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1 Introduction

For power-associative algebras and a positive integer n, let N iln be the vari-
ety of nil-algebras of nil-index n defined by the identity xn = 0. The classical
Dubnov-Ivanov-Nagata-Higman theorem (see [2, 5], 1943, 1956) states that
in characteristic zero every associative nil-algebra of nil-index n is nilpotent
of index less or equal 2n−1. It is an interesting problem to find the exact es-
timate f(n) for the nilpotency index of associative N iln-algebras. Razmyslov
(see [14], 1974) showed that f(n) ≤ n2. On the other hand, Kuzmin (see

[9], 1975) has proved that f(n) ≥ n(n+1)
2

and conjectured that the last num-
ber gives the exact estimate of the nilpotency index. It is easy to see that
Kuzmin’s conjecture is true for n = 2, and Higman’s results imply that it
is also true for n = 3. Several authors tried to check the conjecture for
next small values of n using the computer: Vaughan-Lee (see [29], 1993)
confirmed Kuzmin’s conjecture for n = 4. Shestakov and Zhukavets (see
[22], 2004) investigated Kuzmin’s conjecture for n = 5 and proved that every
two-generated superalgebra over a field of characteristic zero in the variety
of associative N il5-superalgebras is nilpotent of index 15.

A weaker condition than the associativity for an algebra is the alterna-
tivity: an algebra A is called alternative (see [34], 1982) if it satisfies the
identities

x(xy) = x2y and (yx)x = yx2.

An octonion algebra is an example of alternative algebra which is not asso-
ciative. Recall that by Artin’s theorem any two elements of an alternative
algebra generate an associative subalgebra. In particular, every alternative
algebra is power-associative.

For a nonassociative algebra A two chains of subsets can be inductively
defined:

A1 = A,

Ai+1 = AiA+ Ai−1A2 + · · ·+ A2Ai−1 + AAi,

and

A(0) = A,

A(i+1) = A(i)A(i).

An algebra A is called nilpotent (solvable) if An = 0 (A(n) = 0, respectively)
for some positive integer n. Clearly, any nilpotent algebra is solvable. The
concepts of solvability and nilpotency are equivalent for associative algebras.

It turns out that, in contrast to the associative case, alternative nil-
algebras of bounded index can be non-nilpotent, that is, the Dubnov-Ivanov-
Nagata-Higman theorem does not carry over to alternative algebras. This
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was proved by Dorofeev (see [1], 1960) who constructed an example of a
solvable alternative algebra which is not nilpotent. Zhevlakov’s theorem (see
[34, Theorem 6.3.2]) establishes that in characteristic zero every alternative

nil-algebra of index n is solvable of index ≤ n(n+1)
2

. Notice that already

Kuzmin’s results [9] imply that the solvability index ≥ log2
n(n+1)

2
.

It is worth to mention here two more open problems on solvability and
nilpotency of alternative algebras. It was Pchelintsev (see [13], 1985) who
proved that in characteristics not equal 2 and 3 the square of a solvable
alternative algebra is nilpotent without giving any approximation of the
nilpotency index. It would be interesting to obtain some estimate for this
nilpotency index. Shestakov (see [19], 1989) showed that for any alternative
algebra A it holds

(A2)g(k) ⊂ A(k), where g(k) = 5k−1+3
4

.

Moreover, till now there were no explicit examples of solvable alternative
algebras of arbitrary big index which are not associative.

One way to explore the alternative nil-algebras is the usage of the super-
algebras. The superalgebras were successfully used for the study of identities
of free algebras and for the development of a structure theory of varieties
of algebras. The method, which arose from that, is called the superalgebra
technique. If a few authors contributed to the development of this method
should be mention, Kemer (see [7, 8], 1984 and 1987), Zelmanov (see [31, 32],
1987 and 1989), Vaughan-Lee (see [29, 30], 1993 and 1998), or Shestakov and
Zhukavets (see [22, 23, 24, 25, 26, 27, 28], 2004–2009) must not be forgotten.

Recall, that no base of the free alternative nil-algebra is known. In gene-
ral, the problem of construction of a base of the free alternative nil-algebra
is very difficult, and it seems natural to consider first some special cases. For
instance, to construct a base of the subspace of all skew-symmetric elements
of the free alternative nil-algebra. In this case, due to papers of Shestakov
(see [20], 1999) and Vaughan-Lee (see [30], 1998), the problem is reduced to
the free alternative nil-superalgebra on one odd generator, which is easier to
deal with.

Aims of the doctoral thesis

The aim of this work is the usage of the superalgebra technique in the study
of free algebras. In this wide matters it is focused on the free alternative
nil-algebras and on obtaining some corollaries for solvable and nilpotent al-
ternative algebras. The base of the free alternative superalgebra on one odd
generator constructed by Shestakov and Zhukavets (see [27], 2007) is used.
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As a first step, the finding of a base of the free alternative nil-superalgebra
on one odd generator of different nil-index n ≥ 2 is described. Next, knowing
the base, the solvability and the nilpotency can be investigated. The index
of solvability of this superalgebra is found and it is confirmed for nil-index
n > 2 that the superalgebra is not nilpotent.

As an application, the subspace of skew-symmetric elements of the free
alternative nil-algebras is described. The problem is solved using the free al-
ternative nil-superalgebra on one odd generator. Further, Grassmann algebra
in the variety Alt-N il3 which generalize Dorofeev’s example of solvable non-
nilpotent alternative algebra (see [1], 1960) is presented. Another application
is a construction of an infinite family of solvable alternative nil-algebras of
arbitrary big solvability index, using a standard passage to Grassmann enve-
lope over a field of characteristic zero. It should be noted that the research
is difficult due to nonassociativity of studied objects.

As a future research, all skew-symmetric central and nuclear elements in
alternative algebras will be described.

The thesis is organized as follows.
Section 2: Basic definitions in the theory of nonassociative algebras, free al-
gebras and superalgebras are introduced.
Section 3: This section deals with applications of the superalgebra technique
in the study of identities of free algebras and in the study of the structural
theory of varieties of (non-associative) algebras.
Section 4: A base of Alt-N iln[∅;x] – the free alternative nil-superalgebra on
one odd generator x of nil-index n ≥ 2 is constructed in this section, and it
is proved that this superalgebra is solvable but, for n > 2, it is not nilpotent.
Section 5: Applications of the results obtained in the previous section are
presented. Namely, a base of the subspace of skew-symmetric elements of the
free alternative nil-algebra on countable set of free generators, a generaliza-
tion of Dorofeev’s example of solvable non-nilpotent alternative algebra, an
infinite family of solvable alternative nil-algebras which are not associative
of arbitrary big solvability index.
Section 6: A summary of the results and future plans are presented.
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2 Algebras, superalgebras and varieties

This chapter presents basic definitions and examples. It is based on the
publications [12, 15, 20, 34].

2.1 Algebras and their properties

Let A be a vector space over a field F with given bilinear mapping (usually
called “product”)

· : A× A→ A,

that means, the distributivity holds for every x, y, z ∈ A and α, β ∈ F:

x · (αy + βz) = α(x · y) + β(x · z),

(αx+ βy) · z = α(x · z) + β(y · z).

Then A is called an algebra over the field F. The product x ·y is often abbre-
viated by juxtaposition xy. Notice that we do not suppose the associativity
and commutativity of the mapping ·.

A commutative algebra Acom is an algebra with commutative product,
that is

[x, y] = 0,

for any two elements x, y ∈ Acom, where [ , ] is the commutator defined
as [x, y] = xy − yx. Similarly we define an associative algebra Aassoc as an
algebra with associative product, that is

(x, y, z) = 0,

for any three elements x, y, z ∈ Aassoc, where ( , , ) is the associator de-
fined as (x, y, z) = (xy)z − x(yz). The algebra not necessary commutative,
is called noncommutative. The algebra not necessary associative, is called
nonassociative. Replacing the associativity by identities

(x, x, y) = 0, (left alternativity)
(x, y, y) = 0, (right alternativity)

(1)

we get an alternative algebra Aalt. It was discovered that alternative algebras
are “sufficiently near” to associative ones. The essence of this nearness is
expressed in Artin’s theorem mentioned later.

If A contains a (two-sided) unit element 1 satisfying 1 · x = x · 1 = x for
all x ∈ A, the algebra A is said to be unital. As always, the unit element is
unique one if exists. For a unital algebra A we will often identify F with the
subalgebra F · 1 of the algebra A. Notice, that we do not require existence of
a unit element in A although we always demand a unit scalar in F.
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Example 2.1 (Examples of algebras) As a basic example of an algebra
we can take a field F itself as an algebra over F. The complex numbers C form
an algebra over a real numbers R with usual addition and multiplication of
complex numbers. Square matrices Mn(F) over a field F with matrix addition
and multiplication form an algebra over F.

Notice that C is an associative commutative algebra, while Mn(F) is an
associative algebra which is not commutative. F is an associative and com-
mutative algebra.

2.1.1 Subspaces, homomorphisms etc.

A subalgebra B of an algebra A is a subspace closed under multiplication:
BB ⊂ B (i.e. for any x, y ∈ B the product xy belongs to B). A (two sided)
ideal I of an algebra A is a subalgebra closed under multiplication by A, i.e.

AI + IA ⊆ I.

Ideals 0 and A of the algebra A are called improper ideals.

Center, nucleus

In the theory of nonassociative algebras we define two subsets of A which
do behave associatively: The nucleus N(A) (or the associative center) of an
algebra A is the set of elements z ∈ A which associate with every pair of
elements a, b ∈ A in the sense that (z, a, b) = (a, z, b) = (a, b, z) = 0. That is

N(A) = {z ∈ A | (z, A,A) = (A, z, A) = (A,A, z) = 0}.

The center Z(A) of an algebra A is the set of all elements z ∈ A which
commute and associate with all elements in A. That is

Z(A) = {z ∈ N(A) | [z, A] = 0}.

Note that N(A) is an associative and Z(A) is a commutative and associative
subalgebra of A. Moreover Z(A) ⊆ N(A).

A homomorphism of algebras ϕ : A→ A′ is a homomorphism of vector spaces
(i.e. a linear mapping) which preserves multiplication,

ϕ(xy) = ϕ(x)ϕ(y), for each x, y ∈ A.

The set
Imϕ = {ϕ(a) | a ∈ A}
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is a homomorphic image of A and a kernel of the homomorphism ϕ is the set

Kerϕ = {a ∈ A | ϕ(a) = 0}.

If ϕ is injective homomorphism then we say that an algebra A is imbedded in
A′. A homomorphism of algebras which is bijective is called isomorphism (of
algebras). An endomorphism is a homomorphism of algebras ϕ : A→ A.

If I is an ideal of an algebra A then the mapping A → A/I, such that
a 7→ a+ I, is called a natural (or canonical) homomorphism of algebras.

Theorem 2.1 (Fundamental theorem of hom. for algebras)
Let A,A′ be algebras. Let I be an ideal of A, ϕ : A→ A′ be a homomorphism
of algebras and π : A → A/I the natural homomorphism. Then there is a
unique homomorphism ϕ′ : A/I → A′ such that ϕ′(a + I) = ϕ(a). Further-
more, ϕ′ is an isomorphism if and only if ϕ is a surjective homomorphism
and Ker ϕ = I.

Theorem 2.2 (Isomorphism theorems for algebras)
Let ϕ : A → A′ be an algebra homomorphism, B ⊆ A be a subalgebra of A
and I2 ⊂ I1 be ideals of A. Then

(i) Kerϕ is an ideal of A, Imϕ is a subalgebra of A′ and

A/Kerϕ ' Imϕ,

(ii) I1 ∩ B is an ideal of B, I1 + B is a subalgebra of A, I1 is an ideal of
I1 +B and

(I1 +B)/I1 ' B/(I1 ∩B),

(iii) for two ideals I2 ⊂ I1 of A, I1/I2 is an ideal of A/I2 and

(A/I2)/(I1/I2) ' A/I1.

2.1.2 Direct sum and tensor product of algebras

The external direct sum S = A1 ⊕ A2 of two algebras A1 and A2 is the
Cartesian product A1 × A2 under the componentwise operations

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2),

α(a1, a2) = (αa1, αa2),

(a1, a2)(b1, b2) = (a1b1, a2b2).

For each i ∈ {1, 2} we have the natural surjection πi : S → Ai which picks out
the i-th coordinate, and the natural injection µi : Ai → S which maps a ∈ Ai
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to the pair (a1, a2), where aj = δija, that is, Imµ1 = {(a1, 0) | a1 ∈ A1} and
Imµ2 = {(0, a2) | a2 ∈ A2}. Evidently, Imµ1

∼= A1 and Imµ2
∼= A2.

A vector space A is called the sum of two subspaces A1 and A2, A =
A1 +A2, if every element of a ∈ A can be written as a = a1 + a2, ai ∈ Ai. If
each element of A can be so expressed in only one way, we call A the internal
direct sum. It is clear that S = A1 ⊕ A2 is in fact the internal direct sum of
Imµi, where µi are the natural injections.

Let A1, A2 be two algebras. Then a tensor product A1⊗A2 of the vector
spaces A1, A2 has a natural structure of algebra. The multiplication is given
by

(a1 ⊗ a2)(a′1 ⊗ a′2) = a1a
′
1 ⊗ a2a

′
2.

2.1.3 Nilpotency and solvability

For an algebra A we define inductively two chains of subsets:

A1 = A,

Ai+1 = AiA+ Ai−1A2 + · · ·+ A2Ai−1 + AAi,

and

A(0) = A,

A(i+1) = A(i)A(i).

An algebra A is called nilpotent (solvable) if An = 0 (A(n) = 0, respec-
tively) for some positive integer n. The minimal such n is called the index of
nilpotency (index of solvability, respectively) of the algebra A. Clearly, any
nilpotent algebra is solvable. The concepts of solvability and nilpotency are
equivalent for associative algebras:

A(i) = A(i−1)A(i−1) = A2i .

So if A is associative and solvable of index m then it is nilpotent of index at
most 2m, and conversely, if A is nilpotent of index n then is solvable of index
at most dlog2 ne, where due means the smallest integer not less then u.

An algebra A is called power-associative if every one-generated subalgebra
is associative. This is equivalent to defining the powers of a single element
x ∈ A by

x1 = x, xi+1 = xxi,

requiring xixj = xi+j, i, j ∈ {1, 2, . . . }.
A power-associative algebra A is called a nil-algebra of index n if each its

element is nilpotent of the order n (i.e. the equation xn = 0 holds for every
x ∈ A).
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Theorem 2.3 (Dubnov-Ivanov-Nagata-Higman, [34])
Let A be an associative nil-algebra of index n without elements of additive
order ≤ n, then A is nilpotent of index ≤ 2n − 1.

Note that the bound 2n − 1 obtained by this theorem is no exact, since in
the case n = 3 it is known that every associative nil-algebra is nilpotent
of index 6, while 23 − 1 = 7. The question of corresponding exact bound
f(n) for the case of an arbitrary n remains open. Razmyslov showed that

f(n) ≤ n2. On the other hand, Kuzmin has proved that f(n) ≥ n(n+1)
2

and

conjectured, that f(n) = n(n+1)
2

.

2.1.4 Alternative algebras

Now we introduce some basic facts, mentioned in [34], about the alternative
algebras. Recall that an algebra A is alternative, if for any two elements x, y ∈
A relations (1) are satisfied. Clearly, any associative algebra is alternative.
We can also describe this algebra using the identities

(x, z, y) + (z, x, y) = 0,
(x, y, z) + (x, z, y) = 0,

(2)

which are the linearized forms of the left and right alternativity (1), see the
linearization in Example 2.6. From (2) it follows that the associator is a
skew-symmetric function of its arguments and in particular,

(x, y, x) = 0

is also satisfied by every alternative algebra. In a corollary, it also satisfies
so called Moufang identities (see [34, Lemma 2.3.7]):

x(yzy) = [(xy)z]y, (right Moufang identity)

(yzy)x = y[z(yx)], (left Moufang identity)

(xy)(zx) = x(yz)x, (middle Moufang identity).

Example 2.2 (Octonions (Cayley numbers)) An octonion algebra O is
an example of alternative algebra which is not associative. It is defined over
real numbers and it is neither associative nor commutative. One can choose
a base of O consisting of 1 and seven imaginary units e1, e2, e3, e4, e5, e6, e7

and define a multiplication by the rules:

(i) 1 is the identity element of the algebra O,
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(ii) eiei = −1, eiej = −ejei, i 6= j,

(iii) eiei+1 = ei+3 (mod 7), and moreover,

(iv) if eiej = ek then eπ(i)eπ(j) = sgn(π)eπ(k) for any π ∈ Sym({i, j, k}).

We can see that for example

(e1e2)e3 = e4e3 = −e3e4 = −e6

is not equal
e1(e2e3) = e1e5 = e6, because e5e6 = e1,

that is, O is not associative.

Fact that alternative algebras are nearly associative is expressed by the
following theorem.

Theorem 2.4 (Artin’s theorem [34, Theorem 2.3.2])
In an alternative algebra any two elements generate an associative subalgebra.

In particular, every alternative algebra is power-associative.

Contrary to the associative case, the alternative algebras can be solvable,
but not nilpotent. This was proved by Dorofeev [1] (or [34, Section 6.2]),
who has constructed an example of a solvable alternative algebra which is
not nilpotent. We discuss this example in Section 5. It is also known [34,
Theorem 13.1.3] that solvability and nilpotency are equivalent for finitely
generated alternative algebras.

It is known that alternative nil-algebras can be non-nilpotent, that is,
the Dubnov-Ivanov-Nagata-Higman theorem for associative algebras does not
carry over to alternative algebras. Zhevlakov estimates the upper bound for
index of solvability of alternative nil-algebras.

