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 Absract – The analysis of open, particularly slotted planar 
transmission lines in a wide frequency range is presented in this 
paper. The full wave approach by the spectral domain method is 
applied.  Theoretical findings and their practical consequences 
are reported. Some outputs from the CST Microwave Studio and 
from our Analysis of Planar Transmission Lines package are 
shown. 
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I. INTRODUCTION 

 
Mankind knows two ways of transmitting information, 

signals or power from one place to another, either by 
propagation along a line connecting the two places, or by 
propagation in open air. The latter requires the signal to be 
transformed from a circuit into a wave radiated by a 
transmitting antenna. The wave then propagates towards the 
receiving antenna, where it is transformed back into a signal 
to be processed further in circuits. In this paper we are 
engaged in the first variant, i. e., transmission of information 
by a line. 

A transmission line is a technical tool for transferring a 
signal along a path routed in space, customarily by an abrupt 
change of the medium parameters such as conductivity, 
permittivity or permeability. The signal propagates along 
surfaces on which at least one of the above mentioned 
parameters changes rapidly. In the case of an abrupt change of 
the conductivity we have a metallic line. Dielectric lines are 
based on a change of permittivity and, by analogy, there is a 
change of permeability. We will consider metallic and 
dielectric lines, the most applied types of lines. 

From the chronological point of view, the development of 
different types of lines was influenced by the frequencies of 
the available generators and by the way that the lines were 
produced. At first, the classic coaxial lines were used in the 
decimetre wavelength range, utilizing the propagation of TEM 
waves. The theory of wave propagation on a coaxial line has 
been perfectly and completely elaborated. The analysis and 
design of this line is therefore relatively simple. Nowadays 
coaxial lines are used up to 70 GHz. 

The next stage in line development involves the 
waveguides successfully utilized up to now in cm and mm 
technology. Here again, the theory is complete, and  it enables 
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us to investigate the waveguide behavior, to design 
waveguides accounting for different demands following from 
the functionality of a line within the circuit. In parallel, the 
theory of dielectric lines was built up. Useful features of 
dielectric lines were utilized in special cases of signal 
propagation, e. g., in microwave spectroscopy and in 
communication systems, particularly in the mm-wave range. 
Space-reduced versions of dielectric waveguides are optical 
fibers and other light guides used in optical signal processing. 

Advances in semiconductor technology, production of high 
quality organic materials or ceramics with a low loss factor, 
and the availability of low cost printed circuit boards opened 
up the latest stage in transmission line development. A planar 
arrangement, usually a combination of dielectrics and 
metallization, is typical for transmission lines. Nowadays 
there is a numerous group of lines differing from each other 
just by the arrangement of these two materials. At lower 
frequencies they are widely called printed circuit lines. At 
higher frequencies each line carries its own specific name. 

Low losses, negligible signal distortion, high transmitted 
power capability, electromagnetic compatibility, a wide 
operational frequency band, high electromagnetic resistance 
and pure dominant mode propagation are requirements set on 
any kind of transmission line, along with easy and low cost 
production, and high integrability with various passive circuits 
and active devices. Transmission lines, such as waveguides or 
coaxial lines, transmit waves in a space totally confined by 
metallic walls, so they satisfy all mentioned demands. 
Compared with them, open transmission lines, where waves 
propagate along the line and its close vicinity, such as two 
wire lines, striplines, microstrip lines, image guides, uniplanar 
lines, etc., have reduced transmitted power, higher losses, 
lower electromagnetic resistance, cross-talk to neighboring 
circuits and occasionally strong dispersion. The features of 
closed and open lines overlap when a line belongs to the fin-
lines group. However, they are not easy to produce. 

Planar technology has been developed in the last fifty years 
and has enabled the fabrication of printed circuit lines. These 
were first investigated in the framework of the quasi-static 
approach. Only propagation of the dominant modes was 
accounted for, and resulted in the closed-form formulae of the 
propagation constant and characteristic impedance valid at 
low frequencies. Next, the dispersion of the dominant modes 
was described with limited validity by various dispersion 
models. Several useful books are available [1-5] from that 
period. Finally, the full wave approach dominated and 
provided a realistic picture of the propagation of the bound 
modes, and at higher frequencies also the leakage effects. The 
leakage could be into the substrate or into the space. It needs 
to be suppressed in circuits, since leakage deteriorates circuit 
operation, but on the other hand it should be supported in 
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antenna applications. To provide an insight into the physics of 
wave propagation along the line, and leakage, use is made of 
theoretical analysis, visualization of transmitted modes and 
measurements. A change in the cross-sectional size of a line, 
the material parameters or bending from the straight direction 
results in many types of inhomogeneities, which are sources 
of undesired radiation, power leakage and propagation of 
higher modes. Generally available SW packages devoted to 
analysis and design of these lines mostly have not taken these 
effects into consideration. They provide solutions satisfactory 
only for purely bound modes at low frequencies. At higher 
frequencies, when leakage effects or higher order modes 
appear, the designer must either accept the limits of the code 
validity, or rely on the results without being able to check 
them. This factor in many cases leads to discrepancies 
between theoretically predicted and measured characteristics 
of circuits or systems containing active devices or passive 
elements. 

