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1 Problem Formulation

In this work, we study several techniques for minimization of partially separable
functions of discrete variables. This problem is commonly known as energy
minimization, max-sum labeling problem, or weighted constraint satisfaction
problem. Mathematically, it is defined as follows. Given a graph (V,£) and
functions fs: L; — R forall s € Vand fs: L5 X £L; — R for all st € &,
where L are finite sets of labels, minimize the energy

Ep(x) = fo+ Y felws) + Y falze ), (1)

seVy ste&

over all assignments x € £ = [],.,, L. The general energy minimization
problem is NP-hard and even APX-hard, meaning that there is no polynomial-
time approximation scheme.

Goal 1: Partial Optimality We study the linear programing (LP) relaxation
approach, in which the problem is formulated as an integer linear programing
(ILP) and the integrality constraints are relaxed. For some classes of problems,
this relaxation is tight, and the problem can be solved to optimality. In addition,
it is known that for some 0-1 ILP problems, their relaxations are persistent:
whenever a part of the relaxed solution takes binary values, there exists an inte-
ger optimal solution taking the same values. This allows to determine optimally
an assignment for the part of variables which are integer in the relaxation. For
energy minimization, one can obtain an ILP reformulation possessing the per-
sistency property. However, such an approach depends on the particular reduc-
tion applied. There were several methods proposed to find an optimal partial
assignment directly for the energy in the form (1). The first goal of this work is
to analyze and unify methods for optimal partial assignment.

Goal 2: Distributed MINCUT Many algorithms for energy minimization
exploit solvable subproblems in the form of a minimum s-t cut problem (further
on called MINCUT), which is formulated as follows. Given a directed graph
(V, E), an edge capacity function ¢: E — R, and a source and sink vertices
s,t € V, find a partition V' = (S, V\S) (a cut) that separates the source and
the sink and minimizes the total cost of the cut (of the edges with tail in .S and
head in V'\\S). Mathematically, this problem is written as

min c(u,v). 2
min Y c(u,0) @)
s€S (u,v)eE
tgS u€eS

vgS



There are many algorithms known which solve this problem in polynomial time.
Nevertheless, there is still an active ongoing research on algorithms that would
be more efficient for computer vision problems. This includes specialized im-
plementations, development of parallel and massively parallel (GPU) imple-
mentations. In some settings, distributed algorithms are an advantage. Such
algorithms divide not only the computation but also the memory between the
computational units. One application of such algorithms is to solve the problem
by loading and processing only a portion of data at a time. Our second goal was
to develop a distributed algorithm for the minimum s-¢ cut problem that would
minimize the number of necessary loads of the problem data. In other words,
that would be efficient for solving large problems on a single computer.

2 Contributions

Partial Optimality We develop an unified framework to analyze partial op-
timality methods. We show that several widely applied but previously unre-
lated partial optimality methods can be obtained from the same unifying suf-
ficient conditions. These are the roof dual method (Boros et al, 2006), its
multi-label extension (Kohli et al, 2008), the method of auxiliary submodu-
lar problems (Kovtun, 2004) and the family of local methods known as Dead
End Elimination (DEE) (Desmet et al, 1992), originally developed in the con-
text of protein structure design. We show that the different sufficient conditions
proposed by these methods can be unified into a more general class. We study
the common properties of this class, and show the following. All the above
mentioned methods can be derived as local sufficient conditions in a specially
constructed reparametrization of the problem. All these methods are connected
to the standard LP relaxation. In particular, optimal fixation of the part of vari-
ables they provide are automatically satisfied by all solutions of LP relaxation.
We also show that all fixed points of the expansion move algorithm (with the
move step subproblems solved by roof-dual) are preserved by a subclass of the
general method. The new framework suggests a way how to derive new partial
optimality methods. We prove a characterization of the new unifying sufficient
condition and propose a systematic way to derive partial optimality guarantees.
For several subclasses of problems we derive methods to find the maximum
partial optimality w.r.t. the unifying sufficient condition. This includes one new
non-trivial subclass, for which the maximum partial optimality is found via
solving a series of minimum cut problems. The overview of this contribution is
given in §4.