Theorem 2.5 (Zhevlakov’s theorem [34, Theorem 6.3.2])
Let A be an alternative nil-algebra of index n without elements of additive
order ≤ n, then A is solvable of index ≤ n(n+1)

2
.

2.2 Superalgebras and their properties

In general, a superalgebra is a Z2-graded algebra over a field with charac-
teristic not equal two, that means an algebra A which may be written as
A = A0 + A1, subjected to the relation

AiAj ⊆ Ai+j, i, j ∈ Z2.
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The subspaces A0 and A1 are called the even and the odd part of the super-
algebra A and so are called the elements from A0 and from A1, respectively.
Furthermore, the element x is called homogeneous, if it is either even or odd
(x ∈ A0 ∪ A1), and the symbol x̄ is used for a parity, i.e. x̄ = 0 if x is even
and x̄ = 1 if x is odd. Notice that any algebra A has natural structure of a
superalgebra A0 = A and A1 = 0. This superalgebra is called trivial. The
relation A0A0 ⊆ A0 implies that A0 is subalgebra of A.

Example 2.3 A basic example of a superalgebra is an algebra of complex
numbers C over R with standard operations of addition and multiplication
with grading C = R + R i. R is the even part of the superalgebra C, R i is
the odd part. It is easy to check the definition from the products ab ∈ R,
xy ∈ R and ax ∈ R i, for any a, b ∈ R and x, y ∈ R i.

2.2.1 Subspaces, homomorphisms etc.

A subspace M of the superalgebra A = A0 +A1 is called a subsuperspace (or
a graded subspace) if M = M ∩ A0 +M ∩ A1, that is,

M0 = M ∩ A0,

M1 = M ∩ A1,

and M contains the homogeneous components (an even and an odd parts)
of all of its elements.

A subsuperalgebra of a superalgebra A = A0 + A1 is any subsuperspace
which is a subalgebra of A. Analogously, a subsuperspace of A = A0 + A1

which is an ideal of A (considered as an algebra) is called an ideal of a
superalgebra A. A homogeneous ideal is an ideal of a superalgebra generated
by a set of homogeneous elements.

A homomorphism of superalgebras A, B is a homomorphism of algebras
which preserves the grading, i.e. ϕ : A→ B such that

ϕ(Ai) ⊆ Bi, i ∈ Z2

(the even elements of A maps to even elements of B and the odd elements
of A maps to odd elements of B). An isomorphism of superalgebras is a
bijective homomorphism of superalgebras.

The direct sum of superalgebras is constructed as in the ungraded case
and the grading is given by

(A+B)0 = A0 +B0,

(A+B)1 = A1 +B1.
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The tensor product A ⊗ B of superalgebras A = A0 + A1, B = B0 + B1

is the tensor product of algebras A,B with the natural grading

(A⊗B)0 = (A0 ⊗B0) + (A1 ⊗B1),

(A⊗B)1 = (A0 ⊗B1) + (A1 ⊗B0).

2.2.2 Grassmann (super)algebra

Let F be a field of characteristic not equal two. The Grassmann algebra G
over F is an associative algebra generated by the elements 1, e1, e2, . . . , en, . . .
subject to the relation

e2
i = 0, eiej = −ejei, i 6= j. (3)

The products

1, ei1ei2 · · · eik , i1 < i2 < · · · < ik, (4)

form a base of G (we consider 1 as the product of the empty set of the
elements ei).

The Grassmann algebra has a natural structure of a superalgebra over F.
Denoting the subspace of products of even length by G0 and the subspace
of products of odd length by G1 respectively, we get the direct sum of these
subspaces and

G = G0 +G1, GiGj ⊆ Gi+j, i, j ∈ Z2.

Moreover it satisfies

gh = hg, for g ∈ G0, h ∈ G
gh = −hg, for g, h ∈ G1.

2.3 Free algebras, varieties of algebras
and superalgebras

2.3.1 Free algebra

Let us fix the set X. The free nonassociative algebra F[X] over a field F from
the set of generators X is defined by the following universal property: For
any algebra A, any mapping X → A can be uniquely extended to the algebra
homomorphism F[X] → A. The cardinality of the set X is called the rank
of F[X].

11



We can construct the free algebra F[X], using a setK[X] of nonassociative
words of the set X which is defined inductively:

x ∈ K[X], ∀x ∈ X,
x1x2, x1(u), (v)x2, (u)(v) ∈ K[X],

for x1, x2 ∈ X, u, v ∈ K[X]. No other sequences of the elements from X
and brackets are not contained in K[X]. Let us define the multiplication ·
on K[X] as

x1 · x2 = x1x2, x1 · u = x1(u), v · x2 = (v)x2, u · v = (u)(v).

Now we consider F[X] to be a set of formal sums{∑
i

αiui | αi ∈ F, ui ∈ K[X]
}

and extend the operation of multiplication defined on K[X] to F[X] by the
rule (∑

i

αiui

)
·
(∑

j

βjvj

)
=
∑
ij

αiβj(ui · vj),

where αi, βj ∈ F and ui, vj ∈ K[X]. We obtain the free nonassociative
algebra F[X] over a field F from the set of generators X. The elements of
F[X] are called nonassociative polynomials of (noncommutative) variables
from the set X.

Polynomials

A nonassociative polynomial of the form

α v,

where α ∈ F and v ∈ K[X] is called a (nonassociative) monomial. The
length of the word v is called a degree of the monomial. The maximum of the
degrees of the monomials whose sum forms a polynomial f is called a degree
of the polynomial f and it is denoted by deg(f).

The monomial α v has a multidegree (n1, . . . , nk) if it contains xi exactly
ni times, nk 6= 0, nj = 0, j > k. A polynomial f is called homogeneous if all
the monomials have the same multidegree.

Example 2.4 A polynomial f1(x, y, z) = (x2y)z + (xy)(zx) is homogeneous
since its monomial multidegree is (2,1,1), but a polynomial f2(x, y, z) =
x2y + x2z is not homogeneous since its monomial multidegrees are (2,1,0)
and (2,0,1).
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A homogeneous polynomial is called multilinear if it is linear in any of its
variable (it is homogeneous of multidegree (1, 1, . . . , 1)). A multilinear poly-
nomial f(x1, . . . , xk) is called symmetric if

f(x1, . . . , xk) = f(xπ(1), . . . , xπ(k))

for any π ∈ Sym(k), and skew-symmetric (or alternating) if

f(x1, . . . , xk) = sgn(π) f(xπ(1), . . . , xπ(k)).

In both cases it is enough to deal only with transpositions π = (i, j) ∈
Sym(k).

Linearization of polynomials

The linearization of the homogeneous polynomials is useful in the study of
identities of algebras and in the study of varieties. The relation between a
homogeneous polynomial and obtained linearized multilinear polynomial is
expressed by the Proposition 2.7 in the next subsection. The process of the
linearization is described in detail e.g. in [34, Section 1.5]. It is based on
reducing the variable degree of the polynomial, and we describe it now.

Exclude the variable x of degree k from the set X and denote the homo-
geneous polynomial f by f(x,X). Define a polynomial g(x, x1, X) as

g(x, x1, X) = f(x+ x1, X)− f(x,X)− f(x1, X),

where x1 6∈ X. Then g is a polynomial of degree k− 1 in the variables x, x1.
Moreover f(x,X) = 1

2k−2
g(x, x,X). Proceeding by induction on the degree

of variables we obtain a multilinear polynomial by the following describe the
algorithm.

Step 1: Define g1(x, x1, X) = f(x + x1, X) − f(x,X) − f(x1, X), where
x1 6∈ X.
Step 2: For i=2 to k-1 define

gi(x, x1, . . . , xi, X) = gi−1(x+ xi, x1, . . . , xi−1, X)

−gi−1(x, x1, . . . , xi−1, X)− gi−1(xi, x1, . . . , xi−1, X),

where xi 6= xj, j = {2, . . . , i − 1} and xi 6∈ X. The polynomial gk is linear
in x and in the new variables x1, . . . , xk−1.

Step 3: Continue with gk, apply Step 1 and Step 2 to other variables of
degree greater then one. The obtained polynomial is multilinear.

Let us show it on easy examples.

13



Example 2.5 (Linearization of the polynomial f(x) = x2)

f(x) = x2

g(x, y) = (x+ y)2 − x2 − y2

= x2 + xy + yx+ y2 − x2 − y2

= xy + yx.

A polynomial g(x, y) is multilinear. Notice, that in general associative case
the polynomial xn can be linearized as

g(x1, . . . , xn) =
∑

π∈Sym (n)

xπ(1)xπ(2) · · ·xπ(n)

in characteristic zero (see for example [22]).

Example 2.6 (Linearization of the left/right alternativity)
Linearization of the polynomial f(x) = (x, x, y) = x2y − x(xy) :

f(x, y) = (x, x, y) = x2y − x(xy)

g(x, z, y) = (x+ z)2y − (x+ z)((x+ z)y)

−(x2y − x(xy))− (z2y − z(zy))

= (xz)y + (zx)y − x(zy)− z(xy)

= (x, z, y) + (z, x, y).

Linearization of the polynomial f(x) = (x, y, y) = (xy)y − xy2:

f(x, y) = (x, y, y) = (xy)y − xy2

g(x, y, z) = (x(y + z))(y + z)− x(y + z)2

−((xy)y − xy2)− ((xz)z − xz2)

= (xy)z + (xz)y − x(yz)− x(zy)

= (x, y, z) + (x, z, y).

2.3.2 Varieties of algebras

A polynomial f(x1, . . . , xk) ∈ F[X] is called an identity of the algebra A if
f(a1, . . . , ak) = 0 for all elements a1, . . . , ak ∈ A. We also say that A satisfies
the identity f(x1, . . . , xk).

Let I be a set of polynomials from F[X]. Then the class of all algebras
satisfying this set of identities I is called the variety of algebras over the
field F defined by the set of identities I. A subvariety is a subset of a variety
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which is itself a variety. Algebras from the variety V are called shortly V-
algebras. The variety consisting of only the zero algebra is called trivial. The
variety is called homogeneous if, for every identity f satisfied in the variety
V , all the homogeneous components of f are also satisfied in V .

Proposition 2.6 ( [34, Corollary 1.4.2]) Every variety of algebras over
an infinite field is homogeneous.

Proposition 2.7 ( [12, Proposition 2.18]) Over a field of characteristic
zero any homogeneous identity is equivalent to a multilinear identity.

Corollary 2.8 ( [12, Corollary 2.19]) Over a field of characteristic zero
any variety can be defined by multilinear identities.

Example 2.7 The variety of associative algebras Assoc is defined by one
identity

f(x1, x2, x3) = (x1, x2, x3).

Example 2.8 The variety of commutative algebras Com is defined by the
identity

f(x1, x2) = [x1, x2].

Example 2.9 The variety of alternative algebras Alt is defined by two iden-
tities

f(x1, x2) = (x1, x1, x2),

f(x1, x2) = (x1, x2, x2).

Let us denote by

V (S) = {A | an algebra A satisfies all the identities from S}

the variety of algebras defined by the set S ⊂ F[X]. Notice that V (S) =
V (id〈S〉), where id〈K〉 denotes the ideal generated by K. Similarly, denote

I(A) = {f ∈ F[X] | f = 0 for all a ∈ A}

the set of all the identities that are satisfied in A, and

I(V) =
⋂
{I(A) | A ∈ V}.

Then I(A) is an ideal of F[X] and it is called the ideal of identities of the
algebra A. I(V) is an ideal of identities of the variety V .
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Proposition 2.9 ( [12, Proposition 2.4]) Let End(F[X]) be a set of all
endomorphisms of the algebra F[X] and A be an algebra. Then ϕ(I(A)) ⊆
I(A) for every ϕ ∈ End(F[X]).

An ideal of F[X] which is invariant under endomorphisms of F[X] is called a
T-ideal.

The following correspondence is evident [12, p. 17]:

(i) Let J, J1, J2 be ideals of F[X] and W ,W1,W2 be varieties of algebras.
Then

J1 ⊆ J2 ⇒ V (J1) ⊇ V (J2),

W1 ⊆ W2 ⇒ I(W1) ⊇ I(W2),

J ⊆ I(V (J)),

W ⊆ V (I(W)) and in a corollary W = V (I(W)),

V IV = V,

IV I = I,

and in a corollary

I(A) = I(V (I(A))), for any algebra A.

(ii) I(W) is a T-ideal for every variety W .

(iii) Any T-ideal J ⊂ F[X] is an ideal of identities of some algebra.

(iv) J = I(V (J)) for any T-ideal J ⊂ F[X].

Theorem 2.10 ( [12, Theorem 2.11] )
The correspondence I and V are bijective mappings between varieties and
T-ideals which invert inclusions.

Note that any variety of algebras is closed under homomorphisms, subalge-
bras, and direct products. And to decide whether a class of algebras forms
a variety is used the following Birkhoff’s (or HSP) theorem.

Theorem 2.11 (Birkhoff’s theorem, [12, Theorem 2.3] )
A class of algebras V form a variety iff V is closed under Homomorphisms,
Subalgebras and direct Products (HSP).

The algebra V [X] is called a V-free (relatively free or free in the variety V)
with the set of generators X, if for any algebra B ∈ V every mapping

φ : X → B ∈ V
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can be uniquely extended to a homomorphism of the algebras

φV : V [X]→ B.

The V-free algebra is not free in general but only in the variety V , i.e. it
satisfies identities (and their consequences) that defines the variety V . The
construction of the V-free algebra is explained by the following theorem:

Theorem 2.12 ( [34, Theorem 1.2.2])
Let V be a nontrivial variety with the system of defining identities I. Then for
any set X the natural homomorphism F[X]→ F[X]/I(V) is injective and the
quotient algebra is free in the variety V with the free set of generators X. Any
two free algebras in V with equivalent sets of free generators are isomorphic.

In the study of algebras from a specific variety V we shall often call an
element f in the V-free algebra V [X] an identity of an algebraA ∈ V , meaning
by this that some inverse image (and consequently all the inverse images)
in F[X] of the element f under natural homomorphism of F[X] onto V [X] is
an identity of the algebra A.

2.3.3 Free alternative algebras

Denote by IAlt the ideal of the free algebra F[X] generated by the elements

(f1, f1, f2), (f1, f2, f2), for f1, f2 ∈ F[X].

This is the ideal of F[X] generated by the left sides of the identities (1). The
free alternative algebra Alt[X] generated by X is the quotient algebra

Alt[X] = F[X]/IAlt,

and the universal property holds: If A is an alternative algebra over F and
φ : X → A a mapping, there is a unique homomorphism of algebras φAlt :
Alt[X]→ A such that φAlt(x) = φ(x) for all x ∈ X.

Denote by Altn the variety of alternative algebras generated by the free
alternative algebra Alt[Xn] from n generators. Evidently

Alt1 ⊆ Alt2 ⊆ · · · ⊆ Altn ⊆ · · · ⊆ Alt (5)

and so is Alt =
⋃
nAltn. Finding of the the smallest n such that Altn =

Alt was open question for a long time. In 1958 Shirshov in formulated
the question on the determination of the exact value of n for the variety of
alternative algebras. From Artin’s theorem it follows that n ≥ 3 for this
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variety. In 1963 Dorofeev proved that n ≥ 4 and Shestakov in 1977 in [34,
Theorem 13.1.2] proved that n is countable. Thus any finitely generated
alternative algebra satisfies some identity which is not realized in the free
alternative algebra from a countable set of generators. The question on
whether there can be equality at some places in the chain of inclusions (5)
turned out to be negative. It was proved by Shestakov, and in 1984 Filippov
refined this result in [3] for any n 6= 3. For n = 3 the question is still open.
Also, finding some system of defining identities for the varieties Altm, m ≥ 3
stays unsolved.

Finally, we define the free alternative nil-algebra Alt-N iln[X] of nil-index n
as a quotient algebra

Alt-N iln[X] = Alt[X]/INiln ,

where INiln is the ideal of the free alternative algebra Alt[X] generated by
the elements∑

π∈Sym(n)

(. . . ((fπ(1)fπ(2))fπ(3)) · · · )fπ(n), for f1, . . . , fn ∈ Alt[X].

See Examples 2.5 and 2.15 for more details.

2.3.4 V-superalgebras

Let A = A0 +A1 be a superalgebra. The even part of the superalgebra tensor
product G⊗ A is an algebra denoted by G(A)

G(A) = G0 ⊗ A0 +G1 ⊗ A1,

and it is called the Grassmann envelope of A.
Let V be a variety of algebras over a field F. A superalgebra A = A0 +

A1 is called a V-superalgebra if and only if (iff) the Grassmann envelope
G(A) belongs to V , i.e. G(A) is a V-algebra. Let us show some interesting
properties:

Example 2.10 (C is not Com-superalgebra)
Recall that complex numbers C are a commutative algebra. Now we show
that C = R + R i is not a commutative superalgebra. The superalgebra C
is commutative if the Grassmann envelope G(C) = G0 ⊗ R + G1 ⊗ R i is
commutative. This means

x̃ ỹ = ỹ x̃,
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for any two elements x̃, ỹ ∈ G(A), where

x̃ = gx ⊗ x,
ỹ = gy ⊗ y,

for gx, gy ∈ G0 ∪ G1, x, y ∈ R ∪ R i, x = gx, y = gy. But this identity does
not hold for x̃, ỹ ∈ G1 ⊗ R i:

x̃ ỹ = (gx ⊗ x)(gy ⊗ y) = gxgy ⊗ xy = −gygx ⊗ yx = −(gy ⊗ y)(gx ⊗ x)

= −ỹ x̃.

