<table>
<thead>
<tr>
<th>FAKULTA</th>
<th>PROGRAM</th>
<th>KATEDRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ČVUT FJ</td>
<td>DOPRAVNÍ SYSTÉMY A TECHNIKA</td>
<td>K612</td>
</tr>
<tr>
<td>TYP PRÁCE</td>
<td>VEDOUcí PRÁCE</td>
<td>VYPRACOVAL</td>
</tr>
<tr>
<td>DIPLOMOVÁ PRÁCE</td>
<td>Ing. TOMÁŠ HONC</td>
<td>Bc. TOMÁŠ VÁňA</td>
</tr>
</tbody>
</table>

NÁZEV

PŘELOŽKA SILNICE I/23 U OBcí PŘEDIN a ŠTĚMĚCHY

ČÁST

OBJEKTY POZEMNÍCH KOMUNIKACÍ

PŘÍLOHA

SO 101 – PŘELOŽKA SILNICE I/23 U OBcí PŘEDIN a ŠTĚMĚCHY

<table>
<thead>
<tr>
<th>FORMÁT</th>
<th>MĚRITKO</th>
<th>DATUM</th>
<th>Č. PŘÍLOHY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>05/2024</td>
<td>D.1.1.1</td>
</tr>
<tr>
<td>FAKULTA</td>
<td>PROGRAM</td>
<td>KATEDRA</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>ČVUT FD</td>
<td>DOPRAVNÍ SYSTÉMY A TECHNIKA</td>
<td>K612</td>
<td></td>
</tr>
<tr>
<td>TYP PRACE</td>
<td>VEDOUCÍ PRACE</td>
<td>VYPRACOVAL</td>
<td></td>
</tr>
<tr>
<td>DIPLOMOVÁ PRÁCE</td>
<td>Ing. Tomaš Honc</td>
<td>Bc. Tomaš Vára</td>
<td></td>
</tr>
</tbody>
</table>

NÁZEV
PŘELOŽKA SILNICE 1/23 U OBČI PŘEDIN A ŠTĚMĚCHY

ČAST
SO 101 – PŘELOŽKA SILNICE 1/23 U OBČI PŘEDIN A ŠTĚMĚCHY

PŘÍLOHA
TECHNICKÁ ZPRAVA

FORMÁT | 7 A4 |
MĚRITKO |
DATUM | 05/2024 |
Č. PŘÍLOHY | D.1.1.1.1 |
1.1.1.1. Technická zpráva

a) identifikační údaje objektu včetně údaje o budoucím vlastníkovi a správci objektu.

Oznámení stavby:

Název stavby: Přeložka silnice I/23 u obcí Předín a Štěměchy

Druh objektu: Komunikace

Kraj: Vysočina

Kat. území: Markvartice, Sedlatice, Hory u Předína, Želetava, Předín, Štěměchy, Rokynice nad Rokytnou, Chlístov u Rokytnice nad Rokytnou

Stupeň PD: DUSP

Druh stavby: Novostavba

Objednatel:

Stavba je zpracována jako Diplomová práce výhradně pro akademické účely, role stavebníka tedy není relevantní. Obecně lze konstatovat, že se jedná o přeložku silnice I. třídy a v praxi by bylo stavebníkem ŘSD s.p. (Správa Jihlava).

Zhotovitel PD:

Tato dokumentace je vyhotovena jako Diplomová práce a slouží tedy výhradně pro akademické účely.

Zpracovatel dokumentace:

Bc. Tomáš Váňa

Komorovice 39, Humpolec 396 01

+420 722 816 284

tomas3997@email.cz

Vedoucí diplomové práce:

Ing. Tomáš Honc

Ing. Bc. Dagmar Kočárková, Ph.D.
b) **stručný technický popis se zdůvodněním navrženého řešení.**

Předmětem tohoto stavebního objektu je přeložka silnice I/23 mezi křižovatkou se silnicí I/38 u osady Kasárna a křižovatkou u osady Veverka (ta je také řešena). Nová komunikace je navržena v celkové délce 9 614,96 m a v návrhové kategorii S 9,5/90. Komunikace prochází v celé délce extravilánem a je navržena dle ČSN 73 6101. Součástí návrhu jsou dva přidatné pruhy ve stoupání pro směr na křižovatku se silnicí I/23, odbočovací pruhy a jeden připojovací pruh na navržených křižovatkách. V oblasti konce úseku (za křižovatkou u osady Veverka) jsou navržené dva zastávkové zálivy. V kombinaci s dalšími SO jsou navrženy celkově tři úrovňové a jedna mimoúrovňová křižovatka.