The present work generalizes and extends the results of Shekhovtsov and



Hlavac (2011), where unification of a smaller subset of methods was proposed.
Optimality guarantees for the relaxed labellings (restricting the set of optimal
relaxed labelings without solving the LP) were first proposed for multilabel
QPBO method in the works Shekhovtsov et al (2008) and Kohli et al (2008).

Distributed MINCUT We develop a novel distributed algorithm for MINCUT.
Noting that MINCUT is employed as a subroutine in many places in energy min-
imization (either allowing to solve the full problem or its relaxation or to find an
improvement), a general algorithm suitable for solving large-scale sparse prob-
lems is required. The sequential version of the proposed algorithm allows to
solve large instances of the MINCUT/MAXFLOW problem on a single computer
using a disk storage. The parallel version of the algorithm allows to speed-up
computations using several processors or to solve the problem in parallel on
several computers exchanging messages over the network. We prove superior
theoretical properties of both proposed algorithms, develop efficient implemen-
tations, and show that they achieve a competitive performance on large-scale
computer vision instances while greatly improving on the disk operations in the
sequential case and message exchange operations in the parallel case. These
results were published in the article (Shekhovtsov and Hlavac, 2012). The
overview of this contribution is given in §5.

3 State of the Art

One of the major advances in computer vision in the past few years is the de-
velopment of efficient deterministic algorithms for minimization of a partially
separable function of discrete variables, commonly known as energy minimiza-
tion, max-sum labeling problem, or weighted constraint satisfaction. The op-
timization model of this general form has proved useful in nearly all areas. In
computer vision, it arises in particular as the maximum a posteriori inference in
Markov random fields and conditional random fields, which are used to model
a variety of vision problems ranging from the dense stereo and image segmen-
tation to the use of pictorial structures for object recognition.

Partial Optimality Methods for partial optimality recover a “part of the op-
timal labeling” even in the case when finding the complete optimal labeling is
not tractable. Several fundamental results identifying optimal partial assign-
ments are obtained from the properties of linear relaxations of some discrete
problems. An optimal solution to the continuous relaxation of a mixed-integer
0-1 programming problem is defined to be persistent if the set of [0, 1] relaxed



variables realizing binary values retains the same binary values in at least one
integer optimum (Adams et al, 1998). A mixed-integer program is said to be
persistent (or possess the persistency property) if every solution to its contin-
uous relaxation is persistent. Nemhauser and Trotter (1975) proved that the
vertex packing problem is persistent. This result was later generalized to op-
timization of quadratic pseudo-Boolean functions (equivalent to energy mini-
mization with Ly = {0,1}) by Hammer et al (1984). Strong persistency was
also proved, stating that if a variable takes the same binary value in all opti-
mal solutions to the relaxation, then it realizes that binary value in all opti-
mal integer solutions. It was shown that several approaches to minimization
of quadratic pseudo-Boolean functions lead to the same lower bound, called
the roof dual (Hammer et al, 1984; Boros and Hammer, 2002). It is dual to
the LP relaxation and therefore provides partial optimality via the persistence
property. This dual problem can be converted to MAXFLOW on a specially con-
structed graph with a double number of vertices (Boros et al, 1991) and thus
can be solved by efficient MAXFLOW algorithms. It was found to be a power-
ful method for quadratic pseudo-Boolean optimization and was also enhanced
by probing (Boros et al, 2006; Rother et al, 2007). Kolmogorov and Rother
(2007) and Rother et al (2007) proposed a review, an efficient implementations
and further improvements. After them, Quadratic Pseudo-Boolean Optimiza-
tion, abbreviated as QPBO(-P), refers to this particular efficient method (resp.
with probing). Kolmogorov (2010) gives an alternative interpretation of this
method via a submodular lower bound.

Several works considered generalization of persistency to higher-order pseudo-
Boolean functions. Adams et al (1998) considered a hierarchy of continuous re-
laxations of 0-1 polynomial programming problems. Given an optimal relaxed
solution, they derive sufficient conditions on the dual multipliers which ensure
that the solution is persistent. This result generalizes the roof duality approach,
coinciding with it in the case of quadratic polynomials in binary variables.

