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Instructions

Reproducibility is one of the critical issues of every machine learning project. The final 

model depends on various input factors, such as the acquisition and preprocessing of 

train/test data, proper setting of model hyperparameters and the overall configuration of 

the learning process, to name a few. Machine Learning Operations (or MLOps for short) 

aims to bring order into machine learning projects. Over the past few years, numerous 

open-source and closed-source MLOps frameworks were released. Each project has its 

strengths/advantages and weaknesses/disadvantages. In their master thesis, the 

student will provide an introduction to the field of MLOps, analyze the existing MLOps 

frameworks and design an example stack using a subset of the reviewed frameworks 

based on the requirements discussed with the supervisor.

The requirements for the thesis include the following:

1. Summarize the main principles, advantages and phases of MLOps and its life cycle. 

Discuss the state of MLOps globally and justify its growing importance for businesses.

2. Perform an overview/a survey of existing open-source machine learning operations 

frameworks, and summarise their main features, key advantages, and disadvantages for 

use in personal and commercial settings.

3. Summarize the most important requirements for the design of the MLOps stack. 

Describe the potential setup. Based on the discussion with the supervisor, suggest the 

appropriate tools, justify your choice over the available alternatives, and describe the 

final design of the stack.

4. Design and implement a way to use and interact with the stack and document its 
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usage. Provide a deeper review of the components used and describe how they interact. 

If the stack depends on any supplementary frameworks not previously described (e.g. 

Docker, Kubernetes), provide their overview.

5. Demonstrate the usage of the stack on a practical example (e.g. a simple 

classification task on publicly available data). Describe the steps, such as data 

acquisition and versioning, hyperparameters setting, experiment tracking, model 

evaluation and deployment using CI/CD.

6. Discuss the possible ways the implementation will be expanded and maintained in 

the future and justify its suitability for the task.
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Abstrakt

Rast popularity a významu aplikácie strojového učenia v rôznych odvetvi-
ach viedol k postupnému rozš́ıreniu prinćıpov DevOps o koncepty súvisiace
s dátami a modelmi, výsledkom čoho došlo k vzniku paradigmy známej ako
MLOps. Táto diplomová práca skúma jej dôležitost’, hlavné prinćıpy a fázy,
ktoré s ňou súvisia. V práci poskytujeme prehl’ad MLOps nástrojov a ich
hlavných funkcionaĺıt, na základe ktorého vyberáme tie najvhodneǰsie pre
účely využitia v procese výuky. Výsledkom tejto analýzy je ”proof of concept”
riešenie, ktoré môže slúžit’ ako základ pre d’aľśı výskum možnost́ı začlenenia
operácii strojového učenia za účelmi zjednodušenia procesu vývoja modelov
pre študentov a výskumńıkov na našej univerzite.

Kĺıčová slova MLOps, strojové učenie, reprodukovatel’nost’, umelá inteli-
gencia, DevOps
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Abstract

The growing popularity and importance of machine learning adoption across
industries have led to a gradual enrichment of DevOps principles with data-
and model-related concepts, forming a paradigm known as MLOps. This
diploma thesis explores its importance and describes the main principles and
phases involved. We perform a summary of MLOps tools and their features,
which we use to select the appropriate tools for use in our academic setting,
and design a proof of concept solution that can be used as a basis for fur-
ther research and incorporation of machine learning operations to simplify
the model development process for students and researchers at our university.

Keywords MLOps, machine learning, reproducibility, artificial intelligence,
DevOps
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Introduction

”MLOps is the natural progression of DevOps in the context of AI. While it
leverages DevOps’ focus on security, compliance, and management of IT resources,
MLOps’ real emphasis is on the consistent and smooth development of models and
their scalability.”
—Samir Tout, Professor of Cybersecurity, Eastern Michigan University’s SISAC [1]

Motivation

The Journey of Machine Learning

Eighty years ago, amidst global war, a research paper written by American
neurophysiologist Warren McCulloch and logician Walter Pitts introduced the
first mathematical model designed to mimic the basic building block of the
nervous system — a biological neuron [2]. In the decade that followed, Alan
Turing challenged the world to a round of ‘the imitation game’ [3], Frank
Rosenblatt designed the first artificial neural network (also known as the per-
ceptron) [4], and Arthur Samuel, the coiner of the term machine learning [5],
entertained the viewers of a morning news program with a computer program
that managed to defeat a human player at a game of checkers [6].

