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Abstract
Velkým úspěchem počítačového vidění v posledních letech je objev efektivních determin-
istických algoritmů na minimalizaci částečně separabilních funkcí diskrétních proměn-
ných (což je známo také pod názvy ‘minimalizace energie’, max-plus značkování či
problém splňování vážených podmínek). Optimalizční problém v této obecné formě
se ukázal užitečným téměř ve všech oblastech. V počítačovém vidění na tento problém
vede úloha max-aposteriorní inference v markovských náhodných polích a podmíněných
náhodných polích, kterými se modeluje mnoho úloh od husté stereo-korespondence a
segmentace obrazů až po detekci a rozpoznávání objektů v obrazech.

Příspěvek této práce lze rozdělit do dvou částí. První příspěvek je sjednocení metod
pro výpočet části optimálního řešení. Je-li dána instance úlohy, tyto metody najdou
hodnoty podmnožiny proměnných, které jsou částí všech (nebo alespoň některých) op-
timálních řešení. Ukazujeme, že několik široce užívaných avšak dříve nesouvisejících
metod lze získat z jediných počátečních podmínek. Díky tomu lze vidět, že tyto metody
mají některé vlastnosti společné, např. zachovávají řešení standardní LP-relaxace. Tyto
nové sjednocující postačující podmínky v práci charakterizujeme a navrhujeme sys-
tematické metody na hledání části optimálního řešení vzhledem k těmto podmínkám.
Konkrétně předkládáme novou netriviální podtřídu úloh, pro které nalezení části opti-
málního řešení vede na sekvenci úloh na minimální 𝑠-𝑡 řez v grafu.

Druhý příspěvek se týká úlohy minimálního 𝑠-𝑡 řezu v grafu. Mnoho metod na min-
imalizaci energie je založeno na redukci původního problému (příp. jeho restrikce či
relaxované formy) na úlohu minimálního 𝑠-𝑡 řezu. Protože velikost výsledných instancí
této úlohy je často obrovská (např. ve 3-D segmentaci), jsou třeba efektivní algoritmy na
řešení velkých řídkých úloh minimálního 𝑠-𝑡 řezu. V práci navrhujeme nový distribuo-
vaný algoritmus na tuto úlohu. Sekvenční verze tohoto algoritmu umožňuje řešit velké
instance úlohy na jediném počítači s omezenou operační pamětí a externí (diskovou)
pamětí. Paralelní verze algoritmu umožňuje urychlit výpočet s pomocí více procesorů
či řešit problém paralelně na několika počítačích posílajících si zprávy po síti. Dokazu-
jeme, že horní meze na počet diskových operací resp. poslaných zpráv pro náš algoritmus
jsou lepší než pro známé algoritmy. V experimentech s naší efektivní implementaci al-
goritmu ukazujeme, že dosahuje srovnatelných výsledků jako známé algoritmy, ovšem
při významně nižším počtu drahých diskových resp. síťových operací.

Klíčová slova
kombinatorická optimalizace; minimalizace energie; max-aposteriorní inference v Marko-
vských náhodných polích; část optimálního řešení; persistence; distribuovaná úloha min-
imálního řezu / maximálního toku v grafu
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Abstract
One of the major advances in computer vision in the past few years is the development
of efficient deterministic algorithms for minimization of a partially separable function
of discrete variables, commonly known as energy minimization, max-sum labeling prob-
lem, or weighted constraint satisfaction. The optimization model of this general form
has proved useful in nearly all areas. In computer vision, it arises in particular as the
maximum a posteriori inference in Markov random fields and conditional random fields,
which are used to model a variety of vision problems ranging from the dense stereo and
image segmentation to the use of pictorial structures for object recognition.

This work brings two contributions. The first contribution is a unified study of
methods for partial optimality. Such methods, given an instance of the problem, output
an assignment for a subset of variables that is guaranteed to be a part of any (or at least
some) global optimum. We show that several widely applied but previously unrelated
partial optimality methods can be obtained from the same unifying sufficient conditions.
It implies that they share several common properties, in particular the property to
preserve solutions of the standard LP relaxation. We prove a characterization of the new
unifying sufficient condition and propose a systematic way to derive partial optimality
guarantees. For several subclasses of problems we derive methods to find the maximum
partial optimality w.r.t. the unifying sufficient condition. This includes one new non-
trivial subclass, for which the maximum partial optimality is found via solving a series
of minimum cut problems.

The second contribution is on the minimum 𝑠-𝑡 cut problem. It turns out that many
energy minimization methods rely on the reduction of the full problem or its restriction
or its relaxed form to the minimum 𝑠-𝑡 cut. Because some problems are of a very
large scale (e.g., in 3D segmentation), this poses a challenge of solving the minimum
𝑠-𝑡 cut problem for large sparse graphs. We develop a novel distributed algorithm for
this problem. The sequential version of the algorithm allows solving large instances on
a single computer using a limited amount of memory and an external (disk) storage.
The parallel version of the algorithm allows to speed-up computations using several
processors or to solve the problem in parallel on several computers exchanging messages
over the network. We prove the worst case bounds on the number of disk operations
and message exchanges between computers, respectively. These bounds are superior to
the ones for previously proposed methods. With a dedicated efficient implementation,
we are able to demonstrate experimentally that the new algorithms achieve the state-
of-the-art performance in terms of used computation time, while significantly lowering
the usage of the costly disk access/message exchange operations.

Keywords
combinatorial optimization; energy minimization; maximum a posteriori inference in
Markov random fields; partial optimality; persistency; distributed min-cut/maxflow
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A short notation can be very handy,
unless you forget what it denotes.

V. Kushnirevich
my teacher of tensor analysis

Notation
R (R+) the set of (non-negative) real numbers
N0 natural numbers with zero
B = {0, 1} set of Booleans
[0, 1] interval of reals
0, 1 vector of zeros (resp. ones) of appropriate size
{. . . | . . . } set
(. . . | . . . ) ordered list of elements (tuple)
def= equality by definition
[[expression]] equals 1 if expression is true and 0 if it is false
argmin the set of all minimizers
conv convex hull
aff affine hull
null null space (kernel) of a linear map∏︀

𝑖∈𝐼 𝐴𝑖 Cartesian product of sets 𝐴𝑖 such that 𝑖 ∈ 𝐼
⟨·, ·⟩ scalar product
𝒢 = (𝒱, ℰ) graph of a pairwise energy function
𝒜, 𝒰 , 𝒲 subsets of vertices 𝒱
𝐺 = (𝑉,𝐸, 𝑠, 𝑡, 𝑐) graph (network) of a mincut/maxflow problem
(𝐴,𝐵)𝐸 (𝐴×𝐵) ∩ 𝐸
𝑓 , 𝑔, ℎ parameter vector of the energy function
𝐸𝑓 , 𝐸𝑔, 𝐸ℎ energy function
𝑥, 𝑦, 𝑧 labeling
𝜇, 𝜈 relaxed labeling
𝑥𝒜, 𝑒|𝑅 restrictions of labeling (function) to a subdomain
ℒ set of labelings, page 7
ℳ marginal polytope, page 9
Λ local polytope, page 10

Abbreviations
subj. subject to
iff if and only if
LHS, RHS left-(right-)hand side of an equation
QPBO quadratic pseudo-Boolean optimization method by Boros et al. (1991)
MQPBO multi-label extension of QPBO by (Kohli et al. 2008)
DEE dead end elimination methods
LP linear program
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1 Introduction

1.1 Problem Formulation

In this work, we study several techniques for minimization of partially separable func-
tions of discrete variables. This problem is commonly known as energy minimization,
max-sum labeling problem, or weighted constraint satisfaction problem. Mathemati-
cally, it is defined as follows. Given a graph (𝒱, ℰ) and functions 𝑓𝑠 : ℒ𝑠 → R for all
𝑠 ∈ 𝒱 and 𝑓𝑠𝑡 : ℒ𝑠 × ℒ𝑡 → R for all 𝑠𝑡 ∈ ℰ , where ℒ𝑠 are finite sets of labels, minimize
the energy

𝐸𝑓 (𝑥) =
∑︁
𝑠∈𝒱

𝑓𝑠(𝑥𝑠) +
∑︁
𝑠𝑡∈ℰ

𝑓𝑠𝑡(𝑥𝑠, 𝑥𝑡) , (1)

over all assignments 𝑥 = (𝑥𝑠 : 𝒱 → ℒ𝑠 | 𝑠 ∈ 𝒱). The general energy minimization
problem is NP-hard and even APX-hard, meaning that there is no polynomial-time
approximation scheme.

Goal 1 We study the linear programing (LP) relaxation approach, in which the prob-
lem is formulated as an integer linear programing (ILP) and the integrality constraints
are relaxed. For some classes of problems, this relaxation is tight, and the problem
can be solved to optimality. In addition, it is known that for some 0-1 ILP problems,
their relaxations are persistent: whenever a part of a relaxed solution takes binary
values, there exists an integer optimal solution taking the same values. This allows to
determine optimally an assignment for the part of variables which are integer in the re-
laxation. For energy minimization, one can obtain an ILP reformulation possessing the
persistency property. However, such an approach depends on the particular reduction
applied. There were several methods proposed to find an optimal partial assignment
directly for the energy in the form (1). The first goal of this work is to analyze and
unify these methods.

Goal 2 Many algorithms for energy minimization exploit solvable subproblems in the
form of a minimum 𝑠-𝑡 cut problem (further on called mincut), which is formulated as
follows. Given a directed graph (𝑉,𝐸), an edge capacity function 𝑐 : 𝐸 → R+, and a
source and sink vertices 𝑠, 𝑡 ∈ 𝑉 , find a partition 𝑉 = (𝑆, 𝑉 ∖𝑆) (a cut) that separates
the source and the sink and minimizes the total cost of the cut (of the edges with tail
in 𝑆 and head in 𝑉 ∖𝑆). Mathematically, this problem is written as

min
𝑆⊂𝑉
𝑠∈𝑆
𝑡/∈𝑆

∑︁
(𝑢,𝑣)∈𝐸

𝑢∈𝑆
𝑣 /∈𝑆

𝑐(𝑢, 𝑣) . (2)

There are many algorithms known which solve this problem in polynomial time. Nev-
ertheless, there is still an active ongoing research on algorithms that would be more
efficient for computer vision problems. This includes specialized implementations, de-
velopment of parallel and massively parallel (GPU) implementations. In some settings,

1



1 Introduction

distributed algorithms are an advantage. Such algorithms divide not only the compu-
tation but also the memory between the computational units. One application of such
algorithms is to solve the problem by loading and processing only a portion of data at
a time. Our second goal was to develop a distributed algorithm for the minimum 𝑠-𝑡
cut problem that would minimize the number of necessary loads of the problem data.
In other words, that would be efficient for solving large problems on a single computer.

1.2 Motivation

Structural Labeling Problems Why to minimize functions of the particular form (1)?
Many problems can be formulated as finding the best assignment to a collection of
discrete variables. These variables describe hidden states or decisions to be made, de-
pending on the context. The variables are not independent but describe a joint complex
structure (consider for example a description needed in text recognition or in hierarchi-
cal image segmentation). In this context one speaks of structural pattern recognition
(or structural labeling problems) to emphasize the distinction from statistical pattern
recognition, where the object of recognition is atomic, e.g., has only several states. The
state (decision) in the structural labeling problem is the full collection of many discrete
variables. The number of different states is combinatorial. The objective function of
interest in structural labeling problems is a function of this joint complex state. It car-
ries the structural information in the sense that it defines which variables are involved
and in which way they are coupled.

The pairwise separable objective function, where only dependencies between pairs of
variables can be expressed, is the simplest yet already a powerful model. In this work,
we restrict to energies of this type, also referred to as energies of the second order. There
have been many works recently arguing for more complex models, which include terms
of a higher order, terms that are functions of separable functions, etc. Nevertheless, the
second order model is of principal importance since 1) it is NP-hard, 2) many higher-
order models can be re-expressed as a second order model using auxiliary variables and
3) respective algorithms for higher-order models are largely based on a generalization
of algorithms for the second order case.

Markov Random Fields and Graphical Models Taking the statistical approach, one
has to choose a family of probability distributions 𝑝 to define a probabilistic model of
a discrete variables vector 𝑥. Which families of such distributions are tractable and
useful in practice? While constructing the model (or a family of models), one can
incorporate conditional independences suggested by the intuition or otherwise split the
model semantically, e.g., into a prior and a conditional parts. Such splitting is often
suggested by the direction of the physical phenomena that are responsible for the image
formation process (the forward problem). In low-level vision problems, it is reasonable
to restrict the model in such a way that if we fix all variables in a certain neighborhood
of a variable 𝑥𝑠 then it becomes statistically independent of the description of the
rest of the problem (local Markov property). Strictly positive distributions1 satisfying
these conditional independence (Markov properties) are called Markov Random Fields
(MRFs).

1The positivity is necessary for several reasons, in particular to allow the existence of all conditional
probabilities. Moreover, the equivalence between Gibbs random fields and Markov random fields
breaks down without this assumption (turns into a one-way implication), and the different types of
conditional independence must be distinguished, Lauritzen (1998).

2



1.2 Motivation

Another, more constructive approach, considers distributions that factorize into a
product of factors each depending on a smaller subset of variables. Such distributions
are called Gibbs Random Fields (GRF). All possible conditional independences of a
MRF can be encoded by a single graph 𝐺, such that 𝑥𝐴 is independent of 𝑥𝐵 given
𝑥𝑆 iff 𝑆 separates 𝐴 and 𝐵 in 𝐺. The structure of a GRF in general is captured by
a hypergraph, where a hyperedge is present in correspondence to every factor. These,
and some other models which can be defined by means of a directed or undirected
(hyper)graph, form the family of graphical models (Wainwright and Jordan 2008).

There is the following link between conditional independencies and factorizations. A
famous result, the theorem by Hammersley and Clifford (1971), states that 𝑝 is an MRF
w.r.t. graph 𝐺 if and only if it admits factorization over maximal cliques of graph 𝐺.
In this way, imposing sufficiently many conditional independencies guarantees that the
distribution 𝑝 factorizes. However, a finer factorization may be possible for 𝑝, which
is not reflected in its conditional independence properties. For example, a distribution
that factorizes over a complete graph will not possess any conditional independencies
in general. For this reason, choosing the structure of factorization is a preferable way
in practice from the point of view of representation of the distribution and meeting the
requirements of the recognition algorithm. In such an approach, conditional indepen-
dencies are no longer a free choice, but are implied by the factorization2.

In Conditional Random Fields (CRF) (Lafferty et al. 2001) one models directly the
posterior distribution 𝑝(𝑥 | 𝑦), where 𝑥 is the hidden state and 𝑦 is a vector of obser-
vations and features computed from them. The distribution 𝑝(𝑥 | 𝑦) is then assumed
to possess some conditional independencies and/or factorize in 𝑥 given 𝑦. This form
of model is less intuitive because specifying the dependence of hidden states on the
observations is an inverse problem. It is not described by natural physical processes.
Nevertheless, CRF has proven to be an efficient approach. Indeed, finding the maxi-
mum a posteriori (MAP) assignment of 𝑥 only requires the posterior 𝑝(𝑥 | 𝑦). There
have been powerful features designed for image analysis. There are machine learning
techniques developed for models of this type, too. More on modeling with Markov
Random Fields can be found in the book by Li (2009), while Lauritzen (1998) gives a
rigorous study of the theoretical properties.

MAP inference in MRF Finding the MAP assignment amounts to maximizing 𝑝(𝑥|𝑦)
in 𝑥. While addressing this problem, the observations 𝑦 are fixed and may be dropped
from the notation. Without loss of generality, we may write that 𝑝(𝑥 | 𝑦) ∝ exp(−𝐸(𝑥)),
where 𝐸 is the energy function. Such exponential models arise naturally in statistical
mechanics, e.g., Boltzmann distribution, where 𝐸 is proportional to the kinetic en-
ergy or a more general one. Clearly, if 𝑝 factorizes as a product of pairwise factors in
𝑥 then 𝐸 is a pairwise-separable function in 𝑥, i.e., of the type we consider. In the
MAP-MRF/CRF approach, the model is usually initially restricted to have the desired
factorization and the most common choice is to require a pairwise factorization. Ar-
guably, finding the (non-unique) MAP assignment may not be the best formulation of
the recognition/classification problem. Indeed, posing the problem as the Bayesian de-
cision task with an appropriate loss function generally leads to a computational problem
of a more complex form. It yields the MAP problem only in the case of the so-called
0-1 loss function, which is unnatural for many (computer vision) applications. Never-

2I have often seen unjustified application of the Hammersley-Clifford theorem in the literature. The
authors tried (often incorrectly) to persuade the reader that the factorization of their choice follows
from some unspecified conditional independencies, emphasizing the “Markovity” of their model in
this way while never actually working with conditional independencies.
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1 Introduction

theless, MAP assignment was shown to deliver high quality solutions in many applied
problems.

Applications In computer vision, energy minimization techniques have been success-
fully employed to obtain high-quality results. Among them are
∙ image, video and volumetric data segmentation (Greig et al. 1989; Boykov and

Jolly 2000; Boykov et al. 2001; Boykov 2003; Ishikawa 2003; Rother et al. 2004;
Kohli and Torr 2005; Boykov and Funka-Lea 2006; Delong and Boykov 2009;
Lempitsky et al. 2011),
∙ image restoration (Boykov et al. 2001),
∙ optical flow (Roy and Govindu 2000; Boykov et al. 2001; Lempitsky et al. 2008),
∙ stereo reconstruction (Boykov et al. 1998; Kolmogorov and Zabih 2001),
∙ 3D reconstruction (Boykov and Lempitsky 2006; Lempitsky et al. 2006; Lempitsky

and Boykov 2007),
∙ stitching, cutting and combining images (Kwatra et al. 2003; Kolmogorov 2005;

Rother et al. 2005; Avidan and Shamir 2007),
∙ visual correspondence (Felzenszwalb and Huttenlocher 2000; Kim et al. 2003),
∙ multi-model estimation (Delong et al. 2012).

In a wider context, we can mention finding stable states of molecular systems, protein
structure prediction (bioinformatics), analysis of spin glasses (statistical mechanics),
radio frequency assignment, scheduling, optimal decoding of noisy signals, etc.

Algorithms A number of powerful algorithms are present in the literature to deal with
the problem. For certain subclasses of the problem, it is possible to compute the exact
solution in a polynomial time: MRFs of bounded tree-width, e.g. (Lauritzen 1998);
with convex pairwise potentials (Ishikawa 2003); with submodular potentials of bi-
nary (Hammer 1965; Kolmogorov and Zabih 2004) or with multi-label (Schlesinger and
Flach 2000; Kovtun 2004) variables; with permuted submodular potentials (Schlesinger
2007).

A standard approach in optimization for such hard problems is solving a convex
relaxation. A recent study by Kumar et al. (2009) showed that among several convex
relaxations considered in the literature (including second order cone and semidefinite),
the linear relaxation is the tightest one.

Works devoted to solving large scale linear relaxations are discussed in more de-
tail in chapter 2. Other family of methods iteratively improve the current solution
by a restricted local search: expansion and swap move (Boykov et al. 2001), fusion-
move (Lempitsky et al. 2010), multi-label moves (Kumar et al. 2011; Veksler 2012),
tired moves (Vineet et al. 2012). Some of these methods provide approximation ratio
guarantee for (semi-)metric energies (Boykov et al. 2001; Komodakis and Tziritas 2005).
Finally, there are methods which provide optimality guarantees for a partial variable
assignment or variable restriction (partial optimality) for binary (Hammer et al. 1984;
Boros et al. 1991, 2006; Rother et al. 2007) and multi-label (Kovtun 2003, 2004; Kohli
et al. 2008) problems. Dead-end elimination is another related method for identifying
non-optimal assignments based on local sufficient conditions. It was proposed originally
by Desmet et al. (1992) for predicting and designing protein structure.

A big variety of algorithms is being developed for more complicated energy functions,
that include e.g., higher-order terms and global terms of various forms, attempting to
push the applicability of energy minimization even further.
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1.3 Contribution and Outline

MINCUT in Computer Vision mincut problems in computer vision can originate
from the energy minimization framework in several ways. Submodular energy mini-
mization problems completely reduce to mincut (Ishikawa 2003; Schlesinger and Flach
2006). When the energy minimization is intractable, mincut is employed in relaxation
and local search methods. The linear relaxation of pairwise energy minimization with
0-1 variables reduces to mincut (Boros et al. 1991; Kolmogorov and Rother 2007) as
well as the relaxation of problems reformulated in 0-1 variables (Kohli et al. 2008).
Expansion-move, swap-move (Boykov et al. 1999) and fusion-move (Lempitsky et al.
2010) algorithms formulate a local improvement step as a mincut problem.

Despite of the existence of a number of algorithms for mincut with polynomial run-
ning time bounds and good practical performance, there is an active ongoing research
on such algorithm and their specific implementations. Among sequential algorithms,
the augmenting path implementation developed by Boykov and Kolmogorov (2004),
denoted BK, can be considered as a baseline for simple vision problems. Several au-
thors proposed sequential implementations which achieve better practical performance.
Goldberg et al. (2011) proposed an algorithm, similar to BK, but having a strongly
polynomial running time bound and better practical performance on both simple and
hard classes of problems. Jamriška et al. (2012) give a cache-efficient implementation of
BK, specialized to grid-structured graphs and achieving a significant speed-up. Arora
et al. (2010) proposed a variant of preflow-push algorithm achieving better performance
on simple vision problems. Verma and Batra (2012) proposed an extended experimen-
tal comparison of sequential solvers on a wider set of benchmark problems. Several
authors proposed novel parallel implementations (Delong and Boykov 2008; Liu and
Sun 2010; Jamriška et al. 2012) and massive parallel implementations on GPU (Vineet
and Narayanan 2008; Vineet and Narayanan 2010).

1.3 Contribution and Outline
In Chapter 2, we present the pairwise energy minimization and review the theoretical
results that are the most relevant to the subsequent development. Linear programming
relaxation and duality relations form the central approach, which is used for analysis
of the problem and unification of partial optimality methods in Chapter 4. This chap-
ter also gives more details on the problems and subproblems that can be reduced to
mincut/maxflow problem.

In Chapters 3 and 4, we develop an unified framework to analyze partial optimality
methods. We show that several widely applied but previously unrelated partial opti-
mality methods can be obtained from the same unifying sufficient conditions. These are
the roof dual method (Boros et al. 2006), its multi-label extension (Kohli et al. 2008),
the method of auxiliary submodular problems (Kovtun 2004) and the family of local
methods known as Dead End Elimination (DEE) (Desmet et al. 1992), originally de-
veloped in the context of protein structure design. We show that the different sufficient
conditions proposed by these methods can be unified into a more general class. We
study the common properties of this class, and show the following. All the above men-
tioned methods can be derived as local sufficient conditions in a specially constructed
reparametrization of the problem. All these methods are connected to the standard
LP relaxation. In particular, optimal fixation of the part of variables they provide are
automatically satisfied by all solutions of LP relaxation. We also show that all fixed
points of the expansion move algorithm (with the move step subproblems solved by
roof-dual) are preserved by a subclass of the general method. The new framework sug-
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1 Introduction

gests a way how to derive new partial optimality methods. We study the question of
deriving the maximum partial optimality. We prove the solutions providing maximal
partial optimality for several subclasses of problems. This includes one new non-trivial
subclass: we propose an algorithm which given two test labelings 𝑦 and 𝑧 for a multi-
label problem, decides whether labels from 𝑧 can be globally eliminated by replacing
them with labels 𝑦. The subset of labels eliminated in this way is the maximum one
that can be obtained from the unified sufficient conditions for this subclass.

The present work generalizes and extends the results of Shekhovtsov and Hlaváč
(2011), where unification of a smaller subset of methods was proposed. Optimal-
ity guarantees for the relaxed labellings (restricting the set of optimal relaxed label-
ings without solving the LP) were first proposed for multilabel QPBO method in the
works Shekhovtsov et al. (2008) and Kohli et al. (2008).

In Chapter 5, we develop a novel distributed algorithm for mincut. Noting that
mincut is employed as a subroutine in many places in energy minimization (either
allowing to solve the full problem or its relaxation or to find an improvement), a general
algorithm suitable for solving large-scale sparse problems is required. The sequential
version of the proposed algorithm allows to solve large instances of the mincut/maxflow
problem on a single computer using a disk storage. The parallel version of the algorithm
allows to speed-up computations using several processors or to solve the problem in
parallel on several computers exchanging messages over the network. We prove superior
theoretical properties of both proposed algorithms, develop efficient implementations,
and show that they achieve a competitive performance on large-scale computer vision
instances while greatly improving on the disk operations in the sequential case and
message exchange operations in the parallel case. These results were published in the
article (Shekhovtsov and Hlaváč 2012).
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2 Background on Energy Minimization

This chapter presents the pairwise energy minimization problem and results which are
relevant to our contribution. Linear programming relaxation and duality relations are
the core of the approach that is used for analysis of the problem and unification of partial
optimality methods in Chapters 3 and 4. Duality relations always link quite different
descriptions of the problem, thus we attempt to present them whenever possible. We
pay special attention to the case of binary variables, where results from pseudo-Boolean
optimization apply and review the results which can be obtained via a reduction to
binary variables. In §2.7, the expansion-move algorithm is reviewed, an analysis of the
truncation technique is presented and its relation to linear majorization is examined. In
Chapter 4, guarantees will be proven for fixed points of the expansion move and fusion
move algorithms implied by partial optimality methods.

2.1 Energy Minimization Problem

Many image analysis and interpretation problems can be posed as labeling problems, in
which the solution to a problem is a set of labels assigned to image pixels or features.

Labeling is also a natural representation for the study of MRF’s
(Besag 1974)

Let 𝒱 be a finite set of pixels and ℰ ⊂ 𝒱×𝒱 is the set of pairwise interactions. Notation
𝑠𝑡 denotes the ordered pair (𝑠, 𝑡) for 𝑠, 𝑡 ∈ 𝒱. Variable 𝑥𝑠 takes its values in a discrete
domain ℒ𝑠 = {0, 1, . . . , 𝐿 − 1}, called labels at pixel 𝑠. The concatenated vector of all
variables 𝑥 = (𝑥𝑠 | 𝑠 ∈ 𝒱) is called a labeling. Labeling 𝑥 takes values in ℒ =

∏︀
𝑠 ℒ𝑠, the

Cartesian product of all domains ℒ𝑠
1. By 𝑥𝒜 we denote the restriction of 𝑥 to 𝒜 ⊂ 𝒱

and by 𝑥𝑠𝑡 the pair (𝑥𝑠, 𝑥𝑡). We consider the energy function of the form

𝐸𝑓 (𝑥) = 𝑓0 +
∑︁
𝑠∈𝒱

𝑓𝑠(𝑥𝑠) +
∑︁
𝑠𝑡∈ℰ

𝑓𝑠𝑡(𝑥𝑠𝑡) (3)

and the associated energy minimization problem

min
𝑥∈ℒ

𝐸𝑓 (𝑥) . (4)

We require that 𝑠𝑡 ∈ ℰ ⇒ 𝑡𝑠 /∈ ℰ to eliminate the redundancy. Let us denote the set
ℒ𝑠 × ℒ𝑡 as ℒ𝑠𝑡 and the pair of labels (𝑖, 𝑗) ∈ ℒ𝑠𝑡 as 𝑖𝑗. The following set of indices is
associated with the graph (𝒱, ℰ) and the set of labelings ℒ:

ℐ = {0} ∪ {(𝑠, 𝑖) | 𝑠 ∈ 𝒱, 𝑖 ∈ ℒ𝑠} ∪ {(𝑠𝑡, 𝑖𝑗) | 𝑠𝑡 ∈ ℰ , 𝑖𝑗 ∈ ℒ𝑠𝑡} . (5)

1Thus defined, domains ℒ𝑠 coincide for all pixels and need not be distinguished. Nevertheless, keeping
the subscript helps to distinguish the association of bound variables like 𝑖 ∈ ℒ𝑠.
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Figure 1 Energy minimization: each discrete domain ℒ𝑠 at a pixel 𝑠 is depicted by a box with
possible labels. A labeling 𝑥 is shown by black circles and blue solid lines.

A vector 𝑓 ∈ Rℐ has the components (coordinates)

𝑓0 , (constant term)
𝑓𝑠(𝑖) ∀𝑠 ∈ 𝒱, 𝑖 ∈ ℒ𝑠 , (unary terms)
𝑓𝑠𝑡(𝑖, 𝑗) ∀𝑠𝑡 ∈ ℰ , 𝑖𝑗 ∈ ℒ𝑠𝑡 . (pairwise terms)

(6)

We further define that 𝑓𝑡𝑠(𝑗, 𝑖) = 𝑓𝑠𝑡(𝑖, 𝑗), in order to refer to the same component
irrespectively of the direction of the pair 𝑠𝑡. The energy function 𝐸𝑓 is associated with
vector 𝑓 as defined by (3). Let us also denote ℰ̃ = ℰ ∪ {𝑡𝑠 | 𝑠𝑡 ∈ ℰ}, the symmetric
closure of ℰ . The neighbors of a pixel 𝑠 are the vertices in the set 𝒩 (𝑠) = {𝑡 | 𝑠𝑡 ∈ ℰ̃}.
Summing the contribution from all neighbors of a given pixel 𝑠 can be easily written
as

∑︀
𝑡∈𝒩 (𝑠)

𝑓𝑠𝑡(𝑖, 𝑗), which expands as
∑︀

𝑡 | 𝑠𝑡∈ℰ
𝑓𝑠𝑡(𝑖, 𝑗) +

∑︀
𝑡 | 𝑡𝑠∈ℰ

𝑓𝑡𝑠(𝑗, 𝑖) due to the convention

𝑓𝑠𝑡(𝑖, 𝑗) = 𝑓𝑡𝑠(𝑗, 𝑖). The set of labelings restricted to 𝒩 (𝑠) will be denoted by ℒ𝒩 (𝑠) =∏︀
𝑡∈𝒩 (𝑠) ℒ𝑡.
The structure of the discrete labeling problem is illustrated in Figure 1. Discrete

decision variables 𝑥𝑠 are depicted with square boxes and their possible labels with the
circles inside. Lines between the discrete variables show the interacting pairs in the
graph 𝒢 = (𝒱, ℰ).

2.1.1 Equivalent Problems

The representation of the energy function 𝐸𝑓 (𝑥) via the component vector 𝑓 is not
unique. There is a linear subspace of vectors defining the same energy function.

Definition 1. Two vectors 𝑓, 𝑔 ∈ Rℐ are called equivalent, denoted as 𝑓 ≡ 𝑔, if their
energy functions are equal,

(∀𝑥 ∈ ℒ) 𝐸𝑓 (𝑥) = 𝐸𝑔(𝑥) . (7)

Clearly, the minimization problems min𝑥𝐸𝑓 (𝑥) and min𝑥𝐸𝑔(𝑥) are equivalent for 𝑓 ≡ 𝑔.
The notion of equivalent transformations appears in (Shlezinger 1976; Wainwright et
al. 2003; Kolmogorov and Wainwright 2005) and is very helpful in the design and
interpretation of algorithms. Because 𝐸𝑓 is linear in 𝑓 , it is 𝑓 ≡ 𝑔 iff ℎ = 𝑓 − 𝑔 satisfies
(∀𝑥 ∈ ℒ) 𝐸ℎ(𝑥) = 0, i.e., 𝐸ℎ is a zero function. All zero energies can be parametrized as
follows. Let there be given vectors 𝜙, 𝜓 with components (𝜙𝑠𝑡(𝑖) ∈ R | 𝑠𝑡 ∈ ℰ̃ , 𝑖 ∈ ℒ𝑠),
(𝜓𝑠 ∈ R | 𝑠 ∈ 𝒱), respectively.
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2.2 LP relaxation

Statement 1. The energy 𝐸ℎ defined by

ℎ0 =
∑︁
𝑠∈𝒱

𝜓𝑠 ,

ℎ𝑠(𝑖) =
∑︁

𝑡∈𝒩 (𝑠)
𝜙𝑠𝑡(𝑖)− 𝜓𝑠 ,

ℎ𝑠𝑡(𝑖, 𝑗) =− 𝜙𝑠𝑡(𝑖)− 𝜙𝑡𝑠(𝑗)

(8)

is the zero function.

Proof. To prove that 𝐸ℎ(𝑥) = 0, we simply substitute its definition,

𝐸ℎ(𝑥) =
∑︁
𝑠∈𝒱

𝜓𝑠 +
∑︁
𝑠∈𝒱

∑︁
𝑡∈𝒩 (𝑠)

(︁
𝜙𝑠𝑡(𝑥𝑠)− 𝜓𝑠

)︁
+
∑︁
𝑠𝑡∈ℰ

(︁
− 𝜙𝑠𝑡(𝑥𝑠)− 𝜙𝑡𝑠(𝑥𝑡)

)︁
. (9)

We can see that all the terms cancel out.

The reverse statement holds as well.

Theorem 2 (Schlesinger and Flach 2002, Theorem 1). The energy 𝐸ℎ is a zero function
iff it admits representation (8). When the graph (𝒱, ℰ) is connected, any zero energy
function 𝐸ℎ with ℎ0 = 0 can be represented in the form (8) with zero 𝜓.

Proof. See (Werner 2005, Theorems 12, 13) or (Kolmogorov 2004a, Lemma 6.2).

Constructing 𝑔 ≡ 𝑓 is called an equivalent transformation of 𝑓 . It is clear now that
the space of equivalent transformations is fully parametrized by vector (𝜙,𝜓). Let us
denote by 𝑓𝜙 the equivalent energy vector constructed by adding a zero energy vector
parametrized in the form (8) with zero 𝜓. It has the components

𝑓𝜙
0 = 𝑓0 ,

𝑓𝜙
𝑠 (𝑖) = 𝑓𝑠(𝑖) +

∑︁
𝑡∈𝒩 (𝑠)

𝜙𝑠𝑡(𝑖) ,

𝑓𝜙
𝑠𝑡(𝑖, 𝑗) = 𝑓𝑠𝑡(𝑖, 𝑗)− 𝜙𝑠𝑡(𝑖)− 𝜙𝑡𝑠(𝑗) .

(10)

We will not need a notation for the degrees of freedom corresponding to 𝜓, as these
transformations are simple and can be handled explicitly.

2.2 LP relaxation
In this section, we represent energy minimization as an integer linear program and
obtain a linear relaxation by dropping the integrality constraints. This construction
and its LP dual was considered in the context of computer vision by Shlezinger (1976,
p.128), Chekuri et al. (2001); Wainwright et al. (2003) and by Koster et al. (1998).
We introduce the following representation in order to make explicit that 𝐸𝑓 is linear
in 𝑓 . Let 𝛿(𝑥) be a vector with components 𝛿(𝑥)0 = 1, 𝛿(𝑥)𝑠(𝑖) = [[𝑥𝑠=𝑖]] and
𝛿(𝑥)𝑠𝑡(𝑖, 𝑗) = [[𝑥𝑠𝑡=𝑖𝑗]]. Let ⟨·, ·⟩ denote the scalar product on Rℐ . Then we can write
the energy as

𝐸𝑓 (𝑥) = ⟨𝑓, 𝛿(𝑥)⟩ (11)
and the energy minimization as

min
𝑥∈ℒ
⟨𝑓, 𝛿(𝑥)⟩ = min

𝜇∈{𝛿(𝑥) | 𝑥∈ℒ}
⟨𝑓, 𝜇⟩ , (12a)

= min
𝜇∈ℳ
⟨𝑓, 𝜇⟩ . (12b)
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2 Background on Energy Minimization

In the last equality we introduced the convex hull of the integer labelings ℳ =
conv(𝛿(ℒ)), called the marginal polytope. Since the objective function is linear and
the set 𝛿(ℒ) is not empty, the minimization over the convex hull attains the same mini-
mal value. Generally, both the number of vertices and the number of facets of polytope
ℳ grows exponentially with the problem size. Hence, (12b) is not a tractable LP.
It can be simplified by dropping some inequality constraints as follows. Consider the
minimization problem

min
𝜇∈Λ
⟨𝑓, 𝜇⟩ (13)

where Λ =
{︀
𝜇 ∈ 𝑅ℐ |𝜇 ≥ 0, 𝐴𝜇 = 0, 𝐵𝜇 = 1, 𝜇0 = 1

}︀
is called the local marginal

polytope. The equalities 𝐴𝜇 = 0 express marginalization constraints

(∀𝑠𝑡 ∈ ℰ) (∀𝑖 ∈ ℒ𝑠)
∑︁

𝑗′∈ℒ𝑡

𝜇𝑠𝑡(𝑖, 𝑗′)− 𝜇𝑠(𝑖) = 0 ,

(∀𝑠𝑡 ∈ ℰ) (∀𝑗 ∈ ℒ𝑡)
∑︁

𝑖′∈ℒ𝑠

𝜇𝑠𝑡(𝑖′, 𝑗)− 𝜇𝑡(𝑗) = 0
(14)

by means of the 𝑚1 × |ℐ| matrix 𝐴, where 𝑚1 =
∑︀

𝑠𝑡∈ℰ
(︀
|ℒ𝑠| + |ℒ𝑡|

)︀
. The equalities

𝐵𝜇 = 1 express normalization constraints

(∀𝑠 ∈ 𝒱)
∑︁
𝑖∈ℒ𝑠

𝜇𝑠(𝑖) = 1 (15)

by means of 𝑚2×|ℐ| matrix 𝐵, where 𝑚2 = |𝒱|. Polytope Λ is constructed such that its
elements having integer coordinates represent the original labelings. It is easy to verify
that inequalities (14), (15) hold for all integer labelings 𝜇 = 𝛿(𝑥). And vice-versa, if
𝜇 ∈ Λ has all integer components, there exists a unique labeling 𝑥 such that 𝛿(𝑥) = 𝜇.
Therefore, we have Λ ∩ {0, 1}ℐ = {𝛿(𝑥) |𝑥 ∈ ℒ}. However, there may be non-integer
(fractional) labelings in Λ that cannot be obtained by a convex combination of integer
ones, and generally we have ℳ⊂ Λ and

min
𝜇∈ℳ
⟨𝑓, 𝜇⟩ ≥ min

𝜇∈Λ
⟨𝑓, 𝜇⟩ . (16)

If the equality is achieved in (16) we say that the LP relaxation (13) is tight. It has
long been known to be tight for tree-structured problems (graph (𝒱, ℰ) is a tree) and
submodular problems (𝐸𝑓 is a submodular function on a distributive lattice2). Thap-
per and Zivny (2012) give sufficient conditions describing a wider class of problems in
which the relaxation is tight. This class includes submodular functions on arbitrary
lattices and more. When terms 𝑓𝑠 and 𝑓𝑠𝑡 take values in the positive rationals (not
including∞), there is a precise characterization (Thapper and Zivny 2012) and a poly-
nomial verification (Kolmogorov 2012b) of when the relaxation is tight for a given set
of admissible terms 𝑓𝑠 and 𝑓𝑠𝑡.

The polytope Λ inherits all linear equality constraints of ℳ but keeps only a small
polynomial number of inequality constraints (only the constraints 𝜇 ≥ 0), therefore it
makes an outer approximation to ℳ (Wainwright et al. 2003). Inequality constraints
𝜇 ≥ 0 are the facets of Λ. Λ has fewer facets than ℳ, at the same time Λ has more
vertices than ℳ (which are both exponential numbers). A vector 𝜇 ∈ Λ will be called
a relaxed labeling.

2There are also submodular functions on non-distributive lattces
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2.2 LP relaxation

2.2.1 Duality

Looking at the equality constraints of Λ, we can see that the function of 𝜇

⟨𝜙,𝐴𝜇⟩+ ⟨𝜓,𝐵𝜇⟩ − ⟨𝜓, 1⟩ (17)

vanishes over Λ for arbitrary 𝜙 ∈ R𝑚1 and 𝜓 ∈ R𝑚2 . This function can be written in
the form of a scalar product as −⟨ℎ, 𝜇⟩, where ℎ = −𝐴T𝜙−𝐵T𝜓 + ⟨𝜓, 1⟩ · 𝑒0 and 𝑒0 is
the basis vector corresponding to the component 𝑔0. By substituting matrices 𝐴 and 𝐵,
we get an expanded component-wise expression for ℎ which coincides identically with
the zero problem definition given by (8). It follows from this expression and Theorem 2
that the space of zero problems is the same for discrete and relaxed labelings. A primal
counterpart of Theorem 2 would be that the affine hull of Λ coincides with the affine
hull of ℳ (which was intended when constructing the relaxation but it is not directly
apparent). Thus we have that 𝐸𝑓 ≡ 𝐸𝑔 iff

(∀𝜇 ∈ Λ) ⟨𝑓, 𝜇⟩ = ⟨𝑔, 𝜇⟩ . (18)

By construction (17), elements of the vectors 𝜙,𝜓 are nothing else but the Lagrange
multipliers for the respective constraints of Λ. They become the dual variables once we
re-express the linear relaxation problem as follows:

min
𝐴𝜇 = 0
𝐵𝜇 = 1
𝜇0 = 1
𝜇 ≥ 0

⟨𝑓,𝐴𝜇⟩ = min
𝜇0 = 1
𝜇 ≥ 0

max
𝜙 ∈ R𝑚1

𝜓 ∈ R𝑚2

[︀
⟨𝑓, 𝜇⟩ − ⟨𝜙,𝐴𝜇⟩ − ⟨𝜓,𝐵𝜇− 1⟩

]︀
(19a)

= max
𝜙 ∈ R𝑚1

𝜓 ∈ R𝑚2

min
𝜇0 = 1
𝜇 ≥ 0

[︀
⟨𝑓 −𝐴T𝜙−𝐵T𝜓, 𝜇⟩+ ⟨𝜓, 1⟩

]︀
(19b)

= max
𝜙 ∈ R𝑚1

𝜓 ∈ R𝑚2

[︀
⟨𝜓, 1⟩+ 𝑓0

]︀
subj. (𝑓 −𝐴T𝜙−𝐵T𝜓)ℐ∖0 ≥ 0 . (19c)

In the inequalities (𝑓 −𝐴T𝜙−𝐵T𝜓)ℐ∖0 ≥ 0 all components except of the constant term
are included. Note, we write equalities in (19) since the primal problem is feasible.
Clearly, it is also bounded since all components of 𝜇 are in the interval [0, 1]. Using
the notation of equivalent problems, we can write the dual problem as

max
𝑔 ≡ 𝑓
𝑔𝑠 ≥ 0
𝑔𝑠𝑡 ≥ 0

𝑔0 , (20)

which reads: “find an equivalent representation that maximizes the constant term under
the condition that all other terms are non-negative”. This representation of the dual
problem is easily identified with the complementation approach in pseudo-Boolean op-
timization (Boros and Hammer 2002) (maximization of the constant term of the posi-
form), equivalent to the roof-dual bound.

In the expanded form, we have the following primal-dual pair (where all constraints
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2 Background on Energy Minimization

are written on the same line as their respective dual variables):

min⟨𝑓, 𝜇⟩ = max
∑︀

𝑠 𝜓𝑠 +
∑︀

𝑠𝑡 𝜓𝑠𝑡 + 𝑓0 .∑︀
𝑗 𝜇𝑠𝑡(𝑖, 𝑗) = 𝜇𝑠(𝑖)∑︀

𝑖 𝜇𝑠(𝑖) = 1∑︀
𝑖,𝑗 𝜇𝑠(𝑖, 𝑗) = 1

𝜇𝑠(𝑖) ≥ 0
𝜇𝑠𝑡(𝑖, 𝑗) ≥ 0

𝜇0 = 1

𝜙𝑠𝑡(𝑖) ∈ R
𝜓𝑠 ∈ R
𝜓𝑠𝑡 ∈ R

𝑓𝑠(𝑖) +
∑︀

𝑡∈𝒩 (𝑠) 𝜙𝑠𝑡(𝑖)− 𝜓𝑠 ≥ 0
𝑓𝑠𝑡(𝑖, 𝑗)− 𝜙𝑠𝑡(𝑖)− 𝜙𝑡𝑠(𝑗)− 𝜓𝑠𝑡 ≥ 0

(21)

where we introduced for convenience additional normalization constraints on pairs
(which are implied by other constraints of Λ) and their corresponding dual variables
𝜓𝑠𝑡. The variables 𝜓 in (21) decouple and have the following explicit solution

𝜓𝑠 = min
𝑖

[︀
𝑓𝑠(𝑖) +

∑︁
𝑡∈𝒩 (𝑠)

𝜙𝑠𝑡(𝑖)
]︀

= min
𝑖
𝑓𝜙

𝑠 (𝑖) ,

𝜓𝑠𝑡 = min
𝑖𝑗

[︀
𝑓𝑠𝑡(𝑖, 𝑗)− 𝜙𝑠𝑡(𝑖)− 𝜙𝑡𝑠(𝑗)

]︀
= min

𝑖𝑗
𝑓𝜙

𝑠𝑡(𝑖, 𝑗) .
(22)

Substituting this optimal solutions for 𝜓 allows us to rewrite the dual problem in the
form of unconstrained maximization of a piecewise linear concave function:

max
𝜙∈R𝑚1

[︁∑︁
𝑠∈𝒱

min
𝑖
𝑓𝜙

𝑠 (𝑖) +
∑︁
𝑠𝑡∈ℰ

min
𝑖,𝑗

𝑓𝜙
𝑠𝑡(𝑖, 𝑗)

]︁ def= max
𝜙∈R𝑚1

𝐿𝐵(𝑓𝜙) . (23)

Let us define
𝐿𝐵(𝑓) =

∑︁
𝑠∈𝒱

min
𝑖
𝑓𝑠(𝑖) +

∑︁
𝑠𝑡∈ℰ

min
𝑖,𝑗

𝑓𝑠𝑡(𝑖, 𝑗). (24)

We have for an arbitrary 𝜙 the chain

min
𝑥∈ℒ

𝐸𝑓 (𝑥) ≥ min
𝜇∈Λ
⟨𝑓, 𝜇⟩ = max

𝜙∈R𝑚1
𝐿𝐵(𝑓𝜙) ≥ 𝐿𝐵(𝑓𝜙) , (25)

that is, 𝐿𝐵(𝑓𝜙) is a lower bound on the energy minimization. Several dedicated al-
gorithms to maximize this and similar lower bounds have been proposed. There are
methods which achieve necessary conditions (described below) of optimality (Koval
and Schlesinger 1976; Wainwright et al. 2005; Kolmogorov 2006), subgradient meth-
ods (Komodakis et al. 2007; Schlesinger and Giginyak 2007; Schlesinger et al. 2011), as
well as some other non-differentiable optimization techniques with better convergence
rates (Savchynskyy et al. 2011; Kappes et al. 2012).

2.2.2 Decompositional Lower Bounds

The lower bound (23) can be alternatively obtained by the following simple consid-
eration. The energy vector 𝑓 can be decomposed into a sum of “simpler” vectors by
letting

𝑓 =
∑︁
𝑘∈𝐾

𝑓𝑘 , (26)

where 𝑓𝑘 ∈ Rℐ for all 𝑘 ∈ 𝐾. We then have an obvious inequality

min
𝑥∈ℒ

⟨︀
𝑓, 𝛿(𝑥)

⟩︀
= min

𝑥∈ℒ

⟨ ∑︁
𝑘∈𝐾

𝑓𝑘, 𝛿(𝑥)
⟩
≥
∑︁
𝑘∈𝐾

min
𝑥∈ℒ

⟨
𝑓𝑘, 𝛿(𝑥)

⟩
=
∑︁
𝑘∈𝐾

min
𝑥∈ℒ

𝐸𝑓𝑘(𝑥) . (27)
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2.2 LP relaxation

In this way, we obtain a lower bound which is a sum of individual subproblems, corre-
sponding to energies 𝐸𝑓𝑘 . The decomposition is arranged such that the subproblems
(slave problems) are easier to solve than the original problem (the master problem). In
the case of the bound (23), the subproblems are of the form min𝑖 𝑓𝑠(𝑖) and min𝑖𝑗 𝑓𝑠𝑡(𝑖, 𝑗),
i.e., the function 𝐸𝑓 is decomposed into a sum of unary and pairwise terms. There may
be many decompositions of the form (26). We want to find among them the one that
maximizes the lower bound, i.e., to maximize

∑︁
𝑘

min
𝑥
⟨𝑓𝑘, 𝛿(𝑥)⟩ (28)

over all (𝑓𝑘 | 𝑘 ∈ 𝐾) subject to constraint (26) and constraints of our choice on the
form of 𝑓𝑘. The purpose of the latter constraints is to restrict every 𝑓𝑘 such that the
respective minimization subproblems are tractable (e.g., when 𝑓𝑘 are simple unary and
pairwise functions). In the case of the bound (23), some components of 𝑓𝑘 are forced to
be zero. Since these constraints are linear and the objective of (28) is piece-wise linear
concave, the maximization (28) is going to be equivalent to a linear program.

Theorem 3 (Wainwright et al. 2005). Let (𝑇 𝑘 | 𝑘 ∈ 𝐾) be a collection of trees, where
each 𝑇 𝑘 is a subgraph of 𝒢. Let each 𝑓𝑘 be allowed to have non-zero unary and pairwise
terms only on tree 𝑇 𝑘. Then the bound (28) is dual to the LP relaxation (13).

The duality here is understood in a more general sense than LP duality – it includes
reduction and substitution of variables. The bound (23), which we derived explicitly,
becomes a special case of this theorem when the trees are taken as individual vertices
and edges.

For this approach to be practical, it is necessary that the subproblems min𝑥⟨𝑓𝑘, 𝛿(𝑥)⟩
are tractable. Besides trees, other proposed tractable decompositions include a de-
composition into sub- and supermodular subproblems (Shekhovtsov 2006) (dual to the
standard LP relaxation of the binarized energy, §2.4), a decomposition into submod-
ular 2-label problems for the Potts model (Shekhovtsov and Hlaváč 2008; Osokin et
al. 2011) (dual to the standard LP relaxation), decompositions involving higher order
terms (dual to higher order relaxations) (Johnson et al. 2007; Komodakis and Para-
gios 2008; Werner 2008; Sontag 2010). The decomposition approach is equivalent to
splitting the variables in the original (primal) problem and taking the Lagrangian dual
w.r.t. equality constraints of the split (Bertsekas 1995, dual decomposition).

2.2.3 Complementary Slackness

Let 𝜇 ∈ Λ , 𝜙 ∈ R𝑚1 , 𝜓 ∈ R𝑚2 . The complementary slackness theorem of linear
programing states that 𝜇 and (𝜙,𝜓) are optimal to their respective problems iff

(∀𝑠) (∀𝑖) 𝜇𝑠(𝑖) = 0 or 𝑓𝜙
𝑠 (𝑖) = 𝜓𝑠 ,

(∀𝑠𝑡) (∀𝑖𝑗) 𝜇𝑠𝑡(𝑖, 𝑗) = 0 or 𝑓𝜙
𝑠𝑡(𝑖, 𝑗) = 𝜓𝑠𝑡 .

(29)

As optimal values 𝜓 satisfy (22), conditions (30) are equivalent to

(∀𝑠) (∀𝑖) 𝜇𝑠(𝑖) = 0 or 𝑓𝜙
𝑠 (𝑖) = min

𝑖
𝑓𝜙

𝑠 (𝑖) ,

(∀𝑠𝑡) (∀𝑖𝑗) 𝜇𝑠𝑡(𝑖, 𝑗) = 0 or 𝑓𝜙
𝑠𝑡(𝑖, 𝑗) = min

𝑖𝑗
𝑓𝜙

𝑠𝑡(𝑖, 𝑗) .
(30)
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Often it is more handy to rewrite these conditions as implications to obtain, e.g., that
𝜇 ∈ Λ and 𝜙 are optimal iff

(∀𝑠) (∀𝑖) 𝜇𝑠(𝑖) > 0 ⇒ 𝑓𝜙
𝑠 (𝑖) = min

𝑖
𝑓𝜙

𝑠 (𝑖) ,

(∀𝑠𝑡) (∀𝑖𝑗) 𝜇𝑠𝑡(𝑖, 𝑗) > 0 ⇒ 𝑓𝜙
𝑠𝑡(𝑖, 𝑗) = min

𝑖𝑗
𝑓𝜙

𝑠𝑡(𝑖, 𝑗) .
(31)

Therefore, for an optimal (non-unique) primal-dual pair, if 𝜇𝑠(𝑖) > 0, then it must be
𝑓𝜙

𝑠 (𝑖) = min𝑖 𝑓
𝜙
𝑠 (𝑖) (we say 𝑓𝜙

𝑠 (𝑖) is locally minimal). And vice-versa, if the component
𝑓𝜙

𝑠 (𝑖) is not locally minimal, then it must be 𝜇𝑠(𝑖) = 0. Similarly, we say that 𝑓𝜙
𝑠𝑡(𝑖, 𝑗) is

locally minimal if 𝑓𝜙
𝑠𝑡(𝑖, 𝑗) = min𝑖𝑗 𝑓

𝜙
𝑠𝑡(𝑖, 𝑗). For the optimality of 𝜇 and 𝜙, it is necessary

and sufficient that 𝜇 is a relaxed labeling assigning non-zero weights only to the locally
minimal components of 𝑓𝜙.

2.2.4 Sufficient Conditions
Pair (𝑠, 𝑖) for some 𝑖 ∈ ℒ𝑠 and 𝑠 ∈ 𝒱 will be called a node and a pair of nodes ((𝑠, 𝑖), (𝑡, 𝑗))
for 𝑠𝑡 ∈ ℰ̃ will be called an arc. Let us denote 𝑓𝑠𝑡(𝑖, 𝑗) = [[𝑓𝑠𝑡(𝑖, 𝑗)= min𝑖,𝑗 𝑓𝑠𝑡(𝑖, 𝑗)]] and
𝑓𝑠(𝑖) = [[𝑓𝑠(𝑖)= min𝑖 𝑓𝑠(𝑖)]]. The vector 𝑓 encodes which arcs and nodes of 𝑓 are locally
minimal. If the following Boolean formula⋀︁

𝑠∈𝒱
𝑓𝜙

𝑠(𝑥𝑠) ∧
⋀︁

𝑠𝑡∈ℰ
𝑓𝜙

𝑠𝑡(𝑥𝑠, 𝑥𝑡) (32)

is satisfiable for some 𝑥 ∈ ℒ then it follows that 𝜇 = 𝛿(𝑥) and 𝜙 satisfy complementary
slackness (30). Hence, they are optimal to their respective problems. At the same
time, we have that 𝐸𝑓 (𝑥) = ⟨𝑓, 𝛿(𝑥)⟩ = ⟨𝑓, 𝜇⟩ = 𝐿𝐵(𝑓𝜙), thus the relaxation (resp. the
bound) is tight and 𝑥 is a minimizer of 𝐸𝑓 .

Suppose 𝜙 is optimal and 𝑓𝜙
𝑠 has a unique minimizer for every 𝑠. In that case the

expression (32) is clearly satisfiable. The global minimum of 𝐸𝑓 is unique and is found
trivially by minimizing every 𝑓𝜙

𝑠 independently. The idea of problem trivialization
by Shlezinger (1976) consists in finding an equivalent transformation 𝑓𝜙 such that (32)
is satisfiable, which would allow (in some cases easily) to find an optimal labeling. In
general, however, verifying satisfiability of (32) is the NP-complete constraint satis-
faction problem (CSP). Wainwright et al. (2005) considered a condition (strong tree
agreement) equivalent to (32), derived in the context of problem decomposition into
trees.

2.2.5 Necessary Conditions
Let 𝜇 and 𝜙 be a feasible primal-dual pair. It means simply 𝜇 ∈ Λ in our case. The
complementary slackness implies the following necessary condition of optimality. For
every node (𝑠, 𝑖) such that 𝑓𝜙

𝑠 (𝑖) is locally minimal, either 𝜇𝑠(𝑖) is zero and, by feasibility,
also (∀𝑡 ∈ 𝒩 (𝑠) ∀𝑗)

(︁
𝜇𝑠𝑡(𝑖, 𝑗) = 0 or 𝜇𝑠(𝑖) > 0

)︁
. In the latter case, again by feasibility,

it must be (∀𝑡 ∈ 𝒩 (𝑠) ∃𝑗) 𝜇𝑠𝑡(𝑖, 𝑗) > 0 and hence 𝑓𝜙
𝑠𝑡(𝑖, 𝑗) is locally minimal.

We say that locally minimal node (𝑠, 𝑖) is arc-consistent if

(∀𝑡 ∈ 𝒩 (𝑠) ∃𝑗) 𝑓𝜙
𝑠𝑡(𝑖, 𝑗) is locally minimal. (33)

Similarly, for every arc ((𝑠, 𝑖), (𝑡, 𝑗)) such that 𝑓𝜙
𝑠,𝑡(𝑖, 𝑗) is locally minimal either 𝜇𝑠𝑡(𝑖, 𝑗) =

0 or both 𝑓𝜙
𝑠 (𝑖) and 𝑓𝜙

𝑡 (𝑗) are locally minimal. We say that locally minimal arc
((𝑠, 𝑖), (𝑡, 𝑗)) is arc-consistent if

𝑓𝜙
𝑠 (𝑖) and 𝑓𝜙

𝑡 (𝑗) are locally minimal. (34)
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The next theorem, following from the construction, states that complementary slackness
implies that there is a subset of locally minimal arcs and nodes of 𝑓𝜙 which is arc-
consistent.

Theorem 4 (Shlezinger 1976, Theorem 2). For the equivalent 𝑓𝜙 to be dual-optimal
it is necessary that there exists an arc-consistent subset of locally minimal nodes and
arcs of 𝑓𝜙.

The existence of a subset of arc-consistent locally minimal nodes and arcs is equivalent
to the weak tree agreement condition considered by (Kolmogorov 2006) in the context of
tree decompositions. When all locally minimal nodes and arcs of 𝑓𝜙 are arc-consistent,
we say that 𝑓𝜙 is arc-consistent. It is more than necessary for optimality of 𝑓𝜙, however
an equivalent transformation satisfying this requirement always exists.

Theorem 5. For every energy vector 𝑓 , there exists an arc-consistent equivalent prob-
lem 𝑓𝜙 (called the arc-consistent equivalent).

Proof. Let 𝜙 be dual-optimal (it exists since the primal problem is feasible and bounded).
Then the necessary conditions of optimality are satisfied. It is easy to find an equivalent
transformation 𝜙′ such that all nodes and arcs of 𝑓𝜙′ are arc-consistent, see e.g. (Werner
2007, Theorem 7).

We will often give proofs of certain properties like optimality guarantees for the arc-
consistent equivalent. By Theorem 5, these properties will hold for the initial problem.
To clarify the relations between different conditions, we can draw the following diagram:

𝐿𝐵(𝑓𝜙) is tight:
min𝑥𝐸𝑓 (𝑥) = 𝐿𝐵(𝑓𝜙)

(a)
⇔ sufficient condition:

𝑓𝜙 is satisfiable
⇓ (b) ⇓ (c)

𝜙 is optimal:
𝜙 ∈ arg max𝜙 𝐿𝐵(𝑓𝜙)

(d)
⇒ necessary condition:

subset of 𝑓𝜙 is AC

Implications (a), (d) and (b) were considered by Shlezinger (1976, Theorems 4 and 2)
and Schlesinger and Flach (2002, Theorem 2), respectively. Their approach to solve
the energy minimization problem is to maximize 𝐿𝐵 by linear programming or by an
algorithm which achieves the necessary conditions, and check whether 𝑓𝜙 is satisfiable.
This approach is guaranteed to find a solution for all tree-structured and permuted-
submodular problems (Schlesinger and Flach 2000).

One important result in the case of two labels is that arc-consistency is not only
necessary but also sufficient for the optimality (of LP) and that the primal optimal
𝜇 can be recovered by assigning its components to 0, 1/2, 1 locally as appropriate to
satisfy complementary slackness and feasibility.

2.3 Binary Variables
Let ℒ𝑢 = B = {0, 1} for all 𝑢 ∈ 𝒱. Variables 𝑥𝑢 ∈ ℒ𝑢 will be called binary or Boolean
throughout this text. The unary and pairwise terms of energy 𝐸𝑓 can be expanded as

𝑓𝑢(𝑥𝑢) = 𝑓𝑢(1)𝑥𝑢 + 𝑓𝑢(0)(1− 𝑥𝑢) ,
𝑓𝑢𝑣(𝑥𝑢, 𝑥𝑣) = 𝑓𝑢𝑣(1, 1)𝑥𝑢𝑥𝑣 + 𝑓𝑢𝑣(0, 1)(1− 𝑥𝑢)𝑥𝑣

+ 𝑓𝑢𝑣(1, 0)𝑥𝑢(1− 𝑥𝑣) + 𝑓𝑢𝑣(0, 0)(1− 𝑥𝑢)(1− 𝑥𝑣) .
(35)
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Figure 2 Equivalent mincut representation for energy minimization with binary variables. (a)
Energy terms for pixels 𝑢, 𝑣 and pair 𝑢𝑣 ∈ ℰ . (b) Equivalent transformation of the energy
allowing to rewrite it in the form (38). (c) Cut-cost representation of the energy function.
The cut shown in red is (𝒜,𝒱∖𝒜) with 𝒜 = {1, 𝑢}. It corresponds to the labeling 𝑥𝑢𝑣 = (1, 0)
and has the cost 𝑐𝑢0 + 𝑐𝑢𝑣 + 𝑐1𝑣 equivalent (up to a constant) to the respective energy cost.

By expanding braces in (35), the energy 𝐸𝑓 (𝑥) takes the form

𝐸𝑓 (𝑥) =
∑︁
𝑢∈𝒱

𝑎𝑢𝑥𝑢 +
∑︁

𝑢𝑣∈ℰ
𝑎𝑢𝑣𝑥𝑢𝑥𝑣 + 𝑎0 . (36)

Expression (36) is a quadratic polynomial in binary variables 𝑥. Functions of the form
B𝒱 ↦→ R are known as pseudo-Boolean and their minimization (or maximization) are
the subject of pseudo-Boolean optimization (Boros and Hammer 2002). In this work, we
will discuss several methods which are based on the results developed in pseudo-Boolean
optimization or are generalizing them in a certain way.

2.3.1 Roof Dual (QPBO)

In the case of two labels, the necessary condition of optimality of the LP relaxation,
described in §2.2.5 is also sufficient.

Theorem 6. Let 𝑓𝜙 be an arc-consistent equivalent of energy 𝑓 with two labels. Then
there is an optimal relaxed labeling with components in {0, 1

2 , 1} (half-integral) satisfy-
ing complementary slackness.

This result was observed independently by Hammer et al. (1984); Schlesinger and Flach
(2000); Kolmogorov and Wainwright (2005). See also (Werner 2007, Theorem 8).

In pseudo-Boolean optimization it was shown that several approaches, including the
dual in the form (20), lead to the same lower bound, called the roof dual (Hammer et al.
1984; Boros and Hammer 2002). This dual problem can be converted to maxflow on
a specially constructed graph with a double number of vertices (Boros et al. 1991) and
thus can be solved by efficient maxflow algorithms. It was found to be a powerful
method for quadratic pseudo-Boolean optimization and was also enhanced by probing
(Boros et al. 2006; Rother et al. 2007). Kolmogorov and Rother (2007) and Rother
et al. (2007) proposed a review, an efficient implementations and further improvements.
After them, Quadratic Pseudo-Boolean Optimization, abbreviated as QPBO(-P), refers
to this particular efficient method (resp. with probing). Kolmogorov (2010) gives an
alternative interpretation of this method via a submodular lower bound.

For our purposes, we will assume that QPBO finds the arc-consistent equivalent 𝑓𝜙.
Let us introduce a function QPBO(𝑓) = {𝑂𝑠 | 𝑠 ∈ 𝒱}, where 𝑂𝑠 = argmin𝑖 𝑓

𝜙
𝑠 (𝑖). It will

be proven in §3.2 that any minimizer 𝑥 of 𝐸𝑓 satisfies 𝑥𝑠 ∈ 𝑂𝑠 for all 𝑠 ∈ 𝒱.

16



2.3 Binary Variables

For multi-label problems, the QPBO method can be used to fuse two given label-
ings (Lempitsky et al. 2010), restricting thus the search space to a binary choice in
every pixel. In §2.7, we review QPBO fusion in the context of the expansion-move
algorithm.

2.3.2 MINCUT/MAXFLOW
Let us first introduce the minimum 𝑠-𝑡 cut problem (mincut). It is defined on a
capacitated directed graph (𝑉,𝐸, 𝑐) with capacity function 𝑐 : 𝐸 → R+ and two vertices
𝑠, 𝑡 ∈ 𝑉 , 𝑠 ̸= 𝑡, called source and sink, respectively. The partition (𝑆, 𝑉 ∖𝑆) of the vertex
set 𝑉 such that 𝑠 ∈ 𝑆 and 𝑡 /∈ 𝑆 is called a cut. The cost of the cut (𝑆, 𝑉 ∖𝑆) is the sum
of costs of all edges with tail in 𝑆 and head not in 𝑆. The minimum 𝑠-𝑡 cut problem is
to find a cut of the minimum cost,

min
𝑆⊂𝑉
𝑠∈𝑆
𝑡/∈𝑆

∑︁
𝑢𝑣∈𝐸

𝑢∈𝑆, 𝑣 /∈𝑆

𝑐𝑢𝑣 . (37)

This problem can be solved in polynomial time, it is dual to the maxflow problem.

2.3.3 Reduction to MINCUT
From expansion (35) it is also clear that 𝐸𝑓 (𝑥) can be equivalently written in the form

𝐸𝑓 (𝑥) =
∑︁
𝑢∈𝒱

𝑐𝑢𝑥𝑢 +
∑︁

𝑢𝑣∈ℰ̃

𝑐𝑢𝑣𝑥𝑢(1− 𝑥𝑣) + 𝑐0 . (38)

Let 𝒜 be the set of variables with label 1, 𝒜 = {𝑢 ∈ 𝒱 |𝑥𝑢 = 1}. The second sum
in (38) sums the costs over edges in ℰ̃ such that the tail of the edge is in 𝒜, where
𝑥𝑢 = 1, and the head is in 𝒜 = 𝒱∖𝒜, where 𝑥𝑣 = 0. This is exactly the cost of the cut
(𝒜,𝒜) in the capacitated graph (𝒱, ℰ̃ , 𝑐).

Figuring out the exact coefficients 𝑐 takes some effort but one can verify that by
collecting the terms of (35) w.r.t. 𝑥𝑢(1− 𝑥𝑣) and 𝑥𝑢 the expression (38) is satisfied by
the following coefficients (non-uniquely):

(∀𝑢𝑣 ∈ ℰ) 𝑐𝑢𝑣 = 𝑓𝑢𝑣(1, 0) + 𝑓𝑢𝑣(0, 1)− 𝑓𝑢𝑣(0, 0)− 𝑓𝑢𝑣(1, 1) ,
(∀𝑢𝑣 ∈ ℰ) 𝑐𝑣𝑢 = 0 ,
(∀𝑢 ∈ 𝒱) 𝑐𝑢 = 𝑓𝑢(1)− 𝑓𝑢(0)

+
∑︁

𝑢𝑣∈ℰ

[︀
𝑓𝑢𝑣(1, 1)− 𝑓𝑢𝑣(0, 1)

]︀
+
∑︁

𝑣𝑢∈ℰ

[︀
𝑓𝑢𝑣(0, 1)− 𝑓𝑢𝑣(0, 0)

]︀
,

𝑐0 = 𝑓0 +
∑︁
𝑢∈𝒱

𝑓𝑢(0) +
∑︁

𝑢𝑣∈ℰ
𝑓𝑢𝑣(0, 1) +

∑︁
𝑣𝑢∈ℰ

[︀
𝑓𝑢𝑣(0, 0)− 𝑓𝑢𝑣(0, 1)

]︀
.

(39)

To represent the cost of the linear terms of (38) as the cost of the cut, let us introduce
two auxiliary variables with fixed values, 𝑥1 = 1 (source) and 𝑥0 = 0 (sink), and
rewrite (38) as

𝐸𝑓 (𝑥) =
∑︁

𝑢𝑣∈ℰ ′

𝑐𝑢𝑣𝑥𝑢(1− 𝑥𝑣) + 𝑐const , (40)

where ℰ ′ = ℰ̃ ∪ {(1, 𝑢) |𝑢 ∈ 𝒱} ∪ {(𝑢, 0) |𝑢 ∈ 𝒱} defines the extended graph 𝒢′ =
(𝒱 ∪ {0, 1}, ℰ ′) with extra edges (1, 𝑢) and (𝑢, 0) having associated costs satisfying
𝑐𝑢0 − 𝑐1𝑢 = 𝑐𝑢. Then 𝐸𝑓 (𝑥) is equivalent up to a constant to the cost of a cut (𝒜,𝒜)
in 𝒢′ separating the source (1 ∈ 𝒜) and the sink (0 /∈ 𝒜) and the energy minimization
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2 Background on Energy Minimization

problem can be equivalently cast as a the (mincut) problem, where only the non-
negativity constraints on 𝑐 are not satisfied. Figure 2 illustrates this construction in a
more detail.

The costs 𝑐1𝑢 and 𝑐𝑢0 can always be selected non-negative and simultaneously satisfy
𝑐0𝑢 − 𝑐1𝑢 = 𝑐𝑢. However, the costs 𝑐𝑢𝑣 are non-negative iff 𝑓𝑢𝑣 is submodular. In
the latter case, all the edge weights in the mincut problem are non-negative, and the
problem can be solved in a polynomial time by combinatorial algorithms.

There is one degree of freedom in the mincut representation for every edge 𝑢𝑣 ∈ ℰ ,
which corresponds to the equivalent transformations of the mincut (taking residual
network w.r.t. a flow, Chapter 5). A tighter connection between energy representation
and the mincut representation can be established by mapping (a subset of) equivalent
transformations of the energy to feasible flows by e.g., defining the following reverse
mapping

𝑓𝑢(1) = 𝑐𝑢0 , 𝑓𝑣(1) = 𝑐𝑣0 , 𝑓𝑢𝑣(1, 0) = 𝑐𝑢𝑣 ,

𝑓𝑢(0) = 𝑐1𝑢 , 𝑓𝑣(0) = 𝑐1𝑣 , 𝑓𝑢𝑣(0, 1) = 𝑐𝑣𝑢 ,

𝑓0 = 𝑐0 ,

(41)

with the rest of the terms of 𝑓 set to zero. This relation allows us to speak of an
equivalent transformation of the energy corresponding to a flow. For multi-label ener-
gies, the expansion-move algorithm (discussed in §2.7) optimizes in every iteration a
binary labeling crossover problem via a reduction to mincut. Applying the maximum
flow transformation of the mincut problem to the initial multi-label energy function
induced by the mapping (41) is the dual counter-part of the expansion-move algorithm.
This relation was exploited by Komodakis and Tziritas (2005) to develop a primal-dual
algorithm (FastPD) and prove its approximation guarantees (see also the explanation
of FastPD by Kolmogorov (2007)).

2.4 Reduction to Binary Variables

Many important results for the energy minimization problem (4) follow from the equiv-
alent representation using binary variables. In particular, results from graph theory
and pseudo-Boolean optimization are directly applicable.

In this section, we review the construction (Ishikawa 2003; Kovtun 2004; Schlesinger
and Flach 2006) allowing us to represent the energy minimization problem (4) as an
equivalent problem min𝑧 𝐸𝑔(𝑧) with binary variables3. The equivalence is understood
in the sense that there is a one-to-one correspondence between the objective functions,
and hence solving the binary problem will deliver a solution to the initial problem, see
Figure 3. Let ℒ𝑠 = {0, 1, . . . 𝐿 − 1} and ℒ̃𝑠 = {0, 1, . . . 𝐿 − 2} for all 𝑠 ∈ 𝒱. For each
variable 𝑥𝑠 ∈ 𝒱 we introduce a representation with 𝐿 − 1 binary variables (𝑧𝑠,𝑖 | 𝑖 ∈
ℒ̃𝑠, 𝑠 ∈ 𝒱). The resulting binary labeling is 𝑧 : 𝑉 → B, where 𝑉 =

∏︀
𝑠∈𝒱 ℒ̃𝑠. We

establish correspondence between multi-label configurations 𝑥 and binary configurations
𝑧 by defining the mappings

(∀𝑖′ ∈ ℒ̃𝑠) 𝑧𝑠,𝑖′(𝑥) = [[𝑥𝑠>𝑖
′]] , (42a)

𝑥𝑠(𝑧) =
∑︁
𝑖′∈ℒ̃

𝑧𝑠,𝑖′ . (42b)

3Ishikawa (2003) and Kovtun (2004, §2.3.2) considered a reduction to the mincut, while Schlesinger
and Flach (2006) reduces to the energy minimization with two labels. It can be seen that these
constructions are similar.
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Figure 3 Transformation of multi-label energy to binary energy. Left: an interaction pair
𝑠𝑡 ∈ ℰ ; a labeling 𝑥 is shown by black circles; the lowest labels are dashed since all weights
in 𝑓𝑠𝑡 and 𝑓𝑠 associated with them are 0. Right: binary variables 𝑧𝑠,𝑖, 𝑧𝑡,𝑗 ; labeling 𝑧(𝑥) is
shown by black circles; dotted lines marked with 𝐵 correspond to hard constraints ensuring
𝑧𝑠,𝑖+1 ≥ 𝑧𝑠,𝑖 in the optimum. Bold nodes and arcs visualize unary and pairwise terms that
contribute to 𝐸𝑓 (𝑥) and 𝐸𝑔(𝑧) respectively for the given pair of corresponding labelings.

Mapping (42a) is one-to-one. Mapping (42b) becomes one-to-one if we constrain 𝑧 to
satisfy 𝑧𝑠,𝑖+1 ≥ 𝑧𝑠,𝑖 for 𝑖 = 0, 1, . . . , 𝐿− 3. We will make sure that 𝐸𝑔(𝑧′) is sufficiently
big for any 𝑧′ that does not satisfy these constraints. Now we construct a binary energy
𝐸𝑔 such that 𝐸𝑔(𝑧) = 𝐸𝑓 (𝑥) for all 𝑥 and 𝑧 satisfying (42). It is achieved as follows.
First, we construct an equivalent problem 𝑓 ≡ 𝑓 such that the following properties
hold:

(∀𝑠𝑡 ∈ ℰ) (∀𝑖𝑗 ∈ ℒ𝑠𝑡) 𝑓𝑠𝑡(0, 𝑗) = 𝑓𝑠𝑡(𝑖, 0) =0 ,
(∀𝑠 ∈ 𝒱) 𝑓𝑠(0) =0 .

(43)

In this representation, the correspondence of 𝐸𝑓 and 𝐸𝑔 can be established easier.
However, because representation (43) is unique, the full equivalence class of 𝑓 will be
mapped to the same 𝑔. In other words, equivalent transformations of 𝑓 will not be
mapped onto those of the binary problem 𝑔. Should such extended mapping be needed,
it can be established directly, or dually by defining the mapping of relaxed labelings
as in §4.2.4, where it is used to analyze corresponding LP relaxations. The equivalent
problem 𝑓 satisfying (43) is constructed as follows:

(∀𝑠𝑡 ∈ ℰ) (∀𝑖𝑗 ∈ ℒ𝑠𝑡) 𝑓𝑠𝑡(𝑖, 𝑗) = 𝑓𝑠𝑡(𝑖, 𝑗)− 𝑓𝑠𝑡(𝑖, 0)− 𝑓𝑠𝑡(0, 𝑗) + 𝑓𝑠𝑡(0, 0) ,
(∀𝑠 ∈ 𝒱) (∀𝑖 ∈ ℒ𝑠) 𝑓𝑠(𝑖) = 𝑓𝑠(𝑖) +

∑︁
𝑡∈𝒩 (𝑠)

𝑓𝑠𝑡(𝑖, 0)− 𝑓𝑠(0)−
∑︁

𝑡∈𝒩 (𝑠)
𝑓𝑠𝑡(0, 0) ,

𝑓0 = 𝑓0 +
∑︁
𝑠𝑡∈ℰ

𝑓𝑠𝑡(0, 0) +
∑︁
𝑠∈𝒱

𝑓𝑠(0) .

(44)
It is easy to verify that conditions (43) hold for 𝑓 and that 𝐸𝑓 = 𝐸𝑓 . Note, in the
case of two labels, the non-zero terms of 𝑓 are only 𝑓𝑠(1), 𝑓𝑠𝑡(1, 1) and 𝑓0, thus 𝑓 is
the polynomial representation (36). For a multi-label problem, representation 𝐸𝑓 is the
minimal (and hence unique) encoding of the energy function.

We can represent 𝑓𝑠 as the following cumulative sum

(∀𝑖 ∈ ℒ𝑠) 𝑓𝑠(𝑖) =
∑︁

0≤𝑖′<𝑖

𝐷𝑖′𝑓 =
∑︁

𝑖′∈ℒ̃𝑠

[[𝑖′<𝑖]]𝐷𝑖′𝑓 , (45)

where 𝐷𝑖𝑓𝑠 = 𝑓𝑠(𝑖+1)−𝑓𝑠(𝑖) is the discrete derivative (finite difference) of 𝑓𝑠 at 𝑖 ∈ ℒ̃𝑠

(where we adopt that the sum over empty set is zero, i.e., when 𝑖 = 0).
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2 Background on Energy Minimization

Analogously, the function 𝑓𝑠𝑡 can be represented as

(∀𝑖𝑗 ∈ ℒ𝑠𝑡) 𝑓𝑠𝑡(𝑖, 𝑗) =
∑︁

0≤𝑖′<𝑖
0≤𝑗′<𝑗

𝐷𝑖′𝑗′𝑓𝑠𝑡 =
∑︁

𝑖′𝑗′∈ℒ̃𝑠𝑡

[[𝑖′<𝑖]][[𝑗′<𝑗]]𝐷𝑖′𝑗′𝑓𝑠𝑡 , (46)

where 𝐷𝑖𝑗𝑓𝑠𝑡 = 𝑓𝑠𝑡(𝑖, 𝑗)+𝑓𝑠𝑡(𝑖+1, 𝑗+1)−𝑓𝑠𝑡(𝑖, 𝑗+1)−𝑓𝑠𝑡(𝑖+1, 𝑗) is the mixed second
difference of 𝑓𝑠𝑡 at (𝑖, 𝑗) ∈ ℒ̃𝑠𝑡.

It follows from these representations that using variables 𝑧𝑠,𝑖 = [[𝑥𝑠≥𝑖]], the energy
𝐸𝑓 (𝑥) can be expressed as a quadratic polynomial in 𝑧. We can summarize now the
components of the equivalent binary energy minimization problem:
∙ Graph (𝑉,𝐸), where 𝐸 = 𝐸1 ∪ 𝐸2. 𝐸1 =

{︀
((𝑠, 𝑖), (𝑡, 𝑗)) | 𝑠𝑡 ∈ ℰ , 𝑖𝑗 ∈ ℒ̃𝑠𝑡

}︀
.

𝐸2 =
{︀
((𝑠, 𝑖), (𝑠, 𝑖+ 1)) | 𝑠 ∈ 𝒱, 𝑖 = 0, 1, . . . 𝐿− 3

}︀
.

∙ Binary configuration 𝑧 ∈ B𝑉 . For a configuration 𝑥 ∈ ℒ𝒱 the corresponding binary
configuration 𝑧 is defined via mapping 𝑧(𝑥) (42a).
∙ Binary energy function 𝐸𝑔(𝑧) is constructed as

𝑔0 = 𝑓0 ,

(∀𝑠𝑡 ∈ ℰ) (∀𝑖𝑗 ∈ ℒ̃𝑠𝑡) 𝑔(𝑠,𝑖)(𝑡,𝑗)(1, 1) = 𝐷𝑖𝑗𝑓𝑠𝑡 = 𝐷𝑖𝑗𝑓𝑠𝑡 ,

(∀𝑠 ∈ 𝒱) (∀𝑖 ∈ ℒ̃𝑠) 𝑔(𝑠,𝑖)(1) = 𝐷𝑖𝑓𝑠 ,

(∀𝑠 ∈ 𝒱) (∀𝑖 ∈ {0, 1, . . . 𝐿− 3}) 𝑔(𝑠,𝑖)(𝑠,𝑖+1)(0, 1) = 𝐵

(47)

and the remaining components of 𝑔 are set to zero. In (47), 𝐵 is a sufficiently big
number, ensuring that inequality 𝑧𝑠,𝑖 ≥ 𝑧𝑠,𝑖+1, for 𝑖 = 0, 1, . . . 𝐿− 3 holds for any
minimizer of 𝑔.

Statement 7. Constructed binary energy is equivalent to the original multi-label en-
ergy: For all 𝑥 ∈ ℒ it is 𝐸𝑓 (𝑥) = 𝐸𝑔(𝑧(𝑥)) .

Proof. Let 𝑧 = 𝑧(𝑥). From representations of unary and pairwise terms by (45) and (46)
we have that

𝑓0 =𝑔0 ,

𝑓𝑠(𝑥𝑠) =
∑︁
𝑖′∈�̃�

𝑔(𝑠,𝑖′)(𝑧𝑠,𝑖′) ,

𝑓𝑠𝑡(𝑥𝑠𝑡) =
∑︁

𝑖′,𝑗′∈�̃�

𝑔(𝑠,𝑖′)(𝑡,𝑗′)(𝑧𝑠,𝑖′ , 𝑧𝑡,𝑗′) .
(48)

Therefore 𝐸𝑔(𝑧) = 𝐸𝑓 (𝑥) = 𝐸𝑓 (𝑥).

For binary configurations 𝑧, for which the constraint terms 𝑔(𝑠,𝑖)(𝑠,𝑖+1)(0, 1) are not
active, it holds 𝑧𝑠,𝑖 ≥ 𝑧𝑠,𝑖+1 for 𝑖 = 0, 1, . . . 𝐿−3 and there holds 𝑧(𝑥(𝑧)) = 𝑧. Whenever
one of the constraint terms is active, the energy 𝐸𝑔 gets an increase of 𝐵, and by
construction the corresponding configuration is not a minimizer. Therefore, we have a
one-to-one correspondence between minimizers of 𝐸𝑓 and 𝐸𝑔.

Other reductions to binary variables are possible. A reduction which is independent
of the order of labels (Shekhovtsov et al. 2008) was shown to have degenerate LP
relaxation. The specific reduction we considered is interconnected with the notion of
submodular multi-label energies.
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2.5 Submodular Energy Minimization

Induced MINCUT Representation By reduction of a multi-label 𝐸𝑓 to binary 𝐸𝑔 and
the subsequent reduction to mincut we can reduce arbitrary pairwise energy minimiza-
tion to mincut where the non-negativity capacity constraint may be violated. Recall-
ing the construction of pairwise costs (47) we see that the capacities in the mincut
representation will be non-negative iff 𝑔(𝑠,𝑖)(𝑡,𝑗)(1, 1) ≤ 0, or, equivalently, 𝐷𝑖𝑗𝑓𝑠𝑡 ≤ 0
∀𝑖𝑗 ∈ ℒ̃𝑠𝑡. This condition coincides with the common characterization of multi-label
submodular (pairwise) energies.

2.5 Submodular Energy Minimization
Let us define the component-wise minimum and maximum of two labellings 𝑥, 𝑦 ∈ ℒ:

(∀𝑠 ∈ 𝒱) (𝑥 ∧ 𝑦)𝑠 = min(𝑥𝑠, 𝑦𝑠) , (49a)
(∀𝑠 ∈ 𝒱) (𝑥 ∨ 𝑦)𝑠 = max(𝑥𝑠, 𝑦𝑠) . (49b)

These two operations on the set of labelings define a distributive lattice4 (ℒ,∨,∧).
Function 𝐸 : ℒ → R is called submodular if

(∀𝑥, 𝑦 ∈ ℒ) 𝐸(𝑥 ∨ 𝑦) + 𝐸(𝑥 ∧ 𝑦) ≤ 𝐸(𝑥) + 𝐸(𝑦) . (50)
Submodular function minimization on a distributive lattice is solvable in a polynomial
time. In the case 𝐸 = 𝐸𝑓 , it is submodular iff (see e.g. (Werner 2007)) for all 𝑠𝑡 ∈ ℰ

(∀𝑥𝑠𝑡, 𝑦𝑠𝑡 ∈ ℒ𝑠𝑡) 𝑓𝑠𝑡(𝑥𝑠𝑡 ∧ 𝑦𝑠𝑡) + 𝑓𝑠𝑡(𝑥𝑠𝑡 ∨ 𝑦𝑠𝑡) ≤ 𝑓𝑠𝑡(𝑥𝑠𝑡) + 𝑓𝑠𝑡(𝑦𝑠𝑡) , (51)
that is, all pairwise terms 𝑓𝑠𝑡 are submodular functions.

It can be seen (e.g., (Fisher et al. 1978)) that 𝑓𝑠𝑡 satisfies (51) iff
(∀𝑖𝑗 ∈ ℒ̃𝑠𝑡) 𝐷𝑖𝑗𝑓𝑠𝑡 ≤ 0 . (52)

We can see that when 𝐸𝑓 is submodular, the pairwise coefficients of the binary-reduced
energy 𝐸𝑔 calculated by (47) are non-positive, which is precisely the condition when the
binary energy is submodular and can be minimized by solving the MINCUT problem.

2.6 Relaxation of Binarized Problem (MQPBO)
Kohli et al. (2008) and Shekhovtsov et al. (2008) proposed reducing the problem to the
binary energy minimization and applying QPBO method to the latter. This method is
abbreviated as MQPBO (M for multi-label). Since LP relaxation of the binary problem
can be solved via maxflow, it is a computationally plausible approach. However, it
was established that LP relaxation of the binarized problem is generally weaker than
the multi-label LP relaxation. Nevertheless, for the following class of problems the two
relaxations coincide:

Theorem 8 (Shekhovtsov et al. 2008, Theorem 1). Let for every 𝑠𝑡 ∈ ℰ the term 𝑓𝑠𝑡

be either sub- or supermodular. Then the LP relaxation of the binarized problem is
equivalent to the LP relaxation of the multi-label problem (13).

It was also shown that the LP relaxation of the binarized problem is dual to the problem
of the tightest decomposition into sub- and supermodular problems (Shekhovtsov et al.
2008, Theorem 3). In §3.3 we will review how the optimal partial assignments derived
by QPBO are transferred to the original multi-label problem for integer as well as
relaxed labelings, simplifying the construction of Shekhovtsov et al. (2008, Theorem 2).

4Distributivity follows from distributivity of min and max, e.g., max(𝑎, min(𝑏, 𝑐)) =
min(max(𝑎, 𝑏), max(𝑎, 𝑐)).

21



2 Background on Energy Minimization

2.7 Expansion Move
The expansion move algorithm (Boykov et al. 2001) seeks to improve a current solution
𝑥 by considering a move that for every 𝑠 ∈ 𝒱 either keeps the current label 𝑥𝑠 or changes
it to the candidate label 𝑦𝑠. While 𝑥 and 𝑦 are two labelings in the multi-label problem
𝐸𝑓 , the choice between 𝑥 and 𝑦 can be encoded as a binary labeling 𝑧. We let 𝑧𝑠 = 0
correspond to 𝑥𝑠 and 𝑧𝑠 = 1 correspond to 𝑦𝑠. The restriction of 𝐸𝑓 to

∏︀
𝑠∈𝒱{𝑥𝑠, 𝑦𝑠}

becomes equivalent to a binary energy. The move energy function 𝐸𝑔 : B𝒱 → R (the
crossover problem) corresponding to this choice is defined as follows:

𝑔0 = 𝑓0 , 𝑔𝑠(0) = 𝑓𝑠(𝑥𝑠) , 𝑔𝑠(1) = 𝑓𝑠(𝑦𝑠) ,
𝑔𝑠𝑡(1, 1) = 𝑓𝑠𝑡(𝑦𝑠, 𝑦𝑡) , 𝑔𝑠𝑡(1, 0) = 𝑓𝑠𝑡(𝑦𝑠, 𝑥𝑡) ,
𝑔𝑠𝑡(0, 1) = 𝑓𝑠𝑡(𝑥𝑠, 𝑦𝑡) , 𝑔𝑠𝑡(0, 0) = 𝑓𝑠𝑡(𝑥𝑠, 𝑥𝑡) .

(53)

Here, the state 0 or 1 corresponds to choosing 𝑥𝑠 or 𝑦𝑠 respectively and 𝐸𝑔(𝑧) equals
𝐸𝑓 of the corresponding crossover between labelings 𝑥 and 𝑦. The expansion-move al-
gorithm (Algorithm 1) iteratively improves the current labeling 𝑥 by finding an optimal
crossover with constant proposals 𝑦 such that (∀𝑠) 𝑦𝑠 = 𝑘.

Algorithm 1: Expansion Move (Boykov et al. 2001)

1 Input: 𝑓 , 𝑥;
2 while not converged in 𝐸𝑓 (𝑥) do /* */
3 for 𝑘 = 0 . . . 𝐿− 1 do
4 Create the crossover problem 𝑔 using (53) between labelings 𝑥 and 𝑦, where

(∀𝑠) 𝑦𝑠 = 𝑘;
5 Find the optimal switch 𝑧 = argmin

𝑧
𝐸𝑔(𝑧);

6 (∀𝑠 ∈ 𝒱) assign 𝑥𝑠 ←
{︃
𝑥𝑠 if 𝑧𝑠 = 0 ,
𝑦𝑠 if 𝑧𝑠 = 1 .

In the case 𝐸𝑓 is a metric energy (Boykov et al. 2001), the move energy 𝐸𝑔 is sub-
modular for arbitrary 𝑥 and step 5 reduces to mincut.

2.7.1 Truncated Expansion Move
In the case of non-submodular move energy, it can be “truncated” to make it submod-
ular while still preserving the property that the move does not increase 𝐸𝑓 (𝑥) (Rother
et al. 2005). We propose here an analysis of the truncation heuristic and show that the
family of useful truncations can be identified with submodular majorants. We are not
aware of such an analysis present in the literature.

Let Δ𝑠𝑡 = 𝑔𝑠𝑡(0, 0) + 𝑔𝑠𝑡(1, 1)− 𝑔𝑠𝑡(0, 1)− 𝑔𝑠𝑡(1, 0) = 𝒟00𝑔𝑠𝑡. The pairwise term 𝑔𝑠𝑡 is
submodular iff Δ𝑠𝑡 ≤ 0.

Definition 2. The truncation 𝑔𝛼,𝛽 of 𝑔 is defined as follows. It is different from 𝑔 only
in non-submodular pairwise components, which are set as

𝑔𝛼,𝛽
𝑠𝑡 (0, 0) = 𝑔𝑠𝑡(0, 0)− 𝛽𝑠𝑡Δ𝑠𝑡 ,

𝑔𝛼,𝛽
𝑠𝑡 (0, 1) = 𝑔𝑠𝑡(0, 1) + 𝛼𝑠𝑡Δ𝑠𝑡 ,

𝑔𝛼,𝛽
𝑠𝑡 (1, 0) = 𝑔𝑠𝑡(1, 0) + (1− 𝛼𝑠𝑡 − 𝛽𝑠𝑡)Δ𝑠𝑡 ,

𝑔𝛼,𝛽
𝑠𝑡 (1, 1) = 𝑔𝑠𝑡(1, 1) ,

(54)
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2.7 Expansion Move

where 𝛼𝑠𝑡 and 𝛽𝑠𝑡 are free parameters satisfying 𝛼𝑠𝑡 ≥ 0, 𝛽𝑠𝑡 ≥ 0, 𝛼𝑠𝑡 + 𝛽𝑠𝑡 ≤ 1.

Statement 9. Energy function 𝐸𝑔𝛼,𝛽 is submodular and

(∀𝑧 ∈ B𝒱) 𝐸𝑔(𝑧)− 𝐸𝑔(0) ≤ 𝐸𝑔𝛼,𝛽 (𝑧)− 𝐸𝑔𝛼,𝛽 (0) . (55)

Inequality (55) says that the decrease of 𝐸𝑔 is at least as big as the decrease of 𝐸𝑔𝛼,𝛽

when changing from 0 to 𝑧. Assuming 𝐸𝑔𝛼,𝛽 (𝑧) < 𝐸𝑔𝛼,𝛽 (0), the inequality (55) implies
that 𝐸𝑔(𝑧) < 𝐸𝑔(0). Because 𝑔 is the move energy vector for 𝑓 , the value of 𝐸𝑓 (𝑥) will
decrease after step (6).

Proof. Submodularity of 𝐸𝑔𝛼,𝛽 is verified easily as follows. For pairs 𝑠𝑡, where 𝑔𝑠𝑡 is
non-submodular we have: 𝐷𝑔𝛼,𝛽

𝑠𝑡 = 0, therefore these pairs become modular (decou-
pled). Submodular pairs of 𝑔 are preserved in 𝑔𝛼,𝛽. Let us verify inequality (55). By
construction of 𝑔𝛼,𝛽, for all 𝑠𝑡 ∈ ℰ such that Δ𝑠𝑡 > 0,

𝑔𝛼,𝛽
𝑠𝑡 (0, 0)− 𝑔𝛼,𝛽

𝑠𝑡 (0, 0) = 0 ,
𝑔𝛼,𝛽

𝑠𝑡 (0, 1)− 𝑔𝛼,𝛽
𝑠𝑡 (0, 0) = 𝑔𝑠𝑡(0, 1)− 𝑔𝑠𝑡(0, 0) + (𝛼𝑠𝑡 + 𝛽𝑠𝑡)Δ𝑠𝑡 ,

𝑔𝛼,𝛽
𝑠𝑡 (1, 0)− 𝑔𝛼,𝛽

𝑠𝑡 (0, 0) = 𝑔𝑠𝑡(1, 0)− 𝑔𝑠𝑡(0, 0) + (1− 𝛼𝑠𝑡)Δ𝑠𝑡 ,

𝑔𝛼,𝛽
𝑠𝑡 (1, 1)− 𝑔𝛼,𝛽

𝑠𝑡 (0, 0) = 𝑔𝑠𝑡(1, 1)− 𝑔𝑠𝑡(0, 0) + 𝛽𝑠𝑡Δ𝑠𝑡 ,

(56)

we see that only positive values are added on RHS.

Statement 10. The truncation with 𝛼 and 𝛽𝑠𝑡 > 0 is never better than the truncation
with 𝛼 and 𝛽 = 0:

𝐸𝑔𝛼,0(𝑧)− 𝐸𝑔𝛼,0(0) ≤ 𝐸𝑔𝛼,𝛽 (𝑧)− 𝐸𝑔𝛼,𝛽 (0) . (57)

Proof. It can be seen that the values which are added in the RHS of (56) increase with
the increase of 𝛽𝑠𝑡. This implies inequality (57).

If an improving move 𝑧 was found for a truncation 𝐸𝑔𝛼,𝛽 it will surely be an improving
move also for truncation 𝐸𝑔𝛼,0 .

In the construction of auxiliary submodular problem by (Kovtun 2004) reviewed in
§3.5, a truncation of the form 𝑔0,1 occurs. Clearly, this truncation is looser than any
other.

Statement 11. The truncation 𝑔0,1 is not better than any truncation 𝑔𝛼,𝛽:

(∀𝑧) (∀𝛼, 𝛽) 𝐸𝑔𝛼,𝛽 (𝑧)− 𝐸𝑔𝛼,𝛽 (0) ≤ 𝐸𝑔0,1(𝑧)− 𝐸𝑔0,1(0) . (58)

Proof. The statement is verified by collecting all summands of inequality (58) on one
side and examining each pairwise component:

𝑔0,1
𝑠𝑡 (𝑧𝑠𝑡)− 𝑔0,1

𝑠𝑡 (0)− 𝑔𝛼,𝛽
𝑠𝑡 (𝑧𝑠𝑡) + 𝑔𝛼,𝛽

𝑠𝑡 (0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 𝑧𝑠𝑡 = (0, 0) ,
Δ𝑠𝑡(1− (𝛼+ 𝛽)) if 𝑧𝑠𝑡 = (0, 1) ,
Δ𝑠𝑡(1− (1− 𝛼)) if 𝑧𝑠𝑡 = (1, 0) ,
Δ𝑠𝑡(1− 𝛽) if 𝑧𝑠𝑡 = (1, 1) .

(59)

It is seen that the RHS is non-negative in all the cases.
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2 Background on Energy Minimization

If 𝑧 is an improving move for 𝐸𝑔0,1 then it is also an improving move for any other
truncation.

By Statement 10, one degree of freedom is excluded from the construction of trunca-
tions. It can be verified that truncated energies 𝐸𝑔𝛼,0 are submodular majorants of 𝐸𝑔,
i.e.,

∀𝑧 𝐸𝑔𝛼,0(𝑧) ≥ 𝐸𝑔(𝑧) . (60)

Several algorithms, such as submodular-supermodular procedure of Narasimhan and
Bilmes (2005), can be formulated as constructing a submodular majorant that is exact
at the current solution, and then minimizing this majorant. Clearly, by choosing 𝛼𝑠𝑡

appropriately as 0 or 1 one can make sure that the truncated energy 𝐸𝑔𝛼,0 is exact at
the current solution 𝑧 (it satisfies 𝐸𝑔𝛼,0(𝑧) = 𝐸𝑔(𝑧)). Therefore, the expansion move
with truncation can be understood as application of the majorize-minimize algorithm to
solve the crossover problem. The truncation is exact at the current labeling 0. Either
an improving move is found and Algorithm 1 proceeds, or 𝑧 = 0 is a fixed point of
the majorize-minimize for each of the crossover sub-problems. One can verify that the
family of submodular majorants {𝐸𝑔𝛼,0 |𝛼} is tight and complete for 𝐸𝑔, i.e., it describes
all submodular majorants which are not dominated by other submodular majorants.

2.7.2 Fusion Move
Having two candidate solutions 𝑥 and 𝑦, the fusion move of Lempitsky et al. (2010)
applies the QPBO method to optimize the crossover problem 𝐸𝑔 without trunca-
tion. QPBO can be used to find a solution 𝑧 satisfying 𝐸𝑓 (𝑧) ≤ 𝐸𝑓 (𝑥), guarantee-
ing monotonous behavior. The algorithm is presented in Algorithm 2. We will show in
Chapter 4 that fixed points of fusion move algorithm with constant proposals (∀𝑘 𝑦𝑠 = 𝑘)
satisfy multi-label partial optimality constraints.

Algorithm 2: Fusion-Move (Lempitsky et al. 2010)

1 Input: 𝑓 , 𝑥, 𝑦;
2 Construct the crossover problem 𝑔 using (53) between labelings 𝑥 and 𝑦;
3 𝑂 = QPBO(𝑔); /* all minimizers 𝑧 of 𝑔 satisfy 𝑧𝑠 ∈ 𝑂𝑠 */

4 (∀𝑠 ∈ 𝒱) assign 𝑥𝑠 ←
{︃
𝑥𝑠 if 0 ∈ 𝑂𝑠 ,
𝑦𝑠 otherwise . /* improve 𝑥 */
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3 Review of Partial Optimality Methods

In this chapter, we review in more detail several methods for optimal partial assignment.
Such methods recover a “part of the optimal labeling” even in the case when finding
the complete optimal labeling is not tractable.

Definition 3. Consider a subset of variables 𝒜 ⊂ 𝒱 and the assignment of labels over
this subset 𝑦 = (𝑦𝑠 | 𝑠 ∈ 𝒜). The pair (𝒜, 𝑦) is called a strong optimal partial assignment
if for any minimizer 𝑥* it holds 𝑥*

𝒜 = 𝑦. The pair (𝒜, 𝑦) is called a weak optimal partial
assignment if there exists a minimizer 𝑥* such that 𝑥*

𝒜 = 𝑦.

Two or more strong optimal partial assignments can be combined together because each
of them preserves all optimal solutions. This is not true for weak assignments because
they may not share any globally optimal solutions. However, a weak optimal partial
assignment could be more helpful – the best one assigns all variables. Therefore we are
interested in recovering both: strong and weak partial assignments.

Several fundamental results identifying optimal partial assignments are obtained from
the properties of linear relaxations of some discrete problems. An optimal solution to
the continuous relaxation of a mixed-integer 0-1 programming problem is defined to be
persistent if the set of [0, 1] relaxed variables realizing binary values retains the same
binary values in at least one integer optimum (Adams et al. 1998). A mixed-integer
program is said to be persistent (or possess the persistency property) if every solution to
its continuous relaxation is persistent. Nemhauser and Trotter (1975) proved that the
vertex packing problem is persistent. This result was later generalized to optimization
of quadratic pseudo-Boolean functions by Hammer et al. (1984). Strong persistency
was also proved, stating that if a variable takes the same binary value in all optimal
solutions to the relaxation, then all optimal solutions to the original 0-1 problem take
this value.

Several works considered generalization of persistency to higher-order pseudo-Boolean
functions. Adams et al. (1998) considered a hierarchy of continuous relaxations of 0-
1 polynomial programming problems. Given an optimal relaxed solution, they derive
sufficient conditions on the dual multipliers which ensure that the solution is persistent.
This result generalizes the roof duality approach, coinciding with it in the case of
quadratic polynomials in binary variables.

