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Abstract

The aim of this diploma thesis is to design, develop, and test software that au-
tomates the Scan-to-BIM process. This process involves segmentation of point
clouds and recognition of 3D entities. The proposed solution incorporates a seg-
mentation algorithm based on point cloud density analysis, further enhanced by
image and morphological operations. The developed solution is capable of ex-
tracting the geometry of building elements such as ceiling slabs, walls, windows,
and doors, and generate output in the IFC format, thereby ensuring compatibility
with other software tools. The motivation for automating the conversion of point
cloud data into a 3D BIM model stems from the need for more straightforward
and efficient decision-making at the end of a building’s life cycle. Using digitized
building models would lead to a more efficient decomposition and reuse of building
elements/materials.

Keywords: Point Cloud, Automation, 3D BIM model, IFC, Python
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Abstrakt

Cílem této diplomové práce je navrhnout, vyvinout a otestovat software, který au-
tomatizuje proces Scan-to-BIM. Při tomto procesu dochází k prokládání mračna
bodů parametrizovatelnými 3D entitami. Navrhované řešení zahrnuje segmentační
algoritmus založený na analýze hustoty mračna bodů, dále rozšířený o obrazové a
morfologické operace. Vyvinuté řešení je schopno extrahovat geometrii stavebních
prvků, jako jsou stropní desky, stěny, okna a dveře, a generovat výstup ve formátu
IFC, čímž zajišt’uje kompatibilitu s jinými nástroji. Motivace pro automatizaci
převodu dat z mračna bodů do 3D BIM modelu pramení z potřeby přímočařejšího
a efektivnějšího rozhodování na konci životního cyklu budovy. Tento přístup vede
k efektivnějšímu využití stavebních prvků/materiálů při demolicích nebo dekon-
strukci.

Klíčová slova: Mračno bodů, Automatizace, 3D BIM model, IFC, Python
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Goals

The primary objective of this work was to develop a software tool enabling fully automatized
conversion of point clouds to Building Information Models (BIMs). The specific goals were as
follows:

• Optimize point cloud data quality through reduction and cropping.

• Utilize Python for data loading and filtering, including analysis of point density distribu-
tions in space.

• Develop algorithms for segmentation of the point clouds into individual building ele-
ments such as ceiling slabs, walls, and openings.

• Generate Industry Foundation Classes (IFC) model from the obtained geometry.



Chapter 1

Introduction

The development in the field of construction digitization has seen a sharp increase in the last
decade, bringing forth a range of new technologies and methods for efficient management of
construction projects. A frequently mentioned concept is Construction 4.0, which focuses on
the integration of modern digital technologies and innovations into the construction industry to
enhance the efficiency, quality, safety, and sustainability of construction projects [1].

Sustainability has become a highly debated topic in the context of buildings that are ap-
proaching the end of their lifespan. Nowadays, there is a growing emphasis on ecological re-
sponsibility and efforts to minimize the negative environmental impacts of construction. Struc-
tures built several decades ago often do not meet current sustainability and energy efficiency
standards. Hence, the matter of dealing with aging structures that have reached the end of their
operational life is steadily gaining significance. As per Eurostat [2], in the typical European
nation, construction and demolition waste make up 36% of the total waste produced. There
exist numerous possibilities for converting these edifices into structures that are not only more
environmentally sustainable but also eco-friendly.

One option is renovation and modernization, which involves improving insulation, replac-
ing windows and doors with more energy-efficient options, installing renewable energy sources,
and taking other steps toward reducing CO2 emissions and increasing energy efficiency [3]. An-
other option is deconstruction and material recycling from the original building. This approach
helps minimize waste and reduces the need for mining new raw materials [4].

For both of the proposed solutions, there is often an issue with the existing documentation of
old buildings, which is typically in inadequate condition or only available in paper form. This
situation requires a careful and systematic approach to obtaining up-to-date and accurate data
about the building. Once new digital data is available, it is essential to systematically document
and store it for future use. Digital documentation can include a 3D model, point clouds, and
the original documentation converted into electronic format [5, 6].

Ensuring up-to-date and accurate documentation is a crucial element for the successful exe-
cution of renovations, modernization, and sustainable measures in old buildings. It is essential
not only for planning and implementing changes but also for compliance with building regu-
lations and ensuring the future sustainability of these structures. One option to obtain precise
digitized documentation of the as built state is to utilize point cloud technology through laser
scanning or digital photogrammetry [7].
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The use of point cloud data for the creation of a 3D model or documentation of the current
state of a building has become a common practice in recent years. For instance, the renovation
of heritage assets such as the Durham Cathedral extensively utilized point cloud technology
to capture details of the cathedral’s architecture [8]. Similarly, the digital documentation of
The Engine House of Paços Reais employed point cloud data to accurately record the histori-
cal structure’s architectural elements [9], another project describes the digitization of the state
opera house in Hungary for the upcoming reconstruction of the building [10].

However, the creation process, also called Scan-to-BIM, is very lengthy and requires the
skill of the user and advanced modeling software. For these reasons, semi-automatic [11, 12,
13, 14] and automatic solutions [15, 16] for segmenting point cloud data and obtaining the
exact geometry of common building elements began to appear. Kwadjo et al. [17] implemented
a robust methodology based on a RANSAC and 2D matrix template of wall representation,
however multiple floors are not supported and the output is delivered in the nowadays obsolete
version of the IFC2x3 format. Conversely, Romero Jaren [18] uses a clustering algorithm
in combination with Delaunay triangulation to find surfaces. The output was 3D surfaces in
vector format for planar surfaces and TIN format for non-planar elements. Chao Wang [19]
implemented region growing plane segmentation algorithm in combination with an edge and
boundary detection. This approach successfully converts the data into a gbXML format for
energy simulations and demonstrates potential for broader applications in the AEC/FM domain.
Overall, these papers demonstrate the ongoing efforts to develop fully automatic solutions for
converting point clouds to BIM, aiming to improve efficiency and accuracy in the modeling
process.

The most commonly segmented elements include wall, ceiling slab, windows and doors.
Algorithms based on iterations were used in some cases to obtain accurate geometry. One
of them is RANSAC, which can detect simple shapes like surfaces, spheres, cylinders [20,
21] or the Hough transformation [22, 23, 24]. Other algorithms used include region growing
algorithms [19, 25]. By combining the right methods for different building elements, an effi-
cient tool can be created to convert point cloud data into an accurate, easily parameterizable
3D model filled with non-graphical information. This model can help in deciding what will
happen to the building at the end of its life cycle, it can also serve as a basis for the upcoming
reconstruction, or to determine the amount and types of demolition waste that will be generated
at the end of the building’s life.



Chapter 2

Theoretical Background

2.1 Building Information Modeling

Building Information Modeling (BIM) is a comprehensive approach for modeling, construct-
ing, and managing buildings and infrastructure. It is a way in which building information is
integrated, created, and digitally shared throughout the entire lifecycle of a building. BIM
transforms how professionals in the construction industry work and collaborate, providing a
range of benefits and opportunities. One of the key elements is the digital model of a building
or infrastructure that encompasses information about the geometry, materials, properties, and
functions of the construction object.

Most sources suggest that the concept of BIM originated with Professor Charles East-
man [26] as early as 1975. In his article, he presented ideas that today form the foundation
of every methodology for implementing BIM processes. These included the 3D representation
of objects, collision detection, and a database of objects used in the project. However, the BIM
concept is not the brainchild of a single individual; rather, it is the result of several decades of
innovation and collaboration. This evolution began with the development of the first 2D CAD
programs and progressed through the advent of 3D visualization tools, culminating in software
that enables the comprehensive capture of all project data.

Nowadays, BIM is mainly used for the design and implementation of construction works,
however, in recent years there have been cases of use in End of Life cycle of building man-
agement [27, 28]. The core of all analyzes is the Building Information Model (BIM). It is a
3D geometric model, which is filled with non-graphical information such as textures, materi-
als, physical properties of materials, documents related to construction, revision protocols, etc.
In addition, compared to traditional documentation, it is supplemented with a time dimension
(4D) enabling construction planning, financial costs (5D) related to the cost analysis before the
start of the construction phase, sustainability (6D) focusing on the analysis of energy consump-
tion and the assessment of the overall serviceability of the building. A model filled with this
information is called an n-Dimensional model [29].
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2.1.1 Digital Twin

It is a data-driven replica of a physical asset or system, including real-time data and simula-
tion capabilities. The concept that would evolve into the digital twin (DT) first emerged in
a University of Michigan presentation to industry in 2002, under the name Product Lifecycle
Management. Its primary purpose was to monitor the life cycle of a product, and it possessed
foundational features of what would become known as a Digital Twin. The principal similarity
was the flow of data between virtual replica and real product [30]. In 2012, NASA introduced
its DT concept to create virtual replicas of physical assets, including satellites, spacecraft, and
lunar modules. These models were designed to contain simulations based on real data obtained
from the physical assets and their sensors [31]. Digital twin is utilized in the construction in-
dustry during the design phase [32]. It enables the project team to collaborate in a coordinated
manner, thereby facilitating better decision-making and planning. Additionally, it proves useful
in the field of computational simulation over the long term. During the building management
phase, a digital twin can function as a product database, linked to information about revisions
and technology service predictions [33]. Creating a 3D model of the actual state of the building
using point cloud technology is a step towards creating a digital twin, but it may not be a full
digital twin in itself.

