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A B S T R A C T

Over the past decade, the surge in the use of machine learning models has revolu-
tionized various domains, witnessing notable advancements in areas such as image
recognition, reinforcement learning in games, machine translation, and language gener-
ation. This thesis extends the application of machine learning techniques to forecasting,
a domain that remains relatively unexplored. Specifically, our focus is on predicting
the outcomes of sports events and leveraging these predictions in trading on prediction
markets.

The initial phase of our investigation involves a comprehensive review of the state-
of-the-art in score-based modeling. Despite the existence of seemingly diverse methods,
a quantitative comparison on large-scale data is lacking. To address this gap, we re-
implement and benchmark nine existing models using the largest publicly available
dataset. Our evaluation framework ensures a fair comparison, revealing that the
predictive performance of these models is remarkably similar. Further analysis of the
predictions highlights that this similarity is predominantly due to inherent similarities
in the prediction outputs.

After establishing a baseline for our endeavor we designed and implemented our own
models, testing two distinct approaches. One approach relies on carefully engineered
score-derived features, while the other capitalizes on the relational structure of the data.
The feature-based classifier outperforms state-of-the-art models by a significant margin
across all examined metrics. We showcase the model’s adaptability by seamlessly
integrating outputs from a simpler model as additional inputs to the classifier, achieving
notable improvements through feature engineering. Despite these advancements, our
model lags significantly behind bookmakers’ predictions, suggesting the need for more
complex models or a reevaluation of the overarching goal of achieving universally
more precise predictions than the market.

Turning our attention to trading our predictions on the markets, we design a neural
model tailored for the NBA competition, utilizing detailed player-level data from
each game. Departing from the traditional accuracy-based approach to forecasting,
we introduce the concept of decorrelation as a method for profiting on the markets
using a model with inferior performance by conventional metrics. Additionally, we
formalize the often-neglected concept of market taker’s advantage. To validate these
concepts, we subject them to testing through simulations and real-world data. The
results demonstrate that the decorrelation is an effective way to achieve profits.

Keywords: machine learning, prediction markets, forecasting in sports, decision
making, gradient boosted trees, neural networks
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A B S T R A K T

Během poslední dekády došlo k nárůstu využívání modelů strojového učení, které
přinesly revoluci v různych doménách, s významnými pokroky v oblastech jako
rozpoznávání obrazu, posilované učení ve hrách, strojový překlad či generování
jazyka. Tato disertační práce rozšiřuje aplikaci technik strojového učení na predikování,
oblast, která zůstává relativně neprozkoumána. Konkrétně se zaměřujeme na predikci
výsledků sportovních událostí a využívání těchto predikcí k obchodování na predikčních
trzích.

V počáteční fázi našeho výzkumu se zabýváme komplexním přehledem aktuálních
poznatků ohledně modelování na základě výsledných skóre utkání. Navzdory existenci
zdánlivě rozličných metod chybí jejich kvantitativní srovnání na velkém vzorku dat.
Abychom toto srovnání doplnili, reimplementujeme a porovnáváme devět existujících
modelů na největší veřejně dostupné datové sadě. Náš vyhodnocovací framework
zajišt’uje spravedlivé porovnání a odhalujeme, že prediktivní kapacita zkoumaných
modelů je velmi podobná. Další analýza predikcí modelů naznačuje, že tato podobnost
je převážně způsobena podobnostmi samotných predikcí těchto modelů.

Po kvantitativním vyhodnocení stávajících modelů navrhujeme a implementujeme
vlastní modely, založené na dvou odlišných přístupech. Jeden se spoléhá na pečlivě
navržené příznaky odvozené ze skóre, zatímco druhý využívá relační strukturu dat.
Klasifikátor založený na odvozených příznacích překonává stávající modely se značným
odstupem ve všech zkoumaných metrikách. Integrací výstupu jednodušších mod-
elů demonstrujeme flexibilitu klasifikátoru, který pomocí dalších příznaků dosahuje
výrazného zlepšení. Navzdory těmto výsledkům náš model výrazně zaostává za
predikcemi sázkových kanceláří, což naznačuje, že se neobejdeme bez komplexnejších
modelů nebo přehodnocení celkového cíle dosažení univerzálně přesnějších předpovědí,
než kterými disponuje trh.

V další části přesouváme naši pozornost k obchodování našich predikcí na trzích.
Navrhujeme neuronovou sít’ přizpůsobenou soutěži NBA, využívající detailní data
o hráčích z každého zápasu. Odchylujeme se od konvenčního přístupu zaměřeného
výlučně na přesnost predikcí a zavádíme koncept dekorelace jako metodu pro porážení
trhů. Dále formálně definujeme často opomíjený koncept výhody tzv. market-takera.
Tyto koncepty testujeme pomocí simulací a reálných dat. Výsledky jednoznačně
dokazují účinnost navržených metod.

Klíčová slova: strojové učení, prediktivní trhy, predikování ve sportu, rozhodovací
proces, gradientní rozhodovací stromy, neuronové sítě
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grateful to Petr Špína, Luděk Absolon, and Petr Drahotský.

Special appreciation goes to my colleagues from Ematiq, who helped me rediscover
my passion for sports trading.

My warmest thanks extend to my family for their support through my whole studies.
Finally, my deepest gratitude goes to my beloved wife, Veronika, who stood by my
side through this entire journey.

xi





C O N T E N T S

i Introduction
1 Introduction 3

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Market Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Market Maker’s Advantage . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Market Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Price Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Expected Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Investment Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7.1 Unit Stake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7.2 Modern Portfolio Theory . . . . . . . . . . . . . . . . . . . . . . . 15

2.7.3 Kelly Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

ii Score-based Modeling: Experimental Review
3 Introduction 21

4 Related Work 23

4.1 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Rating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Machine Learning Approaches . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Reviewed Models 27

5.1 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Double Poisson Model . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.2 Bivariate Poisson Model . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.3 Double Weibull Count Model . . . . . . . . . . . . . . . . . . . . . 29

5.1.4 Bivariate Weibull Count Model . . . . . . . . . . . . . . . . . . . . 29

5.2 Rating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Elo Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.2 Steph Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.3 Pi-ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.4 Gaussian-OD Ratings . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.5 Berrar Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Validation Framework 35

xiii



xiv contents

6.1 Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.1 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.2 Rating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.1 Ranked Probability Score . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2.3 Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Results 39

7.1 Predictions’ Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.2 Model Adaptability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8 Conclusion 43

iii Proposed Machine Learning Models
9 Introduction 47

10 Models 49

10.1 Baseline Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10.2 Feature-Based Classification Model . . . . . . . . . . . . . . . . . . . . . . 50

10.3 Feature-Based Regression Model . . . . . . . . . . . . . . . . . . . . . . . 50

10.4 Lifted Relational Neural Networks . . . . . . . . . . . . . . . . . . . . . . 51

10.4.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . 51

10.4.2 Lifted Relational Team Embeddings . . . . . . . . . . . . . . . . . 51

10.5 Model Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

11 Feature Engineering 57

11.1 Historical Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

11.2 Current Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

11.3 Pi-ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

11.4 PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

11.5 Match Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

11.6 League Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

12 Experimental Evaluation 61

12.1 Validation and Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . 61

12.2 Model Performance in Time . . . . . . . . . . . . . . . . . . . . . . . . . . 62

12.3 Comparison to Bookmaker’s Predictions . . . . . . . . . . . . . . . . . . 63

12.4 Model Portfolio Performance . . . . . . . . . . . . . . . . . . . . . . . . . 63

12.5 Feature Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

12.6 LRNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

12.7 Comparison with State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . 66

13 Discussion 69

iv Beating the Bookies
14 Introduction 73



contents xv

15 Related Work 75

15.1 Predictive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

15.2 Portfolio Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

16 Problem Insights 79

16.1 From Accuracy to Profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

16.2 The Essence of Profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

16.3 Market Taker’s Advantage . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

16.4 Distribution of Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

16.5 Confidence Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

17 Increasing Profit through Decorrelation 89

17.1 Unbiased Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

17.2 Biased Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

17.3 Having a Superior Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

17.4 The Problem with Kelly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

17.4.1 Fractional Kelly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

17.5 Towards Decorrelated Estimators . . . . . . . . . . . . . . . . . . . . . . . 98

18 Market Taker’s Model 101

18.1 Data Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

18.2 Neural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

18.3 Model Decorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

18.4 Betting Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

19 Experiments 105

19.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

19.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

19.3 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

19.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

20 Conclusion 113

v Conclusions
21 Conclusions 117

vi Appendix
a NBA Statistics 121

Bibliography 127

b Publications of the author 137

b.1 Publications related to the topic of the thesis . . . . . . . . . . . . . . . . 137

b.1.1 Journal papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

b.1.2 Conference papers . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

b.2 Other publications of the author . . . . . . . . . . . . . . . . . . . . . . . 138

b.2.1 Conference papers . . . . . . . . . . . . . . . . . . . . . . . . . . . 138





Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

As artificial intelligence continues its steady integration into diverse domains, our
ambition is to leverage the capabilities of machine learning models for forecasting,
with a specific emphasis on predicting the outcomes of sports events and trading these
predictions on the markets.

The history of sports betting can be traced back to Ancient Greece and still attracts
interest, as seen in the ongoing activity on the markets. We can imply that forecasting
in sports is not a solved problem otherwise there would be no incentives to trade.
Unlike ancient Greeks, we can rely on the computational power of modern computers
and various historical data for our data-driven approach.

The thesis is organized as follows. We introduce the problem and underlying terms
in Part i. Part ii presents an experimental review of state-of-the-art models for score-
based match outcome modeling. In Part iii, we design and implement our own models
and compare them to the state-of-the-art. Finally, in Part iv we focus on trading our
predictions on the markets.

1.1 problem statement

Our research aims to utilize the potential of machine learning models for profit
generation. To achieve this objective, we should identify suitable domains, collect
historical data, design and develop machine learning models, establish an evaluation
framework, and explore effective strategies for trading the predictions on the markets.

The overarching goal of our study is twofold. Firstly, we seek to assess the predictive
accuracy of these machine learning models by benchmarking them against state-of-the-
art standards. Secondly, our research extends beyond predictive accuracy to evaluate
the practical profitability of these models. By comparing their performance against
market data, we investigate how well the predictions can be translated into financial
gains in a real-world trading scenario.

3



4 introduction

1.2 contributions

We have experimentally evaluated a class of score-based models used for forecasting
the winner of a soccer match (Part ii). While there is a large body of literature centered
around this topic, surprisingly, a comparative study has not been done. The review
was conducted on the largest publicly available dataset and can serve as a benchmark
for future endeavors in this domain.

In Part iii, we implemented a model improving upon the state-of-the-art perfor-
mance. Despite the closely matched performance of the reviewed models, our classifier
demonstrated a substantial improvement (Section 12.7). Additionally, we challenged
the use of the Ranked Probability Score as the sole metric for evaluating predictions in
games with a low prior probability of draws (Section 13).

In Part iv, we introduced the concept of decorrelation. Our findings revealed that
profits on prediction markets can be attained through means beyond merely possessing
a more accurate model (Section 17). A market taker can capitalize on his/her advantage
(Section 16.3) when he/she finds a compromise between accurate and dissimilar
predictions from the market. Moreover, we demonstrated that such predictions can be
obtained by setting the right incentives during the model fitting (Section 18.3). Last but
not least, we showed that the Modern Portfolio Theory framework works well with the
introduced concepts, leading to a substantial improvement over the baseline uniform
investment strategy (Section 19.4).



2
B A C K G R O U N D

This background section introduces the problem setup (Section 2.1), and basic concepts
from betting markets, machine learning, and portfolio optimization.

2.1 problem setup

During a sports event, various markets are traded, each representing a different aspect
of the game. For example, in a soccer match, markets such as the Moneyline and Totals
are commonly traded. The Moneyline market represents the probability of which team
will win the match, while the Totals market trades the probability of a certain number
of goals being scored. Within each market, there are selections that traders can choose
from, such as “Home” or “Away” for the Moneyline market or “Over 2.5 goals” or
“Under 2.5 goals”for the Totals market. These selections represent the tradeable assets.

opportunity In a market, each tradeable selection s ∈ S corresponds to an oppor-
tunity to back (buy, α) and lay (sell, β) the selection, respectively. We will further refer
to all existing possibilities to trade a certain selection s jointly as opportunities ω

ζ
s ∈ Ω. 1

Nevertheless, where necessary, we will distinguish the side of the market ζ ∈ {α, β} an
opportunity ω

ζ
i is to be traded at.

price Each opportunity ωi is then associated with a certain price. The price reflects
the market’s perceived probability of an outcome to occur. It is also commonly referred
to as “odds” that determine the potential payouts received from a wager.

fair price We assume that each opportunity ωi, which corresponds to a selection
being traded, has an underlying fundamental fair price ri. This fair price can be
expressed as a real number from the interval [0, 1] and can be compared to some price
estimate in the same unit of measurement (Section 2.5). The fair price (odds) reflects

1 i.e. two opportunities ωi and ωj over the same selection at two different times will be treated the same as
two opportunities ωi and ωj over two different selections. We note that there typically are dependencies
between the opportunities that could theoretically be used to further improve the underlying techniques,
however we do not exploit these in this thesis.

5



6 background

symbol description

sj ∈ S selections being traded on the market

{α, β}; ζ ∈ Z market sides, back and lay

ω
ζ
sj ; ωi ∈ Ω opportunities to trade selection

Di ⊂ D∗ relevant data available for opportunity ωi

r : D∗i → [0, 1] fair price r of a selection

m : Db
i → [0, 1] market maker m, or simply “the market”

t : Dm
i → [0, 1] market taker t

PΩ distribution of market opportunities

R : ωi 7→ ri r.v. denoting selection fair price

M : ωi 7→ mi r.v. denoting market maker’s pricing

T : ωi 7→ ti r.v. denoting market taker’s pricing

P(R, M, T) distribution of the price estimates (values)

θ ∈ Θ model parameters

ẽ : Di → Ẽi posterior distribution Ẽ estimator ẽ (e.g. t̃)

ρi ∈ R trading returns

W ∈ R+ wealth of the market taker

f ∈ Rn vector of the wealth allocations

Table 2.1: Overview of the used notation.



2.2 market efficiency 7

the true (inverse) probability of the associated outcome occurring. Note that the fair
price of a selection s is always the same for both sides (α, β) of the market. While the
concept of a fair price ri can be seen as somewhat speculative, since it cannot be directly
measured, we note that we merely require its theoretical existence for defining market
efficiency (Section 2.2) and the related concepts (Section 2.6).

makers and takers We commonly distinguish two types of the market partici-
pants as (i) market makers m, and (ii) market takers t. The market makers continuously
quote both sides (α, β) of the market at certain price levels mi resulting into trading op-
portunities ωi ∈ Ω. The market takers are then selecting from the existing opportunities
ωi to issue specific back and lay orders. We generally consider the problem analysed in
this paper as a two-player game between a market maker m and taker t, where each
player possesses a certain pricing policy Ω → [0, 1] over the market distribution of
opportunities PΩ given by the game (world) environment.

resulting When the market taker t accepts the market maker’s m price mi i their
orders match. Besides the price, each order includes a backer’s stake fmax. The matched
amount fi is the minimum fmax from the back and lay orders.2 Once the event concludes,
the selections are assigned either win or loss result. The backers of the winning selections
receive a payoff fi · 1

mi i
, leading to the profit of fi · 1

mi i
− fi as they already paid fi to the

layer. The backers of the losing selections lose their stakes to the layers.3

beating the market We then aim to design a strategy for the role of the market
taker to make positive profits against some particular market maker m. For example,
such strategy would allow a trader to make consistent long-term profits while wagering
against a particular bookmaker. Note that this is a zero-sum setting, where the profits
of the market taker are at the direct expense of the market maker, as the fair price is
objectively the same for all the participants. In this thesis, we then utilize the phrase
“beating the market” to refer to profiting in this competitive setting.

2.2 market efficiency

In a (strongly) efficient market, the current market price m ∈ [0, 1] of a selection s
reflects all existing information, making it impossible for any trader to make consistent
profit by outsmarting the market4 [37]. Particularly, the price mi of each opportunity
ωi being traded needs to be an unbiased estimate (Section 2.5) of its fair price ri [105].
Note that this does not imply the price mi to be equal to the fair price ri, but merely

2 For simplicity, we further assume, that fi = f t
max

3 We acknowledge that the there are markets, where the resulting is more complex, but we do not deal
with those in this thesis.

4 Note that this does not imply that one needs comparably more information to beat an inefficient market.
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that the error of the estimation mi = r̂i is fully due to an irreducible variance which is
completely random (Section 2.5) [113]. The inherent randomness of the error then ensures
that no trader can consistently beat the market to secure systematic profits.

In real world liquid markets, profit-maximizing traders continuously search for
misspriced oportunities to secure their profits, pushing the market price to quickly
converge to the fair price in the process. Thanks to this self-regulating mechanism, the
market inefficiencies tend to vanish quickly over time [38, 120]. We note that the idea
of an efficient market is a rather theoretical one, since in a market that would become
completely efficient, the traders would loose the incentive to search for inefficiencies,
in turn making the market inefficient again. Any real world market can thus be hardly
considered as perfectly efficient, nevertheless some measurable degree of efficiency,
such as statistical unbiasedness of the mean prices (Section 16.4), is typically present in
liquid markets [42]. In this work, we will further consider the most realistic setting of a
partially (in-)efficient market where the market price mi is a very good estimate of the
fair price ri, but not a perfect one.

2.3 market maker’s advantage

Market makers are essential to trading by providing constant liquidity to both sides
(α, β) of the market, for which they are typically favored by the exchange operator in
terms of fees and commissions. However, the position of a market maker is a difficult
one, since he/she needs to constantly price the selections as accurately as possible.

To improve his/her position and secure profit, the market maker incorporates a so
called spread ϵ into his/her estimates M, causing the offered price to back and lay
the opportunity ωi to differ some ϵ. The spread ϵ then works as a safety patch on
the market maker’s estimation error, preventing from one-sided exploitations by the
market takers aiming at the discrepancy from the fair price. A safe strategy for the
market maker is then to set his/her estimate and spread such that ∀i : mi

α < ri < mi
β,

making it impossible for any trader to make any profit.
However, given that m = r̂ is merely an estimate, it is still possible for the fair price

r to fall outside the (mα, mβ) region. 5 To further mitigate possible exploitation by
the traders, the market maker can continuously adapt his/her estimate to the traders’
behavior. That is he/she can responsively move his/her estimate m once the demand
of one side of the market starts to prevail, indicating expected value perceived by the
traders, stemming from a possibly erroneous price estimate m. In the ideal case where
he/she is continuously able to maintain a perfectly balanced book, he/she is again
guaranteed a profit of ϵ per pair of trades. Note that the market maker’s profit in this
case is independent of the fair price r.

5 Naturally, this could be mitigated by increasing the ϵ, however a margin set too large will discourage
market takers from trading, consequently removing the market maker’s profit, too.



2.4 market modeling 9

On the other hand, the market maker can theoretically digress from this purely
reactive position to actively speculate against the takers’ opinions and aim at a profit
even higher than ϵ, at the cost of involving risk stemming from his/her, possibly
erroneous, estimate m. This effectively allows the market maker to speculate on the fair
price, which can lead to higher expected profits in settings where he/she possesses a
superior price prediction model. 6 This is common, for instance, with bookmakers in
the sport prediction markets [96]. Naturally, the market makers can also combine the
aforementioned methods.

We note we often omit the spread ϵ from calculations and simulations further in
this paper for simplicity of explanation7, since it does not affect the main principles
introduced in this thesis. The underlying assumption is that the spread constitutes an
independent offset on the market prices, hence decreasing the resulting profits, but not
interfering with the price estimation problem itself.

2.4 market modeling

Market modeling generally refers to the approach of fitting a statistical estimator
e to the available market-related data D in order to capture its true distribution P.
Possession of such a model then enables to answer all sorts of statistical queries,
including the essential estimation of the fair prices R of market opportunities Ω.

The quality of the estimation of the fair prices then follows directly from two factors,
(i) quality of the data Dt available to the trader t, which can possibly provide superior
information which is not reflected in the market price, and (ii) quality of the model t
used to fit the data, since different information w.r.t. r can possibly be derived with
different methods, despite the same data source Dt given.

data The market-related data D may come from various external sources such as
news and collected match statistics, as well as from the market itself (e.g. the traders’
behavior). Recall that in an efficient market, all relevant data D∗ must be used by the
market maker m for pricing of each opportunity ∀i : m(D∗i ) 7→ mi, however, in practice
it is more likely that Dm

i ⊂ D∗i . The market takers can theoretically use the same
data as the market maker Dt = Dm, although their sources are typically more limited
(e.g. Section 19.2). However, they commonly strive to gain at least some information
advantage by obtaining data which are not available to m, i.e. Dt \ Dm ̸= ∅, and thus
not reflected in the market price. Generally if Dt ⊂ Dm, such information advantage is
completely missing, making it impossible to beat the market through superior price
estimations8, unless using a superior model.

6 Since the market maker typically needs an in-depth knowledge of the market to operate, he/she can often
reasonably expect to also possess price estimates superior to the average trader.

7 except for the actual experiments with real data (Section 19).
8 However, we note that it is still possible to make profits in such a scenario (Section 16.2).
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modeling The models used to fit the data are generally some θ-parameterized func-
tions, the properties of which also influence the quality of the estimation. Ultimately,
one would strive to model the whole joint distribution over the data D, enabling to an-
swer all possible probabilistic queries about the domain, consequently leading to truly
optimal decision making. Nevertheless, the common investment strategies (Section 2.7)
are typically based merely on estimates of returns from the opportunities ωi at hand,
which restricts the task to modeling of a conditional of the fair price PΩ(R|Di).

For instance, an estimate of the fair price ri in the betting market can be derived from
repeated observations of the outcomes of the associated stochastic events aggregated
over a large enough sample from the market.

mispricing We assume a market that is not fully efficient (Section 2.2), i.e. there
must be some mispriced opportunities which further need to be identifiable by some
systematic means. The goal of the traders is then to identify such opportunities where
ri /∈ (mi

α, mi
β) by comparing the market price mi to their own estimate ti. Should

the market price mi for an opportunity ωi actually deviate from the fair price ri in a
non-random manner, such mispricing can be turned into positive returns.

2.5 price estimators

A price estimator e is generally a θ-parameterized function mapping some input data
Di associated with an opportunity ωi onto a point price estimate r̂i ∈ [0, 1]

e : Di 7→ r̂i (2.1)

However, every prediction is associated with a certain level of uncertainty, which
is either inherent or stemming from the missing information at the time of making
(Dt

i ⊂ D∗i ). One might thus want to quantify the uncertainty by associating each
possible estimate r̂i for an opportunity ωi with a probability, resulting into a posterior
distribution estimation

ẽ : Di 7→ R̃i (2.2)

where R̃i is the estimated price distribution P̃(R̂i|Ω = ωi) for a single opportunity
ωi. Such distribution R̃i can be estimated, e.g., from histograms of past prices or
event outcomes, marginalized over the same or “similar” conditions (Di) [3]. When
a point price estimate is needed, such as when we need to actually trade a selection
at a particular price, it is common to take an expected value from R̃i, calculated by
multiplying each point estimate R̂i = r̂j with its associated probability estimation ej (or
probability density e(r̂)):
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ER̃i
[ẽ(Di)] = ∑

j
ej · r̂j or alternatively (2.3)

ER̃i
[ẽ(Di)] =

∫
r̂ · e(r̂) dr̂ (2.4)

We note that most of the machine learning models provide directly the point esti-
mates, realizing some functional mapping Ω→ [0, 1].

point estimates The aforementioned market price mi ∈ [0, 1] of an opportunity
ωi can then be thought of as the market maker’s point estimate mi = m(Dm

i ) of the
fair price ri. Similarly, the market taker will also try to predict the fair price, which
we represent with his/her own point estimate ti = ET̃i

[t(Dt
i )], or simply ti = t(Dt

i ).
By the definition of his/her role, the market maker m continuously evaluates each
opportunity ∀i : ωi → mi. We generally assume that the trader t also has the ability to
estimate (predict) the fair price ∀i : ωi → ti of each opportunity in the market.9 The
trader t then must posses his/her own estimate, i.e. be generally different from m10,
and the fair price r must be unknown at the time of trading, otherwise there would be
no incentive to trade.