In the following sections we first introduce the well-known 
method of moments applied in the spectral domain finalized 
by a root search on the complex plane of the spectral variable 
used for analysis of the lines. By means of the dispersion 
characteristics, we explain the behavior of the line depending 
on its cross-sectional proportions and substrate permittivity. 
We have elaborated a code for analyzing eighteen planar 
transmission lines calculating the propagation constants of 
particular modes and, when applicable, also the characteristic 
impedance. The code enables the frequency limits to be found 
when higher order bound or leaky modes set up. The CST 
Microwave Studio provides us with a practical idea about the 
total field propagation under specific conditions of excitation. 
The applicability of particular lines will be pointed out. We 
have checked some new findings by measurements on 
enlarged scale models of the lines. Excitation of planar lines 
by a real source is attracting the current interest of researchers. 
It turns out that, in the close vicinity of the source, standard 
transmission line theory no longer holds, due to the presence 
of so called residual modes. We have observed their presence 
in experiments. 
 

II. A LITTLE BIT THEORY WILL NOT GO AMISS 
 

The propagation constant, generally complex, and the field 
distribution represent individual modes propagating on a line. 
The characteristic impedance, if its definition has a physical 
meaning, supplements the picture of the mode. Full 
information about the mode is provided by the wave equation. 
Several methods have been developed for solving it [6-7]. 
However, it turned out that the spectral domain method has 
become the most popular and widely used technique for 
analyzing planar transmission lines. The original approach 
was published in two short papers, one dealing with a slotline 
[8] and the second treating a microstrip line [9]. Many works 
have successfully demonstrated the power, accuracy and 
numerical efficiency of this method. Some terms used in the 
literature dealing with field propagation over the line were 
derived from this method, so it will be helpful to recall the 
main steps. We will explain briefly the procedure, for 
instance, on the slotline, Fig. 1. 

 
Fig. 1  Cross-section of a slotline. 

 
 Perfectly conductive strip conductors with infinitesimal 
thickness are assumed in the spectral domain method (SDM). 
We investigate the field represented by constituent modes in 
the source-less region, i. e., regardless of how they are 
excited. The concept of transversal waves is adopted, and let 
all the field components have a dependence of the form 

zj ze γ−  where the propagation constant in the z direction 
γz=β − jα, β is the phase constant, while α is the attenuation 
constant. The electric ΦΦΦΦ e = y0Φ e and magnetic ΦΦΦΦ m = y0Φ m 
Hertz potential determine the TM and TE waves, respectively. 
Hereafter the upper indices of the potentials will be dropped. 
The variable separation applied in the wave equation being 
solved for the field in Cartesian co-ordinates results in the 
equation 
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where kj is the wave number in the corresponding medium, 
j=1,2,3 in Fig. 1. Eq. (1) is a 2D task. To facilitate the 
solution, the dependence on the x variable is removed by the 
Fourier transform 
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The backward Fourier transform provides the original 
potential 
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Applying Eq. (2) in Eq. (1) one gets 
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The solution of Eq. (4) is known, and contains eight 
integration constants. Their interrelations determine the 
boundary conditions transformed also into the spectral domain 
on the plane y=0 
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                                ( ) ( )0,E~0,E~ 3z2z ξξ =                              (7) 
 
and on the plane y=h 
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                       ( ) ( ) ( )h,J~h,H~h,H~ x2z1z ξξξ =−                    (11) 
 
