
https://doi.org/10.14311/AP.2024.64.0018
Acta Polytechnica 64(1):18–24, 2024 © 2024 The Author(s). Licensed under a CC-BY 4.0 licence

Published by the Czech Technical University in Prague

ON THE VORTEX IDENTIFICATION WITHIN A LINEAR BLADE
CASCADE - AN EXPERIMENTAL RESEARCH

Erik Flídr

Czech Aerospace Research Centre, Laboratory of High-Speed Aerodynamics, Beranových 130, 199 00 Prague -
Letňany
correspondence: flidr@vzlu.cz

Abstract. This paper deals with the identification of the individual vortical structures within a linear
blade cascade based on H criteria. The experimental data obtained from the pressure measurement at
the cascade outlet were evaluated by a standard procedure to obtain the velocity field in one plane.
Then, the vorticity in the flow field was evaluated based on Crocco’s theorem, and in the final step,
the helicity density was calculated. The impact of the inlet flow angle on the velocity field as well as
on the vortical structures was investigated. The effect of the value of the H threshold on the vortex
identification is discussed in the last part of the paper.
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1. Introduction
The flow through a turbine is a complicated phe-
nomenon that has not been fully understood yet. This
type of flow is affected by many parameters, such as
geometry, Mach number, and Reynolds number. The
idealised case of this flow is the test case of the linear
blade cascade, where the mentioned parameters can
be investigated separately, both from experimental
and theoretical points of view, in specialised laborato-
ries. These investigations have been supplemented by
numerical modelling in the past decades, thanks to
the advancement in the field of computer simulations.

The topic of this paper is to identify the vortical
structure in the linear blade cascade. Therefore, a
brief description of its evolution will be given here. In
a real machine, as well as in the linear blade cascade,
an inlet boundary layer forms at the end-wall in front
of the blades. This boundary layer separates at the
so-called saddle point, discovered experimentally by
Langston et al. [1]. The separated boundary layer rolls
up into a horse-shoe vortex with two legs (pressure
and suction). The suction leg attaches to the suction
surface behind the leading edge of the blade. The
precise position of this reattachment is dependent
on many factors, such as the pressure ratio. The
pressure leg is driven by the pressure gradient into
the blade channel, consuming a low-momentum fluid
from the end-wall boundary layer. This mechanism
is responsible for the passage vortex formation. The
passage vortex then moves along the suction side of
the blade side by side with the suction leg of the horse-
shoe vortex. This model of the vortices in the cascade
was proposed by Langston [2].

However, the situation is much more complicated, as
shown by Sieverding and Van de Bosche [3]. Two vor-
tices interact, and as a result of this interaction, they
wrap around each other. This explains some results

where the position of the vortices was not the same
in all tested cases and, therefore, contradicted the
Langston model. Many more models of the vortices
in the blade cascades were introduced. More recently,
Wang et al. [4] presented their model based on smoke
visualisation. Articles reviewing this topic have also
been published, see e.g., Sieverding [5], Langston [6],
or Ligrani [7]. The effects of the main parameters
(inlet flow angle, both Mach and Reynolds numbers)
influencing the vortical structures in the cascade were
investigated experimentally by Perdichizzi [8–10], Hod-
son and Dominy [11, 12], and many others. To sum
up the results obtained from the vast number of re-
searches performed in the past, it can be concluded
that the increase of the studied parameter was respon-
sible for a higher kinetic energy dissipation (KED) in
the flow due to the larger vortical structures. These
experimental results are in agreement with theoretical
predictions given by Hawthorne [13, 14], Marris [15–
19], or Lakshminarayana [20]. Note that all of these
studies were not focused on a precise identification of
the vortices. The visualisation techniques give only a
qualitative image of the situation, meanwhile, other
papers were focused on different topics, such as on
the evaluation of KED. The vortices were identified
from the vorticity in the flow. This approach is not
entirely accurate as a definition of the vortex is still
debated, see e.g. Wu et al. [21]. Because of that, a
different approach for the identification of the vortex
structures in the blade cascade was chosen here. It is
based on the H criteria as described by Zhang and
Choudhury [22].

The paper aims to identify vortex structures in
the linear blade cascade as precisely as possible from
a new perspective. This motivation stems from the
earlier work of Flidr et al. [23], where the conventional
approach for calculating the (KED) caused by the
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vortex structures failed due to the flow separation
on the suction surface of the blade. Therefore, this
identification allows a more accurate evaluation of the
flow within the blade cascades in the future.

