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ABSTRACT

This paper deals with the dependence of

the type of solution of the determinantal slotline

dispersion equation on the location of the poles

of its matrix elements. A number of possible

solutions above the cut-off frequencies of

particular surface waves is determined. Complete

dispersion characteristics of the 1st and 2nd leaky

wave on the lossless and lossy slotline as well as

the main characteristics of the 1st up to the 4th

leaky wave on the lossless slotline are presented.

INTRODUCTION

The explanation of bound and leaky wave

propagation on a slotline presented in [1] is

convincing from the mathematical point of view.

However, interpretation of the field behaviour on

a lossless slotline is polemical from the physical

standpoint, as [2] points out. Therefore, the

question may be raised whether and how the

bound wave converts into the leaky wave. Basic

knowledge about this topic has been published in

[3]. Individual authors have made additional

contributions to the basic concept of the leaky

waves. We have identified the 2nd leaky wave on

the lossless slotline [4].

In this paper complete real and complex

solutions of the slotline dispersion equation for

the 2nd leaky wave are presented. The fluent

transition from the real to the complex improper

solution of this equation is explained. The total

number of these solutions after crossing the cut-

off frequencies of the TM0, TE1, TM2, and TE3

surface waves is determined. The main dispersion

characteristics of the 3rd and 4th leaky wave,

newly identified on the slotline, are reported. The

propagation constant for the 1st and 2nd leaky

wave on the lossy slotline is specified.

PROPERTIES AND BEHAVIOUR OF THE

2ND LEAKY WAVE SOLUTION

We analysed the open slotline with the

cross-section shown in Fig. 1 by the method of

moments modified as in the Galerkin testing

procedure in the spectral domain with  successive

               
Fig. 1 Cross-section of a slotline.

complex root searching. First let us recall the

normalized phase constant b/k0 and the

normalized leakage constant a/k0 on the open

lossless slotline, Fig. 2. Solution of the

determinantal dispersion equation depends on the

choice of the path of integration in the complex

plane of the Fourier transform variable x  when

its matrix elements are computed. All solutions

belonging to the 2nd leaky wave split off from

the same type solution belonging to the 1st leaky

wave at f1, the cut-off frequency of the TE1

surface wave, since the residue referred to

leakage into the TE1 surface wave is zero at f1

This  assertion  holds  for  both  the real  solution

and the complex solution. Owing to lack of space
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we do not show an example of the complex

solution splitting which appears when the line has

a wide slotwidth, e.g. for w/h³0.8.

The complex improper solution of the 1st

leaky wave begins at the real improper solution

inside the spectral gap f4-f5. The real improper

solution of the 2nd leaky wave (b/k0<2 in Fig. 2)

breaks  off  from the 1st  leaky  wave  solution at

    
Fig. 2 The normalized phase b/k0 and leaky a/k0

constants for the slotline with w/h=0.4, er=2.25 as a

function of normalized frequency h/l0.

f1, then goes down, crosses the bound wave

solution, touches the kTM0  curve, turns back and

ends on the bound wave solution again at f1.

Only the pole of the Green function associated

with the TE1 surface wave provides a solution in

the last length between f1 and kTM0, while for all

other 2nd leaky wave solutions poles related with

the TM0 and TE1 surface wave were necessary.

After crossing the cut-off frequency f1 the

2nd leaky wave solutions split off from each

corresponding 1st leaky wave solution. The

number of solutions above the cut-off frequency

is twice the number of solutions below this cut-

off frequency.This predicament can also be

extended to the dispersion characteristics of

higher order leaky waves.

To understand the change of the real into

the complex improper solution, it is necessary to

observe the migration of poles of integrals of the

matrix elements of the determinantal dispersion

equation.  Dispersion  characteristics  of   the  1st

     
Fig. 3 A sketch of the dispersion characteristics of a

lossless slotline inside and around the spectral gap and

the corresponding migration of poles in the complex

plane x for the 1st leaky wave.

leaky  wave are sketched in Fig. 3. The bound

wave solution results from calculations not

including the residue in the TM0 pole. At the

frequency corresponding to point A, the TM0

pole is located in the origin of the complex plane

x. With growing frequency, point B approaches

point C and TM0 pole goes away from the origin

along the imaginary axis. Coming from point D

near to point C the pole sinks to the origin. At

point C the two poles moving against one

another collapse. After addition of a nonzero

leakage constant a to b at point C, the pole

coming from the bottom/top to point C steps into

the 1st/2nd quadrant. Now the poles are complex

and xR in the 1st quadrant provides the improper

solution g=b-ja which is nonphysical inside the
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spectral gap. Since we are integrating an even

function, it is sufficient to integrate in the interval

(0,¥) instead of (-¥,¥). To each pole there is

also the pole located mirroredly to the origin.

When the residue at the pole xP*, which is

identical with the mirrored pole -xL, is accounted

for, the second, complex conjugate solution

g*=b+ja is obtained. The phase constant b is

double degenerated.

The explanation just given also holds for

the 2nd leaky wave when of course a couple of

poles TM0 and TE1 have to be observed. At the

frequency when the improper real solution of the

2nd leaky wave touches curve kTM0, pole TM0 is

at the origin while pole TE1 lies at the imaginary

axis. Similar migration of poles with increasing

frequency has been observed also for the 3rd

leaky wave, reported in the next paragraph, in

the vicinity of point G in Fig. 4, at which two real

solutions convert into one complex solution. This

behaviour is reciprocal with respect to the

frequency at point F in Fig. 4, when one complex

solution converts into two real solutions.

3RD AND 4TH LEAKY WAVE ON THE

SLOTLINE

Analogously to the 2nd leaky wave we

denote the field taking away power

simultaneously to the TM0, TE1, TM2 surface

wave as the 3rd leaky wave. We have identified

its dispersion characteristics,   some of  which

are shown in Fig. 4. Its excitation is possible on

higher-permittivity substrates and at higher

frequencies. Propagation of the bound wave and

the 2nd leaky wave in Fig. 4 is possible from 45.8

GHz to 59.5 GHz. From  66.1 GHz to 155.9

GHz the 1st and the 2nd leaky wave can

propagate. The 3rd leaky wave can propagate

together with the 1st leaky wave at frequencies

greater than 163.0 GHz. However, already at

frequency 118.8 GHz the 4th leaky wave taking

away power into the TM0, TE1, TM2, TE3 can

excite. It is seen that the influence of the 3rd

resp. 4th leaky wave can be neglected in mm

wave circuits.

     
Fig. 4 A plot similar to that in Fig. 2 now  including

solutions for the 1st, 2nd, 3rd and 4th leaky wave on the

slotline with narrower slotwidth w/h=0.236 and higher

substrate  permittivity er=10.8.

1ST AND 2ND LEAKY WAVE ON THE

LOSSY SLOTLINE

For lossy substrate kTM0, the poles of the

Green function and the  propagation constant of

the bound wave are complex. The bound wave

solution continues as the improper complex

solution. It is nonphysical inside the spectral gap

and becomes physical above it, Fig. 5. Substrate

losses cancel degeneration of b. Consequently

the upper branch of the previous improper real

solution (point D in Fig. 3) does not meet the

lower branch (as at point C in Fig. 3) and now

provides a nonphysical improper complex

solution for all frequencies. Great substrate losses

cause the fluent continuation of the bound wave

solution as the physical improper complex

solution of the 1st leaky wave, and disappearance

of the spectral gap. Solutions for the 2nd leaky

wave are only complex and each of  them  begins
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Fig. 5 A plot similar to that in Fig. 2 when w/h=0.4,

er=2.25 but the substrate loss factor tgd=0.01.

near to the corresponding 1st leaky wave

solutions at the cut-off frequency of the TE1

surface wave, since the residue referred to

leakage into the TE1 surface wave at this

frequency is not zero. Only solutions beginning

close to the bound wave solution are physical for

frequencies greater than f3, Fig. 5.

Field attenuation owing to leakage and

due to substrate losses overlap when leaky waves

propagate over the lossy slotline. When e.g.

tgd=0.01 the 1st leaky wave is physical at all

frequencies above the spectral gap as in Fig. 5.

The leaky wave converts back into the bound

wave at higher frequencies. However, the

physical principles of wave processes remain the

same but the total field appears from the outside

as the bound wave in accordance with [3]. The

greater the loss factor, the lower is the frequency

at which this conversion sets in and the spectral

gap disappears simultaneously. Unfortunately, we

have found out that leakage and substrate

attenuation constants cannot be separated

mathematically from each other, using both

physical and nonphysical solutions, since they are

now not complex conjugated.

CONCLUSIONS

The study of migration of poles of matrix

elements of the slotline dispersion equation

provides a varied explanation of the transition

from the improper real to the complex solution

for both the 1st and higher order leaky waves.

New 3rd and 4th leaky waves have been

identified on the slotline. The appearance of the

main dispersion characteristics of the 1st up to

the 4th leaky wave indicates when these waves

may be of interest in practice. Earlier ideas about

the leaky wave on the lossy microstrip line are

here confirmed for the 1st and 2nd leaky wave

on the slotline.

ACKNOWLEDGMENTS

We gratefully acknowledge the scholarship

granted by the Faculty of Electrical Engineering of the

Czech Technical University in Prague to M. Migliozzi

supporting his participation in this research. The work

was done on the SP-2 computer at the Joint

Supercomputer Center of the Czech Technical

University, University of Chemical Technology and

IBM Prague.

REFERENCES

[1] H. Shigesawa, M. Tsuji, A. A. Oliner: Dominant

mode power leakage from printed-circuit waveguides.

Radio Science, vol. 26, 1991, 2 Mar.-Apr., pp. 559-

564.

[2] A. A. Oliner, D. R. Jackson: On spectral gaps at

the transition between bound and leaky modes.

Proceedings of the 1995 International Symposium on

Electromagnetic Theory, URSI, St. Petersburg,

Russia, May 1995, pp. 764-766.

[3] H. Shigesawa, M. Tsuji, A. A. Oliner: The nature

of the spectral gaps between bound and leaky

solutions when dielectric loss is presented in printed-

circuit lines. Radio Science, vol. 28, 1993, 6 Nov.-

Dec., pp. 1235-1243.

[4] J. Zehentner, J. Macháè, M. Migliozzi: Upper cut-

off frequency of the bound wave and new leaky wave

on the slotline. 1997 IEEE MTT-S IMS Digest,

Denver, CO, vol. 2, pp. 487-490.

0-7803-4471-5/98/$10.00 (c) 1998 IEEE