Kolmogorov (2010, 2012a) showed that bisubmodular relaxations provide a natu-
ral generalization of the roof duality approach to higher-order terms and possess the
persistency property. He also considered submodular relaxations which form a spe-
cial case of bisubmodular and showed the following. The roof duality relaxation for
quadratic pseudo-Boolean functions is a submodular relaxation, and it dominates all
other bisubmodular relaxations. For non-quadratic pseudo-Boolean functions, bisub-
modular relaxations can be tighter than submodular ones. Kahl and Strandmark (2011,
2012) proposed a polynomial time algorithm to find the tightest submodular relaxation
and evaluated it on problems in computer vision.

Lu and Williams (1987), Ishikawa (2011) and Fix et al. (2011) obtained partial op-
timalities via different reductions to quadratic problems and subsequent application of
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3 Review of Partial Optimality Methods

the roof dual. We present here the specific methods which we are going to unify in
Chapter 4. We thus follow two purposes: to formally introduce the respective methods
and to make certain preparations to ease the subsequent unification. The following
methods are considered:
∙ The family of local methods known as the dead end elimination (DEE), originally

proposed by Desmet et al. (1992). DEE methods were developed in the context
of protein structure design and are not widely known in the machine learning and
computer vision communities. They formulate simple sufficient conditions allowing
to exclude a label in a given pixel based on its unary and adjacent pairwise terms.
∙ The roof dual method (QPBO). We give a proof of the strong persistency theorem

(§3.2) based on the component-wise inequalities satisfied by the arc-consistent
equivalent. This proof is essentially in the form of the unified sufficient conditions.
∙ The MQPBO method (Kohli et al. 2008) extends partial optimality properties of

QPBO to multi-label problems via the reduction of the problem to binary variables.
∙ Auxiliary submodular problems by Kovtun (2004).

In all these methods there is a mapping introduced (implicitly or explicitly) that is
shown to improve (not necessarily strictly) any given labeling.

Definition 4. A mapping 𝑝 : ℒ → ℒ is called improving if

(∀𝑥 ∈ ℒ) 𝐸𝑓 (𝑝(𝑥)) ≤ 𝐸𝑓 (𝑥) (61)

and strictly improving if

(𝑝(𝑥) ̸= 𝑥) ⇒ 𝐸𝑓 (𝑝(𝑥)) < 𝐸𝑓 (𝑥) . (62)

If every labeling 𝑥 with 𝑥𝑠 = 𝛼 satisfies the strict inequality 𝐸𝑓 (𝑝(𝑥)) < 𝐸𝑓 (𝑥), then
(𝑠, 𝛼) cannot be a part of any optimal assignment and can be eliminated. The idea of
improving mappings will be generalized in Chapter 4 to improving mappings of relaxed
labelings, i.e., of the from Λ→ Λ. In QPBO, an improving mapping is defined in terms
of an autarky (Boros et al. 2006). In MQPBO and the method of (Kovtun 2004), an
improving mapping is defined in terms of a generalized autarky, which we introduce as
follows.

Definition 5. A pair (𝑥min, 𝑥max) is a weak autarky for 𝐸𝑓 if the inequality

𝐸𝑓 ((𝑥 ∨ 𝑥min) ∧ 𝑥max) ≤ 𝐸𝑓 (𝑥) (63a)

holds for all 𝑥 ∈ ℒ. If, in addition, for every 𝑥 ̸= (𝑥 ∨ 𝑥min) ∧ 𝑥max inequality (63a) is
strict, the autarky (𝑥min, 𝑥max) is called strong.

It is clear that an autarky (𝑥min, 𝑥max) defines an improving mapping 𝑥 ↦→ (𝑥∨ 𝑥min)∧
𝑥max. We have then for any labeling 𝑥 that the labeling 𝑥* = (𝑥 ∨ 𝑥min) ∧ 𝑥max is not
worse than 𝑥. Moreover, if 𝑥* ̸= 𝑥 we have 𝐸𝑓 (𝑥*) < 𝐸𝑓 (𝑥). Therefore, any optimal
labeling must satisfy 𝑥 = (𝑥 ∨ 𝑥min) ∧ 𝑥max, which translate to the inequalities

𝑥min ≤ 𝑥 ≤ 𝑥max . (64)

For a strong (resp. weak) autarky (𝑥min, 𝑥max) the inequality (64) is satisfied for all
(resp. some) minimizers 𝑥, providing an optimal partial assignment in pixels 𝑠 where
𝑥min

𝑠 = 𝑥max
𝑠 . In the case where 𝑥min

𝑠 < 𝑥max
𝑠 we speak of domain constraints.

Definition 6. Let 𝒜 ⊂ 𝒱, let (∀𝑠 ∈ 𝒜) 𝐾𝑠 ⊂ ℒ𝑠. Let 𝐾 be the Cartesian product of
𝐾𝑠 over 𝑠 ∈ 𝒜. We say that a pair (𝒜,𝐾) is a strong (resp. weak) domain constraint
if for all (resp. at least one) minimizer 𝑥* there holds 𝑥*

𝒜 ∈ 𝐾.
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Figure 4 Singles dead end elimination. If, for any configuration of the neighborhood, there is
a labeling through label 𝛽 in 𝑠 (blue) that dominates the labeling through a fixed label 𝛼 in
𝑠 (red) then (𝑠, 𝛼) can be eliminated as non-optimal.

Obviously, domain constraints include partial assignment as a special case, or can be
veiewd as a partial assignment in some binary encoding of the problem. A weak (resp.
strong) autarky (𝑥min, 𝑥max) provides weak (resp. strong) domain constraints with
𝐾𝑠 = {𝑖 ∈ ℒ𝑠 |𝑥min

𝑠 ≤ 𝑖 ≤ 𝑥max
𝑠 }.

Even in the case of binary variables determining whether a given pair (𝑧min, 𝑧max)
is a strong autarky is NP-hard (Boros et al. 2006). The methods we review can be
viewed as proposing autarkies based on simpler sufficient conditions which are polyno-
mially verifiable. In the special case of submodular energies, autarkies are polynomially
verifiable, and this case is also covered by our unified sufficient condition.

3.1 Dead End Elimination

A series of works related to energy minimization was published in the context of protein
design and protein structure prediction. Several applied problems in this area are for-
mulated as a pairwise energy minimization1. These works try to simplify the problem as
much as possible by removing states that cannot be a part of any optimal configuration.
There is a number of sufficient conditions proposed, which are generally referred to as
dead end elimination (DEE), see (Desmet et al. 1992; Goldstein 1994; Lasters et al.
1995; Pierce et al. 2000; Georgiev et al. 2006) and others. We will review the so-called
singles elimination techniques. The goal is to determine for a fixed 𝑠 ∈ 𝒱 and 𝛼 ∈ ℒ𝑠

whether the condition 𝑥𝑠 ̸= 𝛼 is true for any optimal assignment 𝑥. In that case, (𝑠, 𝛼)
can be eliminated without affecting any of the optimal assignments. In the literature
these different but related criteria are proven separately. It will be instructive to start
with the strongest criterion and then gradually relax it, ordering the criteria proposed
by different authors in a chain of inequalities. In this way we will simultaneously prove
the respective criteria and demonstrate how they compare to each other in a concise
way.

1For example, the assignment 𝑥𝑠 can define a selection and a spatial conformation of side chains of
amino-acids onto residue positions of the protein scaffold and the energy is the sum of self-energy
of residues plus pairwise interaction energies. See e.g. (Looger and Hellinga 2001) and references
therein.
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The pair (𝑠, 𝛼) can be eliminated if

(∀𝑥 ∈ ℒ𝒩 (𝑠)) (∃𝛽) 𝑓𝑠(𝛼) +
∑︁

𝑡∈𝒩 (𝑠)
𝑓𝑠𝑡(𝛼, 𝑥𝑡) > 𝑓𝑠(𝛽) +

∑︁
𝑡∈𝒩 (𝑠)

𝑓𝑠𝑡(𝛽, 𝑥𝑡) . (65)

For each labeling of the neighbors of 𝑠, changing label 𝛼 to label 𝛽 in 𝑠 (not necessarily
the same 𝛽 for different 𝑥) gives an improved energy. This condition is called bottom
line DEE (Pierce et al. 2000). It is illustrated in Figure 4. It is rather of theoretical
interest as it may be computationally too expensive to verify when the neighborhood
of 𝑠 is large. Let us rewrite it equivalently as

(∀𝑥 ∈ ℒ𝒩 (𝑠)) (∃𝛽) 𝑓𝑠(𝛼)− 𝑓𝑠(𝛽) +
∑︁

𝑡∈𝒩 (𝑠)
[𝑓𝑠𝑡(𝛼, 𝑥𝑡)− 𝑓𝑠𝑡(𝛽, 𝑥𝑡)] > 0 , (66)

min
𝑥∈ℒ𝒩 (𝑠)

max
𝛽∈ℒ𝑠

(︁
𝑓𝑠(𝛼)− 𝑓𝑠(𝛽) +

∑︁
𝑡∈𝒩 (𝑠)

[𝑓𝑠𝑡(𝛼, 𝑥𝑡)− 𝑓𝑠𝑡(𝛽, 𝑥𝑡)]
)︁
> 0 . (67)

Next, we represent 𝛽 with a vector of indicator variables (𝛽𝑖 ∈ {0, 1} | 𝑖 ∈ ℒ𝑠) such that∑︀
𝑖 𝛽𝑖 = 1. In this representation we can rewrite LHS of (67) as

min
𝑥∈ℒ𝒩 (𝑠)

max
𝛽∈{0, 1}ℒ𝑠∑︀

𝑖
𝛽𝑖=1

(︁
𝑓𝑠(𝛼)−

∑︁
𝑖

𝑓𝑠(𝑖)𝛽(𝑖) +
∑︁

𝑡∈𝒩 (𝑠)
[𝑓𝑠𝑡(𝛼, 𝑥𝑡)−

∑︁
𝑖

𝑓𝑠𝑡(𝑖, 𝑥𝑡)𝛽(𝑖)]
)︁

= DEE1 .

(68)
Because the objective becomes linear in 𝛽, we can allow 𝛽 ∈ [0, 1]ℒ𝑠 and write DEE1
as

min
𝑥∈ℒ𝒩 (𝑠)

max
𝛽∈[0, 1]ℒ𝑠∑︀

𝑖
𝛽𝑖=1

(︁
𝑓𝑠(𝛼)−

∑︁
𝑖

𝑓𝑠(𝑖)𝛽(𝑖) +
∑︁

𝑡∈𝒩 (𝑠)
[𝑓𝑠𝑡(𝛼, 𝑥𝑡)−

∑︁
𝑖

𝑓𝑠𝑡(𝑖, 𝑥𝑡)𝛽(𝑖)]
)︁
. (69)

By switching min and max we obtain the first simplification,

DEE1 ≥ max
𝛽∈[0, 1]ℒ𝑠∑︀

𝑖
𝛽𝑖=1

min
𝑥∈ℒ𝒩 (𝑠)

(︁
𝑓𝑠(𝛼)−

∑︁
𝑖

𝑓𝑠(𝑖)𝛽(𝑖) +
∑︁

𝑡∈𝒩 (𝑠)
[𝑓𝑠𝑡(𝛼, 𝑥𝑡)−

∑︁
𝑖

𝑓𝑠𝑡(𝑖, 𝑥𝑡)𝛽(𝑖)]
)︁

= max
𝛽∈[0, 1]ℒ𝑠∑︀

𝑖
𝛽𝑖=1

(︁
𝑓𝑠(𝛼)−

∑︁
𝑖

𝑓𝑠(𝑖)𝛽(𝑖) +
∑︁

𝑡∈𝒩 (𝑠)
min

𝑥𝑡∈ℒ𝑡

[𝑓𝑠𝑡(𝛼, 𝑥𝑡)−
∑︁

𝑖

𝑓𝑠𝑡(𝑖, 𝑥𝑡)𝛽(𝑖)]
)︁

(70)

= DEE2 ,

where the equality is because minimization over 𝑥𝒩 (𝑠) decouples. If for any 𝛽 ∈ [0, 1]ℒ𝑠

such that
∑︀

𝑖 𝛽𝑖 = 1, the inner bracket of (70) is positive, then condition (67) is satisfied.
Therefore (𝑠, 𝛼) can be eliminated. This sufficient condition is known as Goldstein’s
general DEE (Goldstein 1994). See example in Figure 10(a). The optimal choice of 𝛽,
namely solving the maximization in (70) was addressed by Lasters et al. (1995). It can
be seen that the objective in (70) is a piecewise linear concave function in 𝛽 and (70)
can be written as a linear program2. We make the next simplifying step by constraining
𝛽 to be 0-1 again and obtaining

DEE2 ≥ max
𝛽∈ℒ𝑠

(︁
𝑓𝑠(𝛼)− 𝑓𝑠(𝛽) +

∑︁
𝑡∈𝒩 (𝑠)

min
𝑥𝑡∈ℒ𝑡

[𝑓𝑠𝑡(𝛼, 𝑥𝑡)− 𝑓𝑠𝑡(𝛽, 𝑥𝑡)]
)︁

= DEE3 . (71)

2Lasters et al. (1995) applied a cutting-plane method to this problem to gain additional speed-up.
However, their experiments demonstrated that this criterion provided a relatively small improvement
over a simpler singles criterion (71).
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The condition DEE3 > 0 is known as Goldstein’s simple DEE (Goldstein 1994). It is
easily interpreted as

(∃𝛽) (∀𝑥 ∈ ℒ𝒩 (𝑠)) 𝑓𝑠(𝛼)− 𝑓𝑠(𝛽) +
∑︁

𝑡∈𝒩 (𝑠)
[𝑓𝑠𝑡(𝛼, 𝑥𝑡)− 𝑓𝑠𝑡(𝛽, 𝑥𝑡)] > 0 , (72)

which means that a single improving switch from 𝛼 to 𝛽 exists for an arbitrary labelling
of the neighbors of 𝑠. Thus, it is a very intuitive condition, which can be proposed
directly. Let us continue with the chain of inequalities. Let us choose a fixed 𝛽 ∈ ℒ𝑠,
then

DEE3 ≥ 𝑓𝑠(𝛼)− 𝑓𝑠(𝛽) +
∑︁

𝑡∈𝒩 (𝑠)

[︀
min

𝑥𝑡∈ℒ𝑡

𝑓𝑠𝑡(𝛼, 𝑥𝑡) + min
𝑥𝑡∈ℒ𝑡

(−𝑓𝑠𝑡(𝛽, 𝑥𝑡))
]︀

(73)

= 𝑓𝑠(𝛼)− 𝑓𝑠(𝛽) +
∑︁

𝑡∈𝒩 (𝑠)

[︀
min

𝑥𝑡∈ℒ𝑡

𝑓𝑠𝑡(𝛼, 𝑥𝑡)− max
𝑥𝑡∈ℒ𝑡

𝑓𝑠𝑡(𝛽, 𝑥𝑡)
]︀

= DEE4 . (74)

The sufficient condition DEE4 > 0 allowing to eliminate (𝑠, 𝛼) is the original DEE
theorem by Desmet et al. (1992). Though it is the weakest one of the above conditions,
it has the lowest computational complexity.

Extensions of the DEE method include sufficient conditions to eliminate pairs of
labels (Desmet et al. 1992), fixing a part of variables and evaluating the sufficient
conditions on the restricted energy (split DEE (Pierce et al. 2000)), incorporating the
DEE method into a branch and bound search (Georgiev et al. 2006) and other.

The unified class of sufficient conditions we analyze will include the general Goldstein
DEE for single labels (equation (70)) and thus also all weaker DEE criteria for single
labels. We will not cover the extensions of DEE, only remark that they could be
potentially related to higher-order relaxations.

3.2 QPBO

In this section we review weak and strong persistency of QPBO. We give a simple proof
of strong persistency relying on the properties of the arc-consistent equivalent.

Theorem 12 (Weak persistency, Hammer et al. 1984). Let 𝜇 be any optimal relaxed
labeling for binary energy 𝐸𝑓 . Let 𝑂𝑠 = {𝑖 ∈ B |𝜇𝑠(𝑖) > 0}. Then

(∃𝑥 ∈ argmin
𝑥

𝐸𝑓 (𝑥)) (∀𝑠 ∈ 𝒱) 𝑥𝑠 ∈ 𝑂𝑠 . (75)

Clearly, if 𝜇𝑠 is integer then 𝑂𝑠 contains only one label and there exists an optimal
labeling taking that label. If, on the other hand, 𝜇𝑠 is not integer, 𝑂𝑠 is necessarily
{0, 1} and 𝑥𝑠 can be any.

The following property, called strong persistency, was also shown for the roof dual
relaxation (Hammer et al. 1984). If a variable takes the same binary value in all
optimal solutions to the relaxation then it realizes that binary value in all optimal
integer solutions. We reformulate this result in terms of the dual optimal solution.

Theorem 13 (Strong persistency, Hammer et al. 1984). Let 𝑓𝜙 be a (non-unique)
arc-consistent equivalent of binary energy 𝐸𝑓 . Let 𝑂𝑠 = argmin𝑖 𝑓

𝜙
𝑠 (𝑖). Then

(∀𝑥 ∈ argmin
𝑥

𝐸𝑓 (𝑥)) (∀𝑠 ∈ 𝒱) 𝑥𝑠 ∈ 𝑂𝑠 . (76)
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Proof. Assume for contradiction that 𝑥 is an optimal labeling and 𝑥𝑝 /∈ 𝑂𝑝 for some
𝑝 ∈ 𝒱. We will show that the labeling 𝑦 defined by

𝑦𝑠 =
{︃
𝑥𝑠 if 𝑥𝑠 ∈ 𝑂𝑠 ,

¬𝑥𝑠 if 𝑥𝑠 /∈ 𝑂𝑠

(77)

attains a strictly lower energy, which contradicts optimality of 𝑥. By construction, we
have (∀𝑠) 𝑦𝑠 ∈ 𝑂𝑠, therefore for every unary term of 𝑓𝜙 the inequality holds

𝑓𝜙
𝑠 (𝑦𝑠) ≤ 𝑓𝜙

𝑠 (𝑥𝑠) (78)

and at least one of these inequalities is strict, namely the one for pixel 𝑝. Let us
show that similar component-wise inequalities hold for pairwise terms as well. Let
𝑂𝑠𝑡 = argmin 𝑖𝑗𝑓𝜙

𝑠𝑡(𝑖, 𝑗). Consider the following cases:
∙ |𝑂𝑠| = 1, |𝑂𝑡| = 1. By arc-consistency, there is only one locally minimal arc in
𝑂𝑠𝑡, the arc (𝑦𝑠, 𝑦𝑡). Therefore, 𝑓𝜙

𝑠𝑡(𝑦𝑠𝑡) ≤ 𝑓𝜙
𝑠𝑡(𝑥𝑠𝑡).

∙ |𝑂𝑠| = 1, |𝑂𝑡| = 2. By arc-consistency, both arcs (𝑦𝑠, 0) and (𝑦𝑠, 1) are locally
minimal (both belong to 𝑂𝑠𝑡). Therefore, 𝑦𝑠𝑡 ∈ 𝑂𝑠𝑡 and 𝑓𝜙

𝑠𝑡(𝑦𝑠𝑡) ≤ 𝑓𝜙
𝑠𝑡(𝑥𝑠𝑡).

∙ |𝑂𝑠| = 2, |𝑂𝑡| = 2. In this case 𝑦𝑠𝑡 = 𝑥𝑠𝑡 and hence 𝑓𝜙
𝑠𝑡(𝑦𝑠𝑡) = 𝑓𝜙

𝑠𝑡(𝑥𝑠𝑡).
Therefore, for every 𝑠𝑡 ∈ ℰ we have

𝑓𝜙
𝑠𝑡(𝑦𝑠𝑡) ≤ 𝑓𝜙

𝑠𝑡(𝑥𝑠𝑡) . (79)

Summing unary inequalities (78) over 𝑠 ∈ 𝒱 and pairwise inequalities (79) over 𝑠𝑡 ∈ ℰ
and adding 𝑓𝜙

0 to both sides, we obtain

𝐸𝑓 (𝑦) = 𝐸𝑓
𝜙(𝑦) < 𝐸𝑓

𝜙(𝑥) = 𝐸𝑓 (𝑥) , (80)

which contradicts the optimality of 𝑥.

Clearly, if |𝑂𝑠| = 1, by complementary slackness, it must be that {𝑖 |𝜇𝑠(𝑖) > 0} = 𝑂𝑠

for any optimal 𝜇. On the other hand, a primal solution 𝜇 can be constructed for 𝜙 such
that {𝑖 |𝜇𝑠(𝑖) > 0} = 𝑂𝑠. By this argument, sets 𝑂𝑠 in Theorem 13 can be alternatively
defined as 𝑂𝑠 = {𝑖 | (∃𝜇) 𝜇𝑠(𝑖) > 0, 𝜇 is optimal}. It follows that if 𝜇𝑠 is the same
integer assignment in all optimal relaxed solutions, then this assignment is taken by all
optimal labelings 𝑥.

It is easy to see that constraints of the form 𝑧𝑢 ∈ 𝑂𝑢 may be expressed as:

𝑧min ≤ 𝑧 ≤ 𝑧max (81)

by letting (∀𝑢 ∈ 𝑉 ) 𝑧min
𝑢 = min𝑂𝑢 and 𝑧max

𝑢 = max𝑂𝑢. For example, 0 ≤ 𝑧𝑢 ≤ 1 does
not restrict 𝑧𝑢, while 0 ≤ 𝑧𝑢 ≤ 0 asserts that 𝑧𝑢 = 0 for any minimizer 𝑧. It is also
clear that the explicitly constructed improved labeling (77) can be written in the form
𝑦 = (𝑧 ∨ 𝑧min) ∧ 𝑧max. Thus we in fact proved that the pair (𝑧min, 𝑧max) computed by
QPBO is a strong autarky.

3.3 MQPBO
Consider a multi-label energy 𝐸𝑓 and its binary reduction 𝐸𝑔 according to the con-
struction in §2.4. We can obtain partial optimality guarantees for the binary problem
𝐸𝑔 via QPBO and reinterpret them for the initial multi-label problem 𝐸𝑓 (Kohli et al.
2008). The next theorem shows how a strong autarky (𝑧min, 𝑧max) for the binary energy
𝐸𝑔 is interpreted as a strong autarky (𝑥min, 𝑥max) for the original multi-label energy
𝐸𝑓 . This interpretation is illustrated in Figure 5.
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x
max

x
min

x

x∗

Figure 5 A strong autarky (𝑥min, 𝑥max): if a labeling 𝑥 (thin dashed) does not satisfy con-
straints 𝑥min ≤ 𝑥 ≤ 𝑥max then labeling 𝑥* = (𝑥 ∨ 𝑥min) ∧ 𝑥max (thick dashed) does satisfy
them and it has a lower energy.

Theorem 14. Let 𝐸𝑔 be the binarized problem for 𝐸𝑓 and (𝑧min, 𝑧max) a strong autarky
for 𝐸𝑔. Let 𝑥min = 𝑥(𝑧min), 𝑥max = 𝑥(𝑧max) by the mapping (42b). Then(︀

∀𝑥 ̸= (𝑥 ∨ 𝑥min) ∧ 𝑥max)︀ 𝐸𝑓 ((𝑥 ∨ 𝑥min) ∧ 𝑥max) < 𝐸𝑓 (𝑥) . (82)

Proof. Let 𝑥 ∈ ℒ and 𝑧 = 𝑧(𝑥) as defined by mapping (42a). We will show that
(𝑥 ∨ 𝑥min) ∧ 𝑥max = 𝑥((𝑧 ∨ 𝑧min) ∧ 𝑧max). The theorem will follow by the equivalence
of 𝐸𝑓 and 𝐸𝑔. Let us show that for any 𝑧, 𝑧′ ∈ B𝒱×ℒ̃ such that 𝑧𝑠(𝑖) ≥ 𝑧𝑠,𝑖+1 and
𝑧′

𝑠(𝑖) ≥ 𝑧′
𝑠,𝑖+1 it is 𝑥(𝑧 ∨ 𝑧′) = 𝑥(𝑧) ∨ 𝑥(𝑧′). Indeed

𝑥(𝑧 ∨ 𝑧′)𝑠 =
∑︁
𝑖∈ℒ̃

max(𝑧𝑠(𝑖), 𝑧′
𝑠(𝑖)) =

∑︁
𝑖∈ℒ̃

(︁
[[𝑖<𝑥(𝑧)𝑠]] ∨ [[𝑖<𝑥(𝑧′)𝑠]]

)︁
= max(𝑥(𝑧)𝑠, 𝑥(𝑧′)𝑠) .

(83)

Similarly, we can verify that 𝑥(𝑧 ∧ 𝑧′) = 𝑥(𝑧) ∧ 𝑥(𝑧′).

The MQPBO method finds a strong autarky (𝑥min, 𝑥max) using Theorem 14 and the
strong autarky (𝑧min, 𝑧max) found by QPBO for the binarized problem.

3.4 Autarkies for Submodular Problems
Let 𝐸𝑓 be submodular and 𝑥* be its minimizer. Then we have the following properties:

𝐸𝑓 (𝑥 ∨ 𝑥*) ≤ 𝐸𝑓 (𝑥) , (84a)
𝐸𝑓 (𝑥 ∧ 𝑥*) ≤ 𝐸𝑓 (𝑥) . (84b)

These properties easily follow from submodularity, noting that 𝐸𝑓 (𝑥∨𝑥*) ≥ 𝐸𝑓 (𝑥*) and
𝐸𝑓 (𝑥 ∨ 𝑥*) ≥ 𝐸𝑓 (𝑥*). It follows that any pair of optimal solutions (𝑥1*, 𝑥2*) is a weak
autarky for this problem since 𝐸𝑓 ((𝑥 ∨ 𝑥1*) ∧ 𝑥2*) ≤ 𝐸𝑓 (𝑥 ∨ 𝑥1*) ≤ 𝐸𝑓 (𝑥). Moreover,
if we choose the lowest and the highest minimizers,

𝑥min =
⋀︁

argmin
𝑥

𝐸𝑓 (𝑥) , (85a)

𝑥max =
⋁︁

argmin
𝑥

𝐸𝑓 (𝑥) , (85b)

then the autarky (𝑥min, 𝑥max) is strong. This strong autarky can be determined from
the solution of the corresponding maxflow problem.
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3.5 Auxiliary Submodular Problems
In the techniques (Kovtun 2003, 2004, 2011), a labeling 𝑥* is found such that the
mapping 𝑥 ↦→ 𝑥∨𝑥* is improving for 𝐸𝑓 . Since 𝑥∨𝑥* ≥ 𝑥*, this guarantees the existence
of a minimizer 𝑥** satisfying 𝑥** ≥ 𝑥*. This means that all partial assignments (𝑠, 𝑥𝑠)
such that 𝑥𝑠 < 𝑥*

𝑠 can be eliminated as non-optimal. It can be seen that the improving
mapping 𝑥 ↦→ 𝑥∨𝑥* is a special case of an autarky, namely the autarky (𝑥*, 𝑥max) with
𝑥max set to the maximum labeling.

According to the above §3.4, finding an improving mapping of this form for a submod-
ular function 𝐸𝑔 is easy. It is sufficient to calculate a minimizer of 𝐸𝑔 or the “lowest”
minimizer if we want to obtain strong domain constraints. To find such improving map-
ping for a non-submodular 𝐸𝑓 , Kovtun (2003) proposed to construct an auxiliary energy
𝐸𝑔 which would be submodular and have the property that its improving mappings are
guaranteed to be improving also for 𝐸𝑓 .

We will review the general method, constructing an auxiliary problem incrementally
and two special methods, constructing binary auxiliary submodular problems, which
are more useful in practice. For the second special case, we will later derive an optimal
method to compare with.

Definition 7 (Kovtun 2011). Let 𝑝 denote the mapping 𝑥 ↦→ 𝑥 ∨ 𝑥* for some 𝑥*. The
function 𝐸𝑔 is called auxiliary for 𝐸𝑓 if and 𝑝 if

(∀𝑥 ∈ ℒ) 𝐸𝑓 (𝑝(𝑥))− 𝐸𝑓 (𝑥) ≤ 𝐸𝑔(𝑝(𝑥))− 𝐸𝑔(𝑥) , (86)

that is, the improvement by 𝑝 in 𝐸𝑓 is at least as big as the improvement in 𝐸𝑔.

If 𝑝 is improving for 𝐸𝑔 then the RHS is non-positive and so is the LHS. It follows that
𝑝 is improving for 𝐸𝑓 . However, such 𝑥* that 𝑝 is improving for 𝐸𝑔 is not known in
advance, at the point of constructing 𝐸𝑔. The idea is to require that (86) is satisfied
for a family of mappings {𝑥 ↦→ 𝑥 ∨ 𝑥* |𝑥* ∈ 𝐾}, where 𝐾 =

∏︀
𝑠𝐾𝑠 and 𝐾𝑠 ⊂ ℒ𝑠 are

some subsets of labels. The condition (86) for all mappings in this family is replaced
by the following simpler component-wise inequalities:

(∀𝑠 ∈ 𝒱) (∀𝑖 ∈ ℒ𝑠) (∀𝑖′ ∈ 𝐾𝑠) (𝑓 − 𝑔)𝑠(𝑖 ∨ 𝑖′) ≤ (𝑓 − 𝑔)𝑠(𝑖) ,
(∀𝑠𝑡 ∈ ℰ) (∀𝑖𝑗 ∈ ℒ𝑠𝑡) (∀𝑖′𝑗′ ∈ 𝐾𝑠𝑡) (𝑓 − 𝑔)𝑠𝑡(𝑖 ∨ 𝑖′, 𝑗 ∨ 𝑗′) ≤ (𝑓 − 𝑔)𝑠𝑡(𝑖, 𝑗) .

(87)

It can be seen that the inequalities (87) imply (86) for arbitrary 𝑥* ∈ 𝐾. They form a
looser sufficient condition. Having constructed auxiliary problem 𝐸𝑔, it remains to find
𝑥* ∈ 𝐾 such that the mapping 𝑥 ↦→ 𝑥∨ 𝑥* is improving for 𝐸𝑔. As discussed in §3.4, if
𝑥* is a minimizer (resp. the highest minimizer) of 𝐸𝑔, then the mapping 𝑥 ↦→ 𝑥 ∨ 𝑥* is
improving (resp. strictly improving) for 𝐸𝑔. It remains to make sure that the minimizer
𝑥* is in 𝐾.

3.5.1 Iterative Algorithm

The iterative algorithm to construct 𝐸𝑔 and (𝐾𝑠 | 𝑠 ∈ 𝒱) proposed by Kovtun (2004,
2011) is shown in Algorithm 3.

In step 3, for each edge 𝑠𝑡 ∈ ℰ a system of linear inequalities in 𝑔𝑠𝑡 has to be solved.
While (Kovtun 2004) provides an explicit solution, it will not be necessary for our
consideration. If the condition 𝑥* ∈ 𝐾 is not satisfied, the set 𝐾 is enlarged. When the
algorithm terminates, 𝑥 ↦→ 𝑥 ∨ 𝑥* is strictly improving for 𝐸𝑓 . It may stop, however,
with 𝑥*

𝑠 = 0 for all 𝑠, so that efficiently no constraints are derived. This algorithm runs
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Algorithm 3: Iterative Construction of Auxiliary Problem (Kovtun 2004, 2011)

1 Set 𝐾𝑠 := ∅, 𝑠 ∈ 𝒱;
2 repeat
3 Construct a submodular 𝑔 satisfying inequalities (87);
4 Find 𝑥* =

⋀︀
argmin

𝑥
𝐸𝑔(𝑥);

5 if 𝑥*
𝑠 ∈ 𝐾𝑠 for all 𝑠 ∈ 𝒱 then

6 return 𝑥*

7 𝐾𝑠 := 𝐾𝑠 ∪ {𝑥*
𝑠} ∀𝑠 ∈ 𝒱;

8 until;
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Figure 6 Illustration of the auxiliary one-against-all function 𝑔. The chosen label 𝑦 competes
with all other labels in every pixel. If 𝑦 wins then it is guaranteed to be a part of any optimal
assignment.

in polynomial time since minimization of 𝐸𝑔 is polynomial and the algorithm performs
no more than |𝒱| iterations.

3.5.2 One-against-all Auxiliary Subproblem
A simpler non-iterative method proposed by Kovtun (2003) is as follows. Let 𝑦 be a
fixed proposal labeling. The algorithm attempts to identify pixels 𝑠 where the label
(𝑠, 𝑦𝑠) is a strongly optimal partial assignment. The construction is motivated by the
expansion move algorithm. Let us reorder labels in each pixel such that 𝑦𝑠 becomes the
highest label.

The problem 𝐸𝑔 is constrained to have a form such that all unary and pairwise
costs associated with labels from the set 𝑋𝑠 := ℒ𝑠∖{𝑦𝑠} are equal (see Figure 6). More
precisely, we assume that for all 𝑠 the weights 𝑔𝑠(𝑋𝑠) = (𝑔𝑠(𝑖) | 𝑖 ∈ 𝑋𝑠) are equal to the
same value, denoted with some abuse of notation as 𝑔𝑠(𝑋𝑠). Similarly, for the pairwise
terms we assume that

𝑔𝑠𝑡(𝑦𝑠, 𝑦𝑡) = 𝑎𝑠𝑡 ,

𝑔𝑠𝑡(𝑦𝑠, 𝑋𝑡) = 𝑏𝑠𝑡 ,

𝑔𝑠𝑡(𝑋𝑠, 𝑦𝑡) = 𝑐𝑠𝑡 ,

𝑔𝑠𝑡(𝑋𝑠, 𝑋𝑡) = 𝑑𝑠𝑡 ,

(88)

where 𝑎𝑠𝑡, 𝑏𝑠𝑡, 𝑐𝑠𝑡, 𝑑𝑠𝑡 ∈ R. The problem 𝐸𝑔 is thus defined by the weights 𝑔𝑠′(𝑦𝑠′),
𝑔𝑠′(𝑋𝑠′), 𝑎𝑠𝑡, 𝑏𝑠𝑡, 𝑐𝑠𝑡, 𝑑𝑠𝑡 for 𝑠′ ranging in 𝒱 and 𝑠𝑡 in ℰ .

The set 𝐾𝑠 is chosen to be {0, 𝑦𝑠}. This corresponds to a family 𝒫 of mappings 𝑝
which either switch to label 𝑦𝑠 or retain the current label in every pixel. At the same
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time, for 𝐸𝑔 in the restricted form, it is clear that its lowest minimizer takes either label
0 or label 𝑦𝑠. To be an auxiliary function for 𝐸𝑓 w.r.t. any mapping from 𝒫, 𝑔 has to
satisfy

(∀𝑥𝑠 ̸= 𝑦𝑠) 𝑔𝑠(𝑋𝑠)− 𝑔𝑠(𝑦𝑠) ≤ 𝑓𝑠(𝑥𝑠)− 𝑓𝑠(𝑦𝑠) ,
(∀𝑥𝑡 ̸= 𝑦𝑡) 𝑏𝑠𝑡 − 𝑎𝑠𝑡 ≤ 𝑓𝑠𝑡(𝑦𝑠, 𝑥𝑡)− 𝑓𝑠𝑡(𝑦𝑠, 𝑦𝑡) ,
(∀𝑥𝑠 ̸= 𝑦𝑠) 𝑐𝑠𝑡 − 𝑎𝑠𝑡 ≤ 𝑓𝑠𝑡(𝑥𝑠, 𝑦𝑡)− 𝑓𝑠𝑡(𝑦𝑠, 𝑦𝑡) ,

(∀𝑥𝑠 ̸= 𝑦𝑠) (∀𝑥𝑡 ̸= 𝑦𝑡) 𝑑𝑠𝑡 − 𝑎𝑠𝑡 ≤ 𝑓𝑠𝑡(𝑥𝑠, 𝑥𝑡)− 𝑓𝑠𝑡(𝑦𝑠, 𝑦𝑡) ,
(∀𝑥𝑠 ̸= 𝑦𝑠) (∀𝑥𝑡 ̸= 𝑦𝑡) 𝑑𝑠𝑡 − 𝑏𝑠𝑡 ≤ 𝑓𝑠𝑡(𝑥𝑠, 𝑥𝑡)− 𝑓𝑠𝑡(𝑦𝑠, 𝑥𝑡) ,
(∀𝑥𝑠 ̸= 𝑦𝑠) (∀𝑥𝑡 ̸= 𝑦𝑡) 𝑑𝑠𝑡 − 𝑐𝑠𝑡 ≤ 𝑓𝑠𝑡(𝑥𝑠, 𝑥𝑡)− 𝑓𝑠𝑡(𝑥𝑠, 𝑦𝑡) .

(89)

One of the solutions, enforcing also submodularity of 𝐸𝑔, is the following:

𝑔𝑠(𝑦𝑠) = 𝑓𝑠(𝑦𝑠)−min
𝑖 ̸=𝑦𝑠

𝑓𝑠(𝑖) ,

𝑎𝑠𝑡 = 𝑓𝑠𝑡(𝑦𝑠, 𝑦𝑡) , 𝑏𝑠𝑡 = min
𝑗 ̸=𝑦𝑡

𝑓𝑠𝑡(𝑦𝑠, 𝑗) , 𝑐𝑠𝑡 = min
𝑖 ̸=𝑦𝑠

𝑓𝑠𝑡(𝑖, 𝑦𝑡) ,

𝑑𝑠𝑡 = min
{︁
𝑏𝑠𝑡 + 𝑐𝑠𝑡 − 𝑎𝑠𝑡,

min
𝑖 ̸=𝑦𝑠,𝑗 ̸=𝑦𝑡

[︁
𝑓𝑠𝑡(𝑖, 𝑗) + min

{︀
𝑏𝑠𝑡 − 𝑓𝑠𝑡(𝑦𝑠, 𝑗), 𝑐𝑠𝑡 − 𝑓𝑠𝑡(𝑖, 𝑦𝑡)

}︀]︁}︁
.

(90)

The constructed auxiliary problem 𝐸𝑔 has the property that its lowest minimizer 𝑥min =⋀︀
argmin𝐸𝑔(𝑥) is guaranteed to satisfy (∀𝑠 ∈ 𝒱) 𝑥min ∈ 𝐾𝑠. Therefore 𝑥′ ↦→ 𝑧′ ∨ 𝑥min

is improving for 𝐸𝑔.

3.5.3 Many-against-many Auxiliary Subproblem
The general construction proposed by Kovtun (2004, 2011) considers an arbitrary par-
tition of the set of labels ℒ𝑠 into two subsets 𝑋𝑠 and 𝑌𝑠 in each pixel. The labels are
re-ordered such that 𝑌𝑠 > 𝑋𝑠 and 𝑦𝑠 = min𝑌𝑠. The labeling 𝑥min is constrained to
𝐾𝑠 = {0, 𝑦𝑠} in every pixel. If 𝑥′ ↦→ 𝑥′ ∨ 𝑥min is improving, all labels (𝑠, 𝑖) such that
𝑖 ∈ 𝑋𝑠 and 𝑥min

𝑠 = 𝑦𝑠 can be eliminated. A binary auxiliary submodular problem is then
constructed satisfying (87). The one-against-all construction is obtained as a special
case by letting 𝑌𝑠 = {𝑦𝑠}. That is, the set of potentially eliminated labels 𝑋𝑠 contains
all labels but 𝑦𝑠 (𝑋𝑠 = ℒ𝑠∖{𝑦𝑠}). We discuss the opposite special case below, when the
set 𝑋𝑠 contains a single candidate elimination label in every pixel 𝑠. This second case
is interesting because of the family of mappings it considers. We will be able to derive
the optimal method for this family and hence to show a strict improvement.

3.5.4 All-against-one Auxiliary Subproblem
In this section, we study a special case of the many-against-many construction, not
explicitly considered by Kovtun (2011). The all-against-one auxiliary subproblem at-
tempts to eliminate a single label in every pixel (as opposed to eliminating all but one
labels). The number of nodes which can be eliminated is lower should the method
succeed, however the sufficient conditions used in this case are tighter (there are fewer
inequalities that 𝑔 must fulfill).

Let 𝑦, 𝑧 be fixed labellings and 𝒜 ⊂ 𝒱. Let the mapping 𝑝𝒜 : ℒ → ℒ be defined
pixel-wise as (︀

𝑝𝒜(𝑥)
)︀

𝑠
=
{︃
𝑦𝑠 if 𝑥𝑠 = 𝑧𝑠 and 𝑠 ∈ 𝒜 ,
𝑥𝑠 otherwise .

(91)
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Figure 7 Illustration of the auxiliary all-against-one function 𝐸𝑔. The goal is to find pixels
where the label 𝑧 can be eliminated by replacing it with label 𝑦.

That is, mapping 𝑝𝒜 replaces labels 𝑧 with labels 𝑦 for all pixels in𝒜. If 𝑝𝒜 is improving,
we can eliminate all nodes ((𝑠, 𝑧𝑠) | 𝑠 ∈ 𝒜, 𝑦𝑠 ̸= 𝑧𝑠) as non-optimal. For fixed labellings
𝑦, 𝑧, we are interested in finding the largest subset 𝒜 such that the mapping 𝑝𝒜 is
improving. This mapping can be represented in the form 𝑥 ↦→ 𝑥 ∨ 𝑦′ by ordering the
labels such that (∀𝑠) 𝑧𝑠 < 𝑦𝑠 = min𝑌𝑠 and letting 𝑦′ ∈ 𝐾𝑠 = {𝑧𝑠, 𝑦𝑠}.

Following Kovtun (2011), we will construct an auxiliary problem 𝐸𝑔 for the family of
mappings {𝑥 ↦→ 𝑥 ∨ 𝑦′ | 𝑦′

𝑠 ∈ 𝐾𝑠, ∀𝑠 ∈ 𝒱}. As before, we restrict 𝐸𝑔 in such a way that
all labels 𝑌𝑠 := ℒ𝑠∖{𝑧𝑠} will have the same associated unary and pairwise costs: costs
(𝑔𝑠(𝑖) | 𝑖 ∈ 𝑌𝑠) are equal for each 𝑠 and costs (𝑔𝑠𝑡(𝑖, 𝑗) | 𝑖𝑗 ∈ 𝑌𝑠𝑡) are equal for each 𝑠𝑡. In
this case, 𝐸𝑔 will be equivalent to a problem with two labels in each pixel 𝑠, deciding
between 𝑧𝑠 and 𝑦𝑠.

The auxiliary property of 𝐸𝑔 is ensured by the component-wise inequalities (87). We
first consider pairs 𝑠𝑡, such that 𝑦𝑠 ̸= 𝑧𝑠. The required inequalities for such pairs are

𝑔𝑠(𝑧𝑠)− 𝑔𝑠(𝑦𝑠) ≤ 𝑓𝑠(𝑧𝑠)− 𝑓𝑠(𝑦𝑠) ,
𝑐𝑠𝑡 − 𝑎𝑠𝑡 ≤ min

𝑗 ̸=𝑧𝑡

(︀
𝑓𝑠𝑡(𝑧𝑠, 𝑗)− 𝑓𝑠𝑡(𝑦𝑠, 𝑗)

)︀
=: Δ𝑠𝑡 ,

𝑏𝑠𝑡 − 𝑎𝑠𝑡 ≤ min
𝑖 ̸=𝑧𝑠

(︀
𝑓𝑠𝑡(𝑖, 𝑧𝑡)− 𝑓𝑠𝑡(𝑖, 𝑦𝑡)

)︀
= Δ𝑡𝑠 ,

𝑑𝑠𝑡 − 𝑎𝑠𝑡 ≤ 𝑓𝑠𝑡(𝑧𝑠, 𝑧𝑡)− 𝑓𝑠𝑡(𝑦𝑠, 𝑦𝑡) ,
𝑑𝑠𝑡 − 𝑏𝑠𝑡 ≤ 𝑓𝑠𝑡(𝑧𝑠, 𝑧𝑡)− 𝑓𝑠𝑡(𝑦𝑠, 𝑧𝑡) ,
𝑑𝑠𝑡 − 𝑐𝑠𝑡 ≤ 𝑓𝑠𝑡(𝑧𝑠, 𝑧𝑡)− 𝑓𝑠𝑡(𝑧𝑠, 𝑦𝑡) .

(92)

The last three inequalities account for possible mappings 𝑝𝒜 depending on whether
𝒜 includes 𝑠, 𝑡, or both. A solution to these inequalities and submodularity constraints
can be obtained as

𝑔𝑠(𝑧𝑠) = 𝑓𝑠(𝑧𝑠)− 𝑓𝑠(𝑦𝑠) , 𝑔𝑠(𝑦𝑠) = 0 ,
𝑎𝑠𝑡 = 0 , 𝑏𝑠𝑡 = min

𝑖 ̸=𝑧𝑠

(︀
𝑓𝑠𝑡(𝑖, 𝑧𝑡)− 𝑓𝑠𝑡(𝑖, 𝑦𝑡)

)︀
, 𝑐𝑠𝑡 = min

𝑗 ̸=𝑧𝑡

(︀
𝑓𝑠𝑡(𝑧𝑠, 𝑗)− 𝑓𝑠𝑡(𝑦𝑠, 𝑗)

)︀
,

𝑑𝑠𝑡 = min
(︁
𝑏𝑠𝑡 + 𝑐𝑠𝑡, 𝑓𝑠𝑡(𝑧𝑠, 𝑧𝑡) + min

{︀
𝑏𝑠𝑡 − 𝑓𝑠𝑡(𝑦𝑠, 𝑧𝑡), 𝑐𝑠𝑡 − 𝑓𝑠𝑡(𝑧𝑠, 𝑦𝑡)

}︀)︁
.

(93)

In the case 𝑦𝑠 = 𝑧𝑠, the label of pixel 𝑠 should be fixed to 0 and hence 𝑠 can be
excluded from the problem. We have fewer inequalities in this case:

𝑏𝑠𝑡 − 𝑎𝑠𝑡 ≤ Δ𝑡𝑠 ,

𝑑𝑠𝑡 − 𝑐𝑠𝑡 ≤ 𝑓𝑠𝑡(𝑧𝑠, 𝑧𝑡)− 𝑓𝑠𝑡(𝑧𝑠, 𝑦𝑡) , 𝑑𝑠𝑡 ≤ 𝑏𝑠𝑡 + 𝑐𝑠𝑡 − 𝑎𝑠𝑡 .
(94)
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And we can choose a solution

𝑔𝑠(0) = 𝑔𝑠(1) = 0 , 𝑎𝑠𝑡 = 0 , 𝑐𝑠𝑡 = 0 , 𝑏𝑠𝑡 = Δ𝑡𝑠 ,

𝑑𝑠𝑡 = min(Δ𝑡𝑠, 𝑓𝑠𝑡(𝑧𝑠, 𝑧𝑡)− 𝑓𝑠𝑡(𝑧𝑠, 𝑦𝑡)) = min
𝑖

(︀
𝑓𝑠𝑡(𝑖, 𝑧𝑡)− 𝑓𝑠𝑡(𝑖, 𝑦𝑡)

)︀
.

(95)

Without loss of maximality (as will be defined and proven in §4.4 devoted to max-
imum projections), we can exclude pixel 𝑠 and add the cost 𝑑𝑠𝑡 to 𝑔𝑡(𝑧𝑡). It can be
seen that this construction is equivalent to taking the worst case estimate for pixel 𝑠
independently for all its neighbors 𝑡 ∈ 𝒜.

The methods reviewed above were proposed as sufficient conditions by Kovtun (2011).
They do not pretend to be the best in any sense. In the sequel, we will show that
replacing the labeling-wise inequalities (86) with component-wise inequalities (87) can
be done without loss of generality and the submodular truncation is an optimal design
step in the case of all-against-one auxiliary subproblem. However, the other design
steps: 1) requiring that 𝐸𝑔 is equivalent to a two-label problem and 2) requiring that
𝐸𝑔 is auxiliary for 𝐸𝑓 for all possible members of the considered family of mappings, are
not optimal, leading to the final sufficient condition being over-constrained. In §4.4.3,
we derive an optimal method for all-against-one problem, overcoming this limitation.
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In this chapter, we show that the different sufficient conditions used in the methods
of DEE, (M)QPBO, and auxiliary submodular problems can be unified into a general
class. We study the common properties of the unified class, and show the following. All
the above methods can be derived as local sufficient conditions in a specially constructed
reparametrization of the problem. Furthermore, they can be related to the standard
LP relaxation. It is guaranteed that the found strong partial optimalities retain all
optimal solutions of the LP relaxation, in other words, solutions of the LP relaxation
automatically satisfy the derived partial optimalities. Therefore, LP relaxation cannot
be tightened by these methods. A similar result holds for fixed points of the fusion
move algorithm: they satisfy strong optimalities of a specific subclass.

In §4.1 we introduce our unified tool for reduction of the discrete search space, called
a projection. It is a linear map of the set of relaxed labellings to itself that does not
increase the energy and shrinks the possible selection of the labels. We give examples
of projections corresponding to the individual methods and prove that the considered
methods (DEE, QPBO, M-QPBO and auxiliary submodular problems) are all indeed
special cases of our sufficient condition. We study general properties of projections
and their relation to the LP relaxation. In §4.3, we prove the characterization of the
sufficient condition as a simple local condition up to equivalent transformations. This
reveals the principle of the method and offers a powerful tool for further analysis. In
§4.4, we address the question of what the maximal projections (that provide maxi-
mal partial assignments) for a given problem are. While this is a difficult question in
general, we give polynomial-time algorithms to find maximal projections in restricted
subclasses. Our new algorithm, applicable to general energy functions, similarly to pre-
vious methods provides sufficient conditions for a partial optimal assignment. However,
it is optimal for projections from a certain non-trivial class.

4.1 Projections
We observed in Chapter 3 that the optimality guarantees of the reviewed methods are
obtained through the following mechanism. An improving mapping 𝑝 of labelings is
constructed. Given an arbitrary labeling 𝑥, 𝑝 provides a labeling that has a better (or
at least not worse) energy. In the case of Desmet’s DEE, such a mapping changes the
label in a single pixel 𝑠, replacing label 𝛼 to label 𝛽 in 𝑠. In the case of QPBO and
MQPBO the mapping is of the form 𝑥 ↦→ (𝑥 ∨ 𝑥min) ∧ 𝑥max. In the case of auxiliary
submodular problems, after a certain reordering of the labels, the mapping is of the form
𝑥 ↦→ 𝑥 ∨ 𝑥min. As soon as mapping 𝑝 is improving in the sense that 𝐸𝑓 (𝑝(𝑥)) ≤ 𝐸𝑓 (𝑥),
we know for sure that there exists an optimal labeling in 𝑝(ℒ). The considered mappings
are such that 𝑝(ℒ) is expressed as pixel-wise domain constraints, eliminating part of
the labels in each pixel. The following considerations lead us to a linearization of this
construction and considering improving mappings of relaxed labelings instead.

