR) has more than 64 thousand donors.
It is the biggest registry in Africa. In fact, there are only two registries in Africa, so the SABMR is very
unique for the different ethnic groups in the register. We have been asked by medical director of the
SABMR to focus on the black population.

Rank A* B* Cc* DRB1* |DQB1* |Frequency
1|02:XX 58:XX 06:XX 11:XX 03:XX 0,013385
2| 02:XX 58:XX 06:XX 11:XX 06:XX 0,013385
3[29:XX 44:XX 07:XX 11:XX 06:XX 0,011765
4102:XX 58:XX 03:XX 13:XX 06:XX 0,010348
5(30:XX 08:XX 07:XX 03:XX 04:XX 0,009766
6| 02:XX 58:XX 07:XX 07:XX 02:XX 0,009374
7| 68:XX 15:XX 03:XX 11:XX 06:XX 0,008583
8]30:XX 18:XX 07:XX 11:XX 06:XX 0,00853
9102:XX 44:XX 16:XX 13:XX 06:XX 0,008019
10| 02:XX 08:XX 07:XX 03:XX 02:XX 0,007241

Table 25: Most frequent ABCDRDQ low resolution haplotype frequencies of the Black
population in South Africa, based on 582 individuals (SABMR, October 2012).

Rank A* B* Cc* DRB1* |DQB1* |Frequency
1(33:XX 07:XX 03:XX 0,042531
2[33:XX 58:XX 13:XX 0,019308
3| 66:XX 58:XX 13:XX 0,018958
4102:XX 44:XX 13:XX 0,018881
5(33:XX 44:XX 11:XX 0,01813
6| 02:XX 58:XX 11:XX 0,017367
7| 24:XX 07:XX 15:XX 0,015563
8102:XX 15:XX 03:XX 0,014922
9(33:XX 15:XX 11:XX 0,0142
10| 02:XX 58:XX 07:XX 0,013871

Table 26: Most frequent ABDR low resolution haplotype frequencies of the Black population in
South Africa, based on 2592 individuals (SABMR, October 2012).
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7.8 Nigeria
This work [67] proves the need of setting up the new registry in Nigeria, by comparing Nigerian
HLA haplotype frequencies with Afro-American frequencies.

HLA Study in Nigeria

-
David Steiner [1], Terry Schlaphoff [2], Veronica Borrill [2], 1= ,% asee
Professor Ernette du Toit [2], Colette Raffoux [3] '6:‘“\_': et
[1] Czech Technical University, Prague, Czech Republic B =
[2] South African Bone Marrow Registry, Cape Town, South Africa " arewor
[2] IRGHET International Research Group on Hematopoietic GEIS'I.TI_F._T_'_,)
stem cells Transplantation, Paris, France
INTRODUCTION Wigiarla A hagihity s MO
The South African Bone Marrow Registry (SABME) Cs B WS ronk |frog _{AFA fark [frag _|dtad
has number of donors from other African countries on 770 3 :;: = E;Eﬁ
its datab ase as patients come from all parts of Africa TR T 5 T3 Soam
to seek medical treatment in South Africa. 1303 151 4 Lza%[sa 0,003
In December 2009, we were approached by DEMS ELE T ki LE%lL 0,023 63 30013028
. : , - ok pivril e 2 % y 01305
Amﬂ'lt_:las rggard.mg a patient in the LS:.—'L, nn.gmal]}' o Teent 2 e Y TEE
from Nigeria, who was not able to finding a matching A [sema = Lat%[z2 OITE
unrelated donor anywhere in the worlds. DEMS 23090 SHN E] L2% N,
- 3002 1%L 1o LE%|ET 0002 53

Americas agreed to assist the patient by holding a
donor drive in Nigeria. However, they needed to find
a host registry for these persons & after discussion
with our Medical Director, it was agreed that we
would help. The reason for approaching the SABMR
is that we are the only functional registry in Africa.
The donors completed SABME application forms.

wiznw Neer
!

MATERIALS AND METHODS

The Nigerian file contains 174 healthy individuals that
were typed by SBET on A%, B*, C= and DRE1* in an
EFI accredited laboratory. Resolution of typing was at
least intermediate (multiple-allele-codes or high
resolution codes). Even if the file might not fully
represent Nigerian population, it is the biggest and
best typed sample of Nigerian HLA data.

Haplotvpes were estimated by maximum likelihood
approach and Expectation-Maximalization (EM)
algorithm. Multiple-allele-codes were expanded to all
possible alleles according to current HLA
nomenclature. Besults were compared to Afro-
American (AFA) population (Maiers M, Gragert L,
Elitz W.: High-resolution HLA alleles and haplotypes
in the United States population, Hum Immunol. 2007
Sep;68(9):7T79-88. Epulf![ll}? May 24.).

Migeria OB haplobypes NMDP

c* B* MIG_rank | fen AF&_rani |freq
na:10 [5301 1 10,40%| M

0406|5301 E £,23%]| M

0602|5802 3 2,93%[6 396%
o304 1510 4 2,85%(11 237%
Dzl [1m2s 3 2,735

04:06 4401 B 2,415 M

17:03 |azol 7 2,368%|4 537%
16:01 5201 E 201%[17 123%
0404|5301 B 1,91%]| M4

072l (5703 10 1,86%| M

Table 1: Top Nigerian C*-B* haplotypes

Table 2: Top Nigerian A=-B* haplotypes

|Migerian A-B-C-DABL low resolution haplo

& E* c* DABL* WG rank |MIG freq [AFE freg
i e R i zame] o7ex
T T e GO  zaaw[  nas¥
30K 4B 17K |00 i zoaw| 18w
Bl 330 043K 150 4 1,75%| 0,02%
oaoce |38t (16 [1aoe s assw] ooes
FHME_ M0 [04900 [15om B 1A4%] 056k
T [ A [ T 13%%]  n16%
T KK 1300 033X 150 B 1,28%| 0,38%
Ghace |15t (032 [odom 9|  12s%| 066k
01K |53 |04 |0aom ] 12a%] pamm
Table 3: Top Nigerian A*-B*-DRE1~ haplotypes
RESULTS

Differences were observed mainly in B-C high
resolution haplotypes. 6 of top 10 most common B-C
haplotypes are not present in AFA population (1.
B*53:01-C=04:10, 2. B=53:01-C=04:06, 5. B*15:18-
C#02:10, 6. B=44:03-C=04:06, 9. B=53:01-C*04:04 and
10, B=57:03-C*07:211). On the other hand 3 of top 3
most common AFA B-C haplotypes were not observed
in the file (1. B=53:01-C*04:01g, 2. B*15:03g-C=02:02
and 3. B=07:02g-C*07:02).

All most common A-B haplotypes are known alse in
AFA, but with different frequencies and ranks: 1.
A*36:01-B=53:01 (rank in AFA is 5), 2. A=02:01-
B*53:01 (AFA: 16), 3. A*658:02-B~15:10 (AFA: 12). 3
of top 3 most common AFA A-B haplotypes were not
observed in the file (2. A*03:01g-B*07:02g and 3.
A*02:01g-45:01g).

Most frequent A-B-C-DRE] haplotypes in the
Nigerian file are: 1. A*36-B~53-C=04-DRE1*11 (NIG:
3,32%, AFA: 0,78%), 2, A*02-B=53-C~04-DRB1-13
(NIG: 2,24%, AFA: 0,35%0), 3. A*30-B=42-C=17-
DRE1=03 (NIG: 1,03%, AFA: 1,89%), 4, A=36-B*53-
C#04-DRB1*15 (NIG: 1,75%, AFA: 0,02%) and 5.
A#)2-B=35-C*16-DRB1+13 (NIG: 1,55%, AFA:
0,06%).

CONCLUSION

These results show the Nigerian population is
different than Afro-American population in United
States and the need of further development of
unrelated stem cell registries in Africa.

CONTACT
http:/fwww.sabmr.co.za
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8. Usage of haplotype frequency estimations
This chapter presents some applications of HFE.

8.1 Examples of applications
HLA haplotype frequency estimates could be used to:

1.

To plan development of a stem cell donor registry, especially its size and effectively in finding
an unrelated stem cell donor for a new random patient [51] [68] [69] [70] [71].

To select donors that are HLA-A and HLA-B typed only for prospective HLA-DRB1 typing by
their HLA-AB-phenotype, so that after a defined number of typings performed the expected
“population coverage” of the registry is maximized [60].

Selective recruitment of stem cell donors [72].

To analyze and compare HLA genetic relations and properties of different populations [73]
[54] [74].

To calculate the probability of HLA high resolution match between a particular donor and
patient. Based on this, we can construct new generation of the search algorithm that ranks
donors according to their probability of HLA high resolution match with the patient. Such
state-of-the-art approach is used in Germany (Optimatch’) and in the United States
(HapLogic™™).

To interfere HLA haplotype information for a specific donor, for who we cannot perform
family study [75].

To calculate the probability of finding a suitable related or unrelated stem cell donor [76]
[36].

This work focuses on the point 5 (and partly also 6 and 7) that is further elaborated in the

following chapters 9, 0 and 11. However, in the next paragraphs, we will mention some of our results

related to previous points.

8.2 Phylogenetic threes and population maps

We have cooperated with students of the Czech Technical University on their bachelor and

diploma works. They have used our data as input of their applications. J. Téhnik has implemented
program that can analyse database of a registry and projects trends [77], see Figure 33.

y

¢ DONORS REGISTRY DATA ANALYSIS B smasampninn s . h

Utel projektu

deno v teuty Zivéeing bakalaishs orice

Datum odevzdani : |

1

doahza Koot

A y

Figure 33: Bachelor work [77] — analysis of database of a stem cell donor registry.
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L. Kabrt has developed a web application that visualizes HLA data and their location on Google
maps [73]. For location of the donor, postal codes have been used. For example, the map of Finland
shows different frequencies of HLA allele groups in regions with Swedish speaking population (see
Figure 34). In case of the Czech republic, we did not find significant regional differences. Similar study
has been done in the UK and Germany [70].

A*23XX B*38XX

Probability of split B38 ad allele B16 foul 0.229
T =

Probability of split A23 if broad allele A9 found is 0.034

|

Figure 34: Diploma work [73] — analysis of database of a stem cell donor registry.

8.3 HLA Explorer
We have developed an internet application HLA Explorer (www.hlaexplorer.net) [78] that
implements user-friendly interface for browsing HLA haplotype frequencies estimations. Goal of the
project was to develop system that helps physicians (transplant centers) and coordinators (stem cells
donor registries) to examine Linkage Disequilibrium of HLA system in order to assist to find suitable

unrelated stem cells donor.