Směrové řešení

ZÚ je na začátku sjezdů za okružní křižovatkou se silnicí I/38. Směrové řešení se skládá z původních úseků, které spojují kružnicové oblouky se stejnosměrnými přechodnicemi. Velikost poloměrů směrových oblouků i parametry přechodnic jsou proměnné a závisí na vedení koridoru v ÚP dotčených obcí a ZÚR kraje Vysočina. Poloměry směrových oblouků byly navrženy takto: \(R_1 = 1000\, m, R_2 = 450\, m, R_3 = 780\, m, R_4 = 500\, m, R_5 = 450\, m, R_6 = 850\, m, R_7 = 1100\, m, R_8 = 1300\, m, R_9 = 1500\, m. \) Všechny poloměry směrových oblouků vyhovují ČSN 73 6101 tak, aby nebylo nutné navrhovat rozšíření jízdních pruhů ve směrových obloucích. KÚ se nachází cca 215 m východně za křižovatkou u osady Veverka. Celková délka stavební úpravy SO 101 činí 9,614 96 km.

Výškové řešení

Minimální podélný sklon je navržen v hodnotě 0,50 % a maximální v hodnotě 6,00 %. Min. hodnota vrcholového zakružovacího oblouku je 5500 m a údolnicového 3700 m. Povrch je v oblasti značně členitý a níveleta, ve snaze ho co nejvíce kopírovat (aby se předešlo nadbytečným zemním pracím), je navržena v častých změnách stoupání a klesání. V oblasti podélného sklonu 6,00 % je navržen přídatný pruh ve stoupání.

Šířkové řešení

Tento SO je navržen v návrhové kategorii silnic S 9,5/90. Základní šířka jízdního pruhu činí 3,50 m. Zpevněná krajnice je navržena v šířce 0,75 m a nezpevněná krajnice je navržena v případě osazení směrových sloupků v šířce 0,75 m a v případě osazení svodidel 1,50 m. Případné přidatné pruhy ve stoupání, či odbočovací nebo připojovací,
jsou navrženy v šířce 3,25 m. V případě osazení PHS na tělese komunikace je nezpevněná krajnice rozšířena na 2,60 m a její součástí jsou curb – klen pro odvodnění, svodidlo a PHS. Při návrhu chodníku je nezpevněná krajnice nahrazena 2,50 m širokých chodníkem, za kterým následují svahy zemního tělesa.

Příčný sklon

Základní příčný sklon vozovky je střechovitý v hodnotě 2,50 %. Ve směrových obloucích je navržen dostředný sklon vždy dle velikosti poloměru směrového oblouku. Největší příčný dostředný sklon je v hodnotě 5,00 %. Sklon nezpevněné krajnice je navržen v hodnotě 8,00 % směrem od vozovky. Změny příčného sklonu vozovky jsou provedeny dle ČSN 73 6101, kdy je vždy dodržena doporučená rychlost překlápění delta s=0,60. Příčný sklon zemní pláně je navržen v min. hodnotě 3,00 % v souhlasném příčném sklonu jako vozovka. V případě dostředného sklonu o větší hodnotě přebírá zemní pláň sklon vozovky.

