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Abstract 
The most important factor in the successful outcome of the hematopoietic stem cell 

transplantation is that a patient and a donor are matched for the Human Leukocyte Antigens (HLA). 

Mismatching within HLA alleles (antigens) between a recipient and a donor increases the incidence 

and severity of an alloreactive immune response. Because of financial and technological limits, HLA 

data of donors are not complete, so we have to deal with fuzzy information. Therefore selection of 

the potentially best donor is not an easy task. Information and communication technologies play a 

key role in the donor search process in international registries of volunteer donors.  

This work focuses on the development of a modern search algorithm, one of the major 

challenges for donor registry computer systems. Our algorithm uses probabilistic matching that 

predicts, for each donor, the probability to be HLA allele identical to the patient. 

To achieve this goal, we have estimated HLA haplotype frequencies (population genetics 

models) for several populations, studied properties and reliability of these models, run simulations 

and validated the overall system. 

Abstrakt 
Úspěch transplantace krvetvorných buněk je nejvíce závislý na HLA genetické shodě mezi 

pacientem a dárcem. Případné neshody HLA alel (nebo antigenů) zvyšují riziko a závažnost selhání 

transplantace. Kvůli finančním a technologickým omezením, registry dárců nemají kompletní HLA 

data o všech dárcích, takže nemáme k dispozici přesné informace. Díky tomu není lehké vybrat 

nejvhodnějšího dárce. Informační a komunikační technologie hrají důležitou roli při hledání 

celosvětově nejlepšího dárce. 

Tato práce se zaměřuje na vývoj moderního vyhledávacího algoritmu, což je klíčová funkce 

počítačového systému registrů dárců krvetvorných buněk. Náš algoritmus používá 

pravděpodobnostní přístup, který pro každého dárce spočítá pravděpodobnost, s jakou tento dárce 

bude HLA shodný s pacientem. 

Abychom dosáhli tohoto cíle, tak jsme spočítali HLA haplotypové frekvence několika populací a 

vytvořili tak populační modely. Dále jsme studovali vlastnosti těchto modelů, jejich spolehlivost, 

provedli jsme simulace a nakonec jsme validovali celý systém. 
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1. Introduction 
Hematopoietic stem cell transplantation (HSCT) [1] (commonly referred to as bone marrow 

transplantation) is a medical procedure in the field of hematology and oncology. HSCT is the 

treatment of choice for people with hematopoietic malignancies (e.g. leukemia), bone marrow 

failure and certain types of cancer (e.g. lymphoma) which result in a compromised immune system. 

The principle is that intravenous infusion of stem cells collected from donor bone marrow, peripheral 

blood or umbilical cord blood is used to replace the hematopoietic functions of a patient with these 

conditions.  The most important factor in the successful outcome of HSCT is that the patient and 

donor are matched for the Human Leukocyte Antigens (HLA) [2]. Mismatching within HLA alleles 

(antigens) between a recipient and a donor increases the incidence and severity of an alloreactive 

immune response when transplanting hematopoietic stem cells. The level of the matching required 

varies with the source of stem cells used for HSCT. 

In most cases (in Europe) patients have no suitable HLA matched donor within their family, so 

physicians must activate a ‘donor search process’ by interacting with national and international 

donor registries who will search their databases for adult unrelated donors or cord blood units (CBU) 

[3].  

Information and communication technologies play a key role in the donor search process in 

donor registries both nationally and internationally. One of the major challenges for the donor 

registry computer systems is the development of a reliable search algorithm [4]. Our previous work 

[5] had focused on design and implementation of combinatorial approach. In principle, the algorithm 

compares patient with donors by counting all known and visible HLA mismatches. Implementations 

of such algorithms are commonly used, including the Bone Marrow Donors Worldwide computer 

system (BMDW) [6]. In 2011, the Information Technology (IT) working group of the World Marrow 

Donor Association (WMDA) has issued recommendations [7] that summarize current knowledge 

about implementation of this approach.  

Nowadays, there are more than 20 million stem cell donors and cord blood units available 

worldwide [6]. Due to character of HLA system, history of HLA typing techniques and limitation of 

resources, we do not have full information about HLA types of these donors. Search coordinators 

often see very long lists of partly HLA matching, partly HLA typed donors and they have to guess 

which donors should be selected for further HLA typing or testing. Limitation of resources (time and 

money) and risk of detours makes their choice tricky. An ‘expert system’ that would better lead the 

coordinator is needed to make faster and more accurate decisions.  

1.1 Goals of the work 
This work implements the probabilistic matching method that can predict donor data even if 

they are invisible or fuzzy at the moment. The main motivation [8] of the probabilistic matching is to 

help search coordinators to: 

 identify easy, difficult and (almost) futile searches 

 predict the level of patient-donor matching realistically achievable 

 speed up the donor search by choosing the most promising candidates and avoiding detours 

 make ultra-urgent searches feasible in spite of ambiguous or missing HLA data 

http://en.wikipedia.org/wiki/Hematology
http://en.wikipedia.org/wiki/Oncology
http://en.wikipedia.org/wiki/Bone_marrow
http://en.wikipedia.org/wiki/Cancer
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In our previous work, we had used the combinatorial matching method that observes visible 

donor data and analyzes them, especially HLA mismatches. 

Currently, probabilistic matching systems are used in daily operations only by the biggest 

registries in the World. The Zentrales Knochenmarkspender-Register Deutschland (ZKRD) has 

pioneered this innovative technology and developed the OptiMatch® system [9] and the National 

Marrow Donor Program (NMDP) uses HapLogic™ system [10]. These registries have invested huge 

efforts into the development of the systems but their internals are not published. However, even if 

they publish them or provide them to smaller registries for free, it is not clear if others can use them 

and approximate local population by German or American models and what would be the reliability 

of such predictions.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Probabilistic matching system - structure of the work 

 

We will systematically implement new probabilistic matching system, see Figure 1. In order to 

do it, we have to answer these questions and satisfy the underlying goals: 

 How can we design and implement algorithm that creates population model? The 

population model will be represented by HLA haplotype frequencies estimates (HFE) and we 

will focus on the problem of estimation of HLA gene and haplotype frequencies of a human 

population. For this purpose, we want to use datasets of registries of unrelated 

hematopoietic stem cells donors that are the biggest available databases of HLA data for 

most of the populations in the world. These databases have been built and maintained for 

more than 10 years. HLA typing of d onors were determined by different typing techniques 

and a lot of data is missing. The combination with the complexity of HLA system and the size 

of these databases (up to millions of individuals) brings the problem to another level. 

Therefore the estimation of gene and haplotype frequencies in such conditions is a real 

challenge. 
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 What are the properties and reliability of the model (HFE) in general? Since we will 

approximate the local population by its stem cell donor registry datasets of different sizes 

and structures, we have to understand quality of the result. We need to study the 

dependency on the size of the population, genetic properties of the population, size of the 

sample (registry) and resolution of the donor typing. We are also limited by computational 

time. In practice, we have to deal with all these factors together. 

 How can we design and implement the probabilistic matching algorithm? We are looking 

for a solution even to countries for which it is not possible to create own model. The 

algorithm must be able to handle all types of cases, patient-donor pairs, even if the patient 

or the donor does not fit to our model (e.g. other ethnic). It has to be fast enough and give 

reliable results. 

 How can we validate the whole system? Can we apply it for all registries and populations? 

The whole system must be validated before its use. In some countries we can use historical 

data for validation, but in most countries, we don’t have enough data. Therefore we need to 

find novel method for validation, using simulation.  

HFEs are useful not only to support search for unrelated donors, but could be used in other 

applications, we will present some of them.  

 

1.2 Structure of the work 
The work is organized as follows: chapter 2 gives introduction to the HLA system, unrelated 

haematopoietic stem cell transplantation, stem cell donor registries and selection of unrelated stem 

cell donors. Chapter 3 focuses on the overview of computer algorithms in the search for unrelated 

stem cell donors.  

Chapter 4 is the overview of possible methods of HFE with focus on maximum likelihood 

function and its solution by the iterative Expectation-Maximalization (EM) algorithm. A method that 

can verify reliability of estimates is presented. 

Main part of the work starts by Chapter 5 that discusses the implementation of the HFE 

algorithm and its usage on datasets of stem cell donor registries – challenges, pitfalls and possible 

solutions. Chapter 6 gives new methods for testing of reliability of the HFE algorithm with stem cell 

donor registry datasets. Chapter 7 presents real results, using methods of chapters 5 and 6. 

Chapter 8 presents some applications of HFE, but we focus on the prediction of the HLA match 

in the chapter 9. Top-down design of the algorithm is described. We compare our approach with 

other implementations in the world (ZKRD, NMDP).  

Chapter 10 describes methods of validation of the HLA matching prediction algorithm and our 

results.  

Chapter 11 shows application of the algorithms and tools in daily operation of stem cell donor 

registries.  

Chapters 12 and 13 conclude the work.   
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2. HLA and haematopoietic stem cell transplantation 
This chapter gives introduction to the HLA system, unrelated haematopoietic stem cell 

transplantation, stem cell donor registries and selection of unrelated stem cell donors. 

2.1 Basic terms 
In the following text, we will use the terminology with the following meaning: 

 Locus – gene; HLA locus, e.g. DRB1 

 Antigen - one of the alternative versions of a gene at a given location (locus) along a 
chromosome; substances that are recognized by the immune system and induce an immune 
reaction. 

 Allele - one of the alternative versions of a gene at a given location (locus) along a 
chromosome; an individual inherits two alleles for each gene, one from each parent. If the 
two alleles are the same, the individual is homozygous for that gene. If the alleles are 
different, the individual is heterozygous. [9] 

 Haplotype – set of specific loci with antigen/allele designations. From each parent, a 
haplotype is inherited as unit [10]. 

 Genotype – particular combination of two multi-locus haplotypes [10]. 

 Phenotype – multi-locus genotype whose haplotype phase is unknown a priori [10]. 

 Linkage disequilibrium – association of alleles at two or more loci, combinations of alleles in 
a population that is more or less often than would be expected from a random formation 
of haplotypes from alleles based on their frequencies [11]. 

 

2.2 HLA system 
Human leukocyte antigen (HLA) genes are located on the short arm of chromosome 6. HLA 

genes are extremely polymorphic and play critical role in immune recognition and response. Each 

individual has two sets of genes; consequently, the combination of HLA markers of each individual is 

rare or almost unique in various populations.  

Polymorphism is beneficial for population studies, because it allows determination of genetic 

affinities among different populations. Haplotype studies are also important in complex research of 

genetic diseases, when we want to know association of diseases or risks with specific haplotypes. 

2.2.1 Human Leukocyte Antigen 

The major histocompatibility complex (MHC) [12] is a large genomic region or gene family 

found in most vertebrates. It is the most gene-dense region of the mammalian genome and plays an 

important role in the immune system, autoimmunity, and reproductive success. MHC genes are 

some of the most genetically variable coding genes in mammals. The proteins encoded by the MHC 

are expressed on the surface of cells in all jawed vertebrates, and display fragments of molecules 

from invading microbes or dysfunctional cells (e.g. tumor cells) to a particular type of white blood cell 

called a T cell that has the capacity to kill or co-ordinate the killing of the microbe, infected cell or 

malfunctioning cell. 

The best-known genes in the MHC region are the subset that encodes cell-surface antigen-

presenting proteins [12]. In humans, these genes are referred to as human leukocyte antigen (HLA) 

genes. 

http://en.wikipedia.org/wiki/Allele
http://en.wikipedia.org/wiki/Locus_(genetics)
http://en.wikipedia.org/wiki/Haplotype
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The most intensely-studied HLA genes (also called loci, sg. locus) are the nine so-called classical 

MHC genes: HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, and HLA-

DRB1. In humans, the MHC is divided into three regions: Class I, II, and III. The A, B, and C genes 

belong to MHC class I, whereas the six D genes belong to class II. 

Besides being scrutinized by immunologists for its pivotal role in the immune system, the MHC 

has also attracted the attention of many evolutionary biologists, due to the high levels of allelic 

diversity found within many of its genes. Indeed, much theory has been devoted to explaining why 

this particular region of the genome harbors so much diversity, especially in light of its immunological 

importance. 

 

Figure 2: HLA complex on human chromosome 6 [13] 

 

2.2.2 Nomenclature of HLA System 

Nomenclature of HLA system is under responsibility of the WHO Nomenclature Committee 

[14]. Stem cell donor registries also follow the WMDA standards and recommendations [15]. Each 

HLA allele name has unique two, three or four field names. Fields are separated by colon (”:”). The 

length of the allele designation depends on the sequence of the allele and that of its nearest relative. 

All alleles receive at least a two field name, three and four field names are only assigned when 

necessary. 

The first field (number) describes the type, which often corresponds to the serological antigen 

carried by an allotype. The second field (number) is used to list the subtypes, numbers being assigned 

in the order in which DNA sequences have been determined. Alleles whose numbers differ in the first 

two fields must differ in one or more nucleotide substitutions that change the amino acid sequence 

of the encoded protein [16]. 
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Full code Abbreviation 

(unofficial) 

Description 

HLA-A A A means locus name (HLA gene) 

HLA-A2 A2 Serological antigen A2. Result of a serology typing 

method. 

HLA-A23 A23(9) or 

A23 

A23 is a split serological antigen of broad serological 

antigen A9. Result of serology typing method. 

HLA-A*02:XX A*02:XX or 

A*02 

Group of alleles (subtypes of antigen A2). Low 

resolution (LR) result of a DNA typing method. 

HLA-A*02:01 A*02:01 Allele A*02:01. An example of the high resolution 

(HR) results of a DNA typing method. 

HLA-A*02:01/02:02 A*02:01/02:02 or 

A*02:AB 

Group of two alleles A*02:01 and A*02:02. A*02:AB is 

the NMDP multiple allele code that represents the 

group. An example of intermediate resolution (IR) 

results of DNA typing methods. 

Table 1: Nomenclature of HLA System 

 

In this work, we will use both official and abbreviated nomenclature. 

 

2.2.3 Resolution of the HLA typing 

Based on the quality of HLA typing we can get HLA typing results of five different levels: 

 Broad serology antigen 

 Split serology antigen 

 Low resolution (LR) DNA typing 

 Intermediate resolution (IR) DNA typing 

 High resolution (HR) DNA typing. 
 

Broad and split serology antigen results are based on serology typing methods, while others 

are based on molecular biology typing methods. 

Low resolution means the identification for the first two digits of the HLA nomenclature, i.e. all 

alleles with the same first field. Intermediate resolution means selection of at least two allele codes, 

all belonging to the same serological antigen groups. High resolution typically means one allele 

designation with two or more fields (at least four digits). In some countries (e.g. Germany), multiple 

allele codes are still considered as high resolution, if all the alleles covered are identical over exons 2 

and 3 for HLA class I or over all of exon 2 for HLA class II. 

Nomenclature of locus names differs, if we speak about serology typing results or molecular 

biology (DNA) typing results. 
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Serology HLA-A HLA-B HLA-C HLA-DR HLA-DQ 

DNA HLA-A* HLA-B* HLA-C* HLA-DRB1 HLA-DQB1 

Table 2: Nomenclature of locus names of different typing methods  

 

In general, relation between typing results of different levels of typing of one individual is quite 

complex (see Table 3): 

 Broad serology antigen always represents a group of split serology antigens, so their relation 
is 1:n. E.g. broad serology antigen A9 represents group {A23, A24}. 

 LR DNA code represents a group of HR resolution DNA codes and every HR DNA code belongs 
exactly to one LR DNA code. I.e. A*01:XX represents group {A*01:01, A*01:01:01, 
A*01:01:02, …, A*01:02, A*01:03, …, A*01:20, …}. 

 Other relations are more complicated (m:n). IR DNA codes (also called NMDP codes or 
multiple-allele-codes) represent a group of HR DNA codes. I.e. A*01:AAXP represents group 
{A*01:02, A*01:08, A*01:14}. But a HR DNA code can belong to many IR DNA codes. I.e. 
A*01:01 belongs to A*01:AB, A*01:AC, A*01:AAJ, etc.  

 HR DNA typing result DRB1*11:16 can have corresponding split serology antigen DR11(5) or 
DR13(6) [17], but DR11(5) have many corresponding DNA typing results (DRB1*11:01, 
DRB1*11:02, …, DRB1*11:16, …, DRB1*11:60). 

 Other relations (m:n) are derived from previous facts. 
 

Resolution Split LR IR HR 

Broad 1:n m:n m:n m:n 

Split  m:n m:n m:n 

LR   m:n 1:n 

IR    m:n 

HR     

Table 3: Relation between levels of HLA typing (m:n – many to many, 1:n – one to many) 

 

2.2.4 Examples of HLA typing results 

Individual A 

HLA-A*01:01, 26:01 

HLA-B*38:01, 57:01  

HLA-C*06:02, 12:03  

HLA-DRB1*04:02,15:01 

HLA-DQB1*03:02,06:02 

 

(tested by molecular biology 

typing methods) 

Individual B 

HLA-A*03:01,32:BYJT 

HLA-B*35:01,38:01 

HLA-C*04:BRXU,12:03 

HLA-DRB1*01:01,13:03 

HLA-DQB1*03:01,05:01 

 

(tested by molecular biology 

typing methods) 

Individual C 

HLA-A1,9 

HLA-B17,40 

 

 

 

 

(tested by serology typing 

methods) 

Table 4: Examples of HLA typing results 
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2.3 Unrelated donor selection process 

Search for unrelated stem cell donors typically follows these steps [18] [19]: 

1. Patient HLA typing is determined. At least HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 

loci are tested. Sometimes also HLA-DRB3/4/5. Patient should be typed at intermediate or 

high resolution.  

2. Search coordinator runs the search algorithm in national and international registries.  

 

Figure 3: Example of donor search result [6] 

 

3. List of potential donors (see Figure 3) typically contains a lot of gaps (missing HLA typing 

results) or HLA ambiguities. Based on transplant protocol, consultation with transplant 

centres and local experience (or expert system predictions!), the search coordinator can 

select several (3-10+) potential donors for additional typing. These tests could be done by 

local or remote laboratories. Number depends on frequency of patient’s alleles & haplotypes 

(if rare, more donors are selected), clinical urgency (more urgent case requires simultaneous 

testing of several potential donors) and may be also limited also by patient’s financial 

situation (i.e. limited funding by healthcare insurance company) – requested services have to 

be paid by the applicant (hundreds of Euros). 

4. Some potential donors will be unavailable, so missing results will never be obtained. 
Contacting the donor, logistics of the blood sample and execution of the requested tests will 
take several weeks.  

5. Requested donor HLA typing results could show mismatch with the patient, so next rounds of 
additional typing procedure may be initiated. Common patient HLA types can usually find 
donor on first match run, less common may require a more sophisticated search using HLA 
expert help to prioritize donors/cords. Unfortunately, some searches are finished without 
finding a match. Then, other solution has to be found – physician has to change transplant 
protocol (e.g. mismatched donor or cord blood unit) or select non-transplant treatment. 
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6. If a suitable donor is found, the transplant centre – donor centre handshaking process is 
started (formal work-up requests, donor is examined, etc.), that may end up with the 
transplant operation. 
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3. Computer algorithms in the search for unrelated stem cell 

donors 
This chapter gives an overview of computer algorithms in the search for unrelated stem cell 

donors. 

3.1 Search algorithm 
The purpose of the donor search algorithm is to find and present a selected list of potential 

donors and/or CBUs, in which the most likely  an optimal stem cell source for the patient are sorted 

to the top of the list [7]. Selection and sorting criteria are based on HLA compatibility and may also 

take into consideration secondary preference criteria, such as CMV antibody status, gender and age. 

Basic requirements for the search system used by stem cell donor registries are: 

 Deterministic behavior that ensures the same results with the same input. This 

means, the algorithm has to reproduce exact decisions at every step. 

 Clear ranking order results. 

 Exhaustive - all donors available for transplant in the source database should be 

included in the search algorithm. Exceptions must be clearly indicated to the end-user. 

For example some algorithms exclude donors that are typed only at HLA-A and HLA-B. 

 Scalable - the system should be able to handle databases of varying size and type.  

 Fast – search algorithms are also used in user-interactive systems, so the results 

should be received in seconds. 

 Configurable – search coordinator must be able to define patient-donor HLA match 

criteria and secondary preference criteria (CMV status, gender, age). 

 Consistently matched [20] - The data presented should be uniformly matched as a set 

for a given instance of a patient search.  Different primary algorithms or matching 

criteria shall not be used within a single patient search.  

The search algorithm is usually implemented as the key component of the stem cell donor 

registry software system. It has several inputs and a single output.  The following input data are 

essential: 

 Patient’s data: HLA type (minimum HLA-A, HLA-B and HLA-DRB1 typing). 

 Patient’s match criteria (position and number of allowable mismatches) 

 Database of adult unrelated and cord blood units (CBUs) (optional) 

 HLA nomenclature code-lists 

 Allele and haplotype frequencies (optional, depending on type of the algorithm) 

The algorithm itself usually follows these steps: 

a. Pre-processing: fast pre-selection of donors based on predetermined  internal indices 

b. Processing: comparison of every (pre-selected) donor with the patient, calculation of match 

grades, matching probabilities and filtering 

c. Post-processing: linking corresponding donor/CBU details. 

The search output, which returns a sorted list of potential donors and CBUs can be presented either 
in the user interface, on a printed report or transmitted to other systems (EMDIS). The presentation 
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output may be calculated within in the search engine software. e.g. it is common practice to highlight 
patient-donor HLA mismatches. As well as match grade and matching probability this may require 
additional data extraction from internal information calculated during the execution of the 
algorithm. 
 

 

 

 

 

 

 

 

 

Figure 4: Basic concept of the donor search algorithm 

 

3.1.1 Patient’s data 

Patient’s HLA typing data must correspond to the valid HLA nomenclature and WMDA 

guidelines [15] and should be typed at the highest possible resolution, i.e. least intermediate 

resolution. According to some algorithms may return unexpected search results, if low resolution 

HLA typing data is provided. 

Example: B*35:76 has no mapping to ‘Unambiguous Serology’ [16], but is mapped to ‘Possible 

Serology’ B35 and B22. B22 is the broad HLA code with splits B54, B55 and B56. Therefore a patient 

carrying B*35:XX is a potential match with a donor carrying B*56:XX. Such a result is likely to be 

confusing for healthcare professionals. This problem would not appear if the patient was typed at 

higher resolution (the B*35:76 allele is excluded). An alternative solution would be to apply an 

exceptions or filter by application of additional criteria, e.g. matching probabilities with threshold (it 

is very unlikely the B*35:XX will become B*35:76). 

3.1.2 Patient’s match criteria 

Some algorithms have hard-coded or fixed match criteria, but more sophisticated search algorithms 
allow users to define matching preferences for each individual search. EMDIS Matching Preferences 
[21] define these criteria: 

 Counting method for mismatches: count graft-versus-host (GvH) mismatches only or host-
versus-graft (HvG) mismatches only 

 Maximum number of antigen/allele mismatches for adult donors 

 Maximum number of antigen/allele mismatches for CBUs 

 Maximum number of antigen/allele mismatches at loci A/A*, B/B*, C/C*, DR/DRB1*, 
DQ/DQB1* 

 Maximum age of the donor, gender matching, CMV matching 
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3.1.3 Database of donors and cord blood units (CBUs) 

Database of unrelated stem cell donors and CBUs should correspond to these requirements 

[20]: 

 Current - The data used by the algorithm should be up to date.   

 Detailed - The data presented should contain all relevant fields to the determination 

of match.  The set of data elements should be consistent amongst the registry 

community. 

 Integrated - The data presented should be considered as a set and should be available 

to the matching party as a part of a singular search event.   

 Recognizable - The data presented should uniquely reference individual sources using 

the identifier that is directly associated with the donor/CBU or would appear on any 

biological samples associated with the product.   

 Comprehensive - The data presented should represent a consolidated view of the 

inventory.  Uniform depth of access to all donors is needed. 

Good implementation of the donor database is essential for acceptable performance of the 

search algorithm. Not all database structures of HLA applications are suitable as the data source for 

the algorithm. 

Many small to middle size registries are co-located in a single centre with the HLA typing 

laboratory and there is a need for data integration of these two departments. It may seem the 

registry system stores and manages the HLA typing results in the same way as the HLA laboratory 

information management system (LIMS), and some registries have implemented such data storage. It 

is a mistake to use these in search algorithms. The main differences between registry database and 

HLA LIMS database are: 

 The registry system needs fast access to the most current and comprehensive HLA typing 

results, which does not always mean the last test typing. This may be combination of 

multiple tests performed in the past by multiple typing techniques. The registry system 

always needs access to the full set of all loci that should be stored at one place, while the 

HLA lab system order includes only requested tests and loci, so HLA typing results of an 

individual may be spread in multiple typing orders. 