So that C is not a commutative superalgebra.

Example 2.11 (Grassmann algebra G is Com-superalgebra)
The Grassmann algebra G is not commutative, but it is a commutative su-
peralgebra, since its Grassmann envelope G(G) = G0 ⊗ G0 + G1 ⊗ G1 is
commutative. This is evident from

x̃ ỹ = (gx ⊗ x)(gy ⊗ y) = gxgy ⊗ xy = (−1)gxgygygx ⊗ (−1)x yyx

= (−1)ij+ijgygx ⊗ yx = gygx ⊗ yx = (gy ⊗ y)(gx ⊗ x) = ỹ x̃

for any x̃ = gx ⊗ x, ỹ = gy ⊗ y, where x, gx ∈ Gi, y, gy ∈ Gj, i, j ∈ {0, 1}.

Proposition 2.13 A Z2-graded algebra A = A0 + A1 is associative as an
algebra if and only if it is associative as a superalgebra.

Proof: If A is an associative algebra, then G(A) is associative. By the
definition, A is an associative superalgebra.

Conversely, let A = A0 + A1 be an associative superalgebra. Then G(A)
is an associative algebra. Denote by

x̃i = gx ⊗ x,
ỹj = gy ⊗ y,
z̃k = gz ⊗ z,

where x, y, z ∈ A0 ∪ A1, gx, gy, gz ∈ G0 ∪ G1. Then for x̃i, ỹj, z̃k ∈ G(A) we
have

(x̃iỹj)z̃k = x̃i(ỹj z̃k)

and it leads to
gxgygz ⊗ (xy)z = gxgygz ⊗ x(yz).

Therefore (xy)z = x(yz) and A is an associative algebra. 2

By this proposition, Grassmann envelope G(G) is associative algebra too,
and so is G as a superalgebra.
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Corollary 2.14 Grassmann superalgebra G is associative. 2

Example 2.12 Let A be a superalgebra and V a variety of associative alge-
bras defined by the identity

xyz − zyx = 0. (6)

Determine the conditions for a superalgebra A to be a V-superalgebra.
First, associativity of the Grassmann envelope G(A) implies that of A.

Furthermore, let x, y, z ∈ A0 ∪ A1, gx, gy, gz ∈ G0 ∪ G1, x = gx, y = gy and
z = gz. Then for x̃ = gx ⊗ x, ỹ = gy ⊗ y, z̃ = gz ⊗ z ∈ G(A) we have

x̃ ỹ z̃ − z̃ ỹ x̃ = gxgygz ⊗ xyz − gzgygx ⊗ zyx =

= gxgygz ⊗ (xyz − (−1)gx gy+gx gz+gy gzzyx) =

= gxgygz ⊗ (xyz − (−1)x y+x z+y zzyx).

Thus G(A) satisfies (6) if and only if A satisfies

xyz = (−1)x y+x z+y zzyx. (7)

The superalgebra A is a V-superalgebra iff it is associative and satisfies (7).

Now, let us give some examples of identities of V-superalgebras.

Example 2.13 (Identities of Com-superalgebras)
A commutative superalgebra A must satisfy

uv = (−1)u vvu,

for u, v homogeneous. Let x, y ∈ A0∪A1 and gx, gy ∈ G0∪G1, x = gx, y = gy.
Using the Grassmann envelope, the commutativity x̃ ỹ − ỹ x̃ = 0 must hold
for every x̃ = gx ⊗ x, ỹ = gy ⊗ y ∈ G(A). But in more detail we have

x̃ ỹ − ỹ x̃ = (gx ⊗ x)(gy ⊗ y)− (gy ⊗ y)(gx ⊗ x)

= gxgy ⊗ xy − gygx ⊗ yx = gxgy ⊗ xy − (−1)gxgygxgy ⊗ yx
= gxgy ⊗ (xy − (−1)x yyx).

Example 2.14 (Identities of Alt-superalgebras)
We show that an alternative superalgebra A satisfy the identities

(u, v, w) + (−1)u v(v, u, w) = 0,
(u, v, w) + (−1)v w(u,w, v) = 0.

(8)
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They are obtained from the linearized identities of left and right alternati-
vity (2) using the Grassmann envelope. Let us take x, y, z ∈ A0 ∪ A1 and
gx, gy, gz ∈ G0 ∪ G1, such that x = gx, y = gy and z = gz. Then for every
x̃ = gx ⊗ x, ỹ = gy ⊗ y, z̃ = gz ⊗ z ∈ G(A) we have

(x̃, ỹ, z̃) + (ỹ, x̃, z̃) = gxgygz ⊗ (x, y, z) + gygxgz ⊗ (y, x, z) =

= gxgygz ⊗ ((x, y, z) + (−1)gx gy(y, x, z)) =

= gxgygz ⊗ ((x, y, z) + (−1)x y(y, x, z))

(x̃, ỹ, z̃) + (x̃, z̃, ỹ) = gxgygz ⊗ (x, y, z) + gxgzgy ⊗ (x, z, y) =

= gxgygz ⊗ ((x, y, z) + (−1)gy gz(x, z, y)) =

= gxgygz ⊗ ((x, y, z) + (−1)y z(x, z, y)).

Since G(A) is an alternative algebra, the superalgebra A must satisfy (8).

As we can see, some new type of identities arise.

Superidentities

These new identities we will call superidentities. The superidentities can be
obtained by the following algorithm: Let V be a variety of algebras defined by
a system of multilinear identities (if not, linearize them first). Passing from
V-algebras to V-superalgebras use so called “superization rule” (or Kaplan-
sky’s principle). It says, that whenever two odd variables are transposed
in the identity, a negative sign is introduced. The superalgebra is then a
V-superalgebra iff it satisfies the obtained superidentities. This equivalence
comes directly from the definition of V-superalgebras. The superidentity
from Example 2.13 is called supercommutativity, the identities from Example
2.14 are called left/right superalternativity. Let us show more examples.

Example 2.15 (Niln superidentity)
Superidentities defining (nonassociative) N iln-superalgebras are obtained
from the linearized form of the identity xn = 0. Due to the fact, that
nil-algebras are power-associative, the linearization does not depend on the
bracketing. We use the natural lefthandside bracketing of the linearized iden-
tity xn = 0: ∑

π∈Sym(n)

(· · · (xπ(1)xπ(2))xπ(3)) · · · )xπ(n) = 0.

Using the superization rule we obtain the superidentity∑
π∈Sym(n)

signodd(π)(· · · ((uπ(1)uπ(2))uπ(3)) · · · )uπ(n) = 0, (9)
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where signodd(π) is the sign of the permutation afforded by π on the odd ui.

Example 2.16 (Alt-Niln superidentity)
Using the previous example, the Alt-N iln-superalgebras are defined by the
superidentities (8) and (9).

Associativity and superassociativity are the same (see Proposition 2.13).

It is worth noting that Artin’s theorem does not carry over the superalgebras.

Proposition 2.15 (Artin’s theorem and superalgebras)
An alternative superalgebra A on one odd generator is not associative.

Two proofs of this Proposition are in Section 3.

2.3.5 Varieties of superalgebras

Now, let us have Z = X ∪Y, X ∩Y = ∅, where X is a set of even generators
and Y a set of odd generators. Moreover we define a parity of the generators
as z̄ = 0 if it is even (z̄ = 1 if it is odd, respectively) for each z ∈ Z. Then we
can consider a free algebra F[Z] as a superalgebra and define a polynomial
f(x1, . . . , xk, y1, . . . , yl) ∈ F[Z] to be a graded identity of a superalgebra A if

f(a1, . . . , ak, b1, . . . , bl) = 0

for all the elements a1, . . . , ak ∈ A0, b1, . . . , bl ∈ A1. Denote by I2(A) a set
of graded identities of a superalgebra A. Then I2(A) is an (graded) ideal of
the superalgebra F[Z].

Proposition 2.16 ( [12, Proposition 2.20])
The set I2(A) is an ideal of the superalgebra F[X ∪ Y ].

Observe that ideals of graded identities of superalgebras are also invariant
under superalgebra endomorphisms of superalgebra F[X ∪ Y ]. If I2 is a
graded ideal of F[X ∪ Y ] then we can consider a variety of superalgebras
V2(I) defined by I2 (in fact, any set of elements of F[Z]0 ∪ F[Z]1 defines a
variety of superalgebras). In the same manner, as for varieties of algebras,
there exists a bijective correspondence between graded ideals of superalgebra
F[X ∪ Y ] and varieties of superalgebras.

Next we study a relation between I(A) and I2(A0 +A1) for a superalgebra
A = A0 +A1. Observe that I(A) is an ideal of F[X], while I2(A0 +A1) is an
ideal of F[X ∪ Y ]. Let f = f(x1, . . . , xk) ∈ F[X] be a multilinear element.
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For each subset I = {i1, . . . , ik} ⊆ {1, . . . , n}, denote by fI(z1, . . . , zn) a
polynomial in F[X ∪ Y ], where fI is equal f , and variables zi are defined in
the following way:

zi = xi; if i 6∈ I, zi = yi, if i ∈ I.

In other words, to obtain fI(z1, . . . , zn) from the polynomial f(x1, . . . , xn) we
change the variables xij by yij for ij ∈ I.

Proposition 2.17 ( [12, Lemma 2.21])
Let A = A0 + A1 be a superalgebra and let f = f(x1, . . . , xk) ∈ F[X] be a
multilinear element. Then f ∈ I(A) if and only if fI ∈ I2(A), for any subset
I of {1, . . . , n}.

Let Mult[Z] be the subspace of multilinear elements in F[Z]. Each element
f ∈Mult[Z] can be written in the form

f(z1, . . . , zn) =
∑
π, u

α(π, u)u(zπ(1), . . . , zπ(n))

where α(π, u) ∈ F, π ∈ Sym(n) and u is a monomial of degree n. Define a
mapping ∗ : Mult[Z]→Mult[Z] which maps any f(z1, . . . , zn) to

f ∗(z1, . . . , zn) =
∑
π, u

α(π, u) signodd(π)u(zπ(1), . . . , zπ(n))

where signodd(π) is the sign of the permutation afforded by π on the odd zi.

Lemma 2.18 ( [12, Lemma 2.22])
Let A = A0 + A1 be a superalgebra.

• (i) If f ∈ F[X ∪ Y ] is multilinear then f ∈ I2(G(A)) if and only if
f ∗ ∈ I2(A).

• (ii) If f ∈ F[Xn] is multilinear, Xn = {x1, . . . , xn}, then f ∈ I(G(A))
if and only if (fI)

∗ ∈ I2(A), for any subset I ⊆ {1, . . . , n}.

Corollary 2.19 ( [12, Corollary 2.23])
Let V = V (f1, . . . , fn, . . . ), where each fi is multilinear. Then A = A0 + A1

is a V-superalgebra if and only if for any set I and any index i,

(fi)
∗
I ∈ I2(A).

Notice that for each identity f(x1, . . . , xn) we can obtain 2n graded iden-
tities f ∗I (z1, . . . , zn) with I ⊆ {1, . . . , n}:
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Example 2.17 (Graded identities of Com-superalgebra)
The commutativity xy = yx leads to the four graded identities:

x0y0 = y0x0,

x0y1 = y1x0, (10)

x1y0 = y0x1, (11)

x1y1 = −y1x1,

for x0, y0 are even, x1, y1 are odd.

Corollary 2.20 ( [12, Corollary 2.24] )
Let V = V (f1, . . . , fn, . . . ), where each fi is multilinear. Then a class of all
V-superalgebras is a variety of superalgebras. In particular, over a field of
characteristic zero, for any variety V (not necessary defined by multilinear
identities), the class of V-superalgebras is also a variety.

Example 2.18 (Variety of Com-superalgebras)
The class of commutative superalgebras is defined by three graded identities
derived from the commutativity ab = ba:

ab = ba,

ax = xa,

xy = −yx,

where the elements a, b are even and x, y are odd elements. (Compare with
Example 2.17, the equations (10) and (11) are replaced by one ax = xa here.)

Example 2.19 (Variety of N il3-superalgebras)
The class of associative nil-superalgebras of nil-index 3 is defined by four
graded identities

abc+ bca+ cab+ acb+ bac+ cba = 0,

abx+ bxa+ xab+ axb+ bax+ xba = 0,

axy + xya− yax− ayx+ xay − yxa = 0,

xyz + yzx+ zxy − xzy − yxz − zyx = 0,

where a, b, c are even and x, y, z are odd. (Remaining four graded identities
coincide with these four.)
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3 The superalgebra technique

Superalgebras (or Z2-graded algebras), naturally occur in physics and the
name “super-” came from physics – quantum field theories that involve Fermi
and Bose fields. But they were mathematicians, who have used these algebras
first in algebraic topology, homology of algebras, calling them graded Lie
algebras (today Lie superalgebras). Note that in all articles written before
1974 is used only the name graded Lie algebras. The precise definitions and
description of basic algorithms of the superalgebras is dated in the eighties
of last century. [10]

Superalgebras can be used to the study of identities of free algebras and
to the development of a structure theory of varieties of algebras. The method
was first used by Kemer [7] in 1984, who applied it to the study of identities of
associative algebras. In the later article (see [8], 1987), he solved the Specht
problem by proving that all varieties of associative algebras of characteristic
zero are finitely based. In the articles by Zelmanov (see [31, 32], 1987 and
1989), Zelmanov and Shestakov (see [33], 1990) the superalgebra method
was developed further and applied to nilpotency problems for nonassociative
algebras. [20]

These results of Kemer, Zelmanov or Shestakov are purely “qualitative”,
without quantitative estimates. The next authors used the superalgebra
method just for obtaining exact estimates and computing dimensions of ho-
mogeneous component of free algebras (by a computer). Vaughan-Lee (see
[29, 30], 1993 and 1998) applied the superalgebra method to decrease the
number of variables in finding of the index of the nilpotency of algebras in
the variety N il4. Following his steps, Shestakov and Zhukavets (see [22],
2004) investigated Kuzmin’s conjecture for n = 5 to confirm it for every
two-generated superalgebra over a field of characteristic 0 in the variety of
associative N il5-superalgebras.

In 2003, Shestakov (see [21], 2003) found a base of the free Malcev su-
peralgebra on one odd generator. Then, Shestakov and Zhukavets obtained
bases of the universal multiplicative envelope for the free Malcev superalgebra
on one odd generator, the Malcev Grassmann algebra (see [23], 2006), and
the Poisson Malcev superalgebra related with the free Malcev superalgebra
on one odd generator (see [26, 24], 2006).

In a corollary of their study they proved a linear independence of the
elements that span the free alternative superalgebra on one odd generator (see
[27], 2007), which was a couple of years unproved. They also obtained central
skew-symmetric elements in free Malcev and in free alternative algebras [23,
26], they proved that there are no skew-symmetric Malcev s-identities [25],
they found a new element of degree 5 from the radical of the free alternative

25



algebra of countable rank and they proved that the square of the radical is
not zero [27].

In 2009, using the superalgebra method, they classified all multilinear
skew-symmetric identities and central polynomial functions of octonions (see
[28]).

The following text is based on [12] and [20]. We will consider only varieties
of algebras defined by multilinear identities (which is always satisfied if, for
example, a field has zero characteristic), the multilinearity of identities is
required for passage from V-algebras to V-superalgebras. Furthermore, while
speaking about elements or ideals of superalgebras, we will always assume
only homogeneous ones.

Superscalar extension

Recall that for a V-superalgebra A its Grassmann envelope G(A) is a V-
algebra. In this section we consider the opposite direction and describe a
passage from V-algebras to V-superalgebras, more precisely, for any V-algebra
A we show how to construct a V-superalgebra AG.

Proposition 3.1 Let V be a variety of algebras defined by a set of multilinear
identities. If B is an associative commutative algebra, then B ⊗ A ∈ V for
any A ∈ V.

Proof: Write any identity f = f(x1, . . . , xn) satisfied in A as a sum of
multilinear monomials

f =
∑
i

mi.

We prove that f is satisfied in B⊗A. For any a1, . . . , an ∈ A, b1, . . . , bn ∈ B
we have

f(b1 ⊗ a1, . . . , bn ⊗ an) =
∑
i

mi(b1 ⊗ a1, . . . , bn ⊗ an)

=
∑
i

b1 · · · bn ⊗mi(a1, . . . , an)

= b1 · · · bn ⊗ f(a1, . . . , an),

since all multilinear monomials in commutative associative variables of de-
gree n are equal. We can see, that if identity f is satisfied in A, then it is
satisfied in B ⊗ A. 2
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Corollary 3.2 Let V be a variety of algebras defined by a set of multilinear
identities and G be a Grassmann superalgebra. Then for any A ∈ V the
tensor product AG = G⊗ A = G0 ⊗ A+G1 ⊗ A is a V-superalgebra.

Proof: The most important condition for this construction is, that G is an
associative commutative superalgebra as was shown in Corollary 2.14 and
Example 2.11. In this view so is algebra G(G) and it is enough to prove that
G(AG) = G(G⊗ A) is equal G(G)⊗ A. We have

G(AG) = G0 ⊗ (G0 ⊗ A) +G1 ⊗ (G1 ⊗ A)

= (G0 ⊗G0)⊗ A+ (G1 ⊗G1)⊗ A
= G(G)⊗ A,

which implies that G(AG) ∈ V for every A ∈ V and AG is a V-superalgebra.
2

We have proved that every algebra A in the variety V can be imbedded into
the V-superalgebra AG by means of the extension of the field of scalars F
to the “domain of superscalars” G. Passage to superscalar extension allow
us to reduce the number of variables in the identities that are multilinear
skew-symmetric polynomials.