The improving mappings of (M)QPBO and auxiliary problems may change labels
of many pixels at a time and hence they are more general than the pixel-wise simple
DEE mapping. At the same time, we note that general Goldstein’s DEE condition is
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more general in a different sense. It is based on a mapping of a label 𝛼 to a convex
combination of other labels rather than to a single label. This suggests the idea of
considering improving mappings that map labelings onto the marginal polytope.

Even if a discrete mapping 𝑝 is given, verification of the improving property is gen-
erally NP-hard. Thus we need a simpler sufficient condition to prove the improving
property. For (M)QPBO and auxiliary problems we have seen that the sufficient condi-
tions employed are in the form of component-wise inequalities on the energy vector 𝑓 or
its arc-consistent equivalent 𝑓𝜙. These sufficient conditions ensure that 𝑝 is improving
for every unary and every pairwise term separately, which is easy to verify. We propose
to extend the mapping 𝑝 to relaxed labelings and demand the improving property on
the local polytope Λ. By doing so, on the one hand we introduce a polynomially verifi-
able sufficient condition, and on the other hand we are able to show that this condition
includes sufficient conditions of (M)QPBO, auxiliary problem and general Goldstein’s
DEE as special cases. Furthermore, we prove the following characterization: the map-
ping is Λ-improving iff there exists an equivalent transformation of the problem such
that the simple component-wise sufficient conditions hold.

With such a linearized mapping we can establish a relation to the LP relaxation and
the fusion move algorithm. Knowing that verification of the Λ-improving property is
polynomially solvable (via LP), we pose the question how we can find such mappings
that are maximal in the sense that they would allow to eliminate the maximal number
of labels. There are two challenges. Firstly, even solving the verification LP is com-
putationally expensive, so we would like to restrict ourselves to a family of mappings
where this verification is even easier. Secondly, the Λ-improving property is considered
now as a constraint and we wish to optimize over such mappings. In this challenging
direction we analyze several restricted families of mappings.

At the beginning we are going to be more general and consider arbitrary mappings of
Λ to itself and then we restrict ourselves to pixel-wise mappings which can be construc-
tively defined. As we discussed, given a discrete improving mapping 𝑝, the search for
the minimizer can be performed over 𝑥 ∈ 𝑝(ℒ). The mappings of (M)QPBO, auxiliary
problems and DEE are idempotent (satisfy 𝑝(𝑝(𝑥)) = 𝑝(𝑥)). This is a natural property
to keep in the generalization. It means that whenever a labeling was improved, the
resulting labeling 𝑝(𝑥) cannot be improved further by 𝑝. On vector spaces, idempotent
mappings are known as projections, so we borrow this term. There is a technical prob-
lem in that aff(Λ) is an affine space and not a vector space. We therefore define a linear
map of 𝑅ℐ to itself and then consider its restriction to Λ.

Definition 8. A linear map 𝑃 : Rℐ → Rℐ is called a projection if

𝑃 2 = 𝑃 , (96a)
𝑃 (ℳ) ⊂ℳ , (96b)
𝑃 (Λ) ⊂ Λ . (96c)

The first condition is the usual property of geometrical projections, idempotency of the
map 𝜇 ↦→ 𝑃𝜇. The second condition requires that the marginal polytope ℳ is closed
under 𝑃 . In particular, integer labellings have to be mapped to a convex combination
of integer labellings at most. The third condition requires that Λ is also closed under
𝑃 , i.e., relaxed labelings are mapped to relaxed labelings.

Definition 9. A projection 𝑃 is ℳ-improving for 𝐸𝑓 if

(∀𝜇 ∈ℳ) ⟨𝑓, 𝑃𝜇⟩ ≤ ⟨𝑓, 𝜇⟩ , (97)

38



4.1 Projections

and strictly ℳ-improving if the inequality is strict for any 𝜇 ∈ℳ such that 𝑃𝜇 ̸= 𝜇.

Note, the condition (97) is equivalent to ⟨𝑓, 𝑃𝛿(𝑥)⟩ ≤ ⟨𝑓, 𝛿(𝑥)⟩ for all 𝑥 ∈ ℒ or to
𝐸𝑃 T𝑓 (𝑥) ≤ 𝐸𝑓 (𝑥) for all 𝑥 ∈ ℒ. Improving projections allow us to simplify the energy
minimization problem as follows.

Theorem 15. Let

𝑂 = argmin
𝜇∈ℳ

⟨𝑓, 𝜇⟩ , 𝑂′ = argmin
𝜇∈𝑃 (ℳ)

⟨𝑓, 𝜇⟩ . (98)

If 𝑃 is ℳ-improving, then
1. 𝑂′ ⊂ 𝑂;
2. 𝑂′ = 𝑃 (𝑂).

If 𝑃 is strictly ℳ-improving then 𝑂′ = 𝑂 = 𝑃 (𝑂).

Proof. From the ℳ-improving property we have ⟨𝑓, 𝑃𝜇⟩ ≤ ⟨𝑓, 𝑃𝜇⟩ and 𝑃 (ℳ) ⊂ ℳ.
Therefore, claim 1 follows and there holds equality of the minima of the two problems

min
𝜇∈ℳ
⟨𝑓, 𝜇⟩ = min

𝜇∈𝑃 (ℳ)
⟨𝑓, 𝜇⟩ . (99)

Let us show 2. It is easy to verify that 𝑃 (𝑂) ⊂ 𝑂′. Indeed, let 𝜇 ∈ 𝑃 (𝑂), then
𝜇 is optimal and 𝜇 ∈ 𝑃 (ℳ), therefore 𝜇 ∈ 𝑂′. In the other direction, let 𝜇 ∈ 𝑂′,
i.e., 𝜇 ∈ 𝑃 (ℳ) and is optimal. Assume for contradiction that 𝜇 /∈ 𝑃 (𝑂). Then
𝜇 ∈ 𝑃 (ℳ)∖𝑃 (𝑂) = 𝑃 (ℳ∖𝑂), where the set equality is implied by linearity. This
contradicts the optimality of 𝜇. Therefore, it must be 𝑂′ ⊂ 𝑃 (𝑂).

Now, consider a strictly ℳ-improving projection and assume 𝜇 ∈ 𝑂 and 𝜇 /∈ 𝑃 (ℳ).
Since 𝑃𝜇 ∈ 𝑃 (ℳ), we must have 𝑃𝜇 ̸= 𝜇. Then the strict inequality holds ⟨𝑓, 𝑃𝜇⟩ <
⟨𝑓, 𝜇⟩ and states that 𝜇 is not optimal, which is a contradiction. Therefore, for strictly
ℳ-improving projection, the set 𝑃 (ℳ) retains all optimal marginal labelings, i.e.,
𝑂′ = 𝑂.

Note, since integer labelings are represented as a subset of ℳ and the projection is a
linear map, a strictly ℳ-improving projection preserves all optimal integer labelings,
i.e., we can write

argmin
𝑥∈ℒ

⟨𝑓, 𝛿(𝑥)⟩ = argmin
𝑥∈ℒ

⟨𝑃T𝑓, 𝛿(𝑥)⟩ . (100)

Example 1. Consider the energy minimization problem with 2 labels shown in Fig-
ure 8(a). Let us define �̄� = (𝜇1(1), 𝜇2(1), 𝜇12(1, 1), 1) as a minimal representation of
the marginal vector (all other components are linearly dependent due to the constraints
of ℳ). Let 𝑃 be defined via the following linear map of this minimal representation:

𝑃 =
(︃

0.5 −0.5 0.5 0.5
−0.5 0.5 0.5 0.5

0 0 1 0
0 0 0 1

)︃
. (101)

This map projects (non-orthogonally) to a facet of the marginal polytope as shown
in Figure 8(b). Assume optimal integer solutions are the two labelings (0, 1) and (1, 0).
In that case, the projection 𝑃 is strictly ℳ-improving. Another projection

𝑃 ′ =
(︂ 0 0 0.5 0.5

0 0 0.5 0.5
0 0 1 0
0 0 0 1

)︂
(102)

maps ℳ to a single line (bold green in Figure 8(b)). It is ℳ-improving, as it retains
one optimal point from ℳ, the point (0.5, 0.5, 0, 1), which is a convex combination of
the two optimal integer solutions. However, 𝑃 ′ it is not strictly ℳ-improving.
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¹1(1) ¹2(1)¹12(1; 1)
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(a) (b)

Figure 8 Illustration of the marginal polytope and a projection. (a) An energy minimiza-
tion problem with two labels. The marginal vector 𝜇 is an element of R9, however, due to
marginalization and normalization constraints there are only 3 linearly independent coordi-
nates, e.g., the ones shown in the figure. (b) Marginal polytope ℳ (cyan) in the space of
𝜇1(1), 𝜇2(1) and 𝜇12(1, 1). Possible labelings are marked as bold dots in this space. Suppose
labelings (1, 0) and (0, 1) are optimal. Using strictlyℳ-improving projection 𝑃 (example 1),
the search space shrinks to 𝑃 (ℳ) (the red hashed facet). Usingℳ-improving projection 𝑃 ′,
the search space shrinks to the bold green line, not containing any optimal integer solutions
but containing their convex combination.

Now, we have seen that ℳ-improving projections simplify the problem while pre-
serving optimal solutions. How do we find a projection that is ℳ-improving or at
least verify whether a given projection is ℳ-improving? Verifying the ℳ-improving
property (97) is equivalent to solving

min
𝜇∈ℳ
⟨𝑓 − 𝑃T𝑓, 𝜇⟩ ≥ 0 , (103)

which can be as hard as the original energy minimization problem. However, we can
get a simpler sufficient condition by ensuring the inequality over a larger polytope Λ
and verify

min
𝜇∈Λ
⟨𝑓 − 𝑃T𝑓, 𝜇⟩ ≥ 0 . (104)

This condition, in contrast to (103), is polynomially verifiable.

Definition 10. A projection 𝑃 is called Λ-improving for 𝐸𝑓 if it satisfies

(∀𝜇 ∈ Λ) ⟨𝑓, 𝑃𝜇⟩ ≤ ⟨𝑓, 𝜇⟩ , (105)

and strictly Λ-improving if the inequality is strict for all 𝜇 ∈ Λ such that 𝑃𝜇 ̸= 𝜇.

It will be shown that sufficient conditions in the reviewed partial optimality methods
(QPBO, multi-label QPBO, auxiliary submodular problems and DEE singleton criteria)
are special cases of Λ-improving projections. Hence, the properties that hold for Λ-
improving projections, will be common to all of the mentioned methods. Not less
importantly, we can design algorithms that are inbetween of the existing methods in
certain sense or more general ones.

4.1.1 Pixel-wise Projections

While the above theoretical results are more general, in practice we restrict ourselves to
projections of a simpler form that can be defined constructively. We consider projections
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𝑃 such that (𝑃𝜇)𝑠 depends only on 𝜇𝑠 and (𝑃𝜇)𝑠𝑡 depends only on 𝜇𝑠𝑡. To make sure
that marginalization constraints are satisfied, the mapping for pairwise terms is induced
by the mappings of unary terms. Such projections will be called pixel-wise.

Let us define for each 𝑠 ∈ 𝒱 a matrix 𝑃𝑠 ∈ Rℒ𝑠×ℒ𝑠 satisfying

(∀𝑖𝑖′ ∈ ℒ𝑠 × ℒ𝑠) 𝑃𝑠,𝑖𝑖′ ∈ [0, 1] ,
1T𝑃𝑠 = 1 ,
𝑃𝑠𝑃𝑠 = 𝑃𝑠 .

(106)

The pixel-wise projection 𝑃 : Λ→ Λ is defined as follows,

(𝑃𝜇)𝑠(𝑖) = (𝑃𝑠𝜇𝑠)(𝑖) =
∑︁

𝑖′∈ℒ𝑠

𝑃𝑠,𝑖𝑖′𝜇𝑠(𝑖′) ,

(𝑃𝜇)𝑠𝑡(𝑖, 𝑗) = (𝑃𝑠𝜇𝑠𝑡𝑃
T
𝑡 )(𝑖, 𝑗) =

∑︁
𝑖′∈ℒ𝑠

∑︁
𝑗′∈ℒ𝑡

𝑃𝑠,𝑖𝑖′𝑃𝑡,𝑗𝑗′𝜇𝑠𝑡(𝑖′, 𝑗′) .
(107)

Theorem 16. The mapping 𝑃 defined by (107) is a projection.

Proof. Idempotency follows from idempotency of individual matrices 𝑃𝑠. We have to
show that 𝑃 (Λ) ⊂ Λ and 𝑃 (ℳ) ⊂ℳ.

Let us first show 𝑃 (Λ) ⊂ Λ. To verify that 𝑃𝜇 satisfies the normalization con-
straints (15), check that

(∀𝑠 ∈ 𝒱)
∑︁
𝑖∈ℒ𝑠

(𝑃𝜇)𝑠(𝑖) =
∑︁
𝑖∈ℒ𝑠

∑︁
𝑖′∈ℒ𝑠

𝑃𝑠,𝑖𝑖′𝜇𝑠(𝑖′) =
∑︁

𝑖′∈ℒ𝑠

𝜇𝑠(𝑖′) = 1 . (108)

The marginalization constraints (14) are verified as follows:

(∀𝑠𝑡 ∈ ℰ) 1T(𝑃𝜇)𝑠𝑡 = 1T𝑃𝑠𝜇𝑠𝑡𝑃
T
𝑡 = 1T𝜇𝑠𝑡𝑃

T
𝑡 = 𝜇T

𝑡 𝑃
T
𝑡 = (𝑃𝜇)T

𝑡 . (109)

Let us now prove 𝑃 (ℳ) ⊂ℳ. Because 𝑃 is linear andℳ is the convex hull of integer
labellings, it is sufficient to show that for any integer relaxed labeling 𝜇 ∈ ℳ there
holds 𝜈 := 𝑃𝜇 ∈ℳ. By construction, we have

𝜈 ≥ 0 ,
1T𝜈𝑠 = 1 ,

1T𝜈𝑠𝑡 = 𝜈T
𝑡 ,

𝜈𝑠𝑡 = 𝜈𝑠𝜈
T
𝑡 .

(110)

Let us choose a vertex 𝑠 such that 𝜈𝑠 is not integer. We can expand 𝜈 as

𝜈 =
∑︁
𝑖∈ℒ𝑠

𝜈𝑠(𝑖)𝜈(𝑖) , (111)

where 𝜈(𝑖) ∈ Λ is defined as

(∀𝑠′ ∈ 𝒱) 𝜈
(𝑖)
𝑠′ (𝑖′) =

{︃
[[𝑖=𝑖′]] if 𝑠′ = 𝑠 ,

𝜈𝑠′(𝑖′) otherwise ,

(∀𝑠𝑡 ∈ ℰ) 𝜈
(𝑖)
𝑠𝑡 = 𝜈(𝑖)

𝑠 (𝜈(𝑖)
𝑡 )T .

(112)

This construction is illustrated in Figure 9. It can be verified that 𝜈(𝑖) satisfies the same
constraints as 𝜈. Expansion (111) is straightforward to verify for singletons and pairs
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s

º

i = 1
º(1)

Figure 9 Illustration of the recursive construction to disassemble a relaxed labeling 𝜈 = 𝑃𝜇
(wave line) into a convex combination of integer labelings in order to prove 𝑃 (ℳ) ⊂ℳ. We
expand 𝜈 as a combination of |ℒ𝑠| relaxed labelings (𝜈(𝑖) | 𝑖 ∈ ℒ𝑠) that are integer at 𝑠. Here,
𝑣(1) is shown by solid lines around 𝑠.

𝑠′𝑡′ such that 𝑠′ ̸= 𝑠 and 𝑡′ ̸= 𝑠. To verify it for pairs 𝑠𝑡 ∈ ℰ , check that∑︁
𝑖∈ℒ𝑠

𝜈𝑠(𝑖)𝜈(𝑖)
𝑠𝑡 = 𝜈𝑠𝐼(𝜈(𝑖)

𝑡 )T = 𝜈𝑠𝜈
T
𝑡 = 𝜈𝑠𝑡 . (113)

By construction, 𝜈 is a convex combination of 𝜈(𝑖) and all 𝜈(𝑖) are integral at vertex 𝑠.
Applying this construction recursively to all vertices, we can represent 𝜈 as a convex
combination of integral labelings, which proves that 𝜈 ∈ℳ.

4.1.2 Examples
The following examples illustrate how different methods for partial optimality are in-
terpreted as projections. The exact proofs that the projections constructed by these
methods are Λ-improving will be given later.

Example 2 (𝛼-domination). Let us have 3 labels in ℒ𝑠 and let 𝑃𝑠 project everything
on a single label, e.g., 𝛼 = 2. Then

𝑃𝑠 =
(︁ 0 0 0

1 1 1
0 0 0

)︁
. (114)

For any vector 𝜇𝑠 representing a relaxed labeling, e.g., ( 0.5 0 0.5 )T, the resulting projec-
tion 𝑃𝑠𝜇𝑠 = ( 0 1 0 )T. Let 𝑃𝑡 be identity for all 𝑡 ̸= 𝑠. If 𝑃 is strictly Λ-improving, then
optimal labeling in 𝑠 must be 𝛼. In this case, the projection alters only pixel 𝑠 and its
improving property can be verified locally as in DEE. However, when the projection
𝑃𝑠′ is not identity for multiple pixels 𝑠′ but has the form (114), the verification of the
Λ-improving property is no longer local. Methods of Kovtun (2004) build projections
of this type.

Example 3 (𝛼-𝛽 domination). Let us have 3 labels in ℒ𝑠 and let 𝑃𝑠 project label 𝛼 =
1 onto label 𝛽 = 3.

𝑃𝑠 =
(︁ 0 0 0

0 1 0
1 0 1

)︁
. (115)

This is the type of projection constructed by simple DEE. Clearly, we have (𝑃𝑠𝜇𝑠)(1) = 0
for any 𝜇𝑠. If 𝑃 is Λ-improving then label 1 in 𝑠 can be eliminated.

Example 4 (𝛼-elimination). Let

𝑃𝑠 =
(︁ 0 0 0

0.5 1 0
0.5 0 1

)︁
. (116)

This projection corresponds to a general Goldstein’s DEE with a fixed convex combi-
nation. If 𝑃 is Λ-improving, label 𝛼 = 1 can be eliminated. See Figure 10(a).
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Figure 10 (a) Example of an energy in which label 𝛼 = 3 is not dominated by any other single
label but can be eliminated by a convex combination of labels 1 and 2 by projection (116).
The labeling (𝛼, 2) has cost 2 which is smaller than the cost of labeling (1, 2), so 𝛼 cannot
be improved by switch to label 1. On the other hand, labeling (𝛼, 1) has a smaller cost than
labeling (2, 1), therefore 𝛼 cannot be improved by switching to label 2 either. (b) Example
of an energy in which label 𝛼 cannot be eliminated by singles criterion in either 𝑠 or 𝑡, but
can be eliminated by simultaneous projection in both 𝑠 and 𝑡.

Example 5 (multi-label QPBO). This method provides interval constraints on the
possible optimal labels in each pixel. It will be shown that it constructs an Λ-improving
projection of the following form: for a pixel with 4 labels interval constraint 2 ≤ 𝑥*

𝑠 ≤ 3
will correspond to a projection

𝑃𝑠 =
(︂ 0 0 0 0

1 1 0 0
0 0 1 1
0 0 0 0

)︂
. (117)

The constraint 𝑥min ≤ 𝑥* ≤ 𝑥max will correspond to all the interval projections simul-
taneously in all pixels.

4.1.3 Properties of Improving Projections

By design we have that Λ-improving property impliesℳ-improving and likewise in the
strict case. However, the reverse implications do not hold. Example 6 illustrates an
ℳ-improving projection that is not Λ-improving.

 

1

2
s1

s2

s3

Figure 11 Example of an energy in which the projection onto labeling (1, 1, 1) (bold) is ℳ-
improving but not Λ-improving. The thin edges have the cost 1 while bold edges have the
cost 2 and all the remaining edges have a large (∞) cost.

Example 6. Consider the energy shown in Figure 11. Consider a projection that maps
any labeling to the labeling (1, 1, 1), having cost 6. Because it is the optimal labeling,
the projection is an ℳ-improving projection. On the other hand, there is a relaxed
labeling with cost 3, which, however, does not belong to ℳ. When the projection is
applied to this relaxed labeling, the energy increases.
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Theorem 17. A Λ-improving projection preserves optimal solutions of the LP relax-
ations. Let

𝑂 = argmin
𝜇∈Λ

⟨𝑓, 𝜇⟩ , 𝑂′ = argmin
𝜇∈𝑃 (Λ)

⟨𝑓, 𝜇⟩ . (118)

Then 𝑂′ = 𝑃 (𝑂) ⊂ 𝑂 if 𝑃 is Λ-improving and 𝑂′ = 𝑃 (𝑂) = 𝑂 in the strict case.

Proof. Similar to Theorem 15, substituting polytope Λ.

This theorem implies that any of the partial optimality methods (DEE, MQPBO, auxil-
iary submodular problems) cannot be used to tighten the LP relaxation. They may only
simplify it by reducing the number of variables, but preserving some (or all, depending
on the specific method) initial optimal relaxed solutions.

Theorem 18. The projection preserves equivalence: 𝑓 ≡ 𝑔 implies 𝑃T𝑓 ≡ 𝑃T𝑔.

Proof.
(∀𝜇 ∈ Λ) ⟨𝑃T𝑓, 𝜇⟩ = ⟨𝑓, 𝑃𝜇⟩ = ⟨𝑔, 𝑃𝜇⟩ = ⟨𝑃T𝑔, 𝜇⟩ . (119)

The equality ⟨𝑓, 𝑃𝜇⟩ = ⟨𝑔, 𝑃𝜇⟩ holds since 𝑓 ≡ 𝑔 and 𝑃𝜇 ∈ Λ.

Theorem 19 (Linearity). Let 𝑃 be a (strictly) Λ-improving projection for 𝐸𝑓 and
Λ-improving for 𝐸𝑔. Then 𝑃 is (strictly) Λ-improving for 𝐸𝑓 + 𝐸𝑔.

Proof. We have

(∀𝜇 ∈ Λ) ⟨𝑓 + 𝑔, 𝑃𝜇⟩ = ⟨𝑓, 𝑃𝜇⟩+ ⟨𝑔, 𝑃𝜇⟩ ≤ ⟨𝑓, 𝜇⟩+ ⟨𝑔, 𝜇⟩ = ⟨𝑓 + 𝑔, 𝜇⟩ (120)

and the inequality is strict if 𝜇 ∈ Λ∖𝑃 (Λ).

Theorem 20. Let a projection 𝑃 satisfy component-wise inequalities for 𝑓 :

(∀𝑠 ∈ 𝒱) (∀𝑖 ∈ ℒ𝑠) (𝑃T𝑓)𝑠(𝑖) ≤ 𝑓𝑠(𝑖) , (121a)
(∀𝑠𝑡 ∈ ℰ) (∀𝑖𝑗 ∈ ℒ𝑠𝑡) (𝑃T𝑓)𝑠𝑡(𝑖, 𝑗) ≤ 𝑓𝑠𝑡(𝑖, 𝑗) . (121b)

Then 𝑃 is Λ-improving for 𝐸𝑓 .

Proof. Let 𝜇 ∈ Λ. By multiplying (121a) by 𝜇𝑠(𝑖) and summing over 𝑠 and 𝑖 and
multiplying (121b) by 𝜇𝑠𝑡(𝑖, 𝑗) and summing over 𝑠𝑡 and 𝑖𝑗 we get

⟨𝑃T𝑓, 𝜇⟩ ≤ ⟨𝑓, 𝜇⟩ , (122)

which is equivalent to (97).

Theorem 20 is very simple. It corresponds to the sufficient condition used in the method
of auxiliary submodular problems (Kovtun 2004) reviewed in §3.5. A major result that
we prove in §4.3 is that any Λ-improving projection for 𝐸𝑓 does satisfy these component-
wise inequalities for a specific equivalent transformation of 𝐸𝑓 .

4.1.4 Relation to Fusion-Move Algorithm
We already observed that Λ-improving projections preserve the set of optimal solutions
of LP relaxation. This property naturally follows from the definition. We will show next
that a similar property holds for a special class of improving projections and the set of
fixed points of the fusion move algorithm. It generalizes a weaker result in (Shekhovtsov
and Hlaváč 2011) obtained for specific algorithms.
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Theorem 21. Let 𝑃 be a strictly Λ-improving projection for 𝐸𝑓 of the pixel-wise form
such that

𝑃𝑠 = 𝐼 or 𝑃𝑠,𝑖𝑖′ = [[𝑖=𝛼]] . (123)

Let 𝑥 be a fixed point of the fusion move Algorithm 2. Then

𝑃𝛿(𝑥) = 𝛿(𝑥) . (124)

Proof. Consider the fusion move for labelings 𝑥 and 𝑦 = 𝛼. The move energy is the
restriction of 𝑓 to the set of labels 𝐾𝑠 = {𝑥𝑠, 𝛼} in every pixel. The linear relaxation for
the move energy (solved by QPBO) can be viewed as the constrained linear relaxation
for 𝑓 ,

min
𝜇∈Λ′
⟨𝑓, 𝜇⟩ , (125)

where Λ′ = Λ ∩ {𝜇 |𝜇𝑠(𝑖) = 0 ∀𝑖 ∈ ℒ𝑠∖{𝑥𝑠, 𝛼} ∀𝑠 ∈ 𝒱}. Projection 𝑃 maps Λ′ to itself
and {𝛿(𝑥′) |𝑥′

𝑠 ∈ 𝐾𝑠 ∀𝑠 ∈ 𝒱} to itself. By definition we also have that ⟨𝑓, 𝑃𝜇⟩ ≤ ⟨𝑓, 𝜇⟩
on Λ ⊃ Λ′ and the inequality is strict in the case 𝑃𝜇 ̸= 𝜇. Therefore 𝑃 is improving on
Λ′.

Assume for contradiction that 𝑃𝛿(𝑥) ̸= 𝛿(𝑥). There exists 𝑠 ∈ 𝒱 such that 𝑥𝑠 ̸= 𝛼
and (𝑃𝛿(𝑥))𝑠(𝑖) = [[𝑖=𝛼]]. In that case optimal solutions of the relaxation (125) cannot
have 𝜇𝑠,𝑥𝑠 > 0 and hence the fusion move from 𝑥 to 𝛼 will necessarily switch 𝑥𝑠 to 𝛼,
which contradicts the assumption of 𝑥 being a fixed point.

Suppose that the energy 𝐸𝑓 satisfies metric condition (Boykov et al. 2001), so that pure
expansion-move Algorithm 1 applies. In this case, QPBO provides the exact solution of
the move subproblem and our proof above holds for the expansion move Algorithm 1.
Therefore, if 𝑥 is a fixed point of the expansion move, it satisfies 𝑃𝛿(𝑥) = 𝛿(𝑥).

The one-against-all algorithm of Kovtun (2003) reviewed in §3.5 can be related to
the truncated expansion move algorithm. In (Shekhovtsov and Hlaváč 2011) we showed
that fixed points of the expansion move with any truncation rule are preserved by the
one-against-all method of Kovtun (2003). This result holds since the one-against-all
method uses the weakest truncation in the sense discussed in §2.7.1.

4.2 Unification

In this section, we show how the optimality properties of different individual methods
reviewed in Chapter 3 can be derived via improving projections introduced in §4.1.
Despite of that, the methods are still different and deliver different partial optimality
guarantees. The unification via improving projections reveals common properties of
these methods, allows us to relate them to the LP relaxation and to the expansion
move algorithm, and suggests a systematic study.

4.2.1 DEE as Improving Projection

We have already noticed in Examples 3 and 4 that the DEE conditions can be expressed
via projection. We now give a formal proof of the improving property of this projection.

Statement 22. The projection constructed by Goldstein’s general DEE is improving.
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Proof. Let Goldstein’s general DEE condition hold for a pair (𝑠, 𝛼) for some coefficients
𝛽 ≥ 0,

∑︀
𝑖 𝛽(𝑖) = 1. The condition reads

min
𝑥∈ℒ𝒩 (𝑠)

(︁
𝑓𝑠(𝛼)−

∑︁
𝑖

𝑓𝑠(𝑖)𝛽(𝑖) +
∑︁

𝑡∈𝒩 (𝑠)
[𝑓𝑠𝑡(𝛼, 𝑥𝑡)−

∑︁
𝑖

𝑓𝑠𝑡(𝑖, 𝑥𝑡)𝛽(𝑖)]
)︁
≥ 0 . (126)

We introduce the mapping 𝑃𝑠 such that

𝑃𝑠,𝑖𝑖′ =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑖 = 𝑖′ ̸= 𝛼 ,

𝛽(𝑖) if 𝑖 ̸= 𝛼, 𝑖′ = 𝛼 ,

0 otherwise .
(127)

Let 𝑘 be an arbitrary label such that 𝑘 ̸= 𝛼 and let 𝜇𝑠 be the indicator of this label,
𝜇𝑠(𝑖) = [[𝑖=𝑘]]. It holds that 𝑃𝑠𝜇𝑠 = 𝜇𝑠. For the indicator of label 𝛼 with components
𝜇𝑠(𝑖) = [[𝑖=𝛼]], we have 𝑃𝑠𝜇𝑠 = 𝛽. With such a projection, we can rewrite the constraint
as

min
𝑥∈ℒ
⟨𝑓 − 𝑃T𝑓, 𝛿(𝑥)⟩ ≥ 0 . (128)

Indeed, for 𝑥𝑠 ̸= 𝛼 the objective becomes ⟨𝑓 − 𝑓, 𝛿(𝑥)⟩ ≥ 0, which holds trivially. For
𝑥𝑠 = 𝛼, the objective becomes that of (126). Additionally, we extended the minimiza-
tion to include all variables 𝑥 ∈ ℒ, not just the neighbors of 𝑠. This can be done because
in the energy 𝑓 −𝑃T𝑓 only the pairwise terms adjacent to 𝑠 are non-zero. By the same
argument, the resulting minimization problem has a star-structure, so we can relax the
minimization to the local polytope without loosing tightness, writing (128) as

min
𝜇∈Λ
⟨𝑓 − 𝑃T𝑓, 𝜇⟩ ≥ 0 ⇔ (∀𝜇 ∈ Λ) ⟨𝑓 − 𝑃T𝑓, 𝜇⟩ ≥ 0 , (129)

which is the improving property of 𝑃 .

4.2.2 Autarky as Improving Projection
Roof dual, MQPBO and auxiliary submodular problems methods derive domain con-
straints in the form of autarkies (see Definition 5). General autarkies cannot be shown
to be a special case of our sufficient condition as they are not polynomially verifiable.
However, autarkies can be represented by an ℳ-improving projection and in the case
of QPBO, MQPBO and submodular functions all autarkies are also Λ-improving. The
case of submodular functions can then be used to show that the general sufficient con-
dition formulated by Kovtun (2004) is a special case of Λ-improving projection as well.

Definition 11. The linear extension of mapping 𝑝 : ℒ → ℒ is the linear mapping
𝑃 : Λ→ Λ satisfying

(∀𝑥 ∈ ℒ) 𝑃𝛿(𝑥) = 𝛿(𝑝(𝑥)) . (130)

Relation (130) means that the two mappings coincide on all integer vectors from Λ.
Since aff Λ = affℳ = aff 𝛿(ℒ), it can be verified that the linear extension exists and
its restriction to Λ is unique.

Statement 23. The linear extension is unique on Λ.

Proof. Let 𝑃 and 𝑃 ′ both be linear extensions of 𝑝. They coincide on 𝛿(ℒ) and conse-
quently on aff 𝛿(ℒ). Since Λ ⊂ aff Λ = aff 𝛿(ℒ), they coincide on Λ.
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Statement 24. Let 𝑃 and 𝑄 be linear extension of 𝑝 and 𝑞, respectively. Then, 𝑃𝑄
is the linear extension of the composition of 𝑝 and 𝑞.

Proof.
(∀𝑥 ∈ ℒ) 𝑃𝑄𝛿(𝑥) = 𝑃 (𝑄𝛿(𝑥)) = 𝑃𝛿(𝑞(𝑥)) = 𝛿(𝑝(𝑞(𝑥))) . (131)

It follows that the linear extension of an idempotent mapping is idempotent.

Theorem 25. Let 𝑝 be idempotent and pixel-wise: 𝑝(𝑥)𝑠 = 𝑝𝑠(𝑥𝑠). The linear exten-
sion 𝑃 in this case is given by the pixel-wise projection (107) with the matrices

𝑃𝑠,𝑖𝑖′ = [[𝑝𝑠(𝑖′)=𝑖]] . (132)

Proof. We first verify that 𝑃 is the linear extension of 𝑝.

(∀𝑥 ∈ ℒ)
(︁
𝑃𝛿(𝑥)

)︁
𝑠
(𝑖) =

∑︁
𝑖′

𝑃𝑠,𝑖𝑖′ [[𝑥𝑠=𝑖′]]

=
∑︁
𝑖′

[[𝑝(𝑖′)=𝑖]] [[𝑥𝑠=𝑖′]] = [[𝑝(𝑥𝑠)=𝑖]] =
(︁
𝛿(𝑝(𝑥))

)︁
𝑠
(𝑖) .

(133)

The equality for the pairwise components is verified similarly.
Matrices (132) satisfy the conditions 𝑃𝑠,𝑖𝑖′ ∈ [0, 1] and

∑︀
𝑖 𝑃𝑠,𝑖𝑖′ = 1. The property

𝑃 (ℳ) ⊂ℳ follows by Theorem 16. Idempotency follows by Statement 24.

Definition 12. Let (𝑥, 𝑦) be a pair of labelings such that 𝑥 ≤ 𝑦. Let us define the
following mappings:

𝑃 𝑦
𝑥 , the extension of 𝑥′ ↦→ (𝑥′ ∨ 𝑥) ∧ 𝑦 ,
𝑃𝑥, the extension of 𝑥′ ↦→ 𝑥′ ∨ 𝑥 ,
𝑃 𝑦, the extension of 𝑥′ ↦→ 𝑥′ ∧ 𝑦 .

(134)

By Theorem 25, these mappings are projections. It is easy to see that the mapping 𝑃 𝑦
𝑥

is given by the following matrices (see Example 5)

(︀
𝑃 𝑦

𝑥

)︀
𝑠,𝑖𝑖′ =

⎧⎪⎪⎨⎪⎪⎩
[[𝑖=𝑥𝑠]] if 𝑖′ < 𝑥𝑠 ,

[[𝑖=𝑖′]] if 𝑥𝑠 ≤ 𝑖′ ≤ 𝑦𝑠 ,

[[𝑖=𝑦𝑠]] if 𝑖′ > 𝑦𝑠 .

(135)

Mappings 𝑃𝑥 (resp. 𝑃 𝑦) are special cases of 𝑃 𝑦
𝑥 when 𝑦𝑠 = |ℒ𝑠| − 1 (resp. 𝑥𝑠 = 0) for

all 𝑠. It also can be verified that 𝑃 𝑦
𝑥 = 𝑃 𝑦𝑃𝑥 = 𝑃𝑥𝑃

𝑦 for all 𝑥 ≤ 𝑦.

Statement 26. Let (𝑥min, 𝑥max) be an autarky for 𝐸𝑓 . Then pixel-wise projection
𝑃 = 𝑃 𝑥max

𝑥min is ℳ-improving for 𝐸𝑓 .

Proof. We have

(∀𝑥 ∈ ℒ) ⟨𝑓, 𝑃𝛿(𝑥)⟩ = ⟨𝑓, 𝛿((𝑥 ∨ 𝑥min) ∧ 𝑥max)⟩
= 𝐸𝑓 ((𝑥 ∨ 𝑥min) ∧ 𝑥max) ≤ 𝐸𝑓 (𝑥) .

(136)

Therefore, 𝑃 is ℳ-improving.
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The Λ-improving property does not follow in general. However, it can be shown for
all the specific methods of our consideration. We first show that the submodularity
property

(∀𝑥, 𝑦 ∈ ℒ) 𝐸𝑓 (𝑥) + 𝐸𝑓 (𝑦) ≥ 𝐸𝑓 (𝑥 ∨ 𝑦) + 𝐸𝑓 (𝑥 ∧ 𝑦) (137)

can be extended to Λ. Instead of a labeling 𝑥 we consider a relaxed labeling 𝜇 and
replace 𝐸𝑓 (𝑥) with ⟨𝑓, 𝜇⟩, 𝐸𝑓 (𝑥∨𝑦) with ⟨𝑓, 𝑃𝑦𝜇⟩ and 𝐸𝑓 (𝑥∧𝑦) with 𝐸𝑓 (𝑃 𝑦𝜇) and will
prove the inequality

(∀𝜇 ∈ Λ) (∀𝑦 ∈ ℒ) ⟨𝑓, 𝜇⟩+ 𝐸𝑓 (𝑦) ≥ ⟨𝑓, 𝑃𝑦𝜇⟩+ ⟨𝑓, 𝑃 𝑦𝜇⟩ . (138)

Inequality (138) will include (137) in the special case 𝜇 = 𝛿(𝑥).
To simplify further derivations, we give the following expression for 𝑃𝑦𝜇:

(𝑃𝑦𝜇)𝑠(𝑖) =
∑︁

𝑖′<𝑦𝑠

𝜇𝑠(𝑖′)[[𝑖=𝑦𝑠]] +
∑︁
𝑖≥𝑦𝑠

[[𝑖=𝑖′]]𝜇𝑠(𝑖′)

= [[𝑖=𝑦𝑠]]
∑︁

𝑖′<𝑦𝑠

𝜇𝑠(𝑖′) + [[𝑖≥𝑦𝑠]]𝜇𝑠(𝑖) .
(139)

Similarly,

(𝑃 𝑦𝜇)𝑠(𝑖) = [[𝑖=𝑦𝑠]]
∑︁

𝑖′>𝑦𝑠

𝜇𝑠(𝑖′) + [[𝑖≤𝑦𝑠]]𝜇𝑠(𝑖) . (140)

By extending the properties of autarkies of submodular problems to relaxed la-
bellings, as presented next, we can show that 𝑃𝑥 and 𝑃 𝑦 are Λ-improving projections
and so is their composition.

Statement 27. If 𝐸𝑓 is submodular then

(∀𝜇 ∈ Λ) (∀𝑦 ∈ ℒ) ⟨𝑓, 𝜇⟩+ ⟨𝑓, 𝛿(𝑦)⟩ ≥ ⟨𝑓, 𝑃𝑦𝜇⟩+ ⟨𝑓, 𝑃 𝑦𝜇⟩ . (141)

Proof. We can rewrite (141) equivalently as

(∀𝜇 ∈ Λ) (∀𝑦 ∈ ℒ) ⟨𝑓, 𝜇+ 𝛿(𝑦)− 𝑃𝑦𝜇− 𝑃 𝑦𝜇⟩ ≥ 0 . (142)

This scalar product is a sum of unary terms and pairwise terms. We first show that
the unary terms vanish:

𝜇𝑠(𝑖) + [[𝑖=𝑦𝑠]]− [[𝑖=𝑦𝑠]]
∑︁

𝑖′<𝑦𝑠

𝜇𝑠(𝑖′)− [[𝑖≥𝑦𝑠]]𝜇𝑠(𝑖)− [[𝑖=𝑦𝑠]]
∑︁

𝑖′>𝑦𝑠

𝜇𝑠(𝑖′)− [[𝑖≤𝑦𝑠]]𝜇𝑠(𝑖)

= 𝜇𝑠(𝑖)(1− ([[𝑖≥𝑦𝑠]] + [[𝑖<𝑦𝑠]])) + [[𝑖=𝑦𝑠]](1−
∑︁
𝑖′

𝜇𝑠,𝑖′) = 0 .

(143)

Now consider the submodularity constraints:

(∀𝑠𝑡 ∈ ℰ) (∀𝑖𝑗 ∈ ℒ𝑠𝑡) (∀𝑦𝑠𝑡 ∈ ℒ𝑠𝑡)
𝑓𝑠𝑡(𝑖, 𝑗) + 𝑓𝑠𝑡(𝑦𝑠𝑡) ≥ 𝑓𝑠𝑡((𝑖, 𝑗) ∧ 𝑦𝑠𝑡) + 𝑓𝑠𝑡((𝑖, 𝑗) ∨ 𝑦𝑠𝑡) .

(144)

Multiplying this inequality by 𝜇𝑠𝑡(𝑖, 𝑗) and summing over 𝑖𝑗, we obtain on the LHS∑︁
𝑖𝑗

𝜇𝑠𝑡(𝑖, 𝑗)𝑓𝑠𝑡(𝑖, 𝑗) + 𝑓𝑠𝑡(𝑦𝑠𝑡) =
∑︁
𝑖𝑗

𝜇𝑠𝑡(𝑖, 𝑗)𝑓𝑠𝑡(𝑖, 𝑗) +
∑︁
𝑖𝑗

[[(𝑖, 𝑗)=𝑦𝑠𝑡]]𝑓𝑠𝑡(𝑦𝑠𝑡) (145)
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and on the RHS ∑︁
𝑖𝑗

𝜇𝑠𝑡(𝑖, 𝑗)
[︀
𝑓𝑠𝑡((𝑖, 𝑗) ∧ 𝑦𝑠𝑡) + 𝑓𝑠𝑡((𝑖, 𝑗) ∨ 𝑦𝑠𝑡)

]︀
=

∑︁
𝑖𝑗

[︀
(𝑃 𝑦𝜇)𝑠𝑡(𝑖, 𝑗) + (𝑃𝑦𝜇)𝑠𝑡(𝑖, 𝑗)

]︀
𝑓𝑠𝑡(𝑖, 𝑗) ,

(146)

where the equality is verified as follows:∑︁
𝑖𝑗

𝜇𝑠𝑡(𝑖, 𝑗)𝑓𝑠𝑡((𝑖, 𝑗) ∧ 𝑦𝑠𝑡) =

∑︁
𝑖<𝑦𝑠
𝑗<𝑦𝑡

𝜇𝑠𝑡(𝑖, 𝑗)𝑓𝑠𝑡(𝑖, 𝑗) +
∑︁
𝑖≥𝑦𝑠
𝑗<𝑦𝑡

𝜇𝑠𝑡(𝑖, 𝑗)𝑓𝑠𝑡(𝑦𝑠, 𝑗) +
∑︁
𝑖<𝑦𝑠
𝑗≥𝑦𝑡

𝜇𝑠𝑡(𝑖, 𝑗)𝑓𝑠𝑡(𝑖, 𝑦𝑡) +
∑︁
𝑖≥𝑦𝑠
𝑗≥𝑦𝑡

𝜇𝑠𝑡(𝑖, 𝑗)𝑓𝑠𝑡(𝑦𝑠𝑡)

=
∑︁
𝑖𝑗

(𝑃 𝑦𝜇)𝑠𝑡(𝑖, 𝑗)𝑓𝑠𝑡(𝑖, 𝑗) .

(147)

The term with ∨ is rewritten similarly. By summing inequalities (145) ≥ (146) over
𝑠𝑡 ∈ ℰ we get the result.

Theorem 28. Let 𝐸𝑓 be submodular and 𝑦 ∈ argmin
𝑥

𝐸𝑓 (𝑥). Then 𝑃𝑦 and 𝑃 𝑦 are
improving for 𝐸𝑓 :

(∀𝜇 ∈ Λ) ⟨𝑓, 𝑃𝑦𝜇⟩ ≤ ⟨𝑓, 𝜇⟩ , (148a)
(∀𝜇 ∈ Λ) ⟨𝑓, 𝑃 𝑦𝜇⟩ ≤ ⟨𝑓, 𝜇⟩ . (148b)

Proof. Let us show (148a). The LP relaxation is tight for submodular problems. Thus
for any 𝜇′ ∈ Λ, there holds ⟨𝑓, 𝜇′⟩ ≥ 𝐸𝑓 (𝑦) = ⟨𝑓, 𝛿(𝑦)⟩. In particular, for 𝜇′ = 𝑃 𝑦𝜇 we
have ⟨𝑓, 𝑃 𝑦𝜇⟩ ≥ ⟨𝑓, 𝛿(𝑦)⟩, which combined with (141) implies the statement.

We thus have shown that an autarky (𝑥, 𝑦) for a submodular problem is always a
Λ-improving projection 𝑃 𝑦

𝑥 .

4.2.3 Roof dual as Improving Projection
The optimality guarantees of QPBO are in the form of an autarky (𝑥, 𝑦). We are
going to show that this autarky is specific such that the corresponding projection 𝑃 𝑦

𝑥

is Λ-improving.

Statement 29. Let 𝑂 = QPBO(𝑔), 𝑥𝑠 = min𝑂𝑠, 𝑦𝑠 = max𝑂𝑠. Then the projection 𝑃 𝑦
𝑥

is strictly Λ-improving for 𝐸𝑔.

Proof. Recall the proof of partial optimality for QPBO (see page 30). It was shown
that for an arc-consistent equivalent 𝑔 of 𝑔 component-wise inequalities

(∀𝑖𝑗) (∀𝑠𝑡) 𝑔𝑠𝑡(((𝑖, 𝑗) ∨ 𝑥𝑠𝑡) ∧ 𝑦𝑠𝑡) ≤ 𝑔𝑠𝑡(𝑖, 𝑗) ,
(∀𝑠) (∀𝑖) 𝑔𝑠((𝑖 ∨ 𝑥𝑠) ∧ 𝑦𝑠) ≤ 𝑔𝑠(𝑖)

(149)

are satisfied and inequalities for unary terms are strict for 𝑖 /∈ 𝑂𝑠, or, equivalently, for
(𝑖 ∨ 𝑥𝑠) ∧ 𝑦𝑠 ̸= 𝑖. Thus sufficient conditions (121) are satisfied for 𝑃 𝑦

𝑥 , hence 𝑃 𝑦
𝑥 is

Λ-improving for 𝐸𝑔 and so is for 𝐸𝑔.
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4.2.4 MQPBO as Improving Projection
In (Shekhovtsov et al. 2008, Theorem 2) it was shown that partial optimalities of
MQPBO method extend to relaxed labelings and preserve solutions of the LP relaxation.
We now recollect this result from the perspective of our unified framework and give a
shorter proof.

In the construction of the binarized problem we introduced the mapping 𝑥 ↦→ 𝑧 (42a)
of multi-valued to binary labelings. Let us extend it to mapping Π of multi-label relaxed
labelings 𝜇 to binary relaxed labelings 𝜈. For index 𝑖 ∈ ℒ𝑠 = {0, 1, . . . , 𝐿 − 1} define
the following sets of labels:

𝐿𝑠(𝑖, 0) = {0, . . . , 𝑖} , 𝐿𝑠(𝑖, 1) = {𝑖+ 1, . . . , 𝐿− 1} .

Then we can define vector 𝜈 = Π𝜇 as

𝜈(𝑠,𝑖)(𝛼) =
∑︁

𝑖′∈𝐿𝑠(𝑖,𝛼)
𝜇𝑠(𝑖′) , 𝜈(𝑠,𝑖)(𝑡,𝑗)(𝛼, 𝛽) =

∑︁
𝑖′∈𝐿𝑠(𝑖,𝛼)
𝑗′∈𝐿𝑡(𝑗,𝛽)

𝜇𝑠𝑡(𝑖′, 𝑗′) ,

where 𝑖 and 𝑗 range in ℒ̃𝑠 = ℒ̃𝑡 = {0, 1, . . . , 𝐿− 2}. It can be verified that mapping Π
is consistent with the mapping 𝑧𝑠,𝑖(𝑥) = [[𝑥𝑠>𝑖]] in the sense that Π𝛿(𝑥) = 𝛿(𝑧(𝑥)).

Theorem 30. Let 𝑓 be a multi-label problem and 𝑔 the equivalent binary energy
minimization problem via reduction in §2.4. Let 𝑂 = QPBO(𝑔), 𝑧min

𝑠 = min𝑂𝑠, 𝑧max
𝑠 =

max𝑂𝑠, 𝑥min = 𝑥(𝑧min), 𝑥max = 𝑥(𝑧max) according to the mapping 𝑧 ↦→ 𝑥 (42b). Then
the projection 𝑃 𝑥max

𝑥min is strictly Λ-improving for 𝐸𝑓 .

Proof. Using mapping Π, the equivalence of multi-label and binary problems ∀𝑥 ∈ ℒ
𝐸𝑓 (𝑥) = 𝐸𝑔(𝑧(𝑥)) extends as

(∀𝜇 ∈ Λ) ⟨𝑓, 𝜇⟩ = ⟨𝑔,Π𝜇⟩ . (150)

Let 𝑔 be the arc-consistent equivalent of 𝑔, for which it is known that component-wise
inequalities (149) hold. By equivalence (150), we have

(∀𝜇 ∈ Λ) ⟨𝑓, 𝜇⟩ = ⟨𝑔,Π𝜇⟩ = ⟨𝑔,Π𝜇⟩ = ⟨ΠT𝑔, 𝜇⟩ def= ⟨𝑓, 𝜇⟩ , (151)

from which we conclude that 𝑓 ≡ 𝑓 . Because the mapping ΠT is component-wise, we
have from 𝑓 = ΠT𝑔

𝑓𝑠(𝑥𝑠) =
∑︁
𝑖′

𝑔(𝑠,𝑖′)(𝑧𝑠,𝑖′)

≥
∑︁
𝑖′

𝑔(𝑠,𝑖′)((𝑧𝑠,𝑖′ ∨ 𝑧min
𝑠,𝑖′ ) ∧ 𝑧max

𝑠,𝑖′ )

= 𝑓𝑠((𝑥𝑠 ∨ 𝑥min)𝑠 ∧ 𝑥max
𝑠 ) .

(152)

Similarly, for pairwise terms:

𝑓𝑠𝑡(𝑥𝑠𝑡) =
∑︁
𝑖′𝑗′

𝑔(𝑠,𝑖′)(𝑡,𝑗′)(𝑧(𝑠,𝑖′)(𝑡,𝑗′))

≥
∑︁
𝑖′,𝑗′

𝑔(𝑠,𝑖′)(𝑡,𝑗′)
(︁
(𝑧(𝑠,𝑖′)(𝑡,𝑗′) ∨ 𝑧min

(𝑠,𝑖′)(𝑡,𝑗′)) ∧ 𝑧
max
(𝑠,𝑖′)(𝑡,𝑗′)

)︁
= 𝑓𝑠𝑡((𝑥𝑠𝑡 ∨ 𝑥min)𝑠𝑡 ∧ 𝑥max

𝑠𝑡 ) .