The application has more than 200 registered users worldwide.
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WWW.HLAEXPLORER.NET — FREE INTERNET APPLICATION
FOR EXPLORING DEPENDENCIES IN HLA SYSTEM

Dawidd Steinest, Jakub Brak!, Libude Kupeova®, Agathe Rosenmays, Derek Middleton?, Lenka Lhotska?
! Coach Technical University in PraguefGarstner Laboratory, Technicka 2, Frague, Czech Republic
2 Czech Stem Crlls Registry, Prague, Czoch Republic
¥ qustrian Bane Marrow Donor Registry, Wien, Austtia
A northern reland Histooompatibdity & Immuncganetics Laboratory, Belfast, UK

Inbarsoery

Gerstn_q::_;j‘

INTRODUCTION

DMNA EXPLORER - GRAPH VIEW

The goal of the project HLA Explarer {were nlapxploreonet) is to da-
vekip & new inkernet based infarmation system that will help asandi-
nators (shem Cells conor registries) and physclans (transplant cen-
ters] beoexamine Linksge Dsequilboum (LD af HLA system in oroer
T assist to find suitable unrelated stem cells donor

DMNA EXPLORER - LIST VIEW

= (344, high rescletion redatiors of HLA alices in the list that you can
sart according bo sy calumn (Selected loci, papulstion, prababiiby
ard Unkage Meaquilibrium],

fmmsie | EAMladerrr | e D DL mim—

Blare Dapln b ok

— = P b BRI B4 40T i 7 e e S e e,

[

p 4 -rlm vale o i ot ey - (0 e i
e 2y iy Ay ik A ol
- B R JCT ] LT I IR I35

EraE Sacg [T - CATILE [T
fstemidiuai 2y ity £y el dal fAere AT
L = =x] R JCT T I T [ (e L3I

T oo [ <1y [ L] oML LT 1T
= | = ity il by ekl M ) fr—)
= [ T W] ICoET o p—— I
Ted | Tl Eet] [ ] o] [ T

=] iy |y s L Cuscan =)
T T L Gy o) pas o
e e [T ] [ -] T
couwy oy o JCTE [T |cmcn
[T T, WAL ] [ ik AL
TRl s um K- (X7 [T 0T
e T S T o oy
== = e IC L T I v e
Eral s (= K- G T
[T iy camiy | eoae i o=y
[ Eor] [T e o L1

* Exanple shivws comparison of high resslition A%-B*-C* Trequencies
be=tween different American populations, Fiter {on the left) = set to
AAOZ-BE02-CF and no specfic populatian is seected CALLY,

DMNA EXPLORER - TABLE VIEW

il T T E ] = A L
W AN LS Lkl

e b B a6 i agkasian.

[ =
1 T . -
freean
; — . S i A RS et
- ki
[ iy
C Bl w0
Ll e e -
- ] i | e ape
1 Tves | FLACY
T E |
2= | o |
- £
| L
vy Lo 1
I W S
e il | 2
T = [ T
L BT

= D, high resclution relatians of HLA alkzkes in the table.

= Example shows 2 locus refation B7-CF in USA-EUR populabon. Filker
is st to “USA-EURT and B*-0*. Yelime calor stresses high LD and
grien coloe wary high LD,

SYSTEM ARCHITECTURE

= [IM& high resolubon refations of HLA alleles in the graph

el gl O e
e Lol k] Dk

Ll O T T L Tt

ool Dateviel A0, CERL* wred DO s b il O
PR

v LR R S R

R by, SR 0, o T

WE N Aoy S e, i oy | 1P

£ A LI L e 0, BN (LY

[P ELIETR T L | e—

Wi =1 A i B SOTN, DR S ey 1

il i B, DA SO e = s
el i, A S e By

L o R e i i
Lr=i] A T L B i TR
A . S L, CEIRH e
A L, B L, DR e
i gy Do s, o ) [P,
A e, e e L
sat SRR L e | s
ASICH b 51 1L, 1RO i
hﬂlpwl-huml-hlﬂn

S =G, G =0 o LR

g L e, g R ) R

R P L e e L R
0 1, DA O, D ] e

LT R E L LT S LT B

» Example shows comparisan af 3 looss high resolution haplatype
frecuincies Bebwasn diferent American pegulations. Filler i o0 bo
ASQL0L-DRE1*-DE1= and no spedfic populaton = selected.

SEROLOGY EXPLORER - LIST VIEW

= Low resalutian relations of HLA aledes in the |t

Iebermsdse i fmpleerr | Sy Goplersr | e [
Ve LaMr Lk Grask

Pl bbrrd N7, T el I b E R0 il

T v
o - n SR B - [ Rk Dioh gl ~
— 3 £ IF |eanma | ey
a IE 11 | | acaxan
= <E1 3 IE] 4 o] Aol
e i ¥ 1 et “aa
" = 1 | 1 1 s ftr it
i IE] (i e
TP b IE] i
e = £l v En {araca
a B (F -1 Aol
[T=a] E) T rmr sl
i El I (0] i
I 1 ® i i)
I S F— L]
i IE] L [ ICZ]
Fl IE] an .mawa | acazan
Habiey 5 IE] |:--| O = 1
o = R 1] m ¢ ICTT]

« Example shows haplabype frequenoics in the Czech populaton, Fi-
e i@ sel o “Crecly™ ared A2-87-0R.

Usep DATA

« Dot from Regitry Donoe. | | | |

+ NMDF: Maicrs, M, Gragert, L, Eliz, W, High resolution HLA allcles
and hagkatypes in the LS pepulatian.
Humnan Immunology (S007) 68, 7r8-788,

= wiww.allzlefrequencies.net - Denek Middizton
« Donor Registries: C5, C2CE, C52, 8K, A [BMDW registry codaes)

[= e o e B coaperate watl cifer registres and’ wilh BRETHE

CONCLUSIONS

Databases are menged inks

Pepulation Donar Database, et o

(e.g. 05, C508 and C52 to e el

*Crech population™) Inr— A

& Wi count haplotype requendes i

by EM algorithm and share results | N

in special database,

= Yich based apolication shows | ———

résRs in user-friendly way. } [
Mt

90

The chance of any patient o obtan Tuly matched unrelated stem
cells donars is dependent on possibilty to match with maore than 12
enilicen danees in BMOW, Buk, up o now mary HLA typing resulls of
unrelated donors ane inoomplete. [n case two or mone donors - who
are poterially FLA idantical - are avalabla, coordinators ared phys-
cians can use “HLA Explorer” in order to choose donars for comple-
mertery genomic typing. The projed “HLA Exploner™ prosides exben-
sive information for haplotyps Frequences,

Lking of modern technologies such as HLA Explorer increase the
chanca to find a suitadke donor in the shortest term possible,



8.4 Phenotype analysis
Another interesting usage of haplotype frequencies are applications that analyze given
phenotype and resolve them into possible genotypes. This can be done for multiple populations and
we get multiple results. If the ethnical or family background of the individual is unknown, the
comparison of results may help to associate the patient with an ethnic group and or focus attention
on rare combinations of patient’s alleles. Such information help to refine the donor search strategy

before starting the search process.

The publically available tool with such analysis has been developed by NMDP and is available
at www.haplostats.org. Another example is the French EasyMatch [30].

The phenotype analysis tool is an internal component of the predictive matching (see next
chapter).

9. Prediction of HLA Match

In this chapter we will design new computational method for matching predictions. Top-down
design of the algorithm is described. We will also compare our approach with other implementations
in the world (ZKRD, NMDP).

9.1 Criteria for the new matching prediction algorithm

A. Usability: We need to compare predictions for all donors. The method must be able to handle all
cases, patient-donor pairs.

B. Time: It would be desirable if the method is used in the interactive user interface. We need to
use the method for at least hundreds of patient-donor pairs. Therefore the method must be able
to give result quickly, in fraction of one second.

C. Correctness: If the method gives results, it must be reliable. We need to understand how reliable
is the method. Therefore the method must be validated.

9.2 Definitions
For the purpose of this chapter, we will mathematically define terms haplotype and phenotype
that have been already defined in chapter 2.1.

Haplotype h, is a set of pairs. Each pair is composed of DNA/serology locus designation IJ.
and allele/antigen code a;according to the HLA nomenclature (see chapter 2.2.2). Empty value is

considered as special valid code. Let s be number of loci in the haplotype. We can explicitly write
number of loci as upper index of the haplotype.

(26) hi :his :{(Il7a1)1(|2’az)""!(ls7as)}
|j must be different from each other.

Let’s call the corresponding set of loci as haplotype type.

@27 TOD=TE) =L, 03
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So the condition on distinct IJ. can be written as

T(h)

=S

Where |X | is the size of the set X (number of elements).

Phenotype Phen is a set of pairs. Each pair is composed of DNA/serology locus designation Ij and a

set of two allele/multiple-allele/antigen codes a;, and a,; ,

Phen = {(Il 1{31,1’ a'_L,z})' (Il ’{aZ,l’ az,z})a---’ (Is 1{as,l ’as,z})}

We say two phenotypes Pheny and Phen, are the same, if Pheny = Phen,. Otherwise they are
different.

We say phenotype Phen matches the haplotype h, (and vice versa) if all elements of the haplotype

hi "match” with corresponding elements (the same locus) in the phenotype Phen. It means it

“matches” at least one of two alleles/antigens present at the same locus on the phenotype Phen. Our
“matching” is described by [5] [7] and basically it means no mismatch is observed. If the locus is not
present in the phenotype Phen, it is considered as “match”, i.e. no mismatch is observed.

This predicate (Phen matches h,) is written as

M (Phen,h,)

Example 8

h =h’ ={(A"26:01"),(B,"38:01"),(C,"12:03"),(DRBL,"04:02"),(DQBL"03: 02")}
h, =hy ={(A,"01:01"),(B,"57:01"),(C,"06:02"),(DRBL"15:01"),(DQBL"06: 02")}
h, =hS ={(A,"01:01"),(B,"38:01"),(C,"06: 02"),(DRBL,"04: 02"),(DQBL,"03: 02")}
[T(h?)|=[T ({A B,C,DRB1, DQBI1})| =5

The individual A (chapter 2.2.4) could be represented as

Phen, ={(A{"01: XX","26: XX"}),(B.{"38","57"}),(C.{"06:02","12:03"}),
(DRBL{"04:02","15:01"}),(DQBL{"03: 02","06 : 02"})}

Locus HLA-A has been low resolution typed, locus HLA-B has been typed by serology technique and
other loci are high resolution typed.

Then predicates

M (Phen,,h,) M(Phen,,h,) . M(Phen,,h,)

, and
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are all True.

O

9.3 Matching prediction method
Given an original phenotype Phen of an individual and s-loci haplotype frequencies hi of its

population, the algorithm selects all s-loci (high-resolution) haplotypes that match with the
phenotype Phen.

Then the algorithm loops all matching haplotypes and tries to combine them together into
pairs forming predicted diplotype (hi hj ), still matching the original phenotype. hi and hj must be
complementary, i.e. predicted diplotype form the predicted phenotype PhenA,k that also matches

the phenotype Phen.
Example 9

Following the Example 8: Let’s consider these three haplotypes as the only matching haplotypes with

the phenotype Phen,. They can from three different diplotypes (h, h,), (h, h,) and ( h, h,), but only
Phen,, = (h, h,) matches the phenotype Phen,.

Phen,, = (h, h,) ={(A{"01:01","26:01"}),(B,{"38: 01", "57 : 01"}), (C,{"06 : 02", "12: 03"}),
(DRBL{"04:02","15: 01'}), (DQBL {"03: 02","06 : 02"})}

O

Let’s focus on probabilities P; as defined by equations (2) and (3) on page 37.

Let’s say we have got m possible predicted phenotypes. We normalize their probabilities P by

P.
1
Pj T om
2P
(28) i=1
Therefore
m *
Y P =1
i=1
holds.

Pj* are conditional probabilities expressing the event the given phenotype is in fact predicted

phenotype j.
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We use this algorithm twice, to analyze both patient and donor phenotype. Let PjDare
normalized probabilities of predicted phenotypes Phen?of the donor, m® is their count, PJ-P are

normalized probabilities of predicted phenotypes Phenjp of the patient and m” is their count.

