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1 Problem Formulation

Many important problems in computer vision as well as in other fields can be
formulated using systems of polynomial equations. Examples of problems that
require solving complex systems of non-linear polynomial equations are prob-
lems of estimating camera geometry, such as relative or absolute camera pose
problems. These problems have a broad range of applications, e.g., in structure-
from-motion and 3D reconstruction [1, 20, 35, 36], recognition [28, 29], video-
based rendering [4], robotics, and augmented reality.

The problem of solving systems of non-linear polynomial equations is a very
old problem with many different well-studied solution methods. In general, the
methods can be divided into numerical and algebraic methods. In this thesis
we focus on algebraic methods. We review two classes of standard algebraic
methods, i.e. the Gröbner basis and the resultant based methods. These methods
are very useful mathematical methods but since they are general, i.e. they were
developed for general systems of polynomial equations, they are usually not
sufficiently efficient for systems which appear in computer vision problems.

It is because problems like estimating relative or absolute pose of a camera
are usually parts of some large systems, e.g., structure-from-motion pipelines or
recognition systems, which require high or even real-time performance. More-
over, the input measurements used for the computation are often contaminated
with a large errors. Therefore, these problems have to be solved for many dif-
ferent inputs to find the “best solution”, i.e. the solution consistent with as many
measurements as possible, e.g., when using in RANSAC-based algorithms [16].

This means that computer vision problems usually require very fast, efficient,
and numerically stable solvers which are able to solve many instances of one
problem, i.e. many systems of polynomial equations of “one form” only with
different “non-degenerate” coefficients, in milliseconds. Unfortunately, this re-
quirement usually cannot be fulfilled by using standard general methods for
solving systems of polynomial equations.

Therefore, in recent years various specific algorithms based on algebraic
geometry concepts have been proposed to achieve numerical robustness and
computational efficiency when solving computer vision problems. The main
property of these algorithms is that they use a specific structure of a system of
polynomial equations arising from a particular problem to efficiently solve this
problem only.

Recently, many efficient specific algorithms for solving various computer
vision problems have been proposed [32, 40, 37, 41, 42, 38, 33, 8, 31, 30,
8, 9, 7, 21]. They are mostly based on standard algebraic methods and de-
signed manually for a particular problem. This manual design usually requires
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deeper knowledge of algebraic geometry and considerable amount of craft,
which makes the process of generation of these specific solvers complex and
virtually impenetrable for a non-specialist. Moreover, for some of these prob-
lems it is not clear how their solvers were created and therefore non-specialists
often use them as black boxes; they are not able to reimplement them, improve
them, or create similar solvers for their own new problems.

2 Contributions

This thesis focuses on algebraic methods for solving systems of polynomial
equations appearing especially in computer vision problems. Its main goal is
to improve algebraic based methods previously used to manually create effi-
cient solvers to some computer vision problems, automate these methods, and
apply them to efficiently solve previously unsolved minimal computer vision
problems.

The contribution of the proposed thesis can be divided into three main groups:

• Algebraic methods for solving systems of polynomial equations
The first group of contributions of this thesis are modifications of two
standard algebraic techniques for solving systems of polynomial equa-
tions; the Gröbner basis and the resultant based techniques. These mod-
ifications enable the creation of efficient specific solvers for particular
problems, i.e. particular systems of polynomial equations.

The main difference between the proposed specialized methods and gen-
eral methods is that the specialized methods use the structure of the sys-
tem of polynomial equations representing a particular problem to design
a specific efficient solver for this problem.

These specialized methods consist of two phases. In the first phase some
preprocessing and computations common to all considered instances of
the given problem are performed and an efficient specific solver is con-
structed. For a particular problem this phase needs to be performed only
once.

In the second phase, the efficient specific solver is used to solve concrete
instances of the particular problem. This specific efficient solver is not
general and solves only systems of polynomial equations of one form,
i.e. systems which coefficients always generate the same “path” to the
solution. However, the specific solver is faster than a general solver and
suitable for applications which appear in computer vision.
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In the case of the specialized Gröbner basis method we summarize and
extend the Gröbner basis method used to manually create solvers to some
previously solved computer vision problems [37, 38, 41, 40]. Thanks to
the proposed extensions, e.g., the identification of the form of necessary
polynomials, new strategies for generating these polynomials, and new
procedures for removing unnecessary polynomials, we are able to create
smaller, more efficient, and more stable solvers than the previously man-
ually created solvers [37, 38, 41, 40]. Moreover, all these extensions can
be easily automated and therefore the presented specialized Gröbner ba-
sis method can be used even by non-experts to solve technical problems
leading to systems of polynomial equations.

The second proposed specialized method is based on hidden variable re-
sultants and polynomial eigenvalue problems [3]. In this thesis we pro-
pose several strategies for transforming the initial system of polynomial
equations to polynomial eigenvalue problem [3] and for reducing the size
of this problem. In this way we are able to create efficient and numer-
ically stable specific solvers for many problems appearing in computer
vision. Again, this method can be easily automated.