 When the HLA lab supervisor approves the order results, it cannot be changed in the lab 

system. However, the registry system has to keep historical HLA typing results up-to-date 

according to the latest HLA nomenclature, so it needs to update them (deleted and renamed 

alleles, new HLA nomenclature). 

Database of donors/CBUs can simply be organized in a single relational database table. Even 

this may be problematic. A logical database approach is to organize HLA code-lists in separated tables 

(multiple-allele-codes, alleles, antigens and their relations) and define master-detail relationship 

between donor data and HLA codes. These systems have been implemented in some registries. The 

storage of donor record is using only primary keys of HLA codes (as foreign keys). The disadvantage 

of the master-detail storage is that retrieval of donor’s HLA typing is inefficient.  Often the solution 

for data retrieval in such a structure is cumbersome, because the database system has to join data 

(database natural join) from tens of tables .The advantage is easy manipulation with the properties 
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of HLA codes or even the renaming of HLA allele codes. But such operations are much less common, 

compared to data retrieval. 

3.1.4 HLA nomenclature code-lists 

In all cases, the algorithm has to recognize the description of HLA typing codes (e.g. multiple-

allele-codes) and relations between HLA codes, especially DNA to serology mapping. Some 

algorithms even use antigen recognition site matching, amino acid sequences or nucleotide 

sequences. It is recommended that code-lists and code attributes are downloaded from specialist 

reference web sites [16] and [22].  

Donors have been typed by various different typing techniques and many of them are 

registered with HLA serological assignments. The database of donors could be pre-processed, so all 

interpretations and mapping of HLA codes could be saved in advance, but generally, the patient’s 

HLA type is known only at the time of the search, so HLA nomenclature code-lists are needed. Of 

some concern is that a minority of  patients are still typed only by serologic typing techniques! This 

means that search algorithms must be capable of using these in the search process. 

3.2 Pre-processing 
Several variants of search algorithms are being used by stem cell donor registries. Selection of 

the algorithm is influenced by available resources, size of the donor database, availability of 

haplotype frequencies of the supported population(s), etc. We will discuss commonly used search 

algorithms. 

I. Simple pre-selection 

The goal of the algorithm is to find potential donors for one patient. The phenotype of the 

patient is compared with all donors phenotypes in the donor registry database that are ‘available’ for 

transplantation purposes (simple pre-selection). 

For every donor D in the database 

 Count Match Grade (patient P – donor D) 

 If the Match Grade is acceptable, store 

  data of donor D in the list of 

  potential donors of patient P 

 

This kind of algorithm can be used only for small to middle sized registries. Implementation 

enhancements can help to improve this situation. For example, increasing current capacities of 

server memories allows caching of all donors in the random access memory (RAM) of the server. The 

advantage of this algorithm is mainly in its simplicity and simple validation process. It also has very 

straightforward implementation of distributed or parallel computing. The drawback is the speed and 

memory limitation, especially where donor database is growing  

This algorithm could be extended to multiple patient searches [5] that might be useful, for 

example, for EMDIS repeat searches [21], when search results from several thousands of donors have 

to be generated and compared with previous results. Again, the list of all patients could be cached in 

the server memory with one additional loop. 
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For every donor D in the database 

 For every patient P in the database 

  Count Match Grade (patient P – donor D) 

  If the Match Grade is acceptable, store 

   data of donor D in the list of 

   potential donors of patient P 

II. Search determinants 

Databases from Registries and cord blood banks store the HLA types in many formats 

depending whether typing was by serology or by DNA-based methods. Registries must take these 

different assignments to create a match algorithm to search for a patient. This comparison is usually 

facilitated by the conversion of phenotypes to "search determinants" prior to development matching 

algorithms.  

The phenotype of the patient/donor is mapped to ‘Search Determinants’ (SD) [23] [24]. The SD 

is a data record, based on serological antigens, corresponding to the original HLA phenotype. For 

example, it might be a group of six HLA serologic-based assignments – three pairs for HLA-A, HLA-B 

and HLA-DRB1 loci. An individual can have multiple SDs. SDs are used as an index to select the set of 

matching phenotypes. Then, more precise match grades are counted and the list of donors is filtered.   

The main application of SDs is the speeding up of the match process by using SDs as keys 

values in conjunction with a database and a matching algorithm [25]. The main disadvantage is the 

need for regular checks and updates of SDs of all donors in the database, due to changes of donor 

data, HLA nomenclature updates and changes in the “DNA to serology” mapping. There are particular 

problems where there is no serological equivalent for a DNA allele. 

III. DNA matching only 

The National Marrow Donor Program (NMDP) in the United States has developed an algorithm 

[26] that does not use SDs for the initial matching step as this is done by directly comparing patient 

DNA type to donor DNA type. The algorithm is able to account for all serologic typing possibilities 

with the use of a special table called the "Serology to DNA Allele Table".  

3.3 Processing 
The key element of the processing step of the algorithm is the ‘match grade function’ that can 

compare data (HLA, ethnic group) of two individuals (usually patient and donor) and return their 

match grade and/or matching probabilities. The threshold function then filters out donors that do 

not match patient’s match criteria. 
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Original versions of matching algorithms compared HLA typing only at HLA-A and HLA-B loci. 

DNA typing was not performed. Later generations added other loci, especially HLA-DRB1, but also 

HLA-C and HLA-DQB1. Today, some algorithms even use HLA-DRB3/4/5, HLA-DPB1 and other loci. 

Earlier versions of matching algorithms also used only serological assignments; DNA  typing   

either did not exist or was not taken into account. Later versions have converted DNA typing results 

into serological assignments or vice versa, so the algorithm has a uniform typing technique view on 

all donors. Current search algorithms use DNA typing results as much as possible and switch to 

serology comparisons only if DNA typing is not provided or if they want to refine DNA to serology 

mapping.  

The Information Technology (IT) Working group of the World Marrow Donor Association 

(WMDA) has issued two key resources that describe the correct handling of HLA data and key 

patient-donor matching procedures: 

 Framework for the implementation of HLA matching programs in hematopoietic stem cell 

donor registries and cord blood banks [7]. This article gives a bottom-up approach to the 

design of search algorithms: comparison of individual HLA codes, then HLA single-locus 

phenotypes and eventually HLA multi-locus phenotypes. 

 Guidelines for use of HLA nomenclature and its validation in the data exchange among 

hematopoietic stem cell donor registries and cord blood banks [15] 

A common mistake in the design of search algorithm is the violation of the rule 2.1 of the 

guidelines [15]: “Laboratories must assign DNA nomenclature to results obtained using DNA-based 

methods and serologic nomenclature to results obtained using antibody reagents.”. Some computer 

systems need to permanently store serology derived results of DNA codes, usually because of simple 

DNA-serology matching. However, the mapping should be done automatically by the system and not 

by the user. Derived serology values must be clearly distinguished from real serology results obtained 

using antibody reagents. Where mapping has changed, the registry system has to know if stored 

serologic results should be updated or not. Moreover, some alleles are mapped to multiple serology 

equivalents and the system has to take this into account. 

In addition to match grade, some information can be calculated. In these, the probability of 

HLA matching at the allele level based on local population haplotype frequencies in the underlying 

population can be calculated. Such prediction algorithm system has been developed and validated  

by the NMDP (HapLogicTM II) [27].  

The latest, state-of-the-art versions of search algorithms (OptiMatch®, HapLogicTM III) use these 

probability calculations to determine the rank order of HLA matches as the main searching and 

sorting criteria. 

3.4 Post-processing 
At this stage, the system retrieves corresponding donor details of all selected donors that will 

be displayed in the search results. If the matching probabilities are not used as the main sorting 

criteria, the search system can apply them at this stage (ProMatch [28], Hap-E [29] and EasyMatch 

[30]).  



33 
 

3.5 Validation of the search algorithm 
All implementations of the search algorithms need to be validated before being used. The 

WMDA Information Technology Working Group provides validation sets of patients and donors that 

are used for matching trials and comparison of results with expected outcomes [31] [7]. Algorithms 

that do not use simple pre-selection approach, but use more complex pre-selection, have to be 

validated for completeness. It is important not to miss any relevant donors in the pre-selection [7]. 

Validation of the processing phase, especially the match grade function, can be done by 

running several automated unit tests, addressing all kinds of matches and mismatches, exceptions 

and rare cases. Interfaces to software source code classes, modules or libraries are tested with a 

variety of input arguments to validate that the results that are returned are as expected [32].  
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4. Haplotype Frequencies Estimation 
This chapter gives an overview of possible methods of HFE with focus on maximum likelihood 

function and its solution by the iterative Expectation-Maximalization (EM) algorithm. A method that 

can verify reliability of the estimates is presented. 

4.1 Number of genotypes 

The number of genotypes ( jc ) leading to the j-th phenotype is a function of the number of 

heterozygous loci js : 

(1) 
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Example 1 

Assume the following phenotype of an individual ( 3js ): A1,2 B7,8 DR1,4 

Then all possible genotypes are ( 422 jc ): 

A1 B7 DR1 

A2 B8 DR4 

A1 B7 DR4 

A2 B8 DR1 

A1 B8 DR1 

A2 B7 DR4 

A1 B8 DR4 

A2 B7 DR1 

□ 

Only one of these jc genotypes is the proper one. 

 

4.2 Problem formulation 
Typing techniques allow the survey of many polymorphic loci, but do not allow distinguishing 

gametic phase of haplotypes. For heterozygous diploids the direct sequencing of the PCR 

(polymerase chain reaction) product results in the amplification of both alleles and does not allow 

resolving the haplotypes when the diploid individual is heterozygous at more than one locus. 

The data set consists of individuals (sample of a population) and their unphased HLA typing 

results at one or more loci.  

The goal is to find the best estimates of the haplotype frequencies in the population using 

only limited information included in the phenotype (unphased genotype) sample data.  

4.3 Methods 
The main methods of solution of the problem are: 

1. Family studies – adding some additional information. 
2. Remove heterozygous individuals – ignoring the problem. 
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3. Parsimony method – counting phase known individuals 
4. Two by two tables – solution only for two loci 
5. Bayesian methods  
6. Maximum likelihood approach 

 

4.3.1 Family studies 

Multi-loci haplotypes can be usually determined by additional genealogical study of the 

individual. [35] 

Family members of many individuals could not be reachable for tests. Therefore the family 

studies of all individuals in the data set are not possible. Moreover, to avoid redundant information 

and possible bias, some members of the families must be excluded from the data set, so the costs 

would be extremely high. This approach is not scalable for large data sets.  

 

4.3.2 Remove heterozygous individuals 

The easiest possibility would be to remove all heterozygous individual from the sample and 

keep only homozygous ones. Then calculate haplotype frequencies by direct counting.  

This approach is problematic, because it might lead to a bias. 

 

4.3.3 Parsimony method 

Clark’s algorithm [33] and its variation [34] start to examine complete homozygotes and single-

locus heterozygotes and creates list of haplotypes that must be present unambiguously in the 

sample. If such individual does not exist, then the algorithm cannot start. Then other individuals are 

screened for a possible occurrence of previously recognized haplotypes. For each positive 

identification, the complementary haplotype is added to the list of the recognized haplotypes, and so 

forth. Problems of the approach are: 

(a) homozygous individuals are not always present in stem cell donor registry databases or there 
can be only few of them;  

(b) the final result depends on the order of individuals in the sample as shown in [35]. 
(c) in the end there could remain unresolved individuals. 

 

4.3.4 Two by two tables 

The estimation method [34] [36] counts the phenotype frequencies of each antigen in the 

sample for both (two) loci and uses these to calculate the linkage disequilibrium of each haplotype 

consisting of two alleles i and j as follows: 

 

n

dc

n

db

n

d
D

ijijijijij

ij





  

 



36 
 

in which a, b, c and d are the phenotype frequencies of the +/+, +/-, -/+ and -/- combinations of the 

allele in each haplotype and n is the sum of a, b, c and d. The haplotype frequency of allele i from the 

first locus and allele j from the second locus is then: 

 

jiijij ggDp   

where ig and jg are gene frequencies of allele i, resp. j.  

 

This method is computationally simple, but unfortunately it works only for two loci and gives 

worse results than maximum likelihood approach [34]. 

 

4.3.5 Bayesian methods 

The PHASE algorithm [37] threats haplotype configuration for each unresolved individual as an 

unobserved random quantity and aims to evaluate their conditional distribution, given a sample of 

unphased data. Goal of the Bayesian framework is to approximate posterior distribution of haplotype 

configurations f(G|P), where  

G = (G1, …, Gn) denote to unknown corresponding haplotype pairs (genotypes), n is number of 

individual in the sample and P = (P1, …, Pn) are known unphased phenotypes. The method 

implements Markov chain Monte Carlo (MCMC) methods (Gibbs sampling) to sample from f(G|P). It 

starts with random configuration G(0), repeatedly selects unresolved individuals at random and 

samples from their possible haplotype configurations, assuming all other individuals to be correctly 

resolved. Repeating this process enough times results in an appropriate sample from f(G|P). In other 

words, it constructs Markov chain G(0) , G(1), G(2),… with stationary distribution f(G|P) on the space of 

possible haplotype reconstructions. 

The output of the PHASE algorithm is haplotype frequency estimation and reconstruction of 

haplotypes of each individual in the sample. 

 

We have cooperated with Mr. Urban on his Master’s thesis [38] regarding the problem of 

haplotype frequency prediction and haplotype resolution using statistical methods in general, and 

specifically in the context of HLA data. Mr. Urban has proposed a new Bayesian approach that uses 

the available prior knowledge to solve this task. The algorithms has been compared with our  

approach (EM algorithm) and even though it gave worse results in terms of accuracy, its robustness 

in speed when faced with large datasets with missing or ambiguous information in principle allows 

for processing of register data on a massive scale. 
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4.3.6 Maximum likelihood approach 

Under of the assumption of the Hardy-Weinberg equilibrium [39] and random mating, the 

probability jP  of the j-the phenotype is given by the sum of the probabilities of each of the possible 

jc genotypes: 

(2)   
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where )( lkhhP is the probability that the i-th genotype is composed of haplotypes k and l: 
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and ip denotes the frequency of the i-th haplotype ih in the population. 

The probability of a sample of n individuals, conditioned by phenotype frequencies 

mPPP ,,, 21   is given by the multinomial expression 
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where m denotes the total number of phenotypes and jn is the number of individuals carrying the j-

the phenotype observed in the sample: 
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Substituting equation (2) into equation (4), we obtain the probability of the sample as a 

function of the unknown the haplotype frequencies. Therefore, the likelihood of the haplotype 

frequencies given phenotypic counts is: 
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4.4 Solutions of maximum likelihood function 
Possible methods of solution of the maximum likelihood function are: 

1. Analytic solution [42] 
2. Genetic algorithms (own attempt) 
3. EM algorithm [43] 

 

4.4.1 Analytic solution 

We can logarithmize the equation (6) and get: 
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where 1a is a constant incorporating the multinomial coefficient. 

The maximum likelihood estimates of haplotype frequencies could be, in principle, found 

analytically or numerically by solving a set of equations resulting from the 1h  partial derivatives 

equated to 0: 
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However the nonlinearity of (9) and a large number of equations when practical data are 

analyzed (tens of thousands for real data) make this approach prohibitive. Moreover the h is often 

unknown a priori. 

Numerical methods must be used to solve these equations and find the maximum. Many numerical 

methods are sensitive to rounding errors and they are usually not able to prove that a particular 

solution is the global maximum. Procedures based on analytical solution are limited to a few loci and 

polymorphism.  

4.4.2 Genetic algorithms 

Maximum likelihood approach is an optimization problem, so we can consider genetic 

algorithms (GA) to solve it. Fitness function is very straightforward, because it is the Maximum 

likelihood function.  

But we are in troubles with the definition of GA-chromosome. It should store the result of the 

algorithm, which is the list of haplotypes and their frequencies. Maximal length of the list is mn 2 , 

where m is number of heterozygous loci in the sample ( jsm max ). Every item of this list 

(haplotype frequency estimation) is a real number (the frequency) and m loci with allele designations 

defining the haplotype. Each HLA locus can have approx. up to 1000 different alleles, so we can 

encode them to 10 bits. If we encode a real number to 32 bits (frequencies could be very small 

numbers) we get the size of the GA-chromosome to max. )3210(2  mn m
. For real data (

610n  and 3m ) we get the GA-chromosome bigger than 0.5 MB which is not feasible for GA. GA 

could solve only small instances of the problem and is not applicable in our situation. 
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4.4.3 EM algorithm 

One of the most widely used methods of haplotype reconstruction is Expectation-

Maximalization (EM) algorithm, which estimates haplotype frequencies iteratively. Since we have 

used this approach as a basis of our solution, we will describe this algorithm in the following chapter. 

4.5 Expectation-Maximalization (EM) algorithm 
Association of haplotype structures and sample of unphased genotypes can be expressed by 

likelihood function (see also section 4.3.6). The relation (6) is complicated and cannot be maximized 

by standard techniques, as has been discussed before.  

The Expectation Maximalization (EM) algorithm was formalized by Dempster A.P. et al. in 1977 

[40]. Dempster has proven the monotone behaviour of the likelihood and derived the convergence of 

the algorithm. Its application to the problem of haplotype reconstruction was formulated in 1995 by 

several authors [10] [35] [41]. Since then the method and its properties were further analyzed by 

several studies [42] [43] [44]. They have shown it can be used for wide variety of population and 

data-set scenarios.  

 

4.5.1 Algorithm description 

The EM algorithm is an interactive method of computing sets of haplotype frequencies 

hppp ,,, 21  starting with arbitrary initial values
)0()0(

2

)0(

1 ,,, hppp  . These initial values are used to 

estimate genotype frequencies  lkhhP
~

 as if they were the unknown true frequencies (the 

expectation step). These expected genotype frequencies are standardized and used, in turn, to 

estimate haplotype frequencies p̂ at the next iteration (the maximization step), and so on, until 

convergence is reached. 

 

4.5.2 Initial conditions 

There are several possibilities of initializing the haplotype frequencies 
)0()0(

2

)0(

1 ,,, hppp   with 

respect to equation (7). They can be summarized as follows: 

 (IC1) All haplotypes are equally likely 

(10) h
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t nt
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 (IC2) All possible genotypes of each phenotype are equally likely 
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 .  

 (IC3) Initial haplotype frequencies are chosen at random. 

 (IC4) All initial haplotype frequencies are equal to the product of the corresponding single-locus 
allele/antigen frequencies (complete linkage equilibrium). 

 (IC5) The input data influence the initial haplotype frequencies. 
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4.5.3 The expectation step 

 Estimation of genotype frequencies, given haplotype frequencies: 
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4.5.4 The maximization step 

 Estimation of phenotype frequencies, given genotype frequencies 
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 Standardization of genotype frequencies 
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 A genotype has one or two specific haplotypes, so genotype frequencies can be used to estimate 
haplotype frequencies by direct counting of all occurrences of a haplotype within all sample 
genotypes. 
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where it is an indicator variable equal to the number of times haplotype t is present in the genotype 

i: 
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4.5.5 The stopping criterion 

The stopping (convergence) criterion can be defined as: 

 (SC1) the relative difference between the consecutive ML function values is less than an arbitrary 
parameter 0 . 

 (SC2) the absolute value of difference between the consecutive ML function values is less than an 
arbitrary parameter 0  [43]. 

 (SC3) when the changes in haplotype frequency in consecutive iterations are less than an 

arbitrary parameter 0 : 
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4.6 Properties of EM algorithm 
Sample size 

As expected, the algorithm performs better for larger samples sizes, i.e. give better estimates, 

as shown in [10]. 

Multiple local maxima 

EM algorithm climbs the multidimensional likelihood surface, but there is no guarantee that 

the surface is convex, i.e. there is no proof for uniqueness of a likelihood function maximum, so the 

likelihood surface may have multiple local maxima [43]. 

To ensure finding global maximum likelihood, the EM algorithm should be started from several 

initial conditions [10]. 

 

Deviation from HWE 

Departure from HWE may be a substantial source of error, because the algorithm relies on 

HWE in its expectation step. However, deviation from HWE will not result in a significant 

differentiation in the haplotype frequency estimation [45]. Also linkage disequilibrium does not 

impact highly on the common haplotype frequencies [42]. 

 

Convergence speed 

Most studies confirm high convergence speed of EM algorithm, e.g. in less 20 iterations by [43] 

or in less than 50 iterations by [42]. 

 

Other properties that could be studies are: shape of log-likelihood graph, sensitivity to 

stopping criteria, LD and departures from HWE and sensitivity to different initial conditions. 

4.7 Reliability of haplotype frequency estimation 
There is no single measure of performance of EM algorithm, because there are many possible 

uses of it and the choice of a measure depends on the intended purpose [10]. Anyway some 

properties could be observed. 

 

4.7.1 Haplotypes with low frequency 

When we run haplotype frequency estimation algorithm, we might get list of tens of thousands 

of haplotypes, but some of them could have very low frequency (e.g.
50010ip ). The question is if 

these low frequencies are reliable or not. 
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We use similar approach as [46], which estimates the minimal registry size in order to calculate 

reliable haplotype frequencies. In our case, we have fixed size of the sample (registry) and we want 

to know the reliability of haplotype estimates. 

Reliable estimation of the frequency of a haplotype should be supported by at least one 

individual in the sample carrying the haplotype. If the frequency of i-th haplotype is ip  and the 

sample size is n, then the probability that the individual hasn’t the i-th haplotype is  21 ii pP  , 

because the individual has two haplotypes. The probability Q that at least one individual with i-th 

haplotype is found in n individuals is: 
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If we want to reach certain probability Q, we can fix it as constant and we get 
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Table 5 shows examples of minimal reliable ip values for different n and Q values. 

 Q 

N 0.95 0.99 0.999 

210  210487.1   210276.2   210395.3   

310  310498.1   310300.2   310448.3   

410  410498.1   410302.2   410453.3   

510  510498.1   510302.2   510454.3   

Table 5: Minimal reliable value of haplotype frequency estimation. 

 

On the other hand, if a haplotype exists in the sample, then at least one individual has to carry it. 

Since number of haplotypes in the sample is 2n, the minimal frequency of any haplotype must be  
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Combining these two approaches, we get 
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The calculated value of Q is 0.63 for all values of n mentioned in Table 5. 
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4.7.2 Lab-based verification of the EM algorithm 

Verification of the algorithm can be done by this scheme [42]: 

1. Generate a model of “true” population, including “true” haplotype frequencies T. 
2. Do the sampling process, i.e. select or generate individuals according to the population 

model. As a result, we have phase-known sample and sample haplotype frequencies S. 
3. Hide the phase information in the sample, i.e. convert genotypes to phenotypes. 
4. Estimate haplotype frequencies E.  

 

If we compare estimated haplotype frequencies E with “true” population haplotype 

frequencies T, we get the assessment of the validity of the final haplotype frequency.  

If we compare S and T, we get the sampling error. As confirmed in [42], the accuracy of the 

frequency estimation depends on the proper sampling procedure. 

4.7.3 Distance from true frequencies 

To examine how close estimated frequencies E are to “true” frequencies T, we can use the 

similarity index FI  [10]: 
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where ip̂ are the estimated frequencies, ip0 are the true simulated frequencies and h is the number 

of unique haplotypes in the union of both sets (estimated and true). It varies between zero, when the 

sets of “true” and estimated haplotypes with non-zero frequency have empty intersection and one, 

when true and estimated frequencies are identical. This index gives more weight to the high-

frequency haplotypes. 
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holds, so we can express similarity index in other form: 
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Other possibilities of comparison of T, S and E, include Goodness of fit, Pearson’s r and 

Spearman’s coefficient tests. 
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5. Design and implementation of HFE algorithm for stem cell donor 

registry datasets 
This chapter discusses our own design and implementation of the HFE algorithm and its usage 

on datasets of stem cell donor registries – challenges, pitfalls and possible solutions. 

5.1 HLA data from stem cell donor registries 
Databases of stem cell donor registries are unique and very valuable sources for population 

genetic studies. The most of the HLA typing results were obtained in accredited HLA laboratories with 

high quality control standards, which is very important. These data are not “dead”, but they are daily 

used and continuously updated by stem cell donor registries staff in order to find unrelated donors 

for stem cell transplantation. 

On the other hand, HLA haplotype estimation from a sample of a stem cell donor registry is 

demanding because of the following reasons: 

 Missing data. 

 Registry data contain HLA results that have been done by different typing techniques, so it 
contains different typing resolution (see chapter 2.2.3). 

 HLA system is extremely polymorphic and people still find a lot of new alleles, see Table 6 
and Table 7. 

 There are quite a lot of HLA loci for which it would be useful to estimate haplotype 
frequencies: A, B, C, DRB1, DRB3, DRB4, DRB5, DQA1, DQB1, DPA1 and DPB1. Reliable and 
unbiased data of DRB3, DRB4, DRB5, DQA1, DPA1 and DPB1 are rare and insufficient for 
haplotype frequency calculation, therefore for practical reasons, we will consider only A, B, C, 
DRB1 and DQB1. Consequently, haplotypes could have up to 5 loci. 

 

 Number of possible values 

Resolution HLA-A HLA-B HLA-C HLA-DRB1 HLA-DQB1 

Missing data 1 1 1 1 1 

Serology broad 11 32 8 10 4 

Serology split 28 61 10 21 9 

DNA low resolution 21 36 14 13 5 

DNA interm. Resolution 410  510  410  510  410  

DNA high resolution 853 1249 361 659 99 

Table 6: Number of possible values (antigens/alleles) in the HLA system (August 2009) [47] 

 

 Number of possible values 

Resolution HLA-A HLA-B HLA-C HLA-DRB1 HLA-DQB1 

Missing data 1 1 1 1 1 

Serology broad 11 32 8 10 4 

Serology split 28 61 10 21 9 

DNA low resolution 21 36 14 13 5 

DNA interm. Resolution 510  510  510  510  410  

DNA high resolution 2188 2862 1746 1285 193 

Table 7: Number of possible values (antigens/alleles) in the HLA system (January 2013) [47] 
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5.2 Input and output typing resolution 
Our goal is to design and develop a general method that takes as the input a population 

sample data, a stem cell donor registry database, and calculates haplotype frequencies that cover 

user-defined set of loci and each locus is calculated at user-requested resolution.  

When we start to “play” with different typing resolution, we must keep in mind that all 

haplotypes entering the EM calculation and appearing in the result set must be disjoint. 

Example 

configuration 

A/A* B/B* C/C* DR/DRB1* DQ/DQB1* 

#1    Low res.  

#2  High res. High res.   

#3 Serol. broad Serol. broad  Serol. broad  

#4 Low res. Low res.  Low res.  

#5 High res. High res. High res. High res. High res. 

Table 8: Examples of configuration of HLA haplotype frequency estimation 

 

Table 8 shows examples of desired settings. This variability of configuration is quite 

challenging. Let us breakdown all possible combinations of input-output relations at any locus, see 

Table 9.  

 

 Output data - Required resolution of HLA haplotypes 

Input data Serology 

Broad 

Serology 

Split 

DNA low 

res. 

DNA 

interm. res. 

DNA high 

res. 

Missing data {01} {02} {03} {04} {05} 

Serology Broad {11} {12} {13} {14} {15} 

Serology Split {21} {22} {23} {24} {25} 

DNA Low res. {31} {32} {33} {34} {35} 

DNA interm. res. {41} {42} {43} {44} {45} 

DNA high res. {51} {52} {53} {54} {55} 

Table 9: Input and output HLA typing resolutions. 

 

Most of HLA studies work with uniform input level of typing resolution of all individuals. In 

order to have such uniform dataset, they: 

 Exclude volunteers with different typing resolution (e.g. donors without HLA-DR typing) or 

 Collapse serology split level antigens to broad level (e.g. A23 to A9). 
 

We can use datasets with multiple level of typing resolution, because it is not necessary to 

require the level of typing resolution to be statistically independent on the HLA type [48]. 
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In fact, the situation about input data is more complicated, because an individual can have two 

HLA codes of different resolution at one locus and we must have solution that can deal with it. We 

could get results like DRB1*01:XX, 07:01 (mix of low and high resolution). Nevertheless we will 

expect the input HLA typing complains WMDA guidelines for use of HLA nomenclature [15] that is 

true for databases of stem cell donor registries. Therefore we do not have to deal with mix of 

serology and DNA typing results at one locus (e.g. DR1, DRB1*04:XX).  

Table 9 defines 30 different situations that could happen at a locus: 

 Cases {X4} make no sense, neither for practical purposes nor for extreme diversity of 
intermediate resolution HLA codes. 

 (EQ) Cases {XY}, where X = Y, are the easiest ones, because we do not have to convert input 
and output HLA codes.  

 (LO) Cases {XY}, where X < Y, mean conversion of codes from lower to higher resolution. In 
other words, it is expectation of higher resolution typing, given a lower resolution typing. 
Special cases {0Y}, i.e. first row of the table, handle missing data. 

 (HI) Cases {XY}, where X > Y, mean conversion of codes from higher to lower resolution. In 
other words, it is degradation of HLA typing results to lower resolution. 

 

Cases (HI) are also important. The most of studies performing HLA haplotype frequency 

estimation on serology broad/split level just ignore DNA typing results of individuals in the sample. 

But this information should not be ignored, because it can improve the serology typing results of an 

individual. This approach is also in harmony with findings of the study [48]. 

 

5.3 Missing data 
We consider a phenotype to present a missing value when no antigens/alleles are reported at 

a particular locus. We assume that the presence of missing values is independent on hidden values 

and other reported values. 

 

Example: The typing result of an individual could be A1,2 B7,8, so just A and B loci are HLA 

typed. Locus DR is not typed, therefore contain missing values.  

There are several methods how to handle missing values in population data: 

(MI-1)  Ignoring individuals with incomplete information (EH software). This approach introduces 

sampling error and overestimates common haplotypes. 

(MI-2) Treating a missing antigen/allele as any other antigen/allele (ARLEQUIN software). This 

approach generates unreal haplotypes. 

(MI-3) Consider missing value as any allele. The best approach, but computationally demanding. It 

means to generalize definition of jc in equation (1), so now the jc~   is number of all 

possible genotypes that could lead to phenotype  j. Then sums in equations (13) and (15) 
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iterates through all pseudo-haplotypes, i.e. haplotypes compatible with the given 

phenotype. 

(MI-4) Consider missing value as any allele that is already found associated with the observed 

alleles at the other loci in the dataset where considered to substitute missing values [49]. 

This approach is an optimization of the previous one. The idea behind is based on the fact 

that EM algorithm in the previous approach will gradually withdraw those haplotypes that 

are not directly observed in the sample (in complete phenotypes). This method therefore 

provides the same result as the previous one. 

 The study [49] shows that the MI-4 method is better than MI-1 and MI-2, especially when 

the study is focused on rare haplotypes. 

(MI-5) An enhanced approach of MI-4 (Henk van der Zanden, personal communication, 2008):  

 Transform input dataset with missing values to new one, without missing values  

 Missing values are guessed according to analysis of phenotypes without missing 
values.  

 One phenotype with missing values is substituted by more phenotypes without missing 
values and the original number of individuals of this phenotype is proportionally 
divided between new phenotypes.  

Problem of this approach is there could be missing values which cannot be substituted. 

Advantage of this approach is it simplifies the computation. On the other hand it tries to 

do some work in advance that should be done by the EM algorithm. Its influence on the 

accuracy of haplotype frequency estimation should be tested, but we think it will not 

provide better estimates, maybe the same ones. 

(MI-6)  An enhanced approach of MI-1 [50]: Calculate full (3-locus) haplotype frequencies ignoring 

individuals with incomplete information (like MI-1). Then correct these haplotype 

frequencies by adjusting them according to the ratio of the resulting (2-locus) marginal 

frequencies and the direct estimate from the full registry. 

 

5.4 Lower to higher typing resolution 
HLA typing techniques often give results as ‘ambiguities’, which means the result is not 

perfectly determined (high resolution), but some of the known alleles could be discarded. Such result 

could be a list of possible alleles or multiple allele code. In fact the missing value according to 

approach MI-3 (resp. MI-4) is also a kind of multiple allele code that represents all existing alleles 

(resp. all observed allelic combinations in the sample). The study [49] suggests ambiguities “could 

easily be handled using the same statistics as those presented for missing values”, but “this 

theoretically simple process becomes complicated to implement”. 

 

5.4.1 Mapping serology broad to split values 

These cases refer to the cell {12} in the Table 9. The study [51] is the first one that maps broad 

antigens to all possible split antigens in order to generate all possible genotypes to be considered. It 
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is similar to the approach MI-3 and shows the complexity of HLA system even for serology 

haplotypes.  

 

Example 2 

A9 is mapped to split group {A23, A24}. An individual with phenotype A2, A9; B8, B35 could  

have one of these (split) genotypes:  

 A2 – B8 / A23 – B35 

 A2 – B8 / A24 – B35 

 A2 – B8 / A23 – B35 

 A2 – B35 / A24 – B8 
□ 

 

The worst case for calculation of HLA-A, HLA-B, HLA-DR haplotypes is the phenotype A10,19; 

B15,22; DR5,6 (six broad antigens), resulting in 3456 different possible genotypes. 

 

5.4.2 Overlapping mapping of multiple allele codes 

But the situation with ambiguities is more complex than with missing values. Both MI-3 and 

MI-4 map a missing value to exclusive set of alleles.  

 

 

 

 

Figure 6: Comparison of missing value and other ambiguities. 

 

On the other hand, multiple allele codes are mapped to sets of alleles that have nonempty 

intersection, see Figure 6. Other problem is multiple allele codes can contain only few special alleles 

which are not observable in the registry database as high resolution result. This leads to the 

conclusion that MI-3 and MI-4 do not give the same result for ambiguities, as shown in the following 

experiment. 

 

01:03 01:02 01:01 
01:01  01:02 

01:03  etc. 

Missing 

value 

01:AB 01:AC 
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Experiment 1 

Data set: 

 One individual with A*01:AB (=01:01/01:02) 

 One individual with A*01:AC (=01:01/01:03) 

 One individual with A*01:AG (=01:01/01:06) 

 One individual with A*01:02  

 One individual with A*01:03 

 As we can see A*01:01 and A*01:06 are not directly represented in the dataset, so MI-4 
would not work for A*01:AG. 

Required HLA haplotypes:  

 A* (high resolution) 
Results: After 16 iterations of the EM algorithm with MI-3 strategy, the A*01:01 is the most frequent 

allele (0.447), followed by A*01:02 (0.276) and A*01:03 (0.276) and A*01:06 (<0.001). 

□ 

Experiment 2 

Data set: 

 10 individuals with A*01:AB (=01:01/01:02) 

 1 individual with A*01:AC (=01:01/01:03) 

 1 individual with A*01:02  

 1 individual with A*01:03 

 As we can see A*01:01 is not directly represented in the dataset, so MI-4 would ignore it. 

Required HLA haplotypes:  

 A* (high resolution) 

Results: After 19 iterations of the EM algorithm with MI-3 strategy, the A*01:02 is the most frequent 

allele (0.498), followed by A*01:01 (0.410) and A*01:03 (0.090). 

□ 

As conclusion, for ambiguities we should use similar strategy as MI-3, take into account all 

possible alleles. 

 

5.4.3 Overlapping serology to DNA mapping 

Serology to DNA mapping is very practical, but its impact on EM algorithm hasn’t been 

previously studied. S. GE Marsh publishes mapping of HLA alleles to antigens [52], so in order to get 

HLA serology to alleles mapping, we should calculate the reverse index. Other mappings, such as 

serology to low resolution DNA, can be obtained from the previous one. But it also raises some 

problems. 
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Example 3 (HLA nomenclature as of January 2013 [52]) 

A*02:65 could be A31, therefore A31 should be mapped to A*02:65, A*31:01…A*31:71, 

A*33:09. Reducing this list to low resolution we get A31 mapping to A*02, A*31, A*33. But: 

 EM algorithm would prefer A*02 mapping of A31, because A*02 is more common than A*31 
and A*33. 

 It seems like A31 could be potentially A*02:01, which is not true. 
□ 

Example 4 

Broad A28 has splits A68 and A69. A*02:55 could be A28 or A2 (assumed). Therefore A28 could 

be A*02, A*68 or A*69. In context of A28, the A*02 group contains just one allele (A*02:55), the 

A*68 group contains at least 40 alleles and A*69 contains just one allele (A*69:01). So it is very likely 

the A28 will be A*68. In order to observe how the EM will deal with a phenotype containing A28 in 

the context of real data, we have tried the following experiment. 

□ 

Experiment 3 

Data set:  

 The Cord Blood Bank Czech Republic, November 2008, n = 2825 

 Additional individual with the phenotype PA: A11,28 B*35:XX, DRB1*01:XX. 

Required HLA haplotypes:  

 A*-B*-DRB1* (low resolution - low res. - low res.) 
Results: Table 10 shows distribution of possible genotypes of the phenotype during EM iterations and 

behavior of maximization step (14). 

  
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Iteration GENOTYPE 1 

hk: A*02,B*35,DRB1*01 

hl: A*11,B*35,DRB1*01 

GENOTYPE 2 

hk: A*68,B*35,DRB1*01 

hl: A*11,B*35,DRB1*01 

GENOTYPE 3 

hk: A*69,B*35,DRB1*01 

hl: A*11,B*35,DRB1*01 

1 79,642% 19,055% <0,001% 

2 80,609% 19,348% <0,001% 

3 81,737% 18,261% <0,001% 

4 83,170% 16,830% <0,001% 

5 84,432% 15,568% <0,001% 

6 85,379% 14,621% <0,001% 

7 86,044% 13,956% <0,001% 

8 86,496% 13,504% <0,001% 

9 86,806% 13,194% <0,001% 

10 87,023% 12,977% <0,001% 

… … … … 

Table 10: Distribution of possible genotypes of the phenotype during EM iterations in the 

experiment 
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This experiment shows the test phenotype “helps” more genotype 1 than the more accurate 

genotype 2. And the EM tends to prioritize the genotype 1 during its iterations. This behavior will 

lead to the overestimation of the haplotype A*02,B*35,DRB1*01 and underestimation of the 

haplotype A*68,B*35,DRB1*01. 

□ 

This problem comes from two facts: 

 HLA-A antigens are mapped to set of HLA-A* alleles that are overlapping. 

 The maximization step does not reflect relations between HLA alleles of different typing 
resolution. Therefore all feasible genotypes of a phenotype are handled in the same way. 

 

This problem comes from the equations (12) - (14) in combination with MI-3 approach, 

because they do not reflect HLA nomenclature and handle all mapping values in the same way. 

Therefore we propose to change the equation (12) to the extended form: 

(23) 
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Unfortunately we do not know these conditional probabilities. But if we assign  

(24)  
j

lk
c

jphenotypehhgenotypeP
1

   

the EM algorithm will behave in the same way as original approach, because it does not affect the 

equation (14). If the value of  jphenotypehhgenotypeP lk  is higher than 
jc

1
, the genotype lkhh is 

“promoted” over other possible genotypes of phenotype j. If it is lower, the genotype lkhh is 

suppressed. It does not affect convergent properties of the EM algorithm. 

If we know “true” haplotype frequencies, we could easily calculate  jphenotypehhgenotypeP lk . 

This leads to the following algorithm: 

1. Assign  
j

lk
c

jphenotypehhgenotypeP
1

 . 

2. Run EM algorithm, using equation (21). 

3. Calculate new  jphenotypehhgenotypeP lk . 

4. Repeat steps 2 and 3 until  jphenotypehhgenotypeP lk  is “stable” – e.g. until maximal 

relative change of any  jphenotypehhgenotypeP lk  is lower than  . 

  

This approach would be very computationally demanding, since it runs the EM algorithm several 

times.  
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Other possibility is to approximate  jphenotypehhgenotypeP lk  by HLA nomenclature relations.  

 

Example 5 

A31 is mapped to {A*02:65, A*31:01…A*31:71}. The size of the set is 72 alleles (two fields only). 

Therefore the probability the A31 will be A*02:65 is 1/72. Consequently the probability the A31 will 

be A*02 is also 1/72. Genotypes containing A*02 are suppressed among all genotypes of phenotype 

with A31. 

□ 

Experiment 4 

Data set:  

 The Cord Blood Bank Czech Republic, November 2008, n = 2825 

 Additional individual with the phenotype PA: A11,28 B*35:XX, DRB1*01:XX. 
Required HLA haplotypes:  

 A*-B*-DRB1* (low resolution - low res. - low res.) 
Results: Table 11 shows distribution of possible genotypes of the phenotype after run of the EM 

algorithm and behavior of adjusted maximization step using equation (21). 

  
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Iteration GENOTYPE 1 

hk: A*02,B*35,DRB1*01 

hl: A*11,B*35,DRB1*01 

GENOTYPE 2 

hk: A*68,B*35,DRB1*01 

hl: A*11,B*35,DRB1*01 

GENOTYPE 3 

hk: A*69,B*35,DRB1*01 

hl: A*11,B*35,DRB1*01 

38 14,69% 85,31% <0,01% 

Table 11: Distribution of possible genotypes of the phenotype after run of the EM algorithm in 

the experiment 

 

This experiment shows the correction by equation (21) managed to prioritize genotype 2 over 

the genotype 1.  

□ 

 

5.5 Higher to lower typing resolution 
Mapping of higher resolution to lower resolution is quite straightforward. Split serology 

antigen can be easily mapped to broad. Allele codes could be mapped to serology code(s) by [52]. 

Other mapping could be obtained by combination of these two. Therefore we can always get set of 

lower typing resolution codes that are assigned to higher typing resolution code. 
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Example 6 

A*01AB is mapped to A*01 (intermediate to low resolution)  

A*01AB is mapped to A1 (intermediate to split/broad resolution)  

□ 

5.6 Data preprocessing 
For practical implementation of the algorithm, data preprocessing steps are necessary. 

Challenges and problems of the input database are described in the chapter 5.1 

 

5.6.1 Checking of input data 

As the first step, the preprocessor should check input data for errors and bring them to the 

consistent form [51].  

 

5.6.2 Grouping of phenotypes 

Summarization in equation (15) runs over all phenotypes. In highly polymorphic system, it is 

more efficient to sum over individuals, because there are fewer individuals sampled than potential 

phenotypes. It is also very useful to group all the same phenotypes in the sample into one record and 

count number of occurrences jn  of such phenotype. This is especially useful for individual with 

missing data (e.g. HLA-AB typed donors). 

 

5.6.3 Feasible genotypes and haplotypes 

The probabilities appearing in equations (12)-(16) are indexed by both haplotype and genotype 

numbers. Given the observed phenotypes, we can generate and index list of all feasible genotypes 

and haplotypes as proposed in [43]. 

The indexing of haplotypes is natural since a haplotype could be shared by many genotypes 

and phenotypes. However we have found the indexing of genotypes does not substantially increase 

the performance of the EM algorithm on typical HLA samples, because there is almost no 

redundancy.  

Experiment 5 

Data set: The Cord Blood Bank Czech Republic, November 2008, n = 2825 

Required HLA haplotypes: A*-B*-DRB1* (low resolution - low res. - low res.) 

Results:  

 3887 possible haplotypes 

 20198 feasible genotypes 

 20153 unique genotypes 
□ 
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During initialization phase of the EM algorithm all possible genotypes derivable from an input 

phenotype should be generated. This includes finding mapping of all input HLA codes (including 

missing values) to list of output typing resolution codes. Generating such list is time consuming 

procedure (e.g. HLA antigen to list of alleles mapping) and the list occupies a lot of memory space. 

Therefore we have found useful to cache these lists and reuse them. This is especially useful with the 

mapping of missing values to output typing resolution codes. 

 

5.7 Computational problems 
The EM algorithm can theoretically handle an arbitrary number of polymorphic loci and 

arbitrary level of polymorphism. But in practice it is limited by the number of possible genotypes that 

could be handled by computers. 

Number of possible genotypes is influenced by: 

 Number of polymorphic loci – exponential relation, according to equation (1) 

 Sample size 

 Homozygosis – degree of homozygosis of individuals, number of heterozygous individuals 

 Missing data or typing of individuals at different resolution than required 

 Degree of polymorphism at observed loci 
 
Addressing these issues is the main challenge of the EM algorithm implementation.  
 

5.8 Our implementation 
Our object-oriented implementation of the EM algorithm was built by 64bit version of the 

Embarcadero Delphi XE2 compiler. HLACORE library [53], kindly provided by ZKRD, was used as the 

low level library for handling HLA data according to the HLA nomenclature [15]. 

5.8.1 Universal configuration 

We have implemented uniform solution of input-output typing resolution options, see chapter 

5.2. 

The software covers all desired input-output configurations, see Table 12. Since serology 

typing is declining and less accurate, the serology as output resolution is not our point of interest. It 

is better to map serology data to DNA than vice-versa. 
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 Output data - Required resolution of HLA haplotypes 

Input data Serology 

Broad 

Serology Split DNA low res. DNA interm. 

res. 

DNA high res. 

Missing data 

 

Not needed. Done. Done. Does not 

make sense. 

Done. 

Serology 

Broad 

Mapping is 

not needed. 

Done. Done. Does not 

make sense. 

Done. 

Serology Split Not needed. Mapping is 

not needed. 

Done. Does not 

make sense. 

Done. 

DNA Low res. Not needed. Not needed. Mapping is 

not needed. 

Does not 

make sense. 

Done. 

DNA interm. 

res. 

Not needed. Not needed. Done. Does not 

make sense. 

Done. 

DNA high res. Not needed. Not needed. Done. Does not 

make sense. 

Mapping is 

not needed. 

Table 12: Input and output HLA typing resolutions. 

 

5.8.2 Data preprocessing 

The program implements data preprocessing ideas described in this work, including: 

 During initialization phase, conditional probabilities  jphenotypehhgenotypeP lk  are 

calculated, see chapter 5.4.3. This is used mainly for low resolution output. 

 Memory sharing of haplotypes and genotypes, caching of input-output resolution HLA code 
mappings, see chapter 5.6.3 

 
In order to limit the computational complexity, the user can set limit - maximum acceptable 

number of genotypes per donor ( jc~
), for example 106. This will exclude donors with the poorest 

information about background haplotypes. This approach has to be used carefully as discussed in 
[48] and [54]. 
 

5.8.3 Haplotype data structure and indices 

One of the key issues in the design of HFE algorithm is development of efficient data structure 

that keeps lists of all relevant haplotypes. Fast access to these haplotypes is essential for good 

performance of the HFE algorithm. With the data structure, we perform two critical operations: 

adding new haplotypes (INSERT) and searching for specific haplotype without knowledge of the 

haplotype index (SEARCH). These two operations are frequently called even in the initialization phase 

of the EM algorithm, when the final number of all haplotypes is not known. Then the Expectation 

step of the EM algorithm needs to quickly access specific haplotype with known index (GET) and the 

Maximization step loops though all haplotypes (LOOP) and updates their frequencies. 

In general, a haplotype is a vector of HLA allele/antigen codes, see (26) in chapter 9.2. These 

HLA allele/antigen codes are alpha-numerical strings that can be up to 12 characters long 

(”01:01:01:01N”).  
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Jan Hofmann [55] uses rooted three structures that store antigens/alleles in nodes of the tree. 

First locus is stored in nodes with distance one to the root, second locus in the next level, etc. (see 

Figure 7). 

 

Figure 7: Haplotype data structure as a tree [55] 

 

Data structure of an individual node needs to hold up to thousands of edges to the next level. 

So we still need to address the issue of fast indexing of HLA antigens/alleles in the node and fast 

INSERT operation. The GET operation is now more complicated. So we have rather focused on linear 

data structures. 

Easiest possibility is to index all relevant haplotypes by consequence integers and then store 

them in a list, array or matrix. This is quite easy implementation, requires just O(1) for the INSERT 

and GET operations and LOOP is also easy. But the SEARCH operation requires O(N), which is not 

acceptable. 

We can sort the list of haplotypes by their vector of HLA codes (e.g. alphabetical order). By this 

approach, the SEARCH operation has the complexity O(log(N)), but the INSERT operation has 

increased to O(N log(N)), which might be problematic. We have implemented this approach, but we 

do lazy sorting, e.g. the sorting is not done after every INSERT operation, but after every 100 INSERT 

operations. This decreases 100 times number of calls of the slow sort operation, but increases the 

SEARCH operation by a constant, maximally 100, because these unsorted haplotypes have to be 

checked if SEARCH operation fails on the sorted lists. Constant 100 has been chosen experimentally.  

We have found out the  k constant in the SEARCH operation O(log(N)) = k x log(N) is too high, 

because comparison of two haplotypes requires comparison of several HLA antigen/allele codes, i.e. 

several string operations. Therefore we have encoded haplotype into single integer and reduced the 

haplotype comparison operation by single processor cycle. Encoding is done in this way: 
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 All existing HLA allele and antigen codes at a locus are alphabetically sorted. For example, for 

locus A/A*, we get sequence: “01:01”, “01:02”, etc. 

 We assign them integers, starting from 0. So “01:01” gets 0, “01:02” gets 1, etc. 

 Since there are less than 3000 known alleles at a single locus, all HLA codes at a single locus 

could be encoded by 12 bit integer. 

 Haplotype index is created by concatenation of these HLA code integers. For 5 loci haplotype, 

we get 60 bit integer. Current processors can handle 64 bit integers in single operation. 

5.8.4 Allele list reduction 

Exponential growth of HLA nomenclature allele list in recent years complicates the EM 

algorithm and dramatically increases the computational complexity. However, most of these new 

and rare alleles will never be observed in the sample. Therefore it is good idea to reduce considered 

HLA alleles. This could be done by: 

1. Applying additional knowledge of the sample population or ethnic group and usage of known 

allele list estimated in the past on similar population or ethnic group (e.g. Caucasian). This 

could be for example list of “Common and Well-Documented HLA Alleles” (CWD) [56].  

2. Several runs of the EM algorithm on the sample. We can calculating allele frequencies first, 

then filter less likely ones (e.g. with probability lower than 
n

pi
2

1
 ). 

3. The greedy algorithm that begins with a set of reference alleles defined for particular 

population and adds additional alleles in order by which allele allows the most new donor 

typings to be interpreted. Reinterpretation is done at each cycle and the allele list grows until 

all donors have valid genotype lists. This algorithm has been implemented by NMDP [57]. 

In our implementation, we use the second option, because it is more universal. In case the 

data preprocessing phase finds an HLA code that cannot be interpreted by reduced allele list, it takes 

the first compatible allele outside the filtered range, i.e. it find the most likely allele with the 

probability bellow ip  that interprets the problematic HLA code.  

5.8.5 Partial haplotype list reduction 

Similarly, partial haplotypes (see chapter 9.4) could be pre-estimated and the algorithm can 

reduce haplotype list by filtering those haplotypes that do not match to any of the pre-selected 

partial haplotypes (probability bellow ip ).  

Thanks to strong linkage disequilibrium (see chapter 2.1) we have used this method for B-C 

and DRB1-DQB1 haplotypes. 

5.8.6 Haplotype list reduction 

In extreme case, we can run the EM algorithm with already known list of output haplotypes. 

The EM algorithm ‘just’ estimates their probabilities.  

5.8.7 Genotype list reduction 

If output haplotypes are known before the EM algorithm starts and even their probabilities are 

known (at least approximately), we can filter less likely genotypes (see chapter 5.6.3) with low 

probability. 
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5.8.8 User interface 

 

Figure 8: User interface of our HFE implementation 

 

The algorithm is run via user interface implemented under Windows OS. Figure 8 shows 

screenshot of the window with most important settings: 

 Input: input file with the sample, registry ID selection, file format of the input file (CSV, 

BMDW file format or relational database) 

 Input file filtering: by default, all input phenotypes are accepted, but user can filter out 

phenotypes that do not meet minimum desired level of typing (e.g. low resolution). For 

example, this can be used to filter out donors without DRB1 typing.  

 Loci and output resolution: selection of loci and requested resolution of output haplotypes. 

Resolution can be set individually at each locus (see also chapter 5.2). 
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 EM algorithm options: maximum number of individuals in the sample, finish criteria (see 

chapter 4.5.5), maximum number of iterations 

 Other options: 

o Maximum length of genotype list jc~
 (see chapter 5.8.2). 

o Serology to DNA weighted mapping (see chapter 5.4.3) 

o Genotype list repository (see chapter 5.8.7) 

o Validation tests and distance calculations between result and reference frequencies 

o Multi-thread initialization: possibility to use parallel computing during the data 

preprocessing phase (see chapter 5.6.3) 

 Optional filters: 

o Allele list reduction (see chapter 5.8.4) 

o Partial haplotype list reduction (see chapter 5.8.5) 

o Haplotype list reduction (see chapter 5.8.6)  

 

5.8.9 Hardware 

We have run experiments on a PC with Windows 7 Professional SP1 64bit, Intel Core i3-2120 

CPU @ 3.30 GHz, 16 GB RAM. 

 

5.9 Other studies and implementations of the HFE algorithms 

5.9.1 Small samples 

Computer programs described in most papers work with quite small instances: 

 [58] (EH): max. 30 alleles per loci 

 [35] (HAPLO): up to 114 haplotypes, 114 observed phenotypes, and 500 genotypes. 

 [42]: 8-14 biallelic markers per gene in 300 individuals 

 [10]: 2-8 highly polymorphic loci with 20 possible alleles. They have considered samples 
where the total number of possible haplotypes did not exceed 16384. 

 [41]: 619 individuals, three loci HLA-A, HLA-B, HLA-C, serological testing 
 

One of the first analyses of stem cell donor registries [59] calculated ABDR haplotype 

frequencies of registries in the 22nd edition of the Bone Marrow Donors Worldwide (1997): 

 HLA-A, HLA-B and HLA-DR 

 broad antigens have been preferentially used instead of their splits  

 some registries were excluded from the analysis because of various problems (e.g. deviation 
from HWE).  

 Maximal size of a registry dataset was about 50,000 individuals. 
 

5.9.2 State-of-the-art HLA studies 

HLA system is much more complex, see Table 6. The biggest state-of-the-art HLA studies are 

performed in Germany and the United States, which have the biggest databases of bone marrow 

donor registries: 
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 2003 - German Blood Donors [51]: three loci HLA-A, HLA-B and HLA-DRB1; conversion of 
broad to split antigens, 13,000 individuals, about 10,000 haplotypes; a single individual with 
the typing result A10,19; B15,22; DR5,6 (six broad antigens), has 3456 possible genotypes. 
 

 2005 - German registry ZKRD [60] [61]: three loci HLA-A, HLA-B and HLA-DRB1; about 1 
million donors, 412,494 of these individuals were typed for HLA-DRB1 at low or intermediate 
resolution and another 90,673 at high resolution level. HLA-A and B were analyzed using 
serological nomenclature without associated antigens. For high res. frequencies donors only 
typed for A and B were excluded due to algorithmic limitations. Low resolution data were 
then used to correct a possible selection bias in the restricted data set. Computation took 2 
resp. 9 days. 

 

 2006 – ZKRD (presented at the WMDA conference 2006):  HLA-A, HLA-B and HLA-DRB1 high 
resolution haplotype frequencies estimations; 120,000 individuals; 107 haplotypes to 
consider; up to 5 x 108 diplotypes per phenotype to consider; description matrix (specifying 
which pairs of haplotypes are to be considered for a given phenotype) has 1019 elements, 
1010 of them are positive 
 

 2007 – NMDP [62]: three loci HLA-A (max. 21 antigens), HLA-B (max. 42 antigens) and HLA-
DRB1 (max. 250 alleles); 3.5 million individuals; 21 x 42 x 250 = 220,500 total haplotypes; a 
single individual with the typing result A10,19; B15,22 (DRB1 not tested), has more than 9.5 
million possible genotypes. 5.5 hours running on a cluster of five Sun Fire V100 servers (2 GB 
RAM). 

 

 2007 – NMDP [62]: five loci HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1; high resolution; 
comparison of US ethnic groups; up to 6,500 individuals in one ethnic group. Because of 
limitation of the EM algorithm at greater than three loci with registry data, four- and five-
locus haplotype frequencies were estimated using initial EM runs on the two tightly linked 
locus clusters (C-B and DRB1-DQB1) followed by a second three-locus EM run that 
considered the tightly linked clusters as a single locus. 

 

 2008 - ZKRD (Carlheinz Muller, personal communication): five loci HLA-A, HLA-B, HLA-C, HLA-
DRB1 and HLA-DQB1; tens of thousands individuals; high resolution; computed on server 
with 64 GB RAM; program runs more than ten hours. 
 

 2010 – ZKRD [63] [64]: five loci HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1; hundreds of 
thousands of individuals; high resolution. 
 

 2011 – DKMS [65]: 20 thousand Polish stem cell donors, four loci: HLA-A, HLA-B, HLA-C and 

HLA-DRB1. 

 2012 – NMDP (Loren Gragert, presented at the 16th IHIWS conference in Liverpool):  
o five loci HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 
o NMDP can run EM algorithm on BMDW database, for every registry and every 

country 
o only DNA based typing is considered, but donors without C and DQB1 typing are still 

included 
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o Experience: genotypic ambiguity of BMDW HLA typing is too high for conventional 
EM to be practical. Two main strategies were implemented to reduce ambiguities, 
reducing ambiguity: Allele list reduction by greedy algorithm and Blocks / 
Imputation. 

 

5.10 Comparison of our implementation with others 
For comparison between the main HFE implementations, including our algorithm, see the 

Appendix D. The table shows applications of HLA HFE algorithms of research groups that cooperate in 

the Registry Diversity Subcommittee of the World Marrow Donor Association (WMDA) Information 

Technology Working Group. It gives overview of technology (platforms, programming languages), 

limitations of the algorithms (maximum number of loci, maximum number of phenotypes, accepted 

input), initial and terminating conditions, internal methods (mapping of alleles, handling of 

ambiguities), running time on common tasks and practicalities (output format). 
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6. Reliability of HFE algorithm on registry datasets 
This chapter describes own research results of the reliability of HFE algorithm on real registry 

datasets. The reliability of HFE depends on typing ambiguities of registry donors, computational 

complexity and used heuristics, population size, sample size and population homogeneity. We will 

study these parameters independently in controlled data environment and finally, we will combine 

them together, like in real registry dataset.  

6.1 Typing ambiguities and computational complexity 
Key factors that influence the reliability of HFE are the structure of the registry and ambiguity 

of HLA typing results of donors in the sample. This also influences computational complexity of the 

HFE algorithm, especially values jc~
. 

Previous studies have also pointed out this important aspect. ZKRD has visualized structure of 

the registry [63] by three-dimensional graph. Every field represents different combination of 

missing/low-resolution/intermediate-resolution/high-resolution typing at five loci (A*, B*, C*, 

DRB1*, DQB1*). The horizontal axe shows the first class loci and the vertical axe shows the second 

class loci. The more dark blue, the relative number of donors is higher. 

 

Figure 9: Visualization of the HLA typing ambiguities in ZKRD [63] 

 

We need different visualization that would better represent computational complexity and 

value jc~
- number of genotypes per donor. Computational complexity is one of the main obstacles 

when someone tries to calculate HFE. Following example demonstrates the problem. 

Example 7 

 Output: A*-B*-C*-DRB1*-DQB1* high resolution haplotypes 

 HLA nomenclature: April 2012 

 An individual with HLA type A*01:01, B*08:01, C*07:01, DRB1*03:01, DQB1*02:01 is high 

resolution typed, homozygous, so there is just one possible genotype, 1~ jc  

 An individual carrying HLA type A2, B7,62 was typed by serology techniques, so there are 

many possible genotypes, 
26106~ jc . CSCR registry has more than 20 individuals with this 

HLA type. 

□ 
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This example shows jc~
 can grow to more than 25 digits. In the same way, we have analyzed all 

donors in a registry and visualized number of genotypes per donor   jc~lg  vs. number of donors 

carrying such level of ambiguity    jcD ~lg . E.g. the first donors in the Example 7 has    0~lg jc

and the second has    26~lg jc . 

 

Figure 10: Visualization of the HLA typing ambiguities and computational complexity in CSCR, 

May 2012 

The graph shows huge number of donors with 2510~ jc . Most of these donors are only serologically 

AB typed. 

 

Figure 11: Visualization of the HLA typing ambiguities and computational complexity in ZKRD, 

May 2012 

 

Figure 12: Visualization of the HLA typing ambiguities and computational complexity in DKMS 

Polska, May 2012 [67] 
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Figure 13: Visualization of the HLA typing ambiguities and computational complexity in CSCR, 

May 2012 

The graph shows the most of the donors have 1010~ jc . There are only relatively few donors with 

reasonable number of genotypes. 

 

Figure 14: Visualization of the HLA typing ambiguities and computational complexity in ZKRD, 

May 2012 

The graph shows different the ZKRD registry has much more donors that are better typed than CSCR. 

There are more than 500 000 donors with 510~ jc .  

 

Figure 15: Visualization of the HLA typing ambiguities and computational complexity in DKMS 

Polska, May 2012 
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Figure 16: Visualization of the HLA typing ambiguities and computational complexity in CSCR, 

May 2012 (extract from previous graph) 

The graph shows in detail all donors with reasonable level of HLA ambiguities. Only few hundred 

donors are relevant for HFE algorithm (5 loci, high resolution). 
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Following table shows comparison of the datasets. 

Dataset / registry R 

CSCR, May 2012 23.3 

ZKRD, May 2012 15.3 

DKMS Polska, May 2012 7.3 

Table 13: Ambiguity rank of selected registries 

 

6.2 Typing ambiguities 
Previous graphs show extremely big computational complexity of the HFE problem on real 

registry data. Donors with high level of ambiguity (> 1010) do not bring a lot of specific information 

about two underlying haplotypes, because these haplotypes are “hidden” in the set of all compatible 

genotypes (up to 1027). HFE benefit of such donors is very poor, but they bring extreme increase in 

the computational expenses.  

Since 2008, we participate in the Registry Diversity Subcommittee of the Information 

Technology Working Group of the World Marrow Donor Association (WMDA). The group, lead by 

Martin Maiers (USA), Steven GE Marsh (UK) and Carlheinz Muller (Germany) is a great platform for 

discussion, research and development of HFE methods. [56] 
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We have compared different programs for HLA haplotype frequency estimation in a controlled 

data environment. Simulated data set of the same sample size (100 000 individuals) contained the 

same donors, but with different proportions of typing ambiguities.  

The work, summarized below, was presented at the 15th IHIWS conference [66]. Our HFE 

implementation has number 1. 
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6.3 Population and sample size 
Let’s now focus on sample size and its influence on the reliability of HFE. For this purpose, we have 

done the following experiment (see also chapter 4.7.2): 

 Generate population of N individuals (genotypes). Calculate “Population HF”.  

 Simulate the registry by sampling the population. Take random subsets of 500, 1000, 2000, 

4000, etc. individuals. Calculate “Sample HF”.  

 Convert genotypes to phenotypes (hide phasing information). Estimate HFE, using the 

sample by EM algorithm.  

 Compare distance (22) between HFE of the EM algorithm, “Sample HF” and “Population HF”. 

Results of these experiments are shown in the following graphs. 

 

Figure 17: Sample size and reliability of HFE: Artificial population of 8 000 individuals based on 

[HPE-2010], five loci high resolution typing (A-B-C-DRB1-DQB1).  

 

Figure 18: Sample size and reliability of HFE: Artificial population of 512 000 individuals based 

on [HPE-2010], five loci high resolution typing (A-B-C-DRB1-DQB1).  
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Figure 19: Sample size and reliability of HFE: Artificial population of 10 000 000 individuals 

based on [HPE-2010], five loci high resolution typing (A-B-C-DRB1-DQB1).  

This graph simulates population of 10 million individuals, similar size like the population of the Czech 

Republic and other Central European countries. The experiment gives us very good understanding of 

the sampling error of the small to middle size stem cell donor registry. The sampling error of all 

donors recruited in the Czech Republic (less than 100 thousand donors) is more than 0.1. 

We can also compare HFE of the EM algorithm (on the sample) and the Sample HF.  

 

Figure 20: Comparison of HFE and the sample HF: Artificial population of 8 000 individuals 

based on [HPE-2010], five loci high resolution typing (A-B-C-DRB1-DQB1).  
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When the sample size reaches 100% of the size of the population, there is no sampling error, because 

the sample contains the whole population. But the beginning of the curve might bring unexpected 

(and unreliable) results. With small sample sizes (up to 17% of the population), the EM algorithm 

may outperform the sample itself. This paradox could be observed mainly in small populations. If we 

increase the size of the population, we get the following result. 
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Figure 21: Comparison of HFE and the sample HF: Artificial population of 512 000 individuals 

based on [HPE-2010], five loci high resolution typing (A-B-C-DRB1-DQB1).  

For small sample sizes, the EM algorithm may be still slightly better than the sample itself, but only 

until the sample size reaches about 1% of the population. For the population of the size of the Czech 

Republic, this drops to 0.05% of the population size. 

 

Figure 22: Comparison of HFE and the sample HF: Artificial population of 10 000 000 

individuals based on [HPE-2010], five loci high resolution typing (A-B-C-DRB1-DQB1).  
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true frequency is less than 0.0625, so the algorithm overestimates frequencies of these two 

haplotypes. But there is a quite good chance at least one of remaining 14 haplotypes exists in the 

population. Then EM algorithm finds a haplotype that does not exist in the sample, but exists in the 

population and the overall HFE is better estimates of the sample itself. 

We have discussed this topic with Carlheinz Muller which results in two additional comments: 

 Observations for small sample size depends on ignoring confidence intervals which are 

extremely wide in such cases. Small sample sizes have big sampling error and therefore 

observations related to such samples are not reliable. 

 “The major drawback of EM is that it incorrectly works on a continuous instead of a discrete 

number space. In a sample, all allele or haplotype counts must be integers and the maximum 

should only be sought within such an integer valued domain. … anything depending on 

seriously ignoring this constraint refers to artifacts or useless or unreliable numbers produced 

by this algorithm. This refers in particular to the accuracy of estimates and the low-frequency 

estimates (low = "count in the sample < 3").” 

6.4 Population homogeneity 
All experiments in the previous chapter were done using artificial population based on [HPE-

2010]. But other populations, represented by other HF sets, are more homogenous (see Appendix A).  

To test this influence, we have generated several artificial populations using different datasets 

in the Appendix A. We have found out the HFE depends on the population homogeneity – higher 

homogeneity of the population results in better HFE. The following graph shows the extreme case of 

artificial population based on [FI-2010]. HFEs are 2-10x better than those shown on the Figure 18. 

 

Figure 23: Sample size and reliability of HFE: Artificial population of 512 000 individuals based 

on [FI-2010], five loci high resolution typing (A-B-C-DRB1-DQB1).  

We expect the Czech population is slightly more homogeneous than the German population 

(see Appendix A). This is probably caused by smaller population and country size. It means 

simulations of Czech HFEs could be done using [HFE-2010] and our conclusions are the same or 

slightly worse than the reality (e.g. Figure 19). This means we are on the save side.  
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6.5 Computational complexity 
As discussed earlier, donors with high level of ambiguity (> 1010) do not bring a lot of specific 

information about two underlying haplotypes, but bring extreme computational complexity. Can we 

exclude them? What is the influence on the HFE? 

In order to simulate this dependency, we have selected all German phenotypes [BMDW-

201205] that are at least intermediate resolution typed at loci A*, B*, C*, DRB1* and DQB1*. There 

were 380567 of such records. We have sorted them by growing jc~
. Then, a subset of N first records 

was selected, HFE was performed and results were compared to [HFE-2010]. 

 

 

Figure 24: Growing sample size, computational complexity vs. reliability of HFE. Used data: the 

ZKRD registry (May 2012), at least intermediate resolution typing (A-B-C-DRB1-DQB1), 5 loci 

high resolution HFE, reference haplotype frequencies [HPE-2010]. 

The Figure 24 shows results of the simulation on ZKRD registry data. First estimate uses just 

about 1 300 donors who are high resolution typed and homogeneous ( 1~ jc ). The third estimate 

uses all high resolution typed donors ( 16~ jc , about 90 000 individuals) and the estimate is very 

good. Mixture of high and intermediate resolution typed donors increase the distance from [HPE-

2010], but with growing sample size, the distance gets closer and closer to [HPE-2010]. However, 

computational costs (time and memory) grow exponentially, so at final stage we managed to include 

451 190 donors with algorithm running time 7,5 hours (PC with Windows 7 Professional SP1 64bit, 

Intel Core i3-2120 CPU @ 3.30 GHz, 16 GB RAM) and the distance to [HPE-2010] was just 0.1. 

6.6 Simulation of real dataset 
We have seen the reliability of HFE algorithm depends on several factors, such as typing 

ambiguities of registry donors, computational complexity (and limitations of hardware), population 
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these factors. What is the reliability of HFE for a real population? Especially, what is the reliability of 

HFE for the Czech population? 

In order to simulate the reliability of HFE on a registry dataset, we need to have similar data in 

a controlled data environment. 

Therefore, we have designed and run this complex simulation: 

1. Population homogeneity (see chapter 6.4): Take appropriate high resolution HF, with similar 

homogeneity as real population. These are “background haplotype frequencies”. 

2. Population size (see chapter 6.3): Generate the artificial population - create individuals 

according to the population model (HFE). As a result, we have phase-known population and 

its “true haplotype frequencies”. Size of the artificial population will be the same as the real 

population. 

3. Sample size (see chapter 6.3): Simulate the recruitment process - do the sampling of the 

artificial population. Sample size will be the same as the registry dataset. We get “sample 

haplotype frequencies”. Hide the phase information in the sample, i.e. convert genotypes to 

phenotypes. Every real donor has corresponding artificial donor in the simulated dataset 

(donor pair).  

4. Typing ambiguities (see chapters 6.1 and chapter 6.2): For every real donor, analyze the 

typing ambiguity. Simulate the HLA typing of the corresponding artificial donor to the similar 

level of typing ambiguity as the real donor. We get simulated dataset. 

5. Computational complexity (see chapter 6.5):  Estimate haplotype frequencies on the 

simulated dataset (“estimated haplotype frequencies”) using the same techniques, 

algorithms and heuristics as on the real registry dataset. 

6. Reliability of HFE: Count the distance (22) between “estimated haplotype frequencies” and 

“true haplotype frequencies”. This is also approximation of the reliability of HFE of the real 

registry dataset. If “estimated haplotype frequencies” do not contain all loci as “true 

haplotype frequencies” or some of these loci are not estimated at high resolution level, we 

need to convert “true haplotype frequencies” to the same resolution as “estimated 

haplotype frequencies”, before the distance can be counted. 

The first step is difficult, because we need to take some HFs with similar homogeneity as real 

population. But we may not know precisely the homogeneity of the real population. As discussed in 

the chapter 6.4, it is better to take HFs of a population with lower homogeneity than the real 

population. 

But the trickiest is the fourth step that has to be done very carefully. Artificial donor virtual 

HLA typing process must maximally correspond to real donor HLA typing techniques. But the artificial 

donor is different individual (from different population) than the real donor, which complicates this 

step.  

We can do virtual intermediate resolution typing by applying commercial SSOP typing kits and 

their characteristics. This technique has been implemented by NMDP (not published). A problem 

could be selection of the vendor, since we don’t know by what typing technique (serology, SSP, SSO, 

SBT) and what typing kit the real donor was typed.  
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We have implemented different approach that will be demonstrated by the following example. 

6.6.1 Example: Simulation of the CBB Czech Republic 

In this example, we will simulate HFE of the Czech population, using the real dataset of the Cord 

Blood Bank Czech Republic. Simulation steps are: 

1. We take German population and [HPE-2010] as background haplotype frequencies. 

Germany is neighbor country, has the biggest registry in Europe and both populations are 

Caucasian. We expect the homogeneity of the German population is lower than the 

homogeneity of the Czech population, because Germany is about 8x bigger country. This 

is also confirmed by HFE (see the Appendix A). 

2. The Czech population has about 10 million people (May 2012), generate artificial 

population of 10 million individuals. 

3. The CBB has less than 4000 CBUs (May 2012). Simulate recruitment process of 4000 

individuals.  

4. (A) Replace artificial (German) donor by reference donor phenotype in the (German) 

registry. 

i. Select all donors in the reference (German) registry [BMDW-201205] with no 

HLA mismatch [7] (HLA-A, -B, -C, -DRB1, -DQB1) against the artificial donor. 

ii. In the set of these donors, find a donor with the most similar typing 

ambiguity as the real donor (CBU) in the simulated dataset (CBB Czech 

Republic) - take the one with the smallest absolute distance of jc~
 between 

reference (German) donor and real CBU. This reference donor has our 

simulated HLA typing of the artificial donor. 

5. Estimate HF of the simulated dataset. 

6. Count distance between “estimated haplotype frequencies” of the simulated dataset and 

“true haplotype frequencies” of the artificial population. 

By this approach we get following key properties of the simulated dataset: 

1. Similar population homogeneity, maybe little bit more pessimistic than the reality. 

2. Same population size. 

3. Same sample size. 

4. Similar typing ambiguities ( jc~
), based on real HLA typing techniques. 

5. Similar computational complexity, see Figure 25. 

6. Similar reliability of HFE, see Figure 26. 
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Figure 25: Simulation of the real registry (Cord Blood Bank of the Czech Republic) by artificial 

population (based on German HFE) and virtual recruitment and virtual donor typing. Used 

data: the ZKRD registry (May 2012), [HPE-2010], CBB Czech Republic (May 2012). 5 loci high 

resolution genotypes (A-B-C-DRB1-DQB1). 

 

The sampling error of 4000 individuals in our artificial 10 million population is 0.275. The HFE 

algorithm is limited mainly by computational complexity, so not all donors could be considered in the 

estimation. The Figure 26 shows dependency between number of donors considered by HFE 

algorithm and reliability of haplotype frequency estimates.  

 

Figure 26: Simulation of reliability of HFE of the Cord Blood Bank of the Czech Republic (May 

2012).  
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The implementation (A) of the step 4 in this example does very realistic virtual HLA typing of 

the artificial donor and it keeps typing relations between loci as it was done by real HLA typing 

techniques – for example using ABDR SSP typing kits.  

However, this approach has also some drawbacks. It may lead to replacement of low 

resolution ABDR typed donor by intermediate resolution AB typed donor with the same jc~
. We can 

improve the virtual HLA typing by searching only ABDR typed donors, if the donor was ABDR typed 

and other similar improvements, but it would be difficult to cover all possibilities and exceptions.  

Other option would be to “type” loci individually, which is also common practice in the HLA 

laboratories that use typing kits focused only on one locus. We can also do virtual HLA typing at each 

locus independently. This means we need several real donors to simulate HLA typing of one artificial 

donor. 

The alternative implementation (B) of the step 4: 

4. (B) For every locus (HLA-A, -B, -C, -DRB1, -DQB1), simulate the HLA typing process by 

replacing artificial donor typing by reference donor type at the loci.  

i. Select all donors in the reference (German) registry [BMDW-201205] with no 

HLA mismatch [7] at the locus with the artificial donor. 

ii. In the set of these donors, find a donor with the most similar typing 

ambiguity at the locus as the real donor (CBU) in the simulated dataset (CBB 

Czech Republic) - take the one with the smallest absolute distance of j
Lc~  

between reference (German) donor typing at the locus and real CBU typing 

at the locus. This reference donor has our simulated HLA typing of the 

artificial donor at the locus. 

Both approaches (A) and (B) are extremely computationally demanding and such simulation takes 

several days. We have to: 

 Analyze and calculate length of the genotype lists for all donors in both the real and the 

reference dataset. In our case, it means more than 4 million donors for approach (A) and 

more than 20 million loci for approach (B). 

 Run the search for all donors of the simulated dataset in the reference dataset. For the 

registry like in our example (4000 donors only), it means to run 4000 donor searches in the 

file of 4 million donors. For approach (B) it is even 20 000 donor searches in the reference 

dataset. These results must be sorted by decreasing smallest absolute distance of genotype 

list length, which is also not trivial procedure. 

Simulation by approach (B) is more demanding, but gets better results, especially for better typed 

donors (see Figure 25). This is as expected – it might be difficult to find well typed reference donor, 

HLA compatible with the artificial donor. However, if we search by individual loci, it is more likely we 

will find a well typed reference donor, matching with the artificial donor at selected locus. 
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7. Results of HFE on registry datasets 
In this chapter we will present HFE of several populations, mainly in the Central Europe. Given 

a stem cell donor registry dataset, the goal is to estimate the “best possible” haplotype frequencies 

for the registry population. The “best” means: 

 Maximum number of loci, highest possible typing resolution. Gold standard is the estimation 

of 5 loci high resolution haplotype frequencies (A-B-C-DRB1-DQB1). 

 Maximum reliability of estimates, so they represent the whole population.  

These two criteria go against each other – if we estimate higher resolution haplotype 

frequencies with more loci, the reliability will be lower than haplotype frequencies with lower 

resolution or with less loci. 

7.1 Hungary 

 

 

Figure 27: Visualization of the HLA typing ambiguities and computational complexity in the 

Hungarian registry: 5 loci high resolution haplotype frequencies (A-B-C-DRB1-DQB1), May 

2012. 

The Hungarian registry (May 2012) has 6366 active potential stem cell donors in the registry. 

There are almost no donors with small number of typing ambiguities, e.g. only 2 high resolution A-B-
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C-DRB1-DQB1 typed donors (see Figure 27). Even estimation of HLA-A allele frequencies is not 

reliable, because only three high resolution typed HLA-A alleles can be found in the dataset (A*01:01, 

A*02:01 and A*03:01). 

This means we cannot estimate high resolution allele and haplotype frequencies. But we can 

try to estimate low resolution A-B-C-DRB1-DQB1 frequencies.  

 

Figure 28: Visualization of the HLA typing ambiguities and computational complexity in the 

Hungarian registry, 5 loci low resolution haplotype frequencies (A-B-C-DRB1-DQB1), May 

2012. 

This is computationally feasible, but not reliable, since there are only 28 donors typed at all 

five loci by DNA typing techniques. HFE of the simulated dataset have distance 0.452 from the true 

frequencies (estimation of the reliability of 5 loci low resolution haplotype frequencies). 

So finally, we can estimate low resolution ABDR (A-B-DRB1) haplotype frequencies. The 

registry has 3471 ABDR typed donors (54.5%), the rest is AB typed only. 

 

Figure 29: Visualization of the HLA typing ambiguities and computational complexity in the 

Hungarian registry, 3 loci low resolution haplotype frequencies (A-B-DRB1), May 2012. 
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Table bellow shows results of the HFE algorithm, considering all donors, including those AB 

typed only. 

Rank A* B* DRB1* Frequency 

1 01:XX 08:XX 03:XX 0.056816 

2 02:XX 18:XX 11:XX 0.0157 

3 02:XX 44:XX 04:XX 0.014903 

4 02:XX 13:XX 07:XX 0.012188 

5 02:XX 44:XX 16:XX 0.011933 

6 02:XX 27:XX 16:XX 0.011915 

7 02:XX 15:XX 04:XX 0.010172 

8 03:XX 07:XX 15:XX 0.009535 

9 03:XX 35:XX 01:XX 0,008859 

10 02:XX 08:XX 03:XX 0,008491 

Table 14: Most frequent ABDR low resolution haplotype frequencies of the Hungarian registry 

(May 2012). 

 

The simulated datasets has average distance 0.13 from the population, which is also 

estimation of the registry sampling error for ABDR low resolution haplotype frequencies. HFE of the 

simulated datasets have avg. distance 0.324 from true frequencies – this is also rough estimation of 

the reliability of ABDR low resolution haplotype frequencies. 

 

7.2 Slovakia 
There are two registries in the Slovak Republic – one for adult donors (SK) and one public cord 

blood bank (SKCB). The adult donor registry has 3144 donors (May 2012) and the CBB has 1734 units 

(May 2012). Together, we have 4878 individuals and almost all of them are ABDR typed.  
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Figure 30: Visualization of the HLA typing ambiguities and computational complexity in the 

Slovak registries (SK, SKCB), 5 loci high resolution haplotype frequencies (A-B-C-DRB1-

DQB1), May 2012. 

As we can see from the graph, there are about 1200 very well typed donors. This number is 

already comparable with African American, Hispanic and Asian ethnic groups used in the HFE of the 

American study [62]. 

The simulated datasets have average distance 0.27 from the population, which is also 

estimation of the registry sampling error for A-B-C-DRB1-DQB1 high resolution haplotype 

frequencies. HFE of the simulated datasets have average distance 0.444 from true frequencies.  
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Rank A* B* C* DRB1* DQB1* Frequency 

1 01:01 08:01 07:01 03:01 02:01 0,043228 

2 03:01 07:02 07:02 15:01 06:02 0,025822 

3 25:01 18:01 12:03 15:01 06:02 0,012463 

4 02:01 07:02 07:02 15:01 06:02 0,012246 

5 02:01 38:01 12:03 13:01 06:03 0,01157 

6 02:01 44:02 07:04 16:01 05:02 0,010398 

7 02:01 15:01 03:04 04:01 03:02 0,008965 

8 02:01 44:02 05:01 04:01 03:01 0,007578 

9 02:01 13:02 06:02 07:01 02:01 0,006094 

10 02:01 13:02 06:02 07:01 02:02 0,006094 
Table 15: Most frequent ABCDRDQ high resolution haplotype frequencies of the Slovak 

population (May 2012). 

 

Computational complexity of the estimation of low resolution ABCDRDQ haplotype frequencies is 

shown on the Figure 31 and results are provided in the Table 16. 

 

Figure 31: Visualization of the HLA typing ambiguities and computational complexity in the 

Slovak registries (SK, SKCB), 5 loci low resolution haplotype frequencies (A-B-C-DRB1-DQB1), 

May 2012. 
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Rank A* B* C* DRB1* DQB1* Frequency 

1 01:XX 08:XX 07:XX 03:XX 02:XX 0,062804 

2 03:XX 07:XX 07:XX 15:XX 06:XX 0,027063 

3 02:XX 18:XX 07:XX 11:XX 03:XX 0,017698 

4 02:XX 07:XX 07:XX 15:XX 06:XX 0,015893 

5 02:XX 44:XX 05:XX 04:XX 03:XX 0,014746 

6 02:XX 15:XX 03:XX 04:XX 03:XX 0,012922 

7 02:XX 13:XX 06:XX 07:XX 02:XX 0,012229 

8 02:XX 38:XX 12:XX 13:XX 06:XX 0,011592 

9 23:XX 44:XX 04:XX 07:XX 02:XX 0,011306 

10 25:XX 18:XX 12:XX 15:XX 06:XX 0,010862 
Table 16: Most frequent ABCDRDQ low resolution haplotype frequencies of the Slovak 

population (May 2012). 

 

7.3 Czech Republic 

 

 

Figure 32: Visualization of the HLA typing ambiguities and computational complexity in the 

Czech registries (CS, CS2), 5 loci high resolution haplotype frequencies (A-B-C-DRB1-DQB1), 

May 2012. 
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There are two adult registries (Czech Stem Cell Registry and Czech National Marrow Donors 

Registry) and one public cord blood bank in the Czech Republic – together, they have 62 084 

individuals (May 2012). We have already shown example of simulation of the CBB (see Figure 25).  

Rank A* B* C* DRB1* DQB1* Frequency 

1 01:01 08:01 07:01 03:01 02:01 0,074842 

2 03:01 07:02 07:02 15:01 06:02 0,048162 

3 02:01 13:02 06:02 07:01 02:02 0,022213 

4 02:01 07:02 07:02 15:01 06:02 0,019257 

5 01:01 57:01 06:02 07:01 03:03 0,014887 

6 23:01 44:03 04:01 07:01 02:02 0,014544 

7 03:01 35:01 04:01 01:01 05:01 0,01417 

8 25:01 18:01 12:03 15:01 06:02 0,011151 

9 02:01 44:02 05:01 04:01 03:01 0,010263 

10 30:01 13:02 06:02 07:01 02:02 0,009327 

Table 17: Most frequent ABCDRDQ high resolution haplotype frequencies of the Czech 

population (May 2012). 

 

Average distance of high resolution HFEs of the simulated datasets to the true frequencies is 0.355.  

Rank A* B* C* DRB1* DQB1* Frequency 

1 01:XX 08:XX 07:XX 03:XX 02:XX 0,064548 

2 03:XX 07:XX 07:XX 15:XX 06:XX 0,040355 

3 02:XX 13:XX 06:XX 07:XX 02:XX 0,019092 

4 02:XX 44:XX 05:XX 04:XX 03:XX 0,017204 

5 02:XX 07:XX 07:XX 15:XX 06:XX 0,017202 

6 23:XX 44:XX 04:XX 07:XX 02:XX 0,012991 

7 02:XX 18:XX 07:XX 11:XX 03:XX 0,012938 

8 03:XX 35:XX 04:XX 01:XX 05:XX 0,012271 

9 02:XX 15:XX 03:XX 04:XX 03:XX 0,011751 

10 01:XX 57:XX 06:XX 07:XX 03:XX 0,010672 
Table 18: Most frequent ABCDRDQ low resolution haplotype frequencies of the Czech 

population (May 2012). 

 

Average distance of low resolution HFEs of the simulated datasets to the true frequencies is 0.262.  

The following results will be presented without simulated estimation of distance to the true 

frequencies. It is not clear whether simulation can be used for populations that are far from 

reference Caucasian population (north Europe, Cyprus, Africa, etc.). Finish population is much more 

homogeneous than reference German population, but there could be also other hidden problems 

(e.g. linkage disequilibrium). 
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7.4 Finland 

Rank A* B* C* DRB1* DQB1* Frequency 

1 03:01 35:01 04:01 01:01 05:01 0,115949 

2 01:01 08:01 07:01 03:01 02:01 0,066685 

3 03:01 07:02 07:02 15:01 06:02 0,043546 

4 02:01 27:05 02:02 08:01 04:02 0,028982 

5 02:01 07:02 07:02 15:01 06:02 0,028114 

6 02:01 15:01 03:04 04:01 03:02 0,025415 

7 03:01 07:02 07:02 13:01 06:03 0,023425 

8 02:01 15:01 04:01 08:01 04:02 0,021335 

9 02:01 15:01 03:03 13:01 06:03 0,020245 

10 02:01 13:02 06:02 07:01 02:02 0,017724 
Table 19: Most frequent ABCDRDQ high resolution haplotype frequencies of the Finnish 

population (May 2012, 980 donors used, FI and FICB datasets). 

 

Rank A* B* C* DRB1* DQB1* Frequency 

1 03:XX 35:XX 04:XX 01:XX 05:XX 0,096065 

2 01:XX 08:XX 07:XX 03:XX 02:XX 0,051767 

3 03:XX 07:XX 07:XX 15:XX 06:XX 0,036495 

4 02:XX 15:XX 03:XX 04:XX 03:XX 0,027472 

5 02:XX 07:XX 07:XX 15:XX 06:XX 0,026341 

6 03:XX 07:XX 07:XX 13:XX 06:XX 0,02582 

7 02:XX 27:XX 02:XX 08:XX 04:XX 0,023214 

8 02:XX 15:XX 03:XX 13:XX 06:XX 0,021598 

9 02:XX 13:XX 06:XX 07:XX 02:XX 0,020913 

10 02:XX 15:XX 04:XX 08:XX 04:XX 0,016104 
Table 20: Most frequent ABCDRDQ low resolution haplotype frequencies of the Finnish 

population (May 2012, 3356 donors used, FI and FICB datasets). 

 

7.5 Sweden 

Rank A* B* C* DRB1* DQB1* Frequency 

1 01:01 08:01 07:01 03:01 02:01 0,053935 

2 02:01 07:02 07:02 15:01 06:02 0,033879 

3 03:01 35:01 04:01 01:01 05:01 0,026681 

4 02:01 15:01 03:04 04:01 03:02 0,026362 

5 02:01 40:01 03:04 13:02 06:04 0,021377 

6 02:01 44:02 05:01 04:01 03:01 0,018612 

7 03:01 07:02 07:02 15:01 06:02 0,01501 

8 02:01 15:01 03:03 04:01 03:02 0,010864 

9 02:01 40:01 03:04 01:01 05:01 0,009709 

10 02:01 27:05 02:02 01:01 05:01 0,009526 
Table 21: Most frequent ABCDRDQ high resolution haplotype frequencies of the Swedish 

population (May 2012, 812 donors used, S and SCB datasets). 
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Rank A* B* C* DRB1* DQB1* Frequency 

1 01:XX 08:XX 07:XX 03:XX 02:XX 0,045838 

2 02:XX 44:XX 05:XX 04:XX 03:XX 0,04313 

3 02:XX 15:XX 03:XX 04:XX 03:XX 0,030709 

4 02:XX 40:XX 03:XX 13:XX 06:XX 0,022565 

5 02:XX 07:XX 07:XX 15:XX 06:XX 0,017791 

6 03:XX 07:XX 07:XX 15:XX 06:XX 0,017476 

7 03:XX 35:XX 04:XX 01:XX 05:XX 0,017084 

8 29:XX 44:XX 16:XX 07:XX 02:XX 0,011913 

9 02:XX 40:XX 03:XX 04:XX 03:XX 0,009044 

10 02:XX 08:XX 07:XX 03:XX 02:XX 0,008687 
Table 22: Most frequent ABCDRDQ low resolution haplotype frequencies of the Swedish 

population (May 2012, 3296 donors used, S and SCB datasets). 

 

7.6 Cyprus 
The Cyprus Bone Marrow Donor Registry and Cord Blood Bank register more than 120 thousand 

individuals. It is one of the biggest registries in Europe. 

Rank A* B* C* DRB1* DQB1* Frequency 

1 24:XX 35:XX 04:XX 11:XX 03:XX 0,031285 

2 32:XX 35:XX 04:XX 11:XX 03:XX 0,017396 

3 33:XX 14:XX 08:XX 01:XX 05:XX 0,015306 

4 02:XX 35:XX 04:XX 14:XX 05:XX 0,013654 

5 24:XX 18:XX 07:XX 11:XX 03:XX 0,012446 

6 02:XX 44:XX 02:XX 16:XX 05:XX 0,01128 

7 11:XX 35:XX 04:XX 11:XX 03:XX 0,011086 

8 02:XX 51:XX 14:XX 04:XX 03:XX 0,010685 

9 24:XX 35:XX 04:XX 16:XX 05:XX 0,010259 

10 02:XX 35:XX 04:XX 11:XX 03:XX 0,009933 

Table 23: Most frequent ABCDRDQ low resolution haplotype frequencies of the Greek Cypriot 

adult population (October 2012). 

 

Rank A* B* C* DRB1* DQB1* Frequency 

1 33:XX 14:XX 08:XX 01:XX 05:XX 0,02768 

2 24:XX 35:XX 04:XX 11:XX 03:XX 0,024564 

3 32:XX 35:XX 04:XX 11:XX 03:XX 0,015889 

4 03:XX 35:XX 04:XX 11:XX 03:XX 0,010468 

5 11:XX 35:XX 04:XX 11:XX 03:XX 0,010428 

6 24:XX 18:XX 07:XX 11:XX 03:XX 0,010153 

7 24:XX 35:XX 04:XX 16:XX 05:XX 0,010093 

8 32:XX 40:XX 02:XX 16:XX 05:XX 0,009607 

9 01:XX 08:XX 07:XX 03:XX 02:XX 0,009271 

10 02:XX 39:XX 12:XX 16:XX 05:XX 0,009111 
Table 24: Most frequent ABCDRDQ low resolution haplotype frequencies of the Greek Cypriot 

young population (Cord Blood Bank, October 2012). 
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These results have been used by the Cyprus Bone Marrow Donor Registry to study genetic 

changes of the Greek Cypriot population. The study has shown lower homogeneity of the young 

Cyprus populations thanks to mixture with other nations (immigrants, mixed couples). 

7.7 South Africa 
The South African Bone Marrow Donor Registry (SABMR) has more than 64 thousand donors. 

It is the biggest registry in Africa. In fact, there are only two registries in Africa, so the SABMR is very 

unique for the different ethnic groups in the register. We have been asked by medical director of the 

SABMR to focus on the black population.  

 

Rank A* B* C* DRB1* DQB1* Frequency 

1 02:XX 58:XX 06:XX 11:XX 03:XX 0,013385 

2 02:XX 58:XX 06:XX 11:XX 06:XX 0,013385 

3 29:XX 44:XX 07:XX 11:XX 06:XX 0,011765 

4 02:XX 58:XX 03:XX 13:XX 06:XX 0,010348 

5 30:XX 08:XX 07:XX 03:XX 04:XX 0,009766 

6 02:XX 58:XX 07:XX 07:XX 02:XX 0,009374 

7 68:XX 15:XX 03:XX 11:XX 06:XX 0,008583 

8 30:XX 18:XX 07:XX 11:XX 06:XX 0,00853 

9 02:XX 44:XX 16:XX 13:XX 06:XX 0,008019 

10 02:XX 08:XX 07:XX 03:XX 02:XX 0,007241 
Table 25: Most frequent ABCDRDQ low resolution haplotype frequencies of the Black 

population in South Africa, based on 582 individuals (SABMR, October 2012). 

 

Rank A* B* C* DRB1* DQB1* Frequency 

1 33:XX 07:XX 
 

03:XX 
 

0,042531 

2 33:XX 58:XX 
 

13:XX 
 

0,019308 

3 66:XX 58:XX 
 

13:XX 
 

0,018958 

4 02:XX 44:XX 
 

13:XX 
 

0,018881 

5 33:XX 44:XX 
 

11:XX 
 

0,01813 

6 02:XX 58:XX 
 

11:XX 
 

0,017367 

7 24:XX 07:XX 
 

15:XX 
 

0,015563 

8 02:XX 15:XX 
 

03:XX 
 

0,014922 

9 33:XX 15:XX 
 

11:XX 
 

0,0142 

10 02:XX 58:XX 
 

07:XX 
 

0,013871 

Table 26: Most frequent ABDR low resolution haplotype frequencies of the Black population in 

South Africa, based on 2592 individuals (SABMR, October 2012). 
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7.8 Nigeria 
This work [67] proves the need of setting up the new registry in Nigeria, by comparing Nigerian 

HLA haplotype frequencies with Afro-American frequencies. 
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8. Usage of haplotype frequency estimations 
This chapter presents some applications of HFE.  

8.1 Examples of applications 
HLA haplotype frequency estimates could be used to: 

1. To plan development of a stem cell donor registry, especially its size and effectively in finding 
an unrelated stem cell donor for a new random patient [51] [68] [69] [70] [71]. 

2. To select donors that are HLA-A and HLA-B typed only for prospective HLA-DRB1 typing by 
their HLA-AB-phenotype, so that after a defined number of typings performed the expected 
“population coverage” of the registry is maximized [60]. 

3. Selective recruitment of stem cell donors [72]. 
4. To analyze and compare HLA genetic relations and properties of different populations [73] 

[54] [74]. 
5. To calculate the probability of HLA high resolution match between a particular donor and 

patient. Based on this, we can construct new generation of the search algorithm that ranks 
donors according to their probability of HLA high resolution match with the patient. Such 
state-of-the-art approach is used in Germany (Optimatch®) and in the United States 
(HapLogicSM). 

6. To interfere HLA haplotype information for a specific donor, for who we cannot perform 
family study [75]. 

7. To calculate the probability of finding a suitable related or unrelated stem cell donor [76] 
[36]. 

 

This work focuses on the point 5 (and partly also 6 and 7) that is further elaborated in the 

following chapters 9, 0 and 11. However, in the next paragraphs, we will mention some of our results 

related to previous points. 

8.2 Phylogenetic threes and population maps 
We have cooperated with students of the Czech Technical University on their bachelor and 

diploma works. They have used our data as input of their applications. J. Těhník has implemented 

program that can analyse database of a registry and projects trends [77], see Figure 33. 

 

Figure 33: Bachelor work [77] – analysis of database of a stem cell donor registry. 
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L. Kábrt has developed a web application that visualizes HLA data and their location on Google 

maps [73]. For location of the donor, postal codes have been used. For example, the map of Finland 

shows different frequencies of HLA allele groups in regions with Swedish speaking population (see 

Figure 34). In case of the Czech republic, we did not find significant regional differences. Similar study 

has been done in the UK and Germany [70].  

 

Figure 34: Diploma work [73] – analysis of database of a stem cell donor registry. 

 

8.3 HLA Explorer 
We have developed an internet application HLA Explorer (www.hlaexplorer.net) [78] that 

implements user-friendly interface for browsing HLA haplotype frequencies estimations.  Goal of the 

project was to develop system that helps physicians (transplant centers) and coordinators (stem cells 

donor registries) to examine Linkage Disequilibrium of HLA system in order to assist to find suitable 

unrelated stem cells donor. 

The application has more than 200 registered users worldwide.  

http://www.hlaexplorer.net/
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8.4 Phenotype analysis 
Another interesting usage of haplotype frequencies are applications that analyze given 

phenotype and resolve them into possible genotypes. This can be done for multiple populations and 

we get multiple results. If the ethnical or family background of the individual is unknown, the 

comparison  of results may help to associate the patient with an ethnic group and or focus attention 

on rare combinations of patient’s alleles. Such information help to refine the donor search strategy 

before starting the search process.  

The publically available tool with such analysis has been developed by NMDP and is available 

at www.haplostats.org. Another example is the French EasyMatch [30]. 

The phenotype analysis tool is an internal component of the predictive matching (see next 

chapter).  

9. Prediction of HLA Match 
In this chapter we will design new computational method for matching predictions. Top-down 

design of the algorithm is described. We will also compare our approach with other implementations 

in the world (ZKRD, NMDP). 

9.1 Criteria for the new matching prediction algorithm 
A. Usability: We need to compare predictions for all donors. The method must be able to handle all 

cases, patient-donor pairs. 

B. Time: It would be desirable if the method is used in the interactive user interface. We need to 

use the method for at least hundreds of patient-donor pairs. Therefore the method must be able 

to give result quickly, in fraction of one second.  

C. Correctness: If the method gives results, it must be reliable. We need to understand how reliable 

is the method. Therefore the method must be validated. 

9.2 Definitions 
For the purpose of this chapter, we will mathematically define terms haplotype and phenotype 

that have been already defined in chapter 2.1. 

Haplotype ih  is a set of pairs. Each pair is composed of DNA/serology locus designation 
jl  

and allele/antigen code 
ja according to the HLA nomenclature (see chapter 2.2.2). Empty value is 

considered as special valid code. Let s be number of loci in the haplotype. We can explicitly write 

number of loci as upper index of the haplotype. 

(26) 
)},(),...,,(),,{( 2211 ss

s

ii alalalhh 
 

jl  must be different from each other. 

Let’s call the corresponding set of loci as haplotype type.  

(27) 
},...,{)()( 21 s

s

ii lllhThT 
 

http://www.haplostats.org/
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So the condition on distinct 
jl can be written as 

shT s

i )(  

Where 
X

is the size of the set X (number of elements). 

Phenotype Phen is a set of pairs. Each pair is composed of DNA/serology locus designation 
jl  and a 

set of two allele/multiple-allele/antigen codes 
1,ja  and 

2,ja  

})},{,(}),...,,{,(}),,{,{( 2,1,2,21,212,11,11 sss aalaalaalPhen 
 

We say two phenotypes PhenX and PhenY are the same, if PhenX = PhenY. Otherwise they are 

different. 

We say phenotype Phen matches the haplotype ih
 
(and vice versa) if all elements of the haplotype 

ih ”match” with corresponding elements (the same locus) in the phenotype Phen. It means it 

“matches” at least one of two alleles/antigens present at the same locus on the phenotype Phen. Our 

“matching” is described by [5] [7] and basically it means no mismatch is observed. If the locus is not 

present in the phenotype Phen, it is considered as “match”, i.e. no mismatch is observed. 

This predicate (Phen matches ih ) is written as 

 ihPhenM ,  

Example 8 

)}"02:03",1(),"02:04",1(),"03:12",(),"01:38",(),"01:26",{(5

11 DQBDRBCBAhh   

)}"02:06",1(),"01:15",1(),"02:06",(),"01:57",(),"01:01",{(5

22 DQBDRBCBAhh   

)}"02:03",1(),"02:04",1(),"02:06",(),"01:38",(),"01:01",{(5

33 DQBDRBCBAhh   

5})1,1,,,({)( 5

1  DQBDRBCBAThT .
 

The individual A (chapter 2.2.4) could be represented as 

})}"02:06","02:03{",1(}),"01:15","02:04{",1(

}),"03:12","02:06{",(}),"57","38{",(}),":26",":01{",{(

DQBDRB

CBXXXXAPhenA 

 

Locus HLA-A has been low resolution typed, locus HLA-B has been typed by serology technique and 

other loci are high resolution typed. 

Then predicates 

 1,hPhenM A ,  2,hPhenM A  and 
 3,hPhenM A  
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are all True. 

□ 

9.3 Matching prediction method 

Given an original phenotype Phen of an individual and s-loci haplotype frequencies ih of its 

population, the algorithm selects all s-loci (high-resolution) haplotypes that match with the 

phenotype Phen.  

Then the algorithm loops all matching haplotypes and tries to combine them together into 

pairs forming predicted diplotype ( ih
jh ), still matching the original phenotype. ih and 

jh must be 

complementary, i.e. predicted diplotype form the predicted phenotype kAPhen ,  that also matches 

the phenotype Phen.  

Example 9 

Following the Example 8: Let’s consider these three haplotypes as the only matching haplotypes with 

the phenotype PhenA. They can from three different diplotypes (
1h

2h ), (
1h 3h ) and (

2h 3h ), but only 

)( 211, hhPhenA   matches the phenotype PhenA. 

})}"02:06","02:03{",1(}),"01:15","02:04{",1(

}),"03:12","02:06{",(}),"01:57","01:38{",(}),"01:26","01:01{",{()( 211,

DQBDRB

CBAhhPhenA 

□ 

Let’s focus on probabilities 
jP
 
as defined by equations (2) and (3) on page 37. 

Let’s say we have got m possible predicted phenotypes. We normalize their probabilities jP
 by 

(28) 




m

i

i

j

j

P

P
P

1

*

 

Therefore  

 

1
1

* 


m

j

jP

  

holds. 

*

jP are conditional probabilities expressing the event the given phenotype is in fact predicted 

phenotype j. 
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We use this algorithm twice, to analyze both patient and donor phenotype. Let D

jP are 

normalized probabilities of predicted phenotypes D

jPhen of the donor, mD is their count, P

jP are 

normalized probabilities of predicted phenotypes P

jPhen  of the patient and mP is their count. 

Finally, we find all predicted phenotypes that are common for the donor and the patient, and 

multiply their conditional probabilities. We get equation for the matching prediction 

(29) 

 



D Pm

j

jk

P

k

m

k

D

j PPmp
1 1



 

Where 0jk , if phenotypes j and k are different and 1jk , if phenotypes j and k are the same, 

i.e. no mismatch (see chapter 9.2). Similarly, the following equation calculates the probability of one 

mismatch 

(30) 
 



D Pm

j

MM

jk

P

k

m

k

D

j

MM PPmp
1

1

1

1   

Where 11 MM

jk , if phenotypes j and k have exactly one mismatch (see also [7]) and 01 MM

jk  

otherwise. 

The probability of a match at specific locus is estimated by  

(31) 
 



D Pm

j

L

jk

P

k

m

k

D

j

L PPmp
1 1

  

Where L is the locus designation and 1L

jk , if phenotypes j and k are the same at locus L and 

0L

jk  otherwise. 

 

9.4 Phenotypes cannot be explained 
Previously described method does not meet criterion A (see chapter 9.1), because it can fail if 

the patient or donor phenotype cannot be “explained”. For patient, it means mP = 0 and the patient’s 

set of predicted phenotypes  P

jPhen  is empty. This can happen if: 

 There are no matching s-loci (high-resolution) haplotypes (let’s call them full haplotypes). 

 There are such full haplotypes, but they cannot form matching predicted diplotypes. 

In such case, our method tries to find matching partial haplotypes, i.e. haplotypes with less than s 

loci that match the original phenotype.  

Partial haplotype r

ih is non-empty subset of any original (high-resolution) haplotype s

ih . 

s

i

r

i hh 
, 

s

i

r

i hh 
, 

{}r

ih  
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)( r

ihL is partial haplotype type.  

)()( s

i

r

i hLhL 
, 

)()( s

i

r

i hLhL 
 , 

{})( r

ihL
 

Matching partial haplotype is the partial haplotype matching the phenotype Phen. Obviously, if the 

(high-resolution) haplotype matches the phenotype Phen, then all derived partial haplotypes are 

matching the phenotype Phen. But it is not always true vice versa, i.e. mismatched (high-resolution) 

haplotype may include matching partial haplotypes.  

Let PHr be the set of partial haplotypes with r loci (0<r<s) 

   
i

t

i

s

i

t

i

t

i

i

t

i

s

i

t

i

t

i

r rhLhhhrhhhhPH  )(  

Conditions 
s

i

r

i hh 
and 

{}r

ih
are forced by the condition 0<r<s. 

Matching partial haplotypes MPH are 

  
1

1

1

1

),(









s

r

s

r

r

i

rr

i

r

i

r PhenhMPHhhMPHMPH

 

The method combines these partial haplotypes of different types together, forming artificial 

haplotypes that cover all s loci. In case of two partial haplotypes we get 

 v

j

t

i

v

j

t

i

v

j

t

i

v

j

t

i

s hhhLhLshLhLsvsthhH  )()()()(002
 

The condition shLhL v

j

t

i  )()( could be also written as shhL v

j

t

i  )( , which means the 

artificial haplotype covers all s loci. 

The condition v

j

t

i

v

j

t

i hhhLhL  )()(  means that for all loci that appear in both t

ih and v

jh , also 

corresponding alleles/antigens must be the same at all sharing loci of both haplotypes. 

But in general, even more than two partial haplotypes can form one artificial haplotype. For triplets 

we get 




















w

k

v

j

w

k

v

j

w

k

t

i

w

k

t

i

v

j

t

i

v

j

t

i

w

k

v

j

t

i

w

k

v

j

t

i
s

hhhLhLhhhLhLhhhLhL

shLhLhLswsvsthhh
H

)()()()()()(

)()()(000

3  

… and so on.  

All artificial haplotypes are  


s

i

s

i

s HH
2

  

Full haplotypes could be perceived as 
sH1  
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Haplotype frequency of the partial haplotype is calculated as the sum of all full haplotypes that are 

supersets of the partial haplotype.  

(32) 
 




ij hhj

s

j

t

i pp
;

 

Allele frequencies are special case of partial haplotype frequencies, where 1t . 

Example 10 

Following the Example 8: If the full haplotype type is {A, B, C, DRB1, DQB1}, 5s , then an example 

of partial haplotype type is {A, B, C, DRB1}, which covers 4 loci and the locus DQB1 is omitted. An 

example of partial haplotype is  

)}"02:04",1(),"03:12",(),"01:38",(),"01:26",{(4

1 DRBCBAh   

□ 

How to find these partial haplotypes? Number of partial haplotype types corresponds to all 

subsets of the full haplotype type, except empty set, which grows by exponential function 12 s . In 

case of five loci, we get 311212 5 s , so there are 31 partial haplotype lists. For each partial 

haplotype type, we need to search for matching partial haplotypes. Then these lists are combined 

together. There are up to  212 s possible pairs of partial haplotype types we need to check. Each 

check combines two lists, so its complexity is  2nO . There are  312 s triplets, etc., so the total 

complexity of the calculation is extreme 

   



s

i

iis nO
2

12  

These are maximum numbers, not all of them make sense to combine, for example {A*} is already 

included in {A*, B*} and the combination does not make sense. I.e. combining such two haplotype 

types we cannot create artificial haplotypes that cover all 5 loci. But still the number of combinations 

is too high for efficient computing.  

Therefore we check only selected partial haplotype types. We have also implemented 

heuristics that first checks bigger partial haplotype types and then, if not successful, others. The 

algorithms uses this order of partial haplotype types: 

 {A, B, C, DRB1, DQB1} … full haplotypes 

 {A, B, DRB1, DQB1} … locus C excluded 

 {A, B, C, DRB1} … locus DQB1 excluded  

 {A, B, DRB1} … typical 3 loci matching (loci C and DQB1 excluded). First versions of 

HapLogic™ and OptiMatch® used these three loci for predictive matching (see chapter 11.3). 

BMDW [6] also uses these three loci for basic matching. 

 {A, B, C} … first class loci 

 {B, DRB1, DQB1} … second class loci and the closest first class locus, see Figure 2. 

 {A} … individual locus 
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 {B} … individual locus 

 {C} … individual locus 

 {DRB1} … individual locus 

 {DQB1} … individual locus 

If the partial haplotype type can be used for explanation of patient (partial) phenotype, we 

select it. We continue to the next partial haplotype type, until we cover all loci by the loci in all 

selected partial haplotype types. Since single locus haplotype types are in the end of the list ({A}, {B}, 

{C}, {DRB1} and {DQB1}), we will always find solution that cover all loci. This means, in the worst case, 

allele frequencies will be used.  

Example 11 

Partial haplotype types {A, B, DRB1}, {B, DRB1, DQB1} and {C} together cover all five loci, i.e. 

haplotype type {A, B, C, DRB1, DQB1}. 

□ 

Note: Theoretically, it could happen even the (phenotype) typing result at a locus cannot  be 

explained by allele frequencies. This means we are trying to estimate probabilities of alleles that have 

never been observed in the underlying population, so allele frequencies are zero or almost zero. This 

can happen if the individual does not belong to the model population.  

After this procedure, we get list of partial haplotype types and corresponding lists of matching partial 

haplotypes. Now, we need to form artificial haplotypes and estimate their frequencies.  

Artificial haplotypes are formed by combination of partial haplotypes from all lists of matching 

partial haplotypes. We take only those combinations that match, i.e. if there is non-empty 

intersection of two partial haplotype types and corresponding partial haplotypes must share the 

same alleles at all loci in the intersection. Haplotype frequency of the artificial haplotype is estimated 

as haplotype frequency of the first partial haplotype (forming the artificial haplotype) multiplied by 

normalized multiplication of all other partial haplotypes forming the artificial haplotype.  

In case of two partial haplotypes t

ih and v

jh forming an artificial haplotype v

j

t

i

s

a hhh  we define 

artificial haplotype frequency as  

(33) 


v

x

v

jt

i

s

ji

s

a
p

p
ppp ,

 

where: 

 v

xp are frequencies of v

xh  (one of them is also 
v

jh ) 

 v

xh  have the same partial haplotype type as 
v

jh  

  v

xhPhenM ,  
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This means v

xh  are all possible extensions of t

ih , that belong to single partial haplotype type and still 

form matching artificial haplotype with t

ih .  

This definition of partial haplotype frequency is consistent with the property 
j

s

ji

t

i pp ,
(see 

equation (32)). 

If these partial haplotypes do not share any locus (intersection is empty set), then 1 v

xp  

and these are two independent fragments (without common loci) also form new haplotype. 

Haplotype frequency is calculated as multiplication of frequencies of forming partial haplotypes 

(fragments).  

In case three partial haplotypes t

ih , v

jh and w

kh  forme an artificial haplotype w

k

v

j

t

i

s

a hhhh  we 

define artificial haplotype frequency as  




w

y

w

k

v

x

v

jt

i

s

kji

s

a
p

p

p

p
ppp ,,  

where: 

 v

xp are frequencies of v

xh  (one of them is also v

jh ) 

 
w

yp are frequencies of w

yh  (one of them is also w

kh ) 

 v

xh  have the same partial haplotype type as v

jh  

 
w

yh  have the same partial haplotype type as w

yh  

  v

xhPhenM ,  

  w

yhPhenM ,  

Similarly for four and more partial haplotypes. 

In extreme case, only allele frequencies are used (partial haplotype types {A}, {B}, {C}, {DRB1} and 

{DQB1}) and the haplotype frequency is calculated as multiplication of allele  

Example 12 

Let haplotypes h1, h2, h3 and h4 are the only haplotypes in our haplotype list. 

)}"02:03",1(),"02:04",1(),"03:12",(),"01:38",(),"01:26",{(5

11 DQBDRBCBAhh   

)}"02:06",1(),"01:15",1(),"02:06",(),"01:57",(),"01:01",{(5

22 DQBDRBCBAhh   

)}"02:03",1(),"02:04",1(),"02:06",(),"01:38",(),"01:26",{(5

33 DQBDRBCBAhh   

)}"02:03",1(),"01:15",1(),"02:06",(),"01:38",(),"01:26",{(5

44 DQBDRBCBAhh   

Let their frequencies be p1 = 0.1, p2 = 0.2, p3 = 0.3 and p4 = 0.4. 
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The frequency of partial haplotype  

)}"02:03",1(),"02:04",1(),"01:38",{(3

11 DQBDRBBh   

is 4.03111  ppp  

The second partial haplotype of the same type {B, DRB1, DQB1} is 

)}"02:06",1(),"01:15",1(),"01:57",{(3

12 DQBDRBBh   

with frequency 2.0212  pp  

And the third one is 

)}"02:03",1(),"01:15",1(),"01:38",{(3

13 DQBDRBBh   

with frequency 4.0413  pp . There is no other partial haplotype type and therefore 

1131211  ppp  

Similarly, partial haplotype 

)}"03:12",(),"01:38",(),"01:26",{(3

21 CBAh  has frequency 1.0121  pp  

This partial haplotype 
3

21h can be extended by 
3

11h or 3

13h to form the full haplotype. 

3

21h  and 3

13h  form new artificial haplotype 

)}"02:03",1(),"01:15",1(),"03:12",(),"01:38",(),"01:26",{(5

1, DQBDRBCBAha   

with frequency 05.0
4.04.0

4.0
1.0

1311

13
211, 







pp

p
ppa  

The new artificial haplotype 1,ap may help to explain the input haplotype. 

3

21h  and 
3

11h  form again 1h , but with different frequency 

05.0
4.04.0

4.0
1.0

1311

11
212, 







pp

p
ppa  

Summary of the example: All full haplotypes starting with partial haplotype 
3

21h  (only 1h in our 

example) were replaced by all possible extensions of 
3

21h  (two options). This has added new artificial 

haplotype(s). Frequencies of newly formed haplotypes were reshuffled, but total frequency of all of 

them is the same as original haplotypes. 

□ 
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9.5 Validation of the concept of artificial haplotypes 
We form artificial haplotypes are formed only in case normal haplotypes fail to resolve 

(explain) the input phenotype. But it might be useful in more difficult cases. 

In order to validate the concept of artificial haplotypes, we have run the following simulation: 

1. Select all high resolution A*-B*-C*-DRB1*-DQB1* phenotypes from the dataset [BMDW-

2011]. 

2. Try to explain these phenotypes by standard full haplotypes.  

3. Select phenotypes that cannot be explained by full haplotypes, but can be explained by 

artificial haplotypes.  

4. Decrease high resolution to low resolution for all five loci. Estimate probability of low 

resolution phenotype to become the high resolution phenotype, using these three methods: 

 Artificial haplotypes, combined by partial haplotypes that overlap. For example types 

{ A*, B*, C*} and {B*, DRB1*, DQB1*} 

 Artificial haplotypes, combined by partial haplotypes that do not overlap. For 

example types { A*, B*, C*} and { DRB1*, DQB1*} 

 Artificial haplotypes, combined by single locus partial haplotypes (types { A*}, { B*}, { 

C*}, { DRB1*} and { DQB1*}). 

5. Calculate average U value (see (34)) for all these three approaches. 

In the database [BMDW-2011], we have found 595 haplotypes that cannot be explained by 

full haplotypes, but can be explained by artificial haplotypes. We have also used [PROM-CT]. As HFE, 

we have used [ZKRD-2008] and [HPE-2010]. The more haplotypes we have in the HFE, the lower 

number of validation cases for this exercise we find. 

Table 27 displays results of the simulation. It shows the concept of artificial phenotypes has 

better results than other two concepts. 

Dataset Haplotype 
frequencies 

Number 
of 
validation 
cases 

Artificial 
haplotypes, 
combined by 
partial haplotypes 
that overlap 

Artificial 
haplotypes, 
combined by 
partial haplotypes 
that do not 
overlap 

Artificial 
haplotypes, 
combined by 
single locus partial 
haplotypes 

[BMDW-2011] [ZKRD-2008] 595 3.8707379473 4.7190691871 5.9372123576 

[PROM-CT] [ZKRD-2008] 206 0.1497170941 0.3691394013 0.5350892222 

[PROM-CT] [HPE-2010] 68 0.0499954565 0.1668737778 0.2416876335 

Table 27: Validation of the concept of artificial haplotypes, table shows U values 

 

9.6 Situation in the world 

9.6.1 OptiMatch® 

OptiMatch® matching prediction method is roughly described in [63]. The system calculates 

the matching prediction in the same way as our method, i.e. our equation (29) and OptiMatch® 

equation on the Figure 35 are similar. 
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Figure 35: Matching prediction method equation of OptiMatch® [63]  

 

However, other aspects of OptiMatch® matching prediction methods are not published, e.g. 

how to handle patients and donors with phenotypes that cannot be explained (see chapter 9.4). 

You will find more information about the OptiMatch® system in chapter 11.3.1 

9.6.2 HapLogic™ 

As far as we know, HapLogic™ prediction methods have not been published. 

You will find more information about the HapLogic™ system in chapter 11.3.2 

9.6.3 Others 

The Hap-E system [79] uses probably similar prediction method as OptiMatch®. Mathematical 

description, internals and handling of problematic cases has not been published. 

EasyMatch [30] focuses on a priori analyses of patient’s phenotype, rather than patient-donor 

matching predictions.  

10. Validation of Matching Predictions 
This chapter describes methods of validation of the HLA matching prediction algorithm, 

including new simulation framework and provides our results.  

10.1 Methods 
The quality of prognostic matching algorithm and the population model used (allele and 

haplotype frequencies) have to be validated as well. This is usually done by retrospective or 

prospective studies.  

Hans-Peter Eberhard has used the Logarithmic Score Function [63]. 
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where l is the number of matching predictions and iq are matching predictions. In case of 0iq
, the 

value 
410iq  is taken instead. 

More typical option is to use all VTs performed by the registry that meet specific criteria. These 

criteria are: 
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 Patient has been typed at high resolution 

 Donor was not typed at high resolution before the typing request, but has been high 
resolution typed at the time of typing request (or later).  

 No discrepancy between a priori and final HLA type.  
Table 28: Criteria for validation typing request 

 

The review process retrospectively calculates the matching prognosis and compares the 

predicted and observed percentage of allele matches.   

 

10.2 Validation using verification typings 
Validation of matching predictions was carried out similarly to Optimatch/Haplogic. We have 

taken all verification typing requests (VTs, formerly known as confirmatory typing requests, CTs) 

performed by the registry. This was not easy task, because most of the registries recorded such data 

only in paper form. In last four years, we have helped to connect at least 10 stem cell donor registries 

in Europe, Asia and Africa to the EMDIS network (see Appendix C). Thanks to this effort, these 

registries have started to record all international and national VTs in electronic form. This has been 

one of the key building blocks of this work. As VTs we have used EMDIS “Sample request” messages 

(SMP_REQ) [21]. We have collected more than 5000 VTs (Czech Stem Cells Registry, Slovak BMDR, 

Polish ALF Registry, Swedish Tobias Registry, Finnish BMDR, South African BMR and Ezer Mizion 

BMDR). 

From these VTs, we have selected only those that met these requirements: 

 patient has been typed at high resolution level (HLA-A, -B, -C, -DRB1, -DQB1) 

 high resolution (HLA-A, -B, -C, -DRB1, -DQB1) data for loci examined as a VT result (or later) 

 no discrepancy between a priori and final HLA type 
Table 29: Criteria for validation VTs 

 

About one third of VTs satisfy the criteria and that could be used for validation. 

We have faced two problems:  

 unlike ZKRD and NMDP, other registries do not have enough donors that could be used for 

estimation of 5 locus high resolution haplotype frequencies. Haplotype frequencies could be 

calculated, but their confidence is questionable.  

 smaller registries also do not have enough VTs that could be used for validation of the 

prediction algorithm. ZKRD used 9843 CTs in 2008 [8] and 22255 CTs in 2010 [63]. These 

numbers are not achievable by smaller registries.  

In order to overcome these problems, we have approximated the local population to the 

German (ZKRD) population, i.e. we have used our estimation of German haplotype frequencies [D-

1205]. We have also joined VTs from multiple registries using Prometheus software. As result, we 

have collected 1406 VTs for validation. Unlike ZKRD or NMDP that have enough VTs only for their 

donors, our VTs represent a mix of Caucasian donors from different countries. 
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Then we have calculated (retrospectively) the matching prognosis and compared the predicted 

and observed percentage of 10/10 (resp. 9/10) allele matches at 10% or 20% prediction intervals. 

Patient Donor typing before VT Probabilities Donor typing after VT 

(German patient) 
 
A*02:01,03:01 
B*15:01,44:02 
C*03:03,05:01 
DRB1*07:01,11:01 
DQB1*02:02,03:01 

(Finnish donor) 
 
A2,3 
B62,44 
C*03:03,05:01 
DRB1*07:01,11:01 
DQ2,3 

P(10/10)=0.943 
P(9/10)=0.057 
P(A)=0.999 
P(B)=0.943 
P(C)=1.000 
P(DR)=1.000 
P(DQ)=0.999 

(10/10 allele match) 
 
A*02:01,03:01 
B*15:01,44:02 
C*03:03,05:01 
DRB1*07:01,11:01 
DQB1*02:02,03:01 

(German patient) 
 
A*01:01,24:02 
B*08:01,15:17 
C*07:01,07:01 
DRB1*07:01 
DQB1*02:02,02:02 

(Finnish donor) 
 
A*01:XX,24:XX; 
B*08:CCWB,15:XX;  
 
DRB1*07:XX 

P(10/10)=0.049 
P(9/10)=0.017 
P(A)=0.998 
P(B)=0.0668 
P(C)=0.0661 
P(DR)=0.999 
P(DQ)=0.342 

(7/10 allele match) 
 
A*01:01,24:02 
B*08:01,15:01 
C*07:01,04:01 
DRB1*07:01 
DQB1*02:02,03:03 

Table 30: Examples of the VTs. In the first case, the VT has proven, the donor has the same 

typing as the patient (prediction for the 10/10 allele match was 94.3%). In the second case, the 

VT has shown, the donor has multiple mismatches at B*, C* and DQB1*  (low predictions at 

these tree loci). 
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Figure 36: The graph shows the correlation of estimated 10/10 matching probabilities in 10% 

prediction intervals and corresponding observed probabilities. The population model is 

approximated by the German population [D-1205]. Blue bars show 95% confidence intervals of 

estimated probabilities. Since we have less VTs than the ZKRD, confidence intervals are bigger. 

Grey bars show relative number of VTs in each prediction interval. Red dotted line is the ideal 

correlation. The correlation is r = 0.99.  

 

The graph shows the correlation of estimated 9/10 matching probabilities in 10% prediction in-

tervals and corresponding observed probabilities. The population model is approximated by the 

German population [D-1205]. Also in this model, in order to increase the absolute number of cases 
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within the prediction intervals (and shrink the confidence interval), you would need to decrease the 

number of prediction intervals by increasing the size of these intervals. The correlation is r = 0.99. 

Unfortunately, for validation of individual locus predictions, we don’t have enough validation 

cases that would sufficiently fill in all 10% prediction intervals, so we have to do the validation in 20% 

prediction intervals.  

 

Figure 37: The graph shows the correlation of estimated A* matching probabilities in 20% 

prediction intervals and corresponding observed probabilities. The population model is 

approximated by the German population [D-1205]. The correlation is r = 0.98. 

 

 

Figure 38: The graph shows the correlation of estimated B* matching probabilities in 20% 

prediction intervals and corresponding observed probabilities. The population model is 

approximated by the German population [D-1205]. The correlation is r = 0.98. 

 

0 

0,2 

0,4 

0,6 

0,8 

1 

0 

0,2 

0,4 

0,6 

0,8 

1 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

O
b

se
rv

e
d

 p
ro

b
ab

ili
ty

 

Estimated probability 

Validation of A* Matching Predictions (n = 1406) 

0 

0,2 

0,4 

0,6 

0,8 

1 

0 

0,2 

0,4 

0,6 

0,8 

1 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

O
b

se
rv

e
d

 p
ro

b
ab

ili
ty

 

Estimated probability 

Validation of B* Matching Predictions (n = 1406) 



107 
 

 

Figure 39: The graph shows the correlation of estimated C* matching probabilities in 20% 

prediction intervals and corresponding observed probabilities. The population model is 

approximated by the German population [D-1205]. The correlation is r = 0.997. 

 

 

Figure 40: The graph shows the correlation of estimated DRB1* matching probabilities in 20% 

prediction intervals and corresponding observed probabilities. The population model is 

approximated by the German population [D-1205]. The correlation is r = 0.99. 
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Figure 41: The graph shows the correlation of estimated A* matching probabilities in 20% 

prediction intervals and corresponding observed probabilities. The population model is 

approximated by the German population [D-1205]. The correlation is r = 0.99. 

 

 

Figure 42: We also used European American (NMDP) population [62] as an approximation of 

local populations. The results were less reliable (r=0.91) than when using the German (ZKRD) 

population, but very similar when decreasing the precision to 20% prediction intervals (r=0.97). 

The graph shows the correlation of estimated 10/10 matching probabilities in 10% prediction 

intervals and corresponding observed probabilities. 

 

Our interpretation of these results and conclusions are: 

 The matching prediction tool works well (the algorithm and its implementation). 
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 The probability matching algorithm can use both German (ZKRD) and European American 

(NMDP-EUR) populations as an approximation for other Caucasian populations. The results 

are satisfactory.  

 The study is limited by small number of local VTs for validation. For this reason, our 

validation uses 10% prediction intervals instead of the 5% intervals used by ZKRD and NMDP. 

Importantly the algorithm can identify donors that are more likely or less likely to be a 10/10 

match.  

If we want to distinguish usage of our predictive matching tool (ProMatch) for the registry in 

general vs. prediction for local donors only, we have to go further. In order to prove it works for local 

donors, we would need to have enough VTs for local donors that we don't have. For example when 

we did analysis in February 2012, there were just 20 useful EMDIS VTs in the Finnish registry 

database. This means we are not able to confirm the ProMatch (with German haplotype frequencies) 

gives reliable estimates for the Finish donors. We can only confirm it works for the mixed Caucasian 

population. 

Intuitively, we expect the ProMatch with German haplotype frequencies will better work for 

populations that are closer to Germans, i.e. there is probably correlation between "genetic distance 

of the population of a small registry to Germans" with "reliability of ProMatch predictions". But 

again, we do not have enough data to prove this hypothesis. 

 

10.3 Validation using simulated dataset 
We do not have enough VTs (patient-donor-sample pairs) that would allow us to decrease the 

prediction intervals. For about 2000 VTs we can use only 10% prediction intervals. If we want to use 

5% prediction intervals (like NMDP or ZKRD), we have to have much more VTs (at least 4000). 

To overcome this problem and extensively validate the algorithm implementation, we can 

create simulated VTs. We have designed and implemented this method to create simulated VTs that 

meet our criteria (see Table 29): 

a) Take the simulated dataset of Czech adult donors (see chapter 7.3). For all of them we know 

both simulated HLA lab typing and background high resolution typing of the artificial donor. 

Almost all AB typed donors have probability lower than 1% and these donors are very rarely 

requested for VT. In order to make it more realistic, we have excluded these donors. Donor 

with probability lower 1% will still form quite big group.  

b) We need some patients records. We can simulate them as well, but this way all patient 

phenotypes would be based on our haplotype frequencies. In real world, some patients 

cannot be “explained” by reference haplotypes. So we will use different approach. Let’s take 

all patients in the CSCR registry that were registered in year 2010 and 2012 (real patient 

cases). We will consider only high resolution typed patients (about 50 thousand patients). 

We get high resolution typed patients from different ethnic groups. 

c) For every donor in the set a), try to find a matching patient in the set b). Match means there 

is no mismatch at HLA-A, -B, -C, -DRB1 and –DQB1, i.e. patient and donor are potential 

match.  
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d) One donor in the set a) can match with multiple patients in the set b) and vice versa. But in 

order to keep maximum diversity of VTs and avoid bias, we will use each patient record and 

each donor record only once. This means, the donor-patient pair is exclusive.  

These triples (simulated donor HLA typing + artificial donor typing + real patient typing) are our 

simulated VTs. This way, we have generated about 8000 VTs that meet our criteria! 

Now we have quite a big database of VTs and we can run several validation procedures, using 

different haplotype frequencies.  

10.3.1 German haplotype frequencies 

The artificial donors were created using ZKRD reference dataset [HPE-2010]. This means these 

artificial donors have similar genetic background as real Germans. Our first key validation is based on 

our haplotype frequencies [HPE-2010]. Since we have enough VTs, we can 5% prediction intervals. 

 

Figure 43: Validation of 10/10 matching predictions using simulated VTs and dataset [HPE-

2010]. UH = 0,3497, R=0.994 

 

Figure 43 shows excellent results. This validates our algorithm design and implementation. All 

other pieces in the validation process are fixed: haplotype frequencies are ideal (true frequencies 

[HPE-2010]) and VTs are very realistic.  

Even if we have excluded AB typed donors, we will still find the majority of estimated 

probabilities bellow 20%. However, all 5% prediction intervals have at least 126 cases. That is 

sufficient amount to calculate the average in all intervals.  

Now, under the presumption the algorithm is validated, we can focus on validation of our 

German haplotype frequency estimates [D-1205]. 
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Figure 44: Validation of 10/10 matching predictions using simulated VTs and dataset [D-1205].  

UH = 0,3500798930, R=0.995 

Again, Figure 44 shows excellent results, almost identical to [HPE-2010]. This validates the dataset 

[D-1205], i.e. the dataset has similar quality as the reference [HPE-2010]. 

10.3.2 NMDP-EUR haplotype frequencies 

 

Figure 45: Validation of 10/10 matching predictions using simulated VTs and dataset [NMDP-

EUR-2007], UH = 0,4126, R=0.987 

Results are slightly worsej than using German population HFE, the system underestimates the 

observed probabilities. Interestingly, also HapLogic III. underestimates the probabilities as well (see 

Figure 50). 

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

O
b

se
rv

e
d

 p
ro

b
ab

ili
ty

 

Estimated probability 

Validation of 10/10 Matching Predictions (n = 7945) 

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

O
b

se
rv

e
d

 p
ro

b
ab

ili
ty

 

Estimated probability 

Validation of 10/10 Matching Predictions (n = 7752) 



112 
 

10.3.3 Frequencies estimated from the simulated dataset 

In this experiment we will estimate haplotype frequencies directly from the simulated Czech 

dataset and then, use them for the validation.  

For HFE, we have used only 2188 best typed donors. This is still comparable to US study [62]. 

The result HFE dataset include only 2253 haplotypes that is much less than [HPE-2010] and [D-1205]. 

 

Figure 46: Validation of 10/10 matching predictions using simulated VTs and HFE from the 

simulated dataset (UH = 0,4735, R = 0,9896). 

 

Results are worse than German population HFE, but still satisfactory. This has important 

consequence for the Czech population HFE: given a real data of the Czech registry database (CS+CS2), 

we can estimate haplotype frequencies of the Czech population (see chapter 7.3). These frequencies 

can be used for the matching prediction algorithm and the algorithm is able to deliver satisfactory 

matching predictions for donors in the Czech registry database. This validation overcomes the 

problem of the lack of VTs that we do not have in the Czech registry database.  
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 Real world Simulation 

True population frequencies Unknown [HPE-2010] 

Registry database Czech registry database CS+CS2 
 
(58 295 donors) 

Simulated Czech registry 
database 
(58 295 donors) 

HFE Algorithm ProMatch HFE (see chapter 5.8) 

Haplotype frequencies Czech population HFE 
(1237 haplotypes with frequency 
>= 10-4) 

Simulated Czech population HFE 
(1340 haplotypes with frequency 
>= 10-4) 

Prediction Algorithm ProMatch (see chapter 9) 

Validation dataset Hundreds of real VTs 
(insufficient number) 

Thousands of simulated VTs 
(sufficient number) 

Validation result Unknown (not enough data) Pass 
Table 31: Validation of the Czech registry (population) matching prediction algorithm using 

simulated dataset and simulated VTs. 

 

These results are promising, especially for registries (populations) that cannot be 

approximated by other population. However, its use for populations with true population 

frequencies that differ a lot from [HPE-2010] is questionable.  

For the Czech population itself, it does not solve the question which HFEs are better for the 

matching prediction of the Czech donors – limited Czech haplotype frequencies [CZ-2012] or 

comprehensive German haplotype frequencies [D-1205]? We are not able to answer this question, 

mainly thanks to insufficient number of real VTs for Czech donors. 

10.4 Situation in the world 

10.4.1 OptiMatch® 

The validation of OptiMatch® (see also chapter 11.3.1) has been done in 2008 with 9843 CTs 

that satisfy these conditions [8]: 

 No high resolution data for the locus / loci examined at the time of request 

 High res data for the locus / loci examined obtained as a CT result (or even later) 

 No discrepancy between the a priory and final HLA type 

For this file of CTs, the ZKRD has calculated (retrospectively) the matching prognosis of 

OptiMatch® and compared the predicted and observed percentage of allele matches in 5% prediction 

intervals. Results are shown on the Figure 47. 

As we have mentioned before, we have adopted the same method in chapter 10.2 

Another published validation of OptiMatch® has been done in 2010 with 22255 CTs. Results 

are shown on the Figure 48. These results are excellent and there is no doubt OptiMatch® is very 

accurate in the HLA predictions of German donors. 
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Figure 47: Validation of 10/10 matching predictions of the OptiMatch® system in 2008 using 

9843 CTs [8] 

 

 

Figure 48: Validation of 10/10 matching predictions of the OptiMatch® system in 2010 using 

22255 CTs [63] 
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10.4.2 Haplogic™ 

Validation methods of Haplogic™ (see also chapter 11.3.2) are probably similar as those used 

by OptiMatch® however details have not been published. Haplogic™ II. results are shown on the 

Figure 49 and Haplogic™ results on the  Figure 50. Haplogic™ takes into account the ethnic group of 

the donor, so it has to use several sets of HFE, which is very interesting feature of the system. But it is 

not clear if NMDP does single validation using CTs from all ethnic groups or if it does validations per 

ethnic group and what are the numbers of CTs. HapLogic™ III currently uses 21 ethnic groups. 

 

Figure 49: Validation of 6/6 matching predictions of the HapLogic II system [graph provided by 

NMDP] 

 

 

Figure 50: Validation of 10/10 matching predictions of the HapLogic™ III system [80] 
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11. Implementation of matching prediction methods  
This chapter presents applications of the algorithms and tools in daily operation of stem cell 

donor registries.  

11.1 ProMatch system 
Our implementation of the matching prediction method is called ProMatch (Probabilistic 

Matching). This functionality has been integrated with the Prometheus system [28] – software for 

stem cell donor registries used in more than 20 countries, mainly in Europe. This was the key step 

towards practical usage of these methods in registry operations.  

11.2 User interface 
Donor search results in Prometheus software are presented in the table. User can switch 

between deterministic matching (“Best First by Match Grade”) and the new probabilistic matching 

(“Best First by Probability”), see Figure 51. This feature is not common in other systems (OptiMatch® 

and HapLogic™). 

 

Figure 51: ProMatch – sorting options of the donor search results: Time, Deterministic 

matching and Probability matching. 

 

Potential donors are listed in the table. The system displays: 

 The probability of 10/10 HLA-A, -B, -C, -DRB1 and –DQB1 allele match, calculated by (29), 

column “P(10/10)”.  

 The probability of 9/10 HLA-A, -B, -C, -DRB1 and –DQB1 allele match, calculated by (30), 

column “P(9/10)”.  

 Probabilities of HLA-A, -B, -C, -DRB1 and –DQB1 allele match at individual loci, calculated by 

(31), columns “P(A)”, “P(B)”, “P(C)”, “P(DRB1)” and “P(DQB1)”.  

Sorting “Best First by Probability” means donors are sorted by “P(10/10)”, then by “P(9/10)”, 

see Figure 52 and Figure 53. 

Display method corrects probabilities by deterministic matching observations: 

 Presented probabilities are rounded and displayed in per cents (0 – 100%). 

 If patient and donor are not mismatched at specific locus (potential match) and displayed 

rounded value would be 0%, it is corrected to 1%. 

 If patient and donor typing do not have the same high resolution allele codes (potential 

match) and the displayed rounded value would be 100%, it is corrected to 99%. 
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Figure 52: ProMatch – example of donor search results (probability matching). The main 

sorting criteria is the probability of 10/10 HLA-A, -B, -C, -DRB1 and –DQB1 match, see column 

P(10/10). 

 

 

Figure 53: ProMatch – example of donor search results (probability matching). The second 

sorting criteria is the probability of 9/10 HLA-A, -B, -C, -DRB1 and –DQB1 match, see column 

P(9/10). 

 

11.3 Situation in the world 
Until 2011, only two HLA matching prediction systems were available in Germany and the 

United States. They have been implemented by two biggest registries in the world – ZKRD and NMDP 
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– that have invested a lot of resources in R&D . Names of these systems are registered and 

protected: OptiMatch® and Haplogic™.  

Except these two systems and our work, some activities are being done by the German donor 

centre DKMS. Their Hap-E system is used only internally [79].  

11.3.1 OptiMatch® 

OptiMatch® [81] [8] is a matching program calculating, for each donor, the probability to be 

allele identical to the patient. The program is developed and used by the German registry ZKRD.  

First version (since October 2006) was based on 3 locus high resolution haplotype frequencies 

had sorting of potential donors according to the probability of 6 of 6 allele match probability (HLA-A, 

-B and -DRB1) and secondary sorting on HLA-C and HLA-DQB1 matching probabilities, age and 

gender. The current version (since June 2008) is based on 5 locus high resolution haplotype 

frequencies (HLA-A,-B,-C,-DRB1 and –DQB1).  

OptiMatch® is able to do serology to DNA mapping, so predictions are calculated also for 

serology typed donors. Current version’s primary matching can be based on the probability of 

matching 6 of 6, 8 of 8 (including C or DQB1) or 10 of 10 (including both) alleles, and then the 

probability of 1 or, finally, 2 allele mismatches. 

User-friendly web based user interface shows a list of potential donors with 7 probabilities: A* 

match, B* match, C* match, DRB1* match, DQB1* match and overall probabilities of 10/10 match 

and 9/10 match. 

11.3.2 Haplogic™ 

HapLogic™ I. [27] was developed and used by NMDP registry since 2006. It works in similar way 

like OptiMatch®. It calculates the likelihood of allele-level matching based on calculated HLA 

haplotype frequencies within major American racial and ethnic populations. HapLogic™ I. predicted 

high-resolution matching at HLA-A, -B and -DRB1 (6 of 6 allele match, 5 of 6 allele match and 2-allele 

match at each of the three loci) [82] [83] [84].  

HapLogic II. (2008) is able to incorporate HLA-C and HLA-DQ matching (2-allele match). The 

latest version III, introduced in November 2011, sorts donors based on probability of matching 10 

alleles, using 5 locus high resolution haplotypes (like OptiMatch®).  HapLogic also uses 5 broad and 

21 detailed race/ethnic groups.  

The web based user interface shows a list of potential donors with several probabilities: A* 

match, B* match, C* match, DRB1* match, DQB1* match and overall probabilities of 10/10 match, 

9/10 match, 8/10 match, 8/8 match, 7/8 match, 6/8 match and for cord blood units also 6/6 match, 

5/6 match and 4/6 match. Screenshot of the user interface is shown on the Figure 54 and example of 

the printed report on the Figure 55. 
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Figure 54: Screenshot of Haplogic™ III [80] 

 

 

Figure 55: Printed report of Haplogic™ III [80] 
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12. Contribution of the work 
Main contributions of this work are: 

 Design and implementation of Haplotype Frequencies Estimation algorithm and further 

exploration and extension of underlying methods 

o We have given an overview of different methods for HFE (chapter 4.3). 

o We have designed and implemented powerful algorithm (based on EM algorithm) 

and tool for HFE that uses real HLA data of stem cell donor registries. Several tricks 

that decreases computational costs, i.e. time and memory were included (chapter 5). 

o We have used jc~
… a method that transforms qualitative parameters of the HLA 

typing results of an individual to the quantitative attributes (chapter 5.8.2). 

o We have done research of reliability of HFE algorithm on registry datasets. New 

framework that can simulate real stem cell donor registry and estimates reliability of 

HFE (chapter 6) was presented. 

 Probability Matching algorithm and its validation 

o We have designed and implemented the algorithm for the prediction of HLA match 

by top-down design (chapter 9). 

o We have introduced new concept of partial haplotypes (chapter 9.4). 

o We have validated the HLA match prediction algorithm using both real and simulated 

datasets (chapter 10). 

 Real data and deployment of the software into routine operations 

o We have estimated most accurate HLA haplotype frequencies for several 

populations. HFE of some populations have never been published (Hungary, Slovakia, 

Nigeria, etc.). These haplotypes have several applications, not only in the medicine 

(chapter 7). 

o The most importantly, the work has practical benefits for the patients. Results of the 

work (the software) have been deployed in several countries and it is used in daily 

operations of several stem cell donor registries around the world (chapter 11).  

o Main benefits are: it helps search coordinators to identify easy, difficult and (almost) 

futile donor searches, to predict the level of patient-donor matching realistically 

achievable, speed up the donor search by choosing the most promising candidates 

and avoiding detours and make ultra-urgent searches feasible in spite of ambiguous 

or missing HLA data [8]. The speed at which a suitable donor is identified can 

significantly impact patient survival [2]. 

13. Conclusion and future work 
A reliable and efficient search algorithm is the key component of the unrelated stem cell donor 

registry computer system. In our previous work [5] we have implemented combinatorial search 

algorithm that compares patient with donors by counting all known and visible HLA mismatches. In 

this work we have designed and implemented a new probabilistic matching method. The production 

software system combines both methods together, the first one for rough pre-selection and the 

second one for fine grading and sorting. 
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In the first part of the work, we have given the overview of search algorithms, their design and 

implementation aspects (chapter 33.1). A top-down design approach that first lists algorithm 

requirements, specifies input and output parameters and then goes deeper into details, was 

selected. The importance of validation prior to the deployment of a new matching algorithm has 

been emphasized (chapter 3.5).  

In the introduction, we have posed these questions that represent underlying goals (chapter 

1.1): 

How can we design and implement algorithm that creates population model?  

Haplotype frequencies are the basis for modern methods for unrelated donor searching. 

However, the problem of estimation of HLA gene and haplotype frequencies of a human population 

is very difficult (chapter 5.1). We have mathematically formulated the problem (chapter 4.2). Then 

we provided an overview of all methods that could be used for its solution (chapter 4.3). Different 

methods were discussed, especially its possible usage for databases of stem cell donor registries 

(chapter 4.4). Bayesian methods are also promising and worth further investigation (chapter 4.3.5). 

But currently we think the maximum likelihood approach with the Expectation-Maximization 

algorithm is the best approach in our situation (chapter 4.5). Properties of the algorithm (chapter 

4.6) and reliability of results were discussed (chapter 4.7). We have shown the complexity of HLA 

system and databases of stem cell donor registries and reasons for its computational difficulties 

(chapter 5.1). 

We have proposed a framework of arbitrary HLA typing resolution as user-specified input and 

output of the EM algorithm (chapter 5.2). It is generalization of all previous efforts of dealing with 

data of multiple typing resolutions. Several methods of handling missing values were discussed and 

compared (chapter 5.3). We have presented some examples and results of experiments that show 

these methods cannot be easily applied for serology to DNA mapping. We have proposed a 

modification of the EM algorithm that solves the problem (chapter 5.4). 

The EM algorithm in our context is very computationally demanding (chapter 5.7). In our 

implementation (chapter 5.8), we have used several optimizations that speed up the process and 

save computer memory. 

We have presented the situation in the world and overview of the state-of-the-art HLA 

haplotype frequencies estimation programs (chapter 5.9). Our implementation was compared with 

these programs in the international workshop project that tested behavior of EM algorithm in 

controlled data environment and within the scope of this exercise it provided similar results as 

algorithms of other international research groups (chapter 5.10). 

What are the properties and reliability of the model (HFE) in general?  

We have approximated local populations by its stem cell donor registry datasets of different 

sizes and structures. In order to better understand the quality of the result model, we have studied 

different properties of the EM algorithm in the controlled data environment. We have inspected 

quality dependencies on typing ambiquities (chapter 6.1 and chapter 6.2), population size (chapter 

6.3), sample size (chapter 6.3), population homogeneity (chapter 6.4) and restriction of 

computational complexity (chapter 6.5). The final simulation of real stem cell donor registry dataset 
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has combined all these aspects together and provided approximation of the distance of HFE and true 

population frequencies (chapter 6.6). 

We have applied our methods and estimated HLA-A*-B*-C*-DRB1*-DQB1* haplotype 

frequencies for Czech, Slovak, Hungarian, Finnish, Swedish, Cypriote, South African and Nigerian 

populations on the best possible resolution (chapter 7). Such precise estimates of these populations 

have never been published. Our results have been already used in different analyses of stem cell 

donor registries in these countries.  

But possible usage of the data exceeds the field of stem cell transplantation. We have 

presented some examples of other applications (chapter 8).  

How can we design and implement the probabilistic matching algorithm?  

We have defined criteria for the matching prediction algorithm (chapter 9.1) and then 

designed the new computational method (chapter 9.2 and chapter 9.3). A lot of intention has been 

dedicated to special cases, where standard method fails and patient or donor phenotypes cannot be 

resolved (chapter 9.4). We have proposed a system of so called artificial haplotypes and their usage 

in matching predictions. This proposal has been validated on real data (chapter 9.5). 

How can we validate the whole system? Can we apply it for all registries and populations?  

The search algorithm cannot be deployed, if it is not validated. The crucial element of 

validation is the availability of sufficient amount of data (validation cases). Five years ago, most of 

registries in our interest had all these data only in paper form. Since then, we have implemented and 

deployed automated software systems (implementation of EMDIS) in more than 15 countries that 

support daily operations of these registries. One of the outputs of these efforts was the database of 

validation cases in electronic format that was used in this work for validation of the matching 

prediction algorithm and HFE. We have collected more than 1400 validation cases, but still it was not 

enough for detail validation (chapter 10.2). 

We have done also another validation, using simulated datasets (chapter 10.3). By this method 

we have validated both our probabilistic algorithm and HFE [D-1205], the approximation of European 

Caucasian population model. 

 

This work was not only academic research. Designed algorithms and methods have been 

implemented (chapter 11) and deployed in several countries in Europe and help search coordinators 

of stem cell donor registries in daily work to find the best match for patients in need. First registry 

that adopted these algorithms was the Czech Stem Cell Registry in Prague. Nowadays, match lists for 

all Czech patients are ranked and can be sorted by matching probabilities. This helps to identify 

difficult searches, predict realistically achievable results and speed up the donor search.  

Deployment of the system in several other countries is on the way, for example in Finland, 

Sweden, Switzerland, Slovakia, Belgium, England, Ireland, etc. We are in touch with all of them. 

There are also some countries that are interested as well, but we don’t have reliable solution 

yet. These are populations that do not belong to European Caucasian group, such as South Africa, 



123 
 

Argentina, Saudi Arabia, etc., but also some minorities in Europe, such as gypsies. The problem is we 

cannot approximate them by Caucasians and we don’t have enough data for estimation of their own 

high resolution haplotype frequencies. We also don’t have enough validation data to verify any kind 

of proposed solution. Overcoming of these problems will be our future work. 
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Appendix A: Used datasets 
 

ID Description Number of 
haplotypes 

Haplotype Rank 
of the median 
haplotype 

[FI-2011] HLA Haplotype Frequencies of the Finnish 
registry, calculated in 2011 by David Steiner 

>= 10-4: 442 
>= 10-5: 3093  

20 

[CZ-2011] HLA Haplotype Frequencies of the Czech 
population, calculated in 2011 by David 
Steiner 

>= 10-4: 1236 
>= 10-5: 3746 

93 

[CZ-2012] HLA Haplotype Frequencies of the Czech 
population, calculated in 2012 by David 
Steiner 

>= 10-4: 1476 
 

96 

[NMDP-EUR-
2007] 

HLA Haplotype Frequencies of the NMDP 
registry [62], Caucasian population, 
calculated in 2007 

3380 102 

[ZKRD-2008] HLA Haplotype Frequencies of the ZKRD 
registry, calculated in 2008 

7686 154 

[HPE-2010] HLA Haplotype Frequencies of the ZKRD 
registry [63], calculated in 2010 

24449 158 

[D-1205] HLA Haplotype Frequencies of the ZKRD 
registry (May 2012), calculated by David 
Steiner 

33102 216 

Table 32: HFE datasets and their identification used in the experiments of the work 

 

 
Figure 56: HFE datasets used in the experiments of the work, frequencies of top 20 haplotypes 
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Figure 57: HFE datasets used in the experiments of the work, cumulative frequency of top 20 

haplotypes 

  

Figure 57 demonstrates heterogeneity of datasets. This corresponds with the statistics 

“Haplotype Rank of the median haplotype” (see Table 32). Due to small registry size and sampling 

error, we expect Czech population is more heterogeneous than we can currently see.  

Other referred datasets 

[BMDW-2011] … BMDW Database [6], February 2011 

[BMDW-201205] … BMDW Database [6], March 2012 

[PROM-CT] … EMDIS Verification Typing requests and their results from selected registries running 

Prometheus software (see Chapter 10.2) 
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Appendix B: Stem cell donor registry software specification 
Text has been taken from [85]. 

WMDA standards require that ‘all patient and donor communications and records must be 

stored to ensure confidentiality and to allow for traceability of the donors and steps of the donation 

process’ (WMDA 5.01.2).  

This section describes architecture, data and functional requirements of the registry IT system. 

It is essential that the registry analyses the following: 

● what are the key modules and functions of the system 
● what information and how it should be stored on the database 
● what are the business processes of the registry and how should they be supported by the 

system 
● who are the end users of the system, what are their roles in the system 
● what are the interactions of the system with the outside world, what interfaces should be 

built 
 

The architecture of the system follows the stem cell donor registry organisation. There are several 

aspects: 

● Situation: The registry might be completely independent, located in the administrative 
building or be to part of a hospital, blood transfusion institute or other medical organisation. 
If the registry belongs to the bigger medical organisation, it has to follow specified rules and 
usually has to be well integrated. Very often, small registries are organisationally connected 
with the HLA laboratory, which necessitates the interface between systems of these 
departments. 

● Donor centres: The registry may be the national HUB that does not recruit donors directly, 
but cooperates with the network donor centres and cord blood banks. In some countries, the 
registry does not have access to donor contact details, so the donors may not be contacted 
directly. In this case this ‘master record’ of the donor is in the donor centre and the registry 
only has a copy. Other settings, typical for small registries, are based on integrated registry 
with the donor centre. Donor recruitment is organised by the registry itself or a network of 
partner organisations that, after recruitment, transfers all donor data to the registry 
database, so the master record of the donor is managed by the registry itself. 

● Access to the registry database is usually restricted registry staff. Partner institutions must 
contact the registry in order to access the database or changes will be visible after next off-
line upload of partner institution data (e.g. cord blood bank). The alternative option is to 
build an on-line interface or allow partner institutions to access the database directly, for 
example, donor centres and cord blood banks can manage their donor, CBU records and 
transactions directly. The registry may look like a single institution for the international 
community (EMDIS, international registries), but is actually a network of donor, transplant 
and search coordination centres that are spread across the whole country. 

 

The list of key functional requirements that a registry may consider to include, when considering new 

or improving existing registry system: 

● Donor database is the key module. Donor record must include: 
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○ Donor identification: a unique, invariant registry ID is the primary reference, but a 
data set can also include social security number, donor centre ID, recruitment ID, 
cord blood bank ID, ID of the mother of the CBU, ISBT128 donation code, stored 
sample ID, stored DNA ID, EMDIS ID, among other fields. 

○ HLA data: separate fields for serology and DNA typing results [15], typing laboratory, 
date of typing, primary typing data, NIMA, etc. The registry should consider of how 
HLA data are imported into the database as this may be from either an internal or an 
external source. Reference to the white paper [15] has to be made regarding 
standardisation of nomenclature and data formatting.  

○ Demographics: name, title, gender, date of birth, ethnic group, insurance company, 
etc. 

○ Relationships: family or personal relations to other donors or patients, used for 
family reports of the patient 

○ Recruitment: donor centre, date of recruitment, recruitment method (website, 
patient-draft, blood donor, etc.), blood donor flag, platelets donor flag, etc. 

○ Donor status: reservation of the donor, temporary or permanent withdrawal, reason 
of withdrawal (age, medical, personal, etc.) 

○ Contact details: permanent, temporarily and work address, email, phones, social 
media networks, communication language, preferred contact, history of 
communication with the donor, etc. 

○ Medical questionnaire: weight, height, blood group, kell, haemoglobin, number of 
pregnancies, number of blood transfusions, donor consent to different types of 
donations, diseases in the past, etc. 

○ Infectious disease markers: CMV status, Toxoplasmosis, EBV status, HIV status, HIV 
p24 antigen, antibodies to HIV, hepatitis B and C status and antibodies, Lues status, 
ALT status, etc. with dates of tests and laboratories that performed tests. 

○ Products: information about the stored donor samples or cord blood unit product, its 
position in the freezer, etc. 

○ Cord blood unit data: volume of CBU, nucleated cells, CD34+ cells, mononucleated 
cells, white blood cells, processing methods, fractions, mother tests, etc. 

○ Harvests: date and place of harvest, date and place of transplant, patient ID, source 
of stem cells (bone marrow, PBSC, DLI, cord blood, other) 

○ Audit: who and when has inserted or modified the donor record, search-able history 
of changes of the donor record (who, when, old data, new data). 

● Patient database functions include: 
○ Need of the record for both national and international patients 
○ Patient identification: unique, invariant registry ID, but can also include social 

security number, transplant centre ID, hospital record ID, EMDIS ID, physician, etc. 
○ HLA data: separate fields for serology and DNA typing results [15], typing laboratory, 

date of typing, primary typing data, etc.  
○ Demographics: name, title, gender, date of birth, ethnic group, insurance company, 

etc. 
○ Relationships: family or personal relations to donors, used for family reports of the 

patient 
○ Patient status: donor search status, transplant status, closure of the case (date, 

reason) 
○ Medical information: diagnosis, disease phase, weight, blood group, CMV status, etc. 
○ Transplants: date and place of harvest, date and place of transplant, donor ID, 

source of stem cells (bone marrow, PBSC, DLI, cord blood, other), etc. 
○ Audit: who and when has inserted or modified the patient record, search-able 

history of changes of the patient record (who, when, old data, new data). 
● Both donor and patient database must be searchable by different attributes. 
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● Quality control: the system should control quality of data according to registry policies. 
There should be no expired reservations of donors, no over aged donors that are ‘available 
for transplant purposes’ on the searches, no donors missing critical data (e.g. date of birth, 
gender), HLA data should be always valid according to the latest HLA nomenclature (renamed 
or deleted alleles should be corrected), etc. 

● Regular update of reference tables of HLA nomenclature [16] and multiple-allele-codes [22].  
● Reports: customizable reports of donor and patient details, export to PDF files, letters and 

emails to donors by user-defined templates. 
● WMDA annual report: Many registries do not systematically collect data for the WMDA 

annual report; leading to time spent searching paper records/excel spreadsheets when 
preparing the WMDA questionnaire. There is a huge advantage to building in the 
functionality to generate this data automatically at the start of the project. This also 
increases the reliability of data reported to WMDA.  

● Donor searches: The donor search algorithm is the key and probably most difficult element 
of the stem cell donor registry software. It should follow WMDA recommendations and 
guidelines. For more information about the search algorithm see the section ‘Search 
Algorithm’. 

● Management of requests: the system must allow users to create and track different national 
and international requests for donors. This includes typing requests, VT sample requests, 
IDM requests, donor reservation requests and workup requests. Traceability of requests 
means clear information about the status of the request (result, inability to do the service, 
cancellation, denial) and related events (acknowledgement by the partner, contact of the 
donor, reminders, invoice).  

● The system should support the work-flow management of requests for different scenarios 
(e.g. unsuccessful CT collection, cancelled workup). Each step in the search process (e.g. 
patient registration and any request, result or update) shall be documented with all relevant 
attributes and a time stamp (WMDA 5.04.3). Management of requests includes both: 

○ National requests - national patient and national donor 
○ International requests - national patient and international donor or vice versa; 

electronic on-line requests (EMDIS or web interface) and fax requests (outside 
EMDIS) 

● Financial module can be integrated into the request management work-flow. Closed 
requests are usually invoiced to the requesting institution. Integration with external 
economical software system requires synchronisation of services (invoice items) and clients 
(invoice recipients). 

● Transplant records, donor and patient follow-up records with automated reminders of 
incomplete or missing records.  

● Document management system: possibility to store and maintain different kinds of 
electronic documents, linked to donor, patient, search and other types of records. 

● International interfaces: the registry should be well integrated to the international 
community, mainly due to efficient donor searches: 

○ BMDW: regular export of donor and CBU database to Bone Marrow Donors 
Worldwide (www.bmdw.org) 

○ EMDIS, EMDIScord: on-line peer-to-peer network of stem cell donor registries 
(www.emdis.net). You will find more information about the EMDIS system bellow in 
this chapter. 

○ NMDP: some international registries are listed as donor centres in the NMDP 
network, so they regularly export data to NMDP database (www.nmdp.org). 

○ Netcord: member cord blood banks of this organisation regularly export data to the 
central database (www.netcord.org/). 

○ HLA: regular import of the current HLA nomenclature 
(http://hla.alleles.org/wmda/index.html, NMDP allele code nomenclature) 

http://www.emdis.net/
http://www.emdis.net/
http://www.emdis.net/
http://www.emdis.net/
http://www.emdis.net/
http://www.nmdp.org/
http://www.nmdp.org/
http://www.nmdp.org/
http://www.nmdp.org/
http://www.nmdp.org/
http://www.netcord.org/
http://www.netcord.org/
http://www.netcord.org/
http://www.netcord.org/
http://www.netcord.org/
http://www.netcord.org/
http://hla.alleles.org/wmda/index.html
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● National interfaces: the registry serves as the national HUB that connects different 
institutions and individuals within the country. Following on-line interfaces might be useful: 

○ HLA laboratory: registry sends electronic typing requests for its donors and patients 
to the laboratory and HLA typing results are returned to the registry. The registry can 
also access information about donor samples stored in the HLA laboratory freezers, 
so registry coordinators know if they can use this stored DNA sample for the 
additional HLA typing.  

○ Donor centres: donor centres and cord blood banks in the registry network may have 
their own IT systems that should be interfaced to the registry system. 

○ Harvesting centre: once the patient-donor pair is identified, the registry may send 
donor record to the harvesting centre system and get back details about the stem 
cell product. 

○ Search units: search units in the registry network may have their own IT systems that 
should be interfaced to the registry system. 

○ Transplant centres: transplant centres and hospitals need to communicate with the 
registry. An on-line solution instead of fax / paper / phone solution is desirable. 

○ Donors: On-line web portal helps to keep the contact with donors. Such portal can 
include contact details change form, on-line forum, news from the registry, 
reimbursement form, etc. Some registries also use social media networks such as 
Facebook or Twitter. 

○ Sponsors: On-line web portal for registry sponsors may increase their motivation. 
The system can manage sponsor accounts and show statistics how many donors 
were recruited for the sponsorship, how many of them were requested for VTs, 
workups, etc. 

 

TIP: It may seem that a registry system stores and manages the HLA typing results in the same format 

as the HLA laboratory information management system (LIMS), and some registries have 

implemented such data storage.  

It is a mistake to use these in search algorithms. The main differences between registry database and 

HLA LIMS database are: 

● The registry system needs fast access to the most current and comprehensive HLA typing 

results, which does not always mean the last test typing. This may be combination of 

multiple tests performed in the past by multiple typing techniques. The registry system 

always needs access to the full set of all loci that should be stored at one place, while the 

HLA lab system order includes only requested tests and loci, so HLA typing results of an 

individual may be spread in multiple typing orders. 

● When the HLA lab supervisor approves the order results, it cannot be changed in the lab 

system. However, the registry system has to keep historical HLA typing results up-to-date 

according to the latest HLA nomenclature, so it needs to update them (deleted and renamed 

alleles, new HLA nomenclature). 
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Appendix C: Inter-Registry Communication System (EMDIS) 
Text has been taken and adapted from [85]. 

Reliable communications and data transfer of donor and patient records between all partners 

in this huge network is one of the most important success factors in stem cell transplantation. 

The internet gives us great opportunities in registry to registry connections, including the 

software support of the whole process - from the preliminary search request to transplantation. 

EMDIS (European Marrow Donor Information System) [31] [86] [87] [88] is an open computer 

network for data exchange among different unrelated hematopoietic stem cell donor registries. 

Today, it covers around 75% of all potential unrelated stem cell donors and cord blood units 

registered in BMDW (www.bmdw.org) and became the de-facto standard communication system for 

unrelated HSCT registries worldwide. The EMDIS community provides documentation, status 

information, software tools, support and a project management platform [31] (www.emdis.net).  

C.1 Technical background 
The decrypted content of an EMDIS message is a text in special format, called the Flexible 

Message Language (FML). EMDIS emails are not read by humans, but computer systems that parse 

the FML text into elemental attributes and data fields that are further processed. 

On the basis of this technical background about 30 message types are defined, including 

preliminary requests and patient updates, search results, typing requests and results, sample 

requests, notification of sample arrival date and sample testing results, IDM (Infectious disease 

markers) requests and results, donor reservation requests and results, workup requests and results, 

etc. 

The most advanced feature in EMDIS is the donor search process. When a national registry 

initiates an international donor search for a specific patient, its data is broadcasted to other EMDIS 

registries. Every recipient (i.e. computer system) makes a donor search in the local database using its 

own algorithm and technology and replies with a set of potential donors. Then the requesting 

registry composes these partial results into one global EMDIS search result. In praxis, these results 

are received within several hours.  

After this procedure, the patient is in the “Preliminary status” and no further action is taken. 

But the local registry can change this status to “Active” by broadcasting the Patient status change 

message to other registries. The preliminary search result could be outdated after a few days. If the 

patient is in the Active status, every remote registry runs a regular repeat search process for this 

patient and checks if the search result has changed. The differential update is sent back to the 

patient’s registry. It could contain new and better donors than previously reported or other changes 

in the current search result. 

Finally, when the patient case is closed, the national registry broadcasts the Patient status 

change message with the new status “Stopped” and the repeat search process of this patient is 

ended. 
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Figure 58: EMDIS communication. HUB is a national stem cell donor registry.  

 

C.2 Software Implementation 
The basic components of the EMDIS software include: 

1. An email system to send and receive messages 

2. Software based on ECS (EMDIS Communication System) rules to control the sending and 
receipt of messages 

3. Software to encrypt and decrypt messages 

4. Software to validate the EMDIS FML message (the FML parser). FML = Flexible Mesage 
Language. 

5. Functions to interpret process and respond to messages – EMDIS message processor. 

6. Search engine to run preliminary and repeat searches 

7. User interface to create and manage EMDIS messages 
 

The first four components exist outside of the registry software and are currently available free 

of charge. The four form a package called ESTER (ECS message Transfer between EMDIS Registries) 

(http://www.steinersw.eu/en/ester.html), also commonly known as middleware,. ESTER uses the 

FML parser developed by ZKRD. ESTER runs under the Windows operating system. 

A platform independent implementation of the first three components is called PerlECS, which 

was developed by NMDP. 

 

http://www.steinersw.eu/en/ester.html
http://www.steinersw.eu/en/ester.html
http://www.steinersw.eu/en/ester.html
http://www.steinersw.eu/en/ester.html
http://www.steinersw.eu/en/ester.html
http://www.steinersw.eu/en/ester.html
http://www.steinersw.eu/en/ester.html
http://www.steinersw.eu/en/ester.html
http://www.steinersw.eu/en/ester.html
http://www.steinersw.eu/en/ester.html
http://www.steinersw.eu/en/ester.html
http://www.steinersw.eu/en/ester.html
http://www.steinersw.eu/en/ester.html
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Figure 59: EMDIS Implementation of the British Bone Marrow Donor Registry. 

 

The fifth, sixth and seventh components, the EMDIS message processor, search engine and 

user interface, are the most complex ones. They are available as separate piece of software, known 

as Prometheus, required linking ESTER to a copy of the local registry database. 
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EMDIS implementation can vary from one registry to another. Typically, a registry receives a 

search or sample request from its own national or regional transplant centre by e-mail or fax. These 

are then passed via EMDIS to all of the active EMDIS nodes. Responses to these requests are sent 

back from the external EMDIS nodes and then relayed by some other means to the originating 

transplant centre.  This is patient-related EMDIS messaging. 

If the local system implements the original idea of a ‘single virtual international registry’, it 

must maintain the same status of the patient in all EMDIS registries. And this could include the 

national registry itself. Then there is no difference between a local and a remote search, it is only an 

EMDIS search. The advantage is that the local system also notifies changes of search result as it does 

for foreign patients. 

The registry can also receive and respond to search or sample requests from other registries 

directly via EMDIS. This is donor-related EMDIS messaging. 

Not all registries have chosen, or are able, to respond to all of the available EMDIS messages 

and some registries process donor-related messages only. 

C.3 EMDIS Governance 
Bidirectional messaging between registries follows highly structured protocols and standard 

nomenclature agreed and controlled by the EMDIS community.  

The EMDIS organizational structure and rules are described by EMDIS House Rules and reflect 

the procedures of a working party with a high level of user involvement and a focus on practical 

issues.  

EMDIS User Group coordinates the advancement of EMDIS to achieve the goals of the 

network; sanctions and approves new EMDIS Users; validates and prioritises User needs; liaises with 

the Technical Group over specifications, time-tables and feasibility of requirements. 

EMDIS Technical Group protects the integrity of the EMDIS system, technology and 

infrastructure; defines technical requirements for the participation in EMDIS, defines interfacing 

rules and prepares the necessary documentation; reviews proposals for new developments 

emanating from the User Group; prepares specifications and timetables for implementation by 

national development teams; liaises with the User Group and the national development teams of the 

member registries. 

These groups meets regularly to discuss requests for change and to oversee the 

implementation of new versions of EMDIS. General maintenance, training and operational issues are 

also supported by the WMDA IT Working Group. 

EMDIS membership is open to unrelated donor registries that actively use the EMDIS system 

(EMDIS hubs). Membership application has to be submitted to the chair of the EMDIS User Group for 

review and be approved by the EMDIS User Group.  
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Appendix D: Comparison of HFE programs 
 

 CZ (Czech republic, 

this work) 

ZKRD (Germany) DKMS (Germany) FGM (France) ANT (UK) Europdonor 

(Netherlands) 

NMDP (USA) 

Program name Prometheus HFE OptiHapfreq Haplomat Estihaplo Cactus Haplo3v5.exe NA 

Language(s) Embarcadero 

Delphi 2007 

Perl and C Perl C++ Perl and C Visual Basic 6.0 perl 

Platform Windows Linux/MAC Windows/Linux Windows/Linux/MAC Linux/MAC Windows Windows/Linux/MAC 

Max # loci/alleles 5/None None 6/none None None 3/2000 none 

# limit of 

phenotypes/individual 

for serology/low res 

Theoretically no 

limit, but 

practically, 4.1 

million individuals. 

No Yes, not used for 

high resolution 

haplotype 

inference 

No No No Only if estimating 

high res haplotype 

freqs 

# limit of 

phenotypes/individual 

for high res 

same No Yes, hardware 

limitations at large 

numbers (>1 

million) 

No No No No 

Accepted Input  Serology, 

Nomenclature v2, 

v3, NMDP allele 

codes 

Serology, 

Nomenclature v2, 

v3, NMDP allele 

codes, genotypes 

lists 

Serology, 

Nomenclature v3, 

NMDP allele codes, 

genotypes lists 

Serology, 

Nomenclature v2, 

v3, NMDP allele 

codes 

Nomenclature v2 Serology, 

Nomenclature v2, 

v3 

Serology, 

Nomenclature v2, 

v3, NMDP allele 

codes, genotypes 

lists 

Alleles abbreviated to 

2 fields 

yes Optional Yes No Optional No Optional 

Alleles mapped to p- optional Optional Yes No no no Optional 
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like groups 

Ambiguities DNA, missing loci Serologic, DNA, 

missing loci, null 

antigen/allele 

DNA, missing loci, 

null antigen/allele 

(only in antigen 

level setting for 

DRB1) 

Serologic, DNA, 

missing loci, null 

antigen/allele 

Serologic, DNA, 

missing loci 

None Serologic, DNA, 

missing loci, null 

antigen/allele 

Method to handle 

ambiguities 

All possible 

genotypes are 

considered. 

Consider all 

possibilities 

If “p-identical” 

over exon 2/3 

including nulls then 

merged to “g”-

nomenclature. [69] 

 

If SBT typing 

ambiguities, then 

include all possible 

combinations 

(According to 

IMGT/HLA Release 

number in use). If 

intermediate 

resolution typing 

results, then 

include all possible 

combinations. 

Missing data: 

Include all possible 

combinations. 

Consider all possible 

diplotypes 

combinations 

Expanding 

diplotypes 

generated by 

phenotypes with 

missing/ambiguous 

typing and let EM 

process them 

Remove from 

records 

Consider all 

possibilities 

EM with HWE yes Yes Yes Yes Yes No Yes 

Starting values Equal, user-

defined, at 

Equal, user-defind, 

at random, based 

user-defined, 

simulated 

user-defined, at 

random, simulated 

Equal, at random, 

based on allele-

Equal Equal, user-defined, 

at random, based on 
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random, based on 

allele-frequencies 

on allele-

frequencies 

distribution distribution frequencies allele-frequencies 

Terminating criteria Based on likelihood 

change, # 

iterations 

Based on 

frequency change 

Based on 

frequency change 

Based on frequency 

change 

Based on likelihood 

change, # 

iterations 

Based on 

frequency change, 

# iterations 

Based on frequency 

change 

Terminating threshold Specified by user: 

0.00001 

Specified by user: 

1E
-6

 likelihood 

changed between 

iterations 

Fixed. value used 

in task 1: 

Sum(Abs(diff(fn-

fn+1)))<1e-5 

value used in task 

2 Max(Abs(diff(fn-

fn+1)))<1e-6 

Specified by user: 





1tt  

Specified by user: 

1E
-6

 likelihood 

changed between 

iterations 

Specified by user: 

2048 iterations for 

tasks 1 and 2 

Specified by user: 1E
-

6
 likelihood changed 

between iterations 

Handling low 

frequency haplotypes 

low frequency 

haplotypes are 

excluded, 

threshold = 

1/(2xSample_size) 

Iterative tail 

truncation as long 

as LLH increases 

No special handling No skimming – 

output is optional 

No special handling Mathematically no 

problem, values of 

4.3E
-310

 might be 

observed 

Haplotypes with 

count < 0.01 are not 

reported 

Key features Output loci and 

resolution could be 

customized: 

serology broad, 

serology split, DNA 

low res, DNA high 

res. 

 High resolution 

haplotype 

frequency 

inference from 

intermediate to 

high resolution 

HLA typing results. 

Antigen resolution 

typing results are 

used exclusively 

for antigen 

resolution 

haplotype 

 Developed as a 

perl module. Main 

script is coded 

using module 

EM implemented 

by iterating the 

probabilities of 

discretion of 

phenotypes 

- 2-locus + 3-locus LD 

- Standard error 

- Allele frequency 

and 2-locus 

haplotype tables 

- HW exact test 

- Wn statistic 
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inference only 

Output format Floating point Fixed point (10 

digits) 

Floating point Fixed point : 6 digit Floating point Fixed point (14 

digits), floating 

point 

Floating point 

Task 1 running 

time/CPU/memory 

Standard PC, 

Windows XP, 1 

processor, 4GB 

RAM. less than one 

hour 

 10.5h  CPU 4 

memory 7.9 GB 

<24h 6m 45s/2.4 

GHz/140MB 

Typical input 8 

million A, B, DR low 

res BMDW 

individuals in 12 

hours running time 

on PC 

< 1 day / 2 Intel Xeon 

X5690 6-core 3.47 

GHz / 100 GB 

Task 2 running 

time/CPU/memory 

Same/15 hours 40 hrs 4 days  CPU 12 

memory 192 GB 

<24h 0-20: 2h 45m/3 

GHZ/850 MB 

20-60: 18m 40s/3 

GHZ/470 MB 

 Same 

Table 33: Characteristics of the seven HFE computer programs. 
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