(153)
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Therefore, component-wise inequalities hold for 𝑓 . By the sufficient condition (121),
we conclude that

(∀𝜇 ∈ Λ) ⟨𝑓, 𝑃 𝑥max

𝑥min 𝜇⟩ ≤ ⟨𝑓, 𝜇⟩ , (154)

therefore 𝑃 𝑥max

𝑥min is Λ-improving for 𝐸𝑓 and so also for 𝐸𝑓 .

4.2.5 Auxiliary Problem as Improving Projection
In this section, we show that the sufficient conditions used by (Kovtun 2003) are also a
special case of Λ-improving projection. First, we generalize the definition of an auxiliary
problem given by equation (86) to arbitrary projections.

Definition 13 (Kovtun 2011, extended). Function 𝐸𝑔 is called auxiliary for 𝐸𝑓 and 𝑃
if

(∀𝑥) 𝐸𝑃 T𝑓 (𝑥)− 𝐸𝑓 (𝑥) ≤ 𝐸𝑃 T𝑔(𝑥)− 𝐸𝑔(𝑥) , (155)

i.e., the improvement under projection 𝑃 in 𝐸𝑓 is at least as big as improvement in
𝐸𝑔. Clearly, if 𝑃 is ℳ-improving for 𝐸𝑔 then RHS is not positive and so is the LHS.
In that case 𝑃 is ℳ-improving for 𝐸𝑓 . It is also clear that condition (155) is identical
to the statement “𝑃 is ℳ-improving for 𝑓 − 𝑔”. Clearly, (155) is equivalent to (86) in
the case of projection 𝑃𝑥min .

Now consider a stricter sufficient condition by requiring the inequality on the local
polytope:

(∀𝜇 ∈ Λ) ⟨𝑃T𝑓 − 𝑓, 𝜇⟩ ≤ ⟨𝑃T𝑔 − 𝑔, 𝜇⟩ , (156)

which reads “𝑃 is Λ-improving for 𝑓 − 𝑔”.
Let us be even stricter and require component-wise inequalities

(𝑃T − 𝐼)(𝑓 − 𝑔) ≤ 0 . (157)

On the one hand, inequalities (157) imply (156) via Theorem 20. On the other hand,
inequalities (157) coincide with component-wise sufficient conditions (87) by (Kovtun
2004). We thus have the following theorem.

Theorem 31. Let 𝐸𝑔 be submodular and 𝑥min be its minimizers. Let component-wise
inequalities (157) hold with 𝑃 = 𝑃𝑥min . Then 𝑃𝑥min is Λ-improving for 𝐸𝑓 .

Proof. By Theorem 20 we have that 𝑃𝑥min is Λ-improving for 𝑓 − 𝑔. Since 𝑔 is sub-
modular, by Theorem 28 𝑃𝑥min is Λ-improving for 𝑔. By linearity Theorem 19, 𝑃𝑥min is
Λ-improving for 𝐸𝑓 .

By Theorem 4.2.5, the methods reviewed in §3.5, which are all based on component-wise
sufficient conditions and submodular auxiliary functions, find a Λ-improving projection.

The approach of (Kovtun 2003) can be generalized to arbitrary projections as follows:
∙ Find a submodular 𝐸𝑔 which is auxiliary for 𝐸𝑓 and a class of projections 𝒫.
∙ Find the “best” projection 𝑃 ∈ 𝒫 that is improving for 𝐸𝑔.
∙ Then 𝑃 is improving for 𝐸𝑓 .
In the next section, we will show that the component-wise inequalities (157) necessar-

ily hold for a certain equivalent of 𝑓 for an arbitrary improving projection. Therefore,
the simplification of conditions from (156) to (157) is without loss of generality as soon
as the final method is invariant to equivalent transformations of 𝑔.
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4.3 Characterization of Improving Projections

We introduced the notion of an improving projection and showed that many domain
constraints proposed in the literature are in fact improving projections. Notice that
while proving this statement for different methods, we always considered a special
reparametrization of the problem such that the local sufficient conditions of Theorem 20
were satisfied. There was such a reparametrization of the problem in each case that the
constructed projection improved independently all unary and all pairwise terms. We
are going to show now that it is not a coincidence: all Λ-improving projections of the
pixel-wise form (106) can be obtained in this way.

Theorem 32. Let 𝑃 be a projection of the pixel-wise form (106). Then 𝑃 is Λ-
improving for 𝐸𝑓 iff there exists 𝑔 ≡ 𝑓 such that local inequalities hold:

(𝑃T𝑔)𝑠 ≤ 𝑔𝑠 ,

(𝑃T𝑔)𝑠𝑡 ≤ 𝑔𝑠𝑡 .
(158)

The conditions (158) are, up to an equivalent transformation, necessary and sufficient
for 𝑃 to be Λ-improving. The “if” part follows trivially by Theorem 20. Prior to the
proof of the “only if” part, let us give some clarification of this result. Note that
conditions (158) can be shortly written as 𝑔 − 𝑃T𝑔 ≥ 0, where the inequalities are for
all components, including the trivial inequality 𝑔0 − 𝑔0 ≥ 0.

Let 𝑃 be Λ-improving for 𝑓 , then by definition

min
𝜇∈Λ
⟨𝑓 − 𝑃T𝑓, 𝜇⟩ ≥ 0 , (159)

which is equivalent (for a connected graph) to

(∃𝜙) (𝑓 − 𝑃T𝑓)−𝐴T𝜙 ≥ 0 , (160)

i.e., some similar component-wise inequalities hold for a problem equivalent to 𝑓−𝑃T𝑓 .
However, this is not the desired result. Let the equivalent problem 𝑔 be parametrized as
𝑓−𝐴T𝜙′. We need to show that there exists 𝜙′ such that (𝑓−𝐴T𝜙′)−𝑃T(𝑓−𝐴T𝜙′) ≥ 0.
The theorem claims that 𝜙 satisfying (160) exists such that it additionally satisfies
𝐴T𝜙 = (𝐼−𝑃T)𝐴T𝜙′ for some 𝜙′, which means that 𝜙 must be found from a constrained
linear subspace.

Proof (of the “only if” part). First, we note that the following inequality holds for any
projection 𝑃 :

min
𝜇∈Λ
⟨𝑓, (𝐼 − 𝑃 )𝜇⟩ ≤ 0 . (161)

It can be verified as follows. Let us show that there exists a point 𝜇′ feasible to (161)
such that the objective is zero. Pick arbitrary 𝜇 ∈ Λ and choose 𝜇′ = 𝑃𝜇 ∈ Λ. We have
(𝐼 −𝑃 )𝜇′ = (𝑃 −𝑃𝑃 )𝜇 = 0. Therefore, the value of the minimization problem (161) is
not positive. From this property, it follows that 𝑃 is Λ-improving iff

min
𝜇∈Λ
⟨(𝐼 − 𝑃 )𝜇, 𝑓⟩ = 0 . (162)

We will prove that 𝜙 can be restricted in the dual maximization problem (as discussed
above) by relaxing the primal problem. The key steps of the proof are given by the
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4.3 Characterization of Improving Projections

following chain:

0 (a)= min
𝐴𝜇=0
𝜇≥0

⟨𝑓 − 𝑃T𝑓, 𝜇⟩ (b)= min
𝐴𝑃 𝜇=0
𝐴(𝐼−𝑃 )𝜇=0
𝜇≥0

⟨𝑓 − 𝑃T𝑓, 𝜇⟩

(c)= min
𝐴(𝐼−𝑃 )𝜇=0
𝜇≥0

⟨𝑓 − 𝑃T𝑓, 𝜇⟩ (d)= max
𝜙

(𝐼−𝑃 T)(𝑓−𝐴T𝜙)≥0

0 .
(163)

Equality (a) is implied by the Λ-improving property (162) as follows. We know that
≥ holds in (a) because we dropped one constraint compared to (162). Assume for
contradiction that there exists 𝜇 such that 𝐴𝜇 = 0, 𝜇 ≥ 0 and ⟨𝑓 −𝑃T𝑓, 𝜇⟩ < 0. Let us
first consider the case when the graph (𝒱, ℰ) is connected. Selecting 𝜇′ = 𝜇/

∑︀
𝑖∈ℒ𝑠

𝜇𝑠(𝑖)
for some 𝑠 ensures that 𝐵𝜇′ = 1 (due to marginalization constraints). Therefore 𝜇′ ∈ Λ
and ⟨𝑓 − 𝑃T𝑓, 𝜇′⟩ < 0, which contradicts (162). In the case that graph (𝒱, ℰ) consists
of several connected components, it can be shown that (162) holds for each component
and so does (163a).

Equality (b) is verified as follows. Inequality ≤ holds because 𝐴𝜇 − 𝐴𝑃𝜇 = 0 and
𝐴𝑃𝜇 = 0 implies 𝐴𝜇 = 0. On the other hand, 𝑃 preserves marginalization constraints:
𝐴𝜇 = 0 ⇒ 𝐴𝑃𝜇 = 0.

Equality (c) is the key step. We removed one constraint, therefore ≥ trivially holds.
Let us prove ≤. Let 𝜇 be feasible to RHS of equality (c). Let 𝜇 = 𝜇1 + 𝜇2 such that
𝜇1 ∈ null(𝐼 − 𝑃 ) and 𝜇2 ∈ null(𝑃 ). Let us construct 𝜇′

1 as follows:

𝛾 = max
𝑠𝑡,𝑖𝑗
|ℒ𝑠𝑡|(𝜇1)𝑠𝑡(𝑖, 𝑗) ,

(𝜇′
1)𝑠𝑡 = 𝛾/|ℒ𝑠𝑡| ,

(𝜇′
1)𝑠 = 𝛾/|ℒ𝑠| .

(164)

By construction,
(𝜇′

1) ≥ 𝜇1 and 𝐴𝜇′
1 = 0 . (165)

Let 𝜇′′
1 = 𝑃𝜇′

1. Because 𝑃 ≥ 0, we have

𝜇′′
1 = 𝑃𝜇′

1 ≥ 𝑃𝜇1 = 𝜇1 . (166)

It also follows that 𝐴𝑃𝜇′′
1 = 𝐴𝑃𝑃𝜇′

1 = 𝐴𝑃𝜇′
1 = 0 and (𝐼 − 𝑃 )𝜇′′

1 = (𝐼 − 𝑃 )𝑃𝜇′
1 = 0.

Let 𝜇* = 𝜇′′
1 + 𝜇2. It preserves the objective,

⟨𝑓 − 𝑃T𝑓, 𝜇*⟩ = ⟨𝑓, (𝐼 − 𝑃 )(𝜇′′
1 + 𝜇2)⟩ = ⟨𝑓, (𝐼 − 𝑃 )𝜇2⟩ = ⟨𝑓, (𝐼 − 𝑃 )𝜇⟩ . (167)

We also have that

𝜇* = 𝜇′′
1 + 𝜇2 ≥ 𝜇1 + 𝜇2 = 𝜇 ≥ 0 ,

𝐴(𝐼 − 𝑃 )𝜇* = 𝐴(𝐼 − 𝑃 )𝜇2 = 𝐴(𝐼 − 𝑃 )𝜇 = 0 ,
𝐴𝑃𝜇* = 𝐴𝑃𝜇′′

1 = 0 .
(168)

Therefore, 𝜇* satisfies all constraints of the LHS of equality (c).
Equality (d) is the duality relation that asserts that the maximization problem on

the RHS is feasible, which is the case iff

(∃𝑔 ≡ 𝑓) (𝐼 − 𝑃T)𝑔 ≥ 0 . (169)
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Let us also note that the following simplified characterization of improving projection
was obtained in the course of the proof.

Corollary 33. Pixel-wise projection 𝑃 is Λ-improving iff

min
𝐴(𝐼−𝑃 )𝜇=0
𝜇≥0

⟨𝑓 − 𝑃T𝑓, 𝜇⟩ = 0 . (170)

Compared to the Definition 10 of Λ-improving projection, this problem has relaxed
constraints. The constraints 𝐴𝜇 = 0 and 𝐵𝜇 = 1 of Λ are relaxed to the constraint
𝐴(𝐼 − 𝑃 )𝜇 = 0 in (170). This problem can be unbounded. In that case the equality
does not hold and 𝑃 is not Λ-improving. This form will be used later to simplify the
problem of verification of the improving property. Relaxed constraints will allow us in
some cases to decouple and eliminate part of the variables 𝜇. This provides an algebraic
approach to constructing partial optimality methods: select a subclass of projections
and simplify the characterization problem starting from the form (170).

4.4 Maximum Projections
We say that projection 𝑃 dominates 𝑄 if

𝑃𝜇 = 𝜇 ⇒ 𝑄𝜇 = 𝜇 . (171)

For a given problem 𝑓 , we would like to find the improving projection which dominates
all other projections. This projection, if it exists, is referred to as maximum. Our
goal is to find a projection that eliminates as many labels as possible. The maximum
projection is optimal in this respect. In this section, we study classes of projections in
which the maximum projection exists and can be found efficiently.

We say that two projections 𝑃 and 𝑄 commute if 𝑃𝑄 = 𝑄𝑃 .

Definition 14. A subset 𝒫 of projections is a commutative class if

(∀𝑃,𝑄 ∈ 𝒫) 𝑃𝑄 = 𝑄𝑃 and 𝑃𝑄 ∈ 𝒫 . (172)

Let 𝒫 be a commutative class of projections. The product operation is idempotent,
because 𝑃𝑃 = 𝑃 , commutative and associative. Therefore 𝒫 with product is a join-
semilattice. If 𝑄𝑃 ̸= 𝑃 then 𝑄𝑃 dominates both 𝑃 and 𝑄 (has a larger null-space).
We can therefore speak of the maximum projection in the class 𝒫, which is the product
of all projections in 𝒫 and has the largest null-space.

We will consider several special classes of projections and study the problem of finding
the maximum one in a class. As can be noticed, there are two requirements on the
class: 1) it must be closed under the product and 2) the product must be commutative
within the class. In general, even strictly improving pixel-wise projections of a single
pixel may not commute. Regarding the closedness requirement, we have the following
helpfull result.

Statement 34. Let 𝒫 be a class of (strictly or not) Λ-improving projections for 𝐸𝑓 .
Then (∀𝑃,𝑄 ∈ 𝒫) 𝑃𝑄 ∈ 𝒫.

Proof. For Λ-improving projections, the statement follows trivially by

(∀𝜇 ∈ Λ) 𝐸𝑓 (𝑃𝑄𝜇) ≤ 𝐸𝑓 (𝑄𝜇) ≤ 𝐸𝑓 (𝜇) . (173)
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In the case of strictly Λ-improving projections, let 𝑃𝑄𝜇 ̸= 𝜇. Then either 𝑃𝑄𝜇 ̸= 𝑄𝜇 or
𝑄𝜇 ̸= 𝜇. It follows that one of the inequalities in (173) is strict and hence 𝐸𝑓 (𝑃𝑄𝜇) <
𝐸𝑓 (𝜇).

We will now consider special cases.

4.4.1 Mappings 𝑥 ↦→ (𝑥 ∨ 𝑦) ∧ 𝑧

Consider the class 𝒫 of strictly Λ-improving projections 𝑃 𝑧
𝑦 , where 𝑦, 𝑧 ∈ ℒ, 𝑦 ≤ 𝑧.

That is, the class induced by all strong autarkies for 𝐸𝑓 .

Statement 35. 𝒫 is a commutative class.

Proof. Let (𝑥1, 𝑥2) and (𝑦1, 𝑦2) be strong autarkies for 𝑓 . The composition of mappings
𝑥 ↦→ (𝑥 ∨ 𝑦1) ∧ 𝑦2 and 𝑥 ↦→ (𝑥 ∨ 𝑥1) ∧ 𝑥2 is the mapping

𝑥 ↦→
(︀[︀

(𝑥 ∨ 𝑥1) ∧ 𝑥2]︀ ∨ 𝑦1)︀ ∧ 𝑦2 . (174)

The product of projections 𝑃 𝑦2

𝑦1 𝑃
𝑥2

𝑥1 is given by the extension of this mapping to Λ. We
need to show closedness and commutativity of 𝒫.

Let 𝑥 be an optimal labeling for 𝐸𝑓 . By properties of strong autarkies, there holds

𝑥1 ≤ 𝑥 ≤ 𝑥2 ,

𝑦1 ≤ 𝑥 ≤ 𝑦2 .
(175)

It follows that
𝑥1 ≤ 𝑦2 . (176)

Furthermore, since 𝑥1 ≤ 𝑥2, for any 𝑥 we have (𝑥 ∨ 𝑥1) ∧ 𝑥2 = (𝑥 ∧ 𝑥2) ∨ 𝑥1. Using
these relations we can rewrite the composition of autarkies in (174) as follows(︀[︀

(𝑥 ∨ 𝑥1) ∧ 𝑥2]︀ ∨ 𝑦1)︀ ∧ 𝑦2 =
(︀[︀
𝑥 ∧ 𝑥2]︀ ∨ [︀𝑥1 ∨ 𝑦1]︀)︀ ∧ 𝑦2

=
[︀
𝑥 ∧ (𝑥2 ∧ 𝑦2)

]︀
∨ (𝑥1 ∨ 𝑦1)

=
[︀
𝑥 ∨ (𝑥1 ∨ 𝑦1)

]︀
∧ (𝑥2 ∧ 𝑦2).

(177)

Therefore,
𝑃 𝑦2

𝑦1 𝑃
𝑥2

𝑥1 = 𝑃 𝑥2∧𝑦2

𝑥1∨𝑦1 = 𝑃 𝑥2

𝑥1 𝑃
𝑦2

𝑦1 . (178)

By Statement 34, it is a strictly Λ-improving projection.

It follows that there exists the maximum strong autarky. In the case of binary energies,
the maximum strictly Λ-improving projection (linear extension of the maximum strong
autarky) is found by QPBO. Strictly Λ-improving projections preserve all optimal solu-
tions of the LP relaxation. On the other hand, there exists an optimal relaxed labeling
assigning non-zero weights to all nodes which are not eliminated by QPBO. Therefore,
no more nodes can be eliminated by a strictly Λ-improving projection. Formally, this
is detailed as follows.

Statement 36. Let 𝑓 be binary and (𝑥1, 𝑥2) the autarky computed by QPBO. Then
𝑃 = 𝑃 𝑥2

𝑥1 is the maximum in 𝒫.
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Proof. Clearly, 𝑃 ∈ 𝒫. By the properties of the LP relaxation for binary problems,
there exists an optimal relaxed solution 𝜇 such that

(∀𝑠 ∈ 𝒱) (𝑥1
𝑠 ≤ 𝑖 ≤ 𝑥2) ⇒ 𝜇𝑠(𝑖) > 0 . (179)

Assume for contradiction that 𝑃 is not the maximum. Then there exists 𝑄 = 𝑃 𝑦2

𝑦1 ∈ 𝒫
such that 𝑄𝑃 ̸= 𝑃 . It implies that there exists 𝑠 ∈ 𝒱 such that 𝑦1

𝑠 > 𝑥1
𝑠 or 𝑦2

𝑠 <
𝑥2

𝑠. Without loss of generality, assume it is the first case. We have 𝜇𝑠(𝑥1
𝑠) > 0 but

(𝑄𝜇)𝑠(𝑖) = 0, therefore 𝑄𝜇 ̸= 𝜇 and it must be 𝐸𝑓 (𝑄𝜇) < 𝐸𝑓 (𝜇), which contradicts
optimality of 𝜇.

This was an expected result. The question of finding the maximum strong autarky for
a multi-label problem is not resolved. The strong autarky found by MQPBO is not
maximum since optimal solutions to the relaxation of the binarized problem may not
be optimal to the relaxation of the multi-label problem (as we mentioned earlier, there
is a gap between these two relaxations). However, in the case when the two relaxations
coincide MQPBO does find the maximum strong autarky.

Statement 37. Let 𝑓 be such that for each 𝑠𝑡 ∈ ℰ 𝑓𝑠𝑡 is either submodular or super-
modular. Let (𝑥1, 𝑥2) be the strong autarky computed by MQPBO. Then 𝑃 𝑥2

𝑥1 is the
maximum in 𝒫.

Proof. In (Shekhovtsov et al. 2008) we showed that under conditions of this statement
there exists an optimal relaxed labeling to the multi-label problem that is half-integral
and assigns 𝜇𝑠(𝑥1

𝑠) = 𝜇𝑠(𝑥2
𝑠) = 1/2 if 𝑥1

𝑠 < 𝑥2
𝑠 and 1 if 𝑥1

𝑠 = 𝑥2
𝑠. Similarly to Theorem 36,

it follows that 𝑃 𝑥2

𝑥1 is maximum.

Since the class of weak autarkies is not commutative, the maximum weak autarky
does not exist (is not defined). In the following sections we restrict ourselves to “one-
sided” autarkies (𝑥min, 𝑦) with 𝑦𝑠 = maxℒ𝑠. From the review in Chapter 3 we have
seen that such autarkies are utilized by several methods. They form a commutative
class and both maximum strong and maximum weak autarkies of this type exist. We
will derive polynomial methods to determine these maximum elements under various
further restrictions.

4.4.2 Mappings 𝑥 ↦→ (𝑥 ∨ 𝑦)

Let 𝒫 be the class of projections of the form 𝑃𝑦 (extending the map 𝑥 ↦→ 𝑥∨𝑦). Clearly,
such projections commute and the result belongs to 𝒫, since 𝑃𝑦𝑃𝑧 = 𝑃𝑦∨𝑧 = 𝑃𝑧𝑃𝑦.

Submodular Energies

Statement 38. Let 𝑓 be submodular. Then the maximum ℳ-improving projection
𝑃𝑧* is given by the highest minimizer

𝑧* =
⋁︁

argmin
𝑥

𝐸𝑓 (𝑥) ; (180)

and the maximum strictlyℳ-improving projection 𝑃𝑧* is given by the lowest minimizer

𝑧* =
⋀︁

argmin
𝑥

𝐸𝑓 (𝑥) . (181)
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Proof. Let 𝑃𝑦 be an ℳ-improving projection for 𝐸𝑓 for some 𝑦. On the one hand,
𝐸𝑓 (𝑃𝑦𝑧

*) = 𝐸𝑓 (𝑦 ∨ 𝑧*) ≤ 𝐸𝑓 (𝑧*), therefore 𝑦 ∨ 𝑧* is an optimal labeling for 𝐸𝑓 . By
construction, 𝑧* ≥ 𝑦 ∨ 𝑧* and hence 𝑧* ≥ 𝑦. On the other hand, 𝑃𝑦𝑃𝑧* = 𝑃𝑦∨𝑧* = 𝑃𝑧* .
Hence 𝑃𝑧* is maximum.

Let us consider the strictly improving case. Let 𝑃𝑦 be strictlyℳ-improving for 𝑓 and
some 𝑦. Assume for contradiction that 𝑧* ∨ 𝑦 > 𝑧*. In that case 𝐸𝑓 (𝑧* ∨ 𝑦) < 𝐸𝑓 (𝑧*),
which contradicts optimality of 𝑧*.

Statement 39. Let 𝑃𝑧* be the maximum ℳ-improving projection for submodular 𝑓 .
Then 𝑃𝑧* is the maximum Λ-improving.

Proof. Because 𝑓 is submodular, for its arc-consistent equivalent 𝑓𝜙 there exists a label-
ing taking only locally minimal nodes and arcs. Since 𝑧* is optimal to 𝐸𝑓 , it also must
take only locally minimal nodes and arcs. By the local sufficient conditions of Theo-
rem 20, 𝑃𝑧* is Λ-improving. Maximality follows from the fact that any Λ-improving
projection is ℳ-improving.

Let us also consider the following constrained case. Let 𝑊 ⊂ 𝒱 and let 𝒫 be the
class of projections 𝑃𝑦 such that 𝑦𝑠 = 0 for all 𝑠 /∈ 𝑊 . This case arises when we
want to restrict our consideration to a local window 𝑊 of the full problem and also
in the context of elimination move algorithm developed below. It is easy to see that
𝑃𝑦𝑃𝑧 = 𝑃𝑧𝑃𝑦 = 𝑃𝑦∨𝑧 belongs to the class if both 𝑃𝑦 and 𝑃𝑧 do. Therefore, the maximum
projection is well-defined.

The maximumℳ-improving projection 𝑃𝑧* is given by the highest constrained min-
imizer of 𝐸𝑓 , i.e.,

𝑧* =
⋁︁

argmin
𝑥

𝑥𝒱∖𝑊 =0

𝐸𝑓 (𝑥) . (182)

In addition, 𝑃𝑧* is Λ-improving. The proof is similar to the unconstrained case.

General Binary Energies We will reduce the maximum Λ-improving projection prob-
lem for general binary energies to submodular ones. We will show that the construction
of submodular auxiliary problem by truncation in (Kovtun 2011) is optimal for binary
auxiliary problems considered there.

Let 𝑔 be a truncation of 𝑓 such that

𝑔𝑠𝑡(0, 0) = 𝑓𝑠𝑡(0, 0)−Δ𝑠𝑡 , (183)

where Δ𝑠𝑡 = max
{︀
0, 𝑓𝑠𝑡(0, 0) + 𝑓𝑠𝑡(1, 1) − 𝑓𝑠𝑡(1, 0) − 𝑓𝑠𝑡(0, 1)

}︀
≥ 0 and all other com-

ponents of 𝑔 coincide with those of 𝑓 . By construction, Δ𝑠𝑡 = 0 if 𝑓𝑠𝑡 is submodular,
and otherwise Δ𝑠𝑡 is positive. In the later case, 𝑔𝑠𝑡 becomes modular. Therefore, 𝑔 is
submodular.

Theorem 40. 𝑃𝑦 is Λ-improving for 𝐸𝑓 iff it is Λ-improving for its submodular trun-
cation 𝐸𝑔 (183).

Proof. First, we show the “if” part. By construction, the unary components of 𝑓 and 𝑔
are equal. For any 𝑥 and any 𝑠𝑡 we have

𝑓𝑠𝑡(𝑥𝑠𝑡 ∨ 𝑦𝑠𝑡)− 𝑔𝑠𝑡(𝑥𝑠𝑡 ∨ 𝑦𝑠𝑡) =
{︃

Δ𝑠𝑡 if 𝑥𝑠𝑡 = 𝑦𝑠𝑡 = (0, 0) ,
0 otherwise ,

≤ 𝑓𝑠𝑡(𝑥𝑠𝑡)− 𝑔𝑠𝑡(𝑥𝑠𝑡) .
(184)
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By Theorem 20, projection 𝑃𝑦 is Λ-improving for 𝑓 − 𝑔. By linearity (Theorem 19),
𝑃𝑦 is Λ-improving for 𝑓 . The “if” part is proven. Note that inequalities (184) imply
𝐸𝑓 (𝑥 ∨ 𝑦) − 𝐸𝑔(𝑥 ∨ 𝑦) ≤ 𝐸𝑓 (𝑥) − 𝐸𝑔(𝑥), which means that 𝑔 is an auxiliary function
for 𝑓 and projection 𝑃𝑦.

Let us now show the “only if” part. Let 𝑃𝑦 be Λ-improving for 𝐸𝑓 . By Theorem 32,
an equivalent 𝑓 ′ = 𝑓 −𝐴T𝜙 exists such that component-wise inequalities hold,

𝑓 ′
𝑠(𝑥𝑠 ∨ 𝑦𝑠) ≤ 𝑓 ′

𝑠(𝑥𝑠) , 𝑓 ′
𝑠𝑡(𝑥𝑠𝑡 ∨ 𝑦𝑠𝑡) ≤ 𝑓 ′

𝑠𝑡(𝑥𝑠𝑡) . (185)

Let 𝑔′ = 𝑔 −𝐴T𝜙 = 𝑓 −Δ−𝐴T𝜙 = 𝑓 ′ −Δ, the same reparametrization applied to 𝑔.
We are going to prove component-wise inequalities for 𝑔′,

𝑔′
𝑠(𝑥𝑠 ∨ 𝑦𝑠) ≤ 𝑔′

𝑠(𝑥𝑠) , 𝑔′
𝑠𝑡(𝑥𝑠𝑡 ∨ 𝑦𝑠𝑡) ≤ 𝑔′

𝑠𝑡(𝑥𝑠𝑡) . (186)

Let us consider an edge 𝑠𝑡. If 𝑓𝑠𝑡 is submodular, 𝑔′
𝑠𝑡 = 𝑓 ′

𝑠𝑡 and (186) holds. Let us
consider the case when 𝑓𝑠𝑡 is not submodular. Denote 𝑎 = 𝐸𝑓

′
𝑠,𝑡(1, 1), 𝑏 = 𝑓 ′

𝑠𝑡(1, 0),
𝑐 = 𝑓 ′

𝑠𝑡(0, 1), 𝑑 = 𝑓 ′
𝑠𝑡(0, 0), 𝑑′ = 𝑔′

𝑠𝑡(0, 0) = 𝑑 −Δ𝑠𝑡 = 𝑑 − (𝑎 + 𝑑 − 𝑏 − 𝑐) = 𝑏 + 𝑐 − 𝑎.
Consider the following cases for 𝑦𝑠𝑡:
∙ Case 𝑦𝑠𝑡 = (0, 0). Trivial, since 𝑥𝑠𝑡 ∨ 𝑦𝑠𝑡 = 𝑥𝑠𝑡.
∙ Case 𝑦𝑠𝑡 = (1, 1). We have 𝑎 ≤ 𝑑, 𝑏, 𝑐. It follows that 𝑑′ = 𝑏+ 𝑐− 𝑎 ≥ 2𝑎− 𝑎 = 𝑎.

Therefore, 𝑎 ≤ 𝑑′, 𝑏, 𝑐, which are the required component inequalities for 𝑔′.
∙ Case 𝑦𝑠𝑡 = (1, 0). We have 𝑏 ≤ 𝑑 and 𝑎 ≤ 𝑐. It follows that 𝑑′ = 𝑏 + 𝑐 − 𝑎 ≥
𝑏+ 𝑎− 𝑎 = 𝑏. Therefore, 𝑏 ≤ 𝑑′ and 𝑎 ≤ 𝑐.
∙ Case 𝑦𝑠𝑡 = (0, 1) is similar to the above.

Since 𝑔′ satisfies component-wise inequalities (186), we have that 𝑃𝑦 is Λ-improving for
𝐸𝑔.

We therefore have that the maximum Λ-improving projection for 𝐸𝑔 coincides with
the maximum Λ-improving for 𝐸𝑓 . Note also that for submodular functions the classes
of ℳ-improving and Λ-improving coincide.

In contrast to verification of Λ-improving property, verifying whether 𝑃𝑦 is ℳ-
improving for a binary problem is equivalent to checking global optimality of 𝑦, which
is NP-hard.

The “if” part of the theorem extends to multi-label problems but the “only if” part
does not. Of course, one can still use it in one direction and construct a sufficient
condition using a submodular problem, similarly to the construction by Kovtun (2011),
reviewed in §3.5. Alternatively, the theorem can be applied to the transformation of
the multi-label energy to a binary one. The question of the maximum Λ-improving
projection in the class {𝑃𝑦 | 𝑦 ∈ ℒ} remains open.

4.4.3 Mappings 𝑥 ↦→ (𝑥 ∨ 𝑦′), 𝑦′ ∈ {𝑦, 𝑧}

Let 𝑦, 𝑧 be some fixed labelings and let 𝑝 : ℒ → ℒ be defined pixel-wise as

𝑝𝑠(𝑥𝑠) =
{︃
𝑦𝑠 if 𝑥𝑠 = 𝑧𝑠 ,

𝑥𝑠 otherwise .
(187)

The mapping 𝑝 switches labels 𝑧𝑠 to labels 𝑦𝑠 in the pixels where 𝑧𝑠 ̸= 𝑦𝑠. If 𝑝 is
improving we can eliminate labels 𝑧𝑠 in the set 𝒲 = {𝑦𝑠 ̸= 𝑧𝑠}. It can be seen
that this mapping is of the same form as in the all-against-one construction (§3.5.4),
illustrated in Figure 7. Let us assume 𝑦𝑠 ̸= 𝑧𝑠 for all 𝑠 and let the labels be reordered
such that 𝑧𝑠 < 𝑦𝑠 = min{ℒ𝑠∖𝑦𝑠}. Using this ordering, mapping (187) takes the form
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Algorithm 4: Eliminate(𝑓 ,𝑦,𝑧)

1 𝑣 := −1; 𝑥 := 0; 𝑦′ := 𝑦; 𝒳 := 𝒱;
2 while 𝑣 < 0 do
3 Construct binary energy 𝑔 from 𝑓 and 𝑦′, 𝑧 by (188);
4 𝑥 :=

⋀︀
argmin𝐸𝑔(𝑥); /* lowest minimum cut */

5 𝑣 := 𝐸𝑔(𝑥); /* cost of the minimum cut */
6 for 𝑠 ∈ 𝒳 such that 𝑥𝑠 = 1 do
7 𝑦′

𝑠 := 𝑧𝑠;
8 𝒳 := 𝒳 ∩ {𝑠 ∈ 𝒱 |𝑥𝑠 = 1};

𝑥 ↦→ 𝑥 ∨ 𝑦, corresponding to the projection 𝑃𝑦. The ordering is needed purely for
convenience of notation and does not influence the result. Let us consider the class
𝒫 = {𝑃𝑦′ | 𝑦′

𝑠 ∈ {𝑦𝑠, 𝑧𝑠}}. Depending on the choice of 𝑦′, the projection can select pixels
in which to eliminate 𝑧𝑠 by replacing it with 𝑦𝑠.

We have the following results in this case:
∙ For a given 𝑃 ∈ 𝒫, verification of the Λ-improving property can be reduced to

maxflow.
∙ Finding the maximum Λ-improving projection in 𝒫 can be reduced to a series of

maxflow problems.
The algorithm for determining the maximum Λ-improving projection 𝑃 ∈ 𝒫 is given

in Algorithm 4. The algorithm iteratively shrinks the set of vertices by those which
cannot be a part of any Λ-improving projection of the considered type. An auxiliary
binary energy 𝑔 in the algorithm is constructed as follows.

Δ𝑠𝑡 = min
𝑗 ̸=𝑧𝑡

(𝑓𝑠𝑡(𝑧𝑠, 𝑗)− 𝑓𝑠𝑡(𝑦𝑠, 𝑗)) ,

Δ𝑡𝑠 = min
𝑖 ̸=𝑧𝑠

(𝑓𝑠𝑡(𝑖, 𝑧𝑡)− 𝑓𝑠𝑡(𝑖, 𝑦𝑡)) ,

𝑔𝑠(1) = 𝑓𝑠(𝑧𝑠)− 𝑓𝑠(𝑦𝑠) +
∑︁

𝑡 | 𝑠𝑡∈ℰ̃

Δ𝑠𝑡 ,

𝑔𝑠𝑡(1, 1) = min
{︁

0, 𝑓𝑠𝑡(𝑧𝑠, 𝑧𝑡)− 𝑓𝑠𝑡(𝑦𝑠, 𝑦𝑡)−Δ𝑠𝑡(𝑦𝑠)−Δ𝑡𝑠

}︁
(188)

and the other components of 𝑔 are set to zero. Correctness and optimality of this
algorithm is proven in §4.4.4. The output of the algorithm is a subset of vertices 𝒳
(possibly empty), in which the label 𝑧 can be eliminated. The set of vertices 𝒳 is
the maximal one for a given pair (𝑦, 𝑧). In every iteration of the algorithm the set of
potentially eliminatable vertices 𝒳 shrinks at least by one so that it terminates in at
most |𝒱| iterations. Interestingly, this algorithm has a similar structure as the ad-hock
iterative algorithm of Kovtun (2004), described in§3.5.1. In the actual implementations,
the minimization problem in step 4 can be solved via maxflow and warm-started from
the previous iteration.

This algorithm was verified experimentally on random and stereo vision problems.
Preliminary results indicate that partial optimalities it can determine are complemen-
tary to the ones found by one-against-all method of (Kovtun 2004) and DEE. This sug-
gests applying different methods sequentially, gradually reducing the problem. Each
method, in turn, can potentially eliminate more labels, if the problem is already re-
duced. However, for our algorithm, there is an open choice of the test labelings 𝑦 and
𝑧. We experimented with several heuristics but did not came to a definite conclusion.
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It is possible to show that when 𝑦 and 𝑧 are equal respectively to label 𝛼 and 𝛽 every-
where and we run the algorithm repeatedly for all pairs 𝛼 and 𝛽, it will then subsume
the simple Goldstein’s DEE method. We feel these ideas need further investigation and
thorough experimental validation.

4.4.4 Optimality of the Elimination Algorithm
We first show how the verification of Λ-improving property of 𝑃 can be reduced to
the maxflow. It is obtained by substituting the form of projection into the simplified
characterization (170) given by Theorem 32 and a subsequent reduction. The charac-
terization (170) constitutes verifying whether the minimization problem

min
𝐴(𝐼−𝑃 )𝜇=0
𝜇≥0

⟨𝑓, (𝐼 − 𝑃 )𝜇⟩ (189)

is bounded and attains value 0.
For the unary components of (𝐼 − 𝑃 )𝜇, we have:

(𝜇− 𝑃𝜇)𝑠(𝑖) = 𝜇𝑠(𝑧𝑠)
(︀
[[𝑖=𝑧]]− [[𝑖=𝑦]]

)︀
. (190)

Minimization problem (170) will therefore only involve variables 𝜇𝑠,𝑧𝑠 and not 𝜇𝑠(𝑖) for
any 𝑖 ̸= 𝑧𝑠 and any 𝑦𝑠. The pairwise components of (𝐼 −𝑃 )𝜇 can be written as follows:

(𝜇− 𝑃𝜇)𝑠𝑡(𝑖, 𝑗) = 𝜇𝑠𝑡(𝑧𝑠, 𝑗)
(︀
[[𝑖=𝑧𝑠]]− [[𝑖=𝑦𝑠]]

)︀
+ 𝜇𝑠𝑡(𝑖, 𝑧𝑡)

(︀
[[𝑗=𝑧𝑡]]− [[𝑗=𝑦𝑡]]

)︀
+ 𝜇𝑠𝑡(𝑧𝑠, 𝑧𝑡)

(︀
[[𝑖=𝑦𝑠, 𝑗=𝑧𝑡]] + [[𝑖=𝑧𝑠, 𝑗=𝑦𝑡]]− [[𝑖=𝑧𝑠, 𝑗=𝑧𝑡]]− [[𝑖=𝑦𝑠, 𝑗=𝑦𝑡]]

)︀
.

(191)

Reduced marginalization constraints 𝐴(𝐼 − 𝑃 )𝜇 = 0 simplifies to

[[𝑦𝑠 ̸=𝑧𝑠]]
(︁
𝜇𝑠(𝑧𝑠)−

∑︁
𝑗

𝜇𝑠𝑡(𝑧𝑠, 𝑗)
)︁

= 0 ∀𝑠𝑡 ∈ ℰ ,

[[𝑦𝑡 ̸=𝑧𝑡]]
(︁
𝜇𝑡(𝑧𝑡)−

∑︁
𝑖

𝜇𝑠𝑡(𝑖, 𝑧𝑡)
)︁

= 0 ∀𝑠𝑡 ∈ ℰ .
(192)

There are at most two constraint equations per edge 𝑠𝑡 depending whether 𝑦𝑠 ̸= 𝑧𝑠

and 𝑦𝑡 ̸= 𝑧𝑡. The contribution to the objective of (170) from the singleton 𝑠 expresses
simply as ∑︁

𝑖

((𝐼 − 𝑃 )𝜇)𝑠(𝑖)𝑓𝑠(𝑖) = 𝜇𝑠(𝑧𝑠)(𝑓𝑠(𝑧𝑠)− 𝑓𝑠(𝑦𝑠)) . (193)

The contribution from a pair 𝑠𝑡 expresses as follows,∑︁
𝑖𝑗

((𝐼 − 𝑃 )𝜇)𝑠𝑡(𝑖, 𝑗)𝑓𝑠𝑡(𝑖, 𝑗) =

=
∑︁

𝑗

𝜇𝑠𝑡(𝑧𝑠, 𝑗)(𝑓𝑠𝑡(𝑧𝑠, 𝑗)− 𝑓𝑠𝑡(𝑦𝑠, 𝑗)) +
∑︁

𝑖

𝜇𝑠𝑡(𝑖, 𝑧𝑡)(𝑓𝑠𝑡(𝑖, 𝑧𝑡)− 𝑓𝑠𝑡(𝑖, 𝑦𝑡))

+ 𝜇𝑠𝑡(𝑧𝑠, 𝑧𝑡)(−𝑓𝑠𝑡(𝑧𝑠, 𝑧𝑡)− 𝑓𝑠𝑡(𝑦𝑠, 𝑦𝑡) + 𝑓𝑠𝑡(𝑦𝑠, 𝑧𝑡) + 𝑓𝑠𝑡(𝑧𝑠, 𝑦𝑡)) .

(194)

We can then eliminate variables (𝜇𝑠𝑡(𝑧𝑠, 𝑗) | 𝑗 ̸= 𝑧𝑡) from the characterization (189) by
solving the subminimization problem where they are involved, explicitly as follows:

min
(𝜇𝑠𝑡(𝑧𝑠,𝑗) | 𝑗 ̸=𝑧𝑡)

∑︁
𝑗 ̸=𝑧𝑡

𝜇𝑠𝑡(𝑧𝑠, 𝑗)(𝑓𝑠𝑡(𝑧𝑠, 𝑗)− 𝑓𝑠𝑡(𝑦𝑠, 𝑗))

subj.
{︃

[[𝑦𝑠 ̸=𝑧𝑠]]
(︀
𝜇𝑠(𝑧𝑠)−

∑︀
𝑗 𝜇𝑠𝑡(𝑧𝑠, 𝑗)

)︀
= 0 ,

𝜇 ≥ 0

(195)
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=

⎧⎪⎪⎨⎪⎪⎩
0 if 𝑦𝑠=𝑧𝑠 ,

(𝜇𝑠(𝑧𝑠)− 𝜇𝑠𝑡(𝑧𝑠, 𝑧𝑡))Δ𝑠𝑡(𝑦𝑠) if 𝜇𝑠(𝑧𝑠) ≥ 𝜇𝑠𝑡(𝑧𝑠, 𝑧𝑡) ∧ 𝑦𝑠 ̸= 𝑧𝑠 ,

∞ otherwise

=
{︃

(𝜇𝑠(𝑧𝑠)− 𝜇𝑠𝑡(𝑧𝑠, 𝑧𝑡))Δ𝑠𝑡(𝑦𝑠) if [[𝑦𝑠 ̸=𝑧𝑠]]
(︀
𝜇𝑠(𝑧𝑠)− 𝜇𝑠𝑡(𝑧𝑠, 𝑧𝑡)

)︀
≥ 0 ,

∞ otherwise .

(196)

where
Δ𝑠𝑡(𝑦𝑠) = min

𝑗 ̸=𝑧𝑡

(𝑓𝑠𝑡(𝑧𝑠, 𝑗)− 𝑓𝑠𝑡(𝑦𝑠, 𝑗)) . (197)

We can now write down the reduced characterization (189) as the linear program

min
�̄�

∑︁
𝑠∈𝒱

�̄�𝑠𝑔𝑠 +
∑︁
𝑠𝑡∈ℰ

�̄�𝑠𝑡𝑔𝑠𝑡 ,

subj.

⎧⎪⎪⎨⎪⎪⎩
�̄� ≥ 0
�̄�𝑠 ≥ �̄�𝑠𝑡 ∀𝑠𝑡 ∈ ℰ | 𝑦𝑠 ̸= 𝑧𝑠 ,

�̄�𝑡 ≥ �̄�𝑠𝑡 ∀𝑠𝑡 ∈ ℰ | 𝑦𝑠 ̸= 𝑧𝑠 ,

(198)

where we denoted �̄�𝑠 = 𝜇𝑠(𝑧𝑠), �̄�𝑠𝑡 = 𝜇𝑠𝑡(𝑧𝑠, 𝑧𝑡) and

𝑔𝑠(𝑦𝑠) = 𝑓𝑠(𝑧𝑠)− 𝑓𝑠(𝑦𝑠) +
∑︁

𝑡 | 𝑠𝑡∈ℰ̃

Δ𝑠𝑡(𝑦𝑠) ,

𝑔𝑠𝑡(𝑦𝑠𝑡) = 𝑓𝑠𝑡(𝑧𝑠, 𝑧𝑡)− 𝑓𝑠𝑡(𝑦𝑠, 𝑦𝑡)−Δ𝑠𝑡(𝑦𝑠)−Δ𝑡𝑠(𝑦𝑡) ,
Δ𝑡𝑠(𝑦𝑡) = min

𝑖 ̸=𝑧𝑠

(𝑓𝑠𝑡(𝑖, 𝑧𝑡)− 𝑓𝑠𝑡(𝑖, 𝑦𝑡)) .

(199)

The dependence of 𝑔 on 𝑦 is made explicit since we are going to optimize in 𝑦. Because
we have 𝑔𝑠(𝑦𝑠) = 0 for 𝑦𝑠=𝑧𝑠, we can safely extend the constraints of the problem to
all edges, independently of the set 𝒲. Moreover, if 𝑔𝑠𝑡 ≥ 0 setting �̄�𝑠𝑡 to 0 does not
lead to an increase of the objective. We therefore can exclude all such pairs from the
problem by replacing 𝑔𝑠𝑡 with

𝑔𝑠𝑡 = min(0, 𝑔𝑠𝑡) . (200)
After this simplification we claim the following.

Statement 41. Problem (198) attains 0 if and only if

min
𝑥∈{0,1}𝒱

(︁∑︁
𝑠∈𝒱

𝑔𝑠𝑥𝑠 +
∑︁
𝑠𝑡∈ℰ

𝑔𝑠𝑡𝑥𝑠𝑥𝑡

)︁
= 0 , (201)

where we introduced 𝑔𝑠 = 𝑔𝑠 for consistency of notation.

Proof. It can be verified that any solution of (201) yields a feasible solution to (198) by
assigning �̄�𝑠 = 𝑥𝑠 and �̄�𝑠𝑡 = 𝑥𝑠𝑥𝑡. We have to show that a feasible solution to (198) of
a negative cost allows to construct a 0−1 solution of negative cost. Let �̄� be feasible
to (198) and has negative cost. Clearly 𝛾�̄� for any 𝛾 > 0 is also feasible and has
negative cost. We therefore can assume �̄� ≤ 1. With this constraint, and non-positivity
of 𝑔𝑠𝑡 we recognize that the problem is the linear relaxation of submodular quadratic
pseudo-Boolean function minimization, which is tight.

It will be convenient to consider the objective of (201) as a set function. Let 𝐸𝑔(𝒜, 𝑦)
denote the objective of (201) for 𝒜 = {𝑠 ∈ 𝒱 |𝑥𝑠 = 1}. It can be expanded as

𝐸𝑔(𝒜, 𝑦) =
∑︁
𝑠∈𝒜

𝑔𝑠(𝑦𝑠) +
∑︁

𝑠𝑡∈(𝒜,𝒜)ℰ

𝑔𝑠𝑡(𝑦𝑠𝑡) . (202)
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4 Unified Framework for Partial Optimality

As noted above, this function is submodular in the first argument. Consider the in-
tersection of all minimizers (the minimal element) 𝒜 =

⋂︀
argmin𝒜𝐸𝑔(𝒜, 𝑦). Suppose

𝐸𝑔(𝒜, 𝑦) < 0 which means that the projection is not improving. It is easy to show
that it must be 𝑦𝑠 ̸= 𝑧𝑠 for 𝑠 from the minimal 𝒜. Our goal now is to show that for
labelings 𝑦′ which are modifications of 𝑦 keeping the label or switching to 𝑧 in any pixel,
𝑃 cannot be improving unless 𝑦′

𝒜 = 𝑧𝒜. That is, pixels in 𝒜 may not be eliminated by
any projection of this form. By following this way, we can discard sequentially all the
pixels which cannot be eliminated by any projection of the form until there left only
those which can.

Let 𝒰 denote the set of pixels, where the labelings 𝑦′ coincide with 𝑦. If only 𝒰∩𝒜 ̸= 0
the projection corresponding to 𝑦′ will not be improving, as proven next.

Theorem 42. Let 𝒜 =
⋂︀

argmin𝒜𝐸𝑔(𝒜, 𝑦). Let 𝒰 ⊂ 𝒱 such that 𝒰 ∩ 𝒜 ̸= ∅. Let
𝑦′

𝑠 = 𝑦𝑠 if 𝑠 ∈ 𝒰 and 𝑦′
𝑠 = 𝑧𝑠 if 𝑠 /∈ 𝒰 .

Then 𝐸𝑔(𝒜, 𝑦′) < 0.

Proof. Assume for contradiction that 𝐸𝑔(𝒜, 𝑦) ≥ 0. We know that 𝐸𝑔(∅, 𝑦) = 0. From
the minimality of𝒜 (it is the intersection of all minimizers), it must be that 𝐸𝑔(𝒜, 𝑦) = 0
and 𝒜 ⊂ ∅. This contradicts to 𝒰 ∩ 𝒜 ̸= ∅. We therefore have 𝐸𝑔(𝒜, 𝑦) < 0.

If 𝐴 ⊂ 𝒰 we have 𝐸𝑔(𝑥, 𝑦′) = 𝐸𝑔(𝑥, 𝑦) < 0 and the theorem is proven. Otherwise we
have 𝐴∖𝒰 ( 𝒜.

Since 𝒜 is minimizer it must be 𝐸𝑔(𝒜∖𝒰 , 𝑦) ≥ 𝐸𝑔(∖𝒜, 𝑦). Because 𝒜∖𝒰 ( 𝒜, an
equality would contradict to minimality of 𝒜. We have theretofore 𝐸𝑔(𝒜∖𝒰 , 𝑦) >
𝐸𝑔(∖𝒜, 𝑦).