• Automatic generator of Gröbner basis solvers
Since the presented specialized Gröbner basis method requires non-trivial
knowledge of algebraic geometry from its user, we propose an automatic
method for generating Gröbner basis solvers which could be used even
by non-experts to easily solve problems leading to systems of polyno-
mial equations. The input to our solver generator is a system of poly-
nomial equations with a finite number of solutions. The output of our
solver generator is a Matlab code that computes solutions to this sys-
tem for arbitrary “non-degenerate” coefficients. Generating solvers auto-
matically open possibilities for solving more complicated problems that
could not be handled manually or solving existing problems in a better
and more efficient way. We demonstrate that our automatic generator
constructs efficient and numerically stable solvers that are comparable
or better than known manually constructed solvers in terms of computa-
tional time, space requirements, and numerical stability.

• Solutions to minimal problems in computer vision
To demonstrate the usefulness of the proposed specialized techniques for
solving systems of polynomial equations and the usefulness of our auto-
matic generator of Gröbner basis solvers, we provide efficient solutions
to several important relative pose problems. In this thesis we describe
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solutions to five minimal problems which haven’t been solved before:

1. the problem of simultaneous estimation of the fundamental matrix
and a common radial distortion parameter for two uncalibrated cam-
eras from eight image point correspondences,

2. the problem of simultaneous estimation of the essential matrix and
a common radial distortion parameter for two partially calibrated
cameras and six image point correspondences,

3. the problem of simultaneous estimation of the fundamental matrix
and two radial distortion parameters for two different uncalibrated
cameras from nine image point correspondences,

4. the 6-point relative pose problem for one fully calibrated and one
up to focal length calibrated camera, and

5. the problem of estimating epipolar geometry and unknown focal
length from images of four points lying on a plane and one off-the-
plane point, i.e. the “plane + parallax” problem for cameras with
unknown focal length.

Our solutions to these five new minimal problems are based on the spe-
cialized Gröbner basis method and are generated using our automatic
generator of Gröbner basis solvers. Moreover, for the “8-point radial dis-
tortion problem”, the “6-point problem for one fully calibrated and one
up to focal length calibrated camera” and for the “plane + paralax + focal
length” problem, we also propose the “polynomial eigenvalue solutions”
based on the specialized resultant based method.

Beside these solutions to previously unsolved minimal problems, we pro-
vide new solutions to two well known important relative pose problems:

6. the 5-point relative pose problem for two calibrated cameras, and

7. the 6-point relative pose problem for two cameras with unknown
equal focal length.

We show that these two problems lead to polynomial equations that can
be solved robustly and efficiently as cubic and quadratic eigenvalue prob-
lems. These new solutions are fast, and in the case of the 6-pt solver, also
slightly more stable than the existing solution [40]. In the case of the “6-
point equal focal length problem”, we also propose a new Gröbner basis
solution generated by our automatic generator and we show that this so-
lution is slightly more stable and also faster then previous Gröbner basis
solutions to this problem [40, 8].
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3 State of the Art

Solving systems of polynomial equations

Solving systems of polynomial equations is a classical problem with many ap-
plications, e.g., in computer vision, robotics, computer graphics and geometric
modeling. This problem has its origin in ancient Greece and China. Therefore it
is not surprising that there exists a large number of methods for solving systems
of polynomial equations.

We can divide them according to several criteria. One possible and very
simple division is the division into numerical and symbolic methods. In this
thesis we focus on symbolic (algebraic) methods.

The main idea of symbolic methods for solving systems of polynomial equa-
tions is to eliminate variables from the system, and in this way, to reduce the
problem to finding the roots of univariate polynomials. These methods have
their origins in algebraic geometry and are therefore sometimes called algebraic
methods or symbolic elimination methods.

In general, the algorithms for symbolic methods are efficient for smaller sys-
tems. For bigger systems, most of the general algorithms based on algebraic
methods suffer from accuracy or efficiency problems. It is because these algo-
rithms often require exact or multiple-precision arithmetic, which slows them
down considerably.

The symbolic methods may be divided into:

1. resultant methods,

2. Gröbner bases, and

3. Ritt-Wu’s methods.

Since these symbolic methods are well studied mathematical methods there
are many excellent books and papers available on this topic including theory
and applications. An overview of classical symbolic methods can be found
in [23, 10, 11]. [34] is a nice survey of these methods with examples of their
applications in computer vision.

Implementations of Gröbner bases and resultants algorithms and many al-
gorithms based on their applications are contained in all of the current math-
ematical software systems like Mathematica, Maple, Magma, Axiom, Derive,
Reduce, etc. Also, special software systems exist that are mainly based on
the Gröbner bases technique, for example, CoCoA [2], Macaulay [19], Singu-
lar [13].
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Minimal problems

Many problems in computer vision, especially problems of computing camera
geometry, can be formulated using systems of polynomial equations. Such sys-
tems of polynomial equations can have an infinite number of solutions, i.e. are
under-determined, no solution, i.e. are over-determined, or these systems can
have a finite number of solutions.