GSEducationalVersion

LOD 100

LOD 200

LOD 300

LOD 350

LOD 400

Figure 2.1: Level of Development of steel profile column. Author’s own illustration based on [34].
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2.1.2 Level of Development

Level of Development (LOD) is a concept used in BIM to specify the level of detail and accu-
racy of information within a BIM model at different stages of a project’s lifecycle. It helps in
standardizing and communicating the content and reliability of BIM data. Five levels starting
with simplier LOD-100 to most detailed LOD-500 are defined, which specify the amount, ac-
curacy and trustworthiness of the information transmitted within the process. The image 2.1
graphically shows the detail of individual LOD levels on the example of a steel profile column.
It’s also important to note that from the image shown in Figure 2.1, it might appear that the fo-
cus is solely on geometric accuracy, but this can be quite misleading. The various levels differ
significantly, particularly in terms of the non-geometric information.

2.2 Industry Foundation Classes

The Industry foundation classes (IFC) standard was created for the effective sharing and in-
teroperability of data between different software and systems in the field of construction and
industry. The history of IFC dates back to the 1990s, the first version of IFC was published
by the International Alliance for Interoperability (IAI), which later adopted the name Build-
ingSMART International. Since then, the IFC has been continuously updated and expanded to
reflect technological developments and the needs of the construction industry. The IFC ADD2
TC1 standard and its schema an exchange file format for Building Information Model (BIM)
data is described in ISO 16739-1:2018 [35]. IFC is not limited to geometrical building infor-
mation. It also includes other aspects such as materials, schedule, cost, performance, energy
efficiency and other key data that are important for project management and building opera-
tions.

Figure 2.2: A graphical representation of MVD as a subset of IFC.
Author’s own illustration based on [36].



THEORETICAL BACKGROUND 7

2.2.1 IFC File Formats

Saving the BIM model is possible in different file formats, which are designed to facilitate the
exchange and sharing of information between different software applications and construction
professionals.

IFC: Standard binary format, written in STEP physical file structure according to ISO 10303-
21 [37]. It’s commonly used for storing and exchanging BIM data.

IFC-XML: Represents an XML-based version of IFC files, capable of direct generation by
transmitting applications, adhering to the ISO 10303-28 structure [38], also recognized
as STEP-XML. In comparison to IFC file formats, IFC-XML typically exhibits a size
increase of about 300-400%.

IFC-ZIP: A compressed version of IFC or IFC-XML. This compression reduce .ifc file size
by 60-80% and .ifc XML file by 90-90%. Is possible to unzip an IFC-ZIP file using the
built-in Windows unzipper utility [39].

2.2.2 Model View Definition

Since each data transfer through IFC varies depending on its purpose, the Model View Defini-
tion (MVD), a subset of the complete IFC, was introduced. MVD aims to ensure standardized
data and geometry exchange between software applications. Figure 2.2 illustrates the concept
of MVD as a subset of IFC. Table 2.1 describes the most frequently used MVDs for IFC 4.0
ADD TC1 and IFC 3x2 schema.

Table 2.1: IFC model view definitions. Based on [40]

MVD Name Schema Summary

Reference View IFC 4 Streamlined geometric and relational portrayal
of spatial and physical elements for referencing
model data in design coordination.

Design Transfer View IFC 4 Improved geometric and relational representation
of spatial and physical components to smoothly
share model information between different tools.
It’s a high-quality one-way transfer of data and re-
sponsibility, not a "round-trip" transfer.

Coordination View IFC 3x2 Components related to space and physical as-
pects for coordinating designs among architec-
tural, structural, and building services (MEP) do-
mains.

Structural Analysis View IFC 3x2 Exchange of information related to structural
analysis, including geometry, material properties,
loads, and boundary conditions.
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2.2.3 STEP Standard Format

In Section 2.2.1, the most commonly used format for transfer was mentioned. IFC standard is
defined by the STEP physical file standard, ISO 10303-21 [37]. The file structure is divided
into two main parts. The first, named HEADER (see Code listing 2.1), contains essential
information about the file, such as the IFC schema version, model view definition, author,
and more. At the beginning of this part, the structure of ISO 10303-21 is also referenced.
The second part, DATA (see Code listing 2.2), includes information about the project. Each
object in this section is assigned a unique identifier, which consists of a number and the # sign.
Attributes that are not mandatory in the used classes can be substituted with the $ character
[41].

ISO −10303 −21;
HEADER;
FILE_DESCRIPTION ( (’ViewDefinition [DesignTransferView_V1.0]’ ) ,’2;1’ ) ;
FILE_NAME(’output_IFC/output-2.ifc’ ,’2023-10-04T17:50:59.335336’ , (’Slavek

Zbirovsky’ ) , (’CTU in Prague’ ) ,’IfcOpenShell v0.7.0-476ab506d’ ,’Cloud2BIM
’ ,’None’ ) ;

FILE_SCHEMA ( (’IFC4’ ) ) ;
ENDSEC;

Code Listing 2.1: IFC STEP physical file format Header part.

DATA;
#1=IFCSIUNIT ( * , . LENGTHUNIT . , $ , . METRE . ) ;
#2=IFCSIUNIT ( * , . AREAUNIT . , $ , . SQUARE_METRE . ) ;
#3=IFCSIUNIT ( * , .VOLUMEUNIT. , $ , . CUBIC_METRE . ) ;
. . .
#6=IFCUNITASSIGNMENT ( ( # 1 , # 2 , # 3 , # 4 , # 5 ) ) ;
#7=IFCCARTESIANPOINT ( ( 0 . , 0 . , 0 . ) ) ;
#8=IFCDIRECTION ( ( 0 . , 0 . , 1 . ) ) ;
#9=IFCDIRECTION ( ( 1 . , 0 . , 0 . ) ) ;
#10=IFCAXIS2PLACEMENT3D ( # 7 , # 8 , # 9 ) ;
#11=IFCGEOMETRICREPRESENTATIONCONTEXT(’Body’ ,’Model’ , 3 , 0 . 0 0 0 1 , # 1 0 , $ ) ;
#14=IFCPROJECT (’2Vtc6PDQLC8Bxh9U3OQjoc’ , $ ,’Sample project’ ,’Hotel Opatov’ ,’

Hotel’ ,’Reconstruction’ ,’Deconstruction of non-load-bearing elements’ , $
, # 6 ) ;

#15=IFCORGANIZATION( $ ,’CTU in Prague’ , $ , $ , $ ) ;
#16=IFCAPPLICATION ( # 1 5 ,’version 1.0’ ,’Sample project’ ,’MY_IFC_APP’ ) ;
#17=IFCPERSON ( $ ,’Zbirovsky’ ,’Slavek’ , $ , $ , $ , $ , $ ) ;
#18=IFCPERSONANDORGANIZATION( # 1 7 , # 1 5 , $ ) ;
#19=IFCOWNERHISTORY( # 1 8 , # 1 6 , $ , . NOTDEFINED . , $ , $ , $ ,1699363081 ) ;
#20= IFCSITE (’3LnRPF6M50EhjGwuWNUIPA’ , #19 ,’Site’ , $ , $ , $ , $ , $ , . ELEMENT

. , ( 5 0 , 5 , 0 ) , ( 4 , 2 2 , 0 ) , 3 5 6 . , $ , $ ) ;
#21=IFCRELAGGREGATES(’0Jat8oVN0Hxh9uL0NRwf9l’ , #19 ,’$’ ,’$’ , # 1 4 , ( # 2 0 ) ) ;
ENDSEC;
END−ISO −10303 −21;

Code Listing 2.2: IFC STEP physical file format Data part.
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Point Cloud Processing

3.1 Point Cloud Data

Point cloud is the name for a group of 3D referenced points obtained by laser scanning or digital
photogrammetry, which allows to display the surfaces of objects thanks to a dense network of
points that represent the scanned surface. There are several reasons for using point cloud data,
the most important of which include minimal measurement error, speed of data collection and
overall capture of the scanned area and surroundings. There are many options for storing point
cloud data in a file, they vary based on the type of information they may contain, and usually
also depend on the type of equipment used to collect the data.Common contents of a point
cloud file include: spatial coordinates (x, y, z), color (RGB), and intensity. The following table
3.1 lists the most commonly used formats for point cloud data transfer. The difference between
these formats is in the way the data is written, readability for the user, and complexity.

Table 3.1: Point cloud data formats

Type File extension Characteristics

ASCII .asc, .txt, .xyz, .pts Plain text format that stores the values of XYZ coordinates
in a tabular format. Each line corresponds to one point and
may also include colors and intensities of points.

LAS .las, .laz Commonly used exchange format for LiDAR point cloud
data; binary format. Large files can be compressed into
LAZ format.

E57 .e57 Standard format for 3D imaging data exchange, including
data from laser scans and 2D images.