Reduction of the number of variables

It is known that in characteristic zero any multilinear symmetric polynomial
function may be obtained by a linearization of a polynomial function of
degree n on one variable [20]. Now we investigate in detail the case, when
the polynomial is multilinear skew-symmetric. Using G ⊗ A, a number of
variables can be reduced to one variable. However, the new variable will not
lie in A but in G⊗A. The problem is that in general G⊗A does not belong to
the same variety as A. For instance, if A = F then G⊗F = G is already not
commutative. Nevertheless, G⊗ A satisfies certain graded identities related
with those of A. More precisely, if

f : A× · · · × A→ A

is a multilinear skew-symmetric polynomial function of degree n, one can
consider AG = G⊗ A and fG : AG × · · · × AG → AG of degree n given by

fG(g1 ⊗ a1, g2 ⊗ a2, . . . , gn ⊗ an) = g1 · · · gn ⊗ f(a1, . . . , an),

for any homogeneous gi ∈ G and ai ∈ A. If we take an odd element

ã = e1 ⊗ a1 + · · ·+ en ⊗ an ∈ AG,
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where e1, e2, . . . , en are the odd generators of G, ai ∈ A, we get

fG(ã, . . . , ã) = fG(e1 ⊗ a1 + · · ·+ en ⊗ an, . . . ,
e1 ⊗ a1 + · · ·+ en ⊗ an)

=
∑

π∈Sym(n)

eπ(1) · · · eπ(n) ⊗ f(aπ(1), . . . , aπ(n))

=
∑

π∈Sym(n)

sign(π)e1 · · · en ⊗ sign(π)f(a1, . . . , an)

= n! · e1 · · · en ⊗ f(a1, . . . , an).

Therefore, f(a1, a2, . . . , an) = 0 if and only if fG(ã, . . . , ã) = 0 and the identity
f(x1, x2, . . . , xn) = 0 is reduced to the identity in one odd variable over the
superalgebra AG.

Similar trick works for a symmetric polynomial function. It may be re-
duced to an identity in a single even variable

ã = e1e2 ⊗ a1 + · · ·+ e2n−1e2n ⊗ an ∈ AG.

We can also use a passage to superscalar extension to prove of Proposi-
tion 2.15.
Proof I: (Proposition 2.15)[Artin’s theorem and superalgebras]
We prove that there is an alternative superalgebra on one odd generator that
is not associative, i.e. Artin’s theorem does not carry over the superalgebras.
By the Proposition 3.1 we can imbed a V-algebra A into a V-superalgebra
AG. Take as A an octonion algebra O, with 1 and imaginary units e1, . . . , e7.
Recall that for example

(e1, e2, e3) = −2e6 6= 0.

OG = G ⊗ O = G0 ⊗ O + G1 ⊗ O is an alternative superalgebra, since O is
an alternative algebra. If we take an odd generator

ã = g1 ⊗ a1 + g2 ⊗ a2 + g3 ⊗ a3

for any three elements a1, a2, a3 ∈ O and odd generators g1, g2, g3 ∈ G, then
this one-generated subsuperalgebra in OG is associative iff

(ã, ã, ã) = 3! · g1g2g3 ⊗ (a1, a2, a3) = 0.

But for
ã = g1 ⊗ e1 + g2 ⊗ e2 + g3 ⊗ e3
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we get

(ã, ã, ã) = 3! · g1g2g3 ⊗ (e1, e3, e3) = 3! · g1g2g3 ⊗ (−2)e6

6= 0

and A is not associative. 2

3.1 Applications

In this subsection, we introduce some applications of the superalgebras to
the study of identities of free algebras or to development of the structure
theory of varieties of algebras. The overview follows.

3.1.1 The subspace of skew-symmetric elements

Let V be a variety of algebras over a field of characteristic zero. In this
subsection we show how the free V-superalgebra on one odd generator can
be used to describe the subspace of skew-symmetric elements of the free
V-algebra on a countable set of generators.

Let f = f(x) be a homogeneous nonassociative polynomial of degree n on

one variable x. It may be written in the form f(x) = f̃(x, x, . . . , x), for a cer-

tain multilinear polynomial f̃(x1, x2, . . . , xn). We define the skew-symmetric
polynomial Skew f as

Skew f(x1, x2, . . . , xn) =
∑

π∈Sym(n)

sign(π)f̃(xπ(1), xπ(2), . . . , xπ(n)). (12)

Let denote by V [T ;X] the free V-superalgebra over a field F generated by a
set T of even generators and by a set X of odd generators. Let V [∅;x] be the
free V-superalgebra on one odd generator x and let V [T ] = V [T ; ∅] be the
free V-algebra on a countable set of even generators T = {t1, t2, . . . , tn, . . . }.
Then Skew : V [∅;x]→ V [T ] is a linear mapping which maps isomorphically
the homogeneous component V [∅;x][n] of degree n of V [∅;x] to the subspace
Skew(V [Tn]) of multilinear skew-symmetric elements on Tn = {t1, t2, . . . , tn}
of V [T ].

Theorem 3.3 For a homogeneous polynomial f of degree n, the free V-
superalgebra V [∅;x] on one odd generator x and the free V-algebra V [T ] on a
set of even generators T = {t1, t2, . . . , tn, . . . } holds:

f(x) = 0 in V [∅;x] if and only if Skew f(t1, t2, . . . , tn) = 0 in V [T ].
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Proof:
Assume f(x) = 0.
Consider in the V-superalgebra G⊗ V [T ] the odd element y:

y = e1 ⊗ t1 + · · ·+ en ⊗ tn.

Since f(x) = 0 in the free V-superalgebra,

0 = f(y) = e1e2 · · · en ⊗ Skew f(t1, . . . , tn)

and so Skew f(t1, . . . , tn) has to be zero.

Now, assume Skew f(t1, . . . , tn) = 0.
Consider in the Grassmann envelope G(V [∅;x]) of V [∅;x] the elements s1 =
e1 ⊗ x, . . . , sn = en ⊗ xn. Then we have

0 = Skewf(s1, s2, . . . , sn) = n! e1e2 · · · en ⊗ f(x)

and so f(x) has to be zero too. 2

This correspondence was used in [21, 24, 25, 28] or in [27] for a description
of the subspace of skew-symmetric elements of the free alternative algebra on
a countable set of generators. We will use this correspondence in Section 5.1.

Skew-symmetric elements in alternative algebras

Let A = Alt[∅;x] be the free alternative superalgebra on one odd generator x.
Define by induction

x[1] = x, x[i+1] = [x[i], x]s, i > 0,

and denote

t = x[2], z[k] = [x[k], t], u[k] = x[k] ◦s x[3], k > 1,

where [x, y]s = xy − (−1)x̄ȳyx denotes the supercommutator of the homoge-
neous elements x, y, and by

x ◦s y = xy + (−1)x̄ȳyx

denotes their super-Jordan product.
The following propositions summarize some results from [24, 25, 27] on

the structure of A.
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Proposition 3.4

(i) The elements

tmxσ, m+ σ ≥ 1, tm(x[k+2]xσ),

tm(u[4k+ε]xσ), tm(z[4k+ε]xσ), (13)

where k > 0, m ≥ 0 are integers; ε, σ ∈ {0, 1}, form a base of the
superalgebra A.

(ii) For any integer k > 0,

z[4k−1] = z[4k−2] = u[4k−1] = 0, u[2] = 0, u[4k+2] = −tz[4k+1].

(iii) The nucleus (associative center) of A is equal to the ideal

idA〈u[k], z[k] | k > 1〉.

The center of A is equal to the vector space

vect〈tmz[k], tm(2z[k]x− u[k]) | m ≥ 0, k > 2〉.

2

From now on, we will write the products tmu[k]xσ, tmz[k]xσ, without paren-
thesis. Moreover, we set t0 = 1 and tn = 0 for n < 0.

Proposition 3.5 The multiplication table on the base elements is given by
the following rules: For any m,n ≥ 0, k > 2, ε, σ ∈ {0, 1}, n + σ ≥ 1, we
have that

tmu[k]xσ, tmz[k]xσ,

annihilate all elements of the base (13) except elements of first type. Further,

(tmu[k]xε)(tnxσ) =

{
tm+nu[k]xε+σ, ε+ σ < 2,
1
2
tm+n+1u[k], ε+ σ = 2,

(tmz[k]xε)(tnxσ) =

{
tm+nz[k]xε+σ, ε+ σ < 2,
1
2
tm+n+1z[k], ε+ σ = 2,
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(tnx)(tmu[k]xε) = (−1)k+1

{
tm+n(u[k]x− 2tz[k]), ε = 0,

tm+n+1(1
2
u[k] − 2z[k]x), ε = 1,

(tnx)(tmz[k]xε) = (−1)k

{
tm+nz[k]x, ε = 0,
1
2
tm+n+1z[k], ε = 1.

tm(tnxσ) = tm+nxσ,

(tmx)tn = tm+nx− ntm+n−1x[3],

(tmx)(tnx) = 1
2
tm+n+1 − ntm+n−1(x[3]x) + m+2n

3
tm+n−1x[4]

+m(m+2n−1)
6

tm+n−2z[4].

tm (tn(x[k]xε)) = tm+n(x[k]xε),

(tm x)(tnx[k]) = (−1)k
(
tm+n((x[k]x)− x[k+1])− tm+n−1(n

2
u[k] + 2m+n

6
z[k+1])

)
,

(tm x)(tn(x[k]x)) = (−1)k
(

1
2
tm+n+1x[k] + tm+n(2

3
x[k+2] − x[k+1]x+ 2m+4n+1

6
z[k]
)

− tm+n−1(n
2
u[k]x− m+2n

6
u[k+1] +2m+n

6
z[k+1]x− m

6
z[k+2])

)
.

(tnx[k])tm = tm+nx[k] +mtm+n−1z[k],

(tnx[k])(tmx) = tm+n(x[k]x) + tm+n−1(mz[k]x+ 2m+n
3
z[k+1]),

(tn(x[k]x))tm = tm+n(x[k]x)−mtm+n−1(1
2
u[k] − z[k]x− 1

2
z[k+1]),

(tn(x[k]x))(tmx) = 1
2
tm+n+1x[k] + tm+n(1

3
x[k+2] + 7m+2n+2

6
z[k])

−tm+n−1(m
2
u[k]x− 2m+n

6
u[k+1] + m+2n

6
z[k+1]x

−2m+n
6
z[k+2]).

(tmx[i])(tnx[j]) = 1
2
(−1)c(j+1)tm+n(u[i+j−3] + δjtz

[i+j−4] − (−1)jz[i+j−2]),

(tmx[i])(tn(x[j]x)) = 1
2
(−1)c(j+1)tm+n(u[i+j−3]x+ δjt(z

[i+j−4]x)

− (−1)jz[i+j−2]x− 2
3
z[i+j−1]),

(tm(x[i] x))(tnx[j]) = 1
2
(−1)c(j)tm+n(u[i+j−3]x+ (−1)ju[i+j−2]

+ δjt(z
[i+j−4]x) + (−1)jδj−1tz

[i+j−3]

− (−1)jz[i+j−2]x− 1
3
z[i+j−1]),

(tm(x[i] x))(tn(x[j]x)) = 1
2
(−1)c(j)tm+n(1

2
tu[i+j−3] + (−1)ju[i+j−2]x

− 1
3
u[i+j−1] + 1

2
δjt

2z[i+j−4] − δj−1t(z
[i+j−3]x)

− (5
6
δj − 1

2
)tz[i+j−2] + 1

3
z[i+j−1]x− 1

3
(−1)jz[i+j]),

where c(j) = j(j − 1)/2 and δj = 1 + (−1)j. 2
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Notice that for k ≥ 3

x[3]x[k] = 1
2
(−1)k(u[k] − z[k+1]),

x[3](x[k]x) = (−1)k(1
2
u[k]x− 1

2
z[k+1]x+ 1

3
z[k+2]).

Moreover, results of [27] also imply

(tm, x[3], x[k]xε) = 0,

(tm, tn, v) = 0,

where ε ∈ {0, 1}, m,n ≥ 1, k > 2 and for any element v ∈ A.

Using this multiplication table, we present another proof of Proposition 2.15.
Proof II: (Proposition 2.15)[Artin’s theorem and superalgebras]
From the multiplication table of A one can easily compute

(x, x, x) = 1
2
x3 6= 0.

Therefore A is an alternative superalgebra on one odd generator and it is
not associative superalgebra. 2

Let Alt [T ] = Alt [T ; ∅] be the free alternative algebra on a set of even
generators T and let Skew be the linear mapping from A to Alt[T ] defined
in Subsection 3.1.1. Then Skew maps isomorphically the homogeneous com-
ponent A[n] of degree n of A to the subspace Skew(Alt[Tn]) of multilinear
skew-symmetric elements on Tn = {t1, t2, . . . , tn} of Alt [T ].

Theorem 3.6 ( [27, Theorem 5.1])
The elements

Skew f(ti1 , ti2 , . . . , tik),

where f = f(x) runs through the set (13), k = deg(f), i1 < i2 < · · · < ik,
form a base of the space Skew(Alt[T ]) of skew-symmetric elements of Alt [T ].
2

Corollary 3.7 ( [27, Corollary 5.2])
Let d(n) denotes the dimension of the subspace Skew(Alt[Tn]). Then d(1) =
d(2) = 1, d(3) = 2, and for n > 3

d(n) = 2(n− 3) + 1
2
(1 + (−1)c(n+1)),

where c(i) = i(i−1)
2

. 2

33



Open problems [27]

It was proved in [23] that the elements Skew z[k](t1, . . . , tk+2), k ∈ {4n, 4n+
1}, k > 4, are non-zero skew-symmetric central polynomial functions in
Alt [T ]. It would be interesting to find all skew-symmetric central and nuclear
polynomial functions for alternative algebras. Evidently, they all should be
of the type Skew f , where f ∈ Z(A) and f ∈ N(A) (see Proposition 3.4 (iii))
for central and nuclear polynomial functions, respectively. The two problems
are still open [27]:

(1) Describe the elements n ∈ N(A) for which the corresponding skew-sym-
metric polynomial function Skew n is a nuclear polynomial function,
that is, takes values in the nucleus N(Alt[T ]);

(2) Describe the elements z ∈ Z(A) for which the corresponding skew-
symmetric polynomial function Skew z is a central polynomial function
in Alt[T ].

Note that not every element in Z(A) produces central or nuclear polynomial
function. For example, z[4] ∈ Z(A) but Skew z[4] is neither a central nor a nu-
clear polynomial function in the algebra of octonions O (Skew t2, Skew (x[5]−
1
2
t2x), Skew u[4]x are central in O). Recall, that all the multilinear skew-

symmetric identities and central polynomials of O were classified by Shes-
takov and Zhukavets (see [28], 2009).

3.1.2 Reduction of dimensions in algebras

Using the representation theory of the symmetric group and Young diagrams,
we can write a multilinear identity f of degree n over an algebra A as a sum
of multilinear identities fi, each of them being either symmetric or skew-
symmetric in mi ≥

√
n arguments. Then, applying the superscalar extension

to each fi, we can reduce f to identities of the same degree n over AG
containing some even or odd variable at least

√
n times. Therefore, if the

superalgebra AG is, in a certain sense, “generalized nil” of bounded degree,
then A is nilpotent.

This application of superalgebras is based on the following theorems: Let
V [T ] be the free algebra of countable rank in a variety V and Skew V [Tn]
be a subspace of multilinear elements of degree n in V [T ] on the generators
t1, . . . , tn. The subspace Skew V [Tn] has a natural structure of a module
over the group algebra F[Sym(n)] of the symmetric group Sym(n). If I ⊆
{1, 2, . . . , n} is a nonempty subset, then we put

ϕ+
I =

∑
π∈Sym(I)

π, ϕ−I =
∑

π∈Sym(I)

sign(π) · π.
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Theorem 3.8 ( [30, Theorem 1]) Let F be a field of characteristic zero
and let K be a sum of the dimensions of the irreducible representations of
F[Sym(n)]. Then

Skew V [Tn] =
K∑
i=1

Skew V [Tn](i),

where each Skew V [Tn](i) has the form

Skew V [Tn] · ϕε1I1 · ϕ
ε2
I2
· · ·ϕεkIk

for some partition of {1, . . . , n} into disjoint nonempty subsets I1, . . . , Ik with
k <
√

2n and some ε1, . . . , εk = ±. 2

Let A be an algebra generated by a1, a2, . . . , am. If w is a product of these
generators, then we define the multiweight of w as

w = (w1, w2, . . . , wm),

where wi is a number of occurrences of the generator ai in w, for i =
{1, 2, . . . ,m}.

Theorem 3.9 ( [30, Theorem 2]) Let F be a field of characteristic zero
and I1, . . . , Ik be some partition of {1, . . . , n} into disjoint nonempty subsets.
Let ε1, . . . , εk = ± and let ni = |Ii| for i = 1, . . . , k. Then

dim (Skew V [Tn] · ϕε1I1 · ϕ
ε2
I2
· · ·ϕεkIk) = dim U,

where U is the multiweight (n1, . . . , nk) component of the free V-superalgebra
V [z1, . . . , zk] of rank k, where, for i = 1, . . . , k, the i-th generator zi is even
if εi = + and is odd if εi = −. 2

Note that the idea of considering the spaces of multilinear identities as mo-
dules over the group Sym(n) and decomposing an identity into irreducible
components goes back to the article by Malcev [11]. Hentzel [4] used this
idea in his computer programs of proving identities, where he reduced the
dimension of problem by passing to irreducible components. Passage to the
superalgebras by means of Theorem 3.9 makes this reduction more transpar-
ent and easy. It was used by Vaughan-Lee and Shestakov and Zhukavets in
confirming Kuzmin’s conjecture in special cases.
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Recall that Dubnov-Ivanov-Nagata-Higman theorem states that every al-
gebra from N iln is nilpotent of degree 2n − 1. Kuzmin in [9] showed that

the degree cannot be less than f(n) = n(n+1)
2

and conjectured that the it is
the exact estimate of nilpotency degree for the variety N iln. It is easy to
see that Kuzmin’s conjecture is true for n = 2, and Higman’s results implied
that it is also true for n = 3.