Kolmogorov (2010, 2012) showed that bisubmodular relaxations provide a
natural generalization of the roof duality approach to higher-order terms and
possess the persistency property. He also considered submodular relaxations
which form a special case of bisubmodular and showed the following. The
roof duality relaxation for quadratic pseudo-Boolean functions is a submodu-
lar relaxation, and it dominates all other bisubmodular relaxations. For non-
quadratic pseudo-Boolean functions, bisubmodular relaxations can be tighter
than submodular ones. Kahl and Strandmark (2011, 2012) proposed a polyno-
mial time algorithm to find the tightest submodular relaxation and evaluated it
on problems in computer vision.

The multi-label QPBO (abbreviated as MQPBO) method (Kohli et al, 2008)



extends partial optimality properties of QPBO to multi-label problems via the
reduction of the problem to binary (Boolean) variables.

The following methods use different sufficient conditions, not based on lower
bounds. The family of local methods known as the dead end elimination (DEE),
originally proposed by Desmet et al (1992). DEE methods were developed in
the context of protein structure design and are not widely known in the machine
learning and computer vision communities. They formulate simple sufficient
conditions allowing to exclude a label in a given pixel based on its unary and
adjacent pairwise terms.

Kovtun (2003, 2004, 2011) proposed to construct a submodular problem
such that determining optimal partial assignment for it allows to determine op-
timal partial assignment for the original problem.

MINCUT MINCUT problems in computer vision can originate from the en-
ergy minimization framework in several ways. Submodular energy minimiza-
tion problems completely reduce to MINCUT (Ishikawa, 2003; Schlesinger
and Flach, 2006). When the energy minimization is intractable, MINCUT is
employed in relaxation and local search methods. The linear relaxation of
pairwise energy minimization with 0-1 variables reduces to MINCUT (Boros
et al, 1991; Kolmogorov and Rother, 2007) as well as the relaxation of prob-
lems reformulated in 0-1 variables (Kohli et al, 2008). Expansion-move, swap-
move (Boykov et al, 1999) and fusion-move (Lempitsky et al, 2010) algorithms
formulate a local improvement step as a MINCUT problem.

Despite of the existence of a number of algorithms for MINCUT with poly-
nomial running time bounds and good practical performance, there is an ac-
tive ongoing research on such algorithm and their specific implementations.
Among sequential algorithms, the augmenting path implementation developed
by Boykov and Kolmogorov (2004), denoted BK, can be considered as a base-
line for simple vision problems. Several authors proposed sequential imple-
mentations which achieve better practical performance. Goldberg et al (2011)
proposed an algorithm, similar to BK, but having a strongly polynomial running
time bound and better practical performance on both simple and hard classes
of problems. Jamriska et al (2012) give a cache-efficient implementation of
BK, specialized to grid-structured graphs and achieving a significant speed-
up. Arora et al (2010) proposed a variant of preflow-push algorithm achieving
better performance on simple vision problems. Verma and Batra (2012) pro-
posed an extended experimental comparison of sequential solvers on a wider
set of benchmark problems. Several authors proposed novel parallel implemen-
tations (Delong and Boykov, 2008; Liu and Sun, 2010; Jamriska et al, 2012)



and massive parallel implementations on GPU (Vineet and Narayanan, 2008,
2010).

Distributed MINCUT There were several proposals how to parallelize the
algorithm by Boykov and Kolmogorov (2004). Partially distributed implemen-
tation (Liu and Sun, 2010) augments paths within disjoint regions first and then
merges regions hierarchically. In the end, it still requires finding augmenting
paths in the whole problem. Therefore, it cannot be used to solve a large prob-
lem by distributing it over several computers or by using a limited memory and
a disk storage. For the shared memory model Liu and Sun (2010) reported a
near-linear speed-up with up to 4 CPUs for 2D and 3D segmentation problems.