PCG .pcg Autodesk’s proprietary point cloud format used in its 2014
software suite.

PLY .ply 3D geometry format (cloud or mesh) is made up of a header,
a list of vertices, and a list of polygons.
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The most common techniques used for data collection are laser scanning (LiDAR) or digital
photogrammetry. The principle of laser scanning is to measure the distance between the sensor
and the scanned object in space. The distance is calculated from the time it takes the beam
to travel the distance between the scanner, the object to be scanned and the path back after
reflection. The following formula is used for the calculation:

d =
ct

2
, (3.1)

where d equals the distance, c is the speed of light and t is the time it took the beam to travel the
distance. Geodesy describes this calculation of point coordinates as the spatial polar method.
For the calculation, you need to know the following parameters: the scanner coordinates, the
scanner rotation and the beam deflection angle in the scanner [42]. Figure 3.1 shows the prin-
ciple of laser scanning. There are also other principles of how laser scanners can work, for
example the principle of active triangulation, where the place of transmission and reception of
the beam is separated and thus creates a triangle with the scanned object to calculate the exact
location of points on the scanned surface. Another method is passive triangulation, in which
there is no auxiliary light source, usually a laser. but the natural brightness of the scanned
surface is used. A pair of devices with CCD or CMOS chips is most often used. The princi-
ple of stereovision, sometimes referred to as photogrammetry, is primarily employed due to its
simplicity and compatibility with drones. Scans obtained through this method automatically
capture the colors of the points [43, 44].

Figure 3.1: Principle of Laser Scanning. ”α” represents the elevation angle, and ”d” denotes the
horizontal distance.
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3.2 Delaunay Triangulation

Delaunay triangulation is one of the most widely used algorithms for creating triangular net-
works, mainly due to its wide range of applications and mathematical properties. The triangu-
lation method, which maximizes the minimum angle in a triangular network, was introduced
by Boris Delaunay in 1934 [45]. This algorithm is well documented and has wide support in
various programming languages and libraries, making it easy to implement and use in different
applications. In practice, it is used, for example, to create digital terrain models [46], fingerprint
recognition [47], erosion modelling [48] or in combination with machine learning techniques to
reconstruct surfaces from point cloud data [49]. The fundamental criterion of this triangulation
specifies that a triangular network is Delaunay if no point in the set of points connected by the
triangles formed falls within the circle/sphere circumscribed around that triangle. Figure 3.2
shows a triangular network created using the Delaunay triangulation algorithm, which is part
of the SciPy Python library [50].

Figure 3.2: Delaunay triangulation for a mesh of points created using the SciPy library [50].
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3.3 Alphashape

α-shape is a simple algorithm created by H. Edelsbrunner and P. Mücke [51]. This algorithm
can be used to analyze shapes in a data set that is mostly represented by points in a two-
or three-dimensional coordinate system. By applying the algorithm and determining the alpha
parameter (α), the resulting shape of the envelope of these points can be determined. In general,
a higher α value shows a more concave shape. For α = 0, this alpha shape is equal to the convex
hull of the figure. The change of the shape depending on the change of the parameter α can
be seen in Figure 3.3 shapes were generated using the Python library of functions Alpha Shape
Toolbox [52]. The algorithm removes edges that are longer than twice the value of α, while
keeping shorter edges. This phenomenon was used in the scientific paper [53], where the roof
shape envelope is extracted from LiDAR data using the α-shape.

Figure 3.3: Changes of the α-shape depending on the change of the parameter α for a set of points.
Created with Alpha Shape Toolbox [52].
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3.4 Image Processing and Morphology Operations

Morphology operations are a set of image processing techniques used to process and manipulate
the shapes and structures within binary and grayscale images. These operations are commonly
employed in computer vision [54, 55], image analysis [56], and pattern recognition [57] to
enhance or extract important features from images. The basic morphological operations include
erosion, dilation, opening, and closing.

Binarization
Binarization is the process of converting an image (or any other data) into a binary (two-level)
format. In the context of images, this means converting an image into one that has only two
colors, typically black and white. Thresholding is one method to achieve binarization in images
it is often used to simplify an image or highlight important parts. There are various types of
thresholding methods according [58], broadly categorized as follows:

• Histogram shape-based methodologies involve the analysis of characteristics such as his-
togram peaks and valleys.

• Clustering-based approaches focus on the segmentation of gray-level samples into fore-
ground and background components.

• Entropy-driven techniques rely on entropy measures for threshold determination.

• Object attribute-based methods quantify the similarity between gray-level and binarized
images.

• Spatial methodologies take into account higher-order probability distributions and pixel
correlations in the thresholding process.

Figure 3.4 shows the output of manual binarization, where a specifically selected threshold is
used to transform the original image into binary form. This particular example uses the Numpy
np.where function [59], which assigns a value of 255 to pixels in the original image that exceed
a specified threshold, while pixels that are below the threshold are assigned a value of 0.

(a) Original image (b) Binarized image

Figure 3.4: Image binarization based on manual setting threshold.
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Closing binary image
Closing is a morphological operation that consists of two steps: dilation followed by erosion.
The dilation step expands the white regions in the binary image using the defined structuring
element. It is a process of growing the white regions by including nearby white pixels. The
erosion step then shrinks the white regions using the same structuring element. The combina-
tion of dilation and erosion with a square structuring element helps to close small holes and
gaps in the binary image, making the regions more connected and continuous. The following
Figure 3.5 shows the application of the "closing" morphological operation to a binary image.
In this case, a 5x5 pixel square was used as the operational element. The function was applied
in three iterations.

Figure 3.5: Application of closing morphology operation on binary image.

Contour detection
The cv2.findContours function is a fundamental image processing function provided by the
OpenCV library (Open Source Computer Vision) [60]. It is used to detect and extract contours
from binary images. Contours are continuous curves that form the boundaries of objects or
regions in an image. This function is widely used in computer vision and image processing for
various tasks, including object detection, shape analysis, and region identification.

The function has three variables, in addition to the input image, these are the parameters
affecting the output. The first one retrieval mode determines the relationship and hierarchy of
the contours found in the input image. There are several retrieval modes according [60]:

• "cv2.RETR_LIST" retrieves all the contours and doesn’t create any hierarchy among
them. Each contour is independent.

• "cv2.RETR_EXTERNAL" retrieves only the extreme outer contours.

• "cv2.RETR_CCOMP" retrieves all of the contours and organizes them into a two-level hi-
erarchy. The top-level contours are the boundaries of the components, while the second-
level contours are the holes within the components.

• "cv2.RETR_TREE" This mode retrieves all of the contours and reconstructs a full hierar-
chy of nested contours. Each contour is linked to its parent and child contours.
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Second parameter method specifies the contour approximation. It controls how detailed the
contour representation is. The possible values for this parameter are:

• "cv2.CHAIN_APPROX_NONE" stores all the contour points and doesn’t approximate
them. The resulting contours will have high accuracy.

• "cv2.CHAIN_APPROX_SIMPLE" compresses horizontal, vertical, and diagonal segments
and leaves only their end points. For example, if a contour forms a straight line, this
method will reduce it to just two end points.

• "cv2.CHAIN_APPROX_TC89_L1" This is the contour approximation method using Teh-
Chin chain approximation algorithm. It calculates distances using the "L1" (Manhattan)
norm, which is the sum of absolute differences in x and y coordinates [61]. It approxi-
mates the contour as a series of edges with a minimum distance between the original and
the approximated contour.

• "cv2.CHAIN_APPROX_TC89_KCOS" It uses the Teh-Chin chain approximation algo-
rithm but incorporates additional techniques for curve fitting and preserving the shape of
the contour.

The following Figure 3.6 illustrates the application of the cv2.findContours function on a binary
image. The detected contours are displayed as green polylines. The used retrieval mode was
cv2.RETR_EXTERNAL, and the approximation method was cv2.CHAIN_APPROX_SIMPLE.

Figure 3.6: Image before (on the left) and after (on the right) contour detection, created using the
OpenCV package [60]. The detected contours are displayed in green.
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Douglas–Peucker curve approximation
The Douglas-Peucker algorithm is a method for simplifying or approximating a curve. It was
developed by David Douglas and Thomas Peucker in 1973 and is commonly used in computer
graphics [62], Geographic Information Systems (GIS) [63], and image processing. The primary
purpose of this algorithm is to reduce the number of points used to represent a curve while
preserving its basic shape and characteristics [64].

The algorithm recursively divides the polyline into segments. Initially, it considers all points
between the first and last points. It automatically marks the first and last points as essential to
preserve. Subsequently, the algorithm identifies the point that is furthest from the segment
formed by the first and last points. This point represents the greatest deviation from the ap-
proximate straight line. If the distance of the point is less than epsilon from the line, then any
points not yet marked for retention can be discarded without significantly affecting the accuracy
of the simplified curve. However, if the distance of the furthest point from the approximation is
more than epsilon, this point must be retained. The calculation of epsilon parameter is a critical
step in approximating a contour with a simpler polygon. Epsilon is a parameter that controls
the level of approximation, and it’s based on the original contour’s perimeter. In Figure 3.7, an
approximation with parameter epsilon set to value 0.9.

Figure 3.7: Original curve (on the left) simplified with Douglas-Peucker algorithm (on the right)[64].



Chapter 4

Implementation and Analysis

In the subsequent chapter "Implementation and Analysis," knowledge from Chapters 2 and 3
will be applied to describe the development of software, written in the Python programming
language, for segmenting building elements from point cloud data into a 3D BIM model. Table
4.1 presents a summary of the specific software tools employed in the development, testing,
and data preparation phases.

Table 4.1: Tools Utilized for Thesis Development

Software/Library Version License
Python 3.10 PSF license
CloudCompare 2.13.aplha General public license
ArchiCAD 25 (4013) Full license (128-18091115)
pye57 0.4.1 MIT license
pandas 2.1.3 BSD 3-Clause license
open3d 0.17.0 MIT license
alphashape 1.3.1 MIT license
matplotlib 3.8.1 PSF license
tqdm 4.66.1 MIT licence
numpy 1.26.2 BSD license
scikit-image 0.22.0 BSD 3-Clause license
opencv-python 4.8.1.78 MIT license
scipy 1.11.3 BSD 3-Clause license
ifcopenshell 0.7.0.231018 GNU lesser general public license

The complete code is available on the GitHub repository.

https://github.com/VaclavNezerka/Cloud2BIM.git
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4.1 Data Preparation

For the segmentation of building elements, it was necessary to prepare a high-quality point
cloud. This preparation involved two steps noise removal and point cloud subsampling. Sub-
sampling the point cloud is a standard preprocessing operation that reduces the number of
points, making the workflow more efficient. The CloudCompare program was used for sub-
sampling data. This open-source program was originally developed for monitoring changes in
point cloud data, but nowadays it is used for simple operations with point clouds, such as trim-
ming and thinning. For point cloud subsampling, the program offers three methods listed in
table 4.2. A subsampled point cloud retains the characteristics found in its original point cloud,
including scalar fields, colors, and normals. Figure 4.1 illustrates the parameters employed to
reduce the point count within a single test room. A minimum point distance mode was utilized,
with the distance set to 1 cm, resulting in a reduction in the number of points from the original
5,008,195 to 245,544 points. The difference in appearance before and after the operation can
be seen in Figure 4.2. To test the proposed algorithms, one room was cut out of the scanned
object of the former hotel. This operation was performed again in the cloud Compare program
using the Interactive Segmentation tool.

Table 4.2: Subsampling methods in CloudCompare software. Based on [65]

Method Summary

Random In "Random" mode, CloudCompare will simply select a specified
number of points at random.

Space The "Spatial" mode in CloudCompare works by allowing users
to set a minimum distance between points. CloudCompare then
selects points from the original point cloud in a way that ensures
no two points in the resulting point cloud are closer to each other
than the specified distance.

Octree-based "Octree-based" subsampling reduces the number of points in a
point cloud by dividing the space into smaller cubes and selecting
representative points from each cube, simplifying the data while
retaining its essential structure.
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Figure 4.1: CloudCompare settings used for thinning the point cloud.

(a) Original (b) Thinned

Figure 4.2: Comparison of point cloud data before and after density thinning with CloudCompare.

4.2 Methods

Numerous algorithms have been developed to determine the precise geometry of common ge-
ometric shapes from a point cloud. When developing or selecting the most suitable algorithm,
it is essential to consider how it handles data. Iterative algorithms may not be suitable, partic-
ularly when working with slower programming languages and extensive point cloud dataset.
When segmenting the point cloud, the algorithm was consistently configured to leverage the
characteristic features of the element, such as the orientation of the space. In the subsequent
chapter, individual elements and their corresponding algorithms will be described sequentially.
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4.2.1 Slab

Based on: Zbirovský, S. and Nežerka, V. ’Transforming Point Cloud Data into 3D BIM Model:
A Case Study on Slabs (Preprint)’, Acta Polytechnica CTU Proceedings.

The process of generating and situating slabs within a building involves several key steps.
In the initial phase, the point cloud is divided into strips, which correspond to planes aligned
with the x-y axes. Strips that exhibit a point density surpassing a predefined threshold (in
our study, this threshold was established at 50%) in relation to the strip with the highest point
count are singled out and extracted. In Figure 4.3, a section of the point cloud is shown along
with a histogram displaying individual horizontal surfaces that are identifiable as peaks in the
histogram. For these selected strips the median z-coordinate is determined based on the point
index and they are subsequently designated as the lower or upper surface. Subsequently, we
consolidate adjacent surfaces formed by points to create both the top and bottom surfaces of
the slab.

Figure 4.3: Point cloud cross-section (on the left). A z-coordinate histogram of point cloud data to
detect slab surface candidates (on the right).

The final stage involves calling the create_hull_alphashape function. This function, as
detailed in Section 3.3, is utilized to generate the hull and takes a collection of 2D points
as its input. Starts the Delaunay triangulation process, then eliminates edges exceeding the
specified alpha threshold, resulting in a non-convex polygon. The remaining edges define the
boundaries of the hull polygon, and the function provides a set of vertices and edges that bound
the polygon.
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4.2.2 Wall

After dividing the building into horizontal sections, which are made up of floors, the next step
is segmentation and obtaining the exact geometry of the walls. The prerequisite for creating
walls was orthogonality to the x-y plane, constant wall thickness along its entire length. The
algorithm was designed to detect only straight walls not curved walls. The first step was the
preparation of data for wall detection, for this reason the split_pointcloud_to_storeys function
was used on point cloud, and the ceiling layer was filtered from this data and a 2D histogram
was applied to its x,y,z points. The essential function in this section is the subsequent bina-
rization (thresholding) of this data into the mask previously mentioned in Section 3.4. In this
binary mask, white pixels indicate regions of interest, these pixels had to exceed the set value
(0.01 in this case), black pixels signify areas that are not part of the mask. Subsequently, the
morphological operation "closing" previously mentioned in Section 3.4 is applied, which is
used to adjust the binary image. The cv2.findContours function is applied to this binary image,
which identifies contours in the binary image where the white area represents objects or regions
of interest. The result of these operations is shown in Figure 4.4, where individual segmented
wall surfaces are displayed in a binarized image.

Figure 4.4: Binarized image from 2D histogram (white) and found surfaces (colored).

The following steps involve the application of various rules and functions. First rule, seg-
ments that do not have sufficient length are filtered based on the variable min_wall_length (in
this case st on value = 0.4 m). In the second step, the segments are joined into longer sections.
Subsequently, the segments that meet the condition of parallelism within the specified angle de-
viation (set on 1 degree) of the individual surfaces and the minimum and maximum thickness
criteria are connected. In next step determination of the optimal axis for a group of parallel
line segments is performed for each group of parallel line segments. It is done by finding the
longer and shorter segments, computing the axis direction, and choosing the axis position that
minimizes the total distance from the line segments, thus providing an accurate representation
of the group’s alignment. In Figure 4.5 below, the final parallel segments with axes are pre-
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sented. Each wall is depicted in its own distinct color. In the background of this figure, you can
observe a green-colored point cloud and a white mask. The function returns the start and end
points of wall axes, wall thicknesses and wall materials as its output.

Figure 4.5: Final walls (colored) segmented from point cloud (green). On the background mask.

4.2.3 Openings

Opening detection is based on the pre-established positions of walls within the point cloud data.
The analysis occurs on specific sections of the point cloud where the segmented wall is located.
The focus area for assessment is the inner surface of the wall. Detection involves analyzing the
density of the point cloud initially along the wall’s longitudinal axis (x-coordinate), followed
by its height (z-coordinate). For all detected orthogonal openings, the minimum and maximum
dimensions, as well as the height-to-width ratio, are verified. Based on the position of the
sill, an opening is classified as either a window or a door. Consequently, the output of this
process includes the basic dimensions (rectangular or square) of an opening, along with its
location relative to the wall’s origin. Figure 4.6 illustrates a side view of a wall represented by
a point cloud (in green) with a detected window opening (in blue). Histograms that represent
the density of the point cloud and the set threshold values (indicated by dashed lines) are also
displayed to validate the accuracy of the operations.
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Figure 4.6: Wall opening detection with points density analysis. Z-coordinate point cloud density
histogram (top left), x-coordinate point cloud density histogram (bottom right) and side view on

evaluated wall point cloud (bottom left) with detected window opening (blue surface).
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Figure 4.7: Wall opening detection with points density analysis. Z-coordinate point cloud density
histogram (top left), x-coordinate point cloud density histogram (bottom right) and side view on

evaluated wall point cloud (bottom left) with detected door opening (red surface).
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4.3 Algorithms

This section describes the "Cloud2Entities" software solution, developed for converting point
cloud data into BIM models. Written in Python 3.10, this software is designed to stream-
line the process of creating 3D building models from point cloud data. The main software is
supported by two additional code components, as illustrated in Fig. 5. The first component,
"aux_functions", comprises essential functions for segmenting building elements from point
cloud data. The second component, "generate_ifc," focuses on generating IFC files.

Figure 4.8: Main code supplemented with additional parts aux_function and generate_ifc.

4.3.1 Data Reading

Multiple .e57 or .xyz files can be used as program input. The code first checks for the existence
of the e57_input variable to determine if it should proceed with loading data from E57 files. If
the variable exists, an empty list called imported_e57_data is created to hold the data. Function
then iterates through a list of E57 file names. Logging messages for each file’s reading, and calls
a function to read and store data from these files in the imported_e57_data list. Once all E57
files are processed, the code logs a message confirming the conversion of the data to the XYZ
format and saves it to a file. If there is no E57 input. In this case, the code proceeds to iterate
through a list of XYZ file names. For each file, it logs messages regarding data extraction,
loads the xyz coordinates and RGB data from these files, rounds the xyz coordinates to three
decimal places, and finally logs a message confirming the successful import of all point cloud
data. The following code listing 4.1 shows the part where the data are loaded.
from a u x _ f u n c t i o n s import *

e 5 7 _ f i l e _ n a m e s = ["input_e57/06th.e57" , "input_e57/07th.e57" ]
i f e 5 7 _ i n p u t :

f o r e 5 7 _ f i l e _ n a m e in e 5 7 _ f i l e _ n a m e s :
l a s t _ t i m e = l o g (’Reading %s.’ % e57_f i l e_name , l a s t _ t i m e ,

l o g _ f i l e n a m e )
i m p o r t e d _ e 5 7 _ d a t a . append ( r e a d _ e 5 7 ( e 5 7 _ f i l e _ n a m e ) )

l a s t _ t i m e = l o g (’Saving the data to %s...’ % x y z _ f i l e n a m e s [ 0 ] ,
l a s t _ t i m e , l o g _ f i l e n a m e )

e 5 7 _ d a t a _ t o _ x y z ( i m p o r t e d _ e 5 7 _ d a t a , x y z _ f i l e n a m e s [ 0 ] , c h u n k _ s i z e =1000)
l a s t _ t i m e = l o g (’e57 file(s) converted to ASCII format, saved as %s.’ %

x y z _ f i l e n a m e s [ 0 ] , l a s t _ t i m e , l o g _ f i l e n a m e )

Code Listing 4.1: Data reading
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4.3.2 Slabs Identification

The Python function, identify_slabs_from_point_cloud, takes a point cloud as input, which in-
cludes 3D coordinates (X, Y, Z) and RGB color information. It processes this point cloud data
to identify horizontal surfaces and retrieve information about them. Additionally, it offers the
option to visualize these segmented surfaces. The output can be saved in .jpg format or vi-
sualized using the Open3D library’s open3d.visualization function [66]. The input parameter
z_step determines the step size for evaluating the point density in the histogram. A more de-
tailed description of this algorithm can be found in Section 4.2.1. In Figure 4.9 you’ll find
a process flowchart illustrating the section of the code responsible for extracting slabs. Code
Listing 4.2 is a detailed breakdown of the essential steps performed within the function. These
steps include:

• Calculation of the number of steps, denoted as n_steps.

• Iterating through horizontal surface candidates using a for loop:

for i in tqdm(range(n_steps)).

• Determining the number of points in each layer:

n_points_array.append(len(idx_selected_xyz)).

• Identifying the layer with the most points:

max_n_points_array = max(n_points_array).

• Selecting strips that reach at least 50 % of the maximum points using a for loop:

for i in range(len(n_points_array)).

• Merging the lower and upper surfaces of each horiz_surface using a for loop:

for i in range(len(horiz_surface_candidates)).

• Calculating the thickness of the slab from slab_bottom_z_coord and slab_top_z_coord.

• Determining the board polygon using the function create_hull_alphashape (Code listing
4.3). The input to this function is the alpha parameter discussed in Section 3.3, namely
concavity_level.

• The final step involves storing the obtained values in the dictionary slabs. The stored val-
ues include: polygon_id, polygon_x_coords, polygon_y_coords, slab_bottom_z_coord
and slab_thickness.
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def i d e n t i f y _ s l a b s _ f r o m _ p o i n t _ c l o u d ( p o i n t s _ x y z , p o i n t s _ r g b , z _ s t e p ,
p l o t _ s e g m e n t e d _ p l a n e = F a l s e ) :

. . .
n _ s t e p s = i n t ( ( z_max − z_min ) / z _ s t e p + 1)
. . .
f o r i in tqdm ( range ( n _ s t e p s ) , de sc ="Progress searching for

horiz_surface candidate z-coordinates" ) :
z = z_min + i * z _ s t e p
i d x _ s e l e c t e d _ x y z = np . where ( ( z < p o i n t s _ x y z [ : , 2 ] ) & ( p o i n t s _ x y z [ : ,

2 ] < ( z + z _ s t e p ) ) ) [ 0 ]
z _ a r r a y . append ( z )
n _ p o i n t s _ a r r a y . append ( l e n ( i d x _ s e l e c t e d _ x y z ) )

. . .
m a x _ n _ p o i n t s _ a r r a y = max ( n _ p o i n t s _ a r r a y )
. . .
f o r i in range ( l e n ( n _ p o i n t s _ a r r a y ) ) :

i f n _ p o i n t s _ a r r a y [ i ] > 0 . 5 * m a x _ n _ p o i n t s _ a r r a y :
h o r i z _ s u r f a c e _ c a n d i d a t e s . append ( [ z _ a r r a y [ i ] , z _ a r r a y [ i ] +

z _ s t e p ] )
. . .
f o r i in range ( l e n ( h o r i z _ s u r f a c e _ c a n d i d a t e s ) ) :

i f ( i % 2) == 1 :
. . .
s l a b _ b o t t o m _ z _ c o o r d = np . median ( h o r i z _ s u r f a c e _ p l a n e s [ i − 1 ] [ : ,

2 ] )
s l a b _ t o p _ z _ c o o r d = np . median ( h o r i z _ s u r f a c e _ p l a n e s [ i ] [ : , 2 ] )
s l a b _ t h i c k n e s s = s l a b _ t o p _ z _ c o o r d − s l a b _ b o t t o m _ z _ c o o r d
s l a b _ p o i n t s = np . c o n c a t e n a t e ( ( h o r i z _ s u r f a c e _ p l a n e s [ i − 1 ] ,

h o r i z _ s u r f a c e _ p l a n e s [ i ] ) , a x i s =0)
x_coords , y_coords , po lygon = c r e a t e _ h u l l _ a l p h a s h a p e (

s l a b _ p o i n t s , c o n c a v i t y _ l e v e l = 0 . 0 ) # 0 . 0 −> convex
s l a b s . append ( {’polygon’ : polygon , ’polygon_x_coords’ : x_coords ,

’polygon_y_coords’ : y_coords ,
’slab_bottom_z_coord’ : s l a b _ b o t t o m _ z _ c o o r d , ’

thickness’ : s l a b _ t h i c k n e s s } )
. . .

re turn s l a b s , h o r i z _ s u r f a c e _ p l a n e s

Code Listing 4.2: Slabs identification

def c r e a t e _ h u l l _ a l p h a s h a p e ( p o i n t s _ 3 d , c o n c a v i t y _ l e v e l = 1 . 0 ) :
p o i n t s _ 2 d = [ [ x , y ] f o r x , y , _ in p o i n t s _ 3 d ]
a l p h a _ s h a p e = a l p h a s h a p e . a l p h a s h a p e ( p o i n t s _ 2 d , c o n c a v i t y _ l e v e l )
h u l l = a l p h a _ s h a p e . c o n v e x _ h u l l
. . .
re turn x_coords , y_coords , po lygon

Code Listing 4.3: Hull creation function using the Alphashape algorithm [52].
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Figure 4.9: A flowchart describing the code for the algorithm for detecting slabs.



IMPLEMENTATION AND ANALYSIS 29

4.3.3 Splitting Point Cloud into Storey

Python function, split_pointcloud_to_storeys, takes as input a 3D point cloud represented as a
NumPy array of (x, y, z) coordinates (points_xyz) and a list of slabs. The function’s purpose
is to split the input point cloud into separate 3D point clouds for each storey in a building,
based on the provided slab definitions. The preparation of height-segmented data will help
with subsequent wall segmentation. Here’s a breakdown of what the function (Code listing
4.4) does:

• The function iterates through the slabs list and calculates two heights for each storey,
bottom_z_of_upper_slab and top_z_of_bottom_slab (Figure 4.10).

• Using NumPy indexing, it extracts points from the points_xyz array that fall within the
height range defined by bottom_z_of_upper_slab and top_z_of_bottom_slab.

• Finally, it returns the segmented_pointclouds_3d list, which contains separate 3D point
clouds for each storey in the building.

def s p l i t _ p o i n t c l o u d _ t o _ s t o r e y s ( p o i n t s _ x y z , s l a b s ) :
f o r i in range ( l e n ( s l a b s ) − 1) :

b o t t o m _ z _ o f _ u p p e r _ s l a b = s l a b s [ i + 1 ] [’slab_bottom_z_coord’ ]
t o p _ z _ o f _ b o t t o m _ s l a b = s l a b s [ i ] [’slab_bottom_z_coord’ ]
+ s l a b s [ i ] [’thickness’ ]

s e g m e n t e d _ p o i n t c l o u d _ i d x = np . where ( ( t o p _ z _ o f _ b o t t o m _ s l a b <
p o i n t s _ x y z [ : , 2 ] ) & ( p o i n t s _ x y z [ : , 2 ] <
b o t t o m _ z _ o f _ u p p e r _ s l a b ) ) [ 0 ]

i f l e n ( s e g m e n t e d _ p o i n t c l o u d _ i d x ) > 0 :
s e g m e n t e d _ p o i n t c l o u d _ p o i n t s _ i n _ s t o r e y = p o i n t s _ x y z [

s e g m e n t e d _ p o i n t c l o u d _ i d x ]
s e g m e n t e d _ p o i n t c l o u d s _ 3 d . append (

s e g m e n t e d _ p o i n t c l o u d _ p o i n t s _ i n _ s t o r e y )

re turn s e g m e n t e d _ p o i n t c l o u d s _ 3 d

Code Listing 4.4: Point cloud segmentation algorithm for storey points extraction.

Figure 4.10: Section through the point cloud with marked boundaries for the division into storeys.
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4.3.4 Wall Identification

The identify_walls function has various user inputs, including 3D point cloud data, the resolu-
tion of the point cloud data, the minimum length of a wall segment, the minimum and maximum
wall thickness, and the assigned storey or level within the building. Additionally, the function
contains inputs that were defined based on the distribution of points in space and are not user-
accessible, these are z_section_boundaries and grid_coefficient. To obtain the precise geometry
of walls, this function performs several key steps:

• The zip(*pointcloud) expression is used to unzip the 3D point cloud into separate arrays
for x, y, and z coordinates.

• z_section_boundaries is defined by two height percentages that represent the lower and
upper boundaries of a section within a floor. In testing, setting the section to start at 90
% floor height and go up to 100 % worked well.

• grid_coefficient is used to control the size of the computational grid. It multiplies the
point_cloud_resolution, indicating how fine the grid should be.

• points_2d is created by selecting the x and y coordinates of the filtered points using the
filtered_indices list that iterates through the z-coordinates and keeps the indices of points
that fall within the calculated z-coordinate limits.

• The np.histogram2d function is then called to create a 2D histogram of points based on
their x and y coordinates from points_2d. The bins parameter accepts the x_values_full
and y_values_full arrays as the boundaries of the histogram pixels.

• The result is stored in grid_full, which is a 2D array containing counts of points in each
histogram pixel.

• threshold variable sets the threshold value, which determines whether a pixel in the his-
togram should be considered part of the binary mask or not.

• The partial result is stored in the variable binary_image, is a binary mask where each
pixel represents whether the corresponding region in the original 2D histogram had a
value greater than the specified threshold (0.01 in this case). If the value was greater, the
pixel in the mask is set to 255 (white), indicating that it’s part of the mask. Otherwise,
it’s set to 0 (black), indicating that it’s not part of the mask.

• A closing morphological operation (mentioned in Section 3.4) is applied to the binary
image. It uses a 5x5 square structuring element:

closing(binary_image, square(5)).

• The cv2.findContours function accepts a binary_image where the white area represents
objects or regions of interest, and two constants (mentioned in section 3.4) and return set
of points representing contours:

cv2.findContours(binary_image, RETR_EXTERNAL, CHAIN_APPROX_NONE).
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• Approximation of line segments is done with Douglas-Peucker algorithm (mentioned in
Section 3.4). Function cv2.approxPolyDP takes as input contours and epsilon_factor.

• List of line segments all_segments is converted from pixel coordinates to world coordi-
nates by applying the appropriate scaling factor pixel_size.

• Line segments that do not meet the minimum length requirement specified by minimum_wall_length
are removed.

• Line segments that are approximately co-linear are merged, based on the specified vari-
ables max_thickness and max_distance.

• The axis for a group of parallel line segments is calculated by analyzing their lengths,
directions, and distances from points in the segments, function returns the axis start point
and end point along with point to axis mean distance.

4.3.5 Wall Faces Identification

The identify_wall_faces function detects the main surfaces of a wall from a point cloud
dataset. It extracts the vertical positions of points and uses them to create a histogram that
reflects the point density at different location. The function sets a threshold to identify the most
significant peaks in the histogram, which represent the wall’s surfaces. It adjusts these peaks by
the resolution of the point cloud to ensure the surface is fully captured. The following Figure
4.11 displays the histogram of the y-coordinates along with the identified peaks and vertical
lines marking the positions of the wall surfaces, as described in the following function 4.5.

Figure 4.11: The histogram of the density of points on the y-coordinate along with vertices identified
and vertical lines indicating the positions of the wall surfaces.
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Figure 4.12: A flowchart describing algorithm for walls detection.
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4.3.6 Rectangular Opening Detection

The detect_rectangular_openings function is designed to identify potential door and window
openings in a wall by analyzing point cloud data density. It takes several parameters, including
wall_number (identifier for the wall), wall_points (3D coordinates of points in .xyz for-
mat), resolution and grid_roughness (parameters for defining bins in histograms). Another
group of inputs include the histogram_threshold for deciding if a bin contains an opening,
min_opening_width and min_opening_height to filter by size, max_opening_aspect_ratio
to control aspect ratios, door_z_min to classify openings as doors or windows based on their
z-coordinate, and thickness_for_extraction to define the region of interest for projecting
points onto the x-z plane.

The function begins by determining the front and back surfaces of the wall using the
identify_wall_faces function (Code listing 4.5), which provides two y-coordinates repre-
senting these surfaces. With these coordinates, it establishes a region of interest (ROI) for the
wall points by setting an inner and outer threshold around the front wall surface based on the
given thickness value in the thickness_for_extraction variable. The correct setting of this
parameter ensures that there will be no discontinuity of the wall surface, which could be caused
by surface unevenness.

def i d e n t i f y _ w a l l _ f a c e s ( wal l_number , p o i n t s , p o i n t _ c l o u d _ r e s o l u t i o n ,
m i n _ d i s t a n c e =3 , p l o t _ h i s t o g r a m s _ f o r _ w a l l s =True ) :
y _ c o o r d s = [ p o i n t [ 1 ] f o r p o i n t in p o i n t s ]
y_min , y_max = min ( y _ c o o r d s ) , max ( y _ c o o r d s )
b i n _ e d g e s = np . a r a n g e ( y_min , y_max , p o i n t _ c l o u d _ r e s o l u t i o n )
h i s t , _ = np . h i s t o g r a m ( y_coords , b i n s = b i n _ e d g e s )
h e i g h t _ t h r e s h o l d = 0 . 5 * max ( h i s t )
peaks , p r o p e r t i e s = f i n d _ p e a k s ( h i s t , d i s t a n c e = m i n _ d i s t a n c e , h e i g h t =

h e i g h t _ t h r e s h o l d ,
p rominence =0 .25 * h e i g h t _ t h r e s h o l d )

i f l e n ( peaks ) < 2 :
p r i n t ("Warning: Unable to identify both floor and ceiling surfaces.

" )
re turn None , None

y1 = b i n _ e d g e s [ peaks [ 0 ] ] + p o i n t _ c l o u d _ r e s o l u t i o n
y2 = b i n _ e d g e s [ peaks [ − 1 ] ] − p o i n t _ c l o u d _ r e s o l u t i o n

re turn y1 , y2

Code Listing 4.5: Key components of the wall surfaces identification function.

Next, the function projects the points within the ROI onto the x-z plane to a 2D representa-
tion for easier analysis. The rotation of all relevant points is done based on the unit vector that
belongs to the rotated wall. The variable in code is called direction_vector and is calculated
from the following relation:

D =

(
x2 − x1√

(x2 − x1)2 + (y2 − y1)2
,

y2 − y1√
(x2 − x1)2 + (y2 − y1)2

)
, (4.1)

where x2 is the x-coordinate of the second point and x1 is the x-coordinate of the first point,
while y2 is the y-coordinate of the second point, and y1 is the y-coordinate of the first point,
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D represents the direction vector. A histogram of projected points is then created, with bins
sized according to the resolution and grid roughness parameters. The histogram displayed in
Figure 4.6 helps to visualize the distribution of points along the wall’s length and can indicate
potential openings based on gaps in the points distribution. The threshold for determining
floor plan dimension of openings is set by multiplying the 10th highest value in the histogram
(max10) by the histogram_threshold parameter.

The ”openings” list is used to store the identified opening intervals. The function iterates
through the elements of the ”hist” array, which represents the histogram, and checks whether
the count of points within a bin falls below a threshold (”x_threshold”). When a bin with a
count below the threshold is encountered, it marks the start of an opening, and the function
keeps track of this with the ”in_opening” variable. The start and end points of an opening
are recorded, and if the difference between these points exceeds a minimum opening width
(”min_opening_width”), the opening is considered valid and added to the openings list.

For each valid opening, the function calculates the middle point along the x-axis within
the opening, and then it extracts the corresponding z-values (heights) of points falling within
a certain tolerance around the middle point. A z-histogram is constructed from these z-values,
and the second highest count (”max2”) in the z-histogram is used to determine a z-threshold,
which helps segment the opening’s precise height. The function then identifies candidates
for the opening’s height by analyzing the z-histogram and selects the height range with the
maximum vertical span. The width of the opening is calculated based on its x-coordinates,
and if the height of the opening exceeds a minimum threshold, and its aspect ratio falls within
specified constraints, the opening is classified as either a ’door’ or ’window’ based on its z-
coordinate with respect to a predefined ”door_z_min”.
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Figure 4.13: A flowchart describing algorithm for openings detection.
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4.4 IFC File Generation

To ensure openBIM output after generating the geometry and to guarantee accessibility by
various software applications, the IFC (Industry Foundation Classes) format has been selected
as the format in which the obtained geometry will be stored. The output generation in IFC 4
ADD2 TC1 format was done using the Ifcopenshell library [67]. DesignTransferView_V1.0
was chosen as the Model View Definition (MVD) for further possible editing and the nature of
how the data on individual geometric entities should be generated. After generating the file in
.ifc format, validation was performed using the online validation tool from BuildingSMART
[68]. This tool tests the file in three areas:

• STEP Physical File Syntax / IFC Schema

• Rules

• bSDD

The following figure shows the fulfillment of all conditions in the generated ifc file from point
cloud data.

Figure 4.14: Successful output validation with BuildingSMART validation instrument [68].

Algorithm
Python code "generate_ifc.py" defines a class named "IFCmodel" designed for the creation and
management of IFC files, which are utilized in the representation of building and construction
industry data. The class constructor initializes various attributes, including project name, output
file directory path, and header data for the IFC file. The ifcopenshell library is employed to
handle IFC file operations. Upon instantiation of the class, an instance of "IFCmodel" is created
with specific project and output file details. The overall structure of the code facilitates the
organization of IFC model creation logic within a class, offering a clear and modular approach
for users to define project and author details before generating an IFC model instance. There
are several methods in IFCmodel class:

• The "define_author_information" method setting the authorship information in both the
class instance and the header of the IFC file being generated.

• The "create_unit_assignment" method is responsible for generating a unit assignment
for the project. This unit assignment includes units for length, area, volume, plane angle,
and solid angle.
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• The "assign_material" method facilitates the creation of an association between a mate-
rial and a product in the IFC model. This is achieved by creating an "IfcRelAssociates-
Material" entity with appropriate attributes, linking the material to the specified product.

• The "define_project_data" method orchestrates the creation of various entities within
the IFC model, including units, geometric representations, project structure components,
and their relationships. This method ensures that the IFC model accurately represents the
specified project details.

• The "create_building_storey" method generate a building storey in the IFC model. It
defines a new local coordinate system related to the storey, creates an "IfcBuildingStorey"
entity, and establishes a relationship between the building and the newly created storey.

• The "create_slab" method within the IFCmodel class is responsible for generating a slab
in the IFC model. This method involves the creation of various entities such as coordinate
systems, profiles, and material associations to represent the slab accurately.

• The "create_material_layer" method creates an "IfcMaterialLayer" entity representing a
single layer of a material. It takes optional parameters "wall_thickness" (default is 0.3
m) and "material_name" (default is Masonry - brick").

• The "create_material_layer_set" method is used to create "IfcMaterialLayerSet" entity
representing a set of material layers. And is used with multi layered walls and slabs.

• The "wall_placement" method establishes the placement of a wall within the IFC model
by creating a coordinate system "IfcAxis2Placement3D" with an elevation "z_placement".
This coordinate system is then used to define the local placement of the wall "IfcLo-
calPlacement".

• The "wall_axis_placement" method creating an "IfcPolyline" entity that represents the
axis or geometry of a wall. This is achieved by specifying the start and end points of the
polyline.

• The "wall_axis_representation" method create an "IfcShapeRepresentation" entity that
represents the geometric representation of the wall axis. This involves specifying the
context, representation type, and the actual geometry.

• The "wall_swept_solid_representation" method is responsible for creating a swept solid
representation of a wall within an IFC model. This involves defining a rectangular profile,
extruding it to create a three-dimensional solid, and then representing it as a swept solid
in the IFC model.

• The "create_wall" method in the IFCmodel class create an "IfcWall" entity within the
IFC model. This involves specifying various parameters such as global identifier, owner
history, name, description, object type, object placement, representation, tag, and prede-
fined type.

• The "create_wall_type" method encapsulates the process of creating an "IfcWallType"
entity within the IFC model. It takes parameters for various properties of the wall type,
creates relationships with the wall entity.
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• The "create_wall_opening" method in the "IFCmodel" class is responsible for creating
an "IfcOpeningElement" entity within the IFC model. This involves specifying various
parameters such as global identifier, owner history, name, description, object type, object
placement, representation, tag, and predefined type.

• The "opening_placement" method defining the placement of an opening element within
the context of a wall. It uses "IfcAxis2Placement3D" for specifying the location and
"IfcLocalPlacement" for establishing the relative placement within the wall’s context.

• The "opening_closed_profile_def" method is responsible for defining a closed two di-
mensional profile for an opening element, and it uses "IfcArbitraryClosedProfileDef"
with a polyline as the outer curve to represent this profile.

• The "opening_extrusion" method creating an "IfcExtrudedAreaSolid", which represents
the extrusion of a 2D profile along a straight path to form a 3D solid.

• The "create_rel_voids_element" method creates an "IfcRelVoidsElement" relationship
between a building element and an opening element in your IFC model. This Boolean
operation results in a void space within the building element’s geometry, creating an
opening.

4.4.1 Spatial Hierarchy

For the simple inclusion of building elements into their respective locations, a hierarchy as
shown in Figure 4.15 has been created. This hierarchy represents the common structure of
the project. In each IFC file, exactly one instance of IfcProject or another IfcContext such as
IfcProjectLibrary must be defined. All other data in the file is then related to this IFC class.
This class also defines essential attributes such as a list of unit definitions, project name, project
phase, etc. A snippet of the code part 4.6 where the IFC class IfcProject is created using the
Python programming language and the function provided by the IfcOpenShell package [69].

Figure 4.15: IFC spatial hierarchy displayed in BIMcollab ZOOM viewer.
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import i f c o p e n s h e l l
c l a s s IFCmodel :

def d e f i n e _ p r o j e c t _ d a t a ( s e l f , p r o j e c t _ d e s c r i p t i o n , o b j e c t _ t y p e ,
l o n g _ p r o j e c t _ n a m e , c o n s t r u c t i o n _ p h a s e , v e r s i o n , o r g a n i z a t i o n ,
person_given_name , pe r son_fami ly_name , l a t i t u d e , l o n g i t u d e ,
e l e v a t i o n ) :

. . .

s e l f . p r o j e c t = s e l f . i f c _ f i l e . c r e a t e _ e n t i t y (
"IfcProject" ,
G l o b a l I d = i f c o p e n s h e l l . gu id . new ( ) ,
Name= s e l f . p ro j e c t _n am e ,
LongName= s e l f . l o n g _ p r o j e c t _ n a m e ,
Objec tType = s e l f . o b j e c t _ t y p e ,
D e s c r i p t i o n = s e l f . p r o j e c t _ d e s c r i p t i o n ,
Phase = s e l f . c o n s t r u c t i o n _ p h a s e ,
U n i t s I n C o n t e x t = u n i t _ a s s i g n m e n t ,

)

Code Listing 4.6: IfcProject class atributes declaration

4.4.2 Geometric Representation

Slab
The entity representation of the ceiling slab is provided in IFC 4 using the IfcSlab class. The
geometric representation is based on a swept solid approach. The IfcArbitraryClosedProfileDef
defining a closed profile, in this case a polyline, describing the perimeter of the slab. The
IfcExtrudedAreaSolid entity is then employed to create a solid extrusion from this profile along
a specified axis. Parameters such as the extrusion depth and the local placement of the slab
within the building are also defined. Individual ifc classes are shown in Figure 4.16.

GSEducationalVersion

z

x

y IfcArbitraryClosedProfileDef

IfcExtrudedAreaSolid
IfcAxis2Placement3D

IfcCartesianPoint

IfcPolyline

z

x

y IfcArbitraryClosedProfileDef

IfcExtrudedAreaSolidIfcAxis2Placement3D

Figure 4.16: Geometric representation of slab created by ifc sweptsolid geometry.
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Wall
The wall is represented in IFC by the class IfcWall or class IfcWallType, which represents indi-
vidual groups of walls with the same thickness parameters and layer composition. The geome-
try is defined by a start and end point IfcCartesianPoint, which forms the axis of the wall. From
wall axis and predefined wall thickness, the IfcArbitraryClosedProfileDef extraction polygon
is then calculated. The resulting height for the extrusion is considered to be the full height of
the floor and is given in the class IfcExtrudedAreaSolid. The following Figure 4.17 shows the
main classes used to create the geometric representation of the wall.

GSEducationalVersion

z

x

y IfcArbitraryClosedProfileDef

IfcExtrudedAreaSolid
IfcAxis2Placement3D

IfcCartesianPoint

IfcPolyline

Figure 4.17: Main IFC classes used to create geometric representation of wall.

The following code snippet 4.7 shows the creation of the IfcExtrudedAreaSolid class and
storing it in the wall_extruded_area variable, the direction of the extrusion is given by the unit
vector in the z-axis direction, the depth of the extrusion is set by the wall_height variable.
Code snippet 4.8 shows the mentioned class published to the IFC 4 output in STEP physical
file format.

w a l l _ e x t r u d e d _ a r e a = s e l f . i f c _ f i l e . c r e a t e _ e n t i t y (
"IfcExtrudedAreaSolid" ,
SweptArea= r e c t a n g l e _ p r o f i l e ,
P o s i t i o n =None ,
E x t r u d e d D i r e c t i o n = s e l f . i f c _ f i l e . c r e a t e _ e n t i t y ("IfcDirection" ,

D i r e c t i o n R a t i o s = ( 0 . 0 , 0 . 0 , 1 . 0 ) ) ,
Depth= w a l l _ h e i g h t ,

)

Code Listing 4.7: IfcExtrudedAreaSolid class atributes declaration in Python code.

#130=IFCRECTANGLEPROFILEDEF ( . AREA. ,’Wall Perim’ , # 1 2 9 , 7 . 8 3 3 , 0 . 2 0 3 ) ;
#131=IFCDIRECTION ( ( 0 . , 0 . , 1 . ) ) ;
#132=IFCEXTRUDEDAREASOLID( # 1 3 0 , $ , # 1 3 1 , 2 . 5 9 1 ) ;

Code Listing 4.8: IfcExtrudedAreaSolid class in IFC 4 output in STEP physical file format.
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Opening
The geometric representation of the opening shown in Figure 4.18 is performed using ob-
ject definition class IfcOpening. This class relates to its parent wall using the relationship
IfcRelVoidsElement. The location of the opening is provided by the IfcAxis2Placement3D
classes, where one class is global for the wall and the other is local for the opening in this
wall. The opening itself is created using the already mentioned swept solid technique. A rect-
angle is created with IfcPolyline that represents the area of the window sill or door threshold
and is then stretched in the direction of the z axis to the required height of the opening with
IfcExtrudedAreaSolid class.
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IfcExtrudedAreaSolid
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IfcExtrudedAreaSolidIfcAxis2Placement3D
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Figure 4.18: Main IFC classes used to create geometric representation of opening.



Chapter 5

Research Outcomes and Discussion

The following section will describe the output of the program and evaluate the pros and cons
of the used solution, the approach will also be compared with alternative approaches in the
literature. To assess the program’s functionality, a point cloud representing a single room within
a multi-storey former hotel was prepared. The laser-scanned room contained an external wall
with a window and three internal walls, and door openings in them. Horizontally, the point
cloud was defined by two ceiling slabs. Figure 4.2 shows the point cloud for testing.

In the first phase, the ceiling slabs were segmented and classified, and the building was
divided into individual floors. This procedure is also performed in the manual creation of a 3D
BIM model from point cloud data and was therefore a logical first step. The solution relies on
the assumption of a higher point density in the height planes of the horizontal surfaces of the
ceiling slabs. A similar approach was also followed by Jung et.al. [70]. However, his proposed
solution only allows segmentation of a single-story building and therefore uses the floor and
ceiling surfaces only as boundaries to obtain the height of the segmented walls. A similarly
limited solution for only single-storey buildings was presented by Previtali et.al. [71]. In their
paper focuses on modelling the interior space of a building and implements the RANSAC
algorithm to obtain floor and ceiling surfaces, which is widely implemented in other works and
allows the detection of common shapes such as sphere, cone and cylinder surfaces [20, 72]. To
obtain the plan dimension of the ceiling slabs, the algorithm Aplhapshape [52] was applied. For
the application of this algorithm, it is important to mention that the calculation of the concave
shape is very computationally demanding due to the Delauney triangulation that is applied to
all points lying in the ceiling plane. The result of this operation is a ceiling slab that follows
the outer envelope of the building by its edge.

The second step in creating the entire building model involved obtaining the floor plan shape
and the positions of the walls. During the wall creation process, an assumption was made to
consider only straight edges, thereby excluding curved walls. A similar approach was adopted
by Thomson [72] and Ochmann [73]. This simplification not only streamlines the modeling
process but also proves beneficial in representing the final geometry in IFC format. Another
commonly used assumption is the Manhattan-world scene, which posits that walls are strictly
orthogonal. However, this work did not strictly adhere to this assumption, and the chosen
method allows for the detection of walls that are not perpendicular to each other. The advan-
tage of this assumption in facilitating semantic segmentation is well-documented, as evidenced
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in studies such as those by Previtali [71] and Murali et al. [74]. In this work, walls have been
modeled as volumetric parametric objects, representing one of the various approaches to wall
modeling. This method aligns with similar solutions, such as the one demonstrated by Bassier
[75]. Contrasting with this, some methodologies define walls, floors, and ceilings primarily
in terms of rooms, characterizing these elements as zones within the modeling software. This
perspective emphasizes the spatial aspect as the key element of information, focusing less on
the physical structures themselves. However, from the author’s standpoint, this latter approach
is considered less suitable, particularly in the context of this work. It is believed that the vol-
umetric parametric representation offers a more comprehensive and practical approach for the
objectives set forth in this thesis.

When the precise location of the wall is established, analyzing the openings, like doors and
windows, from a side elevation perspective seems to be an appropriate method. This approach,
used for determining the geometry and positions of openings in the wall, was similarly em-
ployed by Cheng et al. [76]. A different approach, presented by Díaz-Vilariño [77], relied on
the assumption of a known path followed by a SLAM-based scanner. Although this solution
offers high accuracy, it is notably inefficient due to the unavailability of the scanner’s trajectory
in some cases and the limitations of equipment that can be used for indoor data collection. An-
other approach, which involves density histogram analysis, was introduced by Chen [78]. Chen
utilized a gradient-based maximum to identify the starting and ending locations of openings.
For the purpose of simpler segmentation and visualization of openings, the assumption that all
doors and windows are square was made. This assumption facilitates the histogram analysis of
point density in the wall.

The program outputs a file in the IFC 4 ADD TC2 format, which is commonly implemented
in the exchange of data within the field of BIM collaboration. Some solutions found in the lit-
erature use output formats or data representations that are not OpenBIM, preventing display
and editing across different software platforms for the average user. Relying on a single soft-
ware, such as Planar5D used by Murali [74], is highly inefficient and restrictive for end-users.
The format has multiple versions and is constantly evolving. The previously prevalent IFC2x3
version, as used by Thomson [72], has now been largely supplanted by the more current IFC 4
version, which is employed in this work.

The results of this research are visually represented in the subsequent figures. Figure 5.1
illustrates the generated floor plan of the tested room, as displayed in ArchiCAD 26, highlight-
ing the precision and clarity achieved through the developed methodologies. Following this,
Figure 5.2 showcases the program’s output for the same room, also visualized in ArchiCAD 26
3D view. These visual representations not only demonstrate the practical applicability of the
software but also affirm its effectiveness in producing detailed and accurate BIM models.
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Figure 5.1: Generated floor plan of testing room displayed in ArchiCAD 26.
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Figure 5.2: Program output of testing room displayed in ArchiCAD 26.



Conclusion

This diploma thesis has been devoted to advancing the methodology for transforming point
cloud data into 3D models. Traditionally, this transformation has been a labor-intensive task,
requiring manual input of building elements into modeling software such as ArchiCAD, Re-
vit, and Allplan. This manual approach demanded precision in aligning these elements with
the point cloud’s scanned surfaces. In contrast, the novel approach developed in this thesis
automates this conversion process, representing a significant leap forward in efficiency and ac-
curacy.

The thesis was divided into two main parts, and it includes an attachment to a GitHub
repository where the program’s source codes are stored. The first part described already known
principles, techniques, and algorithms usable for the segmentation and classification of point
clouds. The second, practical part, discusses data preparation, methods used for segmenting
individual structural elements, and the functioning of key algorithms. The program is based
on the principle of analyzing point density in space and image processing with morphology
operations. The proposed solution can segment and classify building elements such as ceiling
slabs, walls, windows, and doors. The program subsequently saves the geometry of these
building elements in a created IFC4 file, facilitating the further use of the 3D BIM model.

Future work could extend these capabilities to include the detection of curved walls, roof
planes, ceiling ducts, and other building elements. Additionally, the IFC output could be en-
hanced to include automatically detected materials, possibly leveraging machine learning for
texture recognition.

The development of the software not only marks a significant step forward in automating
the Scan-to-BIM process but also paves the way for more efficient and sustainable practices in
the construction and architectural fields. By facilitating quicker and more accurate conversions
of point cloud data into usable 3D models, this work contributes to the reduction of time and
resources typically expended in manual processes, underscoring the growing importance of
technological integration in building lifecycle management.
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