Finally, we find all predicted phenotypes that are common for the donor and the patient, and
multiply their conditional probabilities. We get equation for the matching prediction

m® mP
mp=> > P°R 5,

(29) j=1 k=1

Where 5jk =0, if phenotypes j and k are different and 5jk =1, if phenotypes j and k are the same,

i.e. no mismatch (see chapter 9.2). Similarly, the following equation calculates the probability of one
mismatch

m® mP
(30) mpMMl — ZZ PJD Pkpé*}\l:”\/ll
j=1 k=1

MM1 _

Where 5}‘SM1 =1, if phenotypes j and k have exactly one mismatch (see also [7]) and &} =

otherwise.
The probability of a match at specific locus is estimated by
L g DpP ¢L
(31) mp-=>>PPR7S
j=1 k=L

Where L is the locus designation and 5J.Lk =1, if phenotypes j and k are the same at locus L and

5J-Lk =0 otherwise.

9.4 Phenotypes cannot be explained
Previously described method does not meet criterion A (see chapter 9.1), because it can fail if
the patient or donor phenotype cannot be “explained”. For patient, it means m” = 0 and the patient’s

set of predicted phenotypes {Phen JP} is empty. This can happen if:

e There are no matching s-loci (high-resolution) haplotypes (let’s call them full haplotypes).
e There are such full haplotypes, but they cannot form matching predicted diplotypes.

In such case, our method tries to find matching partial haplotypes, i.e. haplotypes with less than s
loci that match the original phenotype.

Partial haplotype h is non-empty subset of any original (high-resolution) haplotype h.

heh h=h W=
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L(h") is partial haplotype type.
L(h)) < L(hY) L(h)=L(h?) L(h)={}

Matching partial haplotype is the partial haplotype matching the phenotype Phen. Obviously, if the
(high-resolution) haplotype matches the phenotype Phen, then all derived partial haplotypes are
matching the phenotype Phen. But it is not always true vice versa, i.e. mismatched (high-resolution)
haplotype may include matching partial haplotypes.

Let PH" be the set of partial haplotypes with r loci (0<r<s)

PH" =t = ali|=rf=U it < he alLm)|=rf
h' =h?

.
Conditions ' i and h i{}are forced by the condition 0<r<s.

Matching partial haplotypes MPH are

h < PH' A M (Y, Phen)|

mpH ={mpH" =( by
r=1

r=1

The method combines these partial haplotypes of different types together, forming artificial

|

=5, which means the

haplotypes that cover all s loci. In case of two partial haplotypes we get

HE =t ohy =i ~hj

0<t<sAO0<v<sa|L(h)uL(h)

=s A|L(h) A L(h)

The condition ‘L(hf)uL(h}’)

=scould be also written as ‘L(h{uh})

artificial haplotype covers all s loci.

The condition|L(hit) N L(hy) means that for all loci that appear in both hand h;, also

=|n Ay

corresponding alleles/antigens must be the same at all sharing loci of both haplotypes.

But in general, even more than two partial haplotypes can form one artificial haplotype. For triplets
we get

S huhl Uk

e ALy

O<t<sa0<v<saO<w<salL(h)uLh))uLhy)=snA

= Ay A L) A L[ =[BE b ALY A L) =|hy ARy

... and so on.

All artificial haplotypes are

Full haplotypes could be perceived as Hf
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Haplotype frequency of the partial haplotype is calculated as the sum of all full haplotypes that are
supersets of the partial haplotype.

(32) pi= > p;

{ihi=ny |
Allele frequencies are special case of partial haplotype frequencies, where t =1.
Example 10

Following the Example 8: If the full haplotype type is {A, B, C, DRB1, DQB1}, S =5, then an example
of partial haplotype type is {A, B, C, DRB1}, which covers 4 loci and the locus DQB1 is omitted. An
example of partial haplotype is

h! ={(A"26:01"),(B,"38:01"),(C,"12:03"),(DRBL"04:02")}

How to find these partial haplotypes? Number of partial haplotype types corresponds to all
subsets of the full haplotype type, except empty set, which grows by exponential function 2° —1. In

case of five loci, we get 2° —1=2° —1=31, so there are 31 partial haplotype lists. For each partial
haplotype type, we need to search for matching partial haplotypes. Then these lists are combined

together. There are up to (2S —1)2 possible pairs of partial haplotype types we need to check. Each

check combines two lists, so its complexity is O(nz). There are (25 —1)3triplets, etc., so the total

complexity of the calculation is extreme

1ol

These are maximum numbers, not all of them make sense to combine, for example {A*} is already

s
i=2

included in {A*, B*} and the combination does not make sense. l.e. combining such two haplotype
types we cannot create artificial haplotypes that cover all 5 loci. But still the number of combinations
is too high for efficient computing.

Therefore we check only selected partial haplotype types. We have also implemented
heuristics that first checks bigger partial haplotype types and then, if not successful, others. The
algorithms uses this order of partial haplotype types:

o {A, B, C, DRB1, DQB1} ... full haplotypes

e {A, B, DRB1, DQB1} ... locus C excluded

e {A, B, C,DRB1}... locus DQB1 excluded

e {A, B, DRB1} ... typical 3 loci matching (loci C and DQB1 excluded). First versions of
HapLogic™ and OptiMatch® used these three loci for predictive matching (see chapter 11.3).
BMDW [6] also uses these three loci for basic matching.

e {A, B, C}.. first class loci

e {B, DRB1, DQB1} ... second class loci and the closest first class locus, see Figure 2.

e {A}...individual locus
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e {B}...individual locus
e {C}...individual locus
e {DRB1}... individual locus
e {DQB1}... individual locus

If the partial haplotype type can be used for explanation of patient (partial) phenotype, we
select it. We continue to the next partial haplotype type, until we cover all loci by the loci in all
selected partial haplotype types. Since single locus haplotype types are in the end of the list ({A}, {B},
{C}, {DRB1} and {DQB1}), we will always find solution that cover all loci. This means, in the worst case,
allele frequencies will be used.

Example 11

Partial haplotype types {A, B, DRB1}, {B, DRB1, DQB1} and {C} together cover all five loci, i.e.
haplotype type {A, B, C, DRB1, DQB1}.

O

Note: Theoretically, it could happen even the (phenotype) typing result at a locus cannot be
explained by allele frequencies. This means we are trying to estimate probabilities of alleles that have
never been observed in the underlying population, so allele frequencies are zero or almost zero. This
can happen if the individual does not belong to the model population.

After this procedure, we get list of partial haplotype types and corresponding lists of matching partial
haplotypes. Now, we need to form artificial haplotypes and estimate their frequencies.

Artificial haplotypes are formed by combination of partial haplotypes from all lists of matching
partial haplotypes. We take only those combinations that match, i.e. if there is non-empty
intersection of two partial haplotype types and corresponding partial haplotypes must share the
same alleles at all loci in the intersection. Haplotype frequency of the artificial haplotype is estimated
as haplotype frequency of the first partial haplotype (forming the artificial haplotype) multiplied by
normalized multiplication of all other partial haplotypes forming the artificial haplotype.

In case of two partial haplotypes hand h{forming an artificial haplotype h; = hi U hi we define

artificial haplotype frequency as

s s Ji
Pa=0i;= pit v
(33) > p;

where:

e p,arefrequencies of h, (one of them is also hjV )

e h have the same partial haplotype type as h}'
e M (Phen, h:)
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This means h, are all possible extensions of hit , that belong to single partial haplotype type and still

form matching artificial haplotype with hit .

This definition of partial haplotype frequency is consistent with the property pit = Z pifj (see
i

equation (32)).

If these partial haplotypes do not share any locus (intersection is empty set), then Z px =1

and these are two independent fragments (without common loci) also form new haplotype.
Haplotype frequency is calculated as multiplication of frequencies of forming partial haplotypes
(fragments).

In case three partial haplotypes h', h}' and h" forme an artificial haplotype h; =h' U h}' U h'we

define artificial haplotype frequency as

PP p

S_nS  — t
pa pl,j,k pl Z px Z p;v

where:

e p,arefrequencies of h, (one of them is also h}' )
e P, arefrequencies of h/ (one of them is also h,’)
e h have the same partial haplotype type as h}'
o h;" have the same partial haplotype type as hy
e M (Phen, hj)
e M (Phen, h;v )

Similarly for four and more partial haplotypes.

In extreme case, only allele frequencies are used (partial haplotype types {A}, {B}, {C}, {DRB1} and
{DQB1}) and the haplotype frequency is calculated as multiplication of allele

Example 12

Let haplotypes h;, h,, h; and h,are the only haplotypes in our haplotype list.
h = h15 ={(A,"26:01"),(B,"38:01"),(C,"12:03"),(DRB1,"04:02"),(DQBL"03:02")}

h, =h? ={(A,"01:01"),(B,"57:01"),(C,"06:02"),(DRBL,"15: 01"), (DQBL "06 : 02")}
h, = h® ={(A,"26:01"),(B,"38: 01"),(C,"06 : 02"), (DRBL"04: 02"), (DQBL "03: 02")}
h, =h® ={(A,"26:01"),(B,"38:01"),(C,"06: 02"),(DRBL"15: 01"), (DQBL"03: 02")}

Let their frequencies be p; =0.1, p,=0.2, p;=0.3 and p, = 0.4.
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The frequency of partial haplotype

h’ ={(B,"38:01"),(DRBL"04:02"),(DQBL"03: 02")}

is Ppy=p +p;,=04
The second partial haplotype of the same type {B, DRB1, DQB1} is
hfz ={(B,"57:01"),(DRBL"15:01"),(DQBL"06:02")}
with frequency p,, = p, =0.2
And the third one is
h’, ={(B,"38:01"),(DRB1,"15:01"),(DQBL"03: 02")}
with frequency P; =P, = 0.4 . There is no other partial haplotype type and therefore
Pt P+ Py =1
Similarly, partial haplotype
hs, ={(A,"26:01"),(B,"38:01"),(C,"12:03")} has frequency p,, = p, =0.1

This partial haplotype hze’lcan be extended by hflor hf’3t0 form the full haplotype.

h231 and h’, form new artificial haplotype
h;l ={(A,"26:01"),(B,"38:01"),(C,"12:03"),(DRBL"15: 01"),(DQBL"03:02")}
Pis 0.4

ith frequen = =01 =0
wi quency pa,l P21 P+ Pra 04+04

The new artificial haplotype p,,may help to explain the input haplotype.

hs, and h’ form again h, , but with different frequency

b, =py—Pn—01-2% _q05
’ P+ Pis 04+04

Summary of the example: All full haplotypes starting with partial haplotype hfl (only h1 in our

example) were replaced by all possible extensions of |’1231 (two options). This has added new artificial

haplotype(s). Frequencies of newly formed haplotypes were reshuffled, but total frequency of all of
them is the same as original haplotypes.

O
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9.5 Validation of the concept of artificial haplotypes
We form artificial haplotypes are formed only in case normal haplotypes fail to resolve
(explain) the input phenotype. But it might be useful in more difficult cases.

In order to validate the concept of artificial haplotypes, we have run the following simulation:

1. Select all high resolution A*-B*-C*-DRB1*-DQB1* phenotypes from the dataset [BMDW-

2011].

2. Try to explain these phenotypes by standard full haplotypes.

3. Select phenotypes that cannot be explained by full haplotypes, but can be explained by

artificial haplotypes.

4. Decrease high resolution to low resolution for all five loci. Estimate probability of low

resolution phenotype to become the high resolution phenotype, using these three methods:

Artificial haplotypes, combined by partial haplotypes that overlap. For example types
{ A*, B*, C*} and {B*, DRB1*, DQB1*}
Artificial haplotypes, combined by partial haplotypes that do not overlap. For
example types { A*, B*, C*}and { DRB1*, DQB1*}
Artificial haplotypes, combined by single locus partial haplotypes (types { A*}, { B*}, {
C*}, { DRB1*}and { DQB1*}).
5. Calculate average U value (see (34)) for all these three approaches.