In the case of problems of computing camera geometry, the number of equa-
tions in the system and the corresponding number of solutions depend on the
number of geometric constraints and the number of input data (usually 2D-2D,
2D-3D or 3D-3D point or line correspondences) used to formulate the problem.
The problems solved from a minimal number of input data and using all the
possible geometric constrains that lead to a finite number of solutions are often
called “minimal problems” or “minimal cases”.

Various minimal problems have been recently studied extensively in com-
puter vision [43, 32, 40, 37, 41, 42, 38, 33, 8, 31, 30]. It is because a smaller
number of input data is less likely to contain incorrect inputs and therefore
considerably reduces the number of samples needed in RANSAC-based algo-
rithms [16] , which are widely used in many applications.

In this thesis we add several new minimal problem solutions to the family
of recently solved minimal problems [16, 32, 33, 33, 40, 37, 18]. All these
problems lead to systems of polynomial equations. For some problems, like the
perspective three point problem, these systems are not so complicated and the
solution to them is known for years and can be found using some manipulations
and tricks in a closed form [16]. However, more often these problems lead
to very complex systems of non-linear polynomial equations and numerical or
symbolic methods based on resultants or Gröbner bases need to be used to solve
them.

Macaulay’s resultant was, for example, used in [43] to solve the problem
of estimating absolute pose of a camera with unknown focal length from four
2D-to-3D correspondences and the problem of estimating absolute pose of a
camera with unknown focal length and unknown principal point from five 2D-
to-3D correspondences. Sparse resultants were used to solve the well know five
point relative pose problem [14]. This five point problem [31], as well as the six
point relative pose problem for camera with unknown focal length [30], were
solved also using the hidden variable resultant based method [10].

Unfortunately, standard symbolic methods for solving general systems of
polynomial equations, like the Buchberger’s algorithm for computing Gröbner
bases [10], or the previously described standard resultant based solutions [43,
14, 31, 30] may be very inefficient when solving minimal problems in computer
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vision.
It is because minimal problems are usually parts of some large systems which

require high or even real-time performance, e.g., structure-from-motion pipelines
or recognition systems, and due to incorrect inputs and noise need to be solved
for many different inputs in RANSAC-like algorithms [16] in milliseconds.

Thus, in recent years, various specific algorithms based on algebraic geom-
etry concepts have been proposed focusing on numerical robustness and com-
putational efficiency when solving minimal problems. The main property of
these algorithms is that they use specific properties of a system of polynomial
equations arising from a particular problem to efficiently solve this problem
only.

Stewénius [37] proposed a method for constructing solvers for problems
leading to systems of polynomial equations based on Gröbner bases and mul-
tiplication matrices. The resulting solvers are based on facts that in a class of
problems the “path” to the Gröbner basis is always the same and that algo-
rithms computing Gröbner bases can be realized using Gauss-Jordan elimina-
tion [15]. Based on these facts effective and practical algorithms for solving
minimal problems can be designed. Using this method Stewénius et al. solved
problems such as the five point relative pose problem [38], the six point rela-
tive pose problem for a camera with unknown constant focal length [40], the six
point generalized camera problem [41], the nine point problem for estimating
para-catadioptric fundamental matrices [18], the minimal problem for infinites-
imal camera motion [39] as well as some other minimal problems [37].

A similar Gröbner basis method was used by other authors to solve the 3-
point problem for panorama stitching for camera with unknown focal length
and radial distortion [7], the absolute pose problem for camera with unknown
focal length and radial distortion [21] and the 3-point relative pose problem for
camera with known vertical direction [22].

Since for larger systems numerical problems of Gröbner basis solvers may
appear [7], various techniques for improving the numerical stability of such
solvers in computer vision have been proposed in [8, 9, 6].

4 Specialized algebraic methods for solving
systems of polynomial equations

In this thesis we suggest modifications to two general algebraic methods for
solving systems of polynomial equations; the Gröbner basis and the resultant
based methods, which are suitable for many computer vision problems.
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The main difference between the proposed specialized methods and general
methods is that the specialized methods use the structure of the system of poly-
nomial equations representing a particular problem to design a specific efficient
solver for this problem.

These specialized methods consist of two phases. In the first phase some pre-
processing and computations common to all considered instances of the given
problem are performed and an efficient specific solver is constructed. For a par-
ticular problem this phase needs to be performed only once, therefore, we will
call it the “offline phase”.

In the second “online phase”, the efficient specific solver is used to solve
concrete instances of the particular problem.

Specialized Gröbner basis method
Our specialized Gröbner basis method follows and extends ideas of the method
proposed and used by Stewenius to manually create Gröbner basis solvers to
some computer vision problems [37, 38, 41, 40].

The most important improvements are:

1. identification of the form of the polynomials necessary for constructing a
multiplication matrix,

2. several strategies for generating polynomials from the ideal, and

3. new methods for removing unnecessary polynomials and monomials from
the found “elimniation template”.

Thanks to these improvements we are able to create efficient specific Gröbner
basis solvers for particular problems which are usually smaller, more efficient,
and more stable than the manually created ones. Moreover, our specialized
Gröbner basis method can be easily automated and therefore used even by non-
experts to solve technical problems leading to systems of polynomial equations.
Next, we describe the basic steps of this specialized Gröbner basis method.