where ( )h,xJ~ ξ , ( )h,zJ~ ξ  are current densities. The substitution 
of the integration constants into Eqs. (10) and (11) provides 
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where ( )ξmnY~  are Green΄s functions in the spectral domain. 
We have two equations with four unknowns 1xE~,1zE~,xJ~,zJ~ . 
Let ( ) ( )h,1xE~,h,1zE~ ξξ  be written in the form of the series of 
basis functions ( ) ( )ξξ xne~,zne~  
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where czn, cxn are unknown amplitudes of these functions. 
Now Galerkin΄s method, i. e., the method of moments in the 
spectral domain, and Parseval΄s theorem are applied in Eqs. 
(12) and (13). The current densities and electric field 
components are nonzero in the complementary regions of x, 
y=h. Consequently, ( ) ( )ξξ xJ~,zJ~  vanish from Eqs. (12) and 
(13), and a homogeneous set of algebraic equations remains in 
terms of amplitudes czn, cxn 
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n=1,2,. ..., ∞  and asterisk denotes a complex conjugated 
quantity. In order that they have nontrivial solutions, the 
determinant of the matrix of equations must be zero. From this 
condition, known as the dispersion equation, the propagation 
constant γz is determined at a chosen frequency. The 

frequency dependences of the phase constant and the 
attenuation constant are called dispersion characteristics. 
From the appearance of the dispersion characteristic, the 
behavior of a line can be predicted. 
 The crucial point is integration on the complex plane of the 
spectral variable ξ in Eqs. (18) - (21). Integrands have poles 
and branch points. The same singularities are possessed by 
integrands of the backward Fourier transform when the field is 
searched for. Bound modes, modes leaking into the substrate 
and modes leaking into the space can propagate on the line. 
The respective propagation constant depends on the 
integration path. Integration along the real axis provides the 
phase constant of the bound mode. Integration along the real 
axis and round the poles carried out by the residual theorem 
provides the phase and the leakage constant of the mode 
leaking into the substrate. By analogy, when in addition the 
path crosses the branch cut around the branch point we again 
have the phase and leakage constant but power is taken away 
into the substrate and into the space. 
 

 
 

Fig. 2  Cross-section of a microstrip line. 
 
 The microstrip line, Fig. 2, is a dual structure to the slotline. 
Its analysis is the same as in the slotline case, but instead of 
the electric field in the slot there are longitudinal and 
transversal current density components on the strip. Eqs. (12) 
and (13) have the form 
 

             ( ) ( ) ( ) ( ) ( )h,J~Z~h,J~Z~h,E~ xzxzzz1z ξξξξξ +=         (22) 

             ( ) ( ) ( ) ( ) ( )h,J~Z~h,J~Z~h,E~ xxxzxz1x ξξξξξ += ,      (23) 
 
where the series of basis functions ( ) ( )ξξ xnj~,znj~  are 
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 The basis functions have to fit as well as possible the 
electric field in the slot or the current density on the strip, in 
order to account for their behavior at the metal edge, and their 
Fourier transform must be available. We distinguish even and 
odd modes according to the symmetry of Ex(x,h) or Jz(x,h) 
with regard to the y axis. In the past Chebyshev polynomials 
and circular functions combined with the Maxwell 
distribution, i. e., the edge-condition term, were used as basis 
functions. Both choices provide practically the same 
numerical results. Basis functions are nonzero only for 
|x|≤w/2. We work with circular functions and for even modes 
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while for odd modes 
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 A real planar line has a finite width of the substrate, as in 
Figs. 15 and 21. When its sidewalls are an extension of the 
ground, we use the Fourier transform 
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and n=0, ±1, ±2, … ∞ . The calculation of the propagation 
constant goes on by analogy with the procedure given above. 
For brevity the basis functions can be found in [11]. The field 
components are determined by the backward Fourier 
transform 
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Another important quantity, essential for the design of 

circuits, is the characteristic impedance of the dominant mode. 
Because it is a hybrid mode, the definition of the characteristic 
impedance is not unique. For the slotted lines we use the 
power-voltage definition 

                                       
P2

V
Z

2
=                                        (33) 

and for strip lines we use the power-current definition 
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V is the voltage across the slot 
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and I is the current flowing on the strip 
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V and I can be evaluated since integrands are defined by the 
series expansion and by the known amplitudes of the basis 

functions computed in the propagation constant search. P is 
the time averaged power flow along the line and by Parseval΄s 
theorem it can be computed in the spectral domain. 
 

III THEORETICAL ACHIEVEMENTS AND PRACTICAL 
CONSEQUENCES 

 
 A survey of our achievements in recent years in 
investigating slotted planar transmission lines is presented in 
this section. The dispersion characteristics, field distribution 
and measured data will be accompanied by a brief 
commentary. 
 The stripline, the microstrip line, the coplanar waveguide 
and coplanar strips had already been investigated by several 
research groups round the world. This previous work therefore 
determined our initial orientation to the slotline and to its 
modifications. 