Zemní těleso

Zemní těleso bylo navrženo dle ČSN 73 6133, VL 1 a VL 2. V zářezu je sklon svahu do i z příkopu navržen v hodnotě 1:2,50 adále je sklon zářezu do výsky 3,00 m v hodnotě 1:2,00. Při větší hloubce zářezu je sklon od 3,00 m výše v hodnotě 1:1,75. Násypové těleso je do výsky 3,00 m ve sklonu 1:2,50, v rozmezí výšky 3,00-6,00 m ve sklonu 1:1,75 a ve výšce nad 6,00 m ve sklonu 1:1,50. Patrní příkop má vnější svah ve sklonu 1:2,50. Svahy zemního tělesa budou ohumusovány v praxi v tloušťce dle provedeného GTP. V případě potřeby (nevyhovujících zemin v podloží) proběhne úprava podloží násypu např. zaválcováním kameniva či vápněním. V případě sklonu stávajícího terénu nad 10 % budou vybudovány svahové stupně dle VL1 (32-02).

Bezpečnostní opatření

Součástí návrhu tohoto SO jsou směrové sloupky osazené v rozteči dle ČSN 73 6101. Bílé směrové sloupky budou osazeny podél komunikace pro vymezení její volné šířky, modré směrové sloupky budou osazeny v místech možného výskytu náleží nebo mlhy – na mostech. Jejich osazení proběhne i 100 m před a za takovými úseky. Červené směrové sloupky budou osazeny pro vyznačení sjezdu účelové komunikace. Dále jsou v místech násypů vyšších než 2,00 m, v místech u pevných překážek (např. pod mosty) a podél PHS osazena svodidla s úrovní zadržení N2. V návrhu bylo uvažováno svodidlo typu JSAM – 4/N2 s min. délkou 72 m pro rychlost nad 80 km/h a 44 m pro rychlost
do 80 km/h, min. vzdáleností před a za překážkou 60 m a výškou 0,75 m. Výjimku tvoří svodidlá do délky 50 m navazující na mostní svodidlo, v takovém případě je typ svodidla přebrán z mostního svodidla (úroveň zadržení min. H2). Svodidlo bude vždy doplněno nástavcem pro odrazky pro zachování vodícího bezpečnostního zařízení.

c) vyhodnocení průzkumů a podkladů včetně jejich užití v dokumentaci – dopravní údaje, geotechnický průzkum apod.

d) vztahy pozemní komunikace k ostatním objektům stavby.

Jedná se o hlavní trasu celé stavby, kromě SO 155, 250, 430, 431 a 432, které nejsou na SO 101 přímo návazné, souvisí s tímto SO všech ostatní SO této stavby.

e) návrh zpevněných ploch (včetně uvedení všech nezbytných údajů pro návrh a posouzení vozovky).

Během práce na této stavbě byly vydány nové TP 170 (02/2024). V té době ale byl již projekt v takové rozpracovanosti, kdy byly konstrukce navrženy dle původně platných TP 170 (11/2024) a v projektu již zůstaly zachovány.

Samotné konstrukce byly navrženy dle zkušeností studenta a doporučení TP 170 (pro vozovku byla využita kapitola A.9.1.6.6 TP 170, kde je popsána příkladná konstrukce pro silnice I. třídy). Přímý návrh dle TP 170 nebyl možný, a to z důvodu absence GTP a informací o charakteru podloží z něj plynoucích. Autobusové zályvy byly navrženy ve stejné konstrukci jako vozovka, a to z důvodu její dostatečné dimenze.

Základní konstrukce pro vozovku dle TP 170 D0-N-1-III-PII:

- **ASFALTOVÝ KOBEREC MASTIXOVÝ**SMA 11+40 mm
- **ASFALTOVÝ BETON PRO LOŽNÍ VRSTVY**ACL 16+60 mm
- **ASFALTOVÝ BETON PRO PODKladní VRSTVY**...ACP 16+60 mm
- **MECHANICKÝ ZPEVNĚNÉ KAMENIVO**MZK200 mm
- **ŠTĚRKODRŽ** ...ŠDΔ150 mm

Celkem..510 mm
Pod konstrukcí vozovky bude aktivní zóna dle ČSN 73 6133 v praxi v tloušťce dle vyhotoveného GTP. V celé mocnosti aktivní zóny musí být dodržena předepsaná míra hutnění 100 % PS. Hutnění pláně bude provedeno na hodnotu $E_{\text{def,2}}=\text{min. 45 MPa}$, na povrchu vrstvy ze štěrkodrti 90 MPa a na povrchu vrstvy z MZK 150 MPa.