2. Experimental apparatus, setup
and methods

2.1. Wind tunnel, blade cascade and
pressure probe

The experiments were conducted in the VZLU Labo-
ratory of High-Speed Aerodynamics Palmovka, using
a closed-loop low-pressure aerodynamic wind tunnel
where both Mach and Reynolds numbers could be
independently varied. The flow was induced by a
twelve-stage radial compressor driven by a DC motor.
The Mach number was adjusted by controlling the ro-
tational speed of the compressor, while the Reynolds
number was modified by adjusting the stagnation pres-
sure in the tunnel, achieved through a set of vacuum
pumps. A condensed dryer was used to regulate the
air humidity in the tunnel. The wind tunnel featured
a relaxation chamber, where stagnation parameters of
the flow, such as the pressure and temperature, were
measured. To minimise fluctuation components of
the velocity, the chamber’s inlet was equipped with a
screen. The inlet flow angle was manipulated using
a movable pair of semi-shaped nozzles positioned in
front of the cascade.

The cascade itself was assembled between two
acrylic windows and contained 9 blades to ensure
the periodicity of the flow at the cascade outlet. The
span of the blades was h = 100 mm with a chord of
c = 50 mm and a pitch-to-chord ratio of t/c = 0.9.
The cascade, along with the control volume where the
calculations were performed, is schematically shown
in Figure 1. The coordinate system of the cascade is
also depicted.

Five-hole pyramid pressure probe was used to mea-
sure the outlet flow field. The diameter of the tubes
from which the probe was manufactured was 0.4 mm,
therefore, the tip of the probe had dimensions of 1.2 ×
1.2 mm. Although the tip of the probe was small, the
dimensions of the probe holder were larger compared
to the probe tip so the measurement position closest
to the wall, where the measurement was performed,
was 6 mm from the side wall of the test section.

2.2. Performed experiments
The effect of the inlet flow angle was investigated for
both constant similarity criteria, i.e., Reynolds and
Mach numbers. The Reynolds number was Re2,is =
2.5 × 105, and the Mach number was M2,is = 0.4. The
inlet flow angles were then set to α1 = −20◦, 5◦, and
30◦, corresponding to the underloaded, nominal, and
overloaded regimes. The inlet flow angle α1 = 0◦ (not
investigated in this paper) corresponds to an axial
inlet flow angle. The tested cascade had a constant
pitch-to-chord ratio of t/c = 0.9.

z y

x

Figure 1. Scheme of the control volume.

2.3. Methods
The measured data were processed using a standard
procedure. Velocity vectors were calculated from the
measured pressures using calibration matrices of the
probe. From this velocity field obtained in one plane,
the vorticity in the axial direction (y axis) was calcu-
lated directly as:

ωy = u
(i+1),j
x − u

(i−1),j
x

z(i+1),j − z(i−1),j
− u

i,(j+1)
z − u

i,(j−1)
z

xi,(j+1) − xi,(j−1) , (1)

where ux and uz represent the velocity components
in the x (circumferential) and z (radial) directions,
respectively. The remaining components of the vor-
ticity vector were calculated using Crocco’s theorem,
expressed in the form:

ϵijkujωk = 1
ϱ

∂ip0, (2)

where ϵijk is the Levi-Civita alternating tensor and
p0 is the stagnation pressure.

Having these, the helicity density was calculated as:

H = uiωi. (3)

Vortices were identified by the H criteria defined
by Zhang and Choudhry [22] as:

H = H
|ui||ωi|

, (4)

where the values of the H criteria lie within the range
of ⟨−1; 1⟩. The vortex can be identified as a re-
gion where this criterion reaches a certain thresh-
old. For this paper, the chosen threshold value was
H ∈ {⟨−1; −0.6⟩ ∪ ⟨0.6; 1⟩}.
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The local KED was defined as:

ζi = 1 −
(

λ2

λ2,is

)2
, (5)

where λ2 is the dimensionless velocity in the measured
point and λ2,is is the isentropic dimensionless velocity
obtained at the same point.

3. Results and discussions
3.1. Velocity distributions
Figures 2 to 4 represent distributions of the stream-
wise velocity in the measurement outlet plane posi-
tioned 10 mm behind the trailing edges of the blades
for three different inlet flow angles. The black contour
lines in the figures illustrate the vortices identified by
the H criterion.

The velocity reached values of us ≈ 120 m s−1 in
the wakes in the near-wall regions, where the vortices
were identified, and rose up to us ≈ 140 m s−1 at the
blade mid-span in the channel, where the KED did
not occur. It is noteworthy that the vortices identified
by the H criterion did not always occupy the position
with the lowest velocity, as seen in Figure 4. This
discrepancy was influenced by the chosen value of
the threshold H and will be discussed below. The
position with the lowest velocity shifted more towards
the blade mid-span with a higher inlet flow angle.
This shift was caused by the movement of the vortices
in the cascade towards the blade mid-span due to
the higher centrifugal forces induced by the increased
curvature of the channel.
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Figure 2. α1 = −20◦
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Figure 3. α1 = 5◦
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Figure 4. α1 = 30◦