Definition 2.5.1. We can now generalize the reasoning about individual opportuni-
ties and estimates to reasoning over the whole joint market distribution PΩ(R, M, T)
capturing the relationships between the estimates across a whole set of opportunities
ω1, . . . , ωn ∈ Ω generated by the market environment. For each such opportunity ωi,
we will thus operate with 3 distinct values we will refer to as (i) the fair price R = ri,
(ii) the market maker’s estimate M = mi and (iii) the market taker’s estimate T = ti.

Given the uncertainty, it follows that both the mi and ti estimates are always going
to be to some extent erroneous, where the former guaranties existence of mispriced
assets. Note that this is a necessary but insufficient condition for market inefficiencies
to exist (Section 2.2).

optimization Typically, one optimizes the estimator by tuning its parameters
θ ∈ Θ to fit some historical data Dt relevant for the prediction of the underlying fair
prices R. Estimation of unknown parameters θ from empirical data D is then one
of the key problems in statistics [44]. There are several views on the problem. One
class of approaches is to maximize probability of the observed data with methods
such as maximum likelihood p(D|θ) or maximum a-posteriori p(θ|D) estimation. One
can also directly search for an estimator with some desired target properties, such as
minimum-variance unbiased estimator [130] or best linear unbiased estimator [54]. A

9 Alternatively, a systematically selected subset can be considered instead.
10 since e.g. copying the estimate from the market maker would not lead to any trading incentive.
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very common methodology is Bayesian estimation, both with or without an informative
prior, where one tries to minimize (posterior) expectation of some error function [11].

estimation error The quality of an estimator e can then be expressed through
its empirical error err(e) over some set of opportunities Ω. Since we assume the role of
the trader t, we further present error measurements between the fair prices R and the
trader’s estimates T. Some of the most popular error measures then include the mean
square error (MSE):

MSEΩ(R, T) = E[(T − R)2] =
1
|Ω| ∑

ωi∈Ω
(ti − ri)

2 (2.5)

and the mean crossentropy (XENT):

XENTΩ(R, T) = ER[−log(T)] =
1
|Ω| ∑

ωi∈Ω
∑

j∈outcomes
rj · log(tj) (2.6)

Note that these correspond to the market sides ζ. In the case of the two-selection
markets corresponding to binary event outcomes, we can rewrite XENT as

XENTΩ(R, T) =
1
|Ω| ∑

ωi∈Ω
ri · log(ti) + (1− ri) · log(1− ti) (2.7)

which can then also be also understood as a regression of the underlying value ri of
each opportunity ωi.

These particular error functions are of special interest as minimizing XENT generally
corresponds to maximizing the data (log-)likelihood, while MSE corresponds to maxi-
mizing the data likelihood with a linear gaussian model [74]. The crossentropy error
is then also closely linked to a common measure of “distance” between probability
distributions known as Kullback-Leibler divergence [69], which is defined as

DKL(R||T) = −∑
i

ri · log
ti

ri
(2.8)

since

XENT(R, T) = H(R) + DKL(T||R) (2.9)

where H(R) is the entropy of the fair price distribution R. Considering that true
distribution being estimated does not change, its entropy H(R) can be considered a
constant, rendering the cross-entropy error XENT(R, T) minimization equivalent to
minimizing the the KL-divergence DKL(R||T), sometimes also referred to as the relative
entropy [11] (see Section 16.1 for further connections).
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2.6 expected returns

Being able to predict the future price in a prediction market can be directly turned
into positive returns in trading. In the prediction markets, the relative frequency of
the observed outcomes will approach the fair price in the long run. Being able to
correctly estimate the price guaranties systematic profits, even though actual profits
might deviate from the expectation in short term.

Since the total profit is dependent on the actual amount invested, which is yet to
be determined by the investment strategy (Section 2.7), the traders commonly assess
relative profitability of individual opportunities through measures such return on
investment (RoI), which we further denote as ρi. In general, ρi is simply the relative
return made from an investment.

The uncertain, stochastic nature of the prediction problem renders the value estimates
r̂i for a particular ωi as random variables r̂i ∼ R̃i (Section 2.5). Consequently, a return
ρi derived from such an estimate r̂i will be a random variable, too. Instead of the actual
ρi we can thus again calculate with its expectation E[ρi] w.r.t. the used estimator e,
further denoted as Ee[ρi].

The market price (odds) directly reflect the relative returns, and so the expected ρi of
an opportunity ωi based on a probability estimated by t can be calculated as

Et[ρ
α
i ] = ET̃i

[
T̃i

M(ω
β
i )
− 1

]
=

ti

mi
β
− 1 (2.10)

E[ρ
β
i ] = ET̃i

[
T̃i

M(ωα
i )
− 1

]
=

1− ti

1−mi
α
− 1 (2.11)

For example, a bet of $100 on an outcome with estimated probability ti = 3
4 , and

associated bookmaker’s (decimal) odds of 1
M(ωi)

= 2.0, i.e. yielding a net return of $100
if realized, and a loss of $− 100 if not, will also result into a ROI of ρi = 0.5 (50%).

Although the average returns should converge to the true expected returns in the
long run, these can still be very different from the predicted expected returns since
generally Et(ρi) ̸= Er(ρi). The discrepancy is of course conditioned by the quality
of the predictor t w.r.t. the true r. The approach to minimize the prediction error
(Section 2.5) then seems very natural, and there are also some theoretical guaranties
like, for instance, in the case where XENT(R, T) < XENT(R, M), i.e. the investor
possesses a price prediction model superior to the market maker in terms of cross-
entropy, we are guaranteed to make long-term profits with optimal investment routines
such as the Kelly strategy (Section 2.7).

risk and utility To explicitly account for the discussed uncertainty involved in
trading, the concept of risk assessment has been proposed. This means that instead of
direct maximization of the expected returns, one should strive for a balance between
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the expected profit and risk, stemming from the uncertainty. The risk can then be
quantified by statistical means such as the variance of the expected profit [85] or
probability of a drawdown [21]. Note that apart from the quantifiable risk, there is also
a structural risk stemming from the fact that, similarly to the expected returns, the
assessment of risk is based on merely estimated parameters.

Not all investors then share the same preferences to balance the expected profit
and risk in the same manner. To incorporate individual preferences into the decision
making, the concept of a utility function u has been proposed to steer the investment
optimization process. A utility function generally maps each alternative onto a real
number, defining a total ordering over some set of alternative investments. In our case
it is some monotonically growing function u transforming the net returns ρ into a new
real quantity u(ρ) to be optimized.11 The concept of risk is then closely connected to
utility, as maximizing any concave utility function directly reflects a preference for risk
aversion [6].

2.7 investment strategies

An investment strategy can be seen as the final step of the traders’s workflow. Given
the expected returns from individual trading opportunities present at a time, the trader
needs to decide on how to allocate his/her wealth across the available opportunities Ω
in order to optimize his/her utility u, i.e. some requested trade-off between expected
returns and risk. Formally, the investment strategy is a function s mapping a vector of
opportunities ω onto a wealth allocation vector f :

s : ω 7→ f . (2.12)

The vector of the wealth allocations f , corresponding to portions of some current
wealth W, is then often referred to as a portfolio over the opportunities ω. We note
that the trader might also want to leave certain fraction of the wealth W aside, which
is commonly incorporated by introducing an extra opportunity (“cash option”) with
a constant zero12 net return. Generally, there are several approaches to the wealth
allocation problem and we will briefly review some of the most popular ones [78].

2.7.1 Unit Stake

The most trivial investment strategy a unit-staking strategy where one independently
allocates the same absolute amount d on every opportunity with an assumed positive
expected return:

11 Given the stochastic setting, we will again consider expected utility E[u(ρ)] instead.
12 This might also be further extended by introducing a slightly positive net return instead to emulate the

option of, e.g., storing the money in a bank account with an interest.
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s : ρi 7→

 fi = d, if Et[ρi] > 0

fi = 0, otherwise.
(2.13)

Despite being very naive, this strategy is also robust against estimation errors [104],
since the allocation simply remains constant no matter the circumstances. Note that the
individual investments d are not considered as fractions relative to the current wealth
W here, and so a small enough unit d ≪ W has to be chosen so that it is possible to
invest into all profitable opportunities. Given that the allocated unit d is small enough,
this strategy will typically also have a very conservative risk profile, nevertheless the
expected portfolio profits can be way below optimal. The size of d then remains a
hyperparameter the choice of which is left to the user.

2.7.2 Modern Portfolio Theory

A more principled approach is that of the Modern Portfolio Theory (MPT) [85] which
strives to balance optimally between the expected return and risk. The general idea
behind MPT is that a portfolio f1, i.e. a vector of asset capital allocations f = f1, . . . , fn

over some opportunities ω1, . . . , ωn, is superior to f2, if its corresponding expected
return ρ (Section 2.6) is at least as great

Et[ρ · f1] ≥ Et[ρ · f2] (2.14)

and a given risk measure risk : Rn → R of the portfolio w.r.t. the returns is no greater

riskEt[ρ]

(
f1
)
≤ riskEt[ρ]

(
f2
)

. (2.15)

This creates a partial ordering on the set of all possible portfolios. When combined into
a joint utility, we can trade-off the expected profit vs. risk by maximizing the following

maximize
f∈Rn

(
Et[ρ · f ]− γ · riskEt[ρ](f )

)
, (2.16)

where γ is a hyperparameter reflecting the user’s preference for risk.
In the most common setup, the risk of a portfolio f is measured through the

expected total variance of its profit Var[ρ · f ] = fTΣf , based on a given covariance
matrix Σn

n of returns of the individual opportunities, which can be again estimated from
historical data (Section 2.4). MPT can then be expressed as the following constrained
maximization problem:

maximize
f∈Rn

Et[ρ · f ]− γ · fTΣf

subject to
n

∑
i=1

fi = 1
(2.17)



16 background

Note that the capital allocations sum up to one as they simply reflect fractions of the
current bankroll W (including the fraction left in “cash”).

The main weakness of MPT is that the variance of profit is hardly a good measure
of risk for profit distributions other than Gaussian [109]. Apart from the variance
Var[w] of the potential net returns w = ρ · f , different risk measures have been
proposed [85], such as standard deviation σ(w) =

√
Var[w] and coefficient of variation

CV(w) = σ(w)
E[w]

. Nevertheless these all share the same weakness. Generally, there is no
agreed-upon measure of risk, rendering the whole concept a bit dubious. Moreover,
the strategy only works with the opportunities ω currently at hand, and thus ignores
any knowledge about the actual market distribution PΩ.

sharpe ratio Apart from the choice of the risk measure, the inherent degree of
freedom in MPT is how to select a particular portfolio from the efficient frontier (based
on the choice of γ). Perhaps the most popular way to avoid the dilemma is to select a
spot in the pareto-front with the highest expected profits w.r.t. the risk. For the risk
measure of σ(w), this is known as the “Sharpe ratio” [114], generally defined as

Et[w]− r f

σ(w)
, (2.18)

where E[w] is the expected return of the portfolio, σ(w) is the standard deviation of
the return, and r f is a “risk-free rate”. We do not consider any risk free investment in
our setting, and so we can reformulate the optimization problem as

maximize
f∈Rn

Et[ρ · f ]√
fTΣf

subject to
n

∑
i=1

fi = 1
(2.19)

2.7.3 Kelly Criterion

The Kelly criterion [63, 124] assumes the investment problem in time13, i.e. it optimizes
multi-period investments in contrast to MPT which is concerned only with single-
period portfolio returns. It is based on the idea of expected multiplicative growth WG of
a continuously reinvested bankroll Wτ. The goal is to a find a portfolio f such that the
long-term expected value of the resulting profit Wτ→∞ is maximal, which is equivalent
to maximizing the geometric growth rate of wealth defined as

WG = lim
t→∞

log

(
Wt

Wo

) 1
t

. (2.20)

13 Note this is in contrast to MPT which assumes the problem in an ensemble of traders at the same time, i.e.
through expectation.
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For its multiplicative nature, it is also known as the geometric mean policy, empha-
sizing the contrast to the arithmetic mean approaches (e.g. MPT) based directly on the
expected value of wealth. The two can, however, be looked at similarly with the use
of a logarithmic utility function, transforming the geometric into the arithmetic mean,
and the expected geometric growth rate into the expected value of wealth, respectively.
The problem can then be again expressed by the standard means of maximizing the
(estimated) expected utility value as

maximize
f∈Rn

Et

[
log
(

1 + fT · ρ
)]

subject to
n

∑
i=1

fi = 1
(2.21)

Note that, in contrast to MPT, there is no explicit term for risk here, as the notion of risk
is inherently encompassed in the growth-based view of the wealth progression, i.e. the
long-term value of a portfolio that is too risky will be smaller than that of a portfolio
with the right risk balance (and similarly for portfolios that are too conservative). The
risk is thus captured by the logarithmic (concave) utility transformation itself.

The calculated portfolio is then provably optimal, i.e. it accumulates more wealth
than any other portfolio chosen by any other strategy in the long-run. However, this
strong result only holds given, considerably unrealistic, assumptions [63, 103, 124].
Similarly to MPT, we assume to know the true returns while calculating merely with
estimates and additionally, given the underlying growth perspective, that we are
repeatedly presented with the same opportunities from PΩ ad infinitum, making the
optimality of the growth-based risk treatment in Kelly likewise a bit dubious. Despite
the fact that the given conditions are impossible to meet in practice, the Kelly strategy
is very popular, particularly its various modifications to mitigate the aforementioned
issues.

fractional kelly The result of the Kelly optimization problem is, for each
opportunity, the ideal fraction ω 7→ f ∗ one is ought to invest to achieve the maximal
long-term profits. The fraction f ∗ thus dictates an upper-bound on the possible profit,
meaning that increasing the invested fraction further will actually decrease the long-
term profit.14 This is commonly known as “overbetting”. Since the true expected return
ρ is unknown, however, such a situation might occur even while betting with a fraction
assumed to be optimal. Intentionally decreasing the calculated fraction f ∗ by some
ratio 1

d′ then decreases the risk of overbetting stemming from a possibly overvalued
estimate. Such an approach is commonly referred to as “fractional Kelly” [83]. Ideally,
one should estimate the optimal shrinkage d′ as another hyperparameter [8, 127] based

14 this is due to the assumed multiplicative, growth-based view of Kelly, which is in contrast to the additive
MPT, where overbetting would merely increase the risk.
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on backtesting performance, however, it is very common to simply choose a fixed ratio
such as 1

2 of the estimated optimal Kelly fraction f ∗, commonly referred to as “half
Kelly” by practitioners. While there are other remedies to mitigate the risk with the
Kelly criterion [21, 123], fractional Kelly is a very effective method which is widely
adopted in practice due to its simplicity. In addition to mitigating the overbetting risk,
it generally decreases volatility, which also tends to be considerably high with the plain
Kelly criterion.

correspondence to mpt While Kelly is clearly based on different principles than
MPT, there is an interesting close connection between the two strategies. Following [21],
let us make an assumption for a Taylor series approximation that our net profits are
not too far from zero ρT · f ≈ 0, allowing us to proceed with the Taylor expansion of
the optimized growth as

log
(

1 + ρT · f
)
= ρT · f −

(
ρT · f

)2

2
+ ... (2.22)

Now taking only the first two terms from the series we transform the expectation of
logarithm into a new problem objective as follows

maximize
f∈Rn

E

[
ρT · f −

(
ρT · f

)2

2

]
(2.23)

Note that, interestingly, the problem can now be rewritten to

maximize
f∈Rn

E
[
ρT · f

]
− 1

2
E
[
fT
(

ρ · ρT
)
f
]

subject to
n

∑
i=1

fi = 1
(2.24)

corresponding to the original MPT formulation from Equation 2.17 for the particular
user choice of γ = 1

2 . It follows from the fact that the geometric mean is approximately
the arithmetic mean minus 1

2 of variance [85], providing further insight into the
connection of the two popular strategies of Kelly and Markowitz, respectively. While
the solution is merely an approximation, it also tends to be more robust to estimation
errors than the original Kelly, similarly to the fractional approach.
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3
I N T R O D U C T I O N

In Section 2.5, we introduced the notion of price estimators. Naturally, many different
models have already been developed to estimate the probabilities (prices) for different
markets. Unsurprisingly, most of the models focus on the Moneyline market (i. e.winner
of a match). As we aspire to develop our own models, we must first explore the state-
of-the-art. The body of the literature is very diverse, spanning across multiple domains.
However, one of the domains is more prevalent than the others.

Soccer, being arguably the most popular sport in the world, continues to attract
researchers and practitioners competing for the design of the most accurate game
outcome forecasting models. However, due to a lack of a standardized dataset, it
has been difficult to draw conclusive statements about the relative performances of
the diverse approaches. The creation of such a dataset has been, however, further
complicated by the fact that the proposed models often utilize varying details of match
and background information in order to gain more advantage over the competition.

While for some of the top leagues, complete information about the game, including
player-tracking data, can be obtained, such an approach does not generalize onto
the vast amount of the lower leagues, where merely the results with basic metadata
are all that is being stored for each match. Moreover, the fine-grained data are often
proprietary and rather expensive, rendering them unsuitable for use in academic
benchmarks.

For the purpose of a sound experimental comparison, we propose to target the
broadest possible scope of the domain by considering solely the score-based models,
i. e., the models that use the final scores, teams’ names and dates as the only input
covariates. Such an elementary modeling paradigm allows us to calculate predictions
for virtually all existing matches and, consequently, unify the training and evaluation
protocol across the diverse approaches.

Conveniently, a large dataset containing 218,916 match results from 52 leagues since
the season 2000/01 was released by Dubitzky et al. [34]. The records in the dataset
consist merely of the league names, dates, team names, and the resulting scores. The
availability of such a large dataset provides an ideal opportunity to finally shed some
light on the relative performance of the respective score-based methods. For that
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purpose, we have reimplemented the most promising models from the literature to
analyze their performance under a unified protocol.

The rest of this part is organized as follows. In Section 4, we summarize the relevant
research. Section 5 provides a brief description of the implemented models. Section 6

explains the protocol for fitting and evaluation of the models. Experimental results are
compiled in Section 7, and we conclude the part in Section 8.



4
R E L AT E D W O R K

The body of related work on score-based predictive models can be generally divided
into 3 categories: (i) statistical models, where the goals scored are assumed to follow
a particular parametric probability distribution, (ii) rating systems that assign a real-
valued rating(s) to each team to capture its strength, and (iii) machine learning models
where various complex features are usually derived from the data and passed to an
off-the-shelf learning algorithm.

4.1 statistical models

The research in the domain of score-based soccer modeling has traditionally been
dominated by statistical approaches. In his pioneering work, Maher [84] came up with
a double Poison model and bivariate Poisson model, where the latter provided a better
fit for the data. Maher also introduced the notion of teams’ attacking and defensive
strengths and how to use them for forecasting of the match results. This notion is still
used in the current research nowadays.

Dixon and Coles [33] extended Maher’s ideas, as they introduced a dependency be-
tween the home and away teams’ goals scored for the double Poisson model, effectively
increasing the probabilities of low-scoring draws. Also, while Maher considered the
strength of the team to be time-invariant, here the idea of weighting the likelihood
during fitting of the model was introduced. Particularly, the authors used exponential
time weighting to discount the effects of past results. The simplicity of exponential time
weighting allows for its use with other models too [77]. A different approach to the
time evolution of teams was used in Rue and Salvesen [110], where the authors used a
Brownian motion to tie together the teams’ strength parameters in consecutive rounds.
Crowder et al. [30] used an autoregressive model for the evolution of teams’ strengths,
improving on results by Dixon and Coles [33] and on the computational complexity of
Rue and Salvesen [110]. A static hierarchical model based on the double Poisson distri-
bution was introduced by Baio and Blangiardo [7], claiming performance non-inferior
to the bivariate Poisson model [61]. Owen [97] used a random walk to model the
teams strength evolution in the double Poisson model, however a comparison against
the established likelihood weighting approach was not done. Koopman and Lit [66]
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introduced time dynamics into the bivariate Poisson model using a state-space model
representation. The authors also pointed out that the dependency between scores had
little effect on the out-of-sample forecasting performance of the model. This observation
was latter supported by Ley, Wiele, and Eetvelde [77]. Angelini and De Angelis [4]
investigated another technique for implementing the time-dynamics with a PARX
model [1]. The PARX model outperformed Dixon and Coles [33] in forecasting the
number of scored goals. Koopman and Lit [67] compared bivariate Poisson, Skellam,
and ordered probit models where the teams’ strengths were updated according to a
time series model. The bivariate Poisson model achieved the best results.

Karlis and Ntzoufras [61] noticed that the bivariate Poisson models tend to underes-
timate the probabilities of draws and introduced a diagonal-inflated bivariate Poisson
model. Karlis and Ntzoufras [62] then eliminated the need to explicitly model the
scores dependency by using the Skellam distribution [116], where the evolution of
the teams’ strengths was implemented using Bayesian updates. McHale and Scarf
[88] experimented with negative binomial and bivariate Poisson models where the
dependence structure was implemented using copulas. The most recent novelty in
statistical approaches is the use of bivariate Weibull count model [17]. Unlike in the
Poisson distribution, where the mean is equal to the variance, the Weibull count distri-
bution is determined by two parameters, allowing for better handling of both under
and over-dispersed data. The bivariate model is constructed using a copula function.
The model provides a better fit for the data than the Poisson model at the expense of
higher computational time, as the calculation of the probability density function of the
Weibull count model is very demanding. A great review of the statistical approaches
can be found in Ley, Wiele, and Eetvelde [77].

4.2 rating systems

Another technique to estimate the strength of an individual or a team are the so-
called rating systems. Ratings try to capture the team’s strength into one or two scalar
values, providing relative ordering of the teams, but not necessarily a way to obtain
the probabilistic forecasts. The world’s best-known rating system is the Elo rating [35],
originally used for assessing the strength of chess players. The player’s performance is
assumed to be drawn from a Gaussian distribution with a fixed variance. The mean
of such distribution is then the player’s rating (skill). An application of the Elo rating
in the domain of soccer was shown in Hvattum and Arntzen [57]. Recent work by
Robberechts and Davis [108] demonstrated that the method yields competitive results.

TrueSkill [49] is another system that enhances the Elo rating by operating not only
with the variance of the player’s skill (rating) but also with the variance of his/her
performance. This variance reflects the uncertainty about the player’s skill in situations
when we have not yet observed enough data (performances). The authors demonstrated
faster convergence and better predictive performance in comparison with the Elo rating.
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One of the caveats of the TrueSkill is that it does not propagate the newly obtained
information backward to correct the past ratings. In other words, the method does
filtering without smoothing. The work by Dangauthier et al. [32] aimed to fix this issue.
Also, the plain version of TrueSkill does not account for the score difference, as it only
considers the ternary win-draw-loss outcome of a match. Guo et al. [52] proposed an
extension to take into account the score differences and claimed superior performance
to the vanilla TrueSkill, also on a soccer dataset. The current evolution of the TrueSkill
rating system is TrueSkill2 [93], however most of the improvements are domain-specific
to matchmaking in online games, which is the primary focus of the system.

A soccer domain-specific rating system called pi-ratings was introduced in Constanti-
nou and Fenton [27]. The team’s strength is represented by its home and away ratings,
which are updated after each match according to manually set learning rates. Another
score-based rating system was developed by Berrar, Lopes, and Dubitzky [13], where
the rating system parameters were tuned using particle swarm optimization and fed
to a standard off-the-shelf learner. A method for ranking teams after an incomplete
season was proposed by [31].

4.3 machine learning approaches

Machine learning models are not very common in score-based modeling as they usually
leverage extra features besides the scores or ratings. Constantinou [25] extended his
pi-ratings model with a Bayesian network to obtain the probability distribution over
possible match outcomes from the rating difference. Tsokos et al. [125] tested several
variations of the Bradley-Terry model [9, 18] and a hierarchical Poisson model. In the
end, the hierarchical Poisson model outperformed all the Bradley-Terry models. The
inferiority of the Bradley-Terry model to other methods was further confirmed by Ley,
Wiele, and Eetvelde [77].

A different, unorthodox approach to the problem is to view the match data as a
relational structure (graph) between the teams. This was first pointed out by Van
Haaren and Broeck [129] where the authors achieved some promising results. The
graph representation of the data was also utilized by Govan, Meyer, and Albright [48],
who used the PageRank algorithm [98] to estimate the teams’ strengths. The same
author later proposed a so-called offense-defense model [47], which can be seen as an
analogy to the HITS algorithm [65].





5
R E V I E W E D M O D E L S

Our ambition is to provide an experimental comparison of a variety of different
approaches towards the problem of soccer match outcome prediction. For that goal,
we have reimplemented and tested the most prevalent models in score-based soccer
forecasting, as well as some models that, despite their promising results, have not
received as much attention as the former. The selected models, together with the
underlying reasoning, are then as follows.

The double Poisson model with exponential time weighting [33, 84] is probably the
most established model to date. Recent work by Ley, Wiele, and Eetvelde [77] showed
that the model (and its bivariate variant) is still relevant nowadays. The most notable
improvement upon these models was claimed by Boshnakov, Kharrat, and McHale [17]
using their bivariate Weibull model.

From the perspective of the rating systems, the Elo [35, 57] proved to be competitive
by Robberechts and Davis [108]. Constantinou and Fenton [27] claimed to outperform
the Elo considerably. Another rating system that claimed improvement over the Elo, was
TrueSkill [49]. Its extension for score-based forecasting by Guo et al. [52] demonstrated
better results on a soccer dataset, therefore we chose the extension over the original
model. Steph ratings [121] not only did well in a Kaggle competition, but they are
extension of another successful rating system – the Glicko [45]. Recently, the ratings by
Berrar, Lopes, and Dubitzky [13] showed the most promising results.

5.1 statistical models

In this section we take a closer look at the statistical models included in this review. As
all the statistical models provide a likelihood function for the scores, the probability
of a team winning/drawing/losing can be easily computed by marginalizing the
probability distribution over the results.
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5.1.1 Double Poisson Model

Double Poisson represents one of the earliest [84] and simplest models. However, as
was shown in Ley, Wiele, and Eetvelde [77], it still remains very competitive. The
model assumes the goals scored by the competing teams in a match to be independent.
Therefore, the probability of a home team scoring x goals with the away team scoring
y goals is given by

P(GH = x, GA = y|λH, λA) =
λx

He−λH

x!
·

λ
y
Ae−λA

y!
. (5.1)

where λH and λA are the scoring rates of the teams (the means of the underlying
Poisson distributions). The scoring rates of the teams for a particular match can be
expressed in terms of the Maher’s specification as

log(λH) = AttH − De fA + H

log(λA) = AttA − De fH
(5.2)

where H represents a home advantage, and Att and De f are respectively the offensive
and defensive strengths of the teams (the actual model parameters).

Later, Ley, Wiele, and Eetvelde [77] demonstrated that the number of the model’s
parameters can be effectively halved by considering only a single strength parameter
for each team without any loss of predictive performance, i.e. reducing to

log(λH) = StrH − StrA + H

log(λA) = StrA − StrH
(5.3)

5.1.2 Bivariate Poisson Model

Karlis and Ntzoufras [61] extended the double Poisson model by introducing depen-
dence between the scored and conceded goals. The dependence is given by another
Poisson distribution. The scored goals are modelled as GH = X1 + X3, GA = X2 + X3

where X1 ∼ Pois(λH), X2 ∼ Pois(λA) and X3 ∼ Pois(λC). The probability function for
the bivariate distribution is then given by

P(GH = x, GA = y|λH, λA, λC) =

= e−(λH+λA+λC)
λx

Hλ
y
A

x!y!

min(x,y)

∑
k=0

(
x
k

)(
y
k

)
k!
(

λC

λHλA

)k (5.4)

where the scoring rates λH and λA are computed in the same fashion as for the double
Poisson model (Eq. 5.3), and logλC is fitted together with the Str and H parameters.



5.1 statistical models 29

5.1.3 Double Weibull Count Model

One of the pitfalls of the Poisson-based models is that the Poisson distribution does
not consider under or over-dispersion in the data since the variance of the distribution
is strictly equal to the mean. Weibull-based models [17] aim to tackle this issue. The
Weibull count model was derived from the continuous Weibull distribution by McShane
et al. [89]. The probability density function of the univariate Weibull count model is
given by

P(G = x|λ, c) =
∞

∑
j=x

(−1)x+jλαx
j

Γ(cj + 1)
, (5.5)

where c is the shape parameter of the distribution, and αx
j is defined recursively for

x = 0, 1, . . . and j = x + 1, x + 2, . . . as

α0
j =

Γ(cj + 1)
Γ(c + 1)

(5.6)

αx+1
j =

j−1

∑
m=x

αx
m

Γ(cj− cm + 1)
Γ(c− j + 1)

(5.7)

The probability of observing a score in a soccer match is then obtained by multiplying
the two probability distributions for each of the opposing teams, analogically to
Eq. 5.4. For this reason, the double Poisson and Weibull models are also referred to as
“independent”. Calculation of the scoring rates λ then also follows Eq. 5.3.

5.1.4 Bivariate Weibull Count Model

The bivariate version of the Weibull count model was introduced by Boshnakov,
Kharrat, and McHale [17]. The Weibull marginals were tied together with Frank copula
to form the bivariate model. The joint probability function is given by

P(GH = x, GA = y|λH, λA, cH, cA) =

= C (F (x|λH, cH) , F (y|λA, cA))

− C (F (x− 1|λH, cH) , F (y|λA, cA))

− C (F (x|λH, cH) , F (y− 1|λA, cA))

+ C (F (x− 1|λH, cH) , F (y− 1|λA, cA))

(5.8)

where F is a cumulative distribution function that can be computed using the prob-
ability density function from Eq. (5.5) and cH, cA are the shape parameters of the
distribution. The C is Frank copula function given by:

C(u, v) = −1
κ

ln

(
1 +

(e−κu−1)(e−κv−1)

e−κ − 1

)
, (5.9)
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where κ is the dependence parameter. Calculation of the scoring rates λ again follows
Eq. (5.3).

5.2 rating systems

One of the main differences between statistical models and rating systems is that rating
systems were designed mainly to rank the competing teams in a league and not neces-
sarily to produce a probability distribution over the possible outcomes. However, this
can be effectively solved by employing a subsequent regression model that transforms
the ratings into the desired probability distribution, as was demonstrated in Hvattum
and Arntzen [57]. The details on how the ratings and the subsequent regression are
trained can be found in Section 6.1.

5.2.1 Elo Ratings

Elo [35] is a general rating system, the modification of which is still used for evaluation
of the strength of chess players. Hvattum and Arntzen [57] proposed its modification for
soccer and consequently, Robberechts and Davis [108] demonstrated the effectiveness
of the method. The modification involves the use of an ordered logit model [87] to
obtain the probability distribution over the possible match outcomes. At the core, each
team’s performance is assumed to be normally distributed around its true strength.
The expected outcomes for both teams are then calculated as follows:

EH =
1

1 + c(RA−RH)/d
(5.10)

EA = 1− EH (5.11)

where RH and RA are the ratings of the home and away teams, and c and d are
metaparameters of the method. The actual ternary outcome of the match is then
encoded numerically as

SH =


1 if the home team won

0.5 if the match was drawn

0 if the home team lost

(5.12)

Finally, after the match, the ratings of the teams are updated using

Rt+1
H = Rt

H + k(1 + δ)γ · (SH − EH) (5.13)

Rt+1
A = Rt

A − k(1 + δ)γ · (SH − EH) (5.14)

where δ is an absolute value of goal difference, k represent a learning rate and γ is a
metaparameter scaling the influence of the goal difference on the rating change.
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5.2.2 Steph Ratings

Steph ratings [121] are an evolution of another rating system known as Glicko[45]
developed for a chess rating competition at Kaggle. However, the ratings can be easily
adapted to other sports. The strength of a team is represented with a tuple (r, v) to
capture the team’s rating and its variance. Unlike in Elo, the variance of the rating is
not constant. Before each match, the variance is increased based on the time passed
(∆t) since the last match of the team and a scaling factor c

vt += c∆t. (5.15)

The expected outcome (e) is then computed, accounting for the rating difference (∆r)
between the competing teams (i and j), and a home advantage (γ).

w =

−1 for home team

1 for away team
(5.16)

q =
log 10

400
(5.17)

∆r = w · (rt
i − rt

j + γ) (5.18)

k =
1

1 + 3q2vt
j/π2 (5.19)

e =
1

10−k∆r/400 (5.20)

Finally, the rating and its variance is updated followingly:

s =


1 if team won

0.5 in case of draw

0 if team lost

(5.21)

d = q2k2e(1− e) (5.22)

vt+1
i =

(
1

vt
i + h

+ d
)−1

(5.23)

rt+1
i = rt

i + qvt+1k(s− e + b) + λ(rt
j − rt

i ) (5.24)

where λ is scaling factor for rating difference and h controls the increase in rating’s
variance over time. The b serves as a bonus to players/teams that play more often.
When h = b = γ = 0, the computations reproduce the Glicko ratings. The learning rate
k depends on the rating’s variance, allowing for faster changes when the rating is not
yet well supported by evidence.
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5.2.3 Pi-ratings

Constantinou and Fenton [27] presented a domain-specific rating system. Each team
is assigned two ratings, representing its strength when playing home (Rα) and when
playing away (Rβ). For each match, the expected goal difference (∆̂G) is calculated
based on home team’s home rating (Rα

H) and away team’s away rating (Rβ
A).

ĜH = 10
|Rα

H |
c − 1 (5.25)

ĜA = 10
|Rβ

A |
c − 1 (5.26)

Rα
H < 0 =⇒ ĜH := −ĜH (5.27)

Rβ
A < 0 =⇒ ĜA := −ĜA (5.28)

∆̂G = ĜH − ĜA (5.29)

where c is a metaparameter of the ratings. After a match is played, the expected goal
difference is compared to the actual goal difference (∆G), and both Rα and Rβ get
updated, with each of the updates having a separate learning rate.

e = ∆Ĝ− ∆G (5.30)

ψ(e) = c log10(1 + |e|) (5.31)

Rα
H += λψ(e) · sign(e) (5.32)

Rβ
H += γψ(e) · sign(e) (5.33)

Rβ
A += λψ(e) · sign(−e) (5.34)

Rα
A += γψ(e) · sign(−e) (5.35)

where λ and γ are the ratings’ learning rates.

5.2.4 Gaussian-OD Ratings

Gaussian-OD ratings are an extension of the TrueSkill rating system [49]. The TrueSkill
system was originally designed for ranking players in a computer game called “Halo”.
The motivation was to match equally skilled players against each other to maximize
the overall enjoyment of the game. This further illustrates the usefulness of models
presented in this thesis beyond the sole purpose of predicting future outcomes. In
TrueSkill, each team is assigned a Gaussian distribution representing the user’s prior
about the team’s skill. Unlike in Elo, the variance of each team rating is a parameter
that changes value over time. In Guo et al. [52], the authors promoted a version of
the TrueSkill, where each team is assigned a separate Gaussian distribution for its
offensive (p(o) := N (µo, σ2

o )) and defensive (p(d) := N (µd, σ2
d ) skill. TrueSkill generally

assumes that even if we knew the exact value of the team’s skill (the variance of the
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Gaussian would be equal to 0), its performance would still be stochastic, as the teams
do not perform the same each day. The defensive (pd := N (d, β2)) and offensive
(po := N (o, β2)) performances are thus affected by the performance variance β2. The
home goals scored generation process is then assumed to be GH ∼ N (poH − pdA , γ2).
β2 and γ are metaparameters for performance and score variance. Finally, the prior
distributions are updated after each match according to the following equations:

πoH =
1

σ2
oH

+
1

2β2 + γ2 + σ2
dA

(5.36)

πdA =
1

σ2
dA

+
1

2β2 + γ2 + σ2
oH

(5.37)

τoH =
µoH

σ2
oH

+
GH + µdA

2β2 + γ2 + σ2
dA

(5.38)

τdA =
µdA

σ2
dA

+
µoH − GH

2β2 + γ2 + σ2
oH

(5.39)

σ2
oH

:= π−1
oH

(5.40)

µoH := σ2
oH

τoH (5.41)

The equations for updating the remaining skills are analogous.

5.2.5 Berrar Ratings

Berrar ratings were introduced in Berrar, Lopes, and Dubitzky [13] as input features to
a more complex model. The idea behind these ratings it to use a logistic function to
predict the number of goals scored using once again offensive and defensive strengths
of the teams. The formulas for estimating the expected goals scored are as follows:

ĜH =
α

1 + exp(−βH(oH − dA)− γH)
(5.42)

ĜA =
α

1 + exp(−βA(oA − dH)− γA)
(5.43)

where o and d are the offensive and defensive ratings of the competing teams, α stands
for the maximum possible number of goals scored predicted. The authors set the α = 5
as more than five goals are scored very rarely. β then determines the steepness of the
logistic function, while γ defines the threshold (also known as bias). The updates to
the ratings are then done in the following fashion:

oH += ωoH (GH − ĜH) (5.44)

dH += ωdH (GA − ĜA) (5.45)

where ω stands for the learning rate for the particular rating. Updates of the away
team are done analogously.
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VA L I D AT I O N F R A M E W O R K

All the data used in this review came from the Open International Soccer Database v2

[34]. We divided the data into two sets. Matches before 07/2010 formed a validation
set, used for hyperparameter tuning, and matches after 07/2010 formed a test set,
used solely for evaluation. The first 5 rounds of each season were used as a burn-in
period, omitted from the evaluation. This left us with 91,155 matches in the test set.
The validation set was used to validate our implementations, training the parameters
of subsequent regression models for rating systems, tuning hyperparameters of the
models and trying out several optimization algorithms. All the presented results are
computed on the test set.

The goal of the evaluation was to answer the following research questions:

1. How do the models compare in terms of predictive performance?

2. Do mathematically similar models produce similar predictions?

6.1 model fitting

The models’ parameters and outputs are summarized in Table 6.1.

6.1.1 Statistical Models

All the statistical models are fitted by maximizing their respective weighted likelihood
functions on the set of historical matches M:

L =
|M|

∏
i=1

P
(

Gi
H = x, Gi

A = y|θ
)
· wi. (6.1)

where wi represents the weight of each observation, Gi
H and Gi

A are the goals scored
by home and away team in match i, and P is the probability of the respective match
result as parametrized by θ. The parameters belonging to θ are summarized in Table
6.1. During the evaluation on the test set the parameters (Table 6.1) are refitted after
each league’s round to account for the newly obtained information. To reduce the
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Table 6.1: Models’ parameters and outputs overview. The τ marks parameters belonging to
each team.

Metaparameters Parameters Outputs

Double Poisson α Strτ, H P(HDA)

Bivariate Poisson α Strτ, H, λc P(HDA)

Double Weibull α Strτ, H, cH, cA P(HDA)

Bivariate Weibull α Strτ, H, cH, cA, κ P(HDA)

Elo k, γ, H Rτ, E

Steph c, h, b, γ, λ rτ, vτ, e

pi-ratings λ, γ, c Rα
τ, Rβ

τ , ∆̂G

Gaussian-OD β, γ, σ0 µoτ , µdτ
, σoτ , σdτ

Berrar β, γ, ωα, ωβ oτ, dτ, Ĝτ

computational time, we limit the set of historical matches M by removing matches
older than 5 years in each iteration. The matches from last 5 years can be viewed as the
training set for the iteration.

Since the first successful application [33], exponential time weighting is being com-
monly used as

wi = e−α∆t, (6.2)

where ∆t is the number of days passed since the match was played and α is a meta-
parameter. We found α = 0.002 to perform best on our validation set. The same value
was found in Boshnakov, Kharrat, and McHale [17] and in Ley, Wiele, and Eetvelde
[77] value of α = 0.0019 was used.

6.1.2 Rating Systems

As the outputs of the ratings are not directly the probability distribution over the match
outcomes (P(HDA)), a subsequent model has to be applied [57]. We use multinomial
logistic regression for this purpose. The parameters of the regression are optimized
inside the meta-optimization routine for finding the rating’s metaparameters. First,
the ratings’ computations (given the current set of metaparameters) are carried out
through the data. The pre-match ratings then serve as input to the regression model.
The regression model then produces in-sample predictions based on the given fea-
tures. The in-sample loss is then reported as the loss belonging to the current set of
metaparameters. The meta-optimizer then selects another set of metaparameters to
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be evaluated, and the process is repeated. The inner routine is summarized in the
following pseudo-code:

def optimize_rating(data, results, metaparams, loss_func)

ratings = compute_ratings(data, results, metaparams)

lr = LogisticRegression()

lr = lr.fit(ratings, results)

predictions = lr.predict_proba(ratings)

loss = loss_func(predictions, results)

return loss.mean()

We observed that multiple runs of meta-optimization result in different metaparame-
ters while achieving the same loss. We therefore do not state any concrete values of the
metaparameters found. While the parameters of the regressors and the metaparameters
(Table 6.1) of the rating systems are determined on the validation set, the ratings
(denoted as “Outputs” in Table 6.1) are updated after each match in the test set to serve
as input features for the regressor in the next league round.

The optimization of the regression parameters has been done by the L-BFGS-B
algorithm [22]. Optimization of the ratings’ hyperparameters has been carried out
by the PSO [64], as was done in Berrar, Lopes, and Dubitzky [13]. We experimented
with other meta-optimization techniques but they were inferior to the PSO in terms of
predictive performace and (mainly) computational time.

During the validation, we noticed, that the meta-optimization of the Berrar ratings
fails to converge occasionally even when given more iterations. We have resolved the
issue by halving the number of metaparameters. In the original model the metaparam-
eters for updating the ratings are separate for home and away team. As stated in Table
6.1, we use the same metaparameters for the home and away team ratings updates.

6.2 evaluation measures

Besides crossentropy (Eq. 2.6), we evaluate the models using Ranked Probability Score
and Accuracy. Moreover, to quantify the similarities between the models’ predictions
we use the Jensen-Shannon divergence.

6.2.1 Ranked Probability Score

The ranked probability score was proposed by Epstein [36] for evaluating ordinal
outcomes. For the ternary outcome game of soccer, the formula is as follows:

RPS(p, y) =
1
2

2

∑
i=1

(
i

∑
j=1

(
pj − yj

))2

, (6.3)

where pj is the estimated probability of outcome j, and yj ∈ {0, 1}, with yj = 1
indicating that outcome j was realized. The suitability of using this metric for evaluating
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soccer outcome predictions was heavily proclaimed in Constantinou and Fenton [26]
and has been widely used ever since.

6.2.2 Accuracy

Accuracy serves as the most crude evaluation measure. It simply represents how many
times on average the outcome with the highest estimated probability was realized.

6.2.3 Similarity Measures

Besides the predictive performance of the models, we are also interested in analyzing
how much the predictions of the models differ from each other since there are many
similarities both among the statistical models and among the ratings. For this purpose,
we compute the average Jensen-Shannon divergence between the models’ predictions.
The Jensen-Shannon divergence between two probability distributions P and Q is given
by:

JSD(P || Q) =
1
2

DKL(P || M) +
1
2

DKL(Q || M) (6.4)

M =
1
2
(P + Q) (6.5)

DKL(P || Q) = ∑
x

P(x) log
P(x)
Q(x)

(6.6)
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R E S U LT S

The results are summarized in Table 7.1. The first thing to notice is that the models’
performances are very close to each other. The Berrar ratings achieved best results
by both the RPS and xEnt measures, while the Double Weibull and Bivariate Weibull
models reached the highest accuracy score. The Double Weibull model placing ahead
of its Bivariate variant might look suspicious at first. However, during the validation,
we noticed that while the Bivariate Weibull sometimes provided the best fit for the
training data, the performance did not always translate into the test set. This suggests
that finding the right dependence parameter κ is difficult. It is remarkable how well the
general rating system Elo with only minor modifications works for soccer. This is not
the case for the other two general rating systems – the Steph ratings and the Gaussian-
OD ratings. Another result that catches the eye is the performance of the Double
Poisson model. This only confirms its competitiveness, as suggested by Ley, Wiele,
and Eetvelde [77]. The only model that significantly falls behind are the Gaussian-OD
ratings.

Table 7.1: Comparison of the tested models via the evaluation metrics.

xEnt RPS Acc.

Berrar 1.0246 0.2101 48.54

Bivariate Poisson 1.0251 0.2103 48.58

Double Poisson 1.0254 0.2103 48.57

Double Weibull 1.0255 0.2103 48.60

pi-ratings 1.0258 0.2103 48.56

Bivariate Weibull 1.0260 0.2105 48.60

Elo 1.0263 0.2105 48.49

Steph 1.0291 0.2114 48.26

Gaussian-OD 1.0347 0.2134 47.84
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Table 7.2: Average Jensen-Shannon divergence between the models’ predictions. BP = Bivariate
Poisson, BW = Bivariate Weibull, DP = Double Poisson, DW = Double Weibull.

Berrar BP BW Elo DP DW pi-rtgs Steph Gauss

Berrar 0.000 0.051 0.054 0.027 0.051 0.051 0.030 0.040 0.063

BP 0.051 0.000 0.011 0.052 0.014 0.014 0.052 0.058 0.071

BW 0.054 0.011 0.000 0.054 0.023 0.017 0.054 0.061 0.075

Elo 0.027 0.052 0.054 0.000 0.051 0.051 0.024 0.032 0.062

DP 0.051 0.014 0.023 0.051 0.000 0.009 0.051 0.056 0.069

DW 0.051 0.014 0.017 0.051 0.009 0.000 0.050 0.057 0.070

pi-rtgs 0.030 0.052 0.054 0.024 0.051 0.050 0.000 0.036 0.064

Steph 0.040 0.058 0.061 0.032 0.056 0.057 0.036 0.000 0.058

Gauss 0.063 0.071 0.075 0.062 0.069 0.070 0.064 0.058 0.000

7.1 predictions’ similarity

As the evaluation metrics of plurality of the models are very close to each other, it is also
not surprising that the actual predictions exhibit many similarities, too, as shown in
Table 7.2. Even without knowing that there are two classes of models, we would be able
to distinguish the statistical models from the ratings based purely on their prediction
similarities. We can observe that especially the predictions of the statistical models are
very close to each other. This behavior was anticipated, as the very definitions of the
models are very similar (with a certain parameter setup, they all reduce to the Double
Poisson model). The similarity of the Gaussian-OD to other models is lower mostly
due to its inferior performance.

7.2 model adaptability

Another property of the models we were interested in is how quickly they adapt to
new information. Between the seasons, the team’s composition, and therefore also its
strength, can change dramatically. We thus divided the matches into 10 groups based
on which part of the season they occurred (Figure 7.1).

The plot shows that the models’ performance is generally higher in the second half
of the season when more data are available. The statistical models trail behind the
rating systems in the first third of the season, while providing a generally better fit in
the second half of season. Berrar rating seems to outperform the competition in most
parts of the season. The slight decrease in the models’ performances, right after half of
the season was played, might be due to breaks in the schedule that typically occur in
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Figure 7.1: Error of the models, as measured using the crossentropy (Eq. 2.6), as a function of
percentage of season completed.

the middle of a season. Another explanation could be that in some leagues, there are
transfer windows opened during this period of time, which could lead to changes in
teams’ compositions.
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C O N C L U S I O N

We reimplemented a wide selection of the top-performing score-based models for soccer
outcome forecasting from the past decades and benchmarked them on the largest soccer
dataset published to date. We asked two core research questions regarding the models’
performances and similarities. We conclude from the experiments that the individual
predictions, as well as the overall performances, were very similar across the top
models tested, likely suggesting the limits of this generic approach to score-based
match outcome modeling. Additionally, we observed that the rating systems adapt
faster to changes in teams’ strengths and achieve better performance at the beginnings
of the seasons, while the statistical models catch up and take a small lead at the ends.

Our results suggest that any dramatic improvement in the predictive performance of
any rating or statistical method seems unlikely now. We therefore propose that further
research should attempt to address the problem with a significantly different “class” of
models (Part iii). These could possibly produce more diverse predictions, opening new
possibilities for ensembling and other machine learning techniques.
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9
I N T R O D U C T I O N

In this part of the thesis, we propose our own models to tackle the problem of score-
based forecasting. As we have seen in our experimental review (Part ii), there are
several existing models with very similar performance. While there have been attempts
to predict the winners of a match using machine learning, these approaches usually
rely on including other features than those that can be directly derived from the final
scores [46, 51, 56] and thus cannot be compared with models introduced in Part ii.
Purely score-based approaches were summarized in Section 4.3. We aim to close this
gap and leverage a machine learning approach based on careful feature engineering.

Moreover, as the data we are dealing with are relational in nature, we propose a
relational version of an embedding model. We argue that incorporating relational
learning techniques might benefit the field considerably. It only seems natural as the
data arising from sports records possess interesting relational characteristics on many
levels of abstraction, from the matches themselves forming relations between teams,
players and seasons, to the course of the individual matches being driven by the
rules of each sport with game-play patterns stemming from these. We propose simple
relational representations, background knowledge, and modeling concepts for which
we provide some interpretable insights. Particularly, we focus on expressing a concept
we called “Lifted relational team embeddings” in the framework of Lifted relational
neural networks (LRNNs) [118], combining relational fuzzy logic with gradient descent
optimization.

The rest of this part is organized as follows. In Section 10 we describe the types of
predictive models considered. Section 11 describes the features we constructed for the
feature-based models. In Section 12 we validate the different modeling approaches on
the disclosed data set. Section 13 provides a discussion of the principal trends observed
in the experimental results.
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M O D E L S

In what follows, the terms loss and win associated with a match refer to the home
team’s outcome in that match, unless stated otherwise. Here we discuss the methods
we used to estimate

(pl , pd, pw) ∈ [0, 1]3, such that pl + pd + pw = 1 (10.1)

i.e., the probabilities of the three possible outcomes loss, draw, win of a given match.

10.1 baseline predictors

We introduce two reference prediction policies, intended to act as natural upper and
lower bounds on the prediction errors achievable with the trainable models introduced
later.

The naive policy corresponding to the upper-bound predicts (10.1) for each match in
a given season and league by setting pl to be the proportion of home-team losses in all
matches of that league in the previous season, and similarly for pd and pw. Intuitively,
this predictor exploits the usual home-team advantage [106], which is quantified into
the probabilities using the relative frequencies from the immediately preceding season.
Failing to improve on such a prediction policy would indicate a useless predictor. The
likely lower bound on prediction error is provided by bookmaker’s data. Bookmakers
are considered a very reliable source of predictions [40]. Bookmaker’s odds represent
inverted probability estimates of the outcomes. However, to get an edge over the market,
the bookmaker employs a so-called margin, resulting in the inverted probabilities
summing up to more than 1. Therefore we normalized the probability triple with a
common divisor to make it sum up to one. For example if the odds for the home team to
win, draw and lose are (respectively) 1.89, 3.13, 5, the implied inverted probabilities are
1.89−1, 3.13−1, 5−1, and the normalized probabilities are 1.89−1/Z, 3.13−1/Z, 5−1/Z
where Z = 1.89−1 + 3.13−1 + 5−1. More advanced methods for deriving probabilities
from the odds are described by [122]. Improving on such a predictor is unlikely as the
bookmakers have access to much more detailed data.
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10.2 feature-based classification model

While the raw data [34] do not contain any features besides the competing teams’
names, numerous features can be derived from such data using feature engineering
techniques (Section 11). Once we transform the data into a tabular dataset, we can
choose from a plethora of conventional feature-based machine learning models. We
naturally select from multi-class classifiers yielding a probability distribution on target
classes.

From among such eligible classifier types, we chose Gradient Boosted Trees [43]. This
choice was motivated by a multitude of machine learning competitions such as those
hosted by Kaggle1, where the Gradient Boosted Trees algorithm, and specifically its
Xgboost implementation [23], turns out to be highly successful for problems of a similar
character.

10.3 feature-based regression model

The loss function minimized by Xgboost during classifier fitting is the crossentropy (Eq.
2.6). This loss function does not reflect the intuitive order

loss < draw < win (10.2)

on classes. However, the Xgboost algorithm can also be run in a regression mode, where
the resulting model yields real numbers. We leveraged this mode to accommodate the
order (10.2) by representing the three classes as 0, 0.5, 1, respectively. In the regression
setting, the standard squared loss is minimized through training.

To map a model’s output r ∈ [0; 1] to the required distribution (10.1), we introduce
an additional trainable model component. Specifically, we posit for each i ∈ {l, d, w}
that

pi(r) =
fi(r)

fl(r) + fd(r) + fw(r)
(10.3)

where fi(r) is modeled as a beta distribution

fi(r) = BetaΘ⃗(r) (10.4)

in which the parameters Θ⃗ maximize the function’s fit with tuples r, Pi(r) available in
training data; in particular, Pi(r) is the proportion of training examples with outcome i
among all examples for which the model yields r. Intuitively, e.g. fw(r) is an estimate
of the win-probability for a match with regressor’s output r. Note that in general
fl(r) + fd(r) + fw(r) ̸= 1, hence the normalization in (10.3).

1 A platform for hosting machine learning competitions at https://kaggle.com

https://kaggle.com
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10.4 lifted relational neural networks

LRNNs [118] is a relational learning framework utilizing a parametrized fragment
of relational fuzzy logic as a language for representation of various models and a
gradient descend technique for their parameter training. The model representation can
be viewed as a lifted template for neural networks, as it enables neural computations to
be performed upon relational data by constructing a different computational graph,
or neural network, for each of the differently structured relational examples. General-
ization onto unseen relational examples is due to the joint derivation of structure and
parameters of these neural networks from the single lifted template.

For a regular training of an LRNN, as we do in experiments reported in this thesis,
one firstly needs to manually create the template, which may encode some background
knowledge, or intuition, together with various modeling constructs. Secondly, one
needs learning examples encoded in relational logic together with corresponding target
predicate labels. Subsequently in the learning process, the LRNN engine grounds the
template w.r.t. the different examples to create the corresponding neural networks,
which are then jointly trained w.r.t. the labels, in a manner similar to that of standard
deep learning frameworks.

10.4.1 Knowledge Representation

In its raw form, the match records contain merely the team names and the result. For
the LRNNs we had to derive appropriate relational representation. Since they learn
from Herbrand interpretations, we encoded the records with numerical outcomes into
predicates, which we describe in Table 10.1.

It can be noted that these predicates encode the match records in a very straight-
forward manner. We also incorporated some derived predicates with simple domain
knowledge, such as the goal difference and recency, which we generally expected to
play some role in the predictions.

10.4.2 Lifted Relational Team Embeddings

Here we describe the proposed relational embedding model as expressed in the
language of LRNNs. Firstly, we tested the hypothesis that there exists some predictive
latent space embedding the teams. This is based on an intuition from various rating
systems (Section 5.2), where each team is assigned one or more parameters denoting
its particular strength, possibly within different areas, such as when playing at home
stadium and when playing away. However, opposite to the existing rating systems,
the idea of the embedding approach is to explore meaning of these latent parameters
automatically by the means of regular learning from data. In other words we do not
explicitly predefine what particular types of strengths we are looking for, and rather let
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Table 10.1: Overview of predicates extracted from the data for the relational learners.

Predicate Description

home(Tid) Team Tid is home team w.r.t. prediction
match.

away(Tid) Team Tid is away team w.r.t. prediction
match.

team(Tid, name) Team Tid has name name.

win(Mid, Tid1, Tid2) Win of home team Tid1 over away team
Tid2 in match Mid.

draw(Mid, Tid1, Tid2) Draw between home team Tid1 and Tid2

in match Mid.

loss(Mid, Tid1, Tid2) Loss of home team Tid1 to team Tid2 in
match Mid.

scored(Mid, Tid, n) The team Tid scored more than n goals in
match Mid.

conceded(Mid, Tid, n) The team Tid conceded more than n goals
in match Mid.

goal_diff(Mid, n) Difference in goals scored by the teams is
greater than n.

recency(Mid, n) The match Mid was played more than n
rounds ago (w.r.t. prediction match).

the most predictive types be explored directly from data w.r.t. to given learning target.
We can encode this scenario in LRNNs as follows.

w(0)
1 : type1(T)← team(T, chelsea)

w(0)
2 : type1(T)← team(T, arsenal)

. . .

w(0)
i : type2(T)← team(T, chelsea)

. . .

w(0)
j : type3(T)← team(T, everton)

where the types type1 . . . type3 denote individual embedding dimensions of the teams.
The introduced modeling concept is directly based on the idea of soft clustering from

[118], where the goal is to explore latent predictive types of domain elements. We may
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directly use aggregation of such embeddings for prediction of outcome of home vs.
away team matches using the following rules.

w(1)
(1;1) : outcome← home(T1) ∧ type1(T1) ∧ away(T2) ∧ type1(T2)

w(1)
(1;2) : outcome← home(T1) ∧ type1(T1) ∧ away(T2) ∧ type2(T2)

. . .

w(1)
(3;3) : outcome← home(T1) ∧ type3(T1) ∧ away(T2) ∧ type3(T2)

This construct in principle creates a fully connected neural network with one hidden
embedding layer, such as e.g. in the famous word2vec embedding architecture [91]. For
all the historical matches we then jointly perform corresponding gradient updates of
the weights to reflect the actual values of the outcome labels. We further denote this
architecture as embeddings.

In theory, the embeddings possibly capture some information on the relational
interplay between the matches as they are jointly optimized on the whole match history.
However, we find this approach quite limited as it is rather naive to expect the flat, fixed-
size embeddings to reflect all the possible nuances of the complex relational structure
stemming from the different outcomes of different historical matches played between
different teams in different orders. Moreover, the embedding space dimensions are
fixed while all the possible relational histories are obviously not bounded in that way.
On the other hand, despite often disregarding the relational information, embeddings
have experimentally proved quite strong in exploiting the relevant features, even from
data considered relational [16]. Fortunately with LRNNs, we can easily capture the
relational structures explicitly while keeping the benefits of embedding learning. For
that we first extend the template with a predicate capturing the different outcomes of
historical matches (w.r.t. prediction match) through a learnable transformation as

w(2)
1 : outcome(M, H, A) ← win(M, H, A)

w(2)
2 : outcome(M, H, A) ← draw(M, H, A)

w(2)
3 : outcome(M, H, A) ← loss(M, H, A)
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with which we accordingly extend the predictive rules as

w(1)
h−h(1;1) : outcome← home(T1) ∧ type1(T1) ∧ outcome(M, T1, T2)

∧ type1(T2).

w(1)
h−a(1;1) : outcome← home(T1) ∧ type1(T1) ∧ outcome(M, T2, T1)

∧ type1(T2).

w(1)
h−h(1;2) : outcome← home(T1) ∧ type1(T1) ∧ outcome(M, T1, T2)

∧ type2(T2).

. . .

w(1)
a−a(3;3) : outcome← away(T1) ∧ type3(T1) ∧ outcome(M, T2, T1)

∧ type3(T2).

reflecting the possible settings of historical home and away positions of the actual home
and away teams in all historical matches played. By grounding this template, the
LRNN engine assures to create the corresponding relational histories transformed
into respective, differently structured, neural networks. We denote this architecture as
relational embeddings. These embeddings of teams extracted from the model learned to
predict home team win can be seen in Figure 10.1.

Similarly to the other learners, these rules can be further extended by adding more
contextual information on the individual matches, e.g. the goal difference.

w(4)
1 : goal_diff(M)← goal_diff(M, -3)

w(4)
2 : goal_diff(M)← goal_diff(M, -2)

. . .

w(4)
7 : goal_diff(M)← goal_diff(M, 3)

Also recency of the match and other derived features may be incorporated, however in
our preliminary experiments we did not find any significant improvements from these
extra features.

10.5 model portfolios

Here we address the heterogeneity among different soccer leagues by exploring model
portfolios. Briefly, the set of all considered leagues is first split into relatively homoge-
neous partitions and a model is learned for each partition separately. The portfolio then
collects all these models and for each prediction, it invokes only the applicable model.
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Figure 10.1: Visualization of PCA projection of the learned embeddings of individual teams
from the home-win model. A significant relationship between the home win rate,
captured by the colorscale, and the variance captured by the main X axis can be
observed.

The type of the constituting models can be any of those described in the preceding
sections.

The mentioned heterogeneity is due to several aspects. First of all, each league has a
different structure. Most often each two teams from the same league play against each
other two times in one season, once at each respective home stadium. But there are also
leagues where two teams meet only once or where the teams are divided into groups
and a team plays only other teams within the same group. Moreover, the number of
teams that are promoted and relegated is also different for each league.

Besides the structural differences, the leagues differ in play-style. Some leagues favor
offensive style while others play more defensive soccer, resulting in discrepancies in
statistics like draw percentage, average number of scored goals (the latter shown in
Figure 10.2), etc. Moreover, the number of given yellow and red cards per match varies
between leagues, possibly leading to larger changes in the team strengths between
consecutive rounds, resulting from the offender being disqualified from one or more
consecutive matches.
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Figure 10.2: Overall average number of goals scored per match in different leagues.

We tried three different ways to partition the league set. The first was to cluster the
leagues according to the performance of a selected “ethalon” predictor, dissecting the
list of leagues sorted by this indicator into the tough group, the easy group, and so on,
depending on the chosen granularity. The second approach was to cluster the leagues
based on the leagues’ features (Table 11.2) using the standard k-means algorithm with
the Euclidean distance on normalized numeric features. The last method was to train a
separate model for each league.
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F E AT U R E E N G I N E E R I N G

For the predictors in Sections 10.2 and 10.3, we need a set of relevant features for each
learning sample corresponding to a match. The set of features we constructed is listed
in Table 11.1 and we describe their categories in turn. With exceptions indicated in
the table, each feature relates to a team and so appears twice in the tuple describing a
match, once for each of the two teams. The features are not evaluated for samples in
the first two seasons due to the time lag required for some of them.

11.1 historical strength

To reflect the long-term strength of the teams, we extracted means and variances of the
scored and conceded goals, win percentages, and draw percentages. These statistics
are calculated separately for matches played home and away as a team playing home
is typically stronger than when playing away [106].

The statistics are aggregated from the current and the two preceding seasons.

11.2 current form

Even the strongest teams can have a period of weaker performance during a season
and vice versa. Therefore we also include in the feature set a set of statistics similar to
the above, except aggregated only over the last five matches played by the concerned
team. If less than five matches have been played by the team in the current season,
the feature is not evaluated and acquires a missing-value indicator. These statistics are
not computed from home and away games separately as such split statistics would
aggregate a very small number (2 or 3) matches.

Additionally, the current strength of the team could be affected by the number of
days since last match because of fatigue. Therefore the number of rest days is also
included as a feature.

57
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Table 11.1: Summary of constructed features. Except features shown in italics each feature
appears twice in the description of a sample; referring respectively to the home
team and the away team. Moreover, features prefixed H/A are computed separately
from team’s home and away matches respectively.

Historical strength computed from matches from the current
and last 2 seasons

H/A WIN PCT winning percentage

H/A DRAW PCT drawing percentage

H/A GS AVG goals scored average

H/A GC AVG goals conceded average

H/A GS STD goals scored standard deviation

H/A GC STD goals conceded standard deviation

Current Form computed from the last 5 matches played

WIN PCT winning percentage

DRAW PCT drawing percentage

GS AVG goals scored average

GC AVG goals conceded average

GS STD goals scored standard deviation

GC STD goals conceded standard deviation

REST number of days since team’s last match

Pi-ratings computed from matches from the current
and last 2 seasons

H/A RTG pi-rating

EGD expected goal difference by pi-ratings

PageRank computed from matches from the current
and last 2 seasons

EPTS PR PageRank computed from graph
weighted by expected points

Match importance

T↑ relative point differences between the
team and the teams on first 5 positions in
league table

T↓ relative point differences between the
team and the teams on last 5 positions
in league table

RND league round
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11.3 pi-ratings

These features relate to the pi-ratings introduced in Section 5.2.3. We included directly
the home and away ratings of each of the two teams and the predicted goal difference
between the two.

11.4 pagerank

A drawback of the historical strength features is that they do not account for the
opposing teams’ strengths in historical matches. A decisive win against a weaker
opponent might not be as important as a close win against a title contender. To account
for this factor, we utilized the PageRank [72] algorithm. PageRank was originally
developed for assessing the importance of a website by examining the importance of
other websites referring to it. Similarly, our assumption was that a strong team would
be determined by having better results against other strong teams.

The PageRank of a team can be computed out of a matrix with columns as well
as rows corresponding to teams. Each cell holds a number expressing the relative
dominance of one team over the other in terms of previous match outcomes. In
particular, the i, j cell contains

3wij + dij

gij
, (11.1)

where wij (dij) is the number of wins (draws) of team i over (with) team j, and the
normalizer gij is the number of games played involving the two teams. These numbers
are extracted from the current and the two preceding seasons. The coefficient 3 reflects
the standard soccer point assignment.

In comparison with pi-ratings, PageRank does not work with the actual goal differ-
ence but solely with the match outcomes. The pi-ratings can experience larger changes
after a single round, while the PageRank is calculated just form a slightly modified
matrix. We thus consider PageRank a more regularized counterpart of pi-ratings.

11.5 match importance

Match importance can be reasonably expected to affect players’ performance and so
represents a relevant feature. It is however not obvious how to estimate it.

Match importance is closely tied with team’s rank and current league round. Adding
the league round number to the feature vector is thus straightforward. However, dealing
with team’s rank is more complicated. First of all, the ranking of teams with the same
number of points is calculated by different rules in each league. More importantly, the
ranking is often too crude to capture the match importance, because it neglects the
point differences. For instance in a balanced league, a team can be in 5th place, trailing
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by only few points to the team in first place, with several rounds to go in the season,
while in a league dominated by few teams, a team in 5th position would have no chance
in the title race, reducing the importance of the remaining games. There were attempts
to model the match importance by simulating the remaining matches of a season [70].
However, a quantity that can only follow from computational simulations can hardly
be expected to affect the player’s mindsets.

We decided to extract the points from the league table, from which we subtracted
the points of the team in question, obtaining relative point differences. The points are
accumulated as the season goes on, and normalized by the number of games played so
far. The relative point differences for team i were aggregated in vector Ti(k) such that

Ti(k) =
πrank(k) − πi

gi
, (11.2)

where k ranges from 1 to the number of all teams in the league, πi (πrank(k)) is the
number of points team i (team ranked k-th, respectively) accumulated through the
season, and gi is the number of games team i played.

To extend the feature set with a fixed number of scalars, we extracted only the
first five and last five components of Ti corresponding to the head and the tail of the
ranking.

11.6 league characteristics

League-specific features consist of the numbers of teams, rounds, home win percentages,
draw percentages, goal difference deviations, and home/away goals scored averages.
These statistics are meant to provide a context for the historical strength features
introduced earlier. For instance, scoring 2.5 goals per match on average has a different
weight in a league where the average is 2 goals per match, and one with the average of
3 goals per match.

Table 11.2: Features used for league clustering as well as inputs to the models. H/A stands for
home/away.

H/A GS AVG goals scored average in last 2 seasons

H/A GS STD goals scored standard dev. in last 2 seasons

H/A WIN PCT winning pct. in last 2 seasons

DRAW PCT drawing percentage in last 2 seasons

TEAM CNT number of teams in last season

GD STD standard dev. of goal difference in last 2 seasons

RND CNT number of rounds played in last season
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E X P E R I M E N TA L E VA L UAT I O N

Here we provide details on our evaluation framework. The models introduced in
Section 10 we designed for a Soccer Prediction Challenge 2017 organized by the
Machine Learning journal [12]. The challenge required the participants to train their
models with all data available and submit their predictions for the upcoming matches
(the test set). As the upcoming matches were known (unlike the results obviously)
we used only the data from the leagues, that a appeared in the test set (Table 12.1).
However, to compare fairly with the state-of-the art (Section 7) we had to reffit the
model in compliance with the validation framework introduced in Section 6. The
following sections describe how we chosed the final model for the prediction challenge.
Section 12.7 compares the selected model with the state-of-the-art.

12.1 validation and parameter tuning

Both the relational method (Section 10.4.2) and the feature-based methods (Sections
10.2 and 10.3) require to set a few hyper-parameters. In particular, the pi-ratings
learning rates (λ = 0.06, γ = 0.5) need to be determined. The feature-based methods
additionally require setting for the Xgboost’s parameters max_depth (= 4), subsample (=
0.8), min_child_weight (= 5) and colsample_bytree (= 0.25). For LRNNs we set the learning
rate (0.1) and number of learning steps (50). The number of trees for Xgboost was
determined using internal validation with early stopping. The rest of the parameters
were tuned exhaustively through grid search, by training on the same data split,
and validating on the remaining data. Ranges of values tried in the grid search
were following: {3, 4, . . . , 8} for max_depth, {0.5, 0.6, . . . , 1} for subsample, {3, 4, ..., 8} for
min_child_weight, and {0.2, 0.25, ..., 0.5} for colsample_bytree. For each of the models, we
picked the parameters minimizing the RPS on the validation set.

With the exception on Section 12.2, which follows a time-wise evaluation, all the
reported RPS are averages over seasons 2010/11 and further. For each season from this
testing period, the model was trained on all preceding seasons.
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Figure 12.1: RPS of different types of predictive models over the course of several seasons
(lower is better). Note the restricted scale on the vertical axis.