In the database [BMDW-2011], we have found 595 haplotypes that cannot be explained by
full haplotypes, but can be explained by artificial haplotypes. We have also used [PROM-CT]. As HFE,
we have used [ZKRD-2008] and [HPE-2010]. The more haplotypes we have in the HFE, the lower
number of validation cases for this exercise we find.

Table 27 displays results of the simulation. It shows the concept of artificial phenotypes has

better results than other two concepts.

Dataset Haplotype Number Artificial Artificial Artificial
frequencies of haplotypes, haplotypes, haplotypes,
validation | combined by combined by combined by
cases partial haplotypes | partial haplotypes | single locus partial
that overlap that do not haplotypes
overlap
[BMDW-2011] | [ZKRD-2008] 595 3.8707379473 4.7190691871 5.9372123576
[PROM-CT] [ZKRD-2008] 206 0.1497170941 0.3691394013 0.5350892222
[PROM-CT] [HPE-2010] 68 0.0499954565 0.1668737778 0.2416876335

Table 27: Validation of the concept of artificial haplotypes, table shows U values

9.6 Situation in the world

9.6.1 OptiMatch®
OptiMatch® matching prediction method is roughly described in [63]. The system calculates

the matching prediction in the same way as our method, i.e. our equation (29) and OptiMatch®

equation on the Figure 35 are similar.
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mit
r; Phanotypfrequenzen der Spenderpopulation

pi Phanotypfrequenzen der Patientenpopulation.
P, P% Mengen der méglichen Phanotypen von Patient und Spender

Figure 35: Matching prediction method equation of OptiMatch® [63]

However, other aspects of OptiMatch® matching prediction methods are not published, e.g.
how to handle patients and donors with phenotypes that cannot be explained (see chapter 9.4).

You will find more information about the OptiMatch® system in chapter 11.3.1

9.6.2 HapLogic™
As far as we know, HapLogic™ prediction methods have not been published.

You will find more information about the HapLogic™ system in chapter 11.3.2

9.6.3 Others
The Hap-E system [79] uses probably similar prediction method as OptiMatch®. Mathematical

description, internals and handling of problematic cases has not been published.

EasyMatch [30] focuses on a priori analyses of patient’s phenotype, rather than patient-donor

matching predictions.

10. Validation of Matching Predictions
This chapter describes methods of validation of the HLA matching prediction algorithm,
including new simulation framework and provides our results.

10.1 Methods
The quality of prognostic matching algorithm and the population model used (allele and
haplotype frequencies) have to be validated as well. This is usually done by retrospective or

prospective studies.
Hans-Peter Eberhard has used the Logarithmic Score Function [63].

1| log(g,)  for x, =1(Match)
U(x,q)==- :
(34) U(x.0) I Z{Iog(l—qi) for x, =0 (Mismatch)

i=1

where [ is the number of matching predictions and (; are matching predictions. In case of ¢, =0 the

value Ui =10"* is taken instead.

More typical option is to use all VTs performed by the registry that meet specific criteria. These

criteria are:
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e Patient has been typed at high resolution

e Donor was not typed at high resolution before the typing request, but has been high
resolution typed at the time of typing request (or later).

e No discrepancy between a priori and final HLA type.

Table 28: Criteria for validation typing request

The review process retrospectively calculates the matching prognosis and compares the
predicted and observed percentage of allele matches.

10.2 Validation using verification typings

Validation of matching predictions was carried out similarly to Optimatch/Haplogic. We have
taken all verification typing requests (VTs, formerly known as confirmatory typing requests, CTs)
performed by the registry. This was not easy task, because most of the registries recorded such data
only in paper form. In last four years, we have helped to connect at least 10 stem cell donor registries
in Europe, Asia and Africa to the EMDIS network (see Appendix C). Thanks to this effort, these
registries have started to record all international and national VTs in electronic form. This has been
one of the key building blocks of this work. As VTs we have used EMDIS “Sample request” messages
(SMP_REQ) [21]. We have collected more than 5000 VTs (Czech Stem Cells Registry, Slovak BMDR,
Polish ALF Registry, Swedish Tobias Registry, Finnish BMDR, South African BMR and Ezer Mizion
BMDR).

From these VTs, we have selected only those that met these requirements:

e patient has been typed at high resolution level (HLA-A, -B, -C, -DRB1, -DQB1)
e high resolution (HLA-A, -B, -C, -DRB1, -DQB1) data for loci examined as a VT result (or later)
e no discrepancy between a priori and final HLA type

Table 29: Criteria for validation VTs

About one third of VTs satisfy the criteria and that could be used for validation.
We have faced two problems:

e unlike ZKRD and NMDP, other registries do not have enough donors that could be used for
estimation of 5 locus high resolution haplotype frequencies. Haplotype frequencies could be
calculated, but their confidence is questionable.

e smaller registries also do not have enough VTs that could be used for validation of the
prediction algorithm. ZKRD used 9843 CTs in 2008 [8] and 22255 CTs in 2010 [63]. These
numbers are not achievable by smaller registries.

In order to overcome these problems, we have approximated the local population to the
German (ZKRD) population, i.e. we have used our estimation of German haplotype frequencies [D-
1205]. We have also joined VTs from multiple registries using Prometheus software. As result, we
have collected 1406 VTs for validation. Unlike ZKRD or NMDP that have enough VTs only for their
donors, our VTs represent a mix of Caucasian donors from different countries.
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Then we have calculated (retrospectively) the matching prognosis and compared the predicted

and observed percentage of 10/10 (resp. 9/10) allele matches at 10% or 20% prediction intervals.

Patient

Donor typing before VT

Probabilities

Donor typing after VT

(German patient)

A*02:01,03:01
B*15:01,44:02
C*03:03,05:01
DRB1*07:01,11:01
DQB1*02:02,03:01

(Finnish donor)

A2,3

B62,44
C*03:03,05:01
DRB1*07:01,11:01
DQ2,3

P(10/10)=0.943
P(9/10)=0.057
P(A)=0.999
P(B)=0.943
P(C)=1.000
P(DR)=1.000
P(DQ)=0.999

(10/10 allele match)

A*02:01,03:01
B*15:01,44:02
C*03:03,05:01
DRB1*07:01,11:01
DQB1*02:02,03:01

(German patient)

A*01:01,24:02
B*08:01,15:17
C*07:01,07:01
DRB1*07:01
DQB1*02:02,02:02

(Finnish donor)

A*01:XX,24:XX;
B*08:CCWB, 15:XX;

DRB1*07:XX

P(10/10)=0.049
P(9/10)=0.017
P(A)=0.998
P(B)=0.0668
P(C)=0.0661
P(DR)=0.999
P(DQ)=0.342

(7/10 allele match)

A*01:01,24:02
B*08:01,15:01
C*07:01,04:01
DRB1*07:01
DQB1*02:02,03:03

Table 30: Examples of the VTs. In the first case, the VT has proven, the donor has the same
typing as the patient (prediction for the 10/10 allele match was 94.3%6). In the second case, the
VT has shown, the donor has multiple mismatches at B*, C* and DQB1* (low predictions at

these tree loci).
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INTRODUCTION

= Promethews s a software solution for stem ozl donor registries.
The system is cumently inuse in 20 countnes. The: smallest registry
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SErves 35 2 nabonal software system for mone than 1000 patients 2

year:
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EMOIS matching prefierences (alielefanbgen mismatch specification,
age, gender, CMV, eir.) and also parbopates in the WHDA Matching
waldiation project {IT Waorking Group).

= However, 2 new generation of matching aigorthms s been dewvel-
oped by ZXRD (Optimaschii) [1,2) and MMDP (Haplogic™) [3].

= These algorthms are curmently besed on § oo high resclution
haplotype: frequences (Optimatch Verson 2 from Jume 2008 and
Hapiogic 11T from December 2011]).

= The goal of this project is to iIndependently develop and integrate
these technologies into the Promethens softare. Such technology
must be validaterd before it can be refiably wsed by ssarch coordina-
o

METHOD

= Esbmabon of & locus high resphtion heplotype frequencies from a
danor registry database

= A matching program calcuiating, for each donor, the probabiity of

allefe: identtical to the patient.

=V (camied out smilary to Optimatch/Haplogic): all CTs per-
formed by the regisry, high resolution data for lod eamined s a
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PROBLEMS

= We ane facing two probiems: unbke Z2XRD and NMDP, other mgis-
tries do not hawve enough donors that could be vsed for estimation
of 5 looss high resoksion heplotype frequencies. Haplobype: fre-
guences could be calculated, ot thelr confidence s guestonable.
# Smaller registries also do not have enough CTs that could be e
for validation of the predicon aigorthm. ZXKRD sed 9843 CTx in
2008 and ZXESE CTs in 2000, These numbers are not achievable by
smaller regisines.

= In ofoer o owercome these probiems, we have approdmated the
local populzbion o the Geman (ZKED) populsbon. We have 2k
joined CTs from multiple registries using Prometheus software.
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RESULTS

# In this project, we have mllected mone than 5000 EMOLS Sample:
Feguests (CTs) from the Ceech Stemn Cels Registry, Siovak BMDS,
Folsh 8LF Aegisiry, Sevedish Tobias Registry, Firmish BMDR, South
Afican BMF and Exer Mizion BMDR. 1457 of thesn mest our oiteria
and could be wsed fior validation. 'We will conbinue to gather momn
CTs also from otfer regisinies whio are willing to moperate

= We compared the predicted and observed percentage of 10010
(re=p. 9/00) matches at 10% prediction intenais. The comelation
was r = 0.596 (resp. r= 0U58).
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CONCLUSION

= The protebilty matching algortthm can u=e both German (ZKRD)
and European &merican (MMOP-ELR) populations 25 an approxima-
bon for other Caucasian populations. The results are mbsfacong.

® The shudy & imied by small number of kol CTs for validaton. For
this meason, our validabon wees 10% prediction intervals instead of
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match.

= Hapiotype: frequencies ane the besis for modem metfods for uneeht-
edl donor searching. Astrospective: of several CTs has shown

the prediction algorithm may spesd up the donor search process.
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Figure 36: The graph shows the correlation of estimated 10/10 matching probabilities in 10%
prediction intervals and corresponding observed probabilities. The population model is
approximated by the German population [D-1205]. Blue bars show 95% confidence intervals of
estimated probabilities. Since we have less VTs than the ZKRD, confidence intervals are bigger.
Grey bars show relative number of VTs in each prediction interval. Red dotted line is the ideal
correlation. The correlation is r = 0.99.
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The graph shows the correlation of estimated 9/10 matching probabilities in 10% prediction in-

tervals and corresponding observed probabilities. The population model is approximated by the

German population [D-1205]. Also in this model, in order to increase the absolute number of cases
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within the prediction intervals (and shrink the confidence interval), you would need to decrease the
number of prediction intervals by increasing the size of these intervals. The correlation is r = 0.99.

Unfortunately, for validation of individual locus predictions, we don’t have enough validation
cases that would sufficiently fill in all 10% prediction intervals, so we have to do the validation in 20%
prediction intervals.

Validation of A* Matching Predictions (n = 1406)
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Figure 37: The graph shows the correlation of estimated A* matching probabilities in 20%
prediction intervals and corresponding observed probabilities. The population model is
approximated by the German population [D-1205]. The correlation is r = 0.98.