It is safe to say that the journey of machine learning as a field of computer
science has been all but uneventful (Figure 0.1). The initial excitement of the
1950s and early 1960s led to high expectations, which remained unfulfilled,
resulting in a series of alternating periods of disappointment, scepticism and a
decrease in research funding (also known as AI winters), followed by stretches
of renewed hope [7] — and it was not until the early 2010s that it started to
gain significant traction again, owing much of its success to the rapid evolution
in computing power that paved the way for the expansion of deep learning [8].

1



Introduction

Figure 0.1: A timeline of a few selected milestones in machine learning history.

The Hidden Value of Machine Learning (Operations)

To say that machine learning, or artificial intelligence in general, is a rapidly
evolving field is a vast understatement. Between 2017 and 2022, the volume of
global investments quadrupled to more than $176 billion [9, p. 151], and the
field is projected to contribute as much as $15.7 trillion to the global economy
in 2030 [10, p. 3]. Furthermore, it has become apparent that machine learn-
ing is no longer just a means of entertainment but is becoming increasingly
important in business operations, with the adoption rate doubling over the
past five years, both in terms percentage of respondents and the number of
utilized AI capabilities [11, p. 3]. The most prominent use case of AI remains
to be service operations optimization, utilizing tools such as robotic automa-
tion, computer vision, NLP and virtual assistants [11, p. 4]. Regardless of
the application, these surveys have shown that companies which were able to
adopt AI in their processes have seen both a decrease in costs and an increase
in revenue.

In 2022, Verta Insights — a research group at Verta.ai — surveyed over
200 stakeholders on the state of MLOps and its adoption with the aim of iden-
tifying the business processes that differentiate the industry leaders from their
competition [12]. The findings indicate that companies which are actively us-
ing an MLOps platform and have designated a team to manage it have a higher
tendency to launch new features and models into production successfully and
meet their overall targets. Furthermore, leading organizations have a report-
edly more systematic approach to model monitoring and tend to re-train their
models less frequently than their worse-performing counterparts.

2
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The Challenges of Machine Learning Operationalization

The process of operationalizing machine learning, however, remains to be a
daunting task for a lot of businesses worldwide [13], many of which overesti-
mate their preparedness for the incorporation of AI into their processes [14].
This often results in a substantial waste of valuable resources. The exact pro-
portion of projects that fail to deliver varies significantly by source, ranging
from 34 % [15] to 85 % [16]. According to some surveys, this may be at-
tributed to the underutilization of proper operationalization practices, such
as [12] which reports that:

• 55 % of companies do not have a team designated for helping models get
into production and/or have not adopted the use of an MLOps platform,
or that they are not aware of it,

• companies are struggling to establish or scale MLOps teams, finding it
difficult to transform data scientists into data engineers,

• 50 % of companies only manage to successfully meet their targets ”some-
times” or less frequently,

• in 56 % of cases, less than half of the organization’s projects make it
into production.

There have been attempts to identify the greatest challenges in machine
learning operationalization [12][17][18], with the following being the most com-
monly mentioned ones:

• sub-optimal quantity and/or quality of available relevant data, and other
data-related problems,

• difficulties proving the business value of ML projects,

• the lack of talented engineers who could help companies implement the
required technologies,

• difficulties choosing and implementing the right MLOps tools and tech-
nologies.

3
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Aim of the Thesis

The main objective of this diploma thesis comprises three main goals:

• to provide the reader with, or expand their knowledge of MLOps,

• to conduct a semi-comprehensive review of the current open-source MLOps
tools and frameworks on the market and illustrate the advantages their
adoption offers to the ML development process,

• to demonstrate the process of designing an MLOps stack for a specific
use case, justify the rationale behind certain design decisions, and show
the configuration and use of the stack in practice.

Thesis Structure

The thesis is partitioned into six primary chapters:

Chapter 1 introduces the paradigm and its historical and theoretical foun-
dations, and discusses its main principles and implications for different
stages of the machine learning project life cycle.

Chapter 2 surveys the various types of tools available in the market, high-
lights their key characteristics, and provides a detailed analysis of a
selected subset of tools.

Chapter 3 clarifies the aim and scope of the implementation part, outlines
the typical workflow of machine learning development in courses at our
university, and specifies the functional and non-functional criteria for
the stack.

Chapter 4 presents a comprehensive overview of the proposed architecture,
its components, and their interactions.

Chapter 5 explains the tools chosen to implement the stack and details the
implementation aspects of the stack and its components.

Chapter 6 reflects on the achievements of this work, assesses the fulfillment
of its objectives, and offers recommendations for future work.

4



Chapter 1
Theoretical Foundations

In this chapter, we provide a brief introduction to the topic of MLOps. First,
we explain what MLOps is, and identify the important milestones of its exis-
tence. Second, we explore its relationship to DevOps and summarize some of
its main principles. Finally, we provide an overview of the phases involved in
the machine learning development process, and highlight the ways the adop-
tion of MLOps can help in their application.