Assume a set S of instances of a particular problem which are all “in the
form” of one system of polynomial equations F = {f1 = f2 = · · · = fm = 0}.
A solver for solving instances belonging to the set S can be created in the
following way:

Offline phase

1. Fix a monomial ordering ≻ (The graded reverse lexicographical ordering
is often good).
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2. Find the basis B of the quotient ring A = C [x1, . . . , xn] /I as the basis
which repeatedly appears for several different (usually random) choices
of coefficients of input equations that all belong to the set S. Do com-
putations in a suitably chosen finite prime field to speed them up and to
avoid numerical problems.

3. Choose a strategy for generating polynomials from the ideal I generated
by input polynomials f1, . . . , fm.

4. For a suitably chosen monomial xβ and the selected strategy for gener-
ating polynomials from the ideal I , find a “path” from the initial poly-
nomials f1, . . . , fm to polynomials qi that are necessary for construct-
ing the multiplication matrix Mxβ . Do this by systematically generating
higher order polynomials from the initial polynomials using the selected
strategy. Again, do computations in a finite prime field and with some
“non-degenerate” coefficients from S (usually random).

5. Remove “unnecessary” polynomials, i.e. polynomials that are not neces-
sary for generating polynomials qi, from all generated polynomials.

6. Detect “unnecessary monomials”, i.e. monomials that do not affect the
polynomials qi.

7. The remaining polynomials, together with the way of how they should
be eliminated, form the resulting “elimination template” for the “online”
solver.

The final “online” solver for solving all systems of polynomial equations “in
the form” of the “representing” system F consists of these steps:

Online phase

1. Using the “elimination template” found in the offline phase, generate all
necessary polynomials qi from the initial polynomials with coefficients
from C.

2. Construct the multiplication matrix Mxβ from coefficients of polynomials
qi.

3. Find the solutions of the input system of polynomial equations by finding
eigenvectors of the multiplication matrix Mxβ or by computing roots of
the characteristic polynomial [12, 14] of Mxβ .
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Specialized resultant based method

The second proposed specialized method is the method based on the hidden
variable resultants [10] and the polynomial eigenvalue problems (PEP) [3]. The
main idea of this method is the transformation of the initial system of polyno-
mial equations to the polynomial eigenvalue problem [3](

αlCl + αl−1Cl−1 + · · ·+ αC1 + C0
)
v = 0, (1)

where v is a vector of monomials in all variables except for a selected vari-
able α and Cj’s are n × n coefficient matrices. This is done by “hiding” the
variable α in the coefficient field and generating polynomials using the modi-
fied Macaulay’s method for computing resultants. Therefore we also call this
specialized resultant based method the polynomial eigenvalue method.

Similarly to the case of the specialized Gröbner basis method this resultant
based method can be divided into the “offline” and the “online” phase.

To create efficient robust specific polynomial eigenvalue solvers we propose:

1. several strategies for transforming a system of polynomial equations to a
PEP,

2. a method for removing unnecessary polynomials from the polynomial
eigenvalue formulation of the problem, and

3. a method for removing zero eigenvalues from the polynomial eigenvalue
formulation of the problem.

Thanks to these proposed strategies we are able to create efficient and numer-
ically stable polynomial eigenvalue solvers to many computer vision problems.

5 Automatic generator of minimal problems
solvers

In this thesis we propose an automatic generator of Gröbner basis solvers which
is based on the proposed specialized Gröbner basis method. This automatic
generator searches for an “elimination path” for a given system of polynomial
equations F and using this path produces an efficient solver for all instances
of the input problem that would lead to the same “elimination path”, i.e. all
systems of polynomial equations that are “in the form” of the input system F .
It is a number of valid paths the generator can find. The final choice of the path
is determined by the particular coefficients of F .
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Figure 1: Block diagram of the basic moduls of the automatic generator.

The input to our automatic generator is a system of polynomial equations F
that we want to solve, i.e. a system representing considered instances of a par-
ticular problem, with concrete coefficients from Zp that determine the particular
“elimination path”. For many problems, the “interesting” solutions can be ob-
tained with almost any, i.e. random, choice of coefficients of F . Therefore, we
use random values from Zp as default coefficients. The output of the generator
is the Matlab or Maple code that returns solutions to all systems of polynomial
equations “in the form” of the input system F , with specific coefficients from
C. During the online computations, only the resulting solver is called.

This automatic generator can be used even by non-experts to create solvers
for new or existing problems and usually results in smaller, more efficient and
more stable solvers than the manually created ones. Moreover, generating
solvers automatically opens possibilities to solve more complicated problems
which could not be handled manually.

Our automatic generator consists of several modules (Figure 1). Since all
these modules are independent, they can be further improved or replaced by
more efficient implementations.

6 Minimal problems

We demonstrate the usefulness of both the proposed specialized techniques and
the automatic generator by providing new efficient solutions to several impor-
tant relative pose problems, most of which were not solved before.