Validation of B* Matching Predictions (n = 1406)
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Figure 38: The graph shows the correlation of estimated B* matching probabilities in 20%
prediction intervals and corresponding observed probabilities. The population model is
approximated by the German population [D-1205]. The correlation is r = 0.98.
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Validation of C* Matching Predictions (n = 1406)
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Figure 39: The graph shows the correlation of estimated C* matching probabilities in 20%
prediction intervals and corresponding observed probabilities. The population model is
approximated by the German population [D-1205]. The correlation is r = 0.997.

Validation of DRB1* Matching Predictions (n = 1406)
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Figure 40: The graph shows the correlation of estimated DRB1* matching probabilities in 20%
prediction intervals and corresponding observed probabilities. The population model is
approximated by the German population [D-1205]. The correlation is r = 0.99.
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Validation of DQB1* Matching Predictions (n = 1406)
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Figure 41: The graph shows the correlation of estimated A* matching probabilities in 20%
prediction intervals and corresponding observed probabilities. The population model is
approximated by the German population [D-1205]. The correlation is r = 0.99.
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Figure 42: We also used European American (NMDP) population [62] as an approximation of
local populations. The results were less reliable (r=0.91) than when using the German (ZKRD)
population, but very similar when decreasing the precision to 20% prediction intervals (r=0.97).
The graph shows the correlation of estimated 10/10 matching probabilities in 10% prediction
intervals and corresponding observed probabilities.

Our interpretation of these results and conclusions are:
e The matching prediction tool works well (the algorithm and its implementation).
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e The probability matching algorithm can use both German (ZKRD) and European American
(NMDP-EUR) populations as an approximation for other Caucasian populations. The results
are satisfactory.

e The study is limited by small number of local VTs for validation. For this reason, our
validation uses 10% prediction intervals instead of the 5% intervals used by ZKRD and NMDP.
Importantly the algorithm can identify donors that are more likely or less likely to be a 10/10
match.

If we want to distinguish usage of our predictive matching tool (ProMatch) for the registry in
general vs. prediction for local donors only, we have to go further. In order to prove it works for local
donors, we would need to have enough VTs for local donors that we don't have. For example when
we did analysis in February 2012, there were just 20 useful EMDIS VTs in the Finnish registry
database. This means we are not able to confirm the ProMatch (with German haplotype frequencies)
gives reliable estimates for the Finish donors. We can only confirm it works for the mixed Caucasian
population.

Intuitively, we expect the ProMatch with German haplotype frequencies will better work for
populations that are closer to Germans, i.e. there is probably correlation between "genetic distance
of the population of a small registry to Germans" with "reliability of ProMatch predictions". But
again, we do not have enough data to prove this hypothesis.

10.3 Validation using simulated dataset
We do not have enough VTs (patient-donor-sample pairs) that would allow us to decrease the
prediction intervals. For about 2000 VTs we can use only 10% prediction intervals. If we want to use
5% prediction intervals (like NMDP or ZKRD), we have to have much more VTs (at least 4000).

To overcome this problem and extensively validate the algorithm implementation, we can
create simulated VTs. We have designed and implemented this method to create simulated VTs that
meet our criteria (see Table 29):

a) Take the simulated dataset of Czech adult donors (see chapter 7.3). For all of them we know
both simulated HLA lab typing and background high resolution typing of the artificial donor.
Almost all AB typed donors have probability lower than 1% and these donors are very rarely
requested for VT. In order to make it more realistic, we have excluded these donors. Donor
with probability lower 1% will still form quite big group.

b) We need some patients records. We can simulate them as well, but this way all patient
phenotypes would be based on our haplotype frequencies. In real world, some patients
cannot be “explained” by reference haplotypes. So we will use different approach. Let’s take
all patients in the CSCR registry that were registered in year 2010 and 2012 (real patient
cases). We will consider only high resolution typed patients (about 50 thousand patients).
We get high resolution typed patients from different ethnic groups.

c) For every donor in the set a), try to find a matching patient in the set b). Match means there
is no mismatch at HLA-A, -B, -C, -DRB1 and —DQB], i.e. patient and donor are potential
match.
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d) One donor in the set a) can match with multiple patients in the set b) and vice versa. But in
order to keep maximum diversity of VTs and avoid bias, we will use each patient record and
each donor record only once. This means, the donor-patient pair is exclusive.

These triples (simulated donor HLA typing + artificial donor typing + real patient typing) are our
simulated VTs. This way, we have generated about 8000 VTs that meet our criteria!

Now we have quite a big database of VTs and we can run several validation procedures, using
different haplotype frequencies.

10.3.1 German haplotype frequencies
The artificial donors were created using ZKRD reference dataset [HPE-2010]. This means these
artificial donors have similar genetic background as real Germans. Our first key validation is based on
our haplotype frequencies [HPE-2010]. Since we have enough VTs, we can 5% prediction intervals.
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Figure 43: Validation of 10/10 matching predictions using simulated VTs and dataset [HPE-
2010]. Uy = 10,3497, R=0.994

Figure 43 shows excellent results. This validates our algorithm design and implementation. All
other pieces in the validation process are fixed: haplotype frequencies are ideal (true frequencies
[HPE-2010]) and VTs are very realistic.

Even if we have excluded AB typed donors, we will still find the majority of estimated
probabilities bellow 20%. However, all 5% prediction intervals have at least 126 cases. That is
sufficient amount to calculate the average in all intervals.

Now, under the presumption the algorithm is validated, we can focus on validation of our
German haplotype frequency estimates [D-1205].
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Validation of 10/10 Matching Predictions (n = 7945)
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Figure 44: Validation of 10/10 matching predictions using simulated VVTs and dataset [D-1205].
U, =0,3500798930, R=0.995

Again, Figure 44 shows excellent results, almost identical to [HPE-2010]. This validates the dataset
[D-1205], i.e. the dataset has similar quality as the reference [HPE-2010].

10.3.2 NMDP-EUR haplotype frequencies

Validation of 10/10 Matching Predictions (n = 7752)
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Figure 45: Validation of 10/10 matching predictions using simulated VTs and dataset [NMDP-
EUR-2007], Uy = 0,4126, R=0.987
Results are slightly worsej than using German population HFE, the system underestimates the

observed probabilities. Interestingly, also HapLogic Ill. underestimates the probabilities as well (see
Figure 50).
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10.3.3 Frequencies estimated from the simulated dataset
In this experiment we will estimate haplotype frequencies directly from the simulated Czech
dataset and then, use them for the validation.

For HFE, we have used only 2188 best typed donors. This is still comparable to US study [62].
The result HFE dataset include only 2253 haplotypes that is much less than [HPE-2010] and [D-1205].

Validation of 10/10 Matching Predictions (n = 7528)
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Figure 46: Validation of 10/10 matching predictions using simulated VTs and HFE from the
simulated dataset (U = 0,4735, R = 0,9896).

Results are worse than German population HFE, but still satisfactory. This has important
consequence for the Czech population HFE: given a real data of the Czech registry database (CS+CS2),
we can estimate haplotype frequencies of the Czech population (see chapter 7.3). These frequencies
can be used for the matching prediction algorithm and the algorithm is able to deliver satisfactory
matching predictions for donors in the Czech registry database. This validation overcomes the
problem of the lack of VTs that we do not have in the Czech registry database.
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Real world Simulation
True population frequencies | Unknown [HPE-2010]
Registry database Czech registry database CS+CS2 Simulated Czech registry
database
(58 295 donors) (58 295 donors)

HFE Algorithm ProMatch HFE (see chapter 5.8)

Haplotype frequencies Czech population HFE Simulated Czech population HFE
(1237 haplotypes with frequency | (1340 haplotypes with frequency
>= 10" >=10")

Prediction Algorithm ProMatch (see chapter 9)

Validation dataset Hundreds of real VTs Thousands of simulated VTs
(insufficient number) (sufficient number)

Validation result Unknown (not enough data) Pass

Table 31: Validation of the Czech registry (population) matching prediction algorithm using
simulated dataset and simulated VTs.

These results are promising, especially for registries (populations) that cannot be
approximated by other population. However, its use for populations with true population
frequencies that differ a lot from [HPE-2010] is questionable.

For the Czech population itself, it does not solve the question which HFEs are better for the
matching prediction of the Czech donors — limited Czech haplotype frequencies [CZ-2012] or
comprehensive German haplotype frequencies [D-1205]? We are not able to answer this question,
mainly thanks to insufficient number of real VTs for Czech donors.

10.4 Situation in the world

10.4.1 OptiMatch®
The validation of OptiMatch® (see also chapter 11.3.1) has been done in 2008 with 9843 CTs
that satisfy these conditions [8]:

e No high resolution data for the locus / loci examined at the time of request
e High res data for the locus / loci examined obtained as a CT result (or even later)
e No discrepancy between the a priory and final HLA type

For this file of CTs, the ZKRD has calculated (retrospectively) the matching prognosis of
OptiMatch® and compared the predicted and observed percentage of allele matches in 5% prediction
intervals. Results are shown on the Figure 47.

As we have mentioned before, we have adopted the same method in chapter 10.2

Another published validation of OptiMatch® has been done in 2010 with 22255 CTs. Results
are shown on the Figure 48. These results are excellent and there is no doubt OptiMatch® is very
accurate in the HLA predictions of German donors.
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Figure 47: Validation of 10/10 matching predictions of the OptiMatch® system in 2008 using
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Figure 48: Validation of 10/10 matching predictions of the OptiMatch® system in 2010 using
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10.4.2 Haplogic™
Validation methods of Haplogic™ (see also chapter 11.3.2) are probably similar as those used
by OptiMatch® however details have not been published. Haplogic™ Il. results are shown on the
Figure 49 and Haplogic™ results on the Figure 50. Haplogic™ takes into account the ethnic group of
the donor, so it has to use several sets of HFE, which is very interesting feature of the system. But it is
not clear if NMDP does single validation using CTs from all ethnic groups or if it does validations per
ethnic group and what are the numbers of CTs. HapLogic™ Ill currently uses 21 ethnic groups.
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Figure 49: Validation of 6/6 matching predictions of the HapLogic Il system [graph provided by
NMDP]
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Figure 50: Validation of 10/10 matching predictions of the HapLogic™ I11 system [80]
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11. Implementation of matching prediction methods
This chapter presents applications of the algorithms and tools in daily operation of stem cell
donor registries.

11.1 ProMatch system
Our implementation of the matching prediction method is called ProMatch (Probabilistic
Matching). This functionality has been integrated with the Prometheus system [28] — software for
stem cell donor registries used in more than 20 countries, mainly in Europe. This was the key step
towards practical usage of these methods in registry operations.

11.2 User interface
Donor search results in Prometheus software are presented in the table. User can switch
between deterministic matching (“Best First by Match Grade”) and the new probabilistic matching
(“Best First by Probability”), see Figure 51. This feature is not common in other systems (OptiMatch®
and HaplLogic™).

Eatientl Summary of Dnnnrs| List of Donors | Donor - Details

= Multiple e Show Hide 7 Custom Typi
15 W 15 yping Sample
{ ‘J; égsfs 'iT pLisELis Report Maker r..iT ¥ Report f Request EE Request
Latest First - Sort search results according to date and HUEs
Best First by Match Grade - Sort search results according to match grade
| . R / ' P10 P9 Al
L @  Best First by Probability - P(10/10), P(9/10), Age H 410) 410) [25:01
Il Od  |Mew |9/23/2008 |US LISOB3459371E & |MD|F 1970 | 47% 40% 2501

Figure 51: ProMatch — sorting options of the donor search results: Time, Deterministic
matching and Probability matching.