1.1 Introduction to MLOps

The term machine learning operations, commonly abbreviated to MLOps, has
been loosely defined and used by the machine learning community to describe
the paradigm of deploying ML models into production in a rapid, continuous
and organized manner [19]. In similar fashion to other technologies in their
relative infancy, there is no consensus about the term’s exact definition, how-
ever, it is often colloquially dubbed ‘DevOps for ML‘ [19, 20], as it follows
the same core principles as DevOps, while also incorporating the additional
challenges resulting from the added complexity of working with convoluted,
diverse and oftentimes constantly changing data and models [19, 21, 22].

The intricacies of machine learning operationalization were first described
in a 2015 paper by Sculley et al. [23], which has been referred to as a milestone
which put the trend of interest in MLOps in motion [21]. In their work, the
authors argue that technical debt in ML tends to be more complex, and often
harder to pinpoint than in software engineering due to its more systematic
nature. Additionally, they identify and enumerate a subset of common issues
and anti-patters and provide suggestions on how to eliminate them, or at the
very least mitigate their negative effects. As time progressed, MLOps began
to slowly gain traction and recognition by the industry, until a more gradual
increase started in 2019, during which numerous tools and frameworks were
initially released, and to this day continues to grow in popularity (Figure 1.1).

5



1. Theoretical Foundations

Figure 1.1: The growth of interest in MLOps over time (Google Trends).

To put emphasis on the continuity of the development process, MLOps
diagrams are often pictured as circles or infinity symbols (Figure 1.2). The
labels and stages vary by source, but can be generally grouped into four major
areas: business, data, development and operations.

Figure 1.2: A simplified diagram of a machine learning project life cycle [24].

A knowledgeable reader may recognize that the latter two have been in-
herited from the DevOps paradigm, which formed in the late 2000s as a way of
bridging the gap between the two aspects of software engineering [25]. In the
pre-DevOps era, development and operations functioned separately, resulting
in delayed deployment and misalignment between the two teams [26]. To-
day, DevOps has become one of the supporting pillars of a successful software
engineering practice [19], and its principles have been adopted by its vari-

6
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ous derivatives, such as DevSecOps [27] and AIOps [28], among many others.
These newly-formed paradigms are the consequence of its shortcomings in
specific use cases and the natural progression in the industry. In the context
of MLOps, the limitations have been attributed to the unpredictable nature
of data and the complexity of models and interactions between them [23]. As
a result, the basic principles of DevOps were enriched with the requirements
of machine learning projects, paving the way for the increasing adoption of
MLOps in practice.

There is no definitive guidebook for the successful application of MLOps,
but there have been attempts to formalize the best practices by establishing
the paradigm’s main principles [20], which include:

• The continuity of the model training and monitoring process.
In many production applications, data rarely remains stationary. As
it changes over time, the model must be retrained to include this new
information and adapt accordingly to avoid issues such as data and
concept drift [29, 30, Section 1.2.3].

• Reproducibility through data versioning and experiment track-
ing. The performance of a machine learning model depends on a myriad
of parameters. Keeping track of how a model was set up and which data
was used to train it facilitates the reproducibility of past experiments [31]
and increases the credibility of the model [32].

• The incorporation of feedback loops. As depicted in Figure 1.2,
the development process includes multiple intermediate feedback loops
which the model must undergo before it can move to the next stage. One
such loop involves repetitive model exploration through hyperparameter
optimization and validation to find its optimal configuration before it is
subjected to training [33].

7



1. Theoretical Foundations

1.2 Life Cycle of Machine Learning Projects

In the previous section, we mentioned that the tasks involved in a machine
learning project can be categorized into four groups. In our work, we will focus
on the three technical stages and will discuss them in the following order:

• data-related phases: all phases involved in the process of transforming
raw data into features,

• model-related phases: all phases involved in the design, training and
validation of the model,

• operations-related phases: all phases involved in deploying the model
and its subsequent monitoring and adaptation to changes in data.

1.2.1 Data-Related Phases

It could be argued that the most prominent indicator of how successful a
machine learning project can become is the data it is built upon. Therefore,
it is crucial that data scientists and engineers cooperate to identify suitable
sources of data that is appropriate for the given business task, and put systems
in place so that it can be continuously updated for further processing. This
data, depending on the project requirements, can come in different forms, for
instance:

• internal, i.e. data collected internally within an organization; such as
sales and customer data or business performance metrics,

• external, i.e. data collected from outside sources; such as social media
metrics, customer feedback, surveys or various paid data sets,

• structured, i.e. data with an easