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Abstract. Visual impairment affects more than a billion people worldwide due to insufficient care
or inadequate vision screening. Computer-aided diagnosis using deep neural networks is a promising
approach, it can analyse and process retinal fundus images, providing valuable reference data for
doctors in clinical diagnosis or screening. This study aims to achieve an accurate classification of fundus
images, including images of healthy patients as well as those with diabetic retinopathy, cataracts, and
glaucoma, using a convolutional neural network (CNN) architecture and several pretrained models
(AlexNet, GoogleNet, ResNet18, ResNet50, YOLOv3, and VGG 19). To enhance the training process,
a mirror effect technique was applied to augment the volume of data. The experimental study resulted
in very satisfactory outcomes, with the GoogleNet model paired with the SGDM optimiser achieving
the highest accuracy (92.7 %).
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1. Introduction
One of the most crucial senses for humans is the vision,
which allows people to comprehend their surround-
ings and communicate information, such as knowledge
and memories. The tear film barrier, corneal barrier,
conjunctival barrier, sclera barrier, and blood-ocular
barriers are only a few of the numerous barriers that
make up the intricate eye anatomy [1]. These barriers
can shield the eye from foreign objects, but they also
restrict the amount of medication that can reach the
eye. More and more people worldwide have developed
ocular diseases in recent years, which can harm eye
health and even result in blindness. The World Health
Organization (WHO) estimates that 2.2 billion people
worldwide are blind or have some form of vision loss,
and at least 1 billion of them have a vision impairment
that might have been treated [2]. A survey found that
36 million of the 7.33 billion people on the planet were
blind in 2015. This number is predicted to increase
to 115 million people by 2050 [3]. Generally, uncor-
rected refractive errors are the predominant cause of
severe and moderate visual impairments; in middle-
and low-income nations, cataracts continue to be the
leading cause of blindness. For example, over 110
million people globally were affected by cataracts in
2010 and by 2050, the number of cataracts is esti-
mated to double [4–6]. Age, diabetes, smoking, low
socioeconomic condition, ocular trauma, steroid use,
exposure to ultraviolet-B radiation and hereditary
factors, are the risk factors for the development of
the cataracts [7]. The second most common cause of

blindness worldwide is glaucoma. By 2020, the WHO
predicts that glaucoma will affect about 80 million
people, and its prevalence is anticipated to rise. More
than 4.5 million people have been estimated to have es-
sential glaucoma, accounting for more than 12 % of all
visual impairment globally [8]. More than 347 million
people worldwide have diabetes, and by 2030 it will
be the seventh most common cause of death. Diabetes
puts a person at risk for retinal abnormalities known
as diabetic retinopathy (DR), which is the third lead-
ing cause of blindness worldwide. In millimeters of
mercury, the ocular pressure is calculated. The usual
range for ocular pressure is 12–22 mm Hg, and any-
thing higher than 22 mm Hg is regarded as abnormally
high. The presence of diabetic retinopathy in the eye
is due to the rising intraocular pressure. Diabetic
retinopathy cannot be cured, however, treatment can
halt its progression, this highlights the significance
of early disease diagnosis. The WHO estimates that
DR accounts for 4.8 % of 37 million cases of visual
impairment brought on by eye illnesses globally [9].
For example, Algeria had 1800 ophthalmologists for
its 40 million citizens in 2017 [10]; number has to rise
by 1 000 more ophthalmologists to meet worldwide
standards. With 80 specialists graduating from the
university each year, this target will not be reached
for another 20 years. Therefore, the contribution of
artificial intelligence tools to help medical personnel
to diagnose eye diseases becomes inevitable. Medical
professionals can diagnose diseases earlier with the
aid of deep learning (DL), an important component of
artificial intelligence (AI). The findings of medical test
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results and domain knowledge are combined by a vast
variety of AI-based disease detection and classifica-
tion systems [11, 12]. Recent research has shown how
AI can be used to classify lung tuberculosis, identify
benign or malignant melanoma, diagnose COVID 19
using a chest X-ray, and detect the progression of
retinal illness [13–16]. Ophthalmic disorders are typi-
cally not life-threatening, but they can have a major
impact on the patient’s quality of life as they advance
over time. Ophthalmological tools are used to conduct
physical examinations, and complete interpretation is
employed to make diagnoses. In order to make predic-
tions, any machine-based solution must concurrently
take into account observations, symptoms, and results
from standardised tests. Implementing DL in eye dis-
ease screening and turning this research into clinical
screening still presents a significant challenge. The
objective of this paper is to provide a tool to medical
personnel to help them quickly diagnose eye diseases in
patients. Through an analysis of the patient’s fundus
mages, deep learning and computer vision algorithms
can be used to recognise three different diseases (DR,
cataracts and glaucoma). This will reduce the work-
load of already overworked doctors and facilitate the
treatment of eye diseases diagnosed at an early stage.
The structure of the present document is as follows:
The introduction is presented in Section 1, and re-
search work on the early identification of various eye
diseases is discussed in Section 2. The dataset and
the proposed model are described in Sections 3 and 4.
Section 5 details the experiments performed on the
different architectures and the conclusions that were
reached.