Potential donors are listed in the table. The system displays:

e The probability of 10/10 HLA-A, -B, -C, -DRB1 and —DQB1 allele match, calculated by (29),
column “P(10/10)".

e The probability of 9/10 HLA-A, -B, -C, -DRB1 and —DQB1 allele match, calculated by (30),
column “P(9/10)".

e Probabilities of HLA-A, -B, -C, -DRB1 and —DQB1 allele match at individual loci, calculated by
(31), columns “P(A)”, “P(B)”, “P(C)”, “P(DRB1)” and “P(DQB1)".

Sorting “Best First by Probability” means donors are sorted by “P(10/10)”, then by “P(9/10)",
see Figure 52 and Figure 53.

Display method corrects probabilities by deterministic matching observations:

e Presented probabilities are rounded and displayed in per cents (0 — 100%).

e If patient and donor are not mismatched at specific locus (potential match) and displayed
rounded value would be 0%, it is corrected to 1%.

e [f patient and donor typing do not have the same high resolution allele codes (potential
match) and the displayed rounded value would be 100%, it is corrected to 99%.
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Figure 52: ProMatch — example of donor search results (probability matching). The main
sorting criteria is the probability of 10/10 HLA-A, -B, -C, -DRB1 and -DQB1 match, see column
P(10/10).
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Figure 53: ProMatch — example of donor search results (probability matching). The second
sorting criteria is the probability of 9/10 HLA-A, -B, -C, -DRB1 and —-DQB1 match, see column
P(9/10).

11.3 Situation in the world
Until 2011, only two HLA matching prediction systems were available in Germany and the
United States. They have been implemented by two biggest registries in the world — ZKRD and NMDP
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— that have invested a lot of resources in R&D . Names of these systems are registered and
protected: OptiMatch® and Haplogic™.

Except these two systems and our work, some activities are being done by the German donor
centre DKMS. Their Hap-E system is used only internally [79].

11.3.1 OptiMatch®
OptiMatch® [81] [8] is a matching program calculating, for each donor, the probability to be
allele identical to the patient. The program is developed and used by the German registry ZKRD.

First version (since October 2006) was based on 3 locus high resolution haplotype frequencies
had sorting of potential donors according to the probability of 6 of 6 allele match probability (HLA-A,
-B and -DRB1) and secondary sorting on HLA-C and HLA-DQB1 matching probabilities, age and
gender. The current version (since June 2008) is based on 5 locus high resolution haplotype
frequencies (HLA-A,-B,-C,-DRB1 and —DQB1).

OptiMatch® is able to do serology to DNA mapping, so predictions are calculated also for
serology typed donors. Current version’s primary matching can be based on the probability of
matching 6 of 6, 8 of 8 (including C or DQB1) or 10 of 10 (including both) alleles, and then the
probability of 1 or, finally, 2 allele mismatches.

User-friendly web based user interface shows a list of potential donors with 7 probabilities: A*
match, B* match, C* match, DRB1* match, DQB1* match and overall probabilities of 10/10 match
and 9/10 match.

11.3.2 Haplogic™
HapLogic™ I. [27] was developed and used by NMDP registry since 2006. It works in similar way
like OptiMatch®. It calculates the likelihood of allele-level matching based on calculated HLA
haplotype frequencies within major American racial and ethnic populations. HapLogic™ I. predicted
high-resolution matching at HLA-A, -B and -DRB1 (6 of 6 allele match, 5 of 6 allele match and 2-allele
match at each of the three loci) [82] [83] [84].

HapLogic Il. (2008) is able to incorporate HLA-C and HLA-DQ matching (2-allele match). The
latest version lll, introduced in November 2011, sorts donors based on probability of matching 10
alleles, using 5 locus high resolution haplotypes (like OptiMatch®). Haplogic also uses 5 broad and
21 detailed race/ethnic groups.

The web based user interface shows a list of potential donors with several probabilities: A*
match, B* match, C* match, DRB1* match, DQB1* match and overall probabilities of 10/10 match,
9/10 match, 8/10 match, 8/8 match, 7/8 match, 6/8 match and for cord blood units also 6/6 match,
5/6 match and 4/6 match. Screenshot of the user interface is shown on the Figure 54 and example of
the printed report on the Figure 55.
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Figure 54: Screenshot of Haplogic™ III [80]
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Figure 55: Printed report of Haplogic™ III [80]
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12. Contribution of the work
Main contributions of this work are:

e Design and implementation of Haplotype Frequencies Estimation algorithm and further
exploration and extension of underlying methods
o We have given an overview of different methods for HFE (chapter 4.3).
o We have designed and implemented powerful algorithm (based on EM algorithm)
and tool for HFE that uses real HLA data of stem cell donor registries. Several tricks
that decreases computational costs, i.e. time and memory were included (chapter 5).

~

o We have used ¢ ... a method that transforms qualitative parameters of the HLA
typing results of an individual to the quantitative attributes (chapter 5.8.2).

o We have done research of reliability of HFE algorithm on registry datasets. New
framework that can simulate real stem cell donor registry and estimates reliability of
HFE (chapter 6) was presented.

e Probability Matching algorithm and its validation
o We have designed and implemented the algorithm for the prediction of HLA match
by top-down design (chapter 9).
We have introduced new concept of partial haplotypes (chapter 9.4).
We have validated the HLA match prediction algorithm using both real and simulated
datasets (chapter 10).
e Real data and deployment of the software into routine operations

o We have estimated most accurate HLA haplotype frequencies for several
populations. HFE of some populations have never been published (Hungary, Slovakia,
Nigeria, etc.). These haplotypes have several applications, not only in the medicine
(chapter 7).

o The most importantly, the work has practical benefits for the patients. Results of the
work (the software) have been deployed in several countries and it is used in daily
operations of several stem cell donor registries around the world (chapter 11).

o Main benefits are: it helps search coordinators to identify easy, difficult and (almost)
futile donor searches, to predict the level of patient-donor matching realistically
achievable, speed up the donor search by choosing the most promising candidates
and avoiding detours and make ultra-urgent searches feasible in spite of ambiguous
or missing HLA data [8]. The speed at which a suitable donor is identified can
significantly impact patient survival [2].

13. Conclusion and future work
A reliable and efficient search algorithm is the key component of the unrelated stem cell donor
registry computer system. In our previous work [5] we have implemented combinatorial search
algorithm that compares patient with donors by counting all known and visible HLA mismatches. In
this work we have designed and implemented a new probabilistic matching method. The production
software system combines both methods together, the first one for rough pre-selection and the
second one for fine grading and sorting.
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In the first part of the work, we have given the overview of search algorithms, their design and
implementation aspects (chapter 33.1). A top-down design approach that first lists algorithm
requirements, specifies input and output parameters and then goes deeper into details, was
selected. The importance of validation prior to the deployment of a new matching algorithm has
been emphasized (chapter 3.5).

In the introduction, we have posed these questions that represent underlying goals (chapter
1.1):

How can we design and implement algorithm that creates population model?

Haplotype frequencies are the basis for modern methods for unrelated donor searching.
However, the problem of estimation of HLA gene and haplotype frequencies of a human population
is very difficult (chapter 5.1). We have mathematically formulated the problem (chapter 4.2). Then
we provided an overview of all methods that could be used for its solution (chapter 4.3). Different
methods were discussed, especially its possible usage for databases of stem cell donor registries
(chapter 4.4). Bayesian methods are also promising and worth further investigation (chapter 4.3.5).
But currently we think the maximum likelihood approach with the Expectation-Maximization
algorithm is the best approach in our situation (chapter 4.5). Properties of the algorithm (chapter
4.6) and reliability of results were discussed (chapter 4.7). We have shown the complexity of HLA
system and databases of stem cell donor registries and reasons for its computational difficulties
(chapter 5.1).

We have proposed a framework of arbitrary HLA typing resolution as user-specified input and
output of the EM algorithm (chapter 5.2). It is generalization of all previous efforts of dealing with
data of multiple typing resolutions. Several methods of handling missing values were discussed and
compared (chapter 5.3). We have presented some examples and results of experiments that show
these methods cannot be easily applied for serology to DNA mapping. We have proposed a
modification of the EM algorithm that solves the problem (chapter 5.4).

The EM algorithm in our context is very computationally demanding (chapter 5.7). In our
implementation (chapter 5.8), we have used several optimizations that speed up the process and
save computer memory.

We have presented the situation in the world and overview of the state-of-the-art HLA
haplotype frequencies estimation programs (chapter 5.9). Our implementation was compared with
these programs in the international workshop project that tested behavior of EM algorithm in
controlled data environment and within the scope of this exercise it provided similar results as
algorithms of other international research groups (chapter 5.10).

What are the properties and reliability of the model (HFE) in general?

We have approximated local populations by its stem cell donor registry datasets of different
sizes and structures. In order to better understand the quality of the result model, we have studied
different properties of the EM algorithm in the controlled data environment. We have inspected
quality dependencies on typing ambiquities (chapter 6.1 and chapter 6.2), population size (chapter
6.3), sample size (chapter 6.3), population homogeneity (chapter 6.4) and restriction of
computational complexity (chapter 6.5). The final simulation of real stem cell donor registry dataset
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has combined all these aspects together and provided approximation of the distance of HFE and true
population frequencies (chapter 6.6).

We have applied our methods and estimated HLA-A*-B*-C*-DRB1*-DQB1* haplotype
frequencies for Czech, Slovak, Hungarian, Finnish, Swedish, Cypriote, South African and Nigerian
populations on the best possible resolution (chapter 7). Such precise estimates of these populations
have never been published. Our results have been already used in different analyses of stem cell
donor registries in these countries.

But possible usage of the data exceeds the field of stem cell transplantation. We have
presented some examples of other applications (chapter 8).

How can we design and implement the probabilistic matching algorithm?

We have defined criteria for the matching prediction algorithm (chapter 9.1) and then
designed the new computational method (chapter 9.2 and chapter 9.3). A lot of intention has been
dedicated to special cases, where standard method fails and patient or donor phenotypes cannot be
resolved (chapter 9.4). We have proposed a system of so called artificial haplotypes and their usage
in matching predictions. This proposal has been validated on real data (chapter 9.5).

How can we validate the whole system? Can we apply it for all registries and populations?

The search algorithm cannot be deployed, if it is not validated. The crucial element of
validation is the availability of sufficient amount of data (validation cases). Five years ago, most of
registries in our interest had all these data only in paper form. Since then, we have implemented and
deployed automated software systems (implementation of EMDIS) in more than 15 countries that
support daily operations of these registries. One of the outputs of these efforts was the database of
validation cases in electronic format that was used in this work for validation of the matching
prediction algorithm and HFE. We have collected more than 1400 validation cases, but still it was not
enough for detail validation (chapter 10.2).

We have done also another validation, using simulated datasets (chapter 10.3). By this method
we have validated both our probabilistic algorithm and HFE [D-1205], the approximation of European
Caucasian population model.

This work was not only academic research. Designed algorithms and methods have been
implemented (chapter 11) and deployed in several countries in Europe and help search coordinators
of stem cell donor registries in daily work to find the best match for patients in need. First registry
that adopted these algorithms was the Czech Stem Cell Registry in Prague. Nowadays, match lists for
all Czech patients are ranked and can be sorted by matching probabilities. This helps to identify
difficult searches, predict realistically achievable results and speed up the donor search.

Deployment of the system in several other countries is on the way, for example in Finland,
Sweden, Switzerland, Slovakia, Belgium, England, Ireland, etc. We are in touch with all of them.