12.2 model performance in time

Figure 12.1 shows the RPS values for successive seasons from the third season on, so
that historical strength features can be calculated from a sufficient history. The RPS is
calculated only on the leagues known to be included in the challenge test set.

The two types of feature-based model types (regression, classification, c.f. Sections
10.2-10.3) as well as the upper-bound baseline (Section 10.1) are shown. The lower-
bound baseline is not included as the bookmaker’s odds data are not available for all
leagues; we shall compare to this baseline separately.

Each RPS value in the diagram pertains to the prediction made by a model trained
on all data up to (and excluding) the current season, i.e. models are retrained at every
season’s beginning.

A remark is in order regarding the training of the regression model. As explained
earlier, besides fitting the regressor itself, we also need to train the mapping from
its output to the predicted distribution. For the latter, as an over-fitting prevention
measure, the proportions Pi(r) (c.f. Section 10.3) are calculated as follows. When
training the model for the n-th season, the r’s and the corresponding proportions Pi(r)
are collected from all of the preceding seasons; for each k-th (k < n) season, they are
obtained with the model learned for that season (i.e., on data from seasons 1 to k− 1),
making predictions on the k-th season. This way, the proportions following from model
predictions are collected from data not used for training the models.
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Figure 12.2: RPS comparison of the feature-based classification model with the bookmaker’s
predictions.

12.3 comparison to bookmaker’s predictions

For leagues where bookmaker’s odds are available, we compared the best performing
model (i.e. the feature-based classification model) with a predictor implicitly defined
be these odds as described in Section 10.1. We downloaded odds1 for more than 22000

matches for the 2008-2015 period.
Figure 12.2 shows the average RPS for the two predictors on individual leagues.

Here, the classification model is trained as in Section 12.2, i.e. on all data preceding the
season where prediction takes place.

It follows that the bookmaker completely dominates the learned classifier’s predic-
tions. That is no surprise, given the additional sources of information available to the
bookmaker. These include detailed play statistics collected from the matches, changes
in teams’ rosters as well as video footages of the matches.

12.4 model portfolio performance

We assessed the potential of the portfolio strategy as described in Section 10.5. We first
partitioned leagues according to predictability by a model. In particular, the leagues
were ranked by the RPS achieved by the feature-based classification model validated in

1 Odds from bet365 available at http://www.football-data.co.uk/ were used.

http://www.football-data.co.uk/
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Table 12.1: Clusters obtained by clustering the leagues by performance and by feature similarity.

by RPS

1 AUT1, CHN1, ENG1, GRE1, HOL1, POR1, TUN1

2 BEL1, CHE1, ITA1, MAR1, SCO1, SPA1, VEN1

3 FRA1, FRA2, GER1, GER2, ISR1, KOR1, RUS1

4 CHL1, ECU1, ENG2, JPN1, MEX1, USA1, ZAF1

by league features

1 CHN1, ENG1, FRA1, GRE1, MAR1, RUS1, TUN1

2 CHE1, ISR1, JPN1, KOR1, POR1, SCO1, SPA1, ZAF1

3 AUT1, BEL1, GER1, GER2, HOL1

4 CHL1, ECU1, ENG2, FRA2, ITA1, MEX1, USA1, VEN1

Table 12.2: RPS of a portfolio model with different league partitionings.

method RPS

no split 0.2055

split by similarity 0.2063

split by performance 0.2064

split by league 0.2081

seasons 2007/08 – 2009/10 and trained on the preceding seasons. Then we split the list
into 4 groups of 7 teams successive in this ranking. Next we produced an alternative
partitioning by the League features (Table 11.1) through the standard k-means algorithm,
setting k = 4. We run the stochastic k-means algorithm several times and used the
clustering consisting of most equally sized clusters. Lastly, we produced singleton
clusters, one for each league. The groupings achieved by the former two approaches
are summarized in Table 12.1.

We trained the portfolio model using the feature-based classifier as the constituting
model type. Table 12.2 presents the RPS for the three clustering variants, with models
trained on seasons up to and including 2009/10 and validated on all the subsequent
seasons. The results indicate a detrimental effect of each clustering variant, likely
following from the smaller training sets available for training each constituting model.
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Figure 12.3: Average occurrence counts of features of given categories in the classification trees’
nodes.

Table 12.3: Performance of the classification model trained on different subsets of features.

Features RPS

pi-ratings only 0.2067

pi-ratings + PageRank + historical strength 0.2061

all feature categories 0.2055

12.5 feature importance

Lastly, we examined the effect of individual feature categories as defined in Section 11.
We did this in two manners.

Firstly, we counted how many times a feature was used in the tree nodes of the clas-
sification model. Figure 12.3 shows that the pi-ratings were by far the most commonly
used features. On the other hand, current-form features were used only sporadically.

Secondly, we trained the model (again on seasons up to and including 2009/10)
using different feature subsets and compared their RPS (on the remaining seasons).
As Table 12.3 shows, each feature set extension leads to a small improvement of the
model’s performance.
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Figure 12.4: Comparison of performance of the learners on English Premier League.

12.6 lrnns

Training the LRNNs on the whole dataset proved to be too computationally demanding.
Therefore, we limited the dataset for evaluating this relational learner to the world’s
most prestigious English Premier League over the seasons 2006-2016. LRNNs were
trained sequentially with a history span of 5 years.

We display the final results in Figure 12.4. All the learners easily pass the natural
baseline (mean RPS 0.2260), with LRNNs (0.1976) trailing just closely behind the
classification model (0.1961).

12.7 comparison with state-of-the-art

In this section we compare the selected classification model (Section 10.2) against
the state-of-the-art (Section 12.4). To comply with the validation framework used in
our experimental review (Section 6) we had to redo the hyperparameter search. The
hyperparameter optimization was done by Optuna [2]. The best set of hyperparameters
found by Optuna follows: max_depth (= 4), subsample (= 0.6), min_child_weight (= 20)
and colsample_bytree (= 0.4).

The selected model outperformed the state-of-the-art model by a considerable margin
(Table 12.4).

We also examine the similarities between the selected model’s predictions and the
state-of-the-art models’ predictions (Table 12.5). We observe, that the classification
model’s predictions are quite distinct from both the best statistical model and the best
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Table 12.4: Comparison of the selected model against the state-of-the-art.

xEnt RPS Acc.

classification 1.0215 0.2093 48.75

Berrar 1.0246 0.2101 48.54

Bivariate Poisson 1.0251 0.2103 48.58

rating. However, some level of divergency is expected as the model performed much
better (Table 12.4).

Table 12.5: Average Jensen-Shannon divergence between the selected model and the state-of-
the-art models.

classification Berrar Bivariate Poisson

classification 0.000 0.042 0.043

Berrar 0.042 0.000 0.051

Bivariate Poisson 0.043 0.051 0.000

Finally, we investigate how quickly the model adapts to new data (Figure 12.5). The
classification model consistently outperforms the state-of-the-art model. Namely in the
beginning of the seasons, the performance gap between the models is noticeably large.
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Figure 12.5: Crossentropy of the models as a function of percentage of season completion.
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D I S C U S S I O N

As expected, all prediction methods fell between the natural lower and upper bounds
in terms of the RPS error indicator. Quite surprisingly, the performance of the relational
model was not far from that of the best predictor. However, the classifier based on
features manually designed with domain insight still turned out to be unmatched
in performance. The selected classification model outperformed the state-of-the-art
model(s) in all metrics measured. This is a strong result, as while the xgboost model
leverages large number of features, all the features were directly derived from the final
scores. We illustrate the viability of the feature engineering approach. However, we
are aware that adapting the feature engineering process to another domain would be
more time-consuming than adapting for example Elo (Section 5.2.1) to that domain.
Nevertheless, the results in Table 12.4 indicate much larger improvement than was
achieved in recent years in score-based modeling (Section 7). An undisputed advantage
of using a machine learning model is that the model can integrate outputs of other
models (Section 5).

While we included only the pi-ratings into the features, it is quite likely that adding,
for example, the scoring rates from a Poisson model would improve the performance
even further. On the other hand, as the statistical models and ratings models were very
correlated in their respective groups (Table 7.2), it is possible that inclusion of multiple
ratings and scoring rates would not benefit the model. While the improvement over
the state-of-the-art is substantial, the bookmakers remain far out of reach (Section 12.3).
It seems unlikely that a performance gap of this size could be overcomed by making
small incremental changes to the model (i.e. including outputs of other score-based
models). This observation calls for the use of more complex models and features or a
different approach to beating the market rather than relying on an overall better model.

critique of rps

The regression model performed rather poorly. This model was intended to accom-
modate the ordinality of target classes (Eq. 10.2). We analyzed its predictions and
indeed, the predicted probabilities were always monotone in the sense that either
pl ≤ pd ≤ pw or pl ≥ pd ≥ pw. However, the best-performing classification model
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Figure 13.1: Distribution of model’s (left) and bookmaker’s (right) probability predictions on
the pw-pl plane. Green dots indicate the cases where pd is smaller than each of pw
and pl .

did not adhere to such ordinality. In particular the latter model predicted the draw
as the least probable outcome in about 30% of the matches. This calls into question
the monotonicity assumption and consequently the suitability of the RPS evaluation
measure.

To get further insight into this issue, we analyzed the bookmaker’s predictions and
found out that the predicted draw probability is smallest among the three predicted
probabilities in about 25 % of the matches, further supporting the reasonability of
predicting non-monotone probability distributions.

In fact, although the very outcomes of a game are naturally ordered, the correspond-
ing probabilities cannot be reasonably expected to be monotone. Indeed, for a pair of
equal-strength teams, the draw is the least probable match outcome. This is given by
the prior probability of results which is much lower for draws. As the number of goals
in a match increases, the number of possible draws grows linearly, while the number
of all possible results grows quadratically. As we can observe from the Figure 13.1, this
scenario indeed occurs when the probabilities of the home team winning and losing
are close to each other, or in other words, when there is no clear favorite.

Another reason why the draw might be the least probable outcome is that the teams
are usually awarded 3 points for a win and 1 point for a draw. In certain situations, a
team might consider the draw as a loss of two points instead of a gain of one point.
This leads to taking a higher risk during a match when the score is level.



Part IV

B E AT I N G T H E B O O K I E S
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I N T R O D U C T I O N

In Section 2 we introduced the main parts of a common workflow of a trader t, who
relies on a statistical estimator t to predict fair prices R of market opportunities Ω based
on some available relevant data Dt, with the resulting estimates of the expected returns
Et[ρ] being fed into some subsequent portfolio optimization strategy s to produce final
wealth allocations f . In Part ii we examined several existing estimators for a specific
market and in Part iii we introduced our own models. We have seen (Section 12.3) that
even the best score-based models trail behind the bookmakers by a large margin. One
of the reasons is that the bookmakers do not limit themselves to score-based models
and most likely rely on much more detailed data. Such data could provide them with
a considerable information advantage (Section 2.4).

In this part of the thesis, we delve deeper into the problem of profiting against
the market. To level the playing field w.r.t. the information advantage, we focus our
experiments on the domain where comprehensive data are freely available – the
basketball, namely the NBA competition.

In Section 15 we summarize the relevant literature. Section 16 provides key insights
into the problem of profitability from the market taker’s perspective and eposes caveats
in common approaches. To tip the scales into our favor, we introduce the notion of
decorrelation (Section 17). We introduce a novel predictive model in Section 18. In Section
19 we conduct both simulations and experiments on real-world data to put our model
and the concept of decorrelation to test.
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R E L AT E D W O R K

Several studies investigated the strategies of bookmakers and bettors. Focusing on the
US National Football League (NFL), Levitt [76] traced how odds are set and concluded
that bookmakers rely on their ability to outperform an average bettor in outcome
forecasting rather than on earning money by balancing weighted wages and profiting
from the margin. This hypothesis was subjected to further scrutiny by Paul and
Weinbach [99], challenging Levitt’s dataset informativeness as consisting only of bets
from entry-fee betting tournaments and a limited numbers of participants. However,
the conclusions essentially confirmed those of Levitt. Although the hypothesis was
not confirmed in basketball [100] using National Basketball League (NBA) data, the
disagreement can be explained by the smaller NBA betting market. The recent inquiry
[101] into the behavior of bettors with data from NBA and NHL season 2008/09

proposes that most bettors act more like fans than investors. Combined with the
conclusion of Levitt [76], this motivates the question whether the bookmaker can be
exploited with an emotionless statistical model.

The idea that a statistical model might outperform experts was first tested in Forrest
and Simmons [41]. The experts were found unable to process publicly available infor-
mation efficiently. Signs of using information independent of publicly available data
were rare. The study deemed it unlikely that experts would outperform a regression
model. Forrest, Goddard, and Simmons [40] challenged the thesis that a statistical
model has an edge over tipsters. They examined the performance of a statistical model
and bookmakers on 10 000 soccer matches and concluded that bookmakers were on
par with a statistical model.

Song, Boulier, and Stekler [117] analyzed prediction accuracy of experts, statistical
models and opening betting lines on two NFL seasons. There was a little difference
between statistical models and experts performance, but both were outperformed by
the betting line. Spann and Skiera [119] compared prediction accuracy of prediction
markets, betting odds and tipsters. Prediction markets and betting odds proved to be
comparable in terms of prediction accuracy. The forecasts from prediction markets
would be able to generate profit against the betting odds if there were not for the high
fees. On the other hand, tipsters performed rather poorly in this comparison.
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Stekler, Sendor, and Verlander [120] focused on several topics in horse racing and
team sports. Forecasts were divided into three groups by their origin – market, models,
experts. Closing odds proved to be better predictors of the game outcome than opening
odds. The most important conclusion was that there was no evidence that a statistical
model or an expert could consistently outperform betting market.

Franck, Verbeek, and Nüesch [42] inspired by results of prediction markets in
different domains such as politics, compared performance of betting exchange against
the bookmaker on 3 seasons of 5 European soccer leagues. The prediction market was
superior to the bookmaker in terms of prediction accuracy. A simple strategy based
of betting on the opportunities where the average odds set by the bookmakers were
higher than the odds in prediction market was profitable in some cases.

Angelini and De Angelis [5] examined effectiveness of 41 bookmakers on 11 European
major leagues over a period of 11 years. Some of the markets turned out to be inefficient,
since a trivial strategy of betting on opportunities with odds in certain range led to
positive profit.

15.1 predictive models

The review Haghighat, Rastegari, and Nourafza [53] of machine learning techniques
used in outcome predictions of sports events points out the prevailing poor results of
predictions and the small sizes of datasets used. For improving the prediction accuracy
the authors suggested to include player-level statistics and more advanced machine
learning techniques.

Loeffelholz, Bednar, and Bauer [79] achieved a remarkably high accuracy of over
74% using neural network models, however their dataset consisted of only 620 games.
As features, the authors used seasonal averages of 11 basic box score statistics for each
team. They also tried to use average statistics of past 5 games and averages from home
and away games separately but reported no benefits.

Ivanković et al. [58] used ANNs to predict outcomes of basketball games in the
League of Serbia in seasons 2005/06–2009/10. An interesting part of the work was
that effects of shots from different court areas were formalized as features. With this
approach, the authors achieved the accuracy of 81 %. However, their very specific
dataset makes it impossible to compare the results with other research.

Miljković et al. [92] evaluated their model on NBA season 2009/10. Basic box score
statistics were used as features, as well as win percentages in league, conference or
division and in home/away games. A Naive Bayes classifier in 10-fold cross-validation
achieved mean accuracy of 67 %.

Puranmalka [107] used play-by-play data to develop new features. The main reason
why features derived from such data are superior to box score statistics is that they
include a context. Out of Naive Bayes, Logistic Regression, Bayes Net, SVM and k-NN,
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the SVM performed best, achieving accuracy over 71 % in course of 10 NBA season
from 2003/04 to 2012/13.

Zimmermann, Moorthy, and Shi [134] leveraged multi-layer perceptrons for sports
outcome predictions. They proposed the existence of a glass ceiling of about 75 %
accuracy based on results achieved by statistical models in numerous different sports.
This glass ceiling could be caused by using similar features in many papers. They
also argued that the choice of features is much more important than the choice of a
particular machine learning model.

Vračar, Štrumbelj, and Kononenko [131] made use of play-by-play data to simulate
basketball games as Markov processes. Analysis of the results showed that a basketball
game is a homogeneous process up to the very beginning and end of each quarter.
Modeling these sequences of the game had a large impact on forecast performance.
The author saw the application of their model not only in outcome prediction before
the game but also in in-play betting on less common bets (number of rebounds/fouls
in specific period of the game).

Maymin [86] tested profitability of deep learning models trained on different datasets
during the course of a single NBA season. In the paper, positive profits were only
achievable with the use of detailed features extracted by experts from video recordings,
while models trained using standard box-score statistics terminated with significant
loss.

Constantinou, Fenton, and Neil [28] designed an ensemble of Bayesian networks to
assess soccer teams’ strength. Besides objective information, they accounted for the
subjective type of information such as team form, psychological impact, and fatigue.
All three components showed a positive contribution to models’ forecasting capabilities.
Including the fatigue component provided the highest performance boost. Results
revealed conflicts between accuracy and profit measures. The final model was able to
outperform the bookmakers.

Sinha et al. [115] made use of twitter posts to predict the outcomes of NFL games.
Information from twitter posts enhanced forecasting accuracy, moreover, a model based
solely on features extracted from tweets outperformed models based on traditional
statistics.

15.2 portfolio optimization

The approach of splitting the trader’s workflow into the two steps of predictive
modeling and investment optimization has a long tradition, and has been exploited in
absolute majority of works [39, 59, 90, 95, 102, 124], with some notable exceptions [50,
75]. Extracting the parameter estimation out of the portfolio optimization problem
then enabled the respective economic research to thrive in an isolated mathematical
environment, giving rise to the frameworks of Markowitz [85] (Section 2.7.2) and
Kelly [63] (Section 2.7.3), and their many successors [19, 71, 95, 124, 132]. While
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widely adopted, the optimality of the resulting portfolios is based on rather unrealistic
assumptions, which has been progressively criticized by many [55, 81, 90, 103, 111,
112]. From the perspective studied in this thesis, the main underlying issue is the
separation from the problem of estimation of the return (price) parameters, which
are simply assumed at input. The resulting issues with uncertainty in the portfolios
are then typically mitigated with additional practical methods [60, 80, 95]. There are
also some principled approaches to tackle the input parameter uncertainty, such as
considering the portfolio optimization problem within the framework of Bayesian
decision making [10, 20, 24] or distributionally robust setting [14, 123]. However, to our
best knowledge, all of these methods are aimed at mitigating the additional (structural)
risk, stemming from the uncertainty in the input parameters, rather than increasing
the profits.
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P R O B L E M I N S I G H T S

In this Section, we provide some key insights into the problem of profitability from the
perspective of the predictive model t.

Let us briefly recall the problem setup. We generally consider the problem of profiting
from the trader’s t perspective as a stochastic game against the market maker m. The
market maker m uses an estimator m to continuously price the incoming opportunities
Ω. Following some investment strategy, the trader t then takes particular α and β

actions (allocations) upon these opportunities Ω, based on his/her own estimates
produced by t. Given some distribution of market opportunities PΩ, we can then set up
the game in terms of three random variables R, M, T corresponding to the fair price,
market maker’s, and market taker’s estimates, respectively. The goal of the trader (as
well as the market maker) is then to maximize his/her expected (long-term) profits W
as measured by some utility u underlying the chosen strategy s.

16.1 from accuracy to profit

The key issue with the optimal investment strategies based on portfolio optimization
(Section 2.7) is that they are inherently relying on accurate estimates of the asset returns.
Their performance is then directly stemming from the quality of these estimates – the
better the estimates, the higher the utility of the portfolio can be achieved in general.
While this holds to an extent for most of the common portfolio optimization strategies,
it is best demonstrated on the optimal investment approach of Kelly.1

For simplicity of demonstration, let us consider an idealized case of a betting market
with no spread (Section 2.3) on the market maker’s odds. Recall that the Kelly strategy
is to find wealth fractions f so as to

maximize
f

ER

[
log
(
fT · (1 + ρ)

)]
=

n

∑
i=1

ri log
(

fi ·
1

mi

)
subject to

n

∑
i=1

fi = 1, fi ≥ 0
(16.1)

1 The correspondence between Kelly and MPT is shown in Section 2.7.3.
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Note that in this idealized case, we calculate the expectation of returns w.r.t. the
true distribution PΩ(R). It can then proved [29] that the solution to this constrained
optimization problem yields

f ∗ = r (16.2)

i.e. the optimal fraction of wealth fi to invest in each outcome (opportunity) ωi is
directly equal to the underlying fair price (probability) ri. Interestingly, we can see that
in this case, the optimal strategy for the investor is to completely ignore the market
pricing mi and focus solely on having the fair prices values predicted correctly, in which
case he/she is guaranteed the maximal possible long term profits. This is commonly
known amongst Kelly practitioners as “betting your beliefs”. Note that this strong
result was derived from ER and thus it only holds if the true distribution PΩ(R) is
known or, more precisely, if the error in its estimate via T = R̂ as measured through
the Kullback-Leibler divergence (Section 2.5) is zero [29]:

DKL(R||T) = −
n

∑
i=1

ri · log
ti

ri
= 0 (16.3)

Naturally, it is close to impossible to estimate the true distribution PΩ(R) perfectly in
practice. Let us thus extrapolate into more practical settings by relaxing the condition
into a non-zero DKL(R||T). Given that the optimal fractions f should be equal to the
true outcome probabilities r, let us substitute back into the long term growth rate of
wealth which Kelly seeks to maximize as

WG =
n

∑
i=1

ri log
(

ti ·
1

mi

)
(16.4)

Now, following the proof from [29], this can be rewritten into

WG =
n

∑
i=1

ri log
ti

ri
+

n

∑
i=1

ri log
ri

mi
(16.5)

and consequently, using the formula for KL-divergence (Equation 2.8), back into

WG = DKL(R||M)− DKL(R||T) (16.6)

showing the important insight that, for Kelly, the growth of wealth of the trader is
directly equal to the difference in quality of his/her estimates T over the market prices
M in terms of KL-divergence from the fair prices R. Consequently, positive returns
can only be achieved iff the model of the trader achieves a lower cross-entropy error
than the market XENTΩ(R, M) < XENTΩ(R, B) (Section 2.5). Given the information
theoretic interpretation of the relative entropy [69], this is sometimes referred to as the
aforementioned “information advantage” of the trader over the market maker.
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implications Note that this result was derived with the assumption of seeking
growth-optimal investments, and its extrapolation beyond that setting may lead to
wrong conclusions. Particularly, it is true that one does need a better2 model to make
positive profits if committed to invest optimally with Kelly. However, this does not
imply that one needs a better model to make positive profits if one does not require
the growth optimality.

The constraint for better model accuracy in classic portfolio optimization techniques
is then inherently connected to the notion of risk (Section 2.6), which is embedded
together with expected returns into the same quantity being optimized. For instance,
in the Markowitz’s model, it is easy to show that even negative return portfolio may
be preferred to positive returns should the latter be associated with higher variance.
From the Kelly’s perspective, overvalued positive return estimates may actually lead to
negative growth due to overbetting (Table 16.1), and it is also commonly necessary to
allocate certain amount of wealth onto opportunities (outcomes) with negative returns
to achieve optimal growth [126].