3.2. Vortices identification
Figures 5 to 7 show vortices identified, again, by the
H criterion along with the distributions of the stream-
wise vorticity (black contour lines) in the same mea-
surement plane. It is evident that the location of the
vortices evaluated by the H criterion differed from the
locations suggested by the higher stream-wise vortic-
ity. The stream-wise vorticity was utilised in a past
study [23] to localise and describe the evolution of the
vortices. The qualitative results remained consistent
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with the past study; that is, the vortices were more
shifted towards the blade mid-span and enhanced in
strength with increasing inlet flow angle due to larger
centrifugal forces. However, their dimensions were
overestimated. The problem arises from the fact that
the vortex, as a flow structure, lacks a precise mathe-
matical definition, as highlighted by Tang and Liu [24],
and Zhang and Choudhry [22].

The positions of the vortices moved from the values
z/h ≈ 0.06 for α = −20◦ up to z/h ≈ 0.14 for α = 30◦.
Moreover, in the case of α = −20◦, only small portions
of the vortices further from the wall were observed.
The red-colored vortices (corner vortices and suction
side leg of the horse-shoe vortices) correspond with
the vortices with clockwise rotations, meanwhile, the
blue ones rotate in the opposite manner (passage
vortices). It can be seen, that the vortices occupied
approximately the same positions as the regions with
the largest vorticity, however, their dimensions were
considerably smaller.
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Figure 5. α1 = −20◦

3.3. Effect of the H threshold on the
vortex identification

The effect of the value of the H threshold on the
identification of the vortices is demonstrated in Fig-
ures 8–12.

It is evident that if there were no threshold
(Hthreshold = 0), the vortices identified in this way
overlapped with the regions where the vorticity was
nonzero (Figure 8). This definition of the vortex
can be found in Wu, Ma, and Zhou [21], where vor-
tices were defined as structures with nonzero vorticity.
However, this definition includes even types of flow
where the nonhelical movement of the fluid occurs,
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Figure 6. α1 = 5◦
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Figure 7. α1 = 30◦

such as the boundary layer on a flat plate. If helical
motion has to be part of the vortex definition, such
an approach has to be dismissed. Therefore, the H
threshold must be chosen larger than zero.

Increasing the value of the threshold from zero up
to 1 resulted in smaller identified vortices. In the limit
of H → 1, the identified vortex should be identical to
its axis of rotation. This is demonstrated in Figure 12.
However, this value was not reached in all cores of the
vortices; therefore, all the vortex axes were not found.
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Figure 8. |Htreshold| = 0.0
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Figure 9. |Htreshold| = 0.3

4. Conclusions
The paper focused on the identification of vortices in
the linear blade cascade with a pitch-to-chord ratio of
t/c = 0.9, maintaining a constant Reynolds number
Re2,is = 2.5×105 and Mach number M2,is = 0.4, while
varying the inlet flow angle α1 = −20◦, 5◦, and 30◦. It
was demonstrated that the dimensions of the vortices
depend on the value of the threshold H, which in the
limit H = 0 collapsed into the same structures as if
they were identified based on the nonzero vorticity
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Figure 10. |Htreshold| = 0.6
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Figure 11. |Htreshold| = 0.9

condition. Conversely, if the value of H was set equal
to 1, the identified vortices corresponded with their
axis of rotation.

A comparison of the vortex positions with distribu-
tions of the velocity field at the cascade outlet revealed
that vortices occupied regions with the lowest veloci-
ties, where most of the kinetic energy of the flow was
dissipated.

The evolution of the vortices with varying inlet
flow angle aligned well with the theory of secondary
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Figure 12. |Htreshold| = 1.0

flow in curved channels; specifically, with the increase
of α1, the structures shifted more towards the blade
mid-span due to larger centrifugal forces and were
stronger.

In the following work, this vortex identification
can be used to modify the methodology of evaluating
the flow within the blade cascade. In particular, the
KED is usually calculated as the superposition of the
idealised 2D flow at the blade mid-span and the rest
of the KED. However, to estimate the effect of the
vortices correctly, their shapes should be taken into
account. Therefore, the KED should be divided into
three parts, specifically: the mid-span, end-wall, and
vortex KED.

List of symbols
c Blade chord [mm]
h Blade height [mm]
H H criteria [1]
H Helicity density [m]
M2,is Isentropic outlet Mach number [1]
p Pressure [Pa]
Re2,is Isentropic outlet Reynolds number [1]
t Pitch [mm]
ui Components of velocity vector [m s−1]
x, y, z Cartesian coordinates [mm]
α1 Inlet flow angle [◦]
ζ Kinetic energy dissipation [1]
λ Dimensionless velocity [1]
ϱ Density [kg m−3]
ωi Components of vorticity vector [s−1]

Indexes:
0 Stagnation value
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