8-point radial distortion problem

Let us start with the problem is the problem of simultaneous estimation of the
fundamental matrix and a common radial distortion parameter, given by the
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Figure 2: (a) Log10 relative error of the radial distortion parameter λ obtained by se-
lecting the real root closest to the ground truth value λth = −0.2 for noise
free synthetic scene (b) Input image with significant radial distoriton. (c) Cor-
rected image using the presented 8-point algorithm.

division model [17], for two uncalibrated cameras from eight image point cor-
respondences. This problem has 16 solutions and was previously solved only
for nine image point correspondences [17].

We propose two formulations of this problem, the first resulting in three poly-
nomial equations in three unknowns and the second in seven equations in seven
unknowns, and we present three new minimal solutions to these formulations.

Gröbner basis solution of the “7 in 7” formulation. The first Gröbner basis
solution is based on the multiple elimination strategy for generating polyno-
mials from an ideal and even though it results in larger solver than the “3 in
3” formulation it has less critical configurations. The final solver consists of
four Gauss-Jordan (G-J) eliminations of 49× 119, 154× 119, 106× 126, and
108× 126 matrices and eigenvalue computations of a 16× 16 matrix.

Gröbner basis solution of the “3 in 3” formulation. The second Gröbner
basis solution is based on the single elimination strategy for generating poly-
nomials from an ideal and was generated using our automatic generator. This
solver consists of one G-J elimination a 32× 48 matrix and eigenvalue compu-
tations of a 16× 16 matrix.

Polynomial eigenvalue solution of the “3 in 3” formulation. The polynomial
eigenvalue solver for this problem needs to compute the inverse of a 10 × 10
matrix and eigenvalues of a 29× 29 matrix.

The numerical stability of all of the three proposed solvers and the two pre-
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viously published solvers [17, 8] can be seen in Figure 2 (a) and the results on
real-word photographs with significant radial distortion in Figure 2 (b) and (c).

9-point different radial distortion problem

The second problem that we have solved is the problem of simultaneous esti-
mation of the fundamental matrix and two radial distortion parameters for two
uncalibrated cameras with different distortions from nine image point corre-
spondences. This minimal problem has 24 solutions and hasn’t been solved
before.

The Gröbner basis solver for this problem generated using the proposed auto-
matic generator needs to perform one G-J elimination of a 179×203 matrix and
to compute eigenvalues of a 24×24 matrix. This solver is smaller than our pre-
vious manually created solver [3] which needs to perform LU decomposition
of a 393× 390 matrix and eigenvalue computations of a 24× 24 matrix.

6-point calibrated radial distortion problem

The third radial distortion problem which we have solved is the problem of si-
multaneous estimation of the essential matrix and a common radial distortion
parameter for two partially calibrated cameras and six image point correspon-
dences. This problem results in a quite complicated system of equations with
52 solutions.

The Gröbner basis solver generated using the proposed automatic generator
needs to perform one G-J elimination of a 238×290 and to compute eigenvalues
of a 52 × 52 matrix and is smaller than our previously published manually
created solver [3].

5-point relative problem

One of the most important relative pose problems is the 5-point relative pose
problem for two calibrated cameras.

In this thesis we show that this problem leads to polynomial equations that
can be solved robustly and efficiently as a cubic eigenvalue problem. More-
over, our Gröbner basis solver which uses Danilevskii method [12] for comput-
ing the characteristic polynomial is almost as fast as specific manually created
and optimized “closed-form” state-of-the-art solution [32] and outperforms the
state-ot-the-art Gröbner basis solution [38].
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Figure 3: The log10 relative focal length error for the 6-point equal focal length
problem. Here gb6pt denotes Stewenius Gröbner basis solver [40],
1elim6pt - the Gröbner basis solution with single elimination pre-
sented in our thesis and peig6pt our polynomial eigenvalue solver.

6-point equal focal length problem

In the case of the 6-point relative pose problem for two cameras with unknown
equal focal length we propose two new solutions.

The Gröbner basis solver generated using our automatic generator needs to
perform G-J elimination of a 31 × 46 matrix and to compute eigenvalues of a
15× 15 matrix.

The polynomial eigenvalue solver needs to compute the inverse of one 10×10
matrix and then to compute eigenvalues of a 20× 20 matrix.

Both these new solutions are more stable and faster then previous Gröbner
basis solutions to this problem [40, 8]. Using the Danilevskii method [12] for
computing the characteristic polynomial our Gröbner basis solution gains more
than 8× speed-up over the fastest available Gröbner basis solutions to this prob-
lem [40, 8, 6].

Figure 3 shows the numerical stability of the both proposed solvers, the poly-
nomial eigenvalue solver (Blue), and the Gröbner basis solver (Green), com-
pared to the state-of-the-art Gröbner basis solver [40].

6-point one calibrated camera problem

We also propose new efficient and robust minimal solutions to configuration
with one completely calibrated camera and one camera with unknown focal
length. We show that this solution can cope with the most unpleasant degen-
eracies and can be effectively used to reconstruct 3D scenes from collections of
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Figure 4: A 3D reconstruction of the Trevi Fountain using our 6-point one cali-
brated camera problem.

images with a very few (in principle single) images with known focal length(s),
e.g., unordered data sets downloaded from the Internet, see Figure 4.