Vaughan-Lee in [29] did this for n = 4, confirming Kuzmin’s conjec-
ture in this case. He applied the representation theory of symmetric groups
and the superalgebra technique. He reduced the original calculation in 10!-
dimensional space to 8 smaller calculations in 10!

4!3!2!
- and 10!

4!3!3!
-dimensional

spaces. Shestakov and Zhukavets in [22] investigated Kuzmin’s conjecture
for n = 5 confirming it “only” for every two-generated superalgebra over a
field of characteristic zero in the variety of associative N il5-superalgebras.
To confirm the conjecture for N il5, it is sufficient to prove that any superal-
gebra from N il5 on k ≤ 5 homogeneous generators (even and odd mixed) is
nilpotent of degree 15. But already for two generators were computations so
huge, that there was no point in increasing the number of them (for example
for the multiweight (5, 5, 5) component of 3-generator superalgebra, there
must be considered 15!

5!5!5!
= 756 756 words – compare with the multiweight

(7, 8) component of 2-generator superalgebra with 15!
7!8!

= 6 435 words).

3.1.3 Nilpotency problem for a T-ideal

Let A be an algebra and f a noncommutative and nonassociative polyno-
mial. Many problems of the theory of varieties of algebras are reduced to the
question as to when the ideal generated by the set f(A) is nilpotent. Under
some restrictions on a variety, we can answer this question also in terms of
superalgebras.

The superalgebra B is called prime (or simple) if B2 6= 0 and if the
product of any two nonzero homogeneous ideals of B is not zero. Let A
be an algebra, RA = {Ra | a ∈ A} and LA = {La | a ∈ A} ⊂ End A
the spaces of right and left multiplications on elements of A and let M(A)
be the multiplication algebra of A, i.e. the subalgebra of End A generated
by the left and right multiplications on A. The least n such that M(A) =∑n

k=1(RA ∪ LA)k is called the multiplicative length of A. An ideal I of A
is called strongly nilpotent of index n, if any product of elements of A that
contains at least n factors in I is zero.

Theorem 3.10 (The nilpotency criterion for a T-ideal [20])
Let V be a variety of algebras over a field F satisfying the following conditions:

(i) every algebra in V has finite multiplicative length,

36



(ii) Every nilpotent ideal of an algebra A ∈ V is strongly nilpotent in A.

Then a multilinear element f generates a nilpotent T-ideal of identities in
the free algebra of countable rank V [X] of the variety V (and consequently,
in every algebra of V) if and only if f vanishes identically in the Grassmann
envelope G(A) of every prime V-superalgebra A. 2

In particular, if there are no prime V-superalgebras then the free algebra is
nilpotent.

Condition (i) and (ii) are obviously satisfied in every variety of associative
algebras. In case a variety does not satisfy the conditions (i) and (ii), it
is still sometimes possible to reduce the problem to subvarieties or certain
subalgebras that do satisfy the conditions, see for example [32, 33].

3.1.4 Prime and semiprime varieties

Prime superalgebras relate quite closely to so called prime varieties intro-
duced by Kemer. A variety is prime, if its free algebra V [X] of countable
rank is T-prime, i.e. does not contain nonzero T-ideals T1, T2 such that

T1T2 = 0.

The Grassmann envelope of a prime superalgebra generates a prime variety.
Similarly, a variety V is called semiprime if the algebra V [X] is T-semiprime,
i.e. does not contain nonzero T-ideals I with I2 = 0. A union of any number
of prime varieties is semiprime, conversely, every semiprime variety can be
decomposed into a union of prime subvarieties.

Denote by N(V) the least T-ideal I of V [X] with the property that the
quotient algebra V [X]/I is T-semiprime.
The ideal N(V) is zero iff the variety V is semiprime. The set of identities
{f = 0 | f ∈ N(V)} defines the largest semiprime subvariety of V . Clearly,
N(V) is contained in the T-ideal of identities of any prime subvariety of V .
In particular, it is contained in the intersection of all T-ideals of identities of
the Grassmann envelopes of prime V-superalgebras. Moreover, if V satisfies
the condition (i) and (ii) in Theorem 3.10, the reverse inclusion holds too.

Let us denote by Mm,k(F) = M0 + M1 the matrix superalgebra over F,
which is defined as

M0 =
{ (
m ∗ 0
k 0 ∗

)}
M1 =

{ (
m 0 ∗
k ∗ 0

)}
.
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If k = 0 then we get the (even) algebra Mm(F). Denote by G(Mm,k) Grass-
mann envelope of the superalgebra Mm,k and by Mn(G) a matrix algebra
over a Grassmann algebra G.

The structure of a variety V is to a great extend defined by the structure
of prime V-superalgebras and their identities. For a varieties of alternative
algebras over a field of characteristic zero, the structure theorem holds similar
to that for associative algebras:

Theorem 3.11 ([20]) Let V be a variety of alternative algebras over a field
of characteristic zero F. Then

(i) the ideal N(V) is solvable,

(ii) the variety V is semiprime if and only if it is a union of finitely many
prime varieties,

(iii) the variety V is prime if and only if V is either coincides with the va-
riety of all associative algebras or is generated by one of the algebras
Mn(F), G(Mm,k(F)), Mn(G) or O. 2

The question is still unanswered as to whether any variety of alternative
algebras over a field of characteristic zero has a finite base of identities. The
affirmative solution is known only for the varieties of a finite basic rank not
containing the variety of associative algebras Iltyakov [6, 1999]. In particular,
every finite-dimensional alternative algebra over a field of characteristic zero
has a finite base of identities.

The question about finiteness of a basic superrank is also open for varieties
of alternative algebras.
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4 Bases of the free alternative

nil-superalgebras on one odd generator

of nil index 2, 3 and n

We construct a base of a free alternative nil-superalgebra Bn = Alt-N iln[∅;x]
of nil-index n, for n ≥ 2, on one odd generator x in this section. Our results
were published in [16, 17, 18]. To construct a base of Bn, for n ≥ 2, we
use the base of the free alternative superalgebra A = Alt[∅;x] on one odd
generator x constructed in [27]. After that we compute the solvability index
of Bn which is dlog2 ne+ 1, for n ≥ 2. We also prove that Bn is not nilpotent
and that the square of Bn is nilpotent of index n, for nil-index n ≥ 3. It was
Pchelintsev [13] who proved, that in characteristics 6= 2, 3 the square of a
solvable alternative algebra is nilpotent without giving any approximation of
the nilpotency index. Later Shestakov [19] showed that for any alternative
algebra A it holds

(A2)f(k) ⊂ A(k), where f(k) = 5k−1+ 3
4

.

It is known from [34], that if A is an alternative algebra over a field of
characteristic zero and In is a subspace of A spanned by an for all a ∈ A,
then In is an ideal of A. We use a generalization of this statement for
superalgebras.

Let A = A[∅;x] be the free alternative superalgebra on one odd genera-
tor x with the base (13). Let In be a subsuperspace of A spanned by the
elements Wn(u1, u2, . . . , un), u1, . . . , un ∈ A0 ∪ A1, where

Wn(u1, u2, . . . , un) =
∑

σ∈Sym(n)

signodd(σ)(. . . ((uσ(1)uσ(2))uσ(3)) · · · )uσ(n),

then In is an ideal of A. The quotient superalgebra A/In is the free alterna-
tive N iln-superalgebra on one odd generator x. We will denote it by Bn =
Alt-N iln[∅;x] and we will maintain the notations from A for the similar
elements of Bn.

Notice that for any odd element y ∈ Bn and any ui ∈ Bn it holds that

Wn(y, y, u3, . . . , un) = 0.

Moreover, for any permutation σ ∈ Sym(n),

Wn(uσ(1), uσ(2), . . . , uσ(n)) = signodd(σ)Wn(u1, u2, . . . , un).
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4.1 Alt-N il2[∅;x]

First, we will investigate the case of nil-index n = 2. We construct a base of
B2 = Alt-N il2[∅;x]. After that we compute the solvability index of B2 which
is 2. We also show that B2 is nilpotent of index 4.

Base of the free alternative
N il2-superalgebra on one odd generator

First we consider an ideal I2 ⊂ A, spanned by the elements W2(u, v), u, v ∈
A0 ∪ A1, where

W2(u, v) = uv + (−1)u vvu, (14)

and construct a base of I2. Using the multiplication table for A, we obtain
from

W2(t, t) = t · t+ t · t = 2t2,

W2(t, x) = tx+ xt = tx+ tx− x[3] = 2tx− x[3],

W2(x, tx) = x(tx)− (tx)x = 1
2
t2 − x[3]x+ 2

3
x[4] − 1

2
t2 − 1

3
x[4]

= 1
3
x[4] − x[3]x,

that t2, 2tx − x[3], 1
3
x[4] − x[3]x ∈ I2. Using the fact that for every element

i ∈ I2 also i · x, x · i ∈ I2, we get

(2tx− x[3]) · x = t2 + 2
3
x[4] − x[3]x

and so x[3]x, x[4] ∈ I2. Moreover

tmx[ε] ∈ I2, m ≥ 2, ε ∈ {0, 1}.

Next from the definition of the elements x[k], z[k], u[k], k > 3

x[k+1] = x[k]x− (−1)kxx[k],

z[k] = x[k]t− tx[k],

u[k] = x[k]x[3] + (−1)kx[3]x[k],
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and from x[4] ∈ I2 we get

x[5] = x[4]x− (−1)kxx[4] ∈ I2,

x[5]x ∈ I2,

x[k], x[k]x ∈ I2, k > 3

z[4] = x[4]t− tx[4] ∈ I2,

z[k] ∈ I2, k > 3

u[4] = x[4]x[3] + (−1)kx[3]x[4] ∈ I2,

u[k] ∈ I2, k > 3.

Finally we can conclude that for k > 2, m ≥ 0, ε ∈ {0, 1}

tm+2xε ∈ I2,

tm+1x[3], tm(x[3]x), tm(x[k+1]xε) ∈ I2,

tmz[k]xε ∈ I2,

tmu[k]xε ∈ I2.

Observe that for any other base elements u, v values of W2(u, v) do not bring
new elements from I2. The following proposition is evident:

Proposition 4.1 The elements

2tx− x[3], tm+2xε, (15)

tm+1x[3], tm(x[3]x), tm(x[k+3]xε),

tmz[4k+σ]xε, tmu[4k+σ]xε,

where k > 0, m ≥ 0, ε, σ ∈ {0, 1}, form a base of I2. 2

Now the superalgebra B2 = A/I2 is spanned by the elements

x, t, tx (16)

all other elements from (13) are zero except

x[3] = 2tx.

Moreover, the elements from (16) are linearly independent since any non-
trivial linear combination of their preimages does not lie in I2.
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Theorem 4.2 The superalgebra B2 has a base (16). 2

The multiplication table of B2 is:

x · x = 1
2
t,

t · x = tx,

x · t = −tx,
t · t = 0,

u · tx = tx · u = 0,

for any u from (16).

Index of solvability of B2

Since we know a base of the superalgebra B2 and the multiplication table on
base elements, we can compute the index of solvability of B2 directly.

Corollary 4.3 The index of solvability of the superalgebra B2 is 2.

Proof: By the definition B(0)
2 = B2 = vect〈x, t, tx〉. Further

B(1)
2 = B(0)

2 B
(0)
2 = vect〈t, tx〉,

B(2)
2 = B(1)

2 B
(1)
2 = 0.

The index of solvability is 2. 2

Index of nilpotency of B2

Corollary 4.4 The superalgebra B2 is nilpotent of index 4.

Proof: (
B2

)1
= B2 = vect〈x, t, tx〉,(

B2

)2
= B2 · B2 = vect〈t, tx〉,(

B2

)3
=

(
B2

)2B2 + B2

(
B2

)2
= vect〈tx〉,(

B2

)4
=

(
B2

)3B2 +
(
B2

)2(B2

)2
+ B2

(
B2

)3
= 0.

The superalgebra B2 is nilpotent and index of nilpotency is 4. 2
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4.2 Alt-N il3[∅;x]

Here we construct a base of B3 = Alt-N il3[∅;x]. After that we compute the
solvability index of B3 which is 3. We also show that B3 is not nilpotent and(
B3

)2
is nilpotent of index 3.

Base of the free alternative
N il3-superalgebra on one odd generator

First we consider an ideal I3 ⊂ A, spanned by the elements W3(u, v, w),
u, v, w ∈ A0 ∪ A1, where

W3(u, v, w) =(uv)w + (−1)ū(v̄+w̄)(vw)u+ (−1)w̄(ū+v̄)(wu)v

+ (−1)v̄w̄(uw)v + (−1)ūv̄(vu)w + (−1)ūv̄+ūw̄+v̄w̄(wv)u,

and construct a base of I3. Using the multiplication table for A (see Propo-
sition 3.5), we obtain from

W3(x, t, t) = 2((xt)t+ t2x+ (tx)t)

= 2(2(tx)t− x[3]t+ t2x)

= 2(2(t2x− tx[3])− tx[3] + t2x)

= 6(t2x− tx[3]),

W3(t, t, t) = 6t3

that t2x− tx[3], t3 ∈ I. Moreover,

(t2x− tx[3]) · x = 1
2
t3 − 2t(x[3]x) + 4

3
tx[4] + (t(x[3]x)− tx[4] − 1

6
z[4])

= 1
2
t3 − t(x[3]x) + 1

3
tx[4] − 1

6
z[4],

x · (t2x− tx[3]) = 1
2
t3 + 2

3
tx[4] + 1

3
z[4] − (t(x[3]x) + 1

3
z[4])

= 1
2
t3 − t(x[3]x) + 2

3
tx[4],

and t2x[3], tx[4] + 1
2
z[4], t(x[3]x) + 1

3
z[4] ∈ I.
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Compute for k ≥ 3

W3(t, t, x[k]) = 2(t2x[k] + (tx[k])t+ (x[k]t)t)

= 2(t2x[k] + 2(tx[k])t+ z[k]t)

= 2(t2x[k] + 2(t2x[k] + tz[k]) + tz[k])

= 6(t2x[k] + tz[k]),

W3(t, t, x[k]x) = 2(t2(x[k]x) + (t(x[k]x))t+ ((x[k]x)t)t)

= 2(t2(x[k]x) + 2(t(x[k]x))t− (1
2
u[k] − z[k]x− 1

2
z[k+1])t)

= 6(t2(x[k]x)− 1
2
tu[k] + tz[k]x+ 1

2
tz[k+1]),

W3(x, t, z[k]) = 6(−1)ktz[k]x,

W3(x, t, u[k]) = 6(−1)k+1tu[k]x+ 2(−1)kt2z[k].

Therefore, t2x[k] + tz[k], t2z[k], t2(x[k]x)− 1
2
tu[k] + 1

2
tz[k+1], t2u[k], tz[k]x, tu[k]x ∈

I3. Multiplying by x we get

(t2x[k] + tz[k]) · x = t2(x[k]x) + 2
3
tz[k+1] + tz[k]x,

x · (t2x[k] + tz[k]) = (−1)k(t2(x[k]x)− t2x[k+1] − tu[k] − 1
3
tz[k+1] + tz[k]x),

and hence t2x[k+1], t2(x[k]x), tu[k], tz[k+1] ∈ I3. Notice that for k = 3 we also
have t2x[3], tz[3] ∈ I3.