 It had been accepted for a long time that the excitation of 
the surface leaky mode demarcates the frequency band of pure 
bound mode propagation on a slotline. However, in addition 
to this known first leaky mode we revealed the occurrence of 
a second leaky mode, shown in Fig. 3, [10]. The field 
distribution computed by the CST Microwave Studio 
confirmed our theoretically predicted leaky modes. Fig. 4a 
shows Ey of the 1st and 2nd leaky mode, while Fig. 4b 
demonstrates Hy of the 2nd leaky mode and the decreasing 
amplitude of the field along the slot due to the leakage into the 
substrate. 
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Fig. 3  The normalized phase and leakage constants for the slotline 

with w=0.15 mm, h=0.635 mm, εr=10.8. 
 
 Three operation regimes can set in on a slotline in 
dependence on its proportions and the permittivity of the 
substrate, Fig. 5.  Frequencies f1, f2, f3 are the upper limits of 
pure bound mode propagation, since simultaneous 
propagation of the bound mode and leaky mode reduces the 
usable frequency band. On a slotline with a wider slotwidth 
the first leaky mode is predominant. The second leaky mode 
has  greater  significance on slotlines with  narrower slotwidth  



a                                                      b 
Fig. 4  Ey of the 1st and 2nd leaky mode in the substrate of a slotline 
with w/h=0.4, εr=2.25 and h/λ0=0.4, angles of leakage Θ1 ≈ 19 deg 

and Θ2 ≈ 41 deg (a), Hy of the 2nd leaky mode in the substrate of the 
same slotline, angle of leakage Θ2 ≈ 30 deg (b). 

 
and made on a higher permittivity substrate. The essence of 
this thinking is shown in Figs. 6 and 7. Closed-form formulas 
of the normalized upper frequency cutoff of the dominant 
bound mode determined by the spectral gap (h/λc), by the first 
leaky mode (h/λc1), and by the second leaky mode (h/λc2) are 
available for easy CAD of a slotline [10]. 
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Fig. 5  Upper limits of bound mode propagation in three operation 
regimes. 
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Fig. 6  The normalized upper frequency cutoff of the dominant 
bound mode determined by the spectral gap (h/λc) and by 
simultaneous propagation of the first leaky mode (h/λc1). 
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Fig. 7  The normalized upper frequency cutoff of the dominant 
bound mode determined by simultaneous propagation of the second 

leaky mode (h/λc2). 
 
 The slotline is sometimes located on the top of a cooling 
radiator or on the bottom of a shielding box. Consequently, 
we have a conductor-backed slotline, Fig. 8. In the past it was 
shown that only leaky modes are allowed on this line. We 
have revealed two new findings supplementing the previous 
thinking. These are: the existence of a dominant unbounded 
mode and double degeneration of the mode leaking into the 
substrate. 

 
 

Fig. 8  Cross-section of a conductor-backed slotline. 
 
 It turned out that when the integration path on the complex 
plane ξ is along the real axis on which the poles of the Green 
function are located, the propagation constant of that mode is 
real. The mode propagates unattenuatedly along the line and 
possesses a standing wave character in the lateral direction in 
the substrate, and has a zero cutoff. Such a field results from a 
TEM wave incident at an angle to the region below the slot, 
where the effective permittivity is lower than the permittivity 
of the substrate between conductive parallel plates. The total 
reflection springs up at the blurred boundary of these two 
permittivities. The field does not pass to the area on the 
opposite side of the slot, but is coupled through the slot to the 
air. The situation is illustrated in Fig. 9. However, the field 
excited by the real source is reflected from the rear and lateral 
walls  of  the substrate with  finite size, and  is  incident under  
 

 
Fig. 9  Electric field component Ey in, and perpendicular to, the 

substrate of the TEM mode, and coupled into air through the slot, 
when w=h=6 mm, εr=2.6 and f=5 GHz. 
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various angles to the region below the slot. The reflections 
from the sidewalls substitute the absent source at infinity. The 
wavelength of the “semi-standing” wave varies slightly due to 
the different angles of incidence, as was confirmed by 
measurements, Fig. 10. 
 

 
Fig. 10  Total Ey component of the electric field in the transversal 
plane of the conductor-backed slotline when the dominant and 1st 

leaky mode propagate, w=h=6 mm, εr=2.6 and f=5 GHz or 
h/λ0=0.16. 