This minimal problem hasn’t been solved before and has 9 solutions. Both
our minimal solvers for this problem are very simple and efficient.

Our Gröbner basis solver generated using the automatic generator has to per-
form a single G-J elimination of a 21 × 30 matrix and to compute eigenvalues
of a 9× 9 matrix.

The generalized eigenvalue solver for this problem does not perform any
elimination; however, it calculates generalized eigenvectors. This involves
computation of the inverse of one 10 × 10 matrix and then eigenvalues of a
matrix of the same size.

Plane+parallax problem for cameras with unknown
focal length

The final relative pose problem which we have solved is the minimal problem
of estimating epipolar geometry and unknown focal length from images of four
points lying on a plane and one off-the-plane point. This problem is known
as the plane + parallax problem for cameras with unknown focal length and
has not been solved before. Such problem is important in situations where a
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dominant plane is present in the scene, such as in 3D reconstructions of cities
or other man-made objects.

We have once again proposed two efficient robust solutions to this problem.
The Gröbner basis solution generated by our automatic generator has to perform
a single G-J elimination of a 10 × 15 matrix and to compute eigenvalues of a
5×5 matrix and the polynomial eigenvalue solution has to compute the inverse
of one 4× 4 matrix and the eigenvalues of a 8× 8 matrix.

7 Conclusion

In this thesis we suggest modifications of two standard algebraic techniques
for solving systems of polynomial equations, i.e. the Gröbner basis and the
resultant based technique, that are suitable for many computer vision problems.

The proposed specialized methods use the specific structure of a system of
polynomial equations representing a particular problem to create an efficient
specific solver for solving this problem. Such solver is not general and solves
only systems of polynomial equations of one form, i.e. systems “in the form” of
the representing system; however, it is faster than general solvers and suitable
for applications which appear in computer vision and robotics.

Both presented specialized methods can be easily automated and therefore
used even by non-experts to solve technical problems lading to systems of poly-
nomial equations. In this thesis we propose the automatic generator of such
efficient specific solvers based on the specialized Gröbner basis method.

We demonstrate the usefulness of the proposed specialized techniques and
the automatic generator by providing new efficient and numerical stable solu-
tions to several important relative pose problems, most of which were not solved
before. These problems include problems of estimating relative pose and inter-
nal parameters of calibrated, partially calibrated (with unknown focal length),
or completely uncalibrated perspective or radially distorted cameras observ-
ing general scenes or scenes with dominant plane. All these problems can be
efficiently used in many applications such as camera localization, structure-
from-motion, scene reconstruction, tracking and recognition. The quality of all
presented solvers is demonstrated on synthetic and real data.
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[42] H. Stéwenius, F. Schaffalitzky, and D. Nistér. How hard is 3-view triangulation really? In
ICCV’05, volume 1, pages 686–693, 2005.

[43] B. Triggs. Camera pose and calibration from 4 or 5 known 3d points. In ICCV’99, volume 1,
page 278, 1999.

19



Resumé in Czech
Počı́tačové viděnı́ vyžaduje schopnost efektivně řešit systémy polynomiálnı́ch
rovnic. Napřı́klad určovánı́ relativnı́ nebo absolutnı́ polohy kamery, lze for-
mulovat jako minimálnı́ problémy, tedy je lze řešit z minimálnı́ho počtu vs-
tupnı́ch dat. Minimálnı́ problémy vedou na systémy polynomiálnı́ch rovnic s
konečným počtem řešenı́.

Systémy vycházejı́cı́ z minimálnich problémů jsou často komplikované a
obecné algoritmy k řešenı́ systémů polynomiálnı́ch rovnic pro ně vedou na rela-
tivně neefektivnı́ řešenı́. Proto je pro řešenı́ těchto problémů obvykle zapotřebı́
navrhnout numericky robustnı́ a výpočetně efektivnı́ specifické algoritmy.

V této disertaci navrhujeme modifikace dvou standartnı́ch algebraických tech-
nik pro řešenı́ systémů polynomiálnich rovnic a to metody založené na Gröbnero-
vých bázı́ch a metody založené na rezultantech, které jsou vhodné právě pro
efektivnı́ řešenı́ mnoha problémů v počı́tačovém viděnı́ a jiných oblastech.

Základnı́ rozdı́l mezi prezentovanými specializovanými metodami a stan-
dartnı́mi obecnými metodami je, že prezentované specializované metody využı́-
vajı́ znalosti struktury systému polynomiálnı́ch rovnic, který reprezentuje kon-
krétnı́ problém k návrhu efektivnı́ho a stabilnı́ho algoritmu na řešenı́ tohoto
problému. Při tomto návrhu se část výpočtů společná pro všechny instance
daného problému připravı́ předem, což ušetřı́ čas při opakovaném řešenı́ systémů
s identickou strukturou.

Takto vytvořený algoritmus nenı́ obecným algoritmem a řešı́ jen systémy
polynomiálnı́ch rovnic jednoho tvaru, avšak je rychlejšı́ než obecné algoritmy a
proto je vhodný pro aplikace, které se objevujı́ napřı́klad v počı́tačovém viděnı́.