To prove the theorem we will show that the following inequality holds:

𝐸𝑔(𝒜, 𝑦′) ≤ 𝐸𝑔(𝒜, 𝑦)− 𝐸𝑔(𝐴∖𝒰 , 𝑦) . (203)

Because the RHS is < 0 it would imply the desired result. Let us expand all summands
of the inequality as follows

𝐸𝑔(𝒜, 𝑦)− 𝐸𝑔(𝒜∖𝒰 , 𝑦)− 𝐸𝑔(𝒜, 𝑦′)
=
∑︁
𝑠∈𝒜

𝑔𝑠(𝑦) +
∑︁

𝑠𝑡∈(𝒜,𝒜)ℰ

𝑔𝑠𝑡(𝑦)−
∑︁

𝑠∈𝒜∖𝒰
𝑔𝑠(𝑦)−

∑︁
𝑠𝑡∈(𝒜∖𝒰 ,𝒜∖𝒰)ℰ

𝑔𝑠𝑡(𝑦)−
∑︁
𝑠∈𝒜

𝑔𝑠(𝑦′)−
∑︁

𝑠𝑡∈(𝒜,𝒜)ℰ

𝑔𝑠𝑡(𝑦′)

= −
∑︁

𝑠∈𝒜∖𝒰
𝑔𝑠(𝑦′) +

∑︁
𝑠𝑡∈̄(𝒜,𝒜∖𝒰)ℰ

[︀
𝑔𝑠𝑡(𝑦)− 𝑔𝑠𝑡(𝑦′)

]︀
(𝑎)=

∑︁
𝑠𝑡∈̄(𝒜,𝒜∖𝒰)ℰ

[︀
𝑔𝑠𝑡(𝑦)− 𝑔𝑠𝑡(𝑦′)

]︀
,

(204)
Where equality (a) follows from that for 𝑠 ∈ 𝐴∖𝒰 , we have 𝑦′

𝑠 = 𝑧𝑠 and from

Δ𝑠𝑡(𝑦′
𝑠) = min

𝑗 ̸=𝑧𝑡

(𝑓𝑠𝑡(𝑧𝑠, 𝑗)− 𝑓𝑠𝑡(𝑧𝑠, 𝑗)) = 0 ,

𝑔𝑠(𝑦′
𝑠) = 𝑓𝑠(𝑧𝑠)− 𝑓𝑠(𝑧𝑠) +

∑︁
𝑠𝑡∈̄ℰ

Δ𝑠𝑡(𝑦′
𝑠) = 0 . (205)

It remains to verify that for every 𝑠𝑡∈̄(𝒜,𝒜∖𝒰)ℰ there holds

min(0, 𝑔𝑠𝑡(𝑦′
𝑠𝑡)) ≤ min(0, 𝑔𝑠𝑡(𝑦𝑠𝑡)) . (206)

We will consider the following cases:
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4.4 Maximum Projections

∙ Case 𝑦′
𝑠𝑡 = (𝑧𝑠, 𝑧𝑡). We have 𝑔𝑠𝑡(𝑦′

𝑠𝑡) = 0. The inequality (206) follows from that
min(0, 𝑔𝑠𝑡(𝑦𝑠𝑡)) ≤ 0.
∙ Case 𝑦′

𝑠𝑡 = (𝑦𝑠, 𝑧𝑡). Let us verify that the following inequality holds:

𝑔𝑠𝑡(𝑦′) ≤ 𝑔𝑠𝑡(𝑦) . (207)

Because function min(0, ·) is non-decreasing, it would imply (206). Expanding 𝑔𝑠𝑡,
we obtain

𝑔𝑠𝑡(𝑦′)− 𝑔𝑠𝑡(𝑦)

=
(︁
𝑓𝑠𝑡(𝑧𝑠, 𝑧𝑡)− 𝑓𝑠𝑡(𝑦𝑠, 𝑧𝑡)−Δ𝑠𝑡(𝑦𝑠)− 0

)︁
−
(︁
𝑓𝑠𝑡(𝑧𝑠, 𝑧𝑡)− 𝑓𝑠𝑡(𝑦𝑠, 𝑦𝑡)−Δ𝑠𝑡(𝑦𝑠)−Δ𝑡𝑠(𝑦𝑡)

)︁
= Δ𝑡𝑠(𝑦𝑡)− (𝑓𝑠𝑡(𝑦𝑠, 𝑧𝑡)− 𝑓𝑠𝑡(𝑦𝑠, 𝑦𝑡))
= min

𝑖 ̸=𝑧𝑠

(𝑓𝑠𝑡(𝑖, 𝑧𝑡)− 𝑓𝑠𝑡(𝑖, 𝑦𝑡))− (𝑓𝑠𝑡(𝑦𝑠, 𝑧𝑡)− 𝑓𝑠𝑡(𝑦𝑠, 𝑦𝑡)) ≤ 0 ,

(208)

which holds true.
∙ Case 𝑦′

𝑠𝑡 = (𝑧𝑠, 𝑦𝑡) is expanded similarly to the above.
By backtracking the chain of implications, we obtain that 𝐸𝑔(𝒜, 𝑦′) < 0.

By this theorem, any 𝑦′, which does not coincide with 𝑧 on the subset 𝒜, corresponds
to a projection that is not Λ-improving. We therefore arrive at the Algorithm 4.
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5 Distributed Mincut/Maxflow Algorithms

Minimum 𝑠-𝑡 cut (mincut) is a classical combinatorial problem with applications in
many areas of science and engineering. In this chapter, we develop a novel distributed
algorithm for the mincut problem. Motivated by applications like volumetric segmen-
tation in computer vision, we aim at solving large sparse problems. When the problem
does not fully fit in the memory, we need to either process it by parts, looking at one
part at a time, or distribute across several computers. Many mincut/maxflow algo-
rithms are designed for the shared memory architecture and do not scale to the setting,
when the memory has to be divided among the computation units. We start by a more
detailed overview of models and optimization techniques in computer vision, where the
mincut problem is employed, and give examples of our test problems.

MINCUT in Computer Vision In some cases, an applied problem is formulated di-
rectly as a mincut. More often, however, mincut problems in computer vision originate
from the Energy minimization framework (maximum a posteriori solution in a Markov
random field model). Submodular Energy minimization problems completely reduce to
mincut (Ishikawa 2003; Schlesinger and Flach 2006). When the energy minimization
is intractable, mincut is employed in relaxation and local search methods. The linear
relaxation of pairwise Energy minimization with 0-1 variables reduces to mincut (Boros
et al. 1991; Kolmogorov and Rother 2007) as well as the relaxation of problems refor-
mulated in 0-1 variables (Kohli et al. 2008). Expansion-move, swap-move (Boykov et al.
1999) and fusion-move (Lempitsky et al. 2010) algorithms formulate a local improve-
ment step as a mincut problem. Many applications of mincut in computer vision
use graphs of a regular structure, with vertices arranged into an 𝑁 -D grid and edges
uniformly repeated, e.g., 3D segmentation models illustrated in Figure 12(c), 3D recon-
struction models, Figure 12(b). Because of such regular structure, the graph itself need
not be stored in the memory. Only the edge capacities need to be stored, allowing rel-
atively large instances to be solved by a specialized implementation. However, in many
cases, it is advantageous to have a non-regular structure, e.g., in stereo with occlusions
in Figure 12(a), in 3D reconstruction with adaptive tetrahedral volume (Labatut et al.
2009; Jancosek and Pajdla 2011). Such applications would benefit from a large-scale
generic mincut solver.

Distributed Computation The previous research mostly focused on speeding up min-
cut by parallel computation in the shared memory model. We consider a distributed
memory model, which assumes that the computation units have their own separate
memory and exchanging the information between them is expensive. A distributed
algorithm has therefore to divide the computation and the problem data between the
units and keep the communication rate low.

We will consider distributed algorithms, operating in the following two practical usage
modes:
∙ Sequential (or streaming) mode, which uses a single computer with a limited mem-

ory and a disk storage, reading, processing and writing back a portion of data at
a time.
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∙ Parallel mode, in which the units are thought as computers in a network.
We propose new algorithms for both cases, prove their correctness and termination
guarantees. In the assessment of complexity, we focus on the costly operations such
as load-unload of the data in the streaming mode or message exchanges in the parallel
mode. More specifically, we call a sweep the event when all units of a distributed
algorithm recalculate their data once. Sweeps in our algorithms correspond to outer
iterations and their number is roughly proportional to the amount of communication in
the parallel mode or disk operations in the streaming mode. While there are algorithms
with better bounds in terms of elementary operations, our algorithms achieve lower
communication rates.

Previous Work A variant of path augmentation algorithm was shown by Boykov and
Kolmogorov (2004) to have the best performance on computer vision problems among
sequential solvers. There were several proposals how to parallelize it. Partially dis-
tributed implementation (Liu and Sun 2010) augments paths within disjoint regions
first and then merges regions hierarchically. In the end, it still requires finding aug-
menting paths in the whole problem. Therefore, it cannot be used to solve a large
problem by distributing it over several computers or by using a limited memory and a
disk storage. For the shared memory model Liu and Sun (2010) reported a near-linear
speed-up with up to 4 CPUs for 2D and 3D segmentation problems.

Strandmark and Kahl (2010) obtained a distributed algorithm using a dual decom-
position approach. The subproblems are mincut instances on the parts of the graph
(regions) and the master problem is solved using the subgradient method. This ap-
proach requires solving mincut subproblems with real valued capacities and does not
have a polynomial bound on the number of iterations. The integer algorithm proposed
by Strandmark and Kahl (2010) is not guaranteed to terminate. Our experiments
(§5.6.3) showed that it did not terminate on some of the instances in 1000 sweeps. In
§5.9, we relate dual variables in this method to flows.

The push-relabel algorithm (Goldberg and Tarjan 1988) performs many local atomic
operations, which makes it a good choice for a parallel or distributed implementation.
A distributed version (Goldberg 1991) runs in 𝑂(𝑛2) time using 𝑂(𝑛) processors and
𝑂(𝑛2√𝑚) messages, where 𝑛 is the number of vertices and 𝑚 is the number of edges
in the problem. However, for a good practical performance it is crucial to implement
the gap relabel and the global relabel heuristics (Cherkassky and Goldberg 1994). The
global relabel heuristic can be parallelized (Anderson and Setubal 1995), but it is dif-
ficult to distribute. We should note, however, that the global relabel heuristic was not
essential in the experiments with computer vision problems we made (§5.6.2). Delong
and Boykov (2008) proposed a coarser granulation of push-relabel operations, associ-
ating a subset of vertices (a region) to each processor. Push and relabel operations
inside a region are decoupled from the rest of the graph. This allows to process several
non-interacting regions in parallel or run in a limited memory, processing few regions
at a time. The gap and relabel heuristics, restricted to the regions (Delong and Boykov
2008) are powerful and distributed at the same time. Our work was largely motivated
by Delong and Boykov (2008) and the remark that their approach might be extendible
to augmenting path algorithms. However, our first attempt to prioritize augmentation
to the boundary vertices by the shortest distance to the sink did not lead to a correct
algorithm.
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5 Distributed Mincut/Maxflow Algorithms

(a)

(b)

(c)

Figure 12 Examples of labeling problems in computer vision solved via maxflow. (a) Stereo
and stereo with occlusions (Boykov et al. 1998), (Kolmogorov and Zabih 2001). (b) 3D recon-
struction (Boykov and Lempitsky 2006; Lempitsky et al. 2006) and surface fitting (Lempitsky
and Boykov 2007). (c) 3D segmentation (Boykov and Jolly 2001; Boykov 2003; Boykov and
Funka-Lea 2006). The instances are published at the University of Western Ontario web
pages (2008) for benchmarking maxflow implementations.

Other Related Work The following works do not consider a distributed implemen-
tation but are relevant to our design. The Partial Augment-Relabel algorithm (PAR)
by Goldberg (2008) augments a path of length 𝑘 in each step. It may be viewed as
a lazy variant of push-relabel, where actual pushes are delayed until it is known that
a sequence of 𝑘 pushes can be executed. The algorithm by Goldberg and Rao (1998)
incorporates the notion of a length function and a valid labeling w.r.t. this length. It
can be seen that the labeling maintained by our algorithm corresponds to the length
function assigning 1 to boundary edges and 0 to intra-region edges. Goldberg and Rao
(1998) used such generalized labeling in the context of the blocking flow algorithm but
not within the push-relabel.

Outline We first revisit the algorithm of Delong and Boykov (2008) for the case of a
fixed partition into regions (§5.2). We study a sequential variant and a novel parallel
variant of their algorithm, which allows running computations concurrently on neigh-
boring interacting regions using a conflict resolution similar to the asynchronous parallel
push-relabel (Goldberg 1991). We prove that both variants have a tight 𝑂(𝑛2) bound
on the number of sweeps. The new algorithm, we construct (§5.3), works with the same
partition of the graph into regions but is guided by a different distance function than
the push-relabel one.

Given a fixed partition into regions, we introduce a distance function, which counts
the number of region boundaries crossed by a path to the sink. Intuitively, it corre-
sponds to the amount of costly operations – network communications or loads-unloads
of the regions in the streaming mode. The algorithm maintains a labeling, which is a
lower bound on the distance function. Within a region, we first augment paths to the
sink and then paths to the boundary vertices prioritized by the lowest label. Thus the
flow is pushed out of the region in the direction given by the distance estimate. We
present a sequential and parallel versions of the algorithm, which terminate in 𝑂(|ℬ|2)
sweeps, where ℬ is the set of all boundary vertices (incident to inter-region edges).

We describe additional heuristics and an efficient implementation of both push-relabel
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5.1 MINCUT and Push-Relabel

and augmented-path based distributed algorithms in §5.4. The proposed algorithms are
evaluated on instances of mincut problems collected and published by the Computer
Vision Research Group at the University of Western Ontario (illustrated in Figure 12).
The results are compared against the state-of-the-art sequential and parallel solvers
(§5.6). We also studied the behavior of the algorithms w.r.t. problem size, granularity
of the partition, etc. In §5.7, we study the question to which extend the exchange of
information between parts is necessary. It turns out, that for simple problems (e.g.,
stereo) a large part of the optimal solution can be recovered from the individual parts,
while for more complicated problems (3D segmentation) this is no longer the case. The
interactions between regions are really necessary. In §5.8, we construct an example of
MINCUT, on which the push-relabel discharge achieves its worst case bound on the
number of sweeps, while the new algorithm terminates in a constant number of sweeps.
In §5.9, we show how the dual decomposition approach for min-cut by (Strandmark
and Kahl 2010) can be formulated in terms of flows and reveal the relation to our
partitioning scheme.

5.1 MINCUT and Push-Relabel
“Needless to say, their version not only has its own real beauty,
but is somewhat “sexy” running depth first search on the layered
network constructed by (extended) breadth first search”.

Y. Dinitz,
about Even and Itai’s version of the maximum flow algorithm.

We solve mincut problem by finding a maximum preflow1. In this section, we give
basic definitions and introduce the push-relabel framework of Goldberg and Tarjan
(1988). While we assume the reader is familiar with mincut/maxflow, we explain some
known results using the notation adjusted for the needs of this chapter.

In the classical framework of minimum cut and maximum flow, the flow augmenta-
tion transforms a minimum cut problem into an equivalent one on the residual network
(preserving costs of all cuts up to a constant). However, there is no equivalent mini-
mum cut problem corresponding to the augmentation of a preflow. In the push-relabel
approach of Goldberg and Tarjan (1988), this is not essential, as only single residual
arcs need to be considered and algorithms can be formulated as working with a pair
of a network and a preflow. In this work, we need to deal with residual paths and the
reachability in the residual network. We therefore use the extended definition of the
minimum cut problem, which includes a flow excess (or supply) in every vertex. After
this extension, the family of equivalent min-cut problems becomes closed under preflow
augmentations. This allows us to formulate algorithms more conveniently as working
with the current residual network and constructing a preflow increment. This point is
illustrated in Figure 13.

By a network we call the tuple 𝐺 = (𝑉,𝐸, 𝑠, 𝑡, 𝑐, 𝑒), where 𝑉 is a set of vertices;
𝐸 ⊂ 𝑉 ×𝑉 is the set of edges, thus (𝑉,𝐸) is a directed graph; 𝑠, 𝑡 ∈ 𝑉 , 𝑠 ̸= 𝑡, are source
and sink, respectively; 𝑐 : 𝐸 → N0 is a capacity function; and 𝑒 : 𝑉 → {0, 1, . . . ,∞},
𝑒(𝑡) = 0, 𝑒(𝑠) =∞ is an excess function. We also denote 𝑛 = |𝑉 | and 𝑚 = |𝐸|.

1A maximum preflow can be completed to a maximum flow using the flow decomposition, in
𝑂(𝑚 log 𝑚) time. Because we are primarily interested in the minimum cut, we do not consider
this step or whether it can be distributed.
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Figure 13 (a) Example of a network with indicated edge capacity function. (b) Augmenting
path approach: send flow from the source to the sink along a path. The residual network
defines an equivalent min-cut problem. (c) Push-relabel approach: the preflow is pushed over
arcs in all directions, prioritized by the shortest distance to the sink. The equivalent min-cut
problem is defined by a network with excess.

For any sets 𝑋,𝑌 ⊂ 𝑉 we denote (𝑋,𝑌 )𝐸 = (𝑋 × 𝑌 ) ∩ 𝐸. For 𝐶 ⊂ 𝑉 such that
𝑠 ∈ 𝐶, 𝑡 /∈ 𝐶, the set of edges (𝐶,𝐶)𝐸 , with 𝐶 = 𝑉 ∖𝐶 is called an 𝑠-𝑡 cut. The mincut
problem is

min
{︁ ∑︁

(𝑢,𝑣)∈(𝐶,𝐶)𝐸

𝑐(𝑢, 𝑣)+
∑︁
𝑣∈𝐶

𝑒(𝑣)
⃒⃒⃒
𝐶 ⊂ 𝑉, 𝑠 ∈ 𝐶, 𝑡 ∈ 𝐶

}︁
. (209)

The objective is called the cost of the cut. Note, that excess in this problem can be
equivalently represented as additional edges from the source, but we prefer the explicit
form. Without the loss of generality, we assume that 𝐸 is symmetric. If not, the missing
edges are added and assigned a zero capacity.

A preflow in 𝐺 is the function 𝑓 : 𝐸 → Z satisfying the following constraints:

𝑓(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣) ∀(𝑢, 𝑣) ∈ 𝐸 , (210a)
(capacity constraint)

𝑓(𝑢, 𝑣) = −𝑓(𝑣, 𝑢) ∀(𝑢, 𝑣) ∈ 𝐸 , (210b)
(antisymmetry)

𝑒(𝑣) +
∑︁

𝑢 | (𝑢,𝑣)∈𝐸

𝑓(𝑢, 𝑣) ≥ 0 ∀𝑣 ∈ 𝑉 . (210c)

( preflow constraint)

The constraint (210b) removes the redundancy in the otherwise independent flow values
on (𝑢, 𝑣) and (𝑣, 𝑢) (positive flows should naturally cancel each other) and shortens the
equations at the same time.

A residual network w.r.t. preflow 𝑓 is a network 𝐺𝑓 = (𝑉,𝐸, 𝑠, 𝑡, 𝑐𝑓 , 𝑒𝑓 ) with the
capacity and excess functions given by

𝑐𝑓 = 𝑐− 𝑓 , (211a)
𝑒𝑓 (𝑣) = 𝑒(𝑣) +

∑︁
𝑢 | (𝑢,𝑣)∈𝐸

𝑓(𝑢, 𝑣), ∀𝑣 ∈ 𝑉 ∖{𝑠, 𝑡} . (211b)

By constraints (210), it is 𝑐𝑓 ≥ 0 and 𝑒𝑓 ≥ 0. The costs of all 𝑠-𝑡 cuts differ in 𝐺 and 𝐺𝑓

by a constant called the flow value, |𝑓 | =
∑︀

𝑢 | (𝑢,𝑡)∈𝐸
𝑓(𝑢, 𝑡). This can be easily verified

by substituting 𝑐𝑓 and 𝑒𝑓 into (209) and expanding. Network 𝐺𝑓 is thus equivalent to
network 𝐺 up to the constant |𝑓 |. Since all cuts in 𝐺𝑓 are non-negative, |𝑓 | is a lower
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bound on the cost of a cut in 𝐺. The problem of maximizing this lower bound, i.e.
finding a maximum preflow:

max
𝑓
|𝑓 | subj. constraints (210) (212)

is dual to mincut. The value of a (non-unique) maximum preflow equals to the cost of
a (non-unique) minimum cut. The solutions are related as explained below.

We say that 𝑤 ∈ 𝑉 is reachable from 𝑣 ∈ 𝑉 in the network 𝐺𝑓 if there is a path
(possibly of length 0) from 𝑣 to 𝑤 composed of edges with strictly positive residual
capacities 𝑐𝑓 (a residual path). This relation is denoted by 𝑣 → 𝑤.

Let us consider a residual path from 𝑣 to 𝑤 such 𝑒𝑓 (𝑣) > 0. Augmentation increases
the flow by Δ > 0 on all forward edges of the path, and decreases it on all reverse edges,
where Δ does not exceed the residual capacities of the forward arcs or 𝑒𝑓 (𝑣). In the
result, the excess 𝑒𝑓 (𝑣) is decreased and excess 𝑒𝑓 (𝑤) is increased. Augmenting paths to
the sink increases the flow value. In the augmenting path approach, the problem (212)
is solved by repeatedly augmenting residual paths from vertices having excess (e.g.,
source) to the sink.

If 𝑤 is not reachable from 𝑣 in 𝐺𝑓 we write 𝑣 9 𝑤. For any 𝑋,𝑌 ⊂ 𝑉 , we write
𝑋 → 𝑌 if there exist 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 such that 𝑥→ 𝑦. Otherwise we write 𝑋 9 𝑌 .

A preflow 𝑓 is maximum iff there is no residual path to the sink which can be
augmented. This can be written as {𝑣 | 𝑒𝑓 (𝑣) > 0} 9 𝑡 in 𝐺𝑓 . In this case, the cut
(𝑇 , 𝑇 )𝐸 with 𝑇 = {𝑣 ∈ 𝑉 | 𝑣 → 𝑡 in 𝐺𝑓} has the value 0 in 𝐺𝑓 . Because all cuts are
non-negative, it is a minimum cut.

General Push-relabel A Distance function 𝑑* : 𝑉 → {0, 1, . . . , 𝑛} in 𝐺𝑓 assigns to
𝑣 ∈ 𝑉 the length of the shortest residual path from 𝑣 to 𝑡, or 𝑛 if no such path exists.
The (non-unique) shortest path cannot have loops, thus its length is not greater than
𝑛− 1. Let us denote 𝑑∞ = 𝑛.

A labeling 𝑑 : 𝑉 → {0, 1, . . . , 𝑑∞} is valid in 𝐺𝑓 if 𝑑(𝑡) = 0 and 𝑑(𝑢) ≤ 𝑑(𝑣) + 1 for all
(𝑢, 𝑣) ∈ 𝐸 such that 𝑐𝑓 (𝑢, 𝑣) > 0. Any valid labeling is a lower bound on the distance
𝑑* in 𝐺𝑓 , however not every lower bound is a valid labeling.

A vertex 𝑣 is called active w.r.t. (𝑓, 𝑑) if 𝑒𝑓 (𝑣) > 0 and 𝑑(𝑣) < 𝑑∞.
The definitions of reachability and validity are given w.r.t. the residual network 𝐺𝑓 ,

however expressions like “𝑣 → 𝑤 in 𝐺” or “𝑑 is valid in 𝐺” are also correct, and will
be needed later on. In particular, we will consider algorithms making some large steps,
where a preflow increment 𝑓 is computed and then applied to the initial network by
assigning 𝐺 := 𝐺𝑓 . After that, the algorithm continues with 𝐺 and resets 𝑓 .

To ensure that residual paths do not go through the source (and for reasons of
efficiency) we make all edges from the source saturated during the following Init pro-
cedure, common to all algorithms in this chapter.

Procedure Init
/* saturate source edges */

1 𝑓(𝑠, 𝑣) := 𝑐(𝑠, 𝑣) ∀(𝑠, 𝑣) ∈ 𝐸;
2 𝐺 := 𝐺𝑓 ; 𝑓 := 0; /* apply preflow */
3 𝑑 := 0, 𝑑(𝑠) := 𝑑∞; /* initialize labels */
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The generic push-relabel algorithm by Goldberg and Tarjan (1988) maintains a preflow
𝑓 and a valid labeling 𝑑. It starts with Init and applies the following Push and Relabel
operations while possible:
∙ Push(𝑢, 𝑣): applicable if 𝑢 is active and 𝑐𝑓 (𝑢, 𝑣) > 0 and 𝑑(𝑢) = 𝑑(𝑣) + 1.

The operation increases 𝑓(𝑢, 𝑣) by Δ and decreases 𝑓(𝑣, 𝑢) by Δ, where Δ =
min(𝑒𝑓 (𝑢), 𝑐𝑓 (𝑢, 𝑣)).
∙ Relabel(𝑢): applicable if 𝑢 is active and (∀𝑣| (𝑢, 𝑣) ∈ 𝐸, 𝑐𝑓 (𝑢, 𝑣) > 0) 𝑑(𝑢) ≤ 𝑑(𝑣).

It sets 𝑑(𝑢) := min
(︀
𝑑∞,min{𝑑(𝑣) + 1 | (𝑢, 𝑣) ∈ 𝐸, 𝑐𝑓 (𝑢, 𝑣) > 0}

)︀
.

If 𝑢 is active then either Push or Relabel operation is applicable to 𝑢. The algorithm
preserves validity of the labeling and stops when there are no active vertices. For any
𝑢 such that 𝑒𝑓 (𝑢) > 0, we have 𝑑(𝑢) = 𝑑∞. Therefore 𝑑*(𝑢) = 𝑑∞ and 𝑢9 𝑡 in 𝐺𝑓 , so
𝑓 is a (non-unique) maximum preflow.

5.2 Region Discharge Revisited
We now review the approach of Delong and Boykov (2008) and reformulate it for the
case of a fixed graph partition. We introduce generic sequential and parallel algorithms,
which will be applied with both push-relabel and augmenting path approaches.

Delong and Boykov (2008) introduced the following operation. The discharge of a
region 𝑅 ⊂ 𝑉 ∖{𝑠, 𝑡} applies Push and Relabel to 𝑣 ∈ 𝑅 until there are no active vertices
left in 𝑅. This localizes computations to 𝑅 and its boundary, defined as

𝐵𝑅 = {𝑤 | ∃𝑢 ∈ 𝑅 (𝑢,𝑤) ∈ 𝐸,𝑤 /∈ 𝑅, 𝑤 ̸= 𝑠, 𝑡} . (213)

When a Push is applied to an edge (𝑣, 𝑤) ∈ (𝑅,𝐵𝑅), the flow is sent out of the region.
We say that two regions 𝑅1, 𝑅2 ⊂ 𝑉 ∖{𝑠, 𝑡} interact if 𝑅1 ∩ 𝑅2 ̸= ∅ or 𝑅1 ∩ 𝐵𝑅2 ̸= ∅.
That is, when they share vertices or they are connected by an edge. Because Push and
Relabel operations work on the individual edges, discharges of non-interacting regions
can be performed in parallel. The algorithm proposed by Delong and Boykov (2008)
repeats the following steps until there are no active vertices in 𝑉 :
1. Select several non-interacting regions, containing active vertices.
2. Discharge the selected regions in parallel, applying region-gap and region-relabel

heuristics.
3. Apply the global gap heuristic.

All heuristics (global-gap, region-gap, region-relabel) serve to improve the distance
estimate. They are very important in practice, but do not affect the theoretical prop-
erties and will be discussed in §5.4 devoted to the implementation.

5.2.1 Region Network

We now take a different perspective on the algorithm. We consider each region discharge
as a proper subproblem to be solved. Given the states of the boundary edges on the
input (labels and excess), the region discharge of region 𝑅 returns a flow and a labeling.
To define it formally, we first single out the subnetwork, on which region discharge will
work.

Region network𝐺𝑅 = (𝑉 𝑅, 𝐸𝑅, 𝑠, 𝑡, 𝑐𝑅, 𝑒𝑅) has set of vertices 𝑉 𝑅 = 𝑅∪𝐵𝑅∪{𝑠, 𝑡}; set
of edges 𝐸𝑅 = (𝑅 ∪ {𝑠, 𝑡}, 𝑅 ∪ {𝑠, 𝑡})𝐸 ∪ (𝑅,𝐵𝑅)𝐸 ∪ (𝐵𝑅, 𝑅𝑅)𝐸 ; capacities 𝑐𝑅(𝑢, 𝑣) =
𝑐(𝑢, 𝑣) if (𝑢, 𝑣) ∈ 𝐸𝑅∖(𝐵𝑅, 𝑅)𝐸 and 0 otherwise; and excess 𝑒𝑅 = 𝑒|𝑅∪{𝑠,𝑡} (the re-
striction of function 𝑒 to its subdomain 𝑅 ∪ {𝑠, 𝑡}). This subnetwork is illustrated in
Figure 14(b). Note that the capacities of edges coming from the boundary, (𝐵𝑅, 𝑅)𝐸 ,
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Figure 14 (a) Partition of a network into 4 regions and the boundary set ℬ depicted by stars.
(b) The region network corresponding to the highlighted region in (a).

are set to zero. Indeed, these edges belong to a neighboring region network. The region
discharge operation of Delong and Boykov (2008), which we refer to as Push-relabel
Region Discharge (PRD), can now be defined as shown in Procedure PRD.

Procedure (𝑓, 𝑑) = PRD(𝐺𝑅,𝑑)

/* assume 𝑑 : 𝑉 𝑅 → {0, . . . , 𝑑∞} valid in 𝐺𝑅 */
1 while ∃𝑣 ∈ 𝑅 active do
2 apply Push or Relabel to 𝑣; /* changes 𝑓 and 𝑑 */
3 apply region gap heuristic (§5.4); /* optional */

5.2.2 Generic Region Discharging Algorithms

While Delong and Boykov (2008) selected the regions dynamically, trying to divide the
work evenly between CPUs in each iteration and cover the most of the active vertices,
we restrict ourselves to a fixed collection of regions (𝑅𝑘)𝐾

𝑘=1 forming a partition (disjoint
union) of 𝑉 ∖{𝑠, 𝑡}. With respect to this partition, we will use shortened notations 𝐵𝑘,
𝐺𝑘, 𝑉 𝑘, 𝐸𝑘, 𝑐𝑘, 𝑒𝑘 to denote the corresponding region boundary 𝐵𝑅𝑘 , region network
𝐺𝑅𝑘 and the respective compounds of region network 𝐺𝑅𝑘 . We also define the boundary
ℬ =

⋃︀
𝑘 𝐵

𝑘, which is the set of all vertices incident to inter-region edges (Figure 14(a)).
We now define generic sequential and parallel algorithms which use a black-box

Discharge function as a subroutine. The sequential algorithm (Algorithm 5) takes
regions from the partition one-by-one and applies the Discharge operation to them
until there are no active vertices in either region left. The parallel algorithm (Algo-
rithm 6) calls Discharge for all regions concurrently and then resolves conflicts in the
flow similarly to the asynchronous parallel push-relabel of Goldberg and Tarjan (1988).
A conflict occurs if two interacting regions increase their labels on the vertices of a
boundary edge (𝑢, 𝑣) simultaneously and try pushing flow over it (in their respective
region networks). In such a case, we accept the labels, but do not allow the flow to
cross the boundary in one of the directions by the following construction. In step 5 of
Algorithm 6, boundary edges, where the validity condition is potentially violated, are
assigned 𝛼 = 0. The flow fusion in step 6 disables the flow on such edges (the flow
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Algorithm 5: Sequential Discharging

1 Init;
2 while there are active vertices do /* a sweep */
3 for 𝑘 = 1, . . .𝐾 do
4 Construct 𝐺𝑘 from 𝐺;
5 (𝑓 ′, 𝑑′) := Discharge(𝐺𝑘, 𝑑|𝑉 𝑘);
6 𝐺 := 𝐺𝑓 ′ ; /* apply 𝑓 ′ to 𝐺 */
7 𝑑|𝑅𝑘 := 𝑑′|𝑅𝑘 ; /* update labels */
8 apply global gap heuristic (§5.4); /* optional */

9 Compute the reachability 𝑣 → 𝑡 in 𝐺, ∀𝑣 (§5.4.2);

Algorithm 6: Parallel Discharging

1 Init;
2 while there are active vertices do /* a sweep */

/* discharge all regions in parallel */
3 (𝑓 ′

𝑘, 𝑑
′
𝑘) := Discharge(𝐺𝑘, 𝑑|𝑉 𝑘) ∀𝑘;

4 𝑑′|𝑅𝑘 := 𝑑′
𝑘|𝑅𝑘 ∀𝑘; /* fuse labels */

/* determine valid pairs */
5 𝛼(𝑢, 𝑣) := [[𝑑′(𝑢) ≤ 𝑑′(𝑣) + 1]] ∀(𝑢, 𝑣) ∈ (ℬ,ℬ);

/* fuse flows */

6 𝑓 ′(𝑢, 𝑣) :=
{︃
𝛼(𝑣, 𝑢)𝑓 ′

𝑘(𝑢, 𝑣) + 𝛼(𝑢, 𝑣)𝑓 ′
𝑗(𝑢, 𝑣) if (𝑢, 𝑣) ∈ (𝑅𝑘, 𝑅𝑗),

𝑓 ′
𝑘(𝑢, 𝑣) if (𝑢, 𝑣) ∈ (𝑅𝑘, 𝑅𝑘);

7 𝐺 := 𝐺𝑓 ′ ; /* apply 𝑓 ′ to 𝐺 */
8 𝑑 := 𝑑′; /* update labels */
9 global gap heuristic (§ 5.4); /* optional */

10 Compute the reachability 𝑣 → 𝑡 in 𝐺, ∀𝑣 (§5.4.2);

going “upwards”). As will be proven later, this correction restores the validity. The
actual implementation does not maintain the full network 𝐺, only the separate region
networks. This is in contrast to Delong and Boykov (2008), who perform all operations
in the global network 𝐺.

In the case when the abstract Discharge procedure is implemented by PRD, the
sequential and parallel algorithms correspond to the push-relabel approach and will be
referred to as S-PRD and P-PRD respectively. S-PRD is a sequential variant of Delong
and Boykov (2008) and P-PRD is a novel parallel variant. As was mentioned above,
the original algorithm by Delong and Boykov (2008) allows to discharge only non-
interacting regions in parallel (in this case there are no conflicts). To discharge all
regions, this approach would require sequentially selecting subsets of non-interacting
regions for processing.2 Our parallel algorithm applies ideas of Goldberg and Tarjan
(1988) to remove this limitation and process all regions in parallel.

We prove below that both S-PRD and P-PRD terminate with a valid labeling in at
most 2𝑛2 sweeps. Parallel variants of push-relabel (Goldberg 1987) have the same bound
on the number of sweeps. However, they perform much simpler sweeps, processing every

2The number of sequential phases required is equal to the minimal coloring of the region interaction
graph in a general case, i.e. 2 for bipartite graph, and so on.
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vertex only once, compared to S/P-PRD. A natural question is whether 𝑂(𝑛2) bound
cannot be tightened for S/P-PRD. In §5.8, we give the example of a graph, its partition
into two regions and a valid sequence of Push and Relabel operations, implementing
S/P-PRD which takes Ω(𝑛2) sweeps to terminate.3 The number of inter-region edges in
this example is constant, which shows that a better bound in terms of this characteristic
is not possible.

5.2.3 Complexity of Sequential Push-relabel Region Discharging

Our proof follows the main idea of the similar result for parallel push-relabel by Gold-
berg (1987). The main difference is that we try to keep Discharge operation as abstract
as possible. Indeed, it will be seen that proofs of termination of other variants follow
the same pattern, using several important properties of the Discharge operation, ab-
stracted from the respective algorithm. Unfortunately, to this end we do not have a
unified proof, so we will analyze all cases separately.

Statement 43 (Properties of PRD).
Let (𝑓 ′, 𝑑′) = PRD(𝐺𝑅, 𝑑), then
1. there are no active vertices in 𝑅 w.r.t. (𝑓 ′, 𝑑′), (optimality)
2. 𝑑′ ≥ 𝑑, 𝑑′|𝐵𝑅 = 𝑑|𝐵𝑅 , (labeling monotony)
3. 𝑑′ is valid in 𝐺𝑅

𝑓 ′ , (labeling validity)
4. 𝑓 ′(𝑢, 𝑣) > 0⇒ 𝑑′(𝑢) > 𝑑(𝑣), ∀(𝑢, 𝑣) ∈ 𝐸𝑅. (flow direction)

Proof. 1. Optimality. This is the stopping condition of PRD.
2,3. Labeling validity and monotony: labels are never decreased and the Push operation
preserves labeling validity (Goldberg and Tarjan 1988). Labels not in 𝑅𝑘 are not
modified.
4. Flow direction: let 𝑓 ′(𝑢, 𝑣) > 0, then there was a push operation from 𝑢 to 𝑣 in some
step. Let 𝑑 be the labeling in this step. We have 𝑑(𝑢) = 𝑑(𝑣) + 1. Because labels never
decrease, 𝑑′(𝑢) ≥ 𝑑(𝑢) > 𝑑(𝑣) ≥ 𝑑(𝑣).

These properties are sufficient to prove correctness and the complexity bound of S-PRD.
They are abstract from the actual sequence of Push and Relabel operation performed
by PRD and for a given pair (𝑓 ′, 𝑑′) they are easy to verify. For correctness of S-PRD,
we need to verify that it maintains a labeling that is valid globally.

Statement 44. Let 𝑑 be a valid labeling in 𝐺. Let 𝑓 ′ be a preflow in 𝐺𝑅 and 𝑑′ be
a labeling satisfying properties 2 and 3 of Statement 43. Extend 𝑓 ′ to 𝐸 by letting
𝑓 ′|𝐸∖𝐸𝑅 = 0 and extend 𝑑′ to 𝑉 by letting 𝑑′|𝑉 ∖𝑉 𝑅 = 𝑑|𝑉 ∖𝑉 𝑅 . Then 𝑑′ is valid in 𝐺𝑓 ′ .

Proof. We have that 𝑑′ is valid in 𝐺𝑅
𝑓 ′ . For edges outside the region network, (𝑢, 𝑣) ∈

(𝑉 ∖𝑅, 𝑉 ∖𝑅)𝐸 , it is 𝑓 ′(𝑢, 𝑣) = 0 and 𝑑′ coincides with 𝑑 on 𝑉 ∖𝑅. It remains to verify
the validity on the boundary edges (𝑣, 𝑢) ∈ (𝐵𝑅, 𝑅)𝐸 in the case 𝑐𝑅

𝑓 (𝑣, 𝑢) = 0 and
𝑐𝑓 (𝑣, 𝑢) > 0. These are the incoming boundary edges, which are zeroed in the network
𝐺𝑅. Because 0 = 𝑐𝑅

𝑓 (𝑣, 𝑢) = 𝑐𝑅(𝑣, 𝑢) − 𝑓(𝑣, 𝑢) = −𝑓(𝑣, 𝑢), we have 𝑐𝑓 (𝑣, 𝑢) = 𝑐(𝑣, 𝑢).
Since 𝑑 was valid in 𝐺, 𝑑(𝑣) ≤ 𝑑(𝑢) + 1. The new labeling 𝑑′ satisfies 𝑑′(𝑢) ≥ 𝑑(𝑢) and
𝑑′(𝑣) = 𝑑(𝑣). It follows that 𝑑′(𝑣) = 𝑑(𝑣) ≤ 𝑑(𝑢) + 1 ≤ 𝑑′(𝑢) + 1. Hence 𝑑′ is valid in
𝐺𝑓 ′ .

3An algorithm is said to be Ω(𝑓(𝑛)) if for some numbers 𝑐′ and 𝑛0 and all 𝑛 >= 𝑛0, the algorithm
takes at least 𝑐′𝑓(𝑛) time on some problem instance. Here we measure complexity in sweeps.
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Similar to Goldberg (1987), we introduce the potential function

Φ = max{𝑑(𝑣) | 𝑣 ∈ 𝑉, 𝑣 is active in 𝐺}. (214)

This value may increase and decrease during the algorithm run, but the total number
of times it can change is bounded. We first show that its increase is bounded for a
region discharge on 𝑅 by the total increase of the labeling.

Statement 45. Let (𝑓 ′, 𝑑′) satisfy properties 2-4 of Statement 43. Let 𝑓 ′ be extended
to 𝐸 by setting 𝑓 ′|𝐸∖𝐸𝑅 = 0 and 𝑑′ be extended to 𝑉 by setting 𝑑′|𝑉 ∖𝑉 𝑅 = 𝑑|𝑉 ∖𝑉 𝑅 . Let
𝐺′ = 𝐺𝑓 ′ and Φ′ be the new potential computed for the network 𝐺′ and labeling 𝑑′.
Then

Φ′ − Φ ≤
∑︁
𝑣∈𝑅

[𝑑′(𝑣)− 𝑑(𝑣)] . (215)

Proof. Let the maximum in the definition of Φ′ be attained at a vertex 𝑣, so Φ′ = 𝑑′(𝑣).
Then either 𝑣 /∈ 𝑉 𝑅, in which case Φ′ ≤ Φ (because the label and the excess of 𝑣 in
𝐺 and 𝐺′ are the same), or 𝑣 ∈ 𝑉 𝑅 and there exists a path (𝑣0, 𝑣1, . . . 𝑣𝑙), 𝑣𝑙 = 𝑣,
𝑣0, . . . 𝑣𝑙−1 ∈ 𝑅, such that 𝑓 ′(𝑣𝑖−1, 𝑣𝑖) > 0, 𝑖 = 1 . . . 𝑙 and 𝑣0 is active in 𝐺. We have
Φ ≥ 𝑑(𝑣0), therefore

Φ′ − Φ ≤ 𝑑′(𝑣𝑙)− 𝑑(𝑣0) =
𝑙∑︁

𝑖=1
[𝑑′(𝑣𝑖)− 𝑑′(𝑣𝑖−1)] + [𝑑′(𝑣0)− 𝑑(𝑣0)]

(𝑎)
≤

𝑙∑︁
𝑖=0

[𝑑′(𝑣𝑖)− 𝑑(𝑣𝑖)]
(𝑏)
≤

∑︁
𝑣∈𝑅∪𝐵𝑅

[𝑑′(𝑣)− 𝑑(𝑣)] (𝑐)=
∑︁
𝑣∈𝑅

[𝑑′(𝑣)− 𝑑(𝑣)] ,
(216)

where inequality (a) is due to the flow direction property (Statement 43.4) which implies
𝑑′(𝑣𝑖−1) > 𝑑(𝑣𝑖). The inequality (b) is due to monotony property (Statement 43.2) and
due to 𝑣𝑖 ⊂ 𝑅 ∪𝐵𝑅. The equality (c) is due to 𝑑′|𝐵𝑅 = 𝑑|𝐵𝑅 .

We can now state the termination.

Theorem 46. S-PRD terminates in at most 2𝑛2 sweeps.

Proof. Labeling 𝑑 does not exceed 𝑛 for every vertex. Because there are 𝑛 vertices, 𝑑
can be increased 𝑛2 times at most.

From Statement 45 it follows that the increase of Φ after the discharge of region 𝑅𝑘

is bounded by the total increase of 𝑑|𝑅𝑘 . Since regions are disjoint, the total increase
of Φ after a sweep of S-PRD is bounded by the total increase of 𝑑.

If 𝑑 has not increased during a sweep (𝑑′ = 𝑑) then Φ decreases at least by 1. Indeed,
let us consider the set of vertices having the label greater or equal to the label of the
highest active vertex, 𝐻 = {𝑣 | 𝑑(𝑣) ≥ Φ}. These vertices do not receive flow during all
discharge operations due to the flow direction property. After discharging 𝑅𝑘, there are
no active vertices in 𝑅𝑘 ∩𝐻 (Statement 43.1). Therefore, there are no active vertices
in 𝐻 after the full sweep.

In the worst case, Φ can increase by one 𝑛2 times and decrease by one 𝑛2 times.
Therefore, there are no active vertices in 𝐺 in at most 2𝑛2 sweeps and the algorithm
terminates.

When the algorithm terminates, it outputs a network 𝐺, equivalent to the initial one,
a labeling 𝑑 valid in 𝐺 and guarantees that there are no active vertices w.r.t. 𝑑. This
implies that in the current network 𝐺 there are no paths from the vertices having
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positive excess to the sink and the cut (𝑇 , 𝑇 )𝐸 , with 𝑇 = {𝑣 | 𝑣 → 𝑡 in 𝐺} is one of the
minimum cuts. The issue, how to compute the reachability 𝑣 → 𝑡 in 𝐺 in a distributed
fashion, utilizing 𝑑, rather than by breadth-first search in 𝐺 is discussed in §5.4.2. This
is the purpose of the last step in both of the algorithms.

5.2.4 Complexity of Parallel Push-relabel Region Discharging

We will now prove the validity and termination of the parallel algorithm using the
results of previous section. Properties similar to Statement 43 will be proven for the
fused flow and labeling (constructed at step 6 of Algorithm 6). The bound on the
increase of the potential will follow for the whole network as if it was a single region.

Statement 47. Let 𝑑 be a valid labeling in the beginning of a sweep of P-PRD. Then
the pair of the fused flow and the labeling, (𝑓 ′, 𝑑′), satisfies:

1. 𝑑′ ≥ 𝑑; (labeling monotony)
2. 𝑑′ is valid in 𝐺𝑓 ′ ; (labeling validity)
3. 𝑓 ′(𝑢, 𝑣) > 0⇒ 𝑑′(𝑢) > 𝑑(𝑣) ∀(𝑢, 𝑣) ∈ 𝐸. (flow direction)

Proof.
1. We have 𝑑′|𝑅𝑘 ≥ 𝑑|𝑅𝑘 for all 𝑘.
2. We have to prove the validity for the boundary edges, where the flow and the labeling
are fused from different regions. It is sufficient to study the two regions case. Denote
the regions 𝑅1 and 𝑅2. The situation is completely symmetric w.r.t. orientation of
a boundary edge (𝑢, 𝑣). Let 𝑢 ∈ 𝑅1 and 𝑣 ∈ 𝑅2. Let only 𝑑′(𝑣) ≤ 𝑑′(𝑢) + 1 be
satisfied and not 𝑑′(𝑢) ≤ 𝑑′(𝑣) + 1. By the construction in step 6 of Algorithm 6, flow
𝑓2 is canceled and 𝑓 ′(𝑢, 𝑣) = 𝑓 ′

1(𝑢, 𝑣) ≥ 0. Suppose 𝑐𝑓 ′
1
(𝑢, 𝑣) > 0, then we have that

𝑑′
1(𝑢) ≤ 𝑑′

1(𝑣)+1, because 𝑑′
1 is valid in 𝐺1

𝑓 ′
1
. It follows that 𝑑′(𝑢) = 𝑑′

1(𝑢) ≤ 𝑑′
1(𝑣)+1 =

𝑑(𝑣)+1 ≤ 𝑑′
2(𝑣)+1 = 𝑑′(𝑣)+1, where we also used labeling monotonicity property. The

inequality 𝑑′(𝑢) ≤ 𝑑′(𝑣) + 1 is a contradiction, therefore it must be that 𝑐𝑓 ′(𝑢, 𝑣) = 0.
The labeling 𝑑′ is valid on (𝑢, 𝑣) in this case. Note that inequalities 𝑑′(𝑣) ≤ 𝑑′(𝑢) + 1
and 𝑑′(𝑢) ≤ 𝑑′(𝑣) + 1 cannot be violated simultaneously. In the remaining case, when
both inequalities are satisfied, the labeling is valid for arbitrary flow on (𝑢, 𝑣), so no
flow is canceled in the flow fusion step.
3. If 𝑓 ′(𝑢, 𝑣) > 0 then 𝑓 ′

𝑘(𝑢, 𝑣) > 0 and there was a push operation from 𝑢 to 𝑣 in
the discharge of region 𝑅𝑘 ∋ 𝑢. Let 𝑑𝑘 be the labeling in 𝐺𝑘 on this step. We have
𝑑′(𝑢) ≥ 𝑑𝑘(𝑢) = 𝑑𝑘(𝑣) + 1 ≥ 𝑑(𝑣) + 1 > 𝑑(𝑣).

Theorem 48. P-PRD terminates in 2𝑛2 sweeps at most.

Proof. As before, the total increase of 𝑑 is at most 𝑛2. As shown above, the labeling
monotony, labeling validity and flow direction are satisfied for the fused flow and labeling
(𝑓 ′, 𝑑′) on the region 𝑅 = 𝑉 ∖{𝑠, 𝑡}. Applying Statement 45, we get that the total
increase of the potential is bounded from above by the total increase of 𝑑 during a
sweep.

If 𝑑 has not increased during a sweep (𝑑′ = 𝑑) then 𝛼(𝑢, 𝑣) = 1 for all (𝑢, 𝑣) ∈ (ℬ,ℬ)𝐸

(all boundary pairs are valid). The flow direction property implies that the flow goes
only “downwards” the labeling. So no flow is canceled in the fusion step. Let 𝐻 =
{𝑣 | 𝑑(𝑣) ≥ Φ}. These vertices are above any active vertices, so they cannot receive
flow. After the sweep, all active vertices that were in 𝐻, are discharged and must
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Figure 15 (a) Illustration of the region distance. (b) Illustration of Lemma 51: augmentation
on paths from 𝑥 to 𝑢 or from 𝑣 to 𝑦 preserves 𝑋 9 𝑌 , but not the augmentation on the red
path.

become inactive. Because there is no active vertices with label Φ or above left, it is
Φ′ < Φ. It follows that the algorithm will terminate in 2𝑛2 sweeps at most.

5.3 Augmented path Region Discharge

In this section, we introduce the core of our new algorithm, which combines path
augmentation and push-relabel approaches. We will give a new definition to the distance
function, the validity of a labeling and introduce the new Discharge operation to be
used within the generic sequential and parallel algorithms (Algorithms 5 and 6). With
these modifications the algorithms will be proven correct and will fulfill a tighter bound
on the number of sweeps.

5.3.1 A New Distance Function

Consider the fixed partition (𝑅𝑘)𝐾
𝑘=1. Let us introduce the distance function that counts

only inter-region edges and not inner edges. The region distance 𝑑*ℬ(𝑢) in 𝐺 is the
minimal number of inter-region edges contained in a path from 𝑢 to 𝑡, or |ℬ| if no such
path exists:

𝑑*ℬ(𝑢) =

⎧⎨⎩ min
𝑃 =((𝑢,𝑢1),...,(𝑢𝑟,𝑡))

|𝑃 ∩ (ℬ,ℬ)𝐸 | if 𝑢→ 𝑡 ,

|ℬ| if 𝑢9 𝑡 .
(217)

This distance corresponds well to the number of region discharge operations required
to transfer the excess to the sink (see Figure 15(a)).

Statement 49. If 𝑢→ 𝑡 then 𝑑*ℬ(𝑢) < |ℬ|.