Strandmark and Kahl (2010) obtained a distributed algorithm using a dual
decomposition approach. The subproblems are MINCUT instances on the parts
of the graph (regions) and the master problem is solved using the subgradient
method. This approach requires solving MINCUT subproblems with real valued
capacities and does not have a polynomial bound on the number of iterations.
The integer algorithm proposed by Strandmark and Kahl (2010) is not guaran-
teed to terminate.

The push-relabel algorithm (Goldberg and Tarjan, 1988) performs many local
atomic operations, which makes it a good choice for a parallel or distributed im-
plementation. A distributed version (Goldberg, 1991) runs in O(n?) time using
O(n) processors and O(n?\/m) messages, where n is the number of vertices
and m is the number of edges in the problem. However, for a good practical
performance it is crucial to implement the gap relabel and the global relabel
heuristics (Cherkassky and Goldberg, 1994). The global relabel heuristic can
be parallelized (Anderson and Setubal, 1995), but it is difficult to distribute.
Delong and Boykov (2008) proposed a coarser granulation of push-relabel op-
erations, associating a subset of vertices (a region) to each processor. Push and
relabel operations inside a region are decoupled from the rest of the graph. This
allows to process several non-interacting regions in parallel or run in a limited
memory, processing few regions at a time. The gap and relabel heuristics, re-
stricted to the regions (Delong and Boykov, 2008) are powerful and distributed
at the same time. Our work was largely motivated by Delong and Boykov
(2008) and the remark that their approach might be extendible to augmenting
path algorithms.



4 Unified Partial Optimality

We show that the different sufficient conditions used in the methods of DEE,
(M)QPBO, and auxiliary submodular problems can be unified into a general
class. We study the common properties of the unified class and show that all
the above methods can be derived as local sufficient conditions in a specially
constructed reparametrization of the problem. Furthermore, it is guaranteed
that the found strong partial optimalities retain all optimal solutions of the LP
relaxation, in other words, solutions of the LP relaxation automatically satisfy
the derived partial optimalities. Therefore, LP relaxation cannot be tightened
by these methods. A similar result holds for fixed points of the fusion move
algorithm: they satisfy strong optimalities of a specific subclass.

LP relaxation Let f denote the vector with components fo, fs(i) fori € L
and s € V; fo(i,4) fori € L, j € Ly and st € £. Clearly, f € R with the
appropriately defined set Z.

For a labeling = € £ let §(z) € R be the vector with components §(z)o =
1, §(x)s(i) = [zs=t] and 6(x)s:(4,5) = [xst=ij], where [] is the Iverson
bracket. Let {-,-) denote the scalar product on RZ. The energy minimization
problem can be equivalently written as

min(f, 6(x)) )

or, still equivalently, as
i 4
min (f, u) “)

where M = conv(d(L)), the convex hull of §(£). The LP relaxation that we
consider introduces a polytope A (called the local polytope) such that aff (A) =
aff(M), AN {0,1}% = MN{0,1}% and A has a polynomial number of facets.
The problem (4) can be written equivalently as the ILP

i . 5
MeAI{gl;gl}gf? 14) (5)

By dropping the integrality constraints in (4), we obtain the LP relaxation
i . 6
min(f, u) ©)

In the case of two labels, all solutions to this relaxation are persistent: when-
ever some components of an optimal p are integer in the relaxed problem (6),
there exist an optimal solution to the ILP problem (5) taking those same inte-
ger values. However, in the case of multi-label problems, no such persistency
holds.
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Figure 1: Tllustration of the marginal polytope and a projection. (a) An energy mini-
mization problem with two labels. The marginal vector y is an element of
RR?, however, there are only 3 linearly independent coordinates, e.g., the ones
shown in the figure. (b) Polytope M = A (bluish) in the space of p1(1),
u2(1) and p12(1, 1). Possible labelings are marked as bold dots in this space.
Suppose labelings (1,0) and (0, 1) are optimal. Using A-improving projec-
tion P, the search space shrinks to P(M) (the red hashed facet). Using
A-improving projection P’, the search space shrinks to the bold green line,
not containing any optimal integer solutions but containing their convex com-
bination.