Continue our computations modulo elements which are already in I3:

W3(x, t, x[k]) = (xt+ tx)x[k] + (xx[k] + (−1)kx[k]x)t+ (−1)k(tx[k] + x[k]t)x

= (2tx− x[3])x[k] + (−1)k(2x[k]x− x[k+1])t+ (−1)k(2tx[k] + z[k])x

= 2(−1)k(t(x[k]x)− tx[k+1] − 1
3
z[k+1])− (−1)k 1

2
(u[k] − z[k+1])

+2(−1)k(t(x[k]x)− 1
2
u[k] + z[k]x+ 1

2
z[k+1])− (−1)k(tx[k+1] + z[k+1])

+2(−1)k(t(x[k]x) + 1
3
z[k+1]) + (−1)kz[k]x

= (−1)k(6t(x[k]x)− 3tx[k+1] + 1
2
z[k+1] − 3

2
u[k] + 3z[k]x),

W3(x, t, x[k]x) = (xt+ tx)(x[k]x) + (x(x[k]x) + (−1)k+1(x[k]x)x)t

+(−1)k+1(t(x[k]x) + (x[k]x)t)x

= (2tx− x[3])(x[k]x) + (−1)k(1
3
x[k+2] − x[k+1]x− 1

6
z[k])t

+(−1)k+1(2t(x[k]x)− 1
2
u[k] + z[k]x+ 1

2
z[k+1])x

= 2(−1)k(2
3
tx[k+2] − t(x[k+1]x) + 1

6
u[k+1] − 1

3
z[k+1]x+ 1

6
z[k+2])

−(−1)k(1
2
u[k]x− 1

2
z[k+1]x+ 1

3
z[k+2])

+(−1)k(1
3
tx[k+2] + 1

3
z[k+2] − t(x[k+1]x) + 1

2
u[k+1] − z[k+1]x− 1

2
z[k+2])

+(−1)k+1(2
3
tx[k+2] + 1

3
u[k+1] − 2

3
z[k+1]x+ 1

3
z[k+2] − 1

2
u[k]x+ 1

2
z[k+1]x)

= (−1)k(tx[k+2] − 3t(x[k+1]x) + 1
2
u[k+1] − z[k+1]x− 1

2
z[k+2]),
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to obtain tx[k+2]+ 1
2
z[k+2]+ 1

2
u[k+1]−z[k+1]x, t(x[k+1]x)+ 1

3
z[k+2] ∈ I3. Moreover,

(6t(x[k]x) − 3tx[k+1] + 1
2
z[k+1] − 3

2
u[k] + 3z[k]x) · x

= 6(1
3
tx[k+2] + 1

6
u[k+1] − 1

3
z[k+1]x+ 1

6
z[k+2])

−3(t(x[k+1]x) + 1
3
z[k+2]) + 1

2
z[k+1]x− 3

2
u[k]x

= 2tx[k+2] − 3t(x[k+1]x) + u[k+1] − 3
2
z[k+1]x− 3

2
u[k]x,

x · (6t(x[k]x) − 3tx[k+1] + 1
2
z[k+1] − 3

2
u[k] + 3z[k]x)

= 6(−1)k
(

2
3
tx[k+2] − t(x[k+1]x)− 1

2
u[k]x+ 1

3
u[k+1] − 1

6
z[k+1]x

)
−3(−1)k+1

(
t(x[k+1]x)− tx[k+2] − 1

2
u[k+1] − 1

6
z[k+2]

)
+1

2
(−1)k+1z[k+1]x− 3

2
(−1)k+1u[k]x

= (−1)k
(
tx[k+2] − 3t(x[k+1]x)− 3

2
u[k]x+ 1

2
u[k+1]

−3
2
z[k+1]x− 1

2
z[k+2]

)
imply that u[k]x, z[k+1]x ∈ I3.

Observe that for any other base elements u, v, w values of W3(u, v, w) do
not bring new elements from I3. Therefore we obtain a base of I3.

Proposition 4.5 Elements

tm+3xσ,

tx[3] − t2x, tx[k+3] + 1
2
z[k+3] + 1

2
u[k+2], t(x[k+2]x) + 1

3
z[k+3],

tm+2(x[k+2]xσ),

tm(u[4k+ε]xσ), m+ σ ≥ 1,

tm(z[4k+ε]xσ), m+ σ ≥ 1, (17)

where k > 0, m ≥ 0; ε, σ ∈ {0, 1}, form a base of I3. 2

Now the superalgebra B3 = A/I3 is spanned by the elements

x, t, tx, t2, t2x, x[k], x[k]x, k > 2,

u[4m+ε], z[4m+ε], m > 0, ε ∈ {0, 1}. (18)

All other elements from (13) are equal zero, except

tx[3] = t2x,

tx[k+1] = −1
2
(u[k] + z[k+1]),

t(x[k]x) = −1
3
z[k+1].

Moreover, the elements from (18) are linearly independent since any non-
trivial linear combination of their preimages does not lie in I3.
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Theorem 4.6 The elements from (18) form a base of the superalgebra B3. 2

The multiplication table of B3 is given by that of A modulo I3:

x · x = 1
2
t

t · x = tx,

x · t = tx− x[3],

tx · x = 1
2
t2 + 1

3
x[4],

x · tx = 1
2
t2 − x[3]x+ 2

3
x[4],

t · t = t2,

t · tx = t2x,

tx · t = 0,

tx · tx = −1
2
z[4].

Further for k, i, j > 2, ε ∈ {0, 1}

t · x[3] = t2x,

t · x[k+1] = −1
2
(u[k] + z[k+1]),

t · (x[k]x) = −1
3
z[k+1],

x · x[k] = (−1)k
(
x[k]x− x[k+1]

)
,

x · (x[3]x) = −1
2
t2x− 2

3
x[5] + x[4]x,

x · (x[k+1]x) = (−1)k+1
(

2
3
x[k+3] − x[k+2]x− 1

4
u[k] − 1

12
z[k+1]

)
,

(tx) · x[k] = (−1)k
(

1
2
u[k] − 1

6
z[k+1]

)
,

(tx) · (x[k]x) = (−1)k 1
6

(
z[k+2] − u[k+1]

)
.
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x[3] · t = t2x,

x[k+1] · t = 1
2

(
z[k+1] − u[k]

)
,

(x[k]x) · t = 1
6
z[k+1] − 1

2
u[k],

x[k] · x = x[k]x,

(x[3]x) · x = 1
2
t2x+ 1

3
x[k+2],

(x[k+1]x) · x = 1
3
x[k+3] − 1

4
u[k] + 1

12
z[k+1],

x[k] · (tx) = 1
3
z[k+1],

(x[k]x) · (tx) = 1
6

(
u[k+1] + z[k+2]

)
,

x[i] · x[j] = 1
2

(−1)c(j+1)
(
u[i+j−3] − (−1)j z[i+j−2]

)
,

x[i] · (x[j]x) = −1
3

(−1)c(j+1) z[i+j−1],

(x[i]x) · x[j] = 1
2

(−1)c(j)
(
(−1)j u[i+j−2] − 1

3
z[i+j−1]

)
,

(x[i]x) · (x[j]x) = −1
6

(−1)c(j)
(
u[i+j−1] + (−1)j z[i+j]

)
,

where c(j) = j(j − 1)/2 and δj = 1 + (−1)j. Elements t2, z[k], u[k] annihilate
all base elements except

t2 · x = t2x,

x · t2 = −t2x.

Index of solvability of B3

From Kuzmin’s results and Zhevlakov’s theorem we know that the index of
solvability of alternative nil-algebras of nil-index 3 is between 3 and 6. Since
we know a base of the superalgebra B3 we can easily compute the index of
solvability of B3.

Corollary 4.7 The index of solvability of B3 is 3.

Proof: For k > 2, m > 0, ε ∈ {0, 1} we get:

B(0)
3 = B3

B(1)
3 = B3B3

= vect〈t, tx, t2, t2x, x[k], x[k]x, u[4m+ε], z[4m+ε]〉,
B(2)

3 = B(1)
3 B

(1)
3

= vect〈t2, t2x, u[4m+ε], z[4m+ε]〉,
B(3)

3 = B(2)
3 B

(2)
3 = 0. 2
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Nilpotency of B3

Corollary 4.8 B3 is not nilpotent, moreover
(
B3

)2
is nilpotent of index 3

and
(
B3

)m · (B3

)n
is not zero for any integers m,n > 0.

Proof: First we prove that
(
B3

2
)3

= 0. For k > 2, m > 0, ε ∈ {0, 1} we
have (

B3
2
)1

= B3
2 = B3B3 = B(1)

3

= vect〈t, tx, t2, t2x, x[k], x[k]x, u[4m+ε], z[4m+ε]〉,(
B3

2
)2

= B3
2B3

2 = B(2)
3

= vect〈t2, t2x, u[4m+ε], z[4m+ε]〉,(
B3

2
)3

= B3
2
(
B3

2B3
2
)

+
(
B3

2B3
2
)
B3

2 = 0.

To prove that
(
B3

)m 6= 0, it is sufficient to prove that for example x[i] ∈(
B3

)i
for every integer i > 0. We prove it by the induction: Obviously

x[1] = x ∈
(
B3

)1
. If x[i] ∈

(
B3

)i
for some i > 1, then x[i] · x, x · x[i] ∈

(
B3

)i+1
,

since
(
B3

)i+1
=
(
B3

)iB3 + · · ·+ B3

(
B3

)i
. From

x[i+1] = x[i] · x− (−1)i (x · x[i])

we have that x[i+1] ∈
(
B3

)i+1
. We proved that x[i] ∈

(
B3

)i
, and

(
B3

)i 6= 0 for
all natural i > 0. B3 is not nilpotent.

Now from x[i] ∈
(
B3

)m
, x[j] ∈

(
B3

)n
, i ≥ m, j ≥ r, and the multiplication

x[i] · x[j] = 1
2
(−1)c(j+1)(u[i+j−3] − (−1)jz[i+j−2]),

we take i, j large enough, such that u[i+j−3] or z[i+j−2] are not zero (i.e. the
indices i+ j − 3 or i+ j − 2 must be of the form 4k or 4k + 1, k > 0). Such
i, j exist, because there are infinitely many elements of the form x[i] ∈

(
B3

)m
and x[j] ∈

(
B3

)n
. We have proved that

(
B3

)m(B3

)n 6= 0. 2
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4.3 Alt-N iln[∅;x]

Here we construct a base of Bn = Alt-N iln[∅;x], for n > 3. After that we
compute the solvability index of Bn which is dlog2 ne+ 1. We show that Bn
is not nilpotent and (Bn)2 is nilpotent of index n. All the results are in the
correspondence with the case n = 3.

Base of the free alternative
N iln-superalgebra on one odd generator

First we consider an ideal In ⊂ A, spanned by the elementsWn(u1, u2, . . . , un),
u1, u2, . . . , un ∈ A0 ∪ A1, where

Wn(u1, u2, . . . , un) =
∑

σ∈Sym(n)

signodd(σ)(. . . ((uσ(1)uσ(2))uσ(3)) · · · )uσ(n),

and construct a base of In. Using the multiplication table for A (see Propo-
sition 3.5), we obtain from

Wn(x, t, . . . , t) = (n− 1)!
n−1∑
i=0

tn−i−1(xti)

= (n− 1)!
n−1∑
i=0

tn−i−1(tix− iti−1x[3])

= (n− 1)!
n−1∑
i=0

(tn−1x− itn−2x[3])

= n!
(
tn−1x− n−1

2
tn−2x[3]

)
,

Wn(t, t, . . . , t) = n!tn,

Wn(u[k], t, . . . , t) = n! tn−1u[k],

Wn(z[k], t, . . . , t) = n! tn−1z[k]

that tn−1x− n−1
2
tn−2x[3], tn, tn−1u[k], tn−1z[k] ∈ I, k > 2. Moreover,

x ·
(
tn−1x− n−1

2
tn−2x[3]

)
= 1

2
tn − n−1

2
(tn−2(x[3]x)− 1

3
tn−2x[4] + n−2

6
tn−3z[4]),(

tn−1x− n−1
2
tn−2x[3]

)
· x = 1

2
tn − n−1

2
(tn−2(x[3]x)− 2

3
tn−2x[4]),

and tn−1x[3], tn−2x[4] + n−2
2
tn−3z[4], tn−2(x[3]x) + n−2

3
tn−3z[4] ∈ I.

From the multiplication table (Proposition 3.5) we know that xt = tx−x[3]

and x[3] is annihilated by central elements z[k], k ≥ 3, therefore

Wn(z[k], x, t, . . . , t) = n! tn−2z[k]x.
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The element x[3] is also annihilated by u[k], k ≥ 3, and

xu[k] = (−1)k+1(u[k]x− 2tz[k]).

This implies

Wn(u[k], x, t, . . . , t) = n!
2

(tn−2u[k]x+ (−1)k+1tn−2xu[k])

= n! (tn−2u[k]x− tn−1z[k]).

Compute for k ≥ 3

Wn(x[k], t, . . . , t) = (n− 1)!
n−1∑
i=0

tn−i−1(x[k]ti)

= (n− 1)!
n−1∑
i=0

tn−i−1(tix[k] + iti−1z[k])

= n!(tn−1x[k] + n−1
2
tn−2z[k]),

Wn(x[k]x, t, . . . , t) = (n− 1)!
n−1∑
i=0

tn−i−1((x[k]x)ti)

= (n− 1)!
n−1∑
i=0

tn−i−1(ti(x[k]x)− iti−1(1
2
u[k] − z[k]x− 1

2
z[k+1]))

= n!(tn−1(x[k]x)− n−1
2
tn−2(1

2
u[k] − z[k]x− 1

2
z[k+1])).

Therefore tn−1x[k] + n−1
2
tn−2z[k], tn−1(x[k]x) − n−1

4
tn−2(u[k] − z[k+1]), tn−1z[k],

tn−1u[k], tn−2z[k]x, tn−2u[k]x ∈ In. Multiplying by x we get

x · (tn−1x[k] + n−1
2
tn−2z[k]) = (−1)k(tn−1(x[k]x− x[k+1])

−n−1
2
tn−2(u[k] + 1

3
z[k+1] − z[k]x)),

(tn−1x[k] + n−1
2
tn−2z[k]) · x = tn−1(x[k]x) + n−1

2
tn−2(2

3
z[k+1] + z[k]x),

and tn−1x[k+1], tn−1(x[k]x), tn−2z[k+1], tn−2u[k] ∈ In. Notice that for k = 3 we
also have tn−1x[3], tn−2z[3] ∈ In.

Recall from [27] that for k ≥ 3

x[3]x[k] = 1
2
(−1)k(u[k] − z[k+1]),

x[3](x[k]x) = (−1)k(1
2
u[k]x− 1

2
z[k+1]x+ 1

3
z[k+2]).

Moreover, results of [27] also imply

(tm, x[3], x[k]xε) = 0,
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where ε ∈ {0, 1}, m ≥ 1. Now, for m, i, j such that 0 ≤ m, i, j ≤ n − 2,
m+ i+ j = n− 2, we get

(((tmx)ti)x[k])tj = ((tm+ix− itm+i−1x[3])x[k])tj

= (−1)k(tm+i(x[k]x− x[k+1])− i
2
tm+i−1u[k] − 2m−i

6
tm+i−1z[k+1])tj

= (−1)k(tn−2(x[k]x− x[k+1])− tn−3( i+j
2
u[k] − jz[k]x

+2m−i+3j
6

z[k+1])),

(((tmx[k])ti)x)tj = ((tm+ix[k] + itm+i−1z[k])x)tj

= (tm+i(x[k]x) + m+i
3
tm+i−1z[k+1] + itm+i−1z[k]x)tj

= tn−2(x[k]x)− tn−3( j
2
u[k] − (i+ j)z[k]x− 2m+2i+3j

6
z[k+1]),

and

(((tmx)ti)(x[k]x))tj = ((tm+ix− itm+i−1x[3])(x[k]x))tj

= (−1)k(1
2
tm+i+1x[k] + tm+i(2

3
x[k+2] − x[k+1]x+ 2m+2i+1

6
z[k])

−tm+i−1( i
2
u[k]x− m+i

6
u[k+1] + 2m−i

6
z[k+1]x− m−i

6
z[k+2]))tj

= (−1)k(1
2
tn−1x[k] + tn−2(2

3
x[k+2] − x[k+1]x+ 2m+2i+3j+1

6
z[k])

−tn−3( i
2
u[k]x− m+i+3j

6
u[k+1] + 2m−i+6j

6
z[k+1]x

−m−i+j
6

z[k+2])),

(((tm(x[k]x))ti)x)tj = ((tm+i(x[k]x)− itm+i−1(1
2
u[k] − z[k]x− 1

2
z[k+1]))x)tj

= (1
2
tm+i+1x[k] + 1

3
tm+ix[k+2] + 2m+5i+2

6
tiz[k]

−tm+i−1( i
2
u[k]x− m+i

6
u[k+1] + 2m−i

6
z[k+1]x− m+i

6
z[k+2]))tj

= 1
2
tn−1x[k] + 1

3
tn−2x[k+2] + 2m+5i+3j+2

6
tn−2z[k]

−tn−3( i
2
u[k]x− m+i

6
u[k+1] + 2m−i

6
z[k+1]x− m+i+2j

6
z[k+2]).
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Continue our computations modulo elements which are already in In.

Wn(x[k], x, t, . . . , t) = (n− 2)!
∑

0≤m,i,j≤n−2
m+i+j=n−2

((((tmx[k])ti)x)tj

+(−1)k(((tmx)ti)x[k])tj)

= (n− 2)!
∑

0≤m,i,j≤n−2
m+i+j=n−2

(tn−2(2x[k]x− x[k+1])

−tn−3( i+2j
2
u[k] − (i+ 2j)z[k]x− i

2
z[k+1]))

= n!
2

(tn−2(2x[k]x− x[k+1])

−(n− 2)tn−3(1
2
u[k] − z[k]x− 1

6
z[k+1])),

Wn(x[k]x, x, t, . . . , t) = (n− 2)!
∑

0≤m,i,j≤n−2
m+i+j=n−2

((((tm(x[k]x))ti)x)tj

+(−1)k+1(((tmx)ti)(x[k]x))tj)

= (n− 2)!
∑

0≤m,i,j≤n−2
m+i+j=n−2

(−1
3
tn−2x[k+2] + tn−2(x[k+1]x)

+tn−3(− j
2
u[k+1] + jz[k+1]x+ 2i+j

6
z[k+2]))

= n!
2

(−1
3
tn−2x[k+2] + tn−2(x[k+1]x)

+n−2
3
tn−3(−1

2
u[k+1] + z[k+1]x+ 1

2
z[k+2])).