Proof. Let 𝑃 be a path from 𝑢 to 𝑡 given as a sequence of edges. If 𝑃 contains a loop
then it can be removed from 𝑃 and |𝑃 ∩ (ℬ,ℬ)𝐸 | will not increase. A path without
loops goes through each vertex once at most. For ℬ ⊂ 𝑉 , there are |ℬ| − 1 edges in the
path at most that have both endpoints in ℬ.

We now let 𝑑∞ = |ℬ| and redefine a valid labeling w.r.t. the new distance. A labeling
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Procedure ARD(𝐺𝑅,𝑑)

/* assume 𝑑 : 𝑉 𝑅 → {0, . . . , 𝑑∞} valid in 𝐺𝑅 */
1 for 𝑖 = 0, 1, . . . , 𝑑∞ do /* stage 𝑖 */
2 𝑇𝑖 = {𝑡} ∪ {𝑣 ∈ 𝐵𝑅 | 𝑑(𝑣) < 𝑖};
3 Augment(𝑅, 𝑇𝑖);

/* Region-relabel */

4 𝑑(𝑢) :=

⎧⎪⎪⎨⎪⎪⎩
min{𝑖 |𝑢→ 𝑇𝑖} if 𝑢 ∈ 𝑅 , 𝑢→ 𝑇𝑑∞ ,

𝑑∞ if 𝑢 ∈ 𝑅 , 𝑢9 𝑇𝑑∞ ,

𝑑(𝑢) if 𝑢 ∈ 𝐵𝑅.

Procedure Augment(𝑋,𝑌 )

1 while there exist a path (𝑣0, 𝑣1, . . . , 𝑣𝑙) such that
2 𝑐𝑓 (𝑣𝑖−1, 𝑣𝑖) > 0, 𝑒𝑓 (𝑣0) > 0, 𝑣0 ∈ 𝑋, 𝑣𝑙 ∈ 𝑌 do
3 augment Δ = min(𝑒𝑓 (𝑣0),min

𝑖
𝑐𝑓 (𝑣𝑖−1, 𝑣𝑖)) units along the path.

𝑑 : 𝑉 → {0, . . . , 𝑑∞} is valid in 𝐺 if 𝑑(𝑡) = 0 and for all (𝑢, 𝑣) ∈ 𝐸 such that 𝑐𝑓 (𝑢, 𝑣) > 0:

𝑑(𝑢) ≤ 𝑑(𝑣) + 1 if (𝑢, 𝑣) ∈ (ℬ,ℬ)𝐸 ,

𝑑(𝑢) ≤ 𝑑(𝑣) if (𝑢, 𝑣) /∈ (ℬ,ℬ)𝐸 .
(218)

Statement 50. A valid labeling 𝑑 is a lower bound on the region distance 𝑑*ℬ.

Proof. If 𝑢 9 𝑡 then 𝑑(𝑢) ≤ 𝑑*ℬ. Otherwise, let 𝑃 = ((𝑢, 𝑣1), . . . , (𝑣𝑙, 𝑡)) be one of the
shortest paths w.r.t. 𝑑*ℬ, i.e. 𝑑*ℬ(𝑢) = |𝑃 ∩ (ℬ,ℬ)𝐸 |. Applying the validity property to
each edge in this path, we have 𝑑(𝑢) ≤ 𝑑(𝑡) + |𝑃 ∩ (ℬ,ℬ)𝐸 | = 𝑑*ℬ(𝑢).

5.3.2 A New Region Discharge

In this subsection, reachability relations “→”, “9”, residual paths, and labeling validity
will be understood in the region network 𝐺𝑅 or its residual 𝐺𝑅

𝑓 .
The new Discharge operation, called Augmented path Region Discharge (ARD),

works as follows. It first pushes the excess to the sink along augmenting paths inside
the network 𝐺𝑅. When it is no longer possible, it continues to augment paths to
vertices in the region boundary 𝐵𝑅 in the order of their increasing labels. This is
represented by the sequence of nested sets 𝑇0 = {𝑡}, 𝑇1 = {𝑡} ∪ {𝑣 ∈ 𝐵𝑅 | 𝑑(𝑣) < 1},
. . . , 𝑇𝑑∞ = {𝑡} ∪ {𝑣 ∈ 𝐵𝑅 | 𝑑(𝑣) < 𝑑∞}. Set 𝑇𝑖 is the destination of augmentations
in stage 𝑖. As we prove below, in stage 𝑖 > 0 residual paths may exist only to the set
𝑇𝑖∖𝑇𝑖−1 = {𝑣 | 𝑑(𝑣) = 𝑖− 1}.

The labels on the boundary 𝑑|𝐵𝑅 remain fixed during ARD and the labels 𝑑|𝑅 inside
the region do not participate in augmentations and therefore are updated only at the
end.

We claim that ARD terminates with no active vertices inside the region, preserves
validity and monotonicity of the labeling, and pushes flow from higher labels to lower
labels w.r.t. the new labeling. These properties will be required to prove finite termi-
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Figure 16 (a) Reachability relations in the network 𝐺𝑅
𝑓 at the end of stage 1 of ARD:

{𝑣 | 𝑒𝑓 (𝑣) > 0} 9 𝑇1; 𝑇𝑑∞∖𝑇1 9 𝑅. (b) Example of a path in the network 𝐺𝑅
𝑓 for which by

Corollary 54 it must be 𝑑(𝑣) ≤ 𝑑(𝑤). Note, such a path is not possible at the beginning of
ARD, but in the middle it may exist since residual capacities of edges (𝐵𝑅, 𝑅)𝐸 may become
non-zero.

nation and correctness of S-ARD. Before we prove them (Statement 57) we need the
following intermediate results:
∙ Properties of the network 𝐺𝑅

𝑓 maintained by ARD (Statement 52, Corollaries 53
and 54).
∙ Properties of valid labellings in the network 𝐺𝑅

𝑓 (Statement 55).
∙ Properties of the labeling constructed by region-relabel (line 4 of ARD) in the

network 𝐺𝑅
𝑓 (Statement 56).

Lemma 51. Let 𝑋,𝑌 ⊂ 𝑉 𝑅, 𝑋 ∩ 𝑌 = ∅, 𝑋 9 𝑌 . Then 𝑋 9 𝑌 is preserved after i)
augmenting a path (𝑥, . . . , 𝑣) with 𝑥 ∈ 𝑋 and 𝑣 ∈ 𝑉 𝑅; ii) augmenting a path (𝑣, . . . , 𝑦)
with 𝑦 ∈ 𝑌 and 𝑣 ∈ 𝑉 𝑅.

Proof. (See Figure 15(b)). Let 𝒳 be the set of vertices reachable from 𝑋. Let 𝒴 be
the set of vertices from which 𝑌 is reachable. Clearly 𝒳 ∩ 𝒴 = ∅, otherwise 𝑋 →
𝑌 . Therefore, the cut (𝒳 ,𝒳 )𝐸 separates 𝑋 and 𝑌 and has all edge capacities equal
zero. Any residual path starting in 𝑋 or ending in 𝑌 cannot cross the cut and its
augmentation cannot change the edges of the cut. Hence, 𝑋 and 𝑌 will stay separated.

Statement 52. Let 𝑣 ∈ 𝑉 𝑅 and 𝑣 9 𝑇𝑎 in 𝐺𝑓 in the beginning of stage 𝑖0 of ARD,
where 𝑎, 𝑖0 ∈ {0, 1, . . . 𝑑∞}. Then 𝑣 9 𝑇𝑎 holds until the end of ARD, i.e., during all
stages 𝑖 ≥ 𝑖0.

Proof. We need to show that 𝑣 9 𝑇𝑎 is not affected by augmentations performed by
ARD. If 𝑖0 ≤ 𝑎, we first prove 𝑣 9 𝑇𝑎 holds during stages 𝑖0 ≤ 𝑖 ≤ 𝑎. Consider
augmentation of a path (𝑢0, 𝑢1, . . . , 𝑢𝑙), 𝑢0 ∈ 𝑅, 𝑢𝑙 ∈ 𝑇𝑖 ⊂ 𝑇𝑎, 𝑒𝑓 (𝑢0) > 0. Assume
𝑣 9 𝑇𝑎 before augmentation. By Lemma 1 with 𝑋 = {𝑣}, 𝑌 = 𝑇𝑎 (noting that 𝑋 9 𝑌
and the augmenting path ends in 𝑌 ), after the augmentation 𝑣 9 𝑇𝑎. By induction, it
holds till the end of stage 𝑎 and hence in the beginning of stage 𝑎+ 1.

We can assume now that 𝑖0 > 𝑎. Let 𝐴 = {𝑢 ∈ 𝑅 | 𝑒𝑓 (𝑢) > 0}. At the end of stage
𝑖0− 1, we have 𝐴9 𝑇𝑖0−1 ⊃ 𝑇𝑎 by construction. Consider augmentation in stage 𝑖0 on
a path (𝑢0, 𝑢1 . . . , 𝑢𝑙), 𝑢0 ∈ 𝑅, 𝑢𝑙 ∈ 𝑇𝑖0 , 𝑒𝑓 (𝑢0) > 0. By construction, 𝑢0 ∈ 𝐴. Assume
{𝑣} ∪ 𝐴 9 𝑇𝑎 before augmentation. Apply Lemma 51 with 𝑋 = {𝑣} ∪ 𝐴, 𝑌 = 𝑇𝑎 (we
have 𝑋 9 𝑌 and 𝑢0 ∈ 𝐴 ⊂ 𝑋). After augmentation it is 𝑋 9 𝑇𝑎. By induction,
𝑋 9 𝑇𝑎 till the end of stage 𝑖0. By induction on stages, 𝑣 9 𝑇𝑎 until the end of the
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ARD procedure.

Corollary 53. If 𝑤 ∈ 𝐵𝑅 then 𝑤 9 𝑇𝑑(𝑤) throughout the ARD procedure.

Proof. At initialization, it is fulfilled by construction of 𝐺𝑅 due to 𝑐𝑅((𝐵𝑅, 𝑅)𝐸) = 0.
It holds then during ARD by Statement 52.

In particular, we have 𝐵𝑅 9 𝑡 during ARD.

Corollary 54. Let (𝑢, 𝑣1 . . . 𝑣𝑙, 𝑤) be a residual path in 𝐺𝑅
𝑓 from 𝑢 ∈ 𝑅 to 𝑤 ∈ 𝐵𝑅

and let 𝑣𝑟 ∈ 𝐵𝑅 for some 𝑟. Then 𝑑(𝑣𝑟) ≤ 𝑑(𝑤).

Proof. We have 𝑣𝑟 9 𝑇𝑑(𝑣𝑟). Suppose 𝑑(𝑤) < 𝑑(𝑣𝑟), then 𝑤 ∈ 𝑇𝑑(𝑣𝑟) and because 𝑣𝑟 → 𝑤
it is 𝑣𝑟 → 𝑇𝑑(𝑣𝑟) which is a contradiction.

The properties of the network 𝐺𝑅
𝑓 established by Statement 52 and Corollary 54 are

illustrated in Figure 16.

Statement 55. Let 𝑑 be a valid labeling, 𝑑(𝑢) ≥ 1, 𝑢 ∈ 𝑅. Then 𝑢9 𝑇𝑑(𝑢)−1.

Proof. Suppose 𝑢 → 𝑇0. There exist a residual path (𝑢, 𝑣1 . . . 𝑣𝑙, 𝑡), 𝑣𝑖 ∈ 𝑅 (by Corol-
lary 53 it cannot happen that 𝑣𝑖 ∈ 𝐵𝑅). By validity of 𝑑 we have 𝑑(𝑢) ≤ 𝑑(𝑣1) ≤ · · · ≤
𝑑(𝑣𝑙) ≤ 𝑑(𝑡) = 0, which is a contradiction.

Suppose 𝑑(𝑢) > 1 and 𝑢 → 𝑇𝑑(𝑢)−1. Because 𝑢 9 𝑇0, it must be that 𝑢 → 𝑤,
𝑤 ∈ 𝐵𝑅 and 𝑑(𝑤) < 𝑑(𝑢) − 1. Let (𝑣0 . . . 𝑣𝑙) be a residual path with 𝑣0 = 𝑢 and
𝑣𝑙 = 𝑤. Let 𝑟 be the minimal number such that 𝑣𝑟 ∈ 𝐵𝑅. By validity of 𝑑 we have
𝑑(𝑢) ≤ 𝑑(𝑣1) ≤ · · · ≤ 𝑑(𝑣𝑟−1) ≤ 𝑑(𝑣𝑟) + 1. By Corollary 54 we have 𝑑(𝑣𝑟) ≤ 𝑑(𝑤), hence
𝑑(𝑢) ≤ 𝑑(𝑤) + 1, which is a contradiction.

Statement 56. For 𝑑 computed on line 4 of Procedure ARD and any 𝑢 ∈ 𝑅 it holds:
1. 𝑑 is valid;
2. 𝑢9 𝑇𝑎 ⇔ 𝑑(𝑢) ≥ 𝑎+ 1.

Proof.
1. Let (𝑢, 𝑣) ∈ 𝐸𝑅 and 𝑐(𝑢, 𝑣) > 0. Clearly 𝑢→ 𝑣. Consider four cases:
∙ case 𝑢 ∈ 𝑅, 𝑣 ∈ 𝐵𝑅: Then 𝑢→ 𝑇𝑑(𝑣)+1, hence 𝑑(𝑢) ≤ 𝑑(𝑣) + 1.
∙ case 𝑢 ∈ 𝑅, 𝑣 ∈ 𝑅: If 𝑣 9 𝑇𝑑∞ then 𝑑(𝑣) = 𝑑∞ and 𝑑(𝑢) ≤ 𝑑(𝑣). If 𝑣 → 𝑇𝑑∞ ,

then 𝑑(𝑣) = min{𝑖 | 𝑣 → 𝑇𝑖}. Let 𝑖 = 𝑑(𝑣), then 𝑣 → 𝑇𝑖 and 𝑢 → 𝑇𝑖, therefore
𝑑(𝑢) ≤ 𝑖 = 𝑑(𝑣).
∙ case 𝑢 ∈ 𝐵𝑅, 𝑣 ∈ 𝑅: By Corollary 53, 𝑢 9 𝑇𝑑(𝑢). Because 𝑢→ 𝑣, it is 𝑣 9 𝑇𝑑(𝑢),

therefore 𝑑(𝑣) ≥ 𝑑(𝑢) + 1 and 𝑑(𝑢) ≤ 𝑑(𝑣)− 1 ≤ 𝑑(𝑣) + 1.
∙ case when 𝑢 = 𝑡 or 𝑣 = 𝑡 is trivial.

2. The “⇐” direction follows by Statement 55 applied to 𝑑, which is a valid labeling.
The “⇒” direction: we have 𝑢 9 𝑇𝑎 and 𝑑(𝑢) ≥ min{𝑖 |𝑢 → 𝑇𝑖} = min{𝑖 > 𝑎 |𝑢 →
𝑇𝑖} ≥ 𝑎+ 1.

Statement 57 (Properties of ARD). Let 𝑑 be a valid labeling in 𝐺𝑅. The output
(𝑓 ′, 𝑑′) of ARD satisfies:

1. There are no active vertices in 𝑅 w.r.t. (𝑓 ′, 𝑑′); (optimality)
2. 𝑑′ ≥ 𝑑, 𝑑′|𝐵𝑅 = 𝑑|𝐵𝑅 ; (labeling monotonicity)
3. 𝑑′ is valid in 𝐺𝑅

𝑓 ′ ; (labeling validity)
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4. 𝑓 ′ is a sum of path flows, where each path is from a vertex 𝑢 ∈ 𝑅 to a vertex
𝑣 ∈ {𝑡} ∪𝐵𝑅 and it is 𝑑′(𝑢) > 𝑑(𝑣) if 𝑣 ∈ 𝐵𝑅. (flow direction)

Proof.
1. In the last stage, the ARD procedure augments all paths to 𝑇𝑑∞ . After this aug-
mentation a vertex 𝑢 ∈ 𝑅 either has excess 0 or there is no residual path to 𝑇𝑑∞ and
hence 𝑑′(𝑢) = 𝑑∞ by construction.
2. For 𝑑(𝑢) = 0, we trivially have 𝑑′(𝑢) ≥ 𝑑(𝑢). Let 𝑑(𝑢) = 𝑎+ 1 > 0. By Statement 55,
𝑢 9 𝑇𝑎 in 𝐺𝑅 and it holds also in 𝐺𝑅

𝑓 ′ by Statement 52. From Statement 56.2, we
conclude that 𝑑′(𝑢) ≥ 𝑎+ 1 = 𝑑(𝑢). The equality 𝑑′|𝐵𝑅 = 𝑑|𝐵𝑅 is by construction.
3. Proven by Statement 56.1.
4. Consider a path from 𝑢 to 𝑣 ∈ 𝐵𝑅, augmented in stage 𝑖 > 0. It follows that
𝑖 = 𝑑(𝑣) + 1. At the beginning of stage 𝑖, it is 𝑢 9 𝑇𝑖−1. By Statement 52, this is
preserved till the end of ARD. By Statement 56.2, 𝑑′(𝑢) ≥ 𝑖 = 𝑑(𝑣) + 1 > 𝑑(𝑣).

Algorithms 5 and 6 for Discharge being ARD will be referred to as S-ARD and P-ARD,
respectively.

5.3.3 Complexity of Sequential Augmented path Region Discharging

Statement 44 holds for S-ARD as well, so S-ARD maintains a valid labeling.

Theorem 58. S-ARD terminates in 2|ℬ|2 + 1 sweeps at most.

Proof. The value of 𝑑(𝑣) does not exceed |ℬ| and 𝑑 is non-decreasing. The total increase
of 𝑑|ℬ during the algorithm is at most |ℬ|2.

After the first sweep, active vertices are only in ℬ. Indeed, discharging region 𝑅𝑘

makes all vertices 𝑣 ∈ 𝑅𝑘 inactive and only vertices in ℬ may become active. So by the
end of the sweep, all vertices 𝑉 ∖ℬ are inactive.

Therefore, after the first sweep, the potential can be equivalently written as

Φ = max{𝑑(𝑣) | 𝑣 ∈ ℬ, 𝑣 is active in 𝐺} . (219)

We will prove the following two cases for each sweep but the first one:
1. If 𝑑|ℬ is increased then the increase in Φ is no more than total increase in 𝑑|ℬ.

Consider discharge of 𝑅𝑘. Let Φ be the value before ARD on 𝑅𝑘 and Φ′ the value
after. Let Φ′ = 𝑑′(𝑣). It must be that 𝑣 is active in 𝐺′. If 𝑣 /∈ 𝑉 𝑘, then 𝑑(𝑣) = 𝑑′(𝑣)
and 𝑒(𝑣) = 𝑒𝑓 ′(𝑣) so Φ ≥ 𝑑(𝑣) = Φ′.
Let 𝑣 ∈ 𝑉 𝑘. After the discharge, vertices in 𝑅𝑘 are inactive, so 𝑣 ∈ 𝐵𝑘 and
it is 𝑑′(𝑣) = 𝑑(𝑣). If 𝑣 was active in 𝐺 then Φ ≥ 𝑑(𝑣) and we have Φ′ − Φ ≤
𝑑′(𝑣) − 𝑑(𝑣) = 0. If 𝑣 was not active in 𝐺, there must exist an augmenting path
from a vertex 𝑣0 to 𝑣 such that 𝑣0 ∈ 𝑅𝑘∩ℬ was active in 𝐺. For this path, the flow
direction property implies 𝑑′(𝑣0) ≥ 𝑑(𝑣). We now have Φ′ − Φ ≤ 𝑑′(𝑣) − 𝑑(𝑣0) =
𝑑(𝑣)− 𝑑(𝑣0) ≤ 𝑑′(𝑣0)− 𝑑(𝑣0) ≤

∑︀
𝑣∈𝑅𝑘∩ℬ[𝑑′(𝑣)− 𝑑(𝑣)]. Summing over all regions,

we get the result.
2. If 𝑑|ℬ is not increased then Φ is decreased at least by 1. We have 𝑑′ = 𝑑. Let us

consider the set of vertices having the highest active label or above, 𝐻 = {𝑣| 𝑑(𝑣) ≥
Φ}. These vertices do not receive the flow during all discharge operations due to
the flow direction property. After the discharge of 𝑅𝑘, there are no active vertices
left in 𝑅𝑘 ∩𝐻 (Statement 57.1). After the full sweep, there are no active vertices
in 𝐻.
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In the worst case, starting from sweep 2, Φ can increase by one |ℬ|2 times and decrease
by one |ℬ2| times. There are no active vertices left in at most 2|ℬ|2 + 1 sweeps.

On termination, we have that the labeling is valid and there are no active vertices in
𝐺. Therefore, the accumulated preflow is maximal and a minimum cut can be found by
analyzing the reachability in 𝐺 (see discussion for S-PRD §5.2.3 and implementation
details §5.4.2).

5.3.4 Complexity of Parallel Augmented Path Region Discharging

Statement 59 (Properties of Parallel ARD). Let 𝑑 be a valid labeling at the beginning
of a sweep of P-ARD. The pair of fused flow and labeling (𝑓 ′, 𝑑′) satisfies:

1. Vertices in 𝑉 ∖ℬ are not active in 𝐺𝑓 ′ ; (optimality)
2. 𝑑′ ≥ 𝑑; (labeling monotony)
3. 𝑑′ is valid; (labeling validity)
4. 𝑓 ′ is the sum of path flows, where each path is from a vertex 𝑢 ∈ 𝑉 to a vertex
𝑣 ∈ ℬ, satisfying 𝑑′(𝑢) ≥ 𝑑(𝑣). (weak flow direction)

Proof.
1. For each 𝑘 there are no active vertices in 𝑅𝑘 w.r.t. (𝑓 ′

𝑘, 𝑑
′
𝑘). The fused flow 𝑓 ′ may

differ from 𝑓 ′
𝑘 only on the boundary edges (𝑢, 𝑣) ∈ (ℬ,ℬ)𝐸 . So there are no active

vertices in 𝑉 ∖ℬ w.r.t. (𝑓 ′, 𝑑′).
2. By construction.
3. Same as in P-PRD.
4. Consider the augmentation of a path from 𝑢 ∈ 𝑅𝑘 to 𝑣 ∈ 𝐵𝑘 during ARD on 𝐺𝑘 and
canceling of the flow on the last edge of the path during the flow fusion step. Let the last
edge of the path be (𝑤, 𝑣). We need to prove that 𝑑′(𝑢) ≥ 𝑑(𝑤). Let 𝑑 be the labeling in
𝐺𝑘 right before augmentation, as if it was computed by region-relabel. Because 𝑑 is valid
it must be that 𝑑(𝑤) ≤ 𝑑(𝑣) + 1. We have 𝑑′

𝑘(𝑢) > 𝑑(𝑣) = 𝑑(𝑣) ≥ 𝑑(𝑤)− 1 ≥ 𝑑(𝑤)− 1.
So 𝑑′(𝑢) ≥ 𝑑(𝑤).

Theorem 60. P-ARD terminates in 2|ℬ|2 + 1 sweeps.

Proof. As before, total increase of 𝑑|ℬ is at most |ℬ|2.
After the first sweep, active vertices are only in ℬ by Statement 59.1.
For each sweep after the first one:
∙ If 𝑑|ℬ is increased then increase in Φ is no more than the total increase of 𝑑|ℬ. Let

Φ′ be the value of the potential in the network 𝐺′ = 𝐺𝑓 ′ . Let Φ′ = 𝑑′(𝑣). It must
be that 𝑣 is active in 𝐺′ and 𝑣 ∈ ℬ.
If 𝑣 was active in 𝐺 then Φ ≥ 𝑑(𝑣) and we have Φ′ − Φ ≤ 𝑑′(𝑣)− 𝑑(𝑣).
If 𝑣 was not active in 𝐺 then there must exist a path flow in 𝑓 ′ from a vertex 𝑣0 to 𝑣
such that 𝑣0 ∈ ℬ was active in 𝐺. For this path, the weak flow direction property
implies 𝑑′(𝑣0) ≥ 𝑑(𝑣). We have Φ′−Φ ≤ 𝑑′(𝑣)−𝑑(𝑣0) = 𝑑′(𝑣)−𝑑(𝑣)+𝑑(𝑣)−𝑑(𝑣0) ≤
𝑑′(𝑣)− 𝑑(𝑣) + 𝑑′(𝑣0)− 𝑑(𝑣0) ≤

∑︀
𝑣∈ℬ[𝑑′(𝑣)− 𝑑(𝑣)].

∙ If 𝑑|ℬ is not increased then Φ is decreased at least by 1. In this case, 𝑓 ′ satisfies
the strong flow direction property and the proof of Theorem 58 applies.

After total of 2|ℬ|2 + 1 sweeps, there are no active vertices left.
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5.4 Implementation

In this section, we first discuss heuristics for improving the distance labeling (making it
closer to the true distance at a cheap cost) commonly used in the push-relabel frame-
work. They are essential for the practical performance of the algorithms. We then
describe our base implementations of S-ARD/S-PRD and the solvers they rely on. In
the next section, we describe an efficient implementation of ARD, which is more so-
phisticated but has a much better practical performance. All of the labeling heuristics
can only increase the labels and preserve validity of the labeling. Therefore, they do
not break theoretical properties of the respective algorithms.

5.4.1 Heuristics

Region-relabel heuristic. This heuristic computes labels 𝑑|𝑅 of the region vertices,
given the distance estimate on the boundary, 𝑑|𝐵𝑅 . There is a slight difference be-
tween PRD and ARD variants (using distance 𝑑* and 𝑑*ℬ, resp.), displayed by the
corresponding “if” conditions.

Procedure 𝑑|𝑅 = Region-relabel(𝐺𝑅,𝑑|𝐵𝑅)

/* init */
1 𝑑(𝑡) := 0; 𝑂 := {𝑡}; 𝑑|𝑅 := 𝑑∞; 𝑑c := 0;
2 if ARD then 𝑑|𝐵𝑅 := 𝑑|𝐵𝑅 + 1; /* (for ARD) */

/* 𝑂 is a list of open vertices, having the current label 𝑑c */
3 𝑑max := max{𝑑(𝑤) |𝑤 ∈ 𝐵𝑅, 𝑑(𝑤) < 𝑑∞};
4 while 𝑂 ̸= ∅ or 𝑑c < 𝑑max do

/* if 𝑂 is empty raise 𝑑c to the next seed */
5 if 𝑂 = ∅ then 𝑑c := min{𝑑(𝑤) |𝑤 ∈ 𝐵𝑅, 𝑑(𝑤) > 𝑑c, 𝑑(𝑤) < 𝑑∞};

/* add seeds to the open set */
6 𝑂 := 𝑂 ∪ {𝑤 ∈ 𝐵𝑅 | 𝑑(𝑤) = 𝑑c};

/* find all unlabeled vertices from which 𝑂 can be reached */
7 𝑂 := {𝑢 ∈ 𝑅 | (𝑢, 𝑣) ∈ 𝐸𝑅, 𝑣 ∈ 𝑂, 𝑐(𝑢, 𝑣) > 0, 𝑑(𝑢) = 𝑑∞};
8 if PRD then 𝑑c ← 𝑑c + 1; /* (for PRD) */
9 𝑑|𝑂 := 𝑑c; /* label the new open vertices */

10 if ARD then 𝑑|𝐵𝑅 := 𝑑|𝐵𝑅 − 1; /* (for ARD) */

In the implementation, the set of boundary vertices is sorted in advance, so that
Region-relabel runs in 𝑂(|𝐸𝑅| + |𝑉 𝑅| + |𝐵𝑅| log |𝐵𝑅|) time and uses 𝑂(|𝑉 𝑅|) space.
The resulting labeling 𝑑′ is valid and satisfies 𝑑′ ≥ 𝑑 for arbitrary valid 𝑑.

Global gap heuristic. Let us briefly explain the global gap heuristic (Cherkassky
and Goldberg 1994). It is a sufficient condition to identify that the sink is unreachable
from a set of vertices. Let there be no vertices with label 𝑔 > 0: ∀𝑣 ∈ 𝑉 𝑑(𝑣) ̸= 𝑔, and let
𝑑(𝑢) > 𝑔. For a valid labeling 𝑑, it follows that there is no vertex 𝑣 for which 𝑐(𝑢, 𝑣) > 0
and 𝑑(𝑣) < 𝑔. Assuming there is such a vertex, we will have 𝑑(𝑢) ≤ 𝑑(𝑣) + 1 ≤ 𝑔, which
is a contradiction. Therefore the sink is unreachable from all vertices {𝑢 | 𝑑(𝑢) > 𝑔}
and their labels may be set to 𝑑∞.

Region gap heuristic of Delong and Boykov (2008) detects if there are no vertices
inside region 𝑅 having label 𝑔 > 0. Such vertices can be connected to the sink in the
whole network only through one of the boundary vertices, so they may be relabeled up
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to the closest boundary label. Here is the algorithm4:

Procedure 𝑑|𝑅 = Region-gap(𝐺𝑅,𝑑|𝑅∪𝐵𝑅 , 𝑔)

/* Input: region network 𝐺𝑅, labeling 𝑑, */
/* gap 𝑔 such that ∀𝑣 ∈ 𝑅 𝑑(𝑣) ̸= 𝑔. */

1 𝑑next := min{𝑑(𝑤) |𝑤 ∈ 𝐵𝑅, 𝑑(𝑤) > 𝑔.};
2 for 𝑣 ∈ 𝑅 such that 𝑔 < 𝑑(𝑣) < 𝑑next do
3 𝑑(𝑣) := 𝑑next+1;

If no boundary vertex is above the gap, then 𝑑next = 𝑑∞ in step 1 and all vertices
above the gap are disconnected from the sink in the network 𝐺. Interestingly, this
sufficient condition does not imply a global gap. In our implementation of PRD, we
detect the region-gap efficiently after every vertex relabel operation by discovering an
empty bucket (see the implementation of S/P-PRD in §5.4.5).

5.4.2 Reachability/Exact distance Computation

At the termination of our algorithms (S/P-PRD, S/P-ARD), we have found a maximum
preflow and we know that (𝑇 , 𝑇 )𝐸 , defined by 𝑇 = {𝑣 | 𝑣 → 𝑡 in 𝐺}, is a minimum cut.
However, we only know the lower bound 𝑑 on the true distance 𝑑* (resp. 𝑑*ℬ). Therefore
the reachability relation 𝑣 → 𝑡 is not fully known at this point. When 𝑑(𝑣) = 𝑑∞, we
are sure that 𝑣 9 𝑡 in 𝐺 and hence 𝑣 must be in the source set of a minimum cut,
but if 𝑑(𝑣) < 𝑑∞, it is still possible that 𝑣 9 𝑡 in 𝐺. Therefore, we need to do some
extra work to make 𝑑 the exact distance and in this way to find the minimum cut. For
this purpose we execute several extra sweeps, performing only region-relabel and gap
heuristics until labels stop changing. We claim that at most 𝑑∞ such extra sweeps are
needed. We give a proof for the case of push-relabel distance.

Proof. Let us call labels 𝑑(𝑣) loose if 𝑑(𝑣) < 𝑑*(𝑣) and exact if 𝑑(𝑣) = 𝑑*(𝑣). Consider
the lowest loose label, 𝐿 = min{𝑑(𝑣) | 𝑑(𝑣) < 𝑑*(𝑣)} and the set of loose vertices having
this label, ℒ = {𝑣 |𝐿 = 𝑑(𝑣) < 𝑑*(𝑣)}. Let us show that after a sweep of region-relabel,
the value of 𝐿 increases at least by 1. Let 𝑣 ∈ ℒ, (𝑣, 𝑤) ∈ 𝐸 and 𝑐(𝑣, 𝑤) > 0. If
𝑑(𝑤) is loose, we have 𝑑(𝑤) ≥ 𝐿 by construction. Assume that 𝑑(𝑤) is exact. Since
𝑑(𝑣) < 𝑑*(𝑣) and 𝑑*(𝑣) ≤ 𝑑*(𝑤) + 1, we have 𝑑(𝑤) ≥ 𝑑(𝑣) = 𝐿. Therefore, all neighbors
of 𝑣 have label 𝐿 or above. After the elementary Relabel of 𝑣 or Region-relabel of the
region including 𝑣, its label will increase at least by 1 (recall that Relabel of 𝑣 performs
𝑑(𝑣) := min𝑤{𝑑(𝑤) | (𝑣, 𝑤) ∈ 𝐸, 𝑐(𝑣, 𝑤) > 0} + 1). Because this holds for all vertices
from ℒ, the value 𝐿 will increase at least by 1 after elementary Relabel of all vertices
or a sweep of Region-relabel. Because 𝐿 is bounded above by 𝑑∞, after at most 𝑑∞

sweeps, 𝑑 will be the exact distance.

This proof can be suitably modified for the case of region distance (used in ARD) by
replacing the pair (𝑣, 𝑤) with a path from 𝑣 to a boundary vertex 𝑤. In this case, we have
the bound 𝑑∞ = |ℬ| sweeps. In the experiments, we observed that in order to compute
the exact distance, only a few extra sweeps were necessary (from 0 to 2) for S/P-ARD
and somewhat more for S/P-PRD. Note, to compute the final reachability relation in
S/P-PRD, the region distance and ARD Region-relabel could be employed. However,

4Region-gap-relabel (Delong and Boykov 2008, fig. 10) seems to contain an error: only vertices above
the gap should be processed in step 3.
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we did not implement this improvement. In §5.5, we describe how ARD Region-relabel
is replaced by a dynamic data structure (search trees), allowing for quick recomputation
during the sweeps.

5.4.3 Referenced Implementations
Boykov-Kolmogorov (BK) The reference augmenting path implementation by Boykov
and Kolmogorov (2004) (v3.0, http://www.cs.adastral.ucl.ac.uk/~vnk/software.
html). We will also use the possibility of dynamic updates in this code due to Kohli
and Torr (2005). There is only a trivial 𝑂(𝑚𝑛2|𝐶|) complexity bound known for this
algorithm5, where 𝐶 is the cost of a minimum cut.

Highest level Push-Relabel (HIPR) The reference push-relabel implementation by
Cherkassky and Goldberg (1994) (v3.6, http://www.avglab.com/andrew/soft.html).
This implementation has two stages: finding the maximum preflow / minimum cut and
upgrading the maximum preflow to a maximum flow. Only the first stage was executed
and benchmarked. We tested two variants with frequency of the global relabel heuristic
(the frequency parameter roughly corresponds to the proportion of time spent on global
updates versus push/relabel) equal to 0.5 (the default value in HIPR v3.6) and equal to
0. These variants will be denoted HIPR0.5 and HIPR0, respectively. HIPR0 executes
only one global update at the beginning. Global updates are essential for difficult
problems. However, HIPR0 was always faster than HIPR0.5 in our experiments with
real test instances6. The worst case complexity is 𝑂(𝑛2√𝑚).

5.4.4 S/P-ARD Implementation
The basic implementation of ARD simply invokes BK solver as follows. On stage 0,
we compute the maximum flow in the network 𝐺𝑅 by BK, augmenting paths from
source to the sink. On the stage 𝑖, infinite capacities are added from the boundary
vertices having label 𝑖− 1 to the sink, using the possibility of dynamic changes in BK.
The flow augmentation to the sink is then continued, reusing the search trees. The
Region-relabel procedure is implemented as described earlier in this section. In the
beginning of next discharge, we clear the infinite link from the boundary to the sink
and repeat the above. Some parts of the sink search tree, linked through the boundary
vertices, get destroyed, but the larger part of it and the source search tree are reused.
A more efficient implementation is described in §5.5. It includes additional heuristics
and maintenance of separate boundary search trees.

S-ARD. In the streaming mode, we keep only one region in the memory at a time.
After a region is processed by ARD, all the internal data structures have to be saved
to the disk and cleared from the memory until the region is discharged next time. We
manage this by allocating all the region’s data into a fixed page in the memory, which
can be saved and loaded preserving the pointers. By doing the load/unload manually
(rather than relying on the system swapping mechanism), we can accurately measure
the pure time needed for computation (CPU) and the amount of disk I/O. We also can
use 32bit pointers with larger problems.

5The worst-case complexity of the breadth-first search shortest path augmentation algorithm is just
𝑂(𝑚|𝐶|). The tree adaptation step, introduced by Boykov and Kolmogorov (2004) to speed-up the
search, does not have a good bound and introduces an additional 𝑛2 factor.

6There is a discrepancy with Delong and Boykov (2008, Figure 4) regarding the results for the basic
push-relabel. The main implementation difference is in the order of processing (HIPR versus FILO).
It is also possible that their plot is illustrative, showing results without the gap heuristic.
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5.4 Implementation

A region with no active vertices is skipped. The global gap heuristic is executed after
each region discharge. Because this heuristic is based on labels of boundary vertices
only, it is sufficient to maintain a label histogram with |ℬ| bins to implement it. S-ARD
uses 𝑂(|ℬ|+ |(ℬ,ℬ)𝐸 |) “shared” memory and 𝑂(|𝑉 𝑅 +𝐸𝑅|) “region” memory, to which
regions are loaded one at a time.

To solve large problems that do not fit in the memory, we have to create region
graphs without ever loading the full problem. We implemented a tool called splitter,
which reads the problem from a file and writes edges corresponding to the same region
to the region’s separate “part” file. Only the boundary edges (linking different regions)
are withheld to the memory.

P-ARD. We implemented this algorithm for a shared-memory system using OpenMP
language extension. All regions are kept in the memory, the discharges are executed
concurrently in separate threads, while the gap heuristic and messages exchange are
executed synchronously by the master thread.

5.4.5 S/P-PRD Implementation

To solve region discharge subproblems in PRD in the highest label first fashion, we
designed a special reimplementation of HIPR, which will be denoted HPR. We intended
to use the original HIPR implementation to make sure that PRD relies on the state-
of-the art core solver. It was not possible directly. A subproblem in PRD is given by
a region network with fixed distance labels on the boundary (let us call them seeds).
Distance labels in PRD may go up to 𝑛 in the worst case. The same applies to region
subproblems as well. Therefore, keeping an array of buckets corresponding to possible
labels (like in HIPR), would not be efficient. It would require 𝑂(|𝑉 |) memory and an
increased complexity. However, because a region has only |𝑉 𝑅| vertices, there are no
more than |𝑉 𝑅| distinct labels at any time. This allows to keep buckets as a doubly-
linked list with at most |𝑉 𝑅| entries. The highest label selection rule and the region-
gap heuristic can then be implemented efficiently with just a small overhead. We tried
to keep other details similar to HIPR (current arc data structure, etc.). HPR with
arbitrary seeds has the worst case complexity 𝑂(|𝑉 𝑅|2

√︁
|𝐸𝑅|) and uses 𝑂(|𝑉 𝑅|+ |𝑉 𝐸 |)

space. When the whole problem is taken as a single region, HPR should be equivalent
to HIPR0. Though the running time on the real instances can be somewhat different.

S-PRD This is our reimplementation of the algorithm by Delong and Boykov (2008)
for an arbitrary graph and a fixed partition, using HPR as a core solver. It uses the
same memory model, paging mechanism and the splitter tool as S-ARD. The region
discharge is always warm-started. We found it inefficient to run the region-relabel after
every discharge. In the current experiments, motivated by performance of HIPR0, we
run it once at the beginning and then only when a global gap is discovered. To detect
a global gap, we keep a histogram of all labels, 𝑂(𝑛) memory, and update it after each
region discharge (in 𝑂(|𝑉 𝑅|) time). In practice, this 𝑂(𝑛) memory is not a serious
limitation – labels are usually well below 𝑛. If they are not then we should consider
a weaker gap heuristic with a smaller number of bins. Applying the gap (raising the
corresponding vertices to 𝑑∞) for all regions is delayed until they are loaded. So we keep
the track of the best global gap detected for every region. Similar to how the sequential
Algorithm 5 represents both S-ARD and S-PRD, it constitutes a piece of generic code
in our implementation, where the respective discharge procedure and gap heuristics are
plugged.
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P-PRD This is our implementation of parallel PRD for shared-memory system with
OpenMP.

5.5 Efficient ARD Implementation

The basic implementation of S-ARD, as described in the previous section, worked rea-
sonably fast (comparable to BK) on simple problems like 2D stereo and 2D random
segmentation (§5.6.1). However, the performance was unexpectedly bad on some 3D
problems. For example, to solve LB07-bunny-lrg instance (§5.6.2) the basic imple-
mentation required 32 minutes of CPU time. In this section, we describe an efficient
implementation which is more robust and is comparable in speed with BK on all tested
instances. In particular, to solve LB07-bunny-lrg it takes only 15 seconds of CPU time.
The problem, why the basic implementation is so slow, is in the nature of the algorithm:
sometimes it has to augment the flow to the boundary, without knowing of whether it
is a useful work or not. If the particular boundary was selected wrongly, the work is
wasted. This happens in LB07-bunny-lrg instance, where the data seeds are sparse.
A huge work is performed to push the flow around in the first few iterations, before a
reasonable labeling is established. We introduce two heuristics how to overcome this
problem: the boundary-relabel heuristic and partial discharges. An additional speed-up
is obtained by dynamically maintaining boundary search trees and the current labeling.

5.5.1 Boundary Relabel Heuristic

We would like to have a better distance estimate, but we cannot run a global relabel
because implementing it in a distributed fashion would take several full sweeps, which
would be too wasteful. Instead, we go for the following cheaper lower bound. Our
implementation keeps all the boundary edges (including their flow and distance labels
of the adjacent vertices) in the shared memory. Figure 17(a) illustrates this boundary
information. We want to improve the labels by analyzing only this boundary part of
the graph, not looking inside the regions. Since we do not know how the vertices are
connected inside the regions, we have to assume that every boundary vertex might be
connected to any other one within the region, except of the following case. If 𝑢 and 𝑣
are in the same region 𝑅 and 𝑑(𝑢) > 𝑑(𝑣) then we know for sure that 𝑢9 𝑣 in 𝐺𝑅. It
follows from the validity of labeling 𝑑 (as defined for ARD in §5.3). We can calculate
now a lower bound on the distance 𝑑*ℬ in 𝐺 assuming that all the rest of the vertices
are potentially connected within the regions.

We will now construct an auxiliary directed graph �̄� with arcs having length 0 or 1
and show that the distance in this graph (according to the arc lengths) lower bounds
𝑑*ℬ. If 𝑑(𝑣) = 𝑑(𝑢) we have to assume that 𝑣 → 𝑢 and 𝑢→ 𝑣 in 𝐺𝑅, therefore the new
lower bound for 𝑢 and 𝑣 will coincide. Hence we group vertices having the same label
within a region together as shown in Figure 17(b). In the case 𝑑(𝑣) < 𝑑(𝑢), we know
that 𝑢9 𝑣 but have to assume 𝑣 → 𝑢 in 𝑅. We thus add a directed arc of length zero
from the group of 𝑣 to the group of 𝑢 (Figure 17(b)). Let 𝑑1 < 𝑑2 < 𝑑3 be labels of
groups within one region. There is no need to create an arc from 𝑑1 to 𝑑3, because two
arcs from 𝑑1 to 𝑑2 and from 𝑑2 to 𝑑3 of length zero are an equivalent representation.
Therefore it is sufficient to connect only groups having consecutive labels. We then add
all residual edges (𝑢, 𝑣) between the regions to �̄� with length 1. We can calculate the
distance to vertices with label 0 in �̄� by running Dijkstra’s algorithm. Let this distance
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Figure 17 Boundary relabel heuristic: (a) Boundary vertices of the network and a valid label-
ing. Directed arcs correspond to non-zero residual capacities. Vertices without numbers have
label 𝑑∞ and do not participate in the construction. (b) Vertices having the same label are
grouped together within each region and arcs of zero length (of red color) are added from
a group to the next label’s group. It is guaranteed that e.g., vertices with label 1 are not
reachable from vertices with label 2 within the region, hence there is no arc 2→1. Black arcs
have the unit length. (c) The distance in the auxiliary graph is a valid labeling and a lower
bound on the distance in the original network.

be denoted 𝑑′. We then update the labels as

𝑑(𝑢) := max{𝑑(𝑢), 𝑑′(𝑢)} . (220)

We have to prove the following two points:
1. 𝑑′ is a valid labeling;
2. If 𝑑 and 𝑑′ are valid labellings, then max(𝑑, 𝑑′) is valid.

Proof. 1. Let 𝑐(𝑢, 𝑣) > 0. Let 𝑢 and 𝑣 be in the same region. It must be that
𝑑(𝑢) ≤ 𝑑(𝑣). Therefore either 𝑢 and 𝑣 are in the same group or there is an arc of
length zero from group of 𝑢 to group of 𝑣. It must be 𝑑′(𝑢) ≤ 𝑑′(𝑣) in any case.
If 𝑢 and 𝑣 are in different regions, there is an arc of length 1 from group of 𝑢 to
group of 𝑣 and therefore 𝑑′(𝑢) ≤ 𝑑′(𝑣) + 1.

2. Let 𝑙(𝑢, 𝑣) = 1 if (𝑢, 𝑣) ∈ (ℬ,ℬ) and 𝑙(𝑢, 𝑣) = 0 otherwise. We have to prove that
if 𝑐(𝑢, 𝑣) > 0 then

max{𝑑(𝑢), 𝑑′(𝑢)} ≤ max{𝑑(𝑣), 𝑑′(𝑣)}+ 𝑙(𝑢, 𝑣) . (221)

Let max{𝑑(𝑢), 𝑑′(𝑢)} = 𝑑(𝑢). From validity of 𝑑 we have 𝑑(𝑢) ≤ 𝑑(𝑣) + 𝑙(𝑢, 𝑣). If
𝑑(𝑣) ≥ 𝑑′(𝑣), then max{𝑑(𝑣), 𝑑′(𝑣)} = 𝑑(𝑣) and (221) holds. If 𝑑(𝑣) < 𝑑′(𝑣) then
𝑑(𝑢) ≤ 𝑑(𝑣) + 𝑙(𝑢, 𝑣) < 𝑑′(𝑣) + 𝑙(𝑢, 𝑣) and (221) holds again.

The complexity of the boundary relabel heuristic is 𝑂(|(ℬ,ℬ)|). It is relatively inexpen-
sive and can be run after each sweep. It does not affect the correctness and the worst
case bound on the number of sweeps of S/P-ARD.

5.5.2 Partial Discharge

Another heuristic, which proved very efficient, was simply to postpone path augmen-
tations to higher boundary vertices to further sweeps. This allows to save a lot of
unnecessary work, especially when used in combination with boundary-relabel. More
precisely, the ARD procedure is allowed to execute only stages up to 𝑠 on sweep 𝑠. This
way, in sweep 0, only paths to the sink are augmented and not any path to the bound-
ary. Vertices which cannot reach the sink (but can potentially reach the boundary) get
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label 1. These initial labels may already be improved by boundary-relabel. In sweep 1,
paths to the boundary with label 0 are allowed to be augmented and so on.

Note that this heuristic does not affect the worst case complexity of S/P-ARD. Be-
cause labels can grow only up to |ℬ|, after at most |ℬ| sweeps the heuristic turns into
full discharge. Therefore, the worst case bound of O(|ℬ2|) sweeps remains valid. In
practice, we found that it increases the number of sweeps slightly, while significantly
reduces the total computation time. Similarly, in the case of push-relabel, it would
make sense to perform several sweeps of Region-relabel before doing any pushes to get
a better estimate of the distance.

5.5.3 Boundary Search Trees
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Figure 18 Search trees. (a) A region with some residual arcs. The region has only 3 boundary
vertices, for simplicity, the numbers correspond to the labels. (b) Search trees of the sink
and boundary vertices: when a vertex can be reached by several trees, it choses the one with
the lowest label of the root. The sink is assigned a special label −1. The source search tree
is empty in this example. (c) Labels of the inner vertices are determined as their tree’s root
label+1.

We now redesign the implementation of ARD such that not only the sink and source
search trees are maintained but also the search trees of boundary vertices. This allows to
save computation when the labeling of many boundary vertices remains constant during
the consequent sweeps, with only a small fraction changing. Additionally, knowing the
search tree for each inner vertex of the region determines its actual label, so the region-
relabel procedure becomes obsolete. The design of the search tree data structures, their
updates and other detail are the same as proposed by Kolmogorov (2004b), only few
changes to the implementation are necessary. For each vertex 𝑣 ∈ 𝑅, we introduce
a mark 𝑑(𝑣) which corresponds to the root label of its tree or is set to a special free
mark if 𝑣 is not in any tree. For each tree, we keep a list of open vertices (called active
by Kolmogorov (2004b)). A vertex is open if it is not blocked by the vertices of the
trees with the same or lower root label (more precisely, 𝑣 is open if it is not free and
there is a residual edge (𝑢, 𝑣) such that 𝑢 is free or its root label is higher than that of
𝑣). The trees may grow only at the open vertices.

Figure 18 shows the correspondence between search trees and the labels. The sink
search tree is assigned label −1. In the stage 0 of ARD, we grow the sink tree and
augment all found paths if the sink tree touches the source search tree. Vertices that
are added to the sink tree are marked with label 𝑑 = −1. In stage 𝑖+ 1 of ARD, we grow
trees with root at a boundary vertices 𝑤 with label 𝑑(𝑤) = 𝑖, all vertices added to the
tree are marked with 𝑑 = 𝑖. When the tree touches the source search tree, the found
path is augmented. If the tree touches a vertex 𝑢 with label 𝑑(𝑢) < 𝑖, it means that 𝑢
is already in the search tree with a lower root and no action is taken. It cannot happen
that a vertex is reached with label 𝑑 > 𝑖 during growth of a search tree with root label
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𝑖, this would contradict to the properties of ARD. The actual label of a vertex 𝑣 at any
time is determined as 𝑑(𝑣) + 1 if 𝑣 ∈ 𝑅 and 𝑑(𝑣) if 𝑣 ∈ 𝐵𝑅.

Let us now consider the situation in which region 𝑅 has built some search trees and
the label of a boundary vertex 𝑤 is risen from 𝑑(𝑤) to 𝑑′(𝑤) (as a result of update
from the neighboring region or one of the heuristics). All the vertices in the search
tree starting from 𝑤 were previously marked with 𝑑(𝑤) and have to be declared as free
vertices or adopted to any other valid tree with root label 𝑑(𝑤). The adaptation is
performed by the same mechanism as in BK. The situation when a preflow is injected
from the neighboring region and (a part of) a search tree becomes disconnected is also
handled by the orphan adaptation mechanism.

The combination of the above improvements allows S-ARD to run in about the same
time as BK on all tested vision instance (§5.6.2), sometimes being even significantly
faster (154sec. vs. 245sec. on BL06-gargoyle-lrg).

5.6 Experiments
All experiments were conducted on a system with Intel Core 2 Quad CPU@2.66Hz, 4GB
memory, Windows XP 32bit and Microsoft Visual C++ compiler. Our implementation
and instructions needed to reproduce the experiments can be found at http://cmp.
felk.cvut.cz/~shekhovt/d_maxflow. We conducted 3 series of experiments:
∙ Synthetic experiments, in which we observe general dependencies of the algorithms,

with some statistical significance, i.e. not being biased to a particular problem
instance. It also serves as an empirical validation, as thousands of instances are
solved. Here, the basic implementation of S-ARD was used.
∙ Sequential competition. We study sequential versions of the algorithms, running

them on real vision instances (University of Western Ontario web pages 2008).
Only a single core of the CPU is utilized. We fix the region partition and study
how much disk I/O it would take to solve each problem when only one region can
be loaded in the memory at a time. In this and the next experiment, we used the
efficient implementation of ARD. Note, in the preceeding publication (Shekhovtsov
and Hlavac 2011) we reported worse results with the earlier implementation.
∙ Parallel competition. Parallel algorithms are tested on the instances which can

fully fit in 2GB of memory. All 4 cores of the CPU are allowed to be used. We
compare our algorithms with two other state-of-the-art distributed implementa-
tions.

5.6.1 General Dependences: Synthetic Problems
We generated simple synthetic problems to validate the algorithms. The network is
constructed as a 2D grid with a regular connectivity structure. Figure 19(a) shows an
example of such a network. The edges are added to the vertices at the following relative
displacements (0, 1), (1, 0), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (0, 2), (2, 0), (2, 2), (3, 3),
(3, 4), (4, 2). By connectivity we mean the number of edges incident to a vertex far
enough from the boundary. Adding pairs (0, 1), (1, 0) results in connectivity 4 and so
on. Each vertex is given an integer excess/deficit distributed uniformly in the interval
[−500 500]. A positive number means a source link and a negative number a sink link.
All edges in the graph are assigned a constant capacity, called strength. The network is
partitioned into regions by slicing it in 𝑠 equal parts in both dimensions. Thus we have
4 parameters: the number of vertices, the connectivity, the strength and the number of
regions. We generate 100 instances for each value of the parameters.
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Figure 19 (a) Example of a synthetic problem: a network of the size 6×6, connectivity 8,
partitioned into 4 regions. The source and sink are not shown. (b) Dependence on the
interaction strength, for size 1000×1000, connectivity 8 and 4 regions. Plots show mean
values and intervals containing 70% of the samples.
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Figure 20 Dependence on the number of regions, for size 1000×1000, connectivity 8, strength
150.

Let us first look at the dependence on the strength shown in Figure 19(b). Problems
with small strength are easy, because they are very local – long augmentation paths do
not occur. On the other hand, long paths needs to be augmented for problems with large
strength. However, finding them is easy because bottlenecks are unlikely. Therefore BK
and S-ARD have a maximum in the computation time somewhere in the middle. It is
more difficult to transfer the flow over long distances for push-relabel algorithms. This
happens when the global relabel heuristic becomes efficient and HIPR0.5 outperforms
HIPR0. The region-relabel heuristic of S-PRD allows it to outperform other push-
relabel variants.

We consider all such random 2D networks are too easy in general. Nevertheless, they
are useful and instructive to show basic dependences. We now select the “difficult”
point for BK with the strength 150 and study other dependencies:
∙ The number of regions (Figure 20). For this problem family, both the number of
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Figure 21 Dependence on the problem size, for connectivity 8, strength 150, 4 regions.
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Figure 22 Dependence on the connectivity, for size 1000×1000, strength = (150 ·
8)/connectivity, 4 regions.

sweeps and the computation time grows slowly with the number of regions.
∙ The problem size (Figure 21). Computation efforts of all algorithms grow propor-

tionally. However, the number of sweeps shows different asymptotes. It is almost
constant for S-ARD but grows significantly for S-PRD.
∙ Connectivity (Figure 22). Connectivity is not independent of the strength. Roughly,

4 edges with capacity 100 can transmit as much flow as 8 edges with capacity 50.
Therefore while increasing the connectivity we also decrease the strength as 150 ·8
divided by connectivity in this plot.
∙ Workload (Figure 5.6.1). This plot shows how much time each of the algorithms

spends performing different parts of computation. Note that the problems are
solved on a single computer with all regions kept in memory, therefore the time on
sending messages should be understood as updates of dynamic data structure of the
region w.r.t. the new labeling and flow on the boundary. For S-PRD more sweeps
are needed, so the total time spent in messages and gap heuristic is increased.
Additionally, the gap heuristic has to take into account all vertices, unlike only
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the boundary vertices in S-ARD.
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Figure 23 Workload distribution, for size 1000×1000, connectivity 8, 4 regions, strength 150.
msg – passing the messages (updating flow and labels on the boundary), discharge – work
done by the core solver (BK for S-ARD and HPR for S-PRD), relabel – the region-relabel
operation, gap – the global gap heuristic.

5.6.2 Sequential Competition

We tested our algorithms on the maxflow problem instances in computer vision ob-
tained from University of Western Ontario web pages (2008). The data consist of typical
max-flow problems in computer vision, graphics, and biomedical image analysis. Stereo
instances are sequences of subproblems (arising in the expansion move algorithm) for
which the total time should be reported. There are two models: BVZ (Boykov et al.
1998), in which the graph is a 4-connected 2D grid, and KZ2 (Kolmogorov and Zabih
2001), in which there are additional long-range links. Multiview 3D reconstruction mod-
els LB06 (Lempitsky et al. 2006) and BL06 (Boykov and Lempitsky 2006). Graphs of
these problems are cellular complexes subdividing the space into 3D cubes and each
cube into 24 smaller cells. Surface fitting instances LB07 (Lempitsky and Boykov 2007)
are 6-connected 3D grid graphs. And finally, there is a collection of volumetric segmen-
tation instances BJ01 (Boykov and Jolly 2001), BF06 (Boykov and Funka-Lea 2006),
BK03 (Boykov 2003) with 6-connected and 26-connected 3D grid graphs.

To test our streaming algorithms, we used the regulargrid hint available in the
definition of the problems to select the regions by slicing the problem into 4 parts
in each dimension – into 16 regions for 2D BVZ grids and into 64 regions for 3D
segmentation instances. Problems KZ2 do not have such a hint (they are not regular
grids), so we sliced them into 16 pieces just by the vertex number. We did the same
for the multiview LB06 instances. Though they have a size hint, we failed to interpret
the vertex layout correctly (the separator set ℬ was unexpectedly large when trying to
slice along the dimensions). So we sliced them purely by the vertex number.

One of the problems we faced is the pairing of arcs that are reverse of each other.
While in stereo, surface and multiview problems, the reverse arcs are consequent in
the files, and can be easily paired, in 3D segmentation they are not. For a generic
algorithm, not being aware of the problem’s regularity structure, it is actually a non-
trivial problem requiring at least the memory to read all of the arcs first. Because our
goal is a relative comparison, we did not pair the arcs in 3D segmentation. This means
we kept twice as many arcs than necessary for those problems. This is seen in Table 1,
e.g., for babyface.n26c100, which is 26-connected, but we construct a multigraph (has
parallel arcs) with average vertex degree of 49. For some other instances, however, this
is not visible, because there could be many zero arcs, e.g., liver.n26c10 which is a
26-connected grid too, but has the average vertex degree of 10.4 with unpaired arcs.
The comparison among different methods is correct, since all of them are given exactly
the same multigraph.

The results are presented in Table 1. We measured the real time of disk I/O. However,
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it depends on the hard drive performance, other concurrently running processes as well
as on the system file caching (which has effect for small problems). We therefore report
total bytes written/loaded and give an estimate of the full running time for the disk
speed of 100MB/s (see Table 2). Note that disk I/O is not proportional to the number
of sweeps, because some regions may be inactive during a sweep and thus skipped. We
did not monitor the memory usage for HIPR. It is slightly higher than that of HPR,
because of keeping initial arc capacities.

For verification of solvers, we compared the flow values to the ground truth solution
provided in the dataset. Additionally, we saved the cut output from each solver and
checked its cost independently. Verifying the cost of the cut is relatively easy: the
cut can be kept in memory and the edges can be processed form the DIMACS problem
definition file on-line. An independent check of (pre-)flow feasibility would be necessary
for full verification of a solver. However, it would require storing the full graph in the
memory and was not implemented.

Table 1. Sequential Competition. CPU – the time spent purely on computation, excluding
the time for parsing, construction and disk I/O. The total time to solve the problem is not
shown. 𝐾 – number of regions. RAM – memory taken by the solver; for BK in the case it
exceeds 2GB limit, the expected required memory; for streaming solvers the sum of shared and
region memory. I/O – total bytes read or written to the disk.

problem BK HIPR0 HIPR 0.5 HPR S-ARD S-PRD
name n(106) 𝑚

𝑛
CPU CPU CPU CPU CPU sweeps 𝐾 CPU sweeps 𝐾

size RAM RAM RAM RAM RAM I/O RAM I/O
stereo

BVZ-
sawtooth(20)

0.2 4.0 0.68s 3.0s 7.7s 3.8s 0.63s 6 16 3.7s 32 16

434×380 14MB 17MB 0.3+0.9MB 114MB 0.8+1.1MB 0.7GB
BVZ-
tsukuba(16)

0.1 4.0 0.36s 1.9s 4.9s 2.6s 0.35s 5 16 2.1s 29 16

384×288 9.7MB 11MB 0.2+0.6MB 71MB 0.5+0.8MB 373MB
BVZ-venus(22) 0.2 4.0 1.2s 5.7s 15s 6.2s 1.1s 6 16 6.6s 36 16
434×383 15MB 17MB 0.3+0.9MB 119MB 0.8+1.1MB 0.9GB
KZ2-
sawtooth(20)

0.3 5.8 1.8s 7.1s 22s 6.1s 2.2s 6 16 7.4s 23 16

38MB 33MB 36MB 1.2+2.0MB 280MB 1.8+2.5MB 1.2GB
KZ2-
tsukuba(16)

0.2 5.9 1.1s 5.3s 20s 4.4s 1.4s 6 16 5.9s 18 16

26MB 23MB 25MB 1.1+1.4MB 186MB 1.4+1.7MB 0.7GB
KZ2-venus(22) 0.3 5.8 2.8s 13s 39s 10s 3.4s 8 16 14s 36 16
38MB 34MB 37MB 1.2+2.1MB 330MB 1.9+2.5MB 1.8GB

multiview
BL06-camel-lrg 18.9 4.0 81s 63s 11 16 308s 418 16
100×75×105×24 1.6GB 19+103MB 28GB 86+122MB 0.6TB
BL06-camel-
med

9.7 4.0 25s 29s 77s 59s 20s 12 16 118s 227 16

80×60×84×24 0.8GB 1.0GB 31+53MB 16GB 46+63MB 225GB
BL06-camel-
sml

1.2 4.0 0.98s 1.5s 6.3s 1.8s 0.96s 9 16 4.2s 47 16

40×30×42×24 106MB 124MB 8.0+7.0MB 1.4GB 6.9+8.2MB 9.1GB
BL06-gargoyle-
lrg

17.2 4.0 245s 91s 154s 21 16 318s 354 16

80×112×80×24 1.5GB 1.7GB 23+95MB 35GB 82+112MB 0.8TB
BL06-gargoyle-
med

8.8 4.0 115s 17s 58s 37s 73s 16 16 143s 340 16

64×90×64×24 0.8GB 0.9GB 37+50MB 14GB 44+58MB 235GB
BL06-gargoyle-
sml

1.1 4.0 6.1s 1.2s 3.0s 1.7s 3.9s 10 16 4.4s 55 16

32×45×32×24 97MB 114MB 9.3+6.6MB 1.3GB 6.9+7.7MB 9.4GB
surface

Continued on next page
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Table 1 – continued from previous page
LB07-bunny-
lrg

49.5 6.0 15s 6 64 416s 43 64

401×396×312 5.7GB 130+87MB 49GB 226+99MB 276GB
LB07-bunny-
med

6.3 6.0 1.6s 20s 41s 26s 2.1s 10 64 16s 27 64

202×199×157 0.7GB 0.8GB 33+12MB 6.5GB 43+863MB 0.0MB
LB07-bunny-
sml

0.8 5.9 0.17s 0.80s 1.8s 1.1s 0.32s 9 64 0.86s 19 64

102×100×79 95MB 101MB 8.2+1.6MB 0.8GB 7.9+1.9MB 2.0GB
segm

liver.n26c10 4.2 10.4 6.4s 18s 18s 34s 14s 13 64 39s 157 64
170×170×144 0.8GB 0.7GB 36+12MB 13GB 30+13MB 82GB
liver.n26c100 4.2 11.1 12s 26s 28s 39s 24s 15 64 35s 98 64
170×170×144 0.8GB 0.7GB 38+13MB 16GB 30+14MB 66GB
liver.n6c10 4.2 9.8 7.2s 17s 25s 40s 14s 16 64 36s 151 64
170×170×144 0.7GB 0.7GB 33+12MB 15GB 28+13MB 79GB
liver.n6c100 4.2 10.5 15s 30s 34s 44s 19s 17 64 32s 94 64
170×170×144 0.8GB 0.7GB 35+12MB 14GB 29+13MB 70GB
babyface
.n26c10

5.1 47.3 179s 38 64 222s 169 64

250×250×81 3.7GB 156+56MB 102GB 173+58MB 0.6TB
babyface
.n26c100

5.1 49.0 231s 44 64 262s 116 64

250×250×81 3.8GB 156+56MB 115GB 180+57MB 0.6TB
babyface
.n6c10

5.1 11.1 6.8s 38s 51s 68s 20s 17 64 100s 275 64

250×250×81 1.0GB 0.9GB 22+16MB 19GB 37+17MB 261GB
babyface
.n6c100

5.1 11.5 13s 71s 65s 87s 24s 19 64 74s 191 64

250×250×81 1.0GB 0.9GB 22+16MB 18GB 37+17MB 189GB
adhead.n26c10 12.6 31.5 128s 17 64 224s 109 64
256×256×192 6.2GB 153+83MB 84GB 195+86MB 0.8TB
adhead.n26c100 12.6 31.6 174s 21 64 269s 129 64
256×256×192 2.5GB 34+36MB 36GB 77+39MB 354GB
bone.n26c10 7.8 32.3 25s 12 64 96s 148 64
256×256×119 4.0GB 122+61MB 35GB 147+63MB 470GB
bone.n26c100 7.8 32.4 29s 14 64 68s 124 64
256×256×119 4.0GB 122+61MB 39GB 147+63MB 321GB
bone.n6c10 7.8 11.5 7.7s 5.7s 17s 12s 7.2s 9 64 37s 195 64
256×256×119 1.5GB 1.4GB 62+23MB 13GB 52+25MB 188GB
bone.n6c100 7.8 11.6 9.1s 9.1s 22s 14s 8.7s 10 64 23s 65 64
256×256×119 1.6GB 1.5GB 62+23MB 13GB 52+25MB 104GB
bone_subx
.n6c100

3.9 11.8 7.1s 6.3s 12s 6.4s 5.5s 12 64 9.4s 42 64

128×256×119 0.8GB 0.7GB 39+12MB 7.1GB 29+13MB 42GB
bone_subxy
.n26c100

1.9 32.2 5.9s 3.9s 6.1s 4.6s 7.3s 13 64 8.7s 33 64

128×128×119 1.0GB 0.8GB 92+13MB 10GB 50+16MB 39GB
abdomen
_long.n6c10

144.4 11.8 179s 11 > 35

512×512×551 29GB 410+403MB 196GB >1TB
abdomen
_short.n6c10

144.4 11.8 82s 11

512×512×551 29GB 410+403MB 138GB

Our new algorithms computed flow values for all problems matching those provided
in the dataset, except for the following cases:
∙ LB07-bunny-lrg: no ground truth solution available (we found flow/cut of cost

15537565).
∙ babyfacen26c10 and babyfacen26c100: we found higher flow values than those

which were provided in the dataset (we found flow/cut of cost 180946 and 1990729
resp.).

The latter problems appear to be the most difficult for S-ARD in terms of both time
and number of sweeps. Despite this, S-ARD requires much fewer sweeps, and conse-
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problem S-ARD S-PRD
mem, MB time mem, MB time

BVZ-sawtooth 1.1 1.7s 1.9 11s
BL06-camel-lrg 122 6min 208 1.8h
BL06-gargoyle-lrg 118 8.5min 194 2.4h
LB07-bunny-lrg 217 8.6min 325 54min
babyface.n26c10 212 20min 231 1.9h
adhead.n26c10 236 16min 281 2.3h
adhead.n26c100 70 9min 116 1h
bone.n26c10 183 6.3min 210 1.4h
abdomen long.n6c10 813 36min ∼800 >3h

Table 2 Estimated running time for the algorithms in the streaming mode, including the time
for Disk I/O. The estimate is computed for a disk speed of 100MB/s and does not include
initial problem splitting. The table also gives the total amount of memory used by the solver.

quently much less disk I/O operations than the push-relabel variant. This means that
in the streaming mode, where read and write operations take a lot of time, S-ARD is
clearly superior. Additionally, we observe that the time it spends for computation is
comparable to that of BK, sometimes even significantly smaller.

Next, we studied the dependency of computation time and number of sweeps on the
number of regions in the partition. We selected 3 representative instances of different
problems and varied the number of regions in the partition. The results are presented
in the Figure 24. The instance BL06-gargoyle-sml was partitioned by the vertex index
and the remaining two problems were partitioned according to their 3D vertex layout
using variable number of slices in each dimension. The results demonstrate that the
computation time required to solve these problems is stable over a large range of par-
titions and the number of sweeps required does not grow rapidly. Therefore, for the
best practical performance the partition for S-ARD can be selected to meet other re-
quirements: memory consumption, number of computation units, etc. We should note
however, that with refining the partition the amount of shared memory grows propor-
tionally to the number of boundary edges. In the limit of single-vertex regions, the
algorithm will turn into a very inefficient implementation of pure push-relabel.

5.6.3 Parallel Competition

In this section, we test parallel versions of our algorithms and compare them with
two state-of-the-art methods. The experiments are conducted on the same machine as
above (Intel Core 2 Quad CPU@2.66Hz) but allowing the use of all 4 CPUs. The goal
is to see how the distributed algorithms perform in the simplified setting when they
are run not in the network but on a single machine. For P-ARD/PRD we expect that
the total required work would increase compared to the sequential versions because
the discharges are executed concurrently. The relative speed-up therefore would be
sublinear even if we managed to distribute the work between CPUs evenly. The tests
are conducted on small and medium size problems (taking under 2GB of memory). For
P-ARD and P-PRD we use the same partition into regions as in Table 1. For other
solvers, discussed next, we tried to meet better their requirements.
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Figure 24 Dependence on the number of regions for the representative instances of multiview,
stereo and segmentation. Top: CPU time used. Bottom: number of sweeps.

DD The integer dual decomposition algorithm by Strandmark and Kahl (2010)7 uses
adaptive vertex-wise step rule and randomization. With or without randomization,
this algorithm is not guaranteed to terminate in polynomial time. Without the ran-
domization, there exist a simple example with 4 vertices such that the algorithm never
terminates. With the randomization, there is always a chance that it terminates, how-
ever, there is no reasonable bound on the number of iterations. Interestingly, in all of
the stereo problems the algorithm terminated in a small number of iterations. However,
on larger problems partitioned into 4 regions it exceeded the internal iterations bound
(1000) in many cases and returned without the optimal flow/cut. In such a case, it
provides only an approximate solution to the problem. Whether such a solution is of
practical value is beyond us. We tested it with partitions into 2 and 4 regions (denoted
DDx2 and DDx4 resp.). Naturally, with 2 regions the algorithm can utilize only 2
CPUs. When the number of regions is increased, the random event of termination is
expected to happen less likely, which is confirmed by our experiments.

RPR The implementation of Region Push Relabel (Delong and Boykov 2008) by
Sameh Khamis (v1.01, http://vision.csd.uwo.ca/code/) was published shortly be-
fore this work.

For RPR we constructed partition of the problem into smaller blocks. Because re-
gions in RPR are composed dynamically out of blocks (default is 8 blocks per re-

7Multi-threaded maxflow library http://www.maths.lth.se/matematiklth/personal/petter/
cppmaxflow.php
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gion) we partitioned 2D problems into 64 = 82 blocks and 3D problems into 512 = 83

blocks. This partition was also empirically faster than a coarser one. The parameter
DischargesPerBlock was set by recommendation of authors to 500 for small prob-
lems (stereo) and to 15000 for big problems. The implementation is specialized for
regular grids, therefore multiview and KZ2 problems which do not have regulargrid
hint cannot be solved by this method. Because of the fixed graph layout in RPR, arcs
which are reverse of each other are automatically grouped together, so RPR computes
on a reduced graph compared to other methods. Let us also note that because of the
dynamic regions, RPR is not fully suitable to run in a distributed system.

The method of Liu and Sun (2010) (parallel, but not distributed) would probably
be the fastest one in this competition (as could be estimated from the results reported
by Liu and Sun (2010)), however the implementation is not publicly available.

Table 3. Parallel Competition. The mark X denotes that the method returned only an
approximate solution due to limited iterations.

problem BK DDx2 DDx4 P-ARD P-PRD RPR
time time, sweeps

stereo
BVZ-sawtooth(20) 0.68s 0.52s 7 0.37s 11 0.30s 7 2.4s 31 4.8s 274
BVZ-tsukuba(16) 0.36s 0.28s 6 0.20s 8 0.17s 5 1.5s 33 2.1s 197
BVZ-venus(22) 1.2s 0.84s 7 0.59s 9 0.50s 7 4.9s 36 8.0s 466
KZ2-sawtooth(20) 1.8s 1.2s 11 0.91s 16 0.96s 6 4.9s 23
KZ2-tsukuba(16) 1.1s 0.67s 7 0.52s 11 0.70s 8 4.9s 22
KZ2-venus(22) 2.8s 1.9s 7 1.3s 12 1.5s 10 10s 39

multiview
BL06-camel-med 25s 18s 221 13s 260 8.7s 14 81s 322
BL06-camel-sml 0.98s 0.63s 11 0.49s 27 0.49s 10 2.5s 70
BL06-gargoyle-lrg 245s 120s 517 mem 58s 23 mem
BL06-gargoyle-med 115s 59s 20 38s 50 27s 21 79s 219
BL06-gargoyle-sml 6.1s 3.0s 19 1.9s 19 1.6s 10 2.4s 52

surface
LB07-bunny-med 1.6s 1.3s 11 1.1s 11 1.3s 13 12s 35 37s 349
LB07-bunny-sml 0.17s 0.12s 11 0.12s 11 0.21s 8 0.58s 21 3.5s 99

segm
liver.n6c10 7.2s X 7.6s 1000 X 22s 1000 8.9s 23 23s 164 5.1s 1298
liver.n6c100 15s 17s 31 X 21s 1000 12s 17 23s 102 7.3s 1722
babyface.n6c10 6.8s 8.8s 61 X 24s 1000 12s 22 61s 135 17s 4399
babyface.n6c100 13s 16s 338 X 20s 1000 17s 23 61s 179 22s 4833
bone.n6c10 7.7s 5.2s 22 X 8.2s 1000 4.9s 17 16s 182 6.3s 918
bone.n6c100 9.1s 5.3s 12 4.1s 17 6.2s 13 14s 70 7.9s 1070
bone_subx.n6c100 7.1s 6.3s 24 5.2s 34 3.9s 17 5.8s 48 1.5s 747
bone_subxy.n26c100 5.9s 3.4s 11 3.2s 12 5.8s 16 6.0s 37 hang

Results The results are summarized in Table 3. The time reported is the wall clock
time passed in the calculation phase, not including any time for graph construction. The
number of sweeps for DD has the same meaning as for P-ARD/PRD, it is the number of
times all regions are synchronously processed. RPR however is asynchronous and uses
dynamic regions. For it, we define sweeps = block_discharges/number_of_blocks.

Comparing to Table 1, we see that P-ARD on 4 CPUs is about 1.5− 2.5 times faster
than S-ARD. The speed-up over BK varies from 0.8 on livern6c10 to more than 4 on
gargoyle.

We see that DD gets lucky some times and solves the problem really quickly, but
often it fails to terminate. We also observe that our variant of P-PRD (based on
highest first selections rule) is a relatively slow, but robust distributed method. RPR,
which is based on LIFO selection rule, is competitive on the 3D segmentation problems
but is slow on other problems, despite its compile-time optimization for the particular
graph structure. It also uses a relatively higher number of blocks. The version we
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problem regions MEM 1CPU 8CPUs
–∙— BL06-gargoyle-lrg 16 1.6GB 137.4s 38.82s
–∘— BL06-camel-lrg 16 1.8GB 67.14s 16.00s
–�— LB07-bunny-lrg 64 12GB 12.94s 7.11s
–∙— liver.n6c100 64 0.9GB 18.41s 12.21s

Figure 25 Speedup of P-ARD with the number of CPUs used. The extended legend shows the
time to solve each problem with 1 and 8CPUs (does not include initialization). Dashed lines
correspond to the speedup in the ideal case (Amdahl’s law) when the parallel portion of the
computation is 90% and 95%.

tested always returned the correct flow value but often a wrong (non-optimal) cut.
Additionally, for 26 connected bone_subxy.n26c100 it failed to terminated within 1
hour.

5.6.4 Scalability with Processors

We performed additional tests of P-ARD in the shared memory mode using 1-8 CPUs.
This experiment was conducted on a system with Intel(R) Core(TM)i7 CPU 870@2.9GHz,
16GB memory, linux 64bit and gcc compiler. The plot in Figure 25 shows the speedup
of solving the problem (excluding initialization) using multiple CPUs over the time
needed by a single CPU. For this test, we selected medium and large size problems
of different kind that can fully fit in 16GB of memory. The two problems which were
taking longer in the serial implementation scaled relatively well. On the other side, the
largest LB07-bunny problem did not scale well. We believe that the limiting factor here
is the memory bandwidth. We inspected that the sequential part of the computation
(boundary relabel heuristic, synchronous message exchange) occupy less than 10% of
the total time for all four problems. The fully parallel part should exhibit a linear
speed-up in the ideal case of even load. The load for LB07-bunny should be relatively
even, since we have enough regions (64) to be processed with 8 CPUs. Still, there is
no speed-up observed in the parallel part of the first sweep (where most of the work is
done) when scaling from 4 to 8 CPUs.

It is most probable that reducing memory requirements (e.g., by having dedicated
graph implementation for regular grids) would also lead to a speed-up of the parallel
solver. We also observed that the 32 bit compilation (pointers take 32 bits) runs faster
than the 64 bit compilation. It is likely that our implementation can be optimized
further for the best parallel performance. We should however consider that preparing
the data for the problem and splitting it into regions is another time-consuming part,
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which needs to be parallelized.

5.7 Region Reduction

In this section, we attempt to reduce the region network as much as possible by identify-
ing and eliminating vertices which can be decided optimally regardless of the reminder
of the full network outside of the region. If it was possible to decide about many vertices
globally optimally inside a region network, the whole problem would simplify a lot. It
would require less memory and could be potentially solved without distributing and
or partitioned again into larger regions. We propose an improved algorithm for such
a reduction and its experimental verification. This preprocessing is studied separately
and was not applied in the tests of distributed algorithms above. Experiments with
vision problems (Table 4) showed that while 2D problems can be significantly reduced,
many of the higher-dimension problems do not allow a substantial reduction.

Some vertices become disconnected from the sink in the course of the studied algo-
rithms (S/P-ARD, S/P-PRD). If they are still reachable from the source, they must
belong to the source set of any optimal cut. Such vertices do not participate in further
computations and the problem can be reduced by excluding them. Unfortunately, the
opposite case, when a vertex must be strictly in the sink set is not discovered until the
very end of the algorithms.

The following algorithm attempts to identify as many vertices as possible for a given
region. It is based on the following simple consideration: if a vertex is disconnected
from the sink in 𝐺𝑅 as well as from the region boundary, 𝐵𝑅, then it is disconnected
from the sink in 𝐺; if a vertex is not reachable from the source in 𝐺𝑅 as well as from
𝐵𝑅 then it is not reachable from the source in 𝐺.

Let us say that a vertex 𝑣 is a strong source vertex (resp. a strong sink vertex) if for
any optimal cut (𝐶,𝐶), 𝑣 ∈ 𝐶 (resp. 𝑣 ∈ 𝐶). Similarly, 𝑣 will be called a weak source
vertex (resp. weak sink vertex), if there exists an optimal cut (𝐶,𝐶) such that 𝑣 ∈ 𝐶
(resp. 𝑣 ∈ 𝐶).

Kovtun (2004) suggested to solve two auxiliary problems, modifying network 𝐺𝑅 by
adding infinite capacity links from the boundary vertices to the sink and in the second
problem adding infinite capacity links from the source to the boundary vertices. In the
first case, if 𝑣 is a strong source vertex in the modified network 𝐺𝑅, it is also a strong
source vertex in 𝐺. Similarly, the second auxiliary problem allows to identify strong
sink vertices in 𝐺. It requires solving a maxflow problem on 𝐺𝑅 twice. We improve
this construction by reformulating it as the following algorithm finding a single flow in
𝐺𝑅.

Statement 61. Sets 𝐵𝑆 and 𝐵𝑇 constructed in step 2 are disjoint.

Proof. We have 𝑠 9 𝑡 after step 1, hence there cannot exist simultaneously a path
from 𝑠 to 𝑣 and a path from 𝑣 to 𝑡.

After step 1, the network 𝐺𝑅 is split into two disconnected networks: with vertices
reachable from 𝑠 and vertices from which 𝑡 is reachable. Therefore, any augmentations
occurring in steps 4 and 5 act on their respective subnetworks and can be carried
independently of each other. On the output of Algorithm 7, we have: 𝑠 9 𝐵𝑅 ∪ {𝑡}
and 𝐵𝑅 ∪ {𝑠}9 𝑡. The classification of vertices is shown in Figure 26.

Augmenting on (𝑠, 𝑡) in step 1 and on (𝑠,𝐵𝑆) in the step 4 is the same work as
done in ARD (where (𝑠,𝐵𝑆) paths are augmented in the order of labels of 𝐵𝑆). This is
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Algorithm 7: Region Reduction (𝐺𝑅, 𝐵𝑅)

/* Input: network 𝐺𝑅, boundary 𝐵𝑅. */
1 Augment(𝑠, 𝑡);
2 𝐵𝑆 := {𝑣 | 𝑣 ∈ 𝐵𝑅, 𝑠→ 𝑣}; /* source boundary set */
3 𝐵𝑇 := {𝑣 | 𝑣 ∈ 𝐵𝑅, 𝑣 → 𝑡}; /* sink boundary set */
4 Augment(𝑠,𝐵𝑆);
5 Augment(𝐵𝑇 , 𝑡);
6 foreach 𝑣 ∈ 𝑅 do
7 if 𝑠→ 𝑣 then 𝑣 is strong source vertex;
8 if 𝑣 → 𝑡 then 𝑣 is strong sink vertex;
9 otherwise

10 if 𝑣 9 𝐵𝑅 then 𝑣 is weak source vertex;
11 if 𝐵 9 𝑣𝑅 then 𝑣 is weak sink vertex;

t
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(a) (b)

Figure 26 Classification of vertices in 𝑉 𝑅 build by Algorithm 7. Vertices reachable from 𝑠
are strong source vertices. Vertices from which 𝑡 is reachable are strong sink vertices. The
remaining vertices can be classified as weak source vertices (a) if they cannot reach boundary,
or as weak sink vertices (b) if they are not reachable from the boundary. Some vertices are
both: weak source and weak sink, this means they can be on both sides of a (non-unique)
optimal cut (but not independently).

not a coincidence, these algorithms are very much related. However, the augmentation
on (𝐵𝑇 , 𝑡) in step 5 cannot be executed during ARD. It would destroy validity of the
labeling. We therefore consider Algorithm 7 as a separate general preprocessing.

If 𝑣 is a weak source vertex, it follows that it is not a strong sink vertex. In the
preflow pushing algorithms, we find the cut (𝑇 , 𝑇 ), where 𝑇 is the set of all strong sink
vertices in 𝐺. We consider that 𝑣 is decided if it is a strong sink or a weak source vertex.

Table 4 gives the percentage of how many vertices are decided (and hence can be
excluded from the problem) by Algorithm 7 for computer vision problems. It is seen
that in stereo problems, a large percent of vertices is decided. These problems are
rather local and potentially can be fully solved by applying Algorithm 7 on several
overlapping windows. In contrast, only a small fraction can be decided locally for many
other problems.

5.8 Tightness of 𝑂(𝑛2) bound for PRD

In this section, we give an example of a network, its partition into regions and a sequence
of valid push and relabel operations, implementing PRD, such that S/P-PRD runs in

100



5.8 Tightness of 𝑂(𝑛2) bound for PRD

BVZ-sawtooth(20) 80.0% LB07-bunny-sml 15.6%
BVZ-tsukuba(16) 72.8% liver.n26c10 7.1%
BVZ-venus(22) 70.2% liver.n26c100 5.3%
KZ2-sawtooth(20) 85.0% liver.n6c10 7.2%
KZ2-tsukuba(16) 69.9% liver.n6c100 5.3%
KZ2-venus(22) 75.8% babyface.n26c10 29.3%
BL06-camel-lrg 2.0% babyface.n26c100 30.9%
BL06-camel-med 2.3% babyface.n6c10 35.4%
BL06-camel-sml 4.6% babyface.n6c100 33.7%
BL06-gargoyle-lrg 6.0% adhead.n26c10 0.3%
BL06-gargoyle-med 2.4% adhead.n26c100 0.3%
BL06-gargoyle-sml 9.8% adhead.n6c10 0.2%
LB07-bunny-lrg 11.4% adhead.n6c100 0.1%
LB07-bunny-med 13.1% bone.n26c10 8.7%
bone.n26c100 6.9% bone_subxyz.n6c100 6.6%
bone.n6c10 8.8% bone_subxyz_subx.n26c10 7.9%
bone.n6c100 7.0% bone_subxyz_subx.n26c100 6.6%
bone_subx.n26c10 6.6% bone_subxyz_subx.n6c10 8.2%
bone_subx.n26c100 6.6% bone_subxyz_subx.n6c100 6.6%
bone_subx.n6c10 6.3% bone_subxyz_subxy.n26c10 11.3%
bone_subx.n6c100 6.3% bone_subxyz_subxy.n26c100 9.5%
bone_subxy.n26c10 6.6% bone_subxyz_subxy.n6c10 12.7%
bone_subxy.n26c100 6.6% bone_subxyz_subxy.n6c100 9.3%
bone_subxy.n6c10 6.4% abdomen_long.n6c10 1.7%
bone_subxy.n6c100 6.3% abdomen_short.n6c10 6.3%
bone_subxyz.n26c10 6.6% bone_subxyz.n6c10 6.6%
bone_subxyz.n26c100 6.6%

Table 4 Percentage of vertices which can be decided by preprocessing. The problems are
partitioned into regions the same way as in Table 1. The average number over subproblems
is shown for stereo problems.

Ω(𝑛2) sweeps.
We start by an auxiliary example, in which the preflow is transferred from a vertex to

a boundary vertex with a higher label. In this example, some inner vertices of a region
are relabeled, but not any of the boundary vertices. It will imply that the total number
of sweeps cannot be bounded by the number of relabellings of boundary vertices alone.

Example 7. Consider a network of 6 regular vertices in Figure 27. Assume all edges
have infinite capacity, so only non-saturating pushes occur. There are two regions
𝑅1 = {1, 2, 3, 4, 5} and 𝑅2 = {6}. Figure 27 shows a sequence of valid push and relabel
operations. We see that some vertices get risen due to relabel, but the net effect is that
flow excess from vertex 1 is transferred to vertex 6, which had a higher label initially.
Moreover, none of the boundary vertices (vertices 5,6) are relabeled.

Example 8. Consider the network in Figure 28. The first step corresponds to a se-
quence of push and relabel operations (same as in Figure 27) applied to the chain
(1, 2𝑎, 3𝑎, 4𝑎, 5, 6). Each next step starts with the excess at vertex 1. Chains are se-
lected in turn in the order 𝑎, 𝑏, 𝑐. It can be verified from Figure 28 that each step is a
valid possible outcome of PRD applied first to 𝑅1 and then to 𝑅2. The last configu-
ration repeats the first one with all labels raised by 6. The same loop exactly may be
repeated many times.

It is seen that vertices 1, 5, 6 are relabeled only during pushes in the chains 𝑎 and 𝑏
and never during pushes in chain 𝑐. If there were more chains like chain 𝑐, it would take
many iterations (= number of region discharge operations) before boundary vertices are
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1
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R1 R2

(a) (b) (c) (d) (e) (f)

Figure 27 Steps of Example 1. The height of a vertex corresponds to its label. The black box
shows the vertex with excess in each step. The source and the think vertices are not shown.
(a)-(b) flow excess is pushed to vertex 2; (c) vertex 2 is relabeled, so that two pushes are
available and excess is pushed to vertex 3; (d-f) similar.
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Figure 28 Steps of Example 2. Top left: a network with several chains of vertices like in
Example 1. Vertices 1, 5, 6 are common for all chains but there are separate copies of vertices
2, 3, 4 denoted by letters. In addition, there is a reverse arc from vertex 6 to vertex 1. From
left to right, top to bottom: one step of transferring a flow from vertex 1 to vertex 6 using
one of the chains and then pushing it through the arc (6,1), relabeling 6 when necessary. The
label of the first vertex is increased three times by 2.

risen. Let there be 𝑘 additional chains in the graph (denoted 𝑑, 𝑒,. . . ) handled exactly
the same way as chain 𝑐. The total number of vertices in the graph is 𝑛 = 3𝑘 + const.
Therefore, it will take Ω(𝑛) region discharges to complete each loop raising all vertices
by a constant value. The number of discharges needed in order that vertex 1 reaches
label 𝐷, is Ω(𝑛𝐷). To make the example complete, we add a chain of vertices initially
having labels 1, 2, 3, . . . , 𝐷 to the graph such that there is a path from vertex 1 to the
sink through a vertex with label 𝐷. Clearly, we can arrange that 𝐷 = Ω(𝑛). The
algorithm needs Ω(𝑛2) discharges on this example.
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Figure 29 Interpretation of the dual decomposition. (a) Example of a network with denoted
capacities. Terminal capacities are shown in circles, where “+” denotes 𝑠-link and “−” denotes
𝑡-link. 𝑀 ∩𝑁 is a separator set. (b) The network is decomposed into two networks holding
copies of the separator set. The associated capacities are divided (not necessarily evenly)
between two copies. The variable 𝜆1 is the Lagrangian multiplier of the constraint 𝑥𝑣 = 𝑦𝑣.
(c) Introducing edges of infinite capacity enforces the same constraint, that 𝑣′ and 𝑣′′ are
necessarily in the same cut set of any optimal cut. (d) A maximum flow in the network (c),
the flow value on the red edges corresponds to the optimal value of the dual variables 𝜆.

Because there is only one active vertex at any time, the example is independent of
the rule used to select the active vertex (highest label, FIFO, etc.). By the same reason,
it also applies to parallel PRD. Because the number of regions is constant, the number
of sweeps required is also Ω(𝑛2).

For a comparison, noting that the number of boundary vertices is 3, we see that
S-ARD algorithm will terminate in a constant number of sweeps for arbitrary 𝑘 in this
example.

5.9 Relation to the Dual Decomposition

In our approach, we partition the set of vertices into regions and couple the regions
by sending the flow through the inter-region edges. In the dual decomposition for
mincut (Strandmark and Kahl 2010) detailed below, a separator set of the graph is
selected and each subproblem gets a copy of the separator set. The coupling is achieved
via the constraint that the cut of the separator set must be consistent across the copies.
We show now how the dual variables of Strandmark and Kahl (2010) can be interpreted
as a flow, thus relating their approach to ours. While they solve the same mincut
problem as we do, the network they construct is slightly different, in that it has extra
vertices connected by infinite capacity edges.

Decomposition of the mincut problem into two parts is formulated by Strandmark
and Kahl (2010) as follows. Let 𝑀,𝑁 ⊂ 𝑉 are such that 𝑀 ∪𝑁 = 𝑉 , {𝑠, 𝑡} ⊂𝑀 ∩𝑁
and there are no edges in 𝐸 from 𝑀∖𝑁 to 𝑁∖𝑀 and vice-versa. Let 𝑥 : 𝑀 → {0, 1}
and 𝑦 : 𝑁 → {0, 1} be the indicator variables of the cut set, where 0 corresponds to the
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source set. Then the mincut problem without excess can be reformulated as:

min
𝑥,𝑦

𝐶𝑀 (𝑥) + 𝐶𝑁 (𝑦) ,

subj.

⎧⎪⎪⎨⎪⎪⎩
𝑥𝑠 = 𝑦𝑠 = 0 ,
𝑥𝑡 = 𝑦𝑡 = 1 ,
𝑥𝑖 = 𝑦𝑖 ∀𝑖 ∈𝑀 ∩𝑁 ,

(222)

where
𝐶𝑀 (𝑥) =

∑︁
(𝑖,𝑗)∈𝐸𝑀

𝑐𝑀 (𝑖, 𝑗)(1− 𝑥𝑖)𝑥𝑗 ,

𝐶𝑁 (𝑦) =
∑︁

(𝑖,𝑗)∈𝐸𝑁

𝑐𝑁 (𝑖, 𝑗)(1− 𝑦𝑖)𝑦𝑗 ,
(223)

𝑐𝑀 (𝑖, 𝑗) + 𝑐𝑁 (𝑖, 𝑗) = 𝑐(𝑖, 𝑗) ,
𝑐𝑀 (𝑖, 𝑗) = 0 ∀𝑖, 𝑗 ∈ 𝑁∖𝑀 ,

𝑐𝑁 (𝑖, 𝑗) = 0 ∀𝑖, 𝑗 ∈𝑀∖𝑁 ,

(224)

𝐸𝑀 = (𝑀 ×𝑀)∩𝐸 and 𝐸𝑁 = (𝑁 ×𝑁)∩𝐸. The minimization over 𝑥 and 𝑦 decouples
once the constraint 𝑥𝑖 = 𝑦𝑖 is absent. The dual decomposition approach is to solve the
dual problem:

max
𝜆

[︁
min

𝑥
𝑥𝑠=0
𝑥𝑡=1

(︁
𝐶𝑀 (𝑥)+

∑︁
𝑖∈𝑀∩𝑁

𝜆𝑖(1−𝑥𝑠)𝑥𝑖

)︁
+ min

𝑦
𝑦𝑠=0
𝑦𝑡=1

(︁
𝐶𝑁 (𝑦)−

∑︁
𝑖∈𝑀∩𝑁

𝜆𝑖(1−𝑦𝑠)𝑦𝑖

)︁]︁
, (225)

where the dual variable 𝜆 is multiplied by the extra terms (1 − 𝑥𝑠) = (1 − 𝑦𝑠) = 1 to
show explicitly that the inner minimization problems are instances of the minimum cut
problem.

We observe that dual variables 𝜆 correspond to the flow on the artificial edges of
infinite capacity between the copies of the vertices of the separator set as illustrated
by Figure 29. Indeed, consider a vertex 𝑣 in the separator set. The dual variable 𝜆𝑣

contributes to the increase of the terminal link (𝑣′, 𝑡) in the subproblem 𝑀 and to the
decrease of the terminal link (𝑣′′, 𝑡) in the subproblem 𝑁 . This can be equivalently
represented as an augmentation of flow of 𝜆𝑣 on the cycle 𝑣′, 𝑡′, 𝑣′′ in the network
Figure 29(c). The optimal flow in the network Figure 29(c) on the constraint edges will
therefore correspond to the optimal 𝜆. This construction could be easily extended to the
case when a vertex 𝑣 from the separator set is shared by more than two subproblems.

There exist an optimal integer flow for a problem with integer capacities. This
observation provides an alternative proof of the theorem (Strandmark and Kahl 2010,
Theorem 2)8, stating that there exist an integer optimal 𝜆. Despite the existence of an
integer solution, the integer subgradient algorithm (Strandmark and Kahl 2010) is not
guaranteed to find it.

The algorithms we introduced can be applied to such a decomposition by running
them on the extended graph Figure 29(c), where vertices of the separator set are du-
plicated and linked by additional edges of infinite capacity. Our algorithms are guar-
anteed to terminate and find the minimum cut and the optimal dual variables 𝜆. It

8Strandmark and Kahl (2010) stated their theorem for even integer costs in the case of two-subproblem
separator sets. They remarked that a multiple of 4, resp., 8 is needed in the cases of decompositions
for 2D and 3D grids. However, this multiplication is unnecessary if we choose to split the cost
unevenly but preserving the integrality (like we did in the example).
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could be observed, however, that this construction does not allow to reduce the number
of boundary vertices or the number of inter-region edges, while the size of the regions
increases. Therefore, it is more beneficial to use the plain graph partition scheme with
our algorithms, not using duplicated vertices.
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6 Conclusion

Partial Optimality We presented a new sufficient condition for deriving partial optimal
assignment in a multi-label energy minimization. Our framework allows for unified
analysis of the methods previously proposed in the literature (Desmet et al. 1992;
Kovtun 2003, 2004; Boros et al. 2006; Kohli et al. 2008). The proposed sufficient
condition include the conditions used by the methods in the literature as special cases.
At the same time, it is a polynomially verifiable one. The verification is expressed via
a special LP relaxation. A main unifying property for partial optimality methods in
this form is that they preserve all solutions of the LP relaxation, i.e., LP relaxation
cannot be tightened by these methods. Theorem 32 proves existence of an equivalent
transformation of the problem such that the sufficient condition is expressed in local
inequalities. This allows to derive a simplified LP for verification of the condition.
Theorem 21 proves for a subclass of partial optimality methods (including methods
of Kovtun (2003)) that the fixed points of the fusion move algorithm satisfy the derived
partial optimality guarantees. We studied subclasses, in which the maximum improving
projections can be found efficiently. Theorem 40 proves that submodular truncation
for binary variables preserves all projections of the form 𝑥 → 𝑥 ∨ 𝑦, allowing to find
maximum improving projection of this type by reduction to a submodular problem.
Algorithm 4 finds in polynomial time the maximum improving projection of the type
“eliminate 𝑧 by switching to 𝑦” for multilabel problems.

Interestingly, DEE and auxiliary submodular problems are not connected with lower
bounds. They are nevertheless unified now with (M)QPBO methods, which are derived
via lower bounds. In methods of Kovtun (2003), to obtain partial optimalities several
sufficient conditions have to be satisfied simultaneously. QPBO method and approaches
with submodular lower bounds (Kahl and Strandmark 2011; Kolmogorov 2012a) max-
imize a lower bound and obtain optimality guarantees as a by-product. Our approach
is more direct: we formalize the maximality of optimal partial solutions in a given class
and derive methods achieving it.

We believe that a large part of the approach (including the characterization) is ex-
tendible to higher-order models and higher-order relaxations. However, there is still a
number of open questions arising from our approach in the pairwise case. We did not
fully characterize strictly improving projections and consequently some of the theorems
in section 4.4 are lacking the strict counterpart. We proposed that the projection may
have non-integer weights, but considered only integer projections (except for showing
DEE). The set of improving projections for a given function is represented by inequal-
ities which are linear in the projection itself (except for the idempotency, which can
be omitted). Hence, in principle, we can optimize some criterion over this convex set.
In practice, we are lacking a low-dimensional convex parametric family of projections
that would be flexible enough. An ideal criterion would be to maximize the dimen-
sionality of the null space of the projection (equivalent to rank minimization), however
even a simpler approximate criterion can provide exact guarantees to the initial energy
minimization problem.
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Distributed Mincut We developed a new algorithm for mincut problem on sparse
graphs, which combines augmenting paths and push-relabel approaches. We proved
the worst case complexity guarantee of 𝑂(|ℬ|2) sweeps for the sequential and parallel
variants of the algorithm (S/P-ARD). There are many algorithms in the literature with
complexities in terms of elementary arithmetic operations better than we can prove.
Nevertheless, we showed that our algorithms are fast and competitive in practice, even
in the shared memory model.

We proposed an improved algorithm for the local problem reduction (§5.7) and de-
termined that most of our test instances are difficult enough in the sense that very few
vertices can be decided optimally by looking at individual regions. The result that S/P-
ARD solves test problems in few tens of sweeps is thus non-trivial. We also gave a novel
parallel version of the region push-relabel algorithm of Delong and Boykov (2008). We
provided a number of auxiliary results to relate our approach to the state-of-the-art.

Both in theory and practice (randomized test), S-ARD has a better asymptote in the
number of sweeps than the push-relabel variant. Experiments on real instances showed
that when run on a single CPU and the whole problem fits into the memory S-ARD
is comparable in speed with the non-distributed maxflow implementation by Boykov
and Kolmogorov (2004), and is even significantly faster in some cases. When only a
single region is loaded into memory at a time, S-ARD uses much fewer disk I/O than
S-PRD. We also demonstrated that the running time and the number of sweeps are
very stable with respect to the partition of the problem into up to 64 regions. In the
parallel mode, using 4 CPUs, P-ARD achieves a relative speedup of about 1.5 − 2.5
times over S-ARD and uses just slightly larger number of sweeps. P-ARD compares
favorably to other parallel algorithms, being a robust method suitable for a use in a
distributed system.

Our algorithms are implemented for generic graphs. Clearly, it is possible to specialize
the implementation for grid graphs. It would reduce the memory consumption and
might reduce the computation time as well.

A practically useful mode could be actually a combination of a parallel and sequen-
tial processing, when several regions are loaded into the memory at once and processed
in parallel. There are several particularly interesting combinations of algorithm par-
allelization and hardware, which may be exploited: 1) parallel on several CPUs, 2)
parallel on several network computers, 3) sequential, using Solid State Drive, 4) se-
quential, using GPU for solving region discharge.

There is the following simple way how to allow region overlaps in our framework.
Consider a sequential algorithm that is allowed to keep 2 regions in memory at a time.
It can then load pairs of regions (1, 2), (2, 3), (3, 4). . . , and alternate between the
regions in a pair until both are discharged. With PRD, this is efficiently equivalent
to discharging twice larger regions with a 1/2 overlap and may significantly decrease
the number of sweeps required. In the case of a 3D grid, it would take 8 times more
regions to allow overlaps in all dimensions. However, to meet the same memory limit,
the regions have to be 8 times smaller. It has to be verified experimentally whether it
is beneficial. In fact, the Region Push-Relabel implementation of Delong and Boykov
(2008) uses exactly this strategy: a dynamic region is composed out of a number of
smaller blocks and blocks are discharged until the whole region is not discharged. It is
likely that with this approach we could further reduce the disk I/O in the case of the
streaming solver.
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