Projections We observed that the optimality guarantees of the DEE, QPBO,
MQPBO, and auxiliary submodular problem methods can be obtained through
the following mechanism. An improving mapping p: £L — L of labelings is
constructed. Given an arbitrary labeling x, the mapping p provides a label-
ing that has a better (or at least not worse) energy: E¢(p(z)) < Ey(z). In
the case of Desmet’s DEE, such a mapping changes the label in a single pixel
s, replacing label o with label 3 in s. In the case of QPBO and MQPBO,
the mapping is of the form x + (z V ™) A ™% where V and A denote
component-wise maximum and minimum, respectively. In the case of auxiliary
submodular problems, after a certain reordering of the labels, the mapping is
of the form z + x V 2™, As soon as mapping p is improving, we know for
sure that there exists an optimal labeling in p(L£). Indeed, let 2 be an optimal
labeling, then p(x) is an optimal labeling in p(L). The considered mappings
are such that p(L) is expressed as pixel-wise domain constraints, eliminating
part of the labels in each pixel. For example, in the case of improving mapping
x — x V™" we know there exists a minimizer = such that z, > x;nin for all




seV.

Even if a mapping p: £ — L is given to us, verification of the improving
property is generally NP-hard. So how do the methods we described find such
improving mappings? They use certain sufficient conditions, which are differ-
ent for each method. We propose the following mechanism to unify these ap-
proaches. We extend mappings of labelings to the local polytope A as follows.
The linear extension of mapping p: £ — L is the linear mapping P: A — A
satisfying

(Ve e L)  Pi(z)=d(p(x)). )

The linear extension merely represents p(z) in the polytope M, where labeling
x is represented by vector §(z). The extension to A is then trivial since A
resides in the affine space of M. The extension P of an idempotent mapping
p: L — L is an idempotent linear map: PP = P, or a projection. We consider
such projections that polytope M is closed under them: P(M) C M.

We define that projection P is A-improving if

(YueA) (f,Pu) <(f Pu). ®)

For a A-improving projection P, the problems (6) and (4) can be reduced re-
spectively as

Lneig<f7 w) = Ménpi&)(f, 1) )
and
;gl%f, ) = Mempl(%% ) - (10)

In other words, the search for the optimal solution, without loss of generality,
can be restricted to P(A) for the LP problem (6) and to P(M) for the energy
minimization problem (4). Figure 1 and the following example illustrate im-
proving projections.

Example. Consider the energy minimization problem with 2 labels and 2 ver-
tices, schematically shown in Figure I(a). In this case A = M. Let us denote
g = (p1(1), p2(1), p12(1,1), 1), which is a minimal representation of the
vector |1 € A. Let P be the following linear mapping of ji:

0.5 —0.5 0.5 0.5
— [ -05 05050.5
P = 0 0 1 0])" (an
0 0 0 1

This mapping projects (non-orthogonally) to a facet of the marginal polytope
(the red facet in Figure 1(b)). Assume optimal integer solutions are the two la-
belings (0,1) and (1,0). In that case, the projection P is A-improving. Another

10



projection

(888383

Pr=100"1"0 (12)
00 0 1
n

In the thesis we show the following:

e Verification of the A-improving property can be solved in polynomial
time.

e Sufficient conditions used by DEE, (M)QPBO, and auxiliary submodular
problem methods are a special case of A-improving projections.

e A-improving property has as simple characterization, connected to the
dual of (6).

Maximum Projections We study the question when the set of A-improving
projections with the product operation on them form a semilattice. If it is
the case, the maximum element in the semilattice correspond to the projection
which has the largest null space. This projection maximally reduces the poly-
topes A and M to P(A) in (9) and P(M) in (10), respectively. For several such
cases we derive polynomial time algorithms for finding maximum projections.

11
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Figure 2: (a) Partition of a network into 4 regions and the boundary set B depicted by
stars. (b) The region network corresponding to the highlighted region in (a).

5 Distributed MINCUT

Problem Partition We take the following approach to split the MINCUT
problem into (coupled) subproblems. We consider a fixed collection of regions
(R*)E_, forming a partition (disjoint union) of V'\{s, }. This partition splits
the full network on the problem to the subnetworks, as illustrated in Figure 2.

We revisit the algorithm of Delong and Boykov (2008) for the case of a
fixed partition into regions. We study a sequential variant and a novel parallel
variant of their algorithm, which allows running computations concurrently on
neighboring interacting regions using a conflict resolution similar to the asyn-
chronous parallel push-relabel (Goldberg, 1991). Both algorithms perform sev-
eral sequential iterations (sweeps) of discharging all regions.

We prove that both variants have ©(n?) bound on the number of sweeps
(meaning there is O(n?) bound and it cannot be tightened).

Augmenting Path Region Discharge Our new algorithm combines path
augmentation and push-relabel approaches. Given a fixed partition into regions,
we introduce a distance function, which counts the number of region boundaries
crossed by a path to the sink. Intuitively, it corresponds to the amount of costly
operations — network communications or loads-unloads of the regions in the
streaming mode. Let us denote B is the set of all boundary vertices (incident
to inter-region edges), see Figure2. The region distance d*®(u) in G is the

12



minimal number of inter-region edges contained in a path from w to ¢, or |B| if
no such path exists, see Figure 3.

The algorithm, called Augmenting Path Region Discharge (ARD), maintains
a labeling, which is a lower bound on the distance function. Within a region,
we first augment paths to the sink and then paths to the boundary vertices pri-
oritized by the lowest label. Thus the flow is pushed out of the region in the
direction given by the distance estimate.

We show that our new algorithm terminates in O(|B|?) sweeps. It implies a
bound of O((n’)?m’) messages in total, where n’ = |B| and m’ = (Bx B)NE.
This means that the total number of sent messages depends only on the size of
the separator set of the partition and not on the total size of the problem. This is
a strict improvement over push-relabel algorithms, in particular the algorithm
of Delong and Boykov (2008), which as we showed requires ©(n?) sweeps,
i.e.,it uses Q(n?m’) messages.

Implementation We describe additional heuristics and an efficient imple-
mentation of both push-relabel and augmented-path based distributed algo-
rithms. The following heuristics are proposed for ARD:

e Boundary relabel heuristic. Provides an improved estimate of the dis-
tance labeling by analyzing only the boundary part of the graph, not look-
ing inside the regions.

e Partial discharge heuristic. Postpones path augmentations to higher bound-
ary vertices to further sweeps. This allows to save a lot of unnecessary
work, especially when used in combination with boundary relabeling.

e Boundary search trees. Efficient data structure allowing to for quicker
search of the augmenting paths to the boundary vertices at the required
height.

Experiments We conducted 3 series of experiments in which we compared
our new algorithm against the state-of-the-art sequential and parallel solvers:

e Synthetic experiments, in which we observe general dependencies of the
algorithms, with some statistical significance, i.e. not being biased to a
particular problem instance. It also serves as an empirical validation, as
thousands of instances are solved.

e Sequential competition. We study sequential versions of the algorithms,
running them on real vision instances (University of Western Ontario web

13
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Figure 3: Illustration of the region distance.

pages, 2008). Only a single core of the CPU is utilized. We fix the
region partition and study how much disk I/O it would take to solve each
problem when only one region can be loaded in the memory at a time.

e Parallel competition. Parallel algorithms are tested on the instances that
can fully fit in 2GB of memory. We compare our algorithms with two
other state-of-the-art distributed implementations.

Next, we studied the dependency of computation time and number of sweeps
on the number of regions in the partition. The results shown in Figure 4 demon-
strate that the computation time required to solve test problems is stable over
a large range of partitions and the number of sweeps required does not grow
rapidly.

We performed additional tests of parallel ARD to determine scalability with
number of processors, these results are shown in Figure 5.

We conducted an additional experiment to determine whether a part of opti-
mal solution can be found efficiently by looking into individual regions. It turns
out, that for simple problems (e.g., stereo) a large part of the optimal solution
can be recovered from the individual parts, while for more complicated prob-
lems (3D segmentation) this is no longer the case. The interactions between
regions are really necessary.

14
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6 Conclusion

Unified Partial Optimality We presented a new sufficient condition for de-
riving partial optimal assignment in a multi-label energy minimization. Our
framework allows for unified analysis of the methods previously proposed in
the literature (Kovtun, 2003, 2004; Boros et al, 2006; Kohli et al, 2008; Desmet
et al, 1992). The proposed sufficient condition include the conditions used by
the methods in the literature as special cases. At the same time, it is a poly-

15
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Figure 5: Speedup of P-ARD with the number of CPUs used. The extended legend
shows the time to solve each problem with 1 and 8CPUs (does not include
initialization). Dashed lines correspond to the speedup in the ideal case (Am-
dahl’s law) when the parallel portion of the computation is 90% and 95%.

nomially verifiable one. The verification is expressed via a special LP relax-
ation. A main unifying property for partial optimality methods in this form is
that they preserve all solutions of the LP relaxation, i.e., LP relaxation can-
not be tightened by these methods. We proved the existence of an equivalent
transformation of the problem such that the sufficient condition is expressed
in local inequalities. This allows to derive a simplified LP for verification of
the condition. We also showed that for a subclass of partial optimality meth-
ods (including methods of Kovtun (2003)) that the fixed points of the fusion
move algorithm satisfy the derived partial optimality guarantees. We studied
subclasses, in which the maximum improving projections can be found effi-
ciently. The new algorithm finds in polynomial time the maximum improving
projection of the type “eliminate z by switching to y” for multilabel problems.
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Interestingly, DEE and auxiliary submodular problems are not connected
with lower bounds. They are nevertheless unified now with (M)QPBO methods,
which are derived via lower bounds. In methods of Kovtun (2003), to obtain
partial optimalities several sufficient conditions have to be satisfied simulta-
neously. QPBO method and approaches with submodular lower bounds (Kol-
mogorov, 2012; Kahl and Strandmark, 2011) maximize a lower bound and ob-
tain optimality guarantees as a by-product. Our approach is more direct: we
formalize the maximality of optimal partial solutions in a given class and de-
rive methods achieving it.

We believe that a large part of the approach (including the characterization) is
extendible to higher-order models and higher-order relaxations. However, there
is still a number of open questions arising from our approach in the pairwise
case. We did not fully characterize strictly improving projections and conse-
quently some of the theorems are lacking the strict counterpart. We proposed
that the projection may have non-integer weights, but considered only integer
projections (except for showing DEE). The set of improving projections for a
given function is represented by inequalities which are linear in the projection
itself (except for the idempotency, which can be omitted). Hence, in principle,
we can optimize some criterion over this convex set. In practice, we are lacking
a low-dimensional convex parametric family of projections that would be flexi-
ble enough. An ideal criterion would be to maximize the dimensionality of the
null space of the projection (equivalent to rank minimization), however even a
simpler approximate criterion can provide exact guarantees to the initial energy
minimization problem.

Distributed MINCUT We developed a new algorithm for MINCUT prob-
lem on sparse graphs, which combines augmenting paths and push-relabel ap-
proaches. We proved the worst case complexity guarantee of O(|B|?) sweeps
for the sequential and parallel variants of the algorithm (S/P-ARD). There are
many algorithms in the literature with complexities in terms of elementary arith-
metic operations better than we can prove. Nevertheless, we showed that our al-
gorithms are fast and competitive in practice, even in the shared memory model.

We proposed an improved algorithm for the local problem reduction and de-
termined that most of our test instances are difficult enough in the sense that
very few vertices can be decided optimally by looking at individual regions.
The result that S/P-ARD solves test problems in few tens of sweeps is thus
non-trivial. We also gave a novel parallel version of the region push-relabel
algorithm of Delong and Boykov (2008). We provided a number of auxiliary
results to relate our approach to the state-of-the-art.

17



Both in theory and practice (randomized test), S-ARD has a better asymptote
in the number of sweeps than the push-relabel variant. Experiments on real
instances showed that when run on a single CPU and the whole problem fits into
the memory S-ARD is comparable in speed with the non-distributed MAXFLOW
implementation by Boykov and Kolmogorov (2004), and is even significantly
faster in some cases. When only a single region is loaded into memory at a time,
S-ARD uses much fewer disk I/O than the algorithm of Delong and Boykov
(2008). We also demonstrated that the running time and the number of sweeps
are very stable with respect to the partition of the problem into up to 64 regions.
In the parallel mode, using 4 CPUs, P-ARD achieves a relative speedup of about
1.5 — 2.5 times over S-ARD and uses just slightly larger number of sweeps. P-
ARD compares favorably to other parallel algorithms, being a robust method
suitable for a use in a distributed system.
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Resumeé in Czech

Velkym dspéchem pocitacového vidéni v poslednich letech je objev efektivnich
deterministickych algoritmli na minimalizaci ¢astecné separabilnich funkei diskrétnich
proménnych (coZ je zndmo také pod ndzvy ‘minimalizace energie’, max-plus
znackovani ¢i problém spliiovani vdZenych podminek). Optimaliz&ni problém v
této obecné formé se ukazal uzitenym téméf ve vsech oblastech. V pocitacovém
vidéni na tento problém vede tloha max-aposteriorni inference v markovskych
nahodnych polich a podminénych ndhodnych polich, kterymi se modeluje mnoho
tloh od husté stereo-korespondence a segmentace obrazl az po detekci a rozpoznavani
objektd v obrazech.

Pfispévek této prace lze rozdélit do dvou Casti. Prvni pfispévek je sjedno-
ceni metod pro vypocet Casti optimdlniho feSeni. Je-li dina instance tlohy,
tyto metody najdou hodnoty podmnoziny proménnych, které jsou ¢asti vSech
(nebo alespoil nékterych) optimalnich feSeni. Ukazujeme, Ze nékolik Siroce
uzivanych avSak dfive nesouvisejicich metod Ize ziskat z jedinych pocatecnich
podminek. Diky tomu Ize vidét, Ze tyto metody maji nékteré vlastnosti spolecné,
napt. zachovavaji feSeni standardni LP-relaxace. Tyto nové sjednocujici postacujici
podminky v praci charakterizujeme a navrhujeme systematické metody na hledani
¢asti optimalniho feSeni vzhledem k t€émto podminkdm. Konkrétné predkldddme
novou netrividlni podtfidu dloh, pro které nalezeni ¢asti optimalniho feSeni vede
na sekvenci dloh na minimdlni s-t fez v grafu.

Druhy prispévek se tykd ilohy minimélniho s-t fezu v grafu. Mnoho metod
na minimalizaci energie je zaloZeno na redukci pivodniho problému (pfip. jeho
restrikce ¢i relaxované formy) na dlohu minimdlniho s-¢ fezu. ProtoZe velikost
vyslednych instanci této tlohy je Casto obrovska (napf. ve 3-D segmentaci),
jsou teba efektivni algoritmy na feSeni velkych fidkych tloh minimélniho s-t
fezu. V prici navrhujeme novy distribuovany algoritmus na tuto ilohu. Sekvencni
verze tohoto algoritmu umoziuje fesit velké instance tlohy na jediném pocitaci
s omezenou operacni paméti a externi (diskovou) paméti. Paralelni verze al-
goritmu umoznuje urychlit vypocéet s pomoci vice procesord ¢i fesit problém
paralelné na nékolika pocitacich posilajicich si zpravy po siti. Dokazujeme,
Ze horni meze na pocet diskovych operaci resp. poslanych zprav pro nas algo-
ritmus jsou lepsi nez pro znamé algoritmy. V experimentech s nasi efektivni
implementaci algoritmu ukazujeme, Ze dosahuje srovnatelnych vysledkt jako
znamé algoritmy, ovSem pii vyznamné nizZ$im poctu drahych diskovych resp.
sfovych operaci.
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