 
 The dispersion equation has a multivalue solution. This 
feature has been manifested on the dispersion characteristics 
evolving with the slotwidth. When the slotwidth is greater 
than the substrate thickness the previous complex nonphysical 
solution merges with the complex physical solution. There are 
two “sub-modes” leaking at different angles into the substrate 
at one frequency. The situation is shown in Figs. 11 and 12. 
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Fig. 11  The normalized dispersion characteristics of even modes on 
a conductor-backed slotline, when w=10 mm, h=6 mm, εr=2.6. 

 
 A conductor-backed slotline is not suitable for signal 
transmission owing to the leakage and the presence of the not 
bound dominant mode. To eliminate this shortcoming the 
substrate is divided into two layers. The bottom layer has 
lower permittivity than the top layer. Now the dominant 

bound mode propagates from zero to the cutoff of the wave 
propagating in the partitioned dielectrics between parallel 
plates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12  Electric field component Ey of the first even leaky modes in 
the substrate of a conductor-backed slotline with w=10 mm, h=6 mm, 

εr=2.6 and h/λ0=0.3. 
 
 Another more easily achievable solution is to modify the 
line by putting an additional dielectric on its top according to 
Fig. 13 and ε2>ε3>ε1. The dispersion characteristics of the 
even bound and two leaky modes are shown in Fig. 14. The 
dominant mode is bound in all three dielectrics and propagates 
from zero frequency. We checked the excitation of that mode 
on the line with a plexiglass substrate and a glass slab on top, 
dots in Fig. 14. The first leaky mode leaks into the top slab 
while the second leaky mode leaks into the substrate and the 
top slab. The double degeneration of the mode leaking into the  
 

 
 

Fig. 13  Cross-section of a modified conductor-backed slotline. 
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Fig. 14  Dispersion characteristics of the even modes on a modified 

conductor-backed slotline when w=6 mm, h2=12 mm, h3=6 mm, 
εr2=7, εr3=2.6. 
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upper slab was also discovered in this case. It can be a 
consequence of widening the slot or also lowering the height 
of the upper slab. 
 The safest way of preventing from surface and space 
leakage is total shielding of the line. Such a line does not 
suffer from losses of energy by radiation or cross talk, and has 
great electromagnetic resistance. In the case of a slotline or a 
conductor-backed slotline, this concept leads to the cross-
section of the line shown in Fig. 15. This line is in fact a flat 
rectangular waveguide with a conductive partition in the H 
plane with two different dielectrics occupying the upper and 
lower portion of the cross-section, in other words, a finned 
waveguide. 

 

 
 

Fig. 15  Cross-section of a flat finned waveguide 
 

 Even and odd modes can exist on this line. Each has 
nonzero cutoff fc and the rise of the permittivity shifts them to 
lower frequencies. The frequency band of pure dominant 
mode propagation is only slightly influenced by the slot width 
and the permittivity. The smaller the waveguide width b, the 
greater is the change of the cut off with the change of the slot 
width. The cutoff strongly depends on the waveguide width. 
The greater b is, the lower is fc. There are two groups of 
modes. The field of the waveguide-type modes resembles the 
field of the TE modes in the rectangular waveguide perturbed 
now by the conductive partition in the H plane. The field of 
the slot-type modes resembles the field of the modes 
propagating along the conductor-backed slotline influenced 
now by the shielding. The increasing asymmetry in 
permittivities removes the distinction between the types of 
modes. The difference between the two types of modes is 
most distinct in the flat waveguide with εr1=εr2=1, as seen in 
Fig. 16 and 17. 
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Fig. 16  ET(x,y) of the even dominant slot-type mode in a finned 
waveguide when h1=h2=2 mm, w=20 mm, b=50 mm, εr1=εr2=1, f=6 

GHz. 
 

 The real propagation constants of the revealed modes are 
shown in Figs. 18 and 19. They are compared with the data 
acquired by the CST Microwave Studio and by our 
measurements. Only the even dominant slot-type mode is 

significant for circuit applications. Its characteristic 
impedance changes easily by the ratio h2/h1, as shown in Fig. 
20. The frequency dependence of the even and odd mode 
propagation constant is the same as in the rectangular 
waveguide. The corresponding cutoffs are available as the 
closed-form formula [11]. 
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Fig. 17  ET(x,y) of the first even waveguide-type mode in the finned 

waveguide specified in Fig. 16. 
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Fig. 18 Calculated and measured phase constant of the even 
dominant mode on a finned waveguide with h1=3 mm, h2=5 mm, 

w=10 mm, b=30 mm, εr1=8, εr2=2.6. 
 

             
f (GHz)

β/
k 0

1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

domin. mode

1st mode

• • • measurement
Microwave
Studio

∇ ∇ ∇

 
Fig. 19 Calculated and measured phase constant of the odd dominant 

mode on the finned waveguide specified in Fig. 18. 
 
 The motivation for investigating a flat waveguide with a 
longitudinal slot, Fig. 21, was the endeavour to design a flat, 
low profile antenna. This involves a conductor-backed slotline 
with a finitely wide substrate metallized also on its sidewalls. 
The analysis of this line is the alternative analysis of the 



standard rectangular waveguide with the slot cut in the middle 
of its wider wall. 
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Fig. 20  Characteristic impedance of the even dominant mode of a 
finned waveguide when h1+h2=10 mm, w=1 mm, b=23 mm. 

 

 
 

Fig. 21  Cross-section of a flat waveguide with a longitudinal slot. 
 

 Now the initial choice of the longitudinal component of the 
Hertz potentials is more advantageous. A specific aspect of 
the analysis is the matching of the fields in the spectral 
domain on the plane separating the boundless half-space and 
the bound volume of the substrate. This is equivalent to 
matching the Fourier integral and the Fourier series in the 
space domain. The relation between the Fourier transformed 
field components carried out according to Eqs. 2 and 30 is 
mediated by the sample function. 
 We have again identified even and odd modes on the guide. 
The dispersion characteristics of the first five modes are 
plotted in Fig. 22. These are the space leaky modes, and 
correspond to the modes of the rectangular waveguide 
perturbed by the longitudinal slot. The first space leaky mode 
is related to the dominant mode of the waveguide TE10. The 
second mode corresponds to the TM11 mode, and the field of 
the third mode resembles the field of the TE11 mode. The 
fourth space leaky mode is a modification of the TM12 mode, 
while the fifth has a link to the TE12 mode. Their phase 
constants trace the propagation constants of the modes in an 
unperturbed waveguide, dots in Fig. 22. Similarly, the 
attenuation constant, typical for evanescent modes below the 
cutoffs, coincides with the leakage constant, circles in Fig. 22. 
Accordingly, a waveguide with a narrow slot does not radiate 
since the leakage constant is very great below the cutoff. It 
also does not radiate above the cutoff, since the leakage 
constant is almost zero. The narrower the slot width, the 
closer together are the frequencies at which β and α approach 
zero. The space leaky mode converts into a bound mode when 
β=k0, as is shown in Fig. 23 drawn for even modes. When a 
dielectric slab with permittivity εr>1 and thickness hs is placed 
on the top of the guide with εr1=εr2=1 in Fig. 21 we get the 
dispersion characteristics shown in Fig. 24. The initial space 
leaky mode converts into the bound mode, which leaks above 
the spectral gap into the slab. 
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Fig. 22  Normalized dispersion characteristics of the odd space leaky 
modes on a squared slotted waveguide with w=1 mm, h=b=10 mm, 

εr1=εr2=1. 
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Fig. 23 Normalized dispersion characteristics of two even space 

leaky modes on a flat slotted waveguide when w=2 mm, b=30 mm, 
h=6 mm, εr2=2.6, εr1=1. 

 

h/λ0

β/
k 0,

α/
k 0

0.0 0.1 0.2 0.3
0.0

0.5

1.0

1.5

β/k0
α/k0

space
leaky

√εr

bound

k0

kTE1

nonphysical

kTM0

surface
leaky

εr

εr1

εr2

hs
h

b

w

 
Fig. 24  Normalized dispersion characteristics of even modes on a 

flat slotted waveguide when w=2 mm, b=30 mm, h=hs=6 mm, 
εr2=2.6, εr1=1. 

 
 In order to fill in the gap in code supply for researchers 
analyzing and designing planar transmission lines in wide 
frequency bands, we developed the APTL (Analysis of Planar 
Transmission Lines) package. It contains an analysis of 18 
different planar transmission lines. The code provides the 
frequency dependent propagation constant of a selected mode, 
the characteristic impedance when it can be defined, the field 
distribution in the cross-section and the distribution of the 
transversal field component within a slot, or the current 
density component on the strip [13].  The code is open and 
analysis of the coplanar strips is currently being implemented.  



 Based on our own experience, we can conclude that the 
design of open transmission lines is possible in the framework 
of the quasi-static concept only at relatively low frequencies. 
Insight into their behavior in a wide frequency band is 
provided only by the full wave approach. The APTL package 
is an example facilitating the work of the designer. 
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