Consequently, wrong assessment of the fair prices associated with either of such
opportunities can lead to inappropriate (over-)investments, resulting into a negative
overall profit, even in situations where positive returns could be generally achieved
otherwise.

16.2 the essence of profit

While the performance of common portfolio optimization strategies is tightly bound to
the accuracy of price predictions (Section 16.1), we argue that accuracy is not essential
for profitability in general. This is best demonstrated by taking the, sophisticated but
questionable, notions of risk out of the optimization scope, resorting back to simple
strategies such as the uniform investments (Section 2.7.1). Consequently, one can
simply base profitability directly on the ability to correctly detect opportunities with
positive expected returns (Section 2.6). Note now that whether the expectation from
an opportunity ωi is deemed positive depends purely on the comparison between ti
and mi. This boils down to the renown “buy low, sell high” policy to trade mispriced
selections simply as:

mi ̸= ti

mi < ti =⇒ α = back (buy) assumed underpriced selection

mi > ti =⇒ β = lay (sell) assumed overpriced selection
(16.7)

Naturally, to asses the actual return from a trade, the true selection value ri needs to
be accounted for. The actual return from a supposedly profitable opportunity can then
be defined as

2 We note we do not distinguish between XENT and other measures of model accuracy here for simplicity.
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ER[ρi] =

 ri
mi
− 1, if mi < ti (backing selection)

1−ri
1−mi

− 1, if mi > ti (laying selection)
(16.8)

Note that the true expected return ER[ρi] can clearly be negative and that its absolute
value is not dependent of the model’s estimate ti. However, the ability to correctly
recognize the profitable opportunities through the mi ≶ ti comparison is naturally
dependent on the ordering of the ti estimates w.r.t. mi and ri. Note nevertheless that
this comparison-based quality is very different from the accuracy-based reasoning.
Consequently, even if err(t) > err(m), a consistent profit can still be made, as we
demonstrate through the following simple examples.

Example 16.2.1. Assume fair price of a selection to be 0.6, with the bookmaker m
estimating it at mi = 0.5, with the corresponding odds set up to 2.0, and the bettor
t estimate being at ti = 0.9. Clearly, the bettor’s estimate is more erroneous here
(e.g. XENT(ti) > XENT(mi)). Nevertheless he/she has no choice but to use his/her
estimate to asses the return on investment, which he/she correctly estimates as being
positive (Et[ρ] =

0.9
0.5 − 1 > 0). Despite being very wrong numerically with his/her

expectation of a 80% ROI, by betting a unit of wealth, he/she can still expect to obtain
the actual positive ROI of 20%.

Note that the trader’s t estimates ti in these examples could have been set arbitrarily
larger (within the respective domain), making the corresponding model t arbitrarily
bad by the standard error measures.

Definition 16.2.1. Followingly, let us define a more relaxed, necessary condition of
essential profitability of a model t simply as the consequent existence of one of the
following market opportunities ωi in PΩ(R, M, T):

1. the market undervalues the fair price, and the model estimates a higher value
than the market,
i.e. mi < ri ∧ ti > mi

2. the market overvalues the fair price, and the model estimates a lower value than
the market,
i.e. mi > ri ∧ ti < mi

Using sufficiently conservative (small) wealth allocations, investments into either of
these cases will lead to systematic profits of the market taker in the long run. On the
contrary, no investment strategy can lead to positive profits without such opportunities
in the portfolio.
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Nevertheless the overall profitability of a model t will naturally depend on the
relative occurrence of such ωi’s in the actual market distribution PΩ (Definition 2.5.1).
Let us now generalize the essence of profitability, from reasoning about the necessary
relationships between individual ri, mi, ti estimates, to the properties of the whole
market distribution PΩ(R, M, T). Following on the aforementioned “buy low, sell high”
strategy with uniform investments, the expected profitability from a market distribution
PΩ is clearly

EPΩ [ρ] = ∑
i

ER[ρi] · PΩ(ri, mi, ti) (16.9)

We already know that the fair price ri is a principally unknown random variable and
one can thus never perfectly assess the true return ρi from any trade in advance, for
which we resort to an estimate ρ̂i. However, the market distribution PΩ(R, M, T) here
is also principally unknown, for which one again needs to rely on statistics while
estimating it from historical data as P̂. Consequently, one can estimate the essential
profitability of a model t w.r.t. market pricing m as

EP̂[ρ̂] = ∑
i

ET[ρi] · P̂(ti, mi, ti) (16.10)

As with any investment strategy, the calculated expected returns can be very different
from the actual return distribution EP̂[ρ̂] ̸= EPΩ [ρ], depending on the properties of the
estimates (Section 2.6). However, profitability of the simple unit stake strategy leads
to a much more relaxed and robust condition on the model quality, which is what we
exploit to yield positive profits even with estimators of inferior predictive performance.

drawbacks We note that the standard approach of focusing on predictive accuracy
has many advantages, such as being naturally less noisy and more interpretable, and
should be preferred when profitability is not the target [133]. We also acknowledge
that by deflecting from the accuracy-based view and focusing merely on the essential
profitability with the unit investments, we downplay the role of explicit optimization
of growth and risk in the formal strategies of Kelly and Markowitz, respectively.
Nevertheless, as discussed in the respective Sections 2.7.3 and 2.7.2, these formal
notions are based on rather unrealistic (wrong) assumptions, which is why additional
risk management practices, such as the fractioning (Section 2.7.3), need to be commonly
employed with the strategies anyway [82, 83, 127]. Consequently, sacrificing formal
optimality w.r.t. unrealistic objectives in order to transition from negative to positive
profits does no seem that big of a sacrifice.
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Table 16.1: All possible orderings of the fair price (ri), market maker’s (mi), and trader’s esti-
mates (ti), with the implied trading decisions and resulting profitability. Additionally,
the relative size of the implied Kelly fraction is indicated.

values ordering decision profit Kelly

ri < ti < mi lay mi > ri overbet

ri < mi < ti back ri < mi overbet

ti < ri < mi lay mi > ri underbet

ti < mi < ri lay mi < ri underbet

mi < ti < ri back ri > mi underbet

mi < ri < ti back ri > mi overbet

16.3 market taker’s advantage

The market maker’s advantage (Section 2.3) is a well-worn concept. However, there
is also an advantage of the market taker which is rarely discussed explicitly, but is
essential to the traders profitability. While the market maker has the obligation to
continuously quote price of both sides of the market (Section 2.5), the taker has the
crucial liberty to select only those of the resulting opportunities deemed profitable.
That is he/she is to decide whether and which side of the market to trade once the
market maker’s prices have been laid out. As the second player, the difficulty of his/her
task is reduced from the correct price estimation to the estimation of the market price
error direction. While this might seem as a similarly difficult problem, the latter is a
considerably easier task.

For demonstration, consider the three values ri, mi, ti of the fair price, market maker’s,
and trader’s estimates, respectively, to be laid out completely at random, yielding a
uniform market distribution PU where R, M, T ∼ U 3. The possible situations that
emerge from the ordering of ri, mi, ti in such a setting are displayed in Table 16.1. Note
that the 6 particular orderings are distributed evenly in a uniform distribution. Since
neither of the estimators possesses any information w.r.t. R, both M and T clearly
perform equally by the means of arbitrary statistical estimation measures (Section 2.5).
While one might thus expect this to be a neutral trading setting for both the sides,
interestingly, the market taker t would already be able to make a substantial profit with
uniform investments by correctly identifying 2/3 of the profitable opportunities.

Intuitively, this demonstrates a simple fact that it is generally more likely to overesti-
mate an undervalued estimate than to further underestimate it, i.e.

mi < ri =⇒ PU (mi < ti) > PU (ti < mi) (16.11)

and vice versa for an overvalued estimate:

mi > ri =⇒ PU (mi < ti) < PU (ti < mi) (16.12)
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Figure 16.1: A 2D projection of the P(R, M, T) distribution onto P(M, T|R = r) with visualiza-
tion of essential profitability (Section 16.2) of the individual point-estimates as a
vector field. Green color (solid arrows) denotes positive returns and red (dashed
arrows) negative returns, respectively, while the length of each vector corresponds
to the ROI in an idealized two-sided market (Section 2.6).

Note, importantly, how this property of the completely uninformative PU is conve-
niently aligned with the essential profitability of the trader’s model (Definition 16.2.1).
The concrete proportions of the individual situations will naturally depend on the
particular distribution PΩ, nevertheless the property holds very generally for unskewed
distributions with unbiased estimators (Section 16.4). Note the difference from the
standard model accuracy measures which would all evaluate both models equally in PU .
Nevertheless from the perspective of profitability, the situation is very different since,
as opposed to the market maker, the market taker is not penalized for estimation errors
in these two situations that emerge more often than not. Consequently in PΩ = PU ,
the trader is in an inherent advantage of 2 : 1, which can be directly turned into the
corresponding profits.

It is perhaps more instructive to demonstrate the concept on a particular level of
fair prices. Without loss of generality, let us consider all selections with a fair price ri
being traded in an ideal two-sided market (without spread). We can then plot a 2D
projection of the P(R, M, T) market distribution by conditioning it as P(M, T|R = r),
and visualize the essential profitability (Definition 16.2.1) of the corresponding sub-
regions of the distribution. The result is displayed in Figure 16.1. We can observe that
the distribution of the profitable regions (green, solid arrows) is clearly in favor of
the trader, and that the potential returns progressively increase with the error of the
market maker, i.e. the distance of M = m from r.
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Note that here we did not yet assume any particular (non-uniform) distribution of
estimates, and this inherent advantage of the trader is thus completely oblivious of any
information advantage as well as any other property of the price estimators. Rather, it
stems purely from the unequal roles of the market maker m and taker t. Consequently,
should they, e.g., switch roles with the same estimation models (m ← t, t ← m), the
advantage would stay exactly the same on the side of the market taker t.

16.4 distribution of estimates

While demonstrating the concept of the trader’s advantage, the uniform PU (R, M, T)
distribution of estimates with completely uninformed players from Section 16.3 seems
rather unlikely in practice. In real world markets, the values R, M, T are not going to
be independent, but rather correlated with each other, since M and T are typically
based on similar information sources and both try to model R with similar techniques
(Section 2.4). Let us now review common properties of the more realistic market
distributions of these estimates.

bias The market makers are typically very good at being close to the fair price, and
we can assume their estimates M to be unbiased w.r.t. R, or, more formally:

EP(B)− R = 0 (16.13)

which means that they are not systematically deviating when measured against the fair
prices alone. Should a market maker be biased in this manner, it would be extremely
easy to exploit him/her merely by trading all opportunities on the corresponding side
of the market. Moreover we can reasonably assume him/her to be point-wise unbiased
at each particular price level r, i.e.

EP(B|R = r) = r (16.14)

If that was not the case, the market maker would again be easily exploitable by
correspondingly trading all possible selections within a certain price range r± δ, i.e. by
backing all selections in price ranges where the maker m systematically undervalues the
selections, and vice versa for laying in overvalued price ranges. One can typically check
from historical data that the market makers are not biased in this simple manner in any
reasonably efficient market. Note that the unbiasedness is only one of the conditions
for a fully efficient market (Section 2.2). There is generally no reason for the market
taker t to be biased in this trivial way either, unless a systematic error is present in
his/her model t, or he/she reversely reflects the market maker’s bias to exploit it.

variance Given the assumption that the models behind M and T are both unbiased
estimators of R, we can now focus merely on their (co-)variances. It is a common
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practice in statistical estimation of functions for one to look for an estimator with the
smallest variance among the class of unbiased estimators. Since we are working with
function estimators, we are not interested in the total variance of the estimations T,
which includes variance due to variations in R itself as

Var[T] = ER[Var[T|R]] + VarRE[T|R] (16.15)

but merely in the first term capturing the expected variance left w.r.t. predicting R.
Given the assumption of the point-wise unbiased estimates, the conditional variances
w.r.t. R are then equal to the covariances of the models, i.e.

Cov[M, R] = Var[M|R] and similarly (16.16)

Cov[T, R] = Var[T|R] (16.17)

Given the unbiasedness, these co-variances then directly reflect the quality (accuracy) of
the underlying models of the market maker (Cov[M, R]) and market taker (Cov[T, R]),
respectively.

The last degree of freedom in terms of covariances in P is the relationship between
M and T, i.e. Cov[M, T] (Cov[M, T|R]). While the other two covariances have the clear
introduced interpretation, the Cov[M, T] is more intriguing, but is also essential to the
proposed profitability of inferior predictive models (Section 16.2.1). As we have seen
in the case of the uniform market distribution PU , where both the players possess the
same amount of information w.r.t. the fair price, corresponding to the same accuracies
of m and t, the trader t is always in advantage. However not all distributions with
equally informed players are as such, as demonstrated by the following example.

Example 16.4.1. Assume a scenario where both the trader t and market maker m possess
the exact same model. Clearly, their information value, accuracy and all statistical
measures will be exactly the same, just as in the case of the uniform distribution PU .
Nevertheless, the trader will not be in an advantageous position anymore. Since all
his/her estimates coincide with the market price ∀i : ti = mi, it is not possible to detect
any profitable opportunities where r ̸∈ (mi − ϵ, mi + ϵ), even if they exist in the market
distribution PΩ. Hence, the profitability of the trader in this case is clearly zero.

From the statistical viewpoint, one can note an underlying difference between the two
example distributions in the third covariance term Cov[M, T]. Whereas in the uniform
distribution, the two variables were completely independent, i.e. Cov[M, T] = 0, here
they are equal and thus display maximal possible covariance (Cov[M, T] = σ2). While
this anecdotal reference to the connection between profitability and Cov[M, T] is rather
informal, we analyse it in detail in the next Section 17.
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16.5 confidence thresholding

We also explored a modification applicable to each of the betting strategies, in which
only high-confidence predictions are considered. More precisely, a probability estimate
p̂i is passed to the betting strategy if and only if

| p̂i − 0.5| > ϕ.

The reasoning behind this thresholding is that we want to remove the games where
the model is very indifferent about the favorite. Although being in principle valid for
the strategy, our assumption is that probabilistic predictions around 0.5 are typically
more imprecise than predictions of higher confidence. This is especially true for the
proposed models trained with gradient descent techniques over logistic sigmoid output
which is indeed most sensitive at that point.



17
I N C R E A S I N G P R O F I T T H R O U G H D E C O R R E L AT I O N

Recall that we have a two-sided market with opportunities Ω of some fair price (result-
ing in R), being priced by the market maker m as M and taker t as T, resulting into
some market distribution of estimates PΩ(R, M, T) (Definition 2.5.1). Let us now con-
sider the context of the common properties (Section 16.4) of such market distributions
PΩ, allowing assessments of model performance in terms of expected returns EPΩ(ρ)

w.r.t. the distribution PΩ(R, M, T). Particularly, we will explore the aforementioned
statistical relationship between the market maker m and taker t. To further standardize
the relationship study, i.e. to take the individual variances of M and T out of scope, we
now switch from covariance Cov[T, M|R] to correlation Corr[T, M|R].

Definition 17.0.1. We use the term decorrelation to refer to the concept of decreasing
the partial correlation Corr[T, M|R] between a price estimator t of the trader and the
market maker m w.r.t. the fair pricing function r across opportunities ωi ∈ Ω endowed
with some market distribution PΩ (Definition 2.5.1).

The main goal of this section is to show that enforcing smaller1 partial correlation
Corr[T, M|R] of a price estimator t generally increases its essential profitability (Defini-
tion 16.2.1) within common market distributions, particularly for estimators t that are
inferior to the market maker m.

17.1 unbiased estimators

Let us first consider the common setting of unbiased price estimators, the reasoning
behind which was introduced in Section 16.4.

Theorem 17.1.1. The essential profitability (Definition 16.2.1) of an unbiased estimator
t with the lowest partial correlation Corr[T, M|R = r] = −1 with the market m
is maximal. Consequently, no deviation from such a model t can thus increase the
profitability further.

Proof. Now for Corr[T, M|R] = −1 and an arbitrary r, the probability distribution
P(T, M|R = r) collapses into a linear function (t; a, b) 7→ m of the form

1 Note that utilize the term “decorrelation” to refer to decreasing the correlation even below zero.

89
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m = a · t + b where a =
Cov[M, T|r]

Var[T|r] and b = (1− a) · r (17.1)

where the b is set so that the mean values EP(T,M|R=r)[M] = EP(T,M|R=r)[T] of both
the marginals P(M|r) and P(T|r) are at r (unbiased). The mean of the distribution
m = t = r thus lies on the line:

r = a · r + (1− a) · r (17.2)

Clearly, since Corr[T, M|r] < 0, we have also Cov[M, T|r] < 0 implying a negative
slope a < 0 of the function line. There are consequently only 2 possible price estimate
orderings (regions in Figure 16.1) for all Ω, both of which are profitable, as follows:

1. T < r < M implying returns 1−r
1−m − 1 > 0

2. M < r < T implying returns r
m − 1 > 0

Note again that the individual values of returns do not depend on the value of
T but merely on the value order. From the assumed role of the trader t, the only
possible changes to the distribution (and profit) can be made via changes in his/her
model t estimates T. However, any potential deviation from this distribution (line)
with Corr[M, T|R] = −1 can only result into one of the following ordering (region)
transitions:

1. T < r < M can change to either:

a) r < T < M implying no change in the returns 1−r
1−m − 1 > 0

b) r < M < T implying decrease in the returns to r
m − 1 < 0

2. M < r < T can change to either:

a) M < T < r implying no change in the returns r
m − 1 > 0

b) T < M < r implying decrease in the returns to 1−r
1−m − 1 < 0

ergo no deviation from Corr[M, T|R] = −1 can increase the profitability any further.

Note that this also means that we cannot increase the returns even via transition
into a perfect estimator with both BiasR[T] = Var[T|R] = 0, i.e. a perfect model
P(T = r|R = r) = 1 which always returns the correct answer in a deterministic
fashion (and for which the partial correlation would be undefined). This means that
for the purpose of the essential profit generation (Definition 16.2.1), the variance of the
model no longer acts as an error. Note this is in direct contrast to a correlated investor
who, given a variance higher than the market maker, is doomed to obtain completely
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Figure 17.1: A sketch of the profitability regions from Figure 16.1 with an example distribution
of estimates density for the case of unbiased estimations of M and T w.r.t R = r,
where Var[T|R] > Var[M|R], corresponding to a common situation in practice
(Section 16.4, 19). The effect of Corr[T, M|R] on profitability is demonstrated on a
highly correlated model (left, red), an independent model (middle, blue), and a
highly negatively correlated model (right, green). By decreasing the correlation,
progressively larger parts of the profitable regions of the distributions (green) are
being covered, reflecting the corresponding increase in returns.

negative returns. 2 A visualization of the correlation effect on the returns, with an
example elliptical market distribution for the given setting, is depicted in Figure 17.1.

17.2 biased estimators

While common, the assumption of point-wise unbiased estimators might be seen as
too strict in practice. The market maker is very unlikely to be overly biased, due to its
constant exposure to the traders, who would likely exploit such easy opportunities
(Section 16.4). Nevertheless the market takers are generally free to come up with all
sorts of models. Let us briefly review the situation where the trader’s model t, which
we seek to optimize, is more biased than m w.r.t. R, i.e. BiasR[T] > BiasR[M].

2 We also note that the transition between the two corner cases is somewhat smooth w.r.t. the returns for
common market distributions, such as the elliptical distributions used for visualization. However, we
acknowledge that we do not present a formal proof of monotonicity of this property.
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Figure 17.2: A sketch of the distribution of estimates density from Figure 16.1 for the case where
the trader T is biased more than the market maker M w.r.t R = r. The decorrelation
technique still commonly helps as larger parts of the profitable regions of the
distribution are being covered by decreasing Corr[T, M|R].

In this setting, one can craft counterexamples showing that T with Corr[T, M|R] =
−1 is not universally the most profitable model t anymore.3 While not the universally
best possible model, a decorrelated T will still perform very well in practice here.
Particularly, it will be consistently better than a highly correlated model, even if the
latter has a lower variance Var[T|R]. Interestingly, it is also better than a model with
zero variance (vertical line), i.e. given some bias, we are able to turn the variance into
an advantage by decreasing correlation with M. Lastly, the minimal correlation will be
also typically better than no correlation for common elliptical or uniform conditional
distributions. A visualization of this setting, where BiasR[T] > BiasR[M], is displayed
in Figure 17.2 for an example elliptical distribution. Note that the same reasoning is
also applicable to cases where the BiasR[T] = BiasR[M].

17.3 having a superior model

The primary motivation behind the concept of lowering the correlation with the market
is to make profits with models of inferior quality, which would commonly yield negative
profits otherwise. We argued that such a situation is common, since the market (maker)

3 For instance, consider a distribution where the model t is biased w.r.t. R by some δ as

T =

M− 1.1 · δ, if T > r

−M + 1.1 · δ, if T < r
(17.3)

This δ-biased model t is set to make maximal possible profit, and decreasing its correlation with m will
actually hurt its performance. However, achieving such a distribution of estimates Pδ(R, M, T) is close to
impossible in practice, as it is carefully crafted w.r.t. the unknown value of r. Consequently, this scenario is
highly unstable w.r.t. r as well as variance of T, a decreasing of which will paradoxically lead to complete
loss of all returns.
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Figure 17.3: A sketch of the distribution of estimates density from Figure 16.1 for the case of
unbiased estimators M and T w.r.t R = r, where Var[T|R] < Var[M|R], correspond-
ing to a superior estimation model t of the trader. For a superior model in terms
of the conditional variance, the correlation with the market does not pose such a
problem as the model is already profitable, and decreasing it might actually hurt
the performance, nevertheless, a model with the lowest covariance still generally
provides the highest profitability.

price tends to be a very good estimate of the fair price in any fairly efficient market
(Section 16.4). Nevertheless, for completeness, let us consider the opposite case of
having a superior model, i.e. a situation where err(t) < err(m). Following the statistical
decomposition of estimation errors in terms of bias and variance (Section 2.5), let
us separately consider two cases of such superiority through a model with (i) lower
variance and (ii) lower bias.

superior variance For a superior model T with a lower conditional variance
Var[T|R] < Var[M|R], the concept of decorrelation (Definition 17.0.1) no longer works
as a consistent profit enhancement, even for common, realistic market distributions.
Particularly, decreasing the correlation Corr[T, M|R] can actually decrease the returns
in many scenarios. We again depict the concept on an example elliptical distribution
in Figure 17.3. The variances of the estimators are exactly opposite to those from
Figure 17.1. We can see that the returns with an independent model Corr[T, M] = 0
are lower than those of a highly correlated model Corr[T, M|R] = 1. Note however that
the decrease of returns in this case is smaller than the increase in the opposite case (i.e.
shift from Corr[T, M|R] = 1 to Corr[T, T|R] = 0 in Figure 17.1). Finally, the profits of
Corr[T, M|R] = −1 are still maximal.

superior bias We have argued for the practical necessity of a market maker not to
be systematically biased in Section 16.4, which leaves a little space for the trader to beat
the market in terms of BiasR[T] < BiasR[M]. Nevertheless it should be acknowledged
that in the unlikely case that the market maker indeed is more biased than the trader,
the concept of decorrelating the estimates for increased profits breaks down severely.
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Figure 17.4: A sketch of the distribution of estimates density from Figure 16.1 for the case
where the market maker M is biased more than the trader T w.r.t R = r. While
having such a superior model, being correlated with the market poses no problem
to profit, and decreasing the correlation will commonly hurt the performance.