There are also some countries that are interested as well, but we don’t have reliable solution
yet. These are populations that do not belong to European Caucasian group, such as South Africa,
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Argentina, Saudi Arabia, etc., but also some minorities in Europe, such as gypsies. The problem is we
cannot approximate them by Caucasians and we don’t have enough data for estimation of their own
high resolution haplotype frequencies. We also don’t have enough validation data to verify any kind
of proposed solution. Overcoming of these problems will be our future work.
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Appendix A: Used datasets

ID Description Number of Haplotype Rank
haplotypes of the median
haplotype

[FI-2011] HLA Haplotype Frequencies of the Finnish >= 10" 442 20
registry, calculated in 2011 by David Steiner >=10": 3093

[CZ-2011] HLA Haplotype Frequencies of the Czech >=10" 1236 93
population, calculated in 2011 by David >=10": 3746
Steiner

[CZ-2012] HLA Haplotype Frequencies of the Czech >=10" 1476 96
population, calculated in 2012 by David
Steiner

[NMDP-EUR- | HLA Haplotype Frequencies of the NMDP 3380 102

2007] registry [62], Caucasian population,
calculated in 2007

[ZKRD-2008] | HLA Haplotype Frequencies of the ZKRD 7686 154
registry, calculated in 2008

[HPE-2010] HLA Haplotype Frequencies of the ZKRD 24449 158
registry [63], calculated in 2010

[D-1205] HLA Haplotype Frequencies of the ZKRD 33102 216
registry (May 2012), calculated by David
Steiner

Table 32: HFE datasets and their identification used in the experiments of the work
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Figure 56: HFE datasets used in the experiments of the work, frequencies of top 20 haplotypes
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Figure 57: HFE datasets used in the experiments of the work, cumulative frequency of top 20
haplotypes

Figure 57 demonstrates heterogeneity of datasets. This corresponds with the statistics
“Haplotype Rank of the median haplotype” (see Table 32). Due to small registry size and sampling
error, we expect Czech population is more heterogeneous than we can currently see.

Other referred datasets

[BMDW-2011] ... BMDW Database [6], February 2011

[BMDW-201205] ... BMDW Database [6], March 2012

[PROM-CT] ... EMDIS Verification Typing requests and their results from selected registries running
Prometheus software (see Chapter 10.2)
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Appendix B: Stem cell donor registry software specification
Text has been taken from [85].

WMDA standards require that ‘all patient and donor communications and records must be

stored to ensure confidentiality and to allow for traceability of the donors and steps of the donation
process’ (WMDA 5.01.2).

This section describes architecture, data and functional requirements of the registry IT system.

It is essential that the registry analyses the following:

what are the key modules and functions of the system

what information and how it should be stored on the database

what are the business processes of the registry and how should they be supported by the
system

who are the end users of the system, what are their roles in the system

what are the interactions of the system with the outside world, what interfaces should be
built

The architecture of the system follows the stem cell donor registry organisation. There are several
aspects:

Situation: The registry might be completely independent, located in the administrative
building or be to part of a hospital, blood transfusion institute or other medical organisation.
If the registry belongs to the bigger medical organisation, it has to follow specified rules and
usually has to be well integrated. Very often, small registries are organisationally connected
with the HLA laboratory, which necessitates the interface between systems of these
departments.

Donor centres: The registry may be the national HUB that does not recruit donors directly,
but cooperates with the network donor centres and cord blood banks. In some countries, the
registry does not have access to donor contact details, so the donors may not be contacted
directly. In this case this ‘master record’ of the donor is in the donor centre and the registry
only has a copy. Other settings, typical for small registries, are based on integrated registry
with the donor centre. Donor recruitment is organised by the registry itself or a network of
partner organisations that, after recruitment, transfers all donor data to the registry
database, so the master record of the donor is managed by the registry itself.

Access to the registry database is usually restricted registry staff. Partner institutions must
contact the registry in order to access the database or changes will be visible after next off-
line upload of partner institution data (e.g. cord blood bank). The alternative option is to
build an on-line interface or allow partner institutions to access the database directly, for
example, donor centres and cord blood banks can manage their donor, CBU records and
transactions directly. The registry may look like a single institution for the international
community (EMDIS, international registries), but is actually a network of donor, transplant
and search coordination centres that are spread across the whole country.

The list of key functional requirements that a registry may consider to include, when considering new

or improving existing registry system:
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Donor identification: a unique, invariant registry ID is the primary reference, but a
data set can also include social security number, donor centre ID, recruitment ID,
cord blood bank ID, ID of the mother of the CBU, ISBT128 donation code, stored
sample ID, stored DNA ID, EMDIS ID, among other fields.

HLA data: separate fields for serology and DNA typing results [15], typing laboratory,
date of typing, primary typing data, NIMA, etc. The registry should consider of how
HLA data are imported into the database as this may be from either an internal or an
external source. Reference to the white paper [15] has to be made regarding
standardisation of nomenclature and data formatting.

Demographics: name, title, gender, date of birth, ethnic group, insurance company,
etc.

Relationships: family or personal relations to other donors or patients, used for
family reports of the patient

Recruitment: donor centre, date of recruitment, recruitment method (website,
patient-draft, blood donor, etc.), blood donor flag, platelets donor flag, etc.

Donor status: reservation of the donor, temporary or permanent withdrawal, reason
of withdrawal (age, medical, personal, etc.)

Contact details: permanent, temporarily and work address, email, phones, social
media networks, communication language, preferred contact, history of
communication with the donor, etc.

Medical questionnaire: weight, height, blood group, kell, haemoglobin, number of
pregnancies, number of blood transfusions, donor consent to different types of
donations, diseases in the past, etc.

Infectious disease markers: CMV status, Toxoplasmosis, EBV status, HIV status, HIV
p24 antigen, antibodies to HIV, hepatitis B and C status and antibodies, Lues status,
ALT status, etc. with dates of tests and laboratories that performed tests.

Products: information about the stored donor samples or cord blood unit product, its
position in the freezer, etc.

Cord blood unit data: volume of CBU, nucleated cells, CD34+ cells, mononucleated
cells, white blood cells, processing methods, fractions, mother tests, etc.

Harvests: date and place of harvest, date and place of transplant, patient ID, source
of stem cells (bone marrow, PBSC, DLI, cord blood, other)

Audit: who and when has inserted or modified the donor record, search-able history
of changes of the donor record (who, when, old data, new data).

e Patient database functions include:

@)
@)

Need of the record for both national and international patients

Patient identification: unique, invariant registry ID, but can also include social
security number, transplant centre ID, hospital record ID, EMDIS ID, physician, etc.
HLA data: separate fields for serology and DNA typing results [15], typing laboratory,
date of typing, primary typing data, etc.

Demographics: name, title, gender, date of birth, ethnic group, insurance company,
etc.

Relationships: family or personal relations to donors, used for family reports of the
patient

Patient status: donor search status, transplant status, closure of the case (date,
reason)

Medical information: diagnosis, disease phase, weight, blood group, CMV status, etc.
Transplants: date and place of harvest, date and place of transplant, donor ID,
source of stem cells (bone marrow, PBSC, DLI, cord blood, other), etc.

Audit: who and when has inserted or modified the patient record, search-able
history of changes of the patient record (who, when, old data, new data).

e Both donor and patient database must be searchable by different attributes.
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Quality control: the system should control quality of data according to registry policies.
There should be no expired reservations of donors, no over aged donors that are ‘available
for transplant purposes’ on the searches, no donors missing critical data (e.g. date of birth,
gender), HLA data should be always valid according to the latest HLA nomenclature (renamed
or deleted alleles should be corrected), etc.

Regular update of reference tables of HLA nomenclature [16] and multiple-allele-codes [22].
Reports: customizable reports of donor and patient details, export to PDF files, letters and
emails to donors by user-defined templates.

WMDA annual report: Many registries do not systematically collect data for the WMDA
annual report; leading to time spent searching paper records/excel spreadsheets when
preparing the WMDA questionnaire. There is a huge advantage to building in the
functionality to generate this data automatically at the start of the project. This also
increases the reliability of data reported to WMDA.

Donor searches: The donor search algorithm is the key and probably most difficult element
of the stem cell donor registry software. It should follow WMDA recommendations and
guidelines. For more information about the search algorithm see the section ‘Search
Algorithm’.

Management of requests: the system must allow users to create and track different national
and international requests for donors. This includes typing requests, VT sample requests,
IDM requests, donor reservation requests and workup requests. Traceability of requests
means clear information about the status of the request (result, inability to do the service,
cancellation, denial) and related events (acknowledgement by the partner, contact of the
donor, reminders, invoice).

The system should support the work-flow management of requests for different scenarios
(e.g. unsuccessful CT collection, cancelled workup). Each step in the search process (e.g.
patient registration and any request, result or update) shall be documented with all relevant
attributes and a time stamp (WMDA 5.04.3). Management of requests includes both:

o National requests - national patient and national donor

o International requests - national patient and international donor or vice versa;
electronic on-line requests (EMDIS or web interface) and fax requests (outside
EMDIS)

Financial module can be integrated into the request management work-flow. Closed
requests are usually invoiced to the requesting institution. Integration with external
economical software system requires synchronisation of services (invoice items) and clients
(invoice recipients).

Transplant records, donor and patient follow-up records with automated reminders of
incomplete or missing records.

Document management system: possibility to store and maintain different kinds of
electronic documents, linked to donor, patient, search and other types of records.
International interfaces: the registry should be well integrated to the international
community, mainly due to efficient donor searches:

o BMDW: regular export of donor and CBU database to Bone Marrow Donors
Worldwide (www.bmdw.org)

o EMDIS, EMDIScord: on-line peer-to-peer network of stem cell donor registries
(www.emdis.net). You will find more information about the EMDIS system bellow in
this chapter.

o NMDP: some international registries are listed as donor centres in the NMDP
network, so they regularly export data to NMDP database (www.nmdp.org).

o Netcord: member cord blood banks of this organisation regularly export data to the
central database (www.netcord.org/).

o HLA: regular import of the current HLA nomenclature
(http://hla.alleles.org/wmda/index.html, NMDP allele code nhomenclature)
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e National interfaces: the registry serves as the national HUB that connects different
institutions and individuals within the country. Following on-line interfaces might be useful:

o HLA laboratory: registry sends electronic typing requests for its donors and patients
to the laboratory and HLA typing results are returned to the registry. The registry can
also access information about donor samples stored in the HLA laboratory freezers,
so registry coordinators know if they can use this stored DNA sample for the
additional HLA typing.

o Donor centres: donor centres and cord blood banks in the registry network may have
their own IT systems that should be interfaced to the registry system.

o Harvesting centre: once the patient-donor pair is identified, the registry may send
donor record to the harvesting centre system and get back details about the stem
cell product.

o Search units: search units in the registry network may have their own IT systems that
should be interfaced to the registry system.

o Transplant centres: transplant centres and hospitals need to communicate with the
registry. An on-line solution instead of fax / paper / phone solution is desirable.

o Donors: On-line web portal helps to keep the contact with donors. Such portal can
include contact details change form, on-line forum, news from the registry,
reimbursement form, etc. Some registries also use social media networks such as
Facebook or Twitter.

o Sponsors: On-line web portal for registry sponsors may increase their motivation.
The system can manage sponsor accounts and show statistics how many donors
were recruited for the sponsorship, how many of them were requested for VTs,
workups, etc.

TIP: It may seem that a registry system stores and manages the HLA typing results in the same format
as the HLA laboratory information management system (LIMS), and some registries have
implemented such data storage.