2. Related work
The authors of this paper [17], suggest an automatic
classification approach that takes into account two sce-
narios: mild multi-class diabetic retinopathy (DED)
and multi-class DED. The model has been tested on
many datasets. Two of ImageNet’s top pre-trained
convolutional neural network (CNN) models were used
in the experiment. Various performance-improving
approaches, such as fine-tuning, optimisation, and con-
trast enhancement, were also applied. On the VGG16
model, the maximum accuracy for multi-class classi-
fication was 88.3 %, and for mild multi-class classifi-
cation, it was 85.95 %. For a multiclass classification
system using spectral domain optical coherence to-
mography (SD-OCT), a new automated convolutional
neural network (CNN) model has been suggested in
this research [18]. Along with normal cases, the ap-
proach divides retinal disease into five categories: age-
related macular degeneration (AMD), choroidal neo-
vascularization (CNV), drusen and diabetic macular
edema (DME). Globally, the proposed CNN architec-
ture with a softmax classifier has produced excellent
results. To illustrate how a new deep learning sys-
tem can be used to identify corneal abnormalities, a
new hierarchical deep learning network representing

various degrees of eye disorders, generated from a
predetermined hierarchical taxonomy of eye diseases
was developed by [19]. A family of multi-task, multi-
label learning classifiers comprise this system. The
proposed technique was directly trained end-to-end
using a retrospective dataset of 5325 ocular surface
images. With 510 newly enrolled outpatients who had
infectious keratitis, non-infectious keratitis, dystrophy,
or corneal degeneration as well as a corneal tumor,
the algorithm’s performance was then compared with
that of ten ophthalmologists. The confusion matrices
showed similarities in the misclassifications made by
the computer and human experts. The main objective
of the work in [20] was to create and assess a deep
learning model to assess the severity of AMD at the
patient level using the AREDS simplified severity scale
using fundus images of both eyes. The images were
taken from one of the largest datasets currently avail-
able, the AREDS dataset, which has approximately
60,000 retinal scans in it. The model simulates the
human grading procedure by first identifying certain
risk indicators (drusen and pigment abnormalities) in
each eye. An ophthalmologist can examine the patient
and see a clear result since it combines the numbers
from two eyes to give the patient an AMD score that
perfectly matches the clinical decision-making process.
Alam et al. [21] used a supervised machine learning to
achieve a multitasking OCTA classification. At first,
it was required to distinguish between healthy eyes
and eyes with disorders, between many eye diseases,
and between the severity of each eye condition. The
foveal avascular area (FAZ), blood vascular caliber
(BVC), vascular perimeter index (VPI), blood vessel
density (BVD), and FAZ contour irregularity (FAZ-
CI) were all quantitative OCTA characteristics that
were entirely automatically extracted from the OCTA
images. Sensitive OCTA features and the best fea-
ture combinations for multitasking categorisation were
found using a backward phase-out method. The super-
vised machine learning classifier was validated using
diabetic retinopathy (DR) and sickle cell retinopathy
(SCR) for the proof-of-concept demonstration.

In order to automatically categorise the severity lev-
els of nuclear cataract (NC), the authors in [22] suggest
a new convolutional neural network (CNN) framework
called Adaptive Feature Squeeze Network (AFSNet).
The model is constructed utilising an adaptive feature
compression module, which includes a compression
block and an update operation in global adaptive com-
monality, to dynamically compress the local feature
representations and update the relative importance
of the global feature representations. The AS-OCT
clinical picture dataset is used, and the outcomes show
the technique’s efficacy.

A new convolutional and recurrent hybrid neural
network (CRNN) for cataract classification based on
fundus images is presented in this research [23]. The
suggested CRNN keeps the long-term and short-term
spatial correlation between patches by combining the
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benefits of the convolutional neural network and re-
current neural network. We use AlexNet, GoogLeNet,
ResNet, and VGGNet in conjunction with transfer
learning to extract multilevel feature representation
and assess how well these models classify cataracts.
With an average accuracy of 0.97 % for classifying
cataracts into four classifications, the data show that
the proposed method performs better than state-of-
the-art methods, showing its potential for use in diag-
nosing other retinal diseases.

A study [24] suggests a method using the Deep
Belief Network (DBN) and Elephant Husbandry Op-
timisation (EHO) algorithm to detect glaucoma from
fundus images. The image is first pre-processed, then
the optic disc (OD) and optic section (OC) are seg-
mented, and finally structural, intensity, and texture
features are extracted. The ReliefF algorithm is then
used to choose the majority of the distinguishing char-
acteristics before sending them to the DBN for glau-
coma or normal classification. The EHO method
enhances the DBN’s parameters in order to increase
its classification rate. The model was evaluated using
7 280 images from public and private datasets, and it
was able to classify the images with an accuracy of
up to 98.5 %.

Because each person’s disc optic and optic cup have
distinct features (form, size, etc.), the application of
cup to disc (CDR) and disc damage probability scale
(DDLS) in the detection of Glaucoma is extremely
difficult. Prananda et al. [25] suggested a different
method to detect glaucoma disease by examining the
damage to the retinal nerve fiber layer to get around
this issue (RNFL). The pretreatment procedure (re-
moval of optic discs and blood vessels) and the glau-
coma categorization procedure are the two steps of
the suggested method. The author applied nine deep
learning architectures for the latter. On the ORIGA
dataset, the highest rate was found to be 92.88 % with
an AUC of 89.34 %.

A machine learning method (MLS) to detect AMD
using retinal fundus images is put forth in this pa-
per [26]. The several MLS phases that were applied
in the proposed works include feature extraction and
selection using a statistical test, implementation and
validation of the classifier, and image threshold depen-
dent on Shannon entropy and the bat algorithm (BA+
SE). Based on image properties like the grey level
co-occurrence matrix and entropies, the retinal im-
age dataset is divided into two different labels, AMD
and Non-AMD. A comparison of the effectiveness of
various classifiers, including Naive-Bayes (NB), Deci-
sion Tree (DT), K-Nearest Neighbors, Random For-
est (RF), and Support-Vector-Linear Kernel Machine
(SVM), reveals that SVM has a greater classification
accuracy (>93 %) than the other classifiers.
The idea of [27] was to use fundus autofluorescence
(FAF) images to automatically classify different in-
herited retinal disorders (IRDs) using a deep learning
system. FAF images of individuals with retinitis pig-

mentosa (RP), Best’s disease (BD), and Stargardt’s
disease (STGD), as well as a healthy similar group,
were used to train a neural network multilayer deep
convolution (CNN) based on 389 FAF images. Adam
optimiser and data augmentation techniques were
used for training. The results of testing the generated
classifiers revealed an overall accuracy of 0.95.

3. Description of the dataset and
data augmentation

The dataset contains images of the retina affected
by diabetic retinopathy, cataract, and glaucoma
pathologies; in addition to healthy patients, each
class has roughly 1 000 images. The images represent
Right and Left eye fundus photographs showing ab-
normalities due to various ophthalmological diseases
(see Figure 1). The dataset employed integrates
images from diverse reference datasets, encompassing
IDRID, Ocular Recognition, HRF, Retinal Dataset
and DRIVE. The objective in merging samples from
each dataset is to enrich data diversity, allowing
the model to effectively generalise across various
scenarios in classification tasks, adapt to diverse
conditions, and ensure a balanced representation of
classes, thus mitigating training data imbalance. The
dataset is available for free online on kaggle: (https:
//www.kaggle.com/datasets/\gunavenkatdoddi/
eye-diseases-classification).

(a). (b).

(c). (d).

Figure 1. (A) Cataract; (B) Diabetic retinopathy;
(C) Glaucoma; (D) Normal eye fundus.

Details about the images from the used datasets
are shown in Table 1. Samples of the fundus images
are shown in Figure 1.

The training was carried out using Matlab 2021
installed on a workstation with Windows 10 Pro, a
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Diseases Number of images
Cataract 1 038

Diabetic retinopathy 1 098
Glaucoma 1 007

Normal eye 1 074
Total images 4 217

Table 1. Description of the dataset.

64-bit operating system, 24 GB of Random Access
Memory (RAM), Intel(R) Xeon(R) CPU E5-2620 v3
@ 2.40 GHz and Graphics Processing Unit (GPU).
20 % of the datasets is used for testing, while 80 % is
used for training.

Additionally, we used a reflection-based data aug-
mentation technique (Mirror effect) for the sake of
preventing overfitting. In fact, by using the reflec-
tion effect and keeping the labels, we increased the
quantity of images intended for training. The two
procedures are as follows:

• Vertical mirror image: The original x and y coor-
dinates of every pixel in the image are used to flip
each image vertically. Equation (1) illustrates the
new coordinates of each pixel after the reflection
over the X-axis as x′ and y′:(

x′

y′

)
=

(
1 0
0 −1

)
.

(
x
y

)
. (1)

• Horizontal mirror image: Where x and y represent
the original coordinates of each pixel in the image,
each image is horizontally inverted. Then, as stated
in Equation (2), x′ and y′ are each pixel’s new
coordinates post reflection over the Y -axis:(

x′

y′

)
=

(
−1 0
0 1

)
.

(
x
y

)
. (2)

Figure 2 highlights the result of using the mirror
effect (horizontal and vertical) on an original image
of a retinopathic diabetes.

The data augmentation technique is exclusively im-
plemented on the training subset of the dataset. This
precaution is taken to prevent potential bias in the
accurate evaluation of the model’s performance when
applied to the entire dataset, including the test set.
This ensures that augmented data are encountered
only during the training phase and not during testing.
Consequently, the training set is increased from 3 373
to 10 119 images, i.e. we triple its size. The model
becomes more robust as the training set grows.

4. Proposed model
In this study, we examined the various methods for
identifying eye diseases from fundus photographs (as
mentionned in Figure 3). After that, we looked at
the CNN architecture, which is based on Hubel and
Wisiel’s study on the cat’s visual cortex [28], as well

(a). (b).

(c).

Figure 2. Data augmentation reflection (DAR) re-
sults: (A) Original image; (B) Horizontal mirror image;
(C) Vertical mirror image.

as a variety of pre-trained models, including AlexNet,
ResNet 18, ResNet 50, GoogleNet, VGG 19, and
YOLOv3.

In general, all neural networks need calculations,
and the image classification in particular has to com-
prehend several essential aspects of the image, such
as its size, channel, and processing capabilities. This
shows a broad application of deep learning neural
networks for classifying fundus images. Addition-
ally, it describes the important outcomes produced
by these neural approaches. The feature extraction
stage, which is very laborious since it must be done by
hand, is one that deep learning approaches allow us to
avoid in addition to processing a very high quantity
of images. Due to their capacity to collect features
and learn to differentiate between various classes, con-
volutional neural networks (CNN) are the most often
employed DL technology in the healthcare industry.
The pre-trained model has a specific design and of-
fers a more straightforward method to accurately and
speedily retrain neural networks on chosen datasets
(all the pretrained models architectures are detailed
in Section 5.2).

5. Results
5.1. The proposed CNN
As our CNN’s structure demonstrates, there are sev-
eral layers represented. As shown in Table 2, the CNN
network is composed of six convolution layers, with
Conv 1 consisting of 32 feature maps, C2 consisting
of 64 feature maps, and C3 consisting of 128 feature
maps as its input. Six pooling layers are used, with
Layers S1, S2, ..., and S6 being subsampling layers
with the same amount of feature maps as their previ-
ous convolution. Following the pre-processing layers,
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Figure 3. The proposed model with different algorithms.

there are four completely connected (FC) layers with
four neurons each, which connect to all of the maps of
the previous pooling layer. The output layer is then
a fully connected layer as well. In Table 2, the CNN
architecture is illustrated.

Name Type Size
Input layer Input data 512*512

Conv1 Convolution + Relu 32*32*8
S1 Max pooling 3.2

Conv2 Convolution + Relu 64*64*3
S2 Max pooling 3.2

Conv3 Convolution + Relu 128*128*5
S3 Max pooling 3.2

Conv4 Convolution + Relu 256*256*5
S4 Max pooling 3.2

Conv5 Convolution + Relu 512*512*5
S5 Max pooling 3.2

Conv6 Convolution + Relu 1 024*1 024*5
S6 Max pooling 3.2
Fc Fully connected 1 Fc(4)

Table 2. The architecture of the CNN model.

All of the hyperparameters used in this model, in-
cluding the number of epochs employed, the mini
batch size (64), the learning rate of 0.001, and the
frequency validation of 20, are defined in the choices
side, where the trained parameters are contained. The
accuracy of this model was tested using the given
CNN, which was trained using various parameters. In
Table 3, the CNN model’s training parameters are
listed.

Parameter Value
Initial learning rate 0.001

Optimiser SGDM/Adam/RMSProp
Momentum 0.9
Max epoch 5 to 20

Mini batch size 64
Validation frequency 20

Table 3. The training parameters of the CNN model.

We take into account several optimisers when train-
ing the models:

• SGDM: the stochastic gradient descent with mo-
mentum Solver [29].

• Adam: adaptive moment estimation [30].
• RMSProp: Root Mean Square Propagation [31].
• Momentum is the contribution to the current itera-

tion of the stochastic gradient descent with momen-
tum of the parameter update stage of the previous
iteration.

• Mini Batch size: The stochastic gradient descent
technique uses a portion of the training data for
each iteration to evaluate the gradient and update
the parameters. At each iteration, a distinct subset,
known as a mini-batch, is used to assess the gradient
of the loss function and update the weights.

• The Validation Frequency value indicates how many
iterations between evaluations of validation metrics.

To evaluate the performance of the trained models, we
used the accuracy parameter. Accuracy is termed as
the ratio of correctly classified images over the total
number of images. The following Formula (3) is used:

Accuracy = TP + TN

TP + TN + FP + FN
. (3)

As indicated in Formula (3), accuracy is calculated
by dividing the sum of the true positive (TP ) and
true negative (TN) classes by the sum of the true
positive, true negative, false positive (FP ), and false
negative (FN) classes.

We can conclude from Table 4 that the suggested
approach based on the CNN produced satisfactory
results. After 20 epochs, the best recognition rate was
87.4 %. The results are not enhanced by adding more
epochs; rather, the opposite has happened. However,
we think that these results can still be improved. To
this end, we will use a variety of pretrained models in
the sections that follow. It is anticipated that these
models will aid in the better diagnosis and assessment
of eye illnesses. So, we observe that while increasing
the number of epochs, the execution time increases
without improving the accuracy. This is the reason
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The CNN model
5 epochs 10 epochs 15 epochs 20 epochs

Accuracy 82.46 % 77.7 % 85.2 % 87.4 %
GPU execution time 67 m 22 s 133 m 44 s 198 m 20 s 253 m 30 s

Table 4. The results of the CNN model (Image input 256*256).

Figure 4. The results of CNN model after 20 epochs.

why we did not go beyond 20 epochs. Figures 4 and 5
mention the accuracy of CNN, the loss function of the
same model, and the confusion matrix, respectively.

5.2. The proposed pretrained models

5.2.1. YOLO v3

YOLOv3 employs Darknet-53, a brand-new network
inspired by ResNet, to extract features. The YOLOv3
architecture has 3 prediction heads, 53 convolutions,
and skip connections similar to ResNet. Each one
compresses the image differently in terms of space.
And by clustering, a total of nine preceding bounding
boxes of various sizes can be generated. The YOLOv3
architecture is used exactly as described in [32]. The
original fundus images were scaled and transformed to
RGB pictures in order to fit each pretrained model’s
input image size. The learning rate was maintained
throughout training for the training options, valida-
tion data and training data were both shuffled prior
to each network validation.

5.2.2. AlexNet
AlexNet is an eight layer convolutional neural network
[33] made up of five convolutional layers with convo-
lutional filter sizes of three by three and two by two
for the maximum pooling operation. Fully connected
layers are the final three layers.

AlexNet uses ReLU as the activation function rather
than the conventional sigmoid and tanh functions,
which is different from previous neural networks.
ReLU is an unsaturated activation function that not
only significantly accelerates the model’s training time,
but also more effectively addresses the gradient dis-
appearance and gradient explosion issues, making
it simple to train a deeper network. The AlexNet
model’s standard input size is 227*227*3.

5.2.3. ResNet 50
A ResNet deep residual learning network introduces
the residual block notion [34]. Through residual
blocks, the output of the second block is linked to the
input of the first block. The residual block can learn
about the residual function using this method without
inflating the parameters. A convolutional layer, 48

6



vol. 64 no. 1/2024 CNN-Based eye disease classification from fundus images

Figure 5. The confusion matrix of CNN model after 20 epochs.

residual blocks, and a classifier layer with eleven and
thirty-three tiny filters make up the 50-layer residual
block known as ResNet 50.

5.2.4. GoogleNet (Inception V3)
GoogleNet contains 50 layers and is a convolutional
neural network [35]. The algorithm, named “Go-
ing deeper with convolutions,” was developed and
trained by Google. The development of the Inception
module, which consists of a series of 1-by-1 convolu-
tional layers/blocks used for dimensionality reduction
and feature aggregation, is the key component of
GoogleNet/Inception architecture. This model had
9 inception modules and a total of 22 layers. Up to
1 000 objects can be classified using the pretrained
version of Inceptionv3 with the ImageNet dataset [36]
weights. This network’s image input was 299 × 299
pixels in size.

5.2.5. VGG 19
A convolutional neural network with a depth of 19
layers is called the VGG. Karen Simonyan and An-
drew Zisserman created and trained it at the Visual
Geometry Group at Oxford University in 2014 [35],
demonstrating that using tiny filters of size 3*3 in
each convolutional layer across the network can im-
prove performance. The fundamental tenet of VGG
architecture is that several small filters can simplify
design and replicate results more faithfully than big-
ger filters. Using more than a million images from
the ImageNet dataset, the VGG 19 network is trained.
Of course, you can import the model with training
weights from ImageNet. The network was trained on
colorful images with a resolution of 224 × 224 pixels.

5.2.6. ResNet 18
A convolutional neural network with 18 layers in depth
is called ResNet 18. Deep Residual Learning for Im-
age Recognition, as it is known, was developed and
trained by Microsoft in 2015 [34]. To address the issue
of vanishing gradient that may affect the weightage
change in neural networks, ResNet architectures intro-
duced the use of residual layers and skip connections.
This made training easier and allowed neural networks
to get much deeper with greater performance. More
than a million images from the ImageNet dataset were
used to train this model. The network was trained on
coloured images with a resolution of 224 × 224 pixels
and can categorise up to 1 000 objects.

Basic identical parameters of the six networks
AlexNet, GoogleNet, ResNet 18 ... and YOLOv3
are mentioned in the Table 5.

Parameter Value
Initial learning rate 0.001

Optimiser SGDM/Adam/RMSProp
Max epoch 5

Mini batch size 20
Activation function Softmax

Validation frequency 20

Table 5. The training parameters of the pretrained
models.

We have, therefore, summarised our contributions
as follows.

• We use the CNN architecture to evaluate the per-
formance.
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• We suggested the use of pretrained models, such as
AlexNet, ResNet 18, ResNet 50, GoogleNet, VGG
19, and YOLOv3, to detect glaucoma, diabetic
retinopathy, cataract and a normal patient using
fundus images and improve the diagnosis.

• We trained the models separately to discriminate
between four categories.

In addition to the accuracy parameters, we esti-
mated the GPU execution time for each model. The
results obtained are shown in Table 6.

The most popular method for evaluating model per-
formance based on true positives (TP ), true negatives
(TN), false positives (FP ), and false negatives is the
confusion matrix (FN).

Figure 6 represent the confusion matrix of the
GoogleNet and ResNet 18, which gave the best results
in terms of accuracy with the SGDM optimiser.

The Figure 7 represent the confusion matrix of the
ResNet 18 and VGG 19, which gave the best results
in terms of accuracy with the Adam optimiser.

Figure 8 represents the confusion matrix of the
ResNet 18 and VGG 19 , which gave the best results
in terms of accuracy with the RMSProp optimiser.

We were able to accurately classify the images in our
dataset thanks to experiments using pre-trained mod-
els and the classic CNN. The accuracy rate for CNN
is 88.7 %. The best accuracy was achieved for the
SGDM optimiser, 92.7 % and 92.1 % with GoogleNet
and ResNet 18, respectively, when the same dataset
and hyper-parameters were employed. The best ac-
curacy for the Adam optimiser was achieved with
ResNet 18 (88.3 %) and VGG 19 (87.1 %). The best
accuracy was obtained with the identical architec-
tures (ResNet 18 and VGG19), 79.9 % and 83.3 %,
respectively, when the last optimiser (RMSProp) was
used.

The improved classification rate with ResNet 18
can be linked to the network’s usage of methods to
reduce over-fitting in its model. The first method
involved artificially enlarging the dataset with the aid
of a label-preserving transformation. This involved
extracting random patches (224 × 224 for ResNet
18) and training the network on them while varying
the intensities of the RGB channels in training im-
ages. The result was generating image translations
and horizontal reflections. The second strategy to
lessen over-fitting was “dropout”, which involves re-
moving neurons that do not contribute to the forward
pass or back-propagation. This reduces the compli-
cated neuronal co-adaptations and forces the model
to learn stronger features.

Table 6 shows that almost all of the pretrained mod-
els used are outperformed by the SGDM optimiser.
This efficiency can be attributed to the adaptive ap-
proaches’ propensity to quickly converge to sharper
minima whereas the SGD with momentum appears
to find flatter minima than Adam. Sharper minima

(a).

(b).

Figure 6. Confusion matrix for the best models with
SGDM optimiser: (A). GoogleNet; (B). ResNet 18.

do not generalise as well as flat ones.
By compressing the input image while preserving

significant details/information, GoogleNet increases
performance. Utilising Inception units allows us to
create deeper networks by reducing the amount of
parameters in a network. Additionally, it is evidently
a lot faster than the VGG 19, from this comparison.

In the case of AlexNet, the GPU execution time is
ideal, but this architecture only works well with the
SGDM optimiser. Some pretrained models converge
significantly faster than CNN, and this requires our
attention. The time saved is enormous; for illustra-
tion, CNN obtained 82.46 % with 67 minutes and 22
seconds after 5 epochs. AlexNet provides a superior
performance for the same epochs, 88.9 % in 16m 56s
(It provides a better result in only a one-fourth of the
time). However, in order to make a meaningful com-
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The pretrained models
Alex
net

Google
Net

ResNet
18

ResNet
50

VGG
19

YOLO
v3

SGDM Accuracy 88.9 % 92.7 % 92.1 % 57.8 % 87.9 % 68.07 %
GPU execution time 16m 56s 42m 9s 35m 42s 9m 43s 282m 32s 183m 13s

ADAM Accuracy 40.3 % 86.3 % 88.3 % 68.4 % 87.1 % 51.42 %
GPU execution time 19m 11s 42m 24s 36m 8s 9m 39s 283m 1s 184m 47s

RMSProp Accuracy 60.7 % 69.3 % 79.9 % 62.4 % 83.3 % 55.09 %
GPU execution time 18m 56s 42m 59s 36m 35s 9m 28s 280m 58s 184m 9s

Table 6. The results of the pretrained models.

(a). (b).

Figure 7. Confusion matrix for the best models with Adam optimiser: (A) ResNet 18; (B) VGG 19.

(a). (b).

Figure 8. Confusion matrix for the best models with RMSProp optimiser: (A) ResNet 18; (B) VGG 19.
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parison, we have kept the same training parameters
for all the pretrained models. We can also remark
that these findings can be improved.

6. Conclusions
The goal of this research was to construct a convolu-
tional neural network (CNN) model to classify three
different eye diseases using fundus images. In addi-
tion to CNN, pre-trained models, such as AlexNet,
GoogleNet, ResNet 18, and VGG 19, were used in
this study. After training on 80 % of the dataset and
testing on 20 %, CNN produced a classification re-
sult for the four classes with an accuracy of 87.4 %
using 6 convolution layers and 20 epochs. We also
tried to use the pre-trained models as a result of the
subpar performance. These were applied to the same
dataset and produced better results for GoogleNet,
ResNet 18, VGG 19, and AlexNet with the SGDM
optimiser (92.7 %, 92.1 %, 87.9 %, and 88.9 %, respec-
tively), and 88.3 % , 87.1 % for ResNet 18 and VGG19,
respectively, with the Adam optimiser. We can con-
clude that the RMSProp optimiser does not yield
satisfactory results.

In addition to selecting better optimisation tech-
niques, much research is being done to suggest archi-
tectures that initially create smoother loss functions,
a field of research that we are planning to explore in
future work.
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