The situation is depicted in Figure 17.4. We can see that in this setting, decreasing
Corr[T, M|R] can easily work in a directly counterproductive fashion by consistently
decreasing the profits.

Importantly, however, it should be noted that with a model that is superior by either
means, i.e. where err(t) < err(m), there is no need in trying to decrease Corr[T, M|R]
to make profits, since such a model t needs no help with that to begin with. This can
be conveniently detected in advance by measuring err(t) and trading the model with
standard investment strategies (Section 2.7) instead.

17.4 the problem with kelly

The scenarios we have demonstrated so far operated with the simple uniform invest-
ment strategy (Section 2.7), which allowed us to generate profits through decorrelation
(Definition 17.0.1), even with models of inferior accuracy w.r.t. the market. As indicated
in Section 16.1, let us now explain why this cannot be done with the plain Kelly
investment strategy (Section 2.7.3).

We have shown that the growth of wealth WG with the Kelly strategy is directly
equal to difference between the KL-divergence of the market maker from the true dis-
tribution DKL(M||R) and the trader from the true distribution DKL(T||R), respectively,
in Equation 16.6. It follows that a plain Kelly trader does not care about the particular
relationships between R, M, T which are essential to profitability (Section 16.2), since
the only thing that matters is how close are our estimates to the true distribution
as compared to the bookmaker. The two principally different views of the market
distribution PΩ properties are depicted in Figure 17.5.

Consequently, it thus does not matter whether an individual opportunity seems to
have a positive or negative expected profit, since an optimal Kelly trader will bet an
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Figure 17.5: The difference between a typical statistical treatment of quality of the estimators,
where the relationship between M and T is considered merely in the terms of their
distances to R (left), and the proposed scenario, where we explicitly consider their
mutual statistical relationship (right).

amount derived merely from the expected growth corresponding to the information
advantage w.r.t. R. Given the knowledge of the fair price distribution PΩ(R), this
provably leads to more wealth than any other strategy. It is then tempting to believe
that the Kelly solution then provides an upper-bound to the amount of profit that
can be made in any scenario. Nevertheless, this is not true in the real world setting
where we lack the knowledge of the true probabilities PΩ(R), as we demonstrate on
the following example.

Example 17.4.1. Consider a simple scenario of Kelly betting on a match m with
two equally probable exclusive outcomes {home, away}, and the two corresponding
opportunities ω

β
h , ωα

a priced by the bookmaker m and the trader t equally as follows

m(ω
β
t ) =

0.3 on t=home

0.7 on t=away
t(ωα

t ) =

0.3 on t=home

0.7 on t=away
(17.4)

Following the derivation from Section 16.1, the optimal vector of fractions f to bet
on the outcomes (back the selections) would be

f =

0.3 on t=home

0.7 on t=away
(17.5)

Since the two estimates of m and t coincide, there is clearly no information advantage
of the trader and consequently zero profit to be made with Kelly. And the situation is
the same for any other strategy, too, since the expected profitability of the opportunities,
following the expected profit definition from Equation 2.10, from the perspective of the
trader is simply zero

Et [ρ
α
h] =

0.3
0.3
− 1 = 0 (17.6)

Et [ρ
α
a ] =

0.7
0.7
− 1 = 0 (17.7)



96 increasing profit through decorrelation

Now consider altering the scenario by decorrelating the estimates of the trader t as
follows

m(ωt) =

0.3 on t=home

0.7 on t=away
t(ωt) =

0.7 on t=home

0.3 on t=away
(17.8)

Despite switching the estimates, we can clearly see that both the bookmaker m and the
trader t are still equally distanced from the fair price r (by the means of DKL as well as
any other possible metric), leading again to no information advantage and, as expected
(Section 16.1), to zero actual growth of wealth (Section 2.7.3):

WG =
1
t
· log

(
Wt

W0

)
= ∑

i
ri · log

(
fi

mi

)
= 0.5 · log

(
0.7
0.3

)
+ 0.5 · log

(
0.3
0.7

)
= 0

(17.9)

Nevertheless, the essential profitability of the opportunities from the perspective of the
trader is now

Et[ρ
α
h] =

0.7
0.3
− 1 = 1.33 (17.10)

Et[ρ
α
a ] =

0.3
0.7
− 1 = −0.57 (17.11)

and betting uniformly (Section 2.7.1) some unit on the first, correctly recognized
(Section 16.2), opportunity ωh, the trader would make a consistent unit profit of

Er[ρ
α
h] =

rh

m(ωα
h)
− 1 =

0.5
0.3
− 1 = 0.66 (17.12)

despite it being different from his/her estimated ρα
h = 1.33.

The inability of Kelly to make profit in such profitable scenarios follows directly
from its growth-based view of optimal investments (Section 2.7.3). 4 While maximizing
the growth WG, less than optimal investments are just as harmful as over-investment,

4 Note that the situation in this example remains the same even when allowing Kelly to keep part of the
bankroll aside in the cash option (Section 2.7). This would introduce an infinite subspace of other optimal
fractional solutions, all of which however, by definition (Section 2.7.3), lead to the exact same growth
values (i.e. zero true growth for any optimal Kelly solution here).
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despite the latter leading to definite ruin while the former only leads to sub-optimal
growth. To distinguish between the two arguably different types of risk, various
modifications of the Kelly criterion have been proposed to reflect the natural preference
for avoiding the ruin at the cost of sub-optimal growth. By giving up on the expected
(theoretical) growth optimality (i.e., w.r.t. Et), we might then actually achieve better
true growth (i.e., w.r.t. Er) in many real world settings, as we demonstrate below.

17.4.1 Fractional Kelly

Perhaps the most common remedy to mitigate the risk stemming from the erroneous
estimates is fractional Kelly (Section 2.7.3). Let us demonstrate the effect of this risk
management practice on the introduced setting from Example 17.4.1 as follows.

Example 17.4.2. Being aware of the uncertainty in her estimates, the Kelly trader now
decreases the optimal fraction by one-half, popularly referred to as “half-Kelly” betting.
Considering the first scenario of coincidental estimates from Equation 17.4, the invested
fractions are now thus decreased by half as

f =

0.15 on t=home

0.35 on t=away
(17.13)

However, the growth of wealth, accounting for the half of it being held separately, stays
inert at zero since

WG =
1
t
· log

(
Wt

W0

)
= ∑

i
ri · log

(
0.5 +

fi

mi

)
= 0.5 · log

(
0.5 +

0.15
0.3

)
+ 0.5 · log

(
0.5 +

0.35
0.7

)
= 0

(17.14)

In words, the trader is still under-betting the the first opportunity ωα
h which is profitable,

while putting a larger amount on the second opportunity ωα
a , which is loss-making.

Decreasing the fractions then cannot change the simple fact that the opportunity is not
recognized correctly by the estimator t w.r.t. essential profitability (Definition 16.2.1).

Consider now the latter scenario of the decorrelated estimates laid out in Equa-
tion 17.8. The invested fractions are again cut by half as
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f =

0.35 on t=home

0.15 on t=away
(17.15)

While the information advantage and all the properties of the estimators stay the same
as in Equation 17.8, the growth of wealth, accounting for the half of it being held
separately, is now positive, particularly

WG =
1
t
· log

(
Wt

W0

)
= ∑

i
ri · log

(
0.5 +

fi

mi

)
= 0.5 · log

(
0.5 +

0.35
0.3

)
+ 0.5 · log

(
0.5 +

0.15
0.7

)
= 0.087

(17.16)

In words, decreasing the amount invested into the first opportunity ωα
h from 0.7 down

to 0.3, which is now below the optimal f ∗α = rα
h = 0.5 for the full Kelly fraction,

removes the overbetting problem, while keeping the second fraction on the loss-making
opportunity ωα

a comparably low.

While the full Kelly forms an interesting corner case, oblivious to the correlation of
the estimator w.r.t. the market, we have demonstrated that the decorrelation concept has
a positive impact on the commonly used fractional Kelly modification, where decreasing
the correlation Corr[M, T|R] consistently increases profits given that other properties of
the distribution stay the same. Similarly, it also improves profitability of other common
portfolio optimization strategies, such as the MPT, which we demonstrate practically
in experiments (Section 19).

17.5 towards decorrelated estimators

So far, we have analysed profitability of the price estimators t w.r.t. various market
distributions PΩ and investment strategies s to derive the desired decorrelation prop-
erty. Nevertheless, we have not yet discussed how to actually create such profitable
estimators t. As outlined in Section 2.5, the common way to create a fundamental price
estimator e is by optimizing its fit to historical data D via minimization of some error
measure err(e). The standard desideratum is then to predict the fair prices R within
PΩ as closely as possible.5

5 while keeping the model complexity reasonably low for good generalization.
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However, we now know that being accurate is not the only possible desideratum of
the estimator, and that for the subsequent trading it might be even more important
to minimize the conditional correlation with the market Corr[M, T|R]. Note that an
optimal trade-off between these properties of an estimator will naturally depend on
the subsequent investment strategy being used (Section 2.7). For instance, we have
shown that in the corner case of the full Kelly investor, minimizing the correlation
has no impact on the profits at all (Section 17.4) and to maximize the Kelly growth
(Section 2.7.3) it is sufficient to resort to the plain cross-entropy error (Section 2.5),
minimizing the KL-distance from the fair price distribution (Section 16.1). Nevertheless
for the uniform investment strategy (Section 17) as well as other practical strategies,
minimizing the covariance will generally improve profitability (Section 17.4.1).

Without discussing the optimal trade-off, we can roughly conclude that it is generally
advisable to strive for an unbiased estimator with low variance and low covariance
with the market. One can then alter the standard machine learning objectives to reflect
these new desiderata, and validate the optimal setting experimentally. The scope of the
corresponding error measure would thus include not only the standard estimates T
and ground truth values R, but also the market estimates M, and could then look like

err∗(R, M, T) = Bias[T|R] + Var[T|R] + Cov[T, M|R] (17.17)

Recall the purpose of the MSE measure, which is to minimize the squared distance
from the fair price as

MSEΩ(R, T) = E
[
(T − R)2] = 1

|Ω| ∑
ωi∈Ω

(ti − ri)
2 (17.18)

which can be thought of as trying to jointly minimize the bias and variance of the
estimator (Section 2.5). A straightforward approach to reflect the outlined desiderata is
to modify the existing MSE measure with an extra term to also penalize the covariance
between M and T as

MSE∗Ω(R, M, T) =
1
|Ω| ∑

ωi∈Ω
(ti − ri)

2 + γ · (ti − ri)(mi − ri) (17.19)

where the extra “decorrelation term” is weighted by a tunable hyperparameter γ > 0.
The purpose of γ is then to adjust the trade-off between the decorrelation term and the
standard MSE, since the two normally represent opposing objectives, as the market
maker tends to be very close to the fair price.

We note that altering the MSE might seem counter-intuitive from the perspective
of a perfect estimator, corresponding to the minimal MSE, where the additional term
will only hurt its performance by pushing it away, not only from the market price, but
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from the fair price, too, since argmin[MSE] ̸= argmin[MSE∗]. However, recall that the
decorrelation only makes sense when one is not able to train such a superior model
(Section 17.3). In those common cases, the model generally occupies some wider area
of the error landscape around the MSE minima, where the additional term is meant
to navigate away from the correlated regions (Figure 16.1), which may be equally
distanced from the MSE minimum, but will yield inferior profits.

While we do not attempt to argue about optimality of the proposed MSE∗ metric,
and we acknowledge that there are likely more appropriate measures to maximize the
model profitability, we will demonstrate that this simple MSE-extension already works
well enough in practice to proof viability of the decorrelation concept.
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M A R K E T TA K E R ’ S M O D E L

We have already seen in Section 12.3 that bookmakers pose a tough challenge. Moreover,
we discovered that the predictions of various score-based models are very similar
(Section 7.1). As we aim to explore the accuracy-decorrelation tradeoff, we opt for
a more complex model, allowing us to produce predictions with different levels of
decorrelation and accuracy. To further enhance the diversity of the predictions we
stray from using solely the score-derived features and opt for using much more
detailed (player-level) statistics gather during each game. We also describe the details
of implementing the MPT (Section 2.7.2) in Section 18.4.

18.1 data features

The information we use for predicting the outcome of a match combines data relating
to the home team and those pertaining to the visiting team. For each of the two,
we aggregate various quantitative measures of the team’s performance in all of its
preceding matches since the beginning of the season in which prediction takes place. 1

The entire range of these measures is described in the Appendix a. Current seasons are
commonly deemed the most relevant time-windows for player and team performance
prediction. The seasonal aggregation is conducted as follows. All variables depending
on the match duration are divided by the duration in minutes, and for the seasonal
aggregate, we consider the average of these per-minute values. Such variables are
marked as “per-minute" in the Appendix. For the remaining variables, the median
value is considered instead.

The inputs d ∈ D to the predictive model t are tuples of real-valued features
constructed out of the said season-aggregated data. Some of the variables in the latter
pertain to individual players and others relate to the whole team. Consequently, we
distinguish two levels of feature-based description. In the fine-grained player-level,
we collect all player-related variables as individual features, whereas the team-level
description involves only the team-level variables as features.

1 A few initial games of the season are thus not included among training instances and serve only to collect
the statistics. We will quantify this arrangement for a particular testing data set in Section 19.2.

101



102 market taker’s model

Meta-parameter
Standard

(team-level)
Convolutional
(player-level)

Architecture D64-D32-D16-D1 C1-D64-D16-D1

Activations tanh tanh

Dropout 0.2 0.2

L2 regularization 0.0001 0.001

Table 18.1: The architecture and meta-parameters of the neural predictive models considered.

Besides the historical track data considered above, the bookmaker’s odds assigned
to a match represent another piece of information potentially relevant to the predic-
tion of its outcome. While the odds clearly present a very informative feature, their
incorporation in a model naturally increases the undesirable correlation with the book-
maker (Section 18.3). Whether to omit or include the odds as a feature thus remains
questionable and so we further consider both the options in the experiments.

18.2 neural model

We explored two variants of a neural network. The first has a standard (deep) feed-
forward architecture with 4 dense layers, while the second one uses a convolutional
layer [73] followed by 3 dense layers. Table 18.1 describes the architectures and the
relevant meta-parameters of the two neural models.

The standard feed-forward network is intended for the team-level feature data.
The convolutional network is specifically designed for the player-level data to deal
with the large number of features involved. The principle of its operation, inspired
by well-known applications of convolutional networks for visual data processing, is
explained through Figure 18.1. Intuitively, the convolutional layer may be perceived as
a bridge from player-level variables to a team-level representation. However, whereas
team-level variables already present in the data are simple sums or averages over all
team’s players, the convolution layer provides the flexibility to form a more complex
aggregation pattern, which itself is learned from the training data.

18.3 model decorrelation

In sports betting, one cannot observe the true probability of an opportunity, even
retrospectively after the match. Instead, the label ri ∈ {0, 1} provided with each learning
sample ωi reflects merely the binary outcome realization endowed by the underlying
probability. This poses a problem to the decorrelation term from Equation 17.19 which,
using the binary realizations instead of the actual probability values, would degenerate
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Figure 18.1: The convolutional neural network for player-level data. The input to the network
are two matrices (one for the home team, one for the visitors), with players in rows
and all player-level features in columns. The rows are sorted by the time-in-play of
the corresponding players, and only the top 10 players w.r.t. this factor are included.
The convolution layer is defined by a vector of 10 tunable real weights. The output
of the layer is a vector where each component is the dot product of the former
vector with one of the matrix columns. The vector may be viewed as a filter sliding
horizontally on the the first input matrix, and then on the second.

severely. Particularly, the decorrelated cases of mi < ri < ti and ti < ri < mi would be
impossible to achieve with the binary values of ri ∈ {0, 1}. To better accommodate the
proposed MSE∗ loss into this practical binary betting setting, we thus slightly alter the
loss to directly decorrelate M and T instead as

MSE∗Ω(R, M, T) = E[(T−R)2−γ · (T−M)2] =
1
|Ω| ∑

ωi∈Ω
(ti− ri)

2−γ · (ti−mi)
2 (18.1)

where the mi are the bookmaker’s probability estimates induced from the published
odds oi. We note that this is different from the direct penalization of the covariance
of the residuals in Equation 17.19. evertheless, the motivation is that a similar effect
should be achieved through the integration with the remaining MSE term, which forces
the estimates ti to be unbiased w.r.t. ri. Hence simply penalizing model estimates that
are too close to the market price should also decrease the partial covariance between
the two.

18.4 betting strategy

Firstly, we evaluated the models by betting with the basic uniform investment strategy
(Section 2.7.1), for which we derived the theoretical reasoning in Section 17. We further
refer to this simple strategy as unif. Additionally, we also evaluated the classic portfolio
optimization technique of Markowitz (Section 2.7.2). For this strategy we needed to
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calculate the expected returns of the opportunities. Following the probabilistic setting
detailed in Section 2.6, the expected profit can be defined as

ER[wi] = (
ri

mi
− 1) · fi. (18.2)

We further needed co calculate the covariances of the expected returns (Section 2.7.2).
Assuming that there is no correlation between the traded selections, corresponding to
the underlying games played within a single round, it is sufficient to consider only the
variances of the individual independent opportunities2 instead of the whole covariance
matrix Σ. Following from the underlying Bernoulli distribution, the variance of each
opportunity can then be defined as

VarR[wi] = E[w2
i ]−E[wi]

2 = (1− ri)ri f 2
i

1
mi

2 (18.3)

Naturally, we used the model estimates ti instead of the true (unknown) values ri
in the actual calculations of both ET[wi] and VarT[wi]. We then chose the particular
portfolio f following the Sharpe ratio criterion (Section 2.7.2), and used the algorithm
of sequential quadratic programming [15] to identify its unique maximizer. We further
refer to this strategy as sharpe.

2 This is a somewhat simplifying assumption based on excluding the option to bet on both the exclusive
game outcomes simultaneously.
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E X P E R I M E N T S

To put the concept of decorrelation to test, we conducted experiments both on generated
and real-worl data. The simulations are a necessary part of the experiments as they
allow us emphasize the effects of the possible setups (in our case the Corr[T, R] and
Corr[T, M]). The experiments or real-world data are invaluable as they ground the
parameters beyond our control in reality.

19.1 simulations

To further demonstrate the proposed decorrelation concept (Definition 17.0.1), we
conduct an auxiliary experiment requiring simulated data. Here we simulated the
ground truth R as well as both of the estimates T, M with various levels of their
correlation, and measured the profits made by the sharpe and unif strategies for these
different levels.

More precisely, we sampled triples R, T, M from a multivariate Beta distribution.
The distribution is parameterized with the marginal means and variances of the three
variables and their pair-wise correlations. The mean of each of the three variables was
set to 0.5, reflecting the mean probability of the complementary binary outcomes. The
variance of M was determined as 0.054 from real bookmaker’s data (Section 19.2), and
T’s variance copies this value. The variance of R was set to 0.08. These values set an
upper-bound for Accuracy. When R is sampled with mean 0.5 and variance 0.08, then
with 0.75 probability the event (R > 0.5) predicts correctly the outcome of a Bernoulli
trial parameterized with R.

We let the correlations Corr[T, R] and Corr[T, M] range over the values {0.85, 0.90, 0.95}.
These represent the independent variables of the analysis, acting as factors in Table
19.1. Corr[R, M] was set to 0.9, so we could explore all possible orderings of Corr[R, T]
and Corr[R, M] w.r.t. Corr[]. For each setting of Corr[T, R] and Corr[T, M], we drew
ri, ti, mi (i = 1, 2, . . . , n = 15) samples, to simulate one round of betting. Then we set
the odds oi = 1/mi (the bookmaker’s margin being immaterial here) for 1 ≤ i ≤ n, and
determined the bets f1, f2, . . . , fn from o1, o2, . . . , on and t1, t2, . . . , tn using the sharpe
and unif strategies. Finally, the match outcomes were established by a Bernoulli trial
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Corr[T, R] Corr[T, M] ρsharpe ρunif Acc. Cons. Upset Missed Spotted

0.85 0.85 0.12 0.05 70.05 61.96 20.40 9.55 8.09

0.90 0.07 0.02 70.04 63.53 22.10 7.85 6.51

0.95 -0.02 -0.04 70.06 65.65 24.23 5.71 4.41

0.90 0.85 0.19 0.11 71.46 62.62 19.72 8.82 8.84

0.90 0.15 0.09 71.44 64.20 21.36 7.20 7.24

0.95 0.10 0.05 71.53 66.51 23.41 5.06 5.02

0.95 0.85 0.26 0.16 72.85 63.29 18.99 8.16 9.56

0.90 0.23 0.15 72.90 64.96 20.61 6.49 7.95

0.95 0.21 0.14 72.97 67.23 22.69 4.34 5.74

Table 19.1: Returns ρsharpe of the sharpe and ρunif of the unif strategies w.r.t. to the correlations of
the (estimated) probabilities. Accuracy denotes the % of correct outcome predictions
by the bettor (predict win if ti > 0.5). The four last columns break down the
proportions (in %) of different combinations of predictions by t (bettor) and m
(bookmaker): Consensus (both right), Upset (both wrong), Missed (bettor wrong,
bookmaker right), Spotted (bettor right, bookmaker wrong).

for each of the r1, r2, . . . , rn. This procedure was repeated 30 000 times (rounds). 1 With
these inputs, we calculated the ρ of sharpe and unif strategy.

Table 19.1 then shows the returns as well as the accuracy of the bettor’s outcome
predictions (call win if T > 0.5), and the percentual breakdown of 4 possible combina-
tions of bettor’s and bookmaker’s predictions. The accuracies, as well as the four latter
proportions, are also averaged over all bets in all simulated rounds.

Besides the unsurprising observation that bettor’s prediction accuracy grows with
Corr[T, R], the results show that profits indeed decay systematically as the bettor’s
and bookmaker’s predictions become more correlated (increasing Corr[T, M] decreases
profit). An instructive observation is that the proportion of spotted opportunities is in
all cases higher when the bookmaker’s and bettor’s predictions are less correlated.
Furthermore, we observe the effect of market taker’s advantage (Section 16.3) in
instances where Corr[T, R] = Corr[M, R]. Moreover, we can see that the betting strategy
is another independent factor strongly influencing the profit, with the sharpe strategy
being superior to the unif strategy. Besides the achieved return being higher, the
variance of the return between rounds of the sharpe strategy (≈ 0.1) was half of the
variance of the unif stategy (≈ 0.2).

1 Note that this is not the same (for Wsharpe) as setting n = 15 · 30000 without repeating the procedure, as
the full unit budget is supposed to be spent in each round.
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Figure 19.1: Distribution of all games (blue) with respective proportions of wins (green) w.r.t
odds set by the bookmaker from home (left) and away (right) team perspectives.
Clearly, the home team is generally favored by the bookmaker, with the true
proportions roughly following the inverse of odds.

19.2 data

We retrieved the official box score data from the National Basketball Association (NBA)
from seasons 2000 to 2014. The gathered data provide game summaries; namely, player-
level and team-level statistics such as the number of shots or number of steals per
game are recorded. The detailed description of the available kinds of information can
be found in Appendix a. Games with incomplete statistics were removed, and thus
the number of games differs slightly between seasons; on average, 985 games per year
were included. 10 initial games of each team in each season were not included as
training instances as they only served for the initial calculation of seasonal aggregates
(c.f. Section 18.1). There are 30 teams in the NBA, so one league round consists of
n = 15 games.

For betting odds, we used the Pinnacle2 closing odds for seasons 2010–2014. For
earlier seasons, we had to collect odds data from multiple different bookmakers. Figure
19.1 shows histograms of odds distribution for the home and away teams and their
winnings, respectively. The histograms reveal that in most matches the home team is
the favorite in bookmaker’s eyes. This comes as no surprise due to the home court
advantage (home teams win in about 60 % of games). Both histograms exhibit long-
tailed distributions, as expected given that odds correspond to inverse probabilities,
which roughly follow the true proportions of the respective winnings.

Figure 19.2 shows the seasonal averages of the bookmaker’s margin ϵ, displaying
the artifact caused by different sources of odds information prior and post 2010. This
artifact does not confound the experimental questions below, except for causing higher

2 https://www.pinnacle.com/

https://www.pinnacle.com/
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Figure 19.2: Evolution of margin over the seasons (left), showing drop for seasons 2010-2014

where Pinnacle was the only source, and its dependency on bookmaker’s odds for
the favorite of each game (right), displaying interesting patterns with rapid growth
towards the clear favorite case (minimal odds).

profits in late seasons due to the systematically smaller margins. To get a better insight
into the bookmaker’s margins, we plotted their dependency on odds for the 2010–2014

period. Figure 19.2 indicates a significantly larger margin in the case where there is
a clear favorite with high probability of winning (odds close to 1). This is due to an
asymmetry in bookmaker’s odds: while there are several occasions with the favorite’s
odds around 1.1 implying win-probability around 91%, odds around 11 representing
the complementary probability 9% are extremely rare. This asymmetry is increasing
with favorite’s odds approaching 1.0.

19.3 experimental protocol

The central experimental questions are: how accurate the learned predictors of match
outcomes are, how profitable the betting strategies using the predictions are, and how
the profitability is related to the correlation between the bookmaker’s and bettor’s
models. The selection portfolios for the betting strategies were then formed repeatedly
from the batches of 15 matches played in each round of the NBA league, which were
available simultaneously on the betting market. The profit from each such round was
then evaluated independently, i.e. the same unit of budget was assumed for staking
in each round. Note that this repeated single-period portfolio optimization setting
(Section 2.7.2) is different from the growth-based view on portfolio optimization in
time, as assumed by Kelly (Section 2.7.3).

Training and evaluation of the models and betting strategies followed the natural
chronological order of the data w.r.t individual seasons, i.e. only past seasons were
ever used for training a model evaluated on the upcoming season. To ensure sufficient
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training data, the first season to be evaluated was 2006, with a training window made
up of seasons 2000–2005, iteratively expanding all the way to evaluation on 2014,
trained on the whole preceding range of 2000–2013.

19.4 results

The number of games with complete statistics available varies slightly with each
individual season providing around 1000–1050 matches. The total number of 9093
games from the evaluated seasons 2006–2014 is counted towards the accuracies (% of
correctly predicted outcomes) of each model, whose results are displayed in Table 19.2.
The accuracy of the bookmakers’ model, predicting the team with smaller odds to win,
levels over these seasons at 69± 2.5%. Generally in terms of accuracy, the bookmakers’
model is slightly superior to the neural models.

As expected, we can observe from the results that models utilizing the highly
informative odds feature achieve consistently higher accuracies. Similarly, the models
that included the bookmakers’ odds were anticipated to be more correlated with the
bookmaker. This is convincingly confirmed by measurements of Pearson coefficients
which stay at 0.87 for the models trained without odds as a feature, and 0.95 for models
including them, applying equally to both the player-lever and team-level models.

Table 19.2 also provides important insights on the profit generation. We display
two selected betting strategies (sharpe, unif) against a range of considered variants of
predictive models. Similarly to the simulation experiment, the superiority of sharpe over
unif is still evident. Apart from accuracy, we argued for decorrelation as an important
factor for profit, which we here enforce by the means of the altered loss function while
varying the trade-off γ between accuracy and decorrelation. We can clearly see that
such a trade-off is effectively possible for a wide range of 0.4 ≤ γ ≤ 0.8 resulting into
positive returns over all the models utilizing the sharpe strategy.

In Figure 19.3 we display insight on how the trade-off constant γ influences the
distribution of the four betting outcome situations. As expected, increasing the decorre-
lation results in a desirable increase of spotted opportunities, i.e., cases where the model
correctly predicted the underdog’s victory. If this increase is too abrupt, however, it
is outweighed by the parallel increase of missed opportunities where the bet on the
underdog was wrong.

Revisiting the question as to whether include the odds feature or not, in terms of
profit generation the results are inconclusive, with the team-level model performing
slightly better with the feature and the player-level model without it.

Next we investigate the effects of confidence-thresholding used to filter the pre-
dictions (Section 16.5) before providing them to the betting strategy. By varying the
threshold ϕ we can trade off between the confidence of the model and the number of
games providing information to the strategy. Results in Table 19.3 are conclusive in that
a reasonably low amount of thresholding ϕ ≤ 0.2 in conjunction with the sharpe strategy
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Figure 19.3: The impact of loss-function-term model-decorrelation techniques, as introduced in
Section 18.3 and applied on the team-level model, on the distribution of betting
opportunity outcomes: Consensus (both right), Upset (both wrong), Missed (bettor
wrong, bookmaker right), Spotted (bettor right, bookmaker wrong).
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Team-level Player-level

γ ρsharpe ρunif Accuracy ρsharpe ρunif Accuracy
W

ith
ou

to
dd

s

0.0 -0.94 ± 0.12 -4.31 ± 0.17 67.47 ± 0.05 0.38 ± 0.10 -5.12 ± 0.11 67.62 ± 0.03

0.2 -0.58 ± 0.14 -3.60 ± 0.19 67.39 ± 0.04 1.05 ± 0.12 -3.31 ± 0.13 67.47 ± 0.03

0.4 0.46 ± 0.15 -1.94 ± 0.20 67.30 ± 0.05 1.74 ± 0.14 -1.73 ± 0.18 67.15 ± 0.10

0.6 0.86 ± 0.08 -1.68 ± 0.22 66.93 ± 0.06 1.32 ± 0.14 -0.61 ± 0.28 66.19 ± 0.09

0.8 1.37 ± 0.08 -0.79 ± 0.16 65.94 ± 0.12 1.10 ± 0.29 -0.39 ± 0.22 64.93 ± 0.35

1.0 -1.06 ± 0.35 -1.32 ± 0.31 61.38 ± 0.19 -1.92 ± 0.81 -2.59 ± 0.57 61.30 ± 0.48

W
ith

od
ds

0.0 0.89 ± 0.10 -2.24 ± 0.21 68.83 ± 0.05 -0.12 ± 0.24 -3.83 ± 0.22 68.80 ± 0.06

0.2 0.92 ± 0.18 -2.10 ± 0.24 68.71 ± 0.04 0.72 ± 0.13 -2.50 ± 0.14 68.37 ± 0.04

0.4 1.24 ± 0.12 -1.24 ± 0.22 68.42 ± 0.05 1.49 ± 0.10 -1.30 ± 0.12 67.48 ± 0.10

0.6 1.44 ± 0.11 -0.64 ± 0.21 67.88 ± 0.06 1.02 ± 0.20 -1.15 ± 0.22 66.55 ± 0.10

0.8 1.41 ± 0.10 -0.56 ± 0.20 66.64 ± 0.12 1.00 ± 0.35 -0.45 ± 0.28 65.19 ± 0.27

1.0 -0.37 ± 0.16 -0.74 ± 0.13 62.49 ± 0.12 -1.22 ± 0.51 -2.25 ± 0.30 61.77 ± 0.44

Table 19.2: Averages and standard errors of profits (from 10 runs over seasons 2006–2014) for
the two strategies (sharpe, unif) with accuracies of Player-level and Team-level outcome
prediction models (Section 18) across different levels of decorrelation (Section 18.3).

indeed improves profits. Such a low threshold has the effect of filtering out generally
those predictions that are indifferent on the winner (estimated probabilities of 0.5± 0.2),
which was the main motivation for this technique.
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ϕ ρsharpe ρunif Accuracy Bets Stake

Te
am

-le
ve

l

W
ith

ou
to

dd
s

0.0 0.86 ± 0.08 -1.68 ± 0.22 66.93 ± 0.06 9093 602

0.1 1.61 ± 0.14 -1.37 ± 0.21 70.31 ± 0.07 7370 602

0.2 1.99 ± 0.25 -1.26 ± 0.21 74.08 ± 0.13 5442 601

0.3 0.54 ± 0.62 -2.65 ± 0.73 79.64 ± 0.20 2937 577

W
ith

od
ds 0.0 1.44 ± 0.11 -0.64 ± 0.21 67.88 ± 0.06 9093 602

0.1 2.18 ± 0.14 -0.13 ± 0.25 70.93 ± 0.06 7538 602

0.2 1.80 ± 0.24 -0.73 ± 0.29 74.47 ± 0.09 5749 602

0.3 0.78 ± 0.35 -1.65 ± 0.39 80.26 ± 0.21 3315 584

Pl
ay

er
-le

ve
l

W
ith

ou
to

dd
s

0.0 1.74 ± 0.14 -1.73 ± 0.18 67.15 ± 0.10 9093 602

0.1 2.39 ± 0.20 -1.42 ± 0.16 72.01 ± 0.15 6686 602

0.2 3.24 ± 0.32 -1.18 ± 0.29 77.22 ± 0.19 4228 601

0.3 -5.41 ± 0.92 -7.76 ± 1.22 84.32 ± 0.48 1841 533

W
ith

od
ds 0.0 1.49 ± 0.10 -1.30 ± 0.12 67.48 ± 0.10 9093 602

0.1 2.43 ± 0.16 -0.94 ± 0.24 72.2 ± 0.08 6749 602

0.2 3.39 ± 0.46 -0.70 ± 0.53 77.41 ± 0.12 4336 600

0.3 -5.06 ± 1.05 -8.12 ± 0.95 84.35 ± 0.29 1940 545

Table 19.3: Averages and standard errors of profits (from 10 runs over seasons 2006–2014) for
the two strategies (sharpe, unif) with accuracies of the Player-level (γ = 0.4) and Team-
level (γ = 0.6) prediction models (Section 18) across different levels of confidence
thresholding (Section 16.5). Bets represent numbers bets placed and Stake is the total
amount staked.
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C O N C L U S I O N

The main hypotheses of this study were 1) that correlation of outcome predictions
with the bookmaker’s predictions is detrimental for the bettor, and that suppressing
such correlation will result in models allowing for higher profits, 2) that convolutional
neural networks are a suitable model to leverage player-level data for match outcome
predictions, and 3) that a successful betting strategy should balance optimally between
profit expectation and profit variance.

The first hypothesis was clearly confirmed in simulated experiments and also sup-
ported by extensive real-data experiments. In the former, for each level of constant
accuracy (correlation of model and ground truth), increasing the correlation between
the model and the bookmaker consistently decreased the profit in all settings. In the
latter, models trained with the proposed decorrelation loss achieved higher profits
despite having lower accuracies than models with higher correlation, in all settings up
to a reasonable level of the decorrelation-accuracy trade-off.

Regarding the second hypothesis, the convolutional network achieved generally
higher accuracies and profits than the rest of the models in the settings excluding
bookmaker’s odds from features. This can evidently be ascribed to its ability to digest
the full matrix of players and their performance statistics through a flexible (learnable)
pattern of aggregation, as opposed to just replicating the bookmaker’s estimate from
input.

As for the third hypothesis, the portfolio-optimization sharpe strategy consistently
dominated the standard unif strategy both in simulations and in experiments on real-
world data. Additionally, we proposed confidence-thresholding as an enhancement to
the strategy when used in conjunction with models utilizing logistic sigmoid output.
This technique effectively removes very uncertain predictions from the strategy, leading
to additional increases in profit.
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C O N C L U S I O N S

In this thesis, we delved into the intricate task of modeling the probabilities of winning
a sports event with the aim of achieving profitability in the market.

In Part ii, we conducted an extensive experimental review of existing score-based
models, categorizing them into two distinct groups: rating systems and statistical
models. Our reimplementation and comparison of nine previously published models
on the largest publicly available dataset revealed remarkably similar performance.
Further scrutiny of the models’ predictions unveiled shared similarities, especially
within the same category. This comprehensive review addressed a longstanding gap in
the domain, as previous comparisons lacked robustness due to limited data or were
altogether absent.

Having established the state-of-the-art performance, we designed and developed
our own models in Part iii. We experimented with feature-based classification and
regression models as well as classifier leveraging the relational nature of the data
(LRNNs). While the feature-based regression model was dominated by its’ classification
counterpart, the LRNNs proved to be competitive in terms of performance. However,
the model was too computationally demanding and, therefore, not comparable with the
state-of-the-art models on large-scale data. The feature-based classifier outperformed
the state-of-the-art models across all examined metrics by a significant margin. We
demonstrated how easily a simpler model can be incorporated into this model and
how carefully engineered score-derived features can further enhance its’ predictive
capabilities. Despite the significant improvement over the state-of-the-art, the predictive
power of bookmakers’ odds remained far out of reach. This result called for the use of
more complex models or a different approach for beating the market than relying on
universally more accurate predictions.

Finally, in Part iv we focused on trading our predictions on the markets. We designed
and implemented a neural model for the NBA competition, where detailed player-level
data are gathered for each game. We outlined the requirements for profitability and
formalized the often-overlooked market taker’s advantage. Introducing the concept of
decorrelation, we illustrated that profits on the market could be achieved even with a
model inferior in standard accuracy-based metrics, provided it generated decorrelated
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predictions. Real-world data testing validated the crucial role of decorrelation in beating
the market.

future work While we have demonstrated that score-based approaches signif-
icantly lag behind bookmakers, we believe these models could be utilized in other
domains or lower-tier leagues where more granular data is not collected. For high-
profile events, the exploration of player-level data appears promising. Our experiments
showed that such data adds value compared to using only team-level data.

The concept of decorrelation, introduced in this study, opens up new possibilities
for future research. We employed a modified mean squared error loss function during
model fitting to encourage dissimilar predictions from the market. However, exploring
other modified loss functions may achieve an even better tradeoff between accuracy
and decorrelation.

In our experiments, we combined the Modern Portfolio Theory with confidence
thresholding to maximize returns while managing risk. Nevertheless, other methods
for selecting and evaluating opportunities warrant exploration.



Part VI

A P P E N D I X





a
N B A S TAT I S T I C S

Below is the list of player and team performance data we used for constructing features
for the model desctibed in Section 18. The grouping of variables and the acronyms
shown match the source of the data http://stats.nba.com.

basic statistics

• A S T: Number of assists. An assist occurs when a player completes a pass to a
teammate that directly leads to a field goal. (per minute)

• B L K: Number of blocks. A block occurs when an offensive player attempts a
shot, and the defense player tips the ball, blocking their chance to score. (per
minute)

• D R E B: Number of rebounds a player or team has collected while they were on
defense. (per minute)

• F G _ P C T: Percentage of field goals that a player makes. The formula to deter-
mine field goal percentage is: Field Goals Made/Field Goals Attempted. (per
minute)

• F G 3 _ P C T: Percentage of 3 point field goals that a player or team has made.
(per minute)

• F G 3 A: Number of 3 point field goals that a player or team has attempted. (per
minute)

• F G 3 M: Number of 3 point field goals that a player or team has made. (per
minute)

• F G A: Number of field goals that a player or team has attempted. This includes
both 2 pointers and 3 pointers. (per minute)

• F G M: Number of field goals that a player or team has made. This includes both
2 pointers and 3 pointers. (per minute)

• F T _ P C T: Percentage of free throws that a player or team has made.
• F TA : Number of free throws that a player or team has taken. (per minute)
• F T M: Number of free throws that a player or team has successfully made. (per

minute)
• M I N: Number of minutes a player or team has played.
• O R E B: Number of rebounds a player or team has collected while they were on

offense. (per minute)

121

http://stats.nba.com


122 nba statistics

• P F: Number of fouls that a player or team has committed. (per minute)
• P L U S _ M I N U S: Point differential of the score for a player while on the court.

For a team, it is how much they are winning or losing by. (per minute)
• P T S: Number of points a player or team has scored. A point is scored when a

player makes a basket. (per minute)
• R E B: Number of rebounds: a rebound occurs when a player recovers the ball

after a missed shot. (per minute)
• S T L: Number of steals: a steal occurs when a defensive player takes the ball

from a player on offense, causing a turnover. (per minute)
• T O: Number of turnovers: a turnover occurs when the team on offense loses the

ball to the defense. (per minute)

advanced statistics

• A S T _ P C T: Assist Percentage - % of teammate’s field goals that the player
assisted.

• S T _ R AT I O: Assist Ratio - number of assists a player or team averages per 100

of their own possessions.
• A S T _ T O V: Number of assists a player has for every turnover that player

commits.
• D E F _ R AT I N G: Number of points allowed per 100 possessions by a team. For

a player, it is the number of points per 100 possessions that the team allows while
that individual player is on the court.

• D R E B _ P C T: The percentage of defensive rebounds a player or team obtains
while on the court.

• E F G _ P C T: Effective Field Goal Percentage is a field goal percentage that is
adjusted for made 3 pointers being 1.5 times more valuable than a 2 point shot.

• N E T _ R AT I N G: Net Rating is the difference in a player or team’s Offensive
and Defensive Rating. The formula for this is: Offensive Rating-Defensive Rating.

• O F F _ R AT I N G: The number of points scored per 100 possessions by a team.
For a player, it is the number of points per 100 possessions that the team scores
while that individual player is on the court.

• O R E B _ P C T: The percentage of offensive rebounds a player or team obtains
while on the court.

• PA C E: The number of possessions per 48 minutes for a player or team.
• P I E: An estimate of a player’s or team’s contributions and impact on a game:

the % of game events that the player or team achieved.
• R E B _ P C T: Percentage of total rebounds a player obtains while on the court.
• T M _ T O V _ P C T: Turnover Ratio: the number of turnovers a player or team

averages per 100 of their own possessions.
• T S _ P C T: A shooting percentage that is adjusted to include the value three

pointers and free throws.
• U S G _ P C T: Percentage of a team’s offensive possessions that a player uses while

on the court.
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four factors , as described by [68]

• E F G _ P C T: Effective Field Goal Percentage is a field goal percentage that is
adjusted for made 3 pointers being 1.5 times more valuable than a 2 point shot.

• F TA _ R AT E: The number of free throws a team shoots in comparison to the
number of shots the team attempted. This is a team statistic, measured while
the player is on the court. The formula is Free Throws Attempted/Field Goals
Attempted. This statistic shows who is good at drawing fouls and getting to the
line.

• O P P _ E F G _ P T: Opponent’s Effective Field Goal Percentage is what the team’s
defense forces their opponent to shoot. Effective Field Goal Percentage is a field
goal percentage that is adjusted for made 3 pointers being 1.5 times more valuable
than a 2 point shot.

• O P P _ F TA _ R AT E: The number of free throws an opposing player or team
shoots in comparison to the number of shots that player or team shoots.

• O P P _ O R E B _ P C T: The opponent’s percentage of offensive rebounds a player
or team obtains while on the court.

• O P P _ T O V _ P C T: Opponent’s Turnover Ratio is the number of turnovers an
opposing team averages per 100 of their own possessions.

• O R E B _ P C T: The percentage of offensive rebounds a player or team obtains
while on the court.

• T M _ T O V _ P C T: Turnover Ratio is the number of turnovers a player or team
averages per 100 of their own possessions.

player scoring statistics

• P C T _ A S T _ 2 P M: % of 2 point field goals made that are assisted by a teammate.
• P C T _ A S T _ 3 P M: % of 3 point field goals made that are assisted by a teammate.
• P C T _ A S T _ F G M: % of field goals made that are assisted by a teammate.
• P C T _ F G A _ 2 P T: % of field goals attempted by a player or team that are 2

pointers.
• P C T _ F G A _ 3 P T: % of field goals attempted by a player or team that are 3

pointers.
• P C T _ P T S _ 2 P T: % of points scored by a player or team that are 2 pointers.
• P C T _ P T S _ 2 P T _ M R: % of points scored by a player or team that are 2 point

mid-range jump shots. Mid-Range Jump Shots are generally jump shots that
occur within the 3 point line, but not near the rim.

• P C T _ P T S _ 3 P T: % of points scored by a player or team that are 3 pointers.
• P C T _ P T S _ F B: % of points scored by a player or team that are scored while on

a fast break.
• P C T _ P T S _ F T: % of points scored by a player or team that are free throws.
• P C T _ P T S _ O F F _ T O V: % of points scored by a player or team that are scored

after forcing an opponent’s turnover.
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• P C T _ P T S _ PA I N T: % of points scored by a player or team that are scored in
the paint.

• P C T _ UA S T _ 2 P M: % of 2 point field goals that are not assisted by a teammate.
• P C T _ UA S T _ 3 P M : % of 3 point field goals that are not assisted by a teammate.
• P C T _ UA S T _ F G M: % of field goals that are not assisted by a teammate.

usage statistics

• P C T _ A S T: % of team’s assists a player contributed.
• P C T _ B L K: % of team’s blocked field goal attempts a player contributed.
• P C T _ B L K A: % of team’s blocked field goal attempts a player contributed.
• P C T _ D R E B: % of team’s defensive rebounds a player contributed.
• P C T _ F G 3 A: % of team’s 3 point field goals attempted a player contributed.
• P C T _ F G 3 M: % of team’s 3 point field goals made a player contributed.
• P C T _ F G A: % of team’s field goals attempted a player contributed.
• P C T _ F G M: % of team’s field goals made a player contributed.
• P C T _ F TA: % of team’s free throws attempted a player contributed.
• P C T _ F T M: % of team’s free throws made a player contributed.
• P C T _ O R E B: % of team’s offensive rebounds a player contributed.
• P C T _ P F: % of team’s personal fouls a player contributed.
• P C T _ P F D: % of team’s personal fouls drawn a player contributed.
• P C T _ P T S: % of team’s points a player contributed.
• P C T _ R E B: % of team’s rebounds a player contributed.
• P C T _ S T L: % of team’s steals a player contributed.
• P C T _ T O V: % Percent of team’s turnovers a player contributed.

Miscellaneous other statistics

• B L K A: Nnumber of field goal attempts by a player or team that was blocked by
the opposing team. (per minute)

• O P P _ P T S _ 2 N D _ C H A N C E: Number of points an opposing team scores on
a possession when the opposing team rebounds the ball on offense. (per minute)

• O P P _ P T S _ F B: Number of points scored by an opposing player or team while
on a fast break. (per minute)

• O P P _ P T S _ O F F _ T O V: Number of points scored by an opposing player or
team following a turnover. (per minute)

• O P P _ P T S _ PA I N T: Number of points scored by an opposing player or team
in the paint.

• P F D: Number of fouls that a player or team has drawn on the other team. (per
minute)

• P T F _ F B: Number of points scored by a player or team while on a fast break.
(per minute)
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• P T S _ 2 N D _ C H A N C E: Number points scored by a team on a possession that
they rebound the ball on offense. (per minute)

• P T S _ O F F _ T O V: Number of points scored by a player or team following an
opponent’s turnover. (per minute)

• P T S _ PA I N T: Number of points scored by a player or team in the paint. (per
minute)
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Hubáček, Ondřej and Gustav Šourek. “Beating the market with a bad predictive
model.” In: International Journal of Forecasting 39.2 (2023), pp. 691–719

WoS: ∅, Scopus: ∅, Google: 6

Journal IF: 7.9
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