Obě navržené specializované metody mohou být snadno zautomatizovány a
takto použı́vány i neodbornı́ky k řešenı́ problémů vedoucı́ch na systémy poly-
nomiálnich rovnic. V této disertaci prezentujeme automatický generátor efek-
tivnı́ch algoritmů založený na modifikované metodě Gröbnerových bázi.

Jako ukázku užitečnosti obou navržených metod a našeho automatického
generátoru v této disertaci prezentujeme nová efektivnı́ a numericky stabilnı́
řešenı́ několika velmi důležitých problémů určovánı́ relativnı́ polohy kamer.
Většina těchto problémů nebyla v minulosti vyřešena. Mezi těmito problémy
jsou problémy určovánı́ relativnı́ polohy a kalibračnı́ch parametrů kalibrovaných,
částečně kalibrovaných (s neznámou ohniskovou vzdálenostı́) nebo kompletně
nekalibrovaných perspektivnı́ch kamer či kamer s radiálnı́m zkreslenı́m snı́ma-
jı́cı́ch obecnou scénu nebo scénu s dominujı́cı́ rovinou.

Všechny tyto algoritmy mohou být efektivně použity v aplikacı́ch jako je
lokalizace, rekonstrukce 3D scény či rozpoznávánı́. Kvalita prezentovaných
algoritmů je demonstrována experimenty na syntetických i reálných datech.
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[17] M. Hödlmoser, B. Micusik, and M. Kampel. Camera Auto-Calibration Using
Pedestrians and Zebra-Crossings. In IEEE International Conference on Computer
Vision Workshops (ICCV’11 Workshops), 2011.

[18] A. Irschara, Ch. Zach, J-M. Frahm, and H. Bischof. From Structure-from-Motion
Point Clouds to Fast Location Recognition. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’09), Vols 1-4, pages 2591–2598, 2009.

[19] H. Jin. A three-point minimal solution for panoramic stitching with lens distortion.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’08), Vols
1-12, pages 2681–2688, 2008.

[20] K. Josephson and M. Byröd. Pose Estimation with Radial Distortion and Unknown
Focal Length. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’09), Vols 1-4, pages 2411–2418, 2009.

[21] M. Kalantari, A. Hashemi, F. Jung, and J.-P. Guedon. Relative orientation us-
ing 3 points and the vertical direction. A direct approach. Traitement Du Signal,
27(3):325–348, 2010.

[22] J. Kannala, S. Brandt, and J. Heikkila. Self-calibration of central cameras by mini-
mizing angular error. In 3rd International Conference on Computer Vision Theory
and Applications, (VISAPP’08), Vol 1, pages 28-35, 2008.

[23] M. Kalantari, A. Hashemi, F. Jung, and J.-P. Guedon. A New Solution to the Rela-
tive Orientation Problem Using Only 3 Points and the Vertical Direction. Journal
Of Mathematical Imaging And Vision, 39(3):259–268, Mar 2011.

[24] L. Kang, L. Wu, and Y.-H. Yang. Experimental study of the influence of refrac-
tion on underwater three-dimensional reconstruction using the SVP camera model.
Applied Optics, 51(31):7591–7603, Nov 1 2012.

24



[25] S.-H. Lee, T.-E. Kim, and J.-S. Choi. Correction of Radial Distortion Using a
Planar Checkerboard Pattern and Its Image. In 27th IEEE International Conference
on Consumer Electronics, pages 255–256, 2009.

[26] S.-H. Lee, S.-K. Lee, and J.-S. Choi. Correction of Radial Distortion using a Planar
Checkerboard Pattern and its Image. IEEE Transactions On Consumer Electronics,
55(1):27–33, Feb 2009.

[27] H. Li. Multi-View Structure Computation without Explicitly Estimating Motion. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR’10), IEEE
Conference on Computer Vision and Pattern Recognition, pages 2777–2784, 2010.

[28] S. Li and Y. Hai. Estimating Camera Pose from H-Pattern of Parking Lot. In IEEE
International Conference on Robotics and Automation (ICRA’10), pages 3954–
3959, 2010.

[29] S. Li and Y. Hai. Easy Calibration of a Blind-Spot-Free Fisheye Camera System
Using a Scene of a Parking Space. IEEE Transactions On Intelligent Transporta-
tion Systems, 12(1):232–242, Mar 2011.

[30] S. Li and C. Xu. A Stable Direct Solution of Perspective-Three-Point Problem. In-
ternational Journal Of Pattern Recognition And Artificial Intelligence, 25(5):627–
642, Aug 2011.

[31] S. Li and C. Xu. Efficient lookup table based camera pose estimation for aug-
mented reality. Computer Animation And Virtual Worlds, 22(1):47–58, Jan-Feb
2011.

[32] S. Li, C. Xu, and M. Xie. A Robust O(n) Solution to the Perspective-n-Point
Problem. IEEE Transactions On Pattern Analysis And Machine Intelligence,
34(7):1444–1450, Jul 2012.

[33] J. Lim, N. Barnes, and H. Li. Estimating Relative Camera Motion from the
Antipodal-Epipolar Constraint. IEEE Transactions On Pattern Analysis And Ma-
chine Intelligence, 32(10):1907–U188, Oct 2010.