We obtain tn−2x[k+2] + (n− 2)tn−3(1
2
u[k+1]− z[k+1]x+ 1

2
z[k+2]), tn−2(x[k+1]x) +

n−2
3
tn−3z[k+2] ∈ In. Moreover,

Wn(x[k], x, t, . . . , t) · x = 2
3
tn−2x[k+2] − tn−2(x[k+1]x)

+(n− 2)tn−3(1
3
u[k+1] − 1

2
u[k]x− 1

2
z[k+1]x),

x ·Wn(x[k], x, t, . . . , t) = (−1)k(tn−2(1
3
x[k+2] − x[k+1]x)

−(n− 2)tn−3(1
2
u[k]x− 1

6
u[k+1] + 1

2
z[k+1]x+ 1

6
z[k+2])).

imply that tn−3u[k]x, tn−3z[k+1]x ∈ In.
Observe that the values of Wn(u1, u2, . . . , un), for any other base elements

u1, u2, . . . , un, do not bring new elements from In. Therefore we obtain a base
of In.
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Proposition 4.9 Elements

tm+nxσ,

tn−1x− n−1
2
tn−2x[3],

tn−2x[k+3] + n−2
2
tn−3(u[k+2] + z[k+3]), tn−2(x[k+2]x) + n−2

3
tn−3z[k+3],

tm+n−1(x[k+2]xσ),

tm+n−3(u[4k+ε]xσ), m+ σ ≥ 1,

tm+n−3(z[4k+ε]xσ), m+ σ ≥ 1, (19)

where k > 0, m ≥ 0; ε, σ ∈ {0, 1}, form a base of In. 2

Now the superalgebra Bn = A/In is spanned by the elements

tixσ, 0 ≤ i < n, i+ σ > 0,

ti(x[k]xσ), 0 ≤ i < n− 2, (20)

tiu[4m+ε]xσ, tiz[4m+ε]xσ, 0 ≤ i < n− 2, i+ σ < n− 2,

where k > 2, m > 0, ε, σ ∈ {0, 1}. All other elements from (13) are equal
zero, except

tn−1x = n−1
2
tn−2x[3],

tn−2x[k+3] = −n−2
2
tn−3(u[k+2] + z[k+3]),

tn−2(x[k+2]x) = −n−2
3
tn−3z[k+3].

Moreover, these elements are linearly independent since any non-trivial linear
combination of their preimages does not lie in In.

Theorem 4.10 The elements from (20) form a base of the superalgebra Bn. 2

The multiplication table of Bn is given by that of A modulo In.

Index of solvability of Bn

Corollary 4.11 The solvability index of Bn is dlog2 ne+ 1 for n > 3.

Proof: By definition,
B(0)
n = Bn.
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For i > 0: B(i+1)
n = B(i)

n · B(i)
n is spanned by

tjxσ, 2i ≤ j < n, j + σ > 0,

tj(x[k]xσ), 2i − 1 ≤ j < n− 2,

tju[4m+ε]xσ, tjz[4m+ε]xσ, 2i − 2 ≤ j < n− 2, j + σ < n− 2,

where k > 2, m > 0, ε, σ ∈ {0, 1}. Since Bn = Alt-N iln[∅;x] does not
contain the element tn, we can find i such that

2i = n→ i := dlog2 ne

and construct B(dlog2 ne)
n that is spanned by

tjxσ, dn/2e ≤ j < n, j + σ > 0,

tj(x[k]xσ), dn/2e − 1 ≤ j < n− 2,

tju[4m+ε]xσ, tjz[4m+ε]xσ, dn/2e − 2 ≤ j < n− 2, j + σ < n− 2.

where k > 2, m > 0, ε, σ ∈ {0, 1} and

B(dlog2 ne+1)
n = B(dlog2 ne)

n · B(dlog2 ne)
n = 0.

We find out that B(dlog2 ne+1)
n = 0 (and B(i)

n 6= 0 for all 0 < i ≤ dlog2 ne). 2

Nilpotency of Bn

Corollary 4.12 For n > 3, Bn is not nilpotent, moreover
(
Bn
)2

is nilpotent

of index n and
(
Bn
)m · (Bn)r is not zero for any integers m, r > 0.

Proof: First we prove that
(
Bn

2
)n

= 0. From the multiplication table for Bn
(see Appendix 6) we obtain:

•
(
Bn
)2

= BnBn = B(1)
n is spanned by

tjxσ, 1 ≤ j < n, j + σ > 0,

tj(x[k]xσ), 0 ≤ j < n− 2,

tju[4m+ε]xσ, tjz[4m+ε]xσ, 0 ≤ j < n− 2, j + σ < n− 2

where k > 2, m > 0, ε, σ ∈ {0, 1} and

54



(
Bn2
)i

=
(
Bn2
)i−1Bn2 + · · ·+ Bn2

(
Bn2
)i−1

is spanned by

tjxσ, i ≤ j < n, j + σ > 0,

tj(x[k]xσ), i− 1 ≤ j < n− 2,

tju[4m+ε]xσ, tjz[4m+ε]xσ, i− 2 ≤ j < n− 2, j + σ < n− 2,

where k > 2, m > 0, ε, σ ∈ {0, 1}. Now it is easy to see that(
Bn2
)n−1

=
(
Bn2
)n−2Bn2 + · · ·+ Bn2

(
Bn2
)n−1

is spanned by

tn−1xε,

tn−3u[4m+ε], tn−3z[4m+ε],

where m > 0, ε,∈ {0, 1} and (
Bn2
)n

= 0.

• Next we prove that
(
Bn
)i 6= 0 for all i > 0. First

(
Bn
)1

= Bn. Next
observe that(
Bn
)i

=
(
Bn
)i−1Bn + · · · + Bn

(
Bn
)i−1

, for 3 < i is spanned by the
elements

tmxσ, i ≤ 2m+ σ, 0 ≤ m < n, σ ∈ {0, 1},
tm (x[k]xσ), i ≤ 2m+ k + σ, 0 ≤ m < n− 2, k > 2, σ ∈ {0, 1}
tmu[4r+ε]xσ, i− 3 ≤ 2m+ (4r + ε) + σ, 0 ≤ m < n− 2,

r > 0, σ, ε ∈ {0, 1}
tmz[4r+ε]xσ, i− 2 ≤ 2m+ (4r + ε) + σ, 0 ≤ m < n− 2,

r > 0, σ, ε ∈ {0, 1}.

Like in case n = 3, it is sufficient to prove for example x[i] ∈
(
Bn
)i

for all integer i > 0. The proof is valid in the same form like in case

n = 3: Obviously x[1] = x ∈
(
Bn
)1

. If x[i] ∈
(
Bn
)i

for some i > 1, then

x[i] ·x, x ·x[i] ∈
(
Bn
)i+1

, since
(
Bn
)i+1

=
(
Bn
)iBn+ · · ·+Bn

(
Bn
)i

. From

x[i+1] = x[i] · x− (−1)i (x · x[i])

we have that x[i+1] ∈
(
Bn
)i+1

.

We have proved that x[i] ∈
(
Bn
)i

for all natural i > 0, and so Bn is not
nilpotent.
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• Now from x[i] ∈
(
Bn
)m
, x[j] ∈

(
Bn
)r

, i ≥ m, j ≥ r, and the multiplica-
tion

x[i] · x[j] = 1
2
(−1)c(j+1)(u[i+j−3] − (−1)jz[i+j−2]),

we take i, j large enough, such that u[i+j−3] or z[i+j−2] are not zero (i.e.
the indices i+j−3 or i+j−2 must be of the form 4k or 4k+1, k > 0).
Such i, j exist, because there are infinitely many elements of the form
x[i] ∈

(
Bn
)m

and x[j] ∈
(
Bn
)r

. We have proved that
(
Bn
)m(Bn)r 6= 0. 2
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5 Applications

5.1 The subspace of skew-symmetric elements of the
free alternative nil-algebra

Here we present a base of the subspace of skew-symmetric elements of the free
alternative nil-algebra using the base of the superalgebra Bn = Alt-N iln[∅;x]
constructed in the previous section.

Let Alt-Niln [T ] = Alt-Niln [T ; ∅] be the free alternative nil-algebra of
nil-index n on a set of even generators T and let Skew be the linear map-
ping from Bn to Alt-N iln[T ] defined in Subsection 3.1.1. Then Skew maps

isomorphically the homogeneous component B[m]
n of degree m of Bn to the

subspace Skew(Alt-Niln[Tm]) of multilinear skew-symmetric elements on
Tm = {t1, t2, . . . , tm} of Alt-Niln [T ].

Theorem 5.1
The elements

Skew f(ti1 , ti2 , . . . , tik),

where f = f(x) runs through the base (20) of Bn, k = deg(f), i1 < i2 <
· · · < ik, form a base of the subspace Skew(Alt-Niln[T ]) of skew-symmetric
elements of Alt-Niln [T ]. 2

5.2 Dorofeev’s example

Here we present a Grassmann algebra corresponding to Alt-N il3[∅;x] and
show that Dorofeev’s example of solvable non-nilpotent alternative algebra
(see [1]) is its homomorphic image. We use the definition of V-Grassmann
algebra in the variety of algebras V given in [27], and show that Alt-N il3-
Grassmann algebra generalizes Dorofeev’s example.

Consider the free V-superalgebra V [∅;x] on one odd generator x, then its
Grassmann envelope G(V [∅;x]) belongs to V . The subalgebra of G(V [∅;x])
generated by the elements

e1 ⊗ x, e2 ⊗ x, . . . , en ⊗ x, . . . ,

is called the V-Grassmann algebra and is denoted by G(V). The following
proposition is evident.

Proposition 5.2 The V-Grassmann algebra G(V) has a base of the form:

eµ ⊗ v, |µ| = deg(v),
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where v runs a (monomial) base of the superalgebra V [∅;x], µ = {i1, . . . , im},
i1 < i2 < · · · < im, |µ| = m, eµ = ei1ei2 · · · eim ∈ G. 2

A base of the Alt-N il3-Grassmann algebra B = G(Alt-N il3) is now given
by base (18) of the superalgebra B3.

Dorofeev’s example was originally constructed over the ring of integer
numbers. We consider the same construction over any field of characteristic
zero. Let T = {t1, t2, . . . , tn, . . . } be a countable set of symbols, and let Rti

be the operator of “right multiplication” which maps any word v to the word
(v)ti. A base of Dorofeev’s algebra D consists of the words

rµ = ti1Rti2
· · ·Rtim

, m > 0,

sµ = (ti1(ti2ti3))Rti4
· · ·Rtim

, m > 2,

where µ = {i1, i2, . . . , im}, i1 < i2 < · · · < im.
To simplify the multiplication table, denote by tµ a base word in general,

that is, either rµ or sµ. Let µ = {i1, i2, . . . , im} and η = {j1, j2, . . . , jn} be
two sets of indices. If µ ∩ η = ∅ then denote by σ(µ, η) the signature of
the permutation (i1, i2, . . . , im, j1, j2, . . . , jn) and by µ, η the set obtained by
ordering indices in µ ∪ η. Otherwise, put tµ,η = 0.

The multiplication table on base words is given by the rules:

(i) tµ ∗ ti = σ(µ, i)tµ,i,

(ii) for |µ| = 2, ti ∗ rµ = σ(i, µ)si,µ,

(iii) for |µ| = 3, ti ∗ rµ = σ(i, µ)(ri,µ + si,µ), and ti ∗ sµ = −σ(i, µ)ri,µ,

(iv) for any base word tµtj, |µ| ≥ 2, define by induction

ti ∗ (tµtj) = (ti ∗ tµ + tµ ∗ ti) ∗ tj,

(v) for any base words v1, v2, v3, v4, put (v1 ∗ v2) ∗ (v3 ∗ v4) = 0.

Now, from (i) we easily obtain that for any base word tµ it holds

(tµ ∗ ti) ∗ tj = −(tµ ∗ tj) ∗ ti.

Moreover, it was proved in [1] that for any base word tµ, |µ| ≥ 2, it holds

ti ∗ (tµ ∗ tj) = (ti ∗ tµ + tµ ∗ ti) ∗ tj,
ti ∗ (tj ∗ tµ) = (tµ ∗ tj) ∗ ti,
(ti ∗ tµ) ∗ tj = −(tj ∗ tµ) ∗ ti.
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Construct a homomorphism of vector spaces ψ : B → D by defining

ψ(ei1 ⊗ x) = ti1 ,

ψ(ei1ei2 ⊗ t) = [ti1 , ti2 ],

ψ(ei1ei2ei3 ⊗ tx) = [ti1 , ti2 ] ∗ ti3 ,
ψ(ei1ei2ei3ei4 ⊗ t2) = 0,

ψ(ei1ei2ei3ei3ei5 ⊗ t2x) = 0,

ψ(ei1 · · · eik ⊗ x[k]) = [ti1 , ti2 , . . . , tik ],

ψ(ei1 · · · eik+1
⊗ x[k]x) = [ti1 , ti2 , . . . , tik ] ∗ tik+1

,

ψ(ei1 · · · ei4n+ε+3 ⊗ u[4n+ε]) = 0,

ψ(ei1 · · · ei4n+ε+2 ⊗ z[4n+ε]) = 0.

Here [ti1 , . . . , tik−1
, tik ] denotes the “long commutator” of elements ti1 , . . . , tik

which is defined by induction:

[ti1 , ti2 ] = ti1 ∗ ti2 − ti2 ∗ ti1 ,
[ti1 , . . . , tik−1

, tik ] = [[ti1 , . . . , tik−1
], tik ].

Our objective is to prove, that ψ is a surjective homomorphism of alge-
bras. It is clear that

ψ((eµ ⊗ u)(eη ⊗ v)) = ψ(eµ ⊗ u) ∗ ψ(eη ⊗ v) = 0

for any elements u, v of the base (18) of degree ≥ 2, |µ| = deg(u), |η| =
deg(v). This equality also holds when one of the elements u or v is equal to
x and another one is t2, t2x, u[4n+ε] or z[4n+ε]. For the remaining cases let us
first compute long commutators in D, and find an explicit expression for the
rule (iv).

From the definition and properties of the ∗-multiplication, for any base
word tµ, |µ| ≥ 2, we obtain

[tµ, ti, tj] = (tµ ∗ ti − ti ∗ tµ) ∗ tj − tj ∗ (tµ ∗ ti − ti ∗ tµ)

= (tµ ∗ ti) ∗ tj − (ti ∗ tµ) ∗ tj
−(tj ∗ tµ + tµ ∗ tj) ∗ ti + (tµ ∗ ti) ∗ tj

= 3(tµ ∗ ti) ∗ tj.

Therefore, for µ = {i1, i2, . . . , im}, i1 < i2 < · · · < im,

[ti1 , ti2 ] = 2rµ,

[ti1 , ti2 , ti3 ] = 2(rµ − sµ),

[ti1 , . . . , ti2k ] = 2 · 3k−1rµ,

[ti1 , . . . , ti2k+1
] = 2 · 3k−1(rµ − sµ),
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and for η = {i1, i2, . . . , im−1},

2 · 3k−1rµ = [ti1 , . . . , ti2k ] = 2 · 3k−2((rη − sη) ∗ ti2k − ti2k ∗ (rη − sη))
= 2 · 3k−2((rµ − sµ)− ti2k ∗ (rη − sη)),

2 · 3k−1(rµ − sµ) = [ti1 , . . . , ti2k+1
] = 2 · 3k−1(rη ∗ ti2k+1

− ti2k+1
∗ rη)

= 2 · 3k−1(rµ − ti2k+1
∗ rη),

that is,

ti2k ∗ (rη − sη) = −(2rµ + sµ), |η| = 2k − 1,

ti2k+1
∗ (2rη + sη) = −rµ + sµ, |η| = 2k,

ti2k+1
∗ rη = sµ, |η| = 2k,

ti2k+2
∗ sη = rµ, |η| = 2k + 1,

which implies for k > 1

ti ∗ rµ =

{
σ(i, µ)si,µ, |µ| = 2k,

σ(i, µ)(ri,µ + si,µ), |µ| = 2k − 1,

ti ∗ sµ =

{
−σ(i, µ)(ri,µ + si,µ), |µ| = 2k,

−σ(i, µ)ri,µ, |µ| = 2k − 1.

It is easy to see that ψ preserves multiplication and is surjective.
Now we can state the main result of this subsection.

Theorem 5.3 Dorofeev’s algebra is isomorphic to the quotient algebra of the
Alt-N il3-Grassmann algebra B modulo the ideal (B2)2. 2

5.3 Alternative nil-algebras
constructed from Alt-N iln[∅;x]

Now we construct solvable alternative nil-algebras which are not associative
of arbitrary big solvability index. We use a standard passage to Grassmann
envelope over a field of characteristic zero and alternative nil-superalgebras
Alt-N iln[∅;x] on one odd generator x of nil-index n ≥ 3, constructed in
previous section.

Consider Bn = Alt-N iln[∅;x] the free alternative nil-superalgebra on one
odd generator of nil-index n ≥ 3. By the definition, its Grassmann envelope
G(Bn) is an alternative nil-algebra of nil-index n.
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Theorem 5.4 The alternative nil-algebra G(Bn) of nil-index n ≥ 3, has a
base of the form:

g ⊗ v,

where v runs the (monomial) base (20) of the superalgebra Bn, v ∈ {0, 1},
and g runs the base (4) of the superalgebra G, and g = v. 2

Index of solvability is consistent with that of Bn. By the definition

G(Bn)(0) = G(Bn)

G(Bn)(i) = G(Bn)(i−1)G(Bn)(i−1) = vect〈gu ⊗ u · gv ⊗ v
| gu, gv ∈ (G0 ∪G1)(i−1), u, v ∈ B(i−1)

n 〉
= vect〈gugv ⊗ uv | gu, gv ∈ (G0 ∪G1)(i−1), u, v ∈ B(i−1)

n 〉.

Then
G(Bn)(i) = 0 iff B(i)

n = 0

for some i > 0, i.e. for every nonzero gugv and gu, gv ∈ (G0 ∪ G1)(i−1), we
have

G(Bn)(i) = 0⇔ all gugv ⊗ uv = 0⇔ uv = 0,

for all u, v ∈ B(i−1)
n .

Corollary 5.5 The alternative nil-algebra G(Bn) of nil-index n is solvable
of index

dlog2 ne+ 1,

for n ≥ 3. 2

Therefore the solvability index of alternative nil-algebras of nil-index n is
≥ [log2 n] + 1. Notice that already Kuzmin’s results [9] imply that this

solvability index is ≥ log2
n(n+1)

2
.

The nilpotency of G(Bn) is also consistent with the nilpotency of Bn.
Recall that Bn is not nilpotent for n ≥ 3. For G(Bn) we have

G(Bn)1 = G(Bn),

G(Bn)i+1 = G(Bn)iG(Bn) + · · ·+G(Bn)G(Bn)i,

and we show that for example e1e2 · · · ei+1 ⊗ x[i+1] is nonzero element in
G(Bn)i+1, for i > 0. Take the elements ei+1⊗x ∈ G(Bn) and e1e2 · · · ei⊗x[i] ∈
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G(Bn)i, then from

e1e2 · · · ei ⊗ x[i] · ei+1 ⊗ x = e1e2 · · · ei+1 ⊗ x[i] · x,
ei+1 ⊗ x · e1e2 · · · ei ⊗ x[i] = (−1)ie1e2 · · · ei+1 ⊗ x · x[i],

we have that e1e2 · · · ei+1 ⊗ x[i+1] = e1e2 · · · ei+1 ⊗ (x[i]x − (−1)ix · x[i]) is in
G(Bn)i+1.

Corollary 5.6 The alternative nil-algebra G(Bn) of nil-index n is not nilpo-
tent, for n ≥ 3.

62



6 Summary of the results

The aim of this work was the usage of the superalgebra method in the study
of free algebras. In this wide matters, on the free alternative superalgebra
on one odd generator, which base is known (see [27]), was focused, and some
new applications of this superalgebra were found. The free alternative nil-
superalgebra on one odd generator of nil-index n ≥ 2 was investigated and
two basic problems were solved:

1) Finding a base of the free alternative nil-superalgebra
on one odd generator of nil-index n ≥ 2.

2) Computing the solvability index of this superalgebra.

In addition, several applications of this superalgebra were found.

Using the base of the free alternative superalgebra A = Alt[∅;x] on one
odd generator x constructed in [27], the base of the free alternative nil-
superalgebra Bn =Alt-N iln[∅;x] on one odd generator x of nil-index n was
constructed. The multiplication table of Bn was introduced, for B2 and B3

were written up, and the solvability index of Bn, for n ≥ 2 was computed.
It was started with Alt-N il2[∅;x] (see [16], 2009). A base of this super-

algebra was constructed and it was proved that it is solvable of index 2. It
was continued with the case n = 3 (see [17], 2010). More precisely, a base
of the free alternative nil-superalgebra Alt-N il3[∅;x] was constructed and
the solvability index of Alt-N il3[∅;x] was computed as 3. Last step was a
generalization, for n ≥ 3. A base of Bn = Alt-N iln[∅;x] was constructed
and the solvability index was computed as dlog2 ne+ 1 (see [18]). It was also
shown that, for n > 2, Bn is not nilpotent and Bn2 is nilpotent of index n.
It was known from Pchelintsev (see [13], 1985) that Bn2 must be nilpotent.
Here the first exactly computed nilpotency index was presented.

The superalgebra Bn was then used for applications. Due to the result
from [23], the V-superalgebra on one odd generator is isomorphic as a vector
space to the subspace of all skew-symmetric elements of the free V-algebra on
countable many generators. Using the base of the superalgebra Bn, a base of
the subspace of skew-symmetric elements of the free alternative nil-algebra
on a countable set of generators was described.

A nonassociative Grassmann algebra corresponding to Alt-N il3[∅;x] was
also presented and it was shown that Dorofeev’s example of solvable non-
nilpotent alternative algebra is its homomorphic image.

An infinite family of solvable alternative nil-algebras of arbitrary big sol-
vability index was constructed, for n ≥ 3. The algebras are formed from alter-
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native nil-superalgebras Alt-N iln[∅;x], using a standard passage to Grass-
mann envelope over a field of characteristic zero. These algebras are not
associative. Till now there were no explicit examples of such algebras.

Further plans

It would be interesting to describe all skew-symmetric central and nuclear
elements in alternative algebras. Evidently, they all should be of the type
Skew f , where f ∈ N(A) and f ∈ Z(A) for central and nuclear elements,
respectively. Recall that not every element in Z(A) produces central or
nuclear skew-symmetric element in alternative algebra (see [27], 2007).

Following [23], for the free alternative superalgebra A = Alt[∅;x] its uni-
versal multiplicative envelope Mult(A) is considered. It can be defined as a
subalgebra of the algebra of endomorphisms End(Alt[a;x]) of the free two-
generated alternative superalgebra Alt[a;x], generated by all the operators
Lu, Ru, u ∈ A. In fact, here the parity of the generator a does not mat-
ter. Observe that the algebra Mult(A) inherits naturally the superalgebra
structure of A: operators Lu and Ru are even(odd) if and only if so is u in A.

Now for a homogeneous element f ∈ A holds: Skew f is a central skew-
symmetric element in the free alternative algebra Alt[T ] if and only if Rf =
Lf in Mult(A). Therefore the study of operators Rf and Lf , for elements
f ∈ Z(A), is our future plan.
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Appendix A

The computing of B(i)
n ,
(
Bn2
)i

and (Bn)i

Solvability of B3

For k > 2, m > 0, ε ∈ {0, 1} we have

B(0)
3 = B3

B(1)
3 = B3B3

= vect〈t, tx, t2, t2x, x[k], x[k]x, u[4m+ε], z[4m+ε]〉,
(x[3] ← x · t, x[k+1] ← x · x[k])

(z[k] ← (x[k]x) · x, u[k] ← (x[k]x) · t)
B(2)

3 = B(1)
3 B

(1)
3

= vect〈t2, t2x, u[4m+ε], z[4m+ε]〉,
(z[k] ← (tx) · x[k], u[k] ← (x[k]x) · t)

B(3)
3 = B(2)

3 B
(2)
3 = 0.

Nilpotency of square of B3

For k > 2, m > 0, ε ∈ {0, 1} we have(
B3

2
)1

= B3
2 = B3B3 = B(1)

3

= vect〈t, tx, t2, t2x, x[k], x[k]x, u[4m+ε], z[4m+ε]〉,(
B3

2
)2

= B3
2B3

2 = B(2)
3

= vect〈t2, t2x, u[4m+ε], z[4m+ε]〉,(
B3

2
)3

= B3
2(B3

2B3
2) + (B3

2B3
2)B3

2 = 0.
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Nilpotency of B3(
B3

)1
= B3(

B3

)2
= B3B3

= vect〈t, tx, t2, t2x, x[k]xε, u[4m+ε], z[4m+ε]| k > 2, m > 0, ε ∈ {0, 1}〉,(
B3

)3
=

(
B3

)2B3 + B3

(
B3

)2

= vect〈tx, t2, t2x, x[k]xε, u[4m+ε], z[4m+ε]| k > 2, m > 0, ε ∈ {0, 1}〉,
(x[3] ← x · t)
(z[4] ← (x[4]x) · x, u[4] ← (x[4]x) · t)(

B3

)4
= vect〈t2, t2x, x[3]x, x[k]xε, u[4m+ε], z[4m+ε]| k > 3, m > 0, ε ∈ {0, 1}〉,

(x[3] ← NA , x[3]x← x[3] · x, x[4] ← x · (tx))

(z[4] ← (x[4]x) · x, u[4] ← (x[4]x) · t)(
B3

)5
= vect〈t2x, x[4]x, x[k]xε, u[4m+ε], z[4m+ε]| k > 4, m > 0, ε ∈ {0, 1}〉,

(x[3]x, x[4] ← NA , x[4]x← x · (x[3]x), x[5] ← x · (x[3]x))

(z[4] ← (x[4]x) · x, u[4] ← (x[4]x) · t)(
B3

)6
= vect〈x[5]x, x[k]xε, u[4m+ε], z[4m+ε]| k > 5, m > 0, ε ∈ {0, 1}〉,

(x[4]x, x[5] ← NA , x[5]x← x · (x[4]x), x[6] ← x · (x[4]x))

(z[4] ← (x[4]x) · x, u[4] ← (x[4]x) · t)(
B3

)7
= vect〈x[6]x, x[k]xε, u5, u[4m+ε], z5, z[4m+ε]| k > 6, m > 1, ε ∈ {0, 1}〉,

(x[5]x, x[6] ← NA , x[6]x← x · (x[5]x), x[7] ← x · (x[5]x))

(z[4], u[4] ← NA , z[5] ← (x[5]x) · x, u[5] ← (x[5]x) · t)(
B3

)8
= vect〈x[7]x, x[k]xε, u6, u[4m+ε], z6, z[4m+ε]| k > 7, m > 1, ε ∈ {0, 1}〉,

(x[6]x, x[7] ← NA , x[7]x← x · (x[6]x), x[8] ← x · (x[6]x))

(z[5], u[5] ← NA , ”z[6]”← (x[6]x) · x, ”u[6]”← (x[6]x) · t)

so that for i = 2j + δ > 1, j > 0, δ ∈ {0, 1} we have(
B3

)i
=

(
B3

)i−1B3 + · · ·+ B3

(
B3

)i−1

i=2j+δ
= vect〈tjxδ, tlxε, x[i−1]x, x[k]xε, u[4m+ε], z[4m+1+ε]

| j < l < 3, k > i− 1, 4m+ ε ≥ i− 3, ε ∈ {0, 1}〉.
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More exactly
(
B3

)i
is spanned by the elements of the form

tjxδ, tmxε, j < m < 3, ε ∈ {0, 1},
x[i−1]x, x[k]xε, k + ε > i− 1, ε ∈ {0, 1},

u[4m+ε] 4m+ ε ≥ i− 3

z[4m+ε], 4m+ ε ≥ i− 2

where i = 2j + δ > 1, j > 0, δ ∈ {0, 1}.
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Solvability of Bn
For k > 2, m > 0, ε ∈ {0, 1} we have

B(0)
n = Bn
B(1)
n = BnBn

= vect〈t, tx, . . . , tn−1x, | x[k], tx[k], . . . , tn−3x[k], |
x[k]x, t(x[k]x), . . . , tn−3(x[k]x), |
u[4m+ε], u[4m+ε]x, . . . , tn−3u[4m+ε], |z[4m+ε], z[4m+ε]x, . . . , tn−3z[4m+ε]〉

B(2)
n = B(1)

n B(1)
n

= vect〈t2, t2x, . . . , tn−1x, | tx[k], t2x[k], . . . , tn−3x[k], |
t(x[k]x), t2(x[k]x), . . . , tn−3(x[k]x), |
u[4m+ε], u[4m+ε]x, . . . , tn−3u[4m+ε], | z[4m+ε], z[4m+ε]x, . . . , tn−3z[4m+ε]〉

B(j)
n = B(j−1)

n · B(j−1)
n

= vect〈t2j−1

, t2
j−1+1x, . . . , tn−1x, | t2j−1−1x[k], . . . , tn−3x[k], |

t2
j−1−1(x[k]x), . . . , tn−3(x[k]x), |

t2
j−1−2u[4m+ε], t2

j−1−2u[4m+ε]x, . . . , tn−3u[4m+ε], |
t2

j−1−2z[4m+ε], t2
j−1−2z[4m+ε]x, . . . , tn−3z[4m+ε]〉

B(j+1)
n = B(j)

n · B(j)
n

= vect〈t2j , t2j+1x, . . . , tn−1x, | t2j−1x[k], . . . , tn−3x[k], |
t2

j−1(x[k]x), . . . , tn−3(x[k]x), |
t2

j−2u[4m+ε], t2
j−2u[4m+ε]x, . . . , tn−3u[4m+ε], |

t2
j−2z[4m+ε], t2

j−2z[4m+ε]x, . . . , tn−3z[4m+ε]〉
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Nilpotency of square of Bn
For k > 2, m > 0, ε ∈ {0, 1} we have(
Bn2
)2

= BnBn = B(1)
n

= vect〈t, tx, t2, t2x, . . . , tn−1x, | x[k], x[k]x, . . . , tn−3x[k], tn−3(x[k]x), |
u[4m+ε], z[4m+ε] . . . , tn−3u[4m+ε], tn−3z[4m+ε]〉,(

Bn2
)2

= Bn2Bn2 = B(2)
n

= vect〈t2, t2x, . . . , tn−1x, | tx[k], t(x[k]x), . . . , tn−3x[k], tn−3(x[k]x), |
u[k], z[k], . . . , tn−3u[k], tn−3z[k]〉(

Bn2
)3

=
(
Bn2
)2Bn2 + Bn2

(
Bn2
)2

= vect〈t3, t3x, . . . , tn−1x, | t2x[k], t2(x[k]x), . . . , tn−3x[k], tn−3(x[k]x), |
tu[k], tz[k], . . . , tn−3u[k], tn−3z[k]〉(

Bn2
)i

=
(
Bn2
)i−1Bn2 + · · ·+ Bn2

(
Bn2
)i−1

= vect〈ti, tix, . . . , tn−1x, | ti−1(x[k]xσ), . . . , tn−3(x[k]x), |
ti−2u[4m+ε]xσ, ti−2z[4m+ε]xσ, . . . , tn−3u[4m+ε], tn−3z[4m+ε]〉.
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Nilpotency of Bn(
Bn
)1

= Bn(
Bn
)2

= BnBn(
Bn
)3

=
(
Bn
)2Bn + Bn

(
Bn
)2

= vect〈tx, tm+2xε, . . . , tn−1x,

x[3], x[3]x, tm(x[k]xε), tmu[4r+ε]xσ, tmz[4r+ε]xσ

| k > 2, r > 0, 0 ≤ m+ σ ≤ n− 3, σ, ε ∈ {0, 1}〉,(
Bn
)4

= vect〈t2, t2x, . . . , tn−1x,

x[3]x, x[4], tm(x[k]xε), tmu[4r+ε]xσ, tmz[4r+ε]xσ

| m+ k + ε > 3, r > 0, 0 ≤ m+ σ ≤ n− 3, σ, ε ∈ {0, 1}〉,(
Bn
)5

= vect〈t2x, . . . , tn−1x,

x[4]x, x[5], tx[3], tm(x[k]xε),

tmu[4r+ε]xσ, tmz[4r+ε]xσ

| m+ k + ε > 4, r > 0, 0 ≤ m+ σ ≤ n− 3, σ, ε ∈ {0, 1}〉,(
Bn
)6

= vect〈t3, . . . , tn−1x,

x[5]x, x[6], t(x[3]x), tx[4], tm(x[k]xε),

tmu[4r+ε]xσ, tmz[4r+ε]xσ

| m+ k + ε > 5, r > 0, 0 ≤ m+ σ ≤ n− 3, σ, ε ∈ {0, 1}〉,(
Bn
)7

= vect〈t3x, . . . , tn−1x,

x[6]x, x[7], t(x[4]x), tx[5],

t2x[3], t2(x[3]x), t2x[4], t3x[3], tm(x[k]xε),

tmu[4r+ε]xσ,

z[4]x, tmz[4r+1+ε]xσ

| m+ k + ε > 6, r > 0, 0 ≤ m+ σ ≤ n− 3, σ, ε ∈ {0, 1}〉,(
Bn
)8

= vect〈t4, . . . , tn−1x,

x[7]x, x[8], t(x[5]x), tx[6],

t2x[4], t2(x[4]x), t2x[5],

t3x[3], t3(x[3]x), t3x[4]

t4x[3], tm(x[k]xε),

u[4]x, u[5], tm+1u[4+ε]xσ, tmu[4r+ε]xσ,

z[5], z[5]x, tm+1z[4+ε]xσ, tmz[4r+ε]xσ

| m+ k + ε > 7, r > 1, 0 ≤ m ≤ n− 3, σ, ε ∈ {0, 1}〉.
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Observe, that in each step i is the degree of the elements in
(
Bn
)i

at least i
(It arises that in each step x ·u has degree deg(u)+1, where u is the minimal

degree element in
(
Bn
)i−1

). So that for i = 2j + δ > 1, j > 0, δ ∈ {0, 1} we
have(
Bn
)i

=
(
Bn
)i−1Bn + · · ·+ Bn

(
Bn
)i−1(

Bn
)i i=2j+δ

= vect〈tjxδ, tj+1xε, . . . , tn−1x,

x[i], x[i−1]x, tm(x[k]xσ), . . . , tn−3(x[k]x)

u[i−3], u[i−4]x, tmu[4r+1+ε]xσ, . . . , tn−3u[4r+1+ε]

z[i−3], z[i−3]x, tmz[4r+ε]xσ, . . . , tn−3z[4r+ε]

| i ≤ 2m+ k + σ, i− 2 ≤ 2m+ (4r + ε) + σ, r > 0,

0 ≤ m < n− 2, σ, ε ∈ {0, 1}〉.

More exactly
(
Bn
)i

is spanned by the elements of the form

tmxσ, i ≤ 2m+ σ, 0 ≤ m < n, σ ∈ {0, 1},
tm(x[k]xσ), i ≤ 2m+ k + σ, 0 ≤ m < n− 2, k > 2, σ ∈ {0, 1}
tmu[4r+ε]xσ, i− 3 ≤ 2m+ (4r + ε) + σ, 0 ≤ m < n− 2, r > 0, σ, ε ∈ {0, 1}
tmz[4r+ε]xσ, i− 2 ≤ 2m+ (4r + ε) + σ, 0 ≤ m < n− 2, r > 0, σ, ε ∈ {0, 1}.
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