Základní konstrukce pro chodník dle TP 170 D2-D-1-CH-PIII:

- ZÁMKOVÁ BETONOVÁ DLAŽBADL60 mm
- LOŽNÍ VRSTVA – DRŘ FR. 4/8 (0/8)L40 mm
- ŠTĚRKODRŽ\bar{D}_b150 mm
- Celkem..250 mm

Pod konstrukcí chodníku bude aktivní zóna dle ČSN 73 6133 v praxi v tloušťce dle vyhotoveného GTP. V celé mocnosti aktivní zóny musí být dodržena předepsaná míra hutnění 100 % PS.

Základní konstrukce pro směrovací ostrůvek odvozena dle TP 170 D1-D-3-IV-PIII:

- DLAŽBA Z PŘÍRODNÍHO KAMENEDL160 mm
- LOŽE ZBETONU C25/30N-XF3L40 mm
- MEZEROVITÝ BETON..........................MCB180-250 mm
- ŠTĚRKODRŽ 0/32.................................\bar{D}_a250 mm
- Celkem..min. 630 mm

Pod konstrukcí ostrůvku bude aktivní zóna dle ČSN 73 6133 v praxi v tloušťce dle vyhotoveného GTP. V celé mocnosti aktivní zóny musí být dodržena předepsaná míra hutnění 100 % PS.

f) režim povrchových a podzemních vod, zásady odvodnění, ochrana pozemní komunikace,

Odvodnění pozemních komunikací bylo navrženo příčným a podélým sklonem do přílehlých příkopů podél pozemních komunikací (v případě osazení PHS na tělese PK je navrženo odvodnění pomocí curb-kingů do uličních vputí, které jsou pomocí kanalizačních trubek DN 150 vyvedeny na těleso PK a dále opět do přílehlých příkopů). Z těch je voda dále odváděna do okolního terénu. Buď se příkopy zaústějú do stávajících vodotečí, nebo jsou ukončeny retenčními příkopy, které slouží pro částečné zasakování a zbytkový plošný rozliv vody do území.
Zpevňení dna příkopu (v místech dle ČSN 73 6101) bude řešeno pomocí příkopové betonové tvárnice š. 0,60 m (C30/37 – XF4), výplň spár cementovou maltou MC25 – XF4 do bet. lože tl. 0,10 m C25/30N – XF3.

Součástí systému odvodnění jsou i propustky. Ty jsou navrženy pro převod vody přes komunikace. Všechny jsou navrženy se šikmými čely a výtoková i nátoková strana bude opevněna lomovým kamenem do bet. lože tloušťky 0,10 m C25/30N – XF4.

g) návrh dopravních značek, dopravních zařízení, světelných signálů, zařízení pro provozní informace a dopravní telematiku,

Návrh dopravního značení je součástí samostatného SO 190.

h) zvláštní podmínky a požadavky na postup výstavby, případně údržbu,

Žádné zvláštní podmínky nejsou známy.

i) vazba na případné technologické vybavení,

Součástí stavby není technologické vybavení.

j) přehled provedených výpočtů a konstatování o statickém ověření rozhodujících dimenzí a průřezů,

Pro návrh tohoto SO nebyly provedeny žádné statické výpočty, pro návrh to není třeba. Proběhly pouze kontrolní výpočty ohledně kapacity navržených křížovatek, během nichž byly použity počty obyvatel dotčených a návazných okolních obcí.

k) řešení přístupu a užívání veřejně přístupných komunikací a ploch souvisejících se staveništěm osobami s omezenou schopností pohybu nebo orientace,

Součástí návrhu pro pohyb OOSPO jsou snížené obruby (nášlap výšky 2 cm, normální výška obruby je 15 cm), které jsou navrženy v oblasti autobusových zastávek v místě určeném pro překonání komunikace. Zde jsou v souladu s vyhláškou č. 398/2009 Sb. navrženy varovné a signální pásky pro pohyb OOSPO.