It is a mistake to use these in search algorithms. The main differences between registry database and
HLA LIMS database are:

e The registry system needs fast access to the most current and comprehensive HLA typing
results, which does not always mean the last test typing. This may be combination of
multiple tests performed in the past by multiple typing techniques. The registry system
always needs access to the full set of all loci that should be stored at one place, while the
HLA lab system order includes only requested tests and loci, so HLA typing results of an
individual may be spread in multiple typing orders.

e When the HLA lab supervisor approves the order results, it cannot be changed in the lab
system. However, the registry system has to keep historical HLA typing results up-to-date
according to the latest HLA nomenclature, so it needs to update them (deleted and renamed
alleles, new HLA nomenclature).
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Appendix C: Inter-Registry Communication System (EMDIS)
Text has been taken and adapted from [85].

Reliable communications and data transfer of donor and patient records between all partners
in this huge network is one of the most important success factors in stem cell transplantation.

The internet gives us great opportunities in registry to registry connections, including the
software support of the whole process - from the preliminary search request to transplantation.

EMDIS (European Marrow Donor Information System) [31] [86] [87] [88] is an open computer
network for data exchange among different unrelated hematopoietic stem cell donor registries.
Today, it covers around 75% of all potential unrelated stem cell donors and cord blood units
registered in BMDW (www.bmdw.org) and became the de-facto standard communication system for
unrelated HSCT registries worldwide. The EMDIS community provides documentation, status
information, software tools, support and a project management platform [31] (www.emdis.net).

C.1 Technical background
The decrypted content of an EMDIS message is a text in special format, called the Flexible
Message Language (FML). EMDIS emails are not read by humans, but computer systems that parse
the FML text into elemental attributes and data fields that are further processed.

On the basis of this technical background about 30 message types are defined, including
preliminary requests and patient updates, search results, typing requests and results, sample
requests, notification of sample arrival date and sample testing results, IDM (Infectious disease
markers) requests and results, donor reservation requests and results, workup requests and results,
etc.

The most advanced feature in EMDIS is the donor search process. When a national registry
initiates an international donor search for a specific patient, its data is broadcasted to other EMDIS
registries. Every recipient (i.e. computer system) makes a donor search in the local database using its
own algorithm and technology and replies with a set of potential donors. Then the requesting
registry composes these partial results into one global EMDIS search result. In praxis, these results
are received within several hours.

After this procedure, the patient is in the “Preliminary status” and no further action is taken.
But the local registry can change this status to “Active” by broadcasting the Patient status change
message to other registries. The preliminary search result could be outdated after a few days. If the
patient is in the Active status, every remote registry runs a regular repeat search process for this
patient and checks if the search result has changed. The differential update is sent back to the
patient’s registry. It could contain new and better donors than previously reported or other changes
in the current search result.

Finally, when the patient case is closed, the national registry broadcasts the Patient status
change message with the new status “Stopped” and the repeat search process of this patient is
ended.
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Figure 58: EMDIS communication. HUB is a national stem cell donor registry.

C.2 Software Implementation
The basic components of the EMDIS software include:

=

An email system to send and receive messages

2. Software based on ECS (EMDIS Communication System) rules to control the sending and
receipt of messages

3. Software to encrypt and decrypt messages

4. Software to validate the EMDIS FML message (the FML parser). FML = Flexible Mesage

Language.

Functions to interpret process and respond to messages — EMDIS message processor.

Search engine to run preliminary and repeat searches

User interface to create and manage EMDIS messages

Nowuw

The first four components exist outside of the registry software and are currently available free
of charge. The four form a package called ESTER (ECS message Transfer between EMDIS Registries)
(http://www.steinersw.eu/en/ester.html), also commonly known as middleware,. ESTER uses the
FML parser developed by ZKRD. ESTER runs under the Windows operating system.

A platform independent implementation of the first three components is called PerlECS, which
was developed by NMDP.
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Figure 59: EMDIS Implementation of the British Bone Marrow Donor Registry.

The fifth, sixth and seventh components, the EMDIS message processor, search engine and
user interface, are the most complex ones. They are available as separate piece of software, known
as Prometheus, required linking ESTER to a copy of the local registry database.
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EMDIS implementation can vary from one registry to another. Typically, a registry receives a
search or sample request from its own national or regional transplant centre by e-mail or fax. These
are then passed via EMDIS to all of the active EMDIS nodes. Responses to these requests are sent
back from the external EMDIS nodes and then relayed by some other means to the originating
transplant centre. This is patient-related EMDIS messaging.

If the local system implements the original idea of a ‘single virtual international registry’, it
must maintain the same status of the patient in all EMDIS registries. And this could include the
national registry itself. Then there is no difference between a local and a remote search, it is only an
EMDIS search. The advantage is that the local system also notifies changes of search result as it does
for foreign patients.

The registry can also receive and respond to search or sample requests from other registries
directly via EMDIS. This is donor-related EMDIS messaging.

Not all registries have chosen, or are able, to respond to all of the available EMDIS messages
and some registries process donor-related messages only.

C.3 EMDIS Governance
Bidirectional messaging between registries follows highly structured protocols and standard
nomenclature agreed and controlled by the EMDIS community.

The EMDIS organizational structure and rules are described by EMDIS House Rules and reflect
the procedures of a working party with a high level of user involvement and a focus on practical
issues.

EMDIS User Group coordinates the advancement of EMDIS to achieve the goals of the

network; sanctions and approves new EMDIS Users; validates and prioritises User needs; liaises with
the Technical Group over specifications, time-tables and feasibility of requirements.

EMDIS Technical Group protects the integrity of the EMDIS system, technology and

infrastructure; defines technical requirements for the participation in EMDIS, defines interfacing
rules and prepares the necessary documentation; reviews proposals for new developments
emanating from the User Group; prepares specifications and timetables for implementation by
national development teams; liaises with the User Group and the national development teams of the
member registries.

These groups meets regularly to discuss requests for change and to oversee the
implementation of new versions of EMDIS. General maintenance, training and operational issues are
also supported by the WMDA IT Working Group.

EMDIS membership is open to unrelated donor registries that actively use the EMDIS system
(EMDIS hubs). Membership application has to be submitted to the chair of the EMDIS User Group for
review and be approved by the EMDIS User Group.
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Appendix D: Comparison of HFE programs

CZ (Czech republic, |ZKRD (Germany) |DKMS (Germany) |FGM (France) ANT (UK) Europdonor NMDP (USA)

this work) (Netherlands)
Program name Prometheus HFE OptiHapfreq Haplomat Estihaplo Cactus Haplo3v5.exe NA
Language(s) Embarcadero Perland C Perl C++ Perland C Visual Basic 6.0 perl

Delphi 2007
Platform Windows Linux/MAC Windows/Linux Windows/Linux/MAC | Linux/MAC Windows Windows/Linux/MAC
Max # loci/alleles 5/None None 6/none None None 3/2000 none
# limit of Theoretically no No Yes, not used for No No No Only if estimating
phenotypes/individual | limit, but high resolution high res haplotype
for serology/low res |practically, 4.1 haplotype freqgs

million individuals. inference
# limit of same No Yes, hardware No No No No
phenotypes/individual limitations at large
for high res numbers (>1

million)

Accepted Input Serology, Serology, Serology, Serology, Nomenclature v2  |Serology, Serology,

Nomenclature v2,
v3, NMDP allele

Nomenclature v2,
v3, NMDP allele

Nomenclature v3,
NMDP allele codes,

Nomenclature v2,
v3, NMDP allele

Nomenclature v2,
v3

Nomenclature v2,
v3, NMDP allele

codes codes, genotypes |genotypes lists codes codes, genotypes
lists lists
Alleles abbreviated to |yes Optional Yes No Optional No Optional
2 fields
Alleles mapped to p- |optional Optional Yes No no no Optional
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like groups

Ambiguities

DNA, missing loci

Serologic, DNA,
missing loci, null
antigen/allele

DNA, missing loci,
null antigen/allele
(only in antigen
level setting for
DRB1)

Serologic, DNA,
missing loci, null
antigen/allele

Serologic, DNA,
missing loci

None

Serologic, DNA,
missing loci, null
antigen/allele

Method to handle
ambiguities

All possible
genotypes are
considered.

Consider all
possibilities

|Il

If “p-identica
over exon 2/3
including nulls then

merged to “g
nomenclature. [69]

If SBT typing
ambiguities, then
include all possible
combinations
(According to
IMGT/HLA Release
number in use). If
intermediate
resolution typing
results, then
include all possible
combinations.
Missing data:
Include all possible
combinations.

Consider all possible
diplotypes
combinations

Expanding
diplotypes
generated by
phenotypes with
missing/ambiguous
typing and let EM
process them

Remove from
records

Consider all
possibilities

EM with HWE

yes

Yes

Yes

Yes

Yes

No

Yes

Starting values

Equal, user-
defined, at

Equal, user-defind,
at random, based

user-defined,
simulated

user-defined, at
random, simulated

Equal, at random,
based on allele-

Equal

Equal, user-defined,
at random, based on
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random, based on |on allele- distribution distribution frequencies allele-frequencies
allele-frequencies |frequencies
Terminating criteria Based on likelihood |Based on Based on Based on frequency |Based on likelihood |Based on Based on frequency

change, #
iterations

frequency change

frequency change

change

change, #
iterations

frequency change,
# iterations

change

Terminating threshold

Specified by user:
0.00001

Specified by user:
1E° likelihood
changed between

Fixed. value used
in task 1:
Sum(Abs(diff(f,-

Specified by user:

Y56

Specified by user:
1E° likelihood
changed between

Specified by user:
2048 iterations for
tasks 1 and 2

Specified by user: 1E
® likelihood changed
between iterations

iterations fne1)))<1e-5 iterations
value used in task
2 Max(Abs(diff(f,-
fn+1)))<1e'6
Handling low low frequency Iterative tail No special handling |No skimming — No special handling | Mathematically no |Haplotypes with

frequency haplotypes

haplotypes are
excluded,
threshold =
1/(2xSample_size)

truncation as long
as LLH increases

output is optional

problem, values of
437"
observed

might be

count <0.01 are not
reported

Key features

Output loci and
resolution could be
customized:
serology broad,
serology split, DNA
low res, DNA high
res.

High resolution
haplotype
frequency
inference from
intermediate to
high resolution
HLA typing results.
Antigen resolution
typing results are
used exclusively
for antigen
resolution
haplotype

Developed as a
perl module. Main
script is coded
using module

EM implemented
by iterating the
probabilities of
discretion of
phenotypes

- 2-locus + 3-locus LD
- Standard error

- Allele frequency
and 2-locus
haplotype tables

- HW exact test

- Whn statistic
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inference only

Output format Floating point Fixed point (10 Floating point Fixed point : 6 digit |Floating point Fixed point (14 Floating point
digits) digits), floating
point
Task 1 running Standard PC, 10.5h CPU 4 <24h 6m 45s/2.4 Typical input 8 < 1day/ 2 Intel Xeon
time/CPU/memory Windows XP, 1 memory 7.9 GB GHz/140MB million A, B, DR low | X5690 6-core 3.47
processor, 4GB res BMDW GHz / 100 GB
RAM. less than one individuals in 12
hour hours running time
on PC
Task 2 running Same/15 hours 40 hrs 4 days CPU 12 <24h 0-20: 2h 45m/3 Same

time/CPU/memory

memory 192 GB

GHZ/850 MB
20-60: 18m 40s/3
GHZ/470 MB

Table 33: Characteristics of the seven HFE computer programs.
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