[34] L. Liu and I. Stamos. A systematic approach for 2D-image to 3D-range registration
in urban environments. Computer Vision And Image Understanding, 116(1):25–
37, Jan 2012.

[35] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and M. Pollefeys.
PIXHAWK: A micro aerial vehicle design for autonomous flight using onboard
computer vision. Autonomous Robots, 33(1-2):21–39, Aug 2012.

[36] B. Micusik. Relative pose problem for non-overlapping surveillance cameras with
known gravity vector. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR’11), 2011.

[37] B. Micusik and T. Pajdla. Simultaneous surveillance camera calibration and foot-
head homology estimation from human detections. In 23rd IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, Jun 13-18,
2010, pages 1562–1569, 2010.

25



[38] O. Naroditsky and K. Daniilidis. Optimizing Polynomial Solvers for Minimal
Geometry Problems. In IEEE International Conference on Computer Vision
(ICCV’11), pages 975–982, 2011.

[39] O. Naroditsky, X. S. Zhou, J. Gallier, S. I. Roumeliotis, and K. Daniilidis. Two
Efficient Solutions for Visual Odometry Using Directional Correspondence. IEEE
Transactions On Pattern Analysis And Machine Intelligence, 34(4):818–824, Apr
2012.

[40] G. Paar, L. Waugh, D. P. Barnes, T. Pajdla, M. Woods, H. R. Graf, Y. Gao, K. Will-
ner, J. P. Muller, and R. Li. Integrated Field Testing of Planetary Robotics vision
processing - the PRoVisG Campaign in Tenerife 2011. In Conference on Intelligent
Robots and Computer Vision XXIX - Algorithms and Techniques, volume 8301 of
Proceedings of SPIE, 2012.

[41] V. Pradeep and J. Lim. Egomotion using Assorted Features. In 23rd IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR’10), pages 1514–1521,
2010.

[42] V. Pradeep and J. Lim. Egomotion Estimation Using Assorted Features. Interna-
tional Journal Of Computer Vision, 98(2):202–216, Jun 2012.

[43] S. Ramalingam, S. Bouaziz, P. Sturm, and P. H. S. Torr. The Light-Path Less
Traveled. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’11), 2011.

[44] S. Ramalingam and P. Sturm. Minimal solutions for generic Imaging models. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR’08), Vols
1-12, pages 2870–2877, 2008.

[45] S. Ramalingam, Y. Taguchi, T. K. Marks, and O. Tuzel. P2 Pi: A Minimal Solu-
tion for Registration of 3D Points to 3D Planes. In 11th European Conference on
Computer Vision (ECCV’10), volume 6315 of Lecture Notes in Computer Science,
pages 436–449, 2010.

[46] Ch. Strecha, T. Pylvaenaeinen, and P. Fua. Dynamic and Scalable Large Scale Im-
age Reconstruction. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR’10), pages 406–413, 2010.

[47] Z. Tang, R. G. von Gioi, P. Monasse, and J.-M. Morel. High-precision camera
distortion measurements with a “calibration harp”. Journal Of The Optical Society
Of America A-optics Image Science And Vision, 29(10):2134–2143, Oct 2012.

[48] N. Trawny and S. I. Roumeliotis. On the Global Optimum of Planar, Range-based
Robot-to-Robot Relative Pose Estimation. In IEEE International Conference on
Robotics and Automation (ICRA’10), pages 3200–3206, 2010.

[49] R. G. von Gioi, P. Monasse, J. M. Morel, and Z. Tang. Towards High-precision
Lens Distortion Correction. In IEEE International Conference on Image Process-
ing (ICIP’10), pages 4237–4240, 2010.

26



[50] U. von Oehsen, J. M. Marcinczak, A. F. M. Velez, and R.-R. Grigat. Keyframe
Selection for Robust Pose Estimation in Laparoscopic Videos. In Conference on
Medical Imaging - Image-Guided Procedures, Robotic Interventions and Model-
ing, volume 8316 of Proceedings of SPIE, 2012.

[51] J. Wang, W. Gu, J. Zhu, and J. Zhang. Calibration of Lens Distortion Based
on Plane Constraints. In International Conference on Digital Image Processing
(ICDIP’09), pages 355–358, 2009. International Conference on Digital Image
Processing, Bangkok, Thailand, Mar 07-09, 2009.

[52] J. Wu and G. Liu. Noniterative calibration of a camera lens with radial distortion.
Measurement Science & Technology, 23(10), Oct 2012.

[53] Miao X.-K., Zhu F., and Hao Y.-M. Pose estimation of non-cooperative spacecraft
based on collaboration of space-ground and rectangle feature. In International
Symposium on Photoelectronic Detection and Imaging 2011 - Space Exploration
Technologies and Applications, volume 8196 of Proceedings of SPIE, 2011.

[54] S.-J. Zhang, X.-B. Cao, Zhang F., and L. He. Monocular vision-based iterative
pose estimation algorithm from corresponding feature points. Science China-
Information Sciences, 53(8):1682–1696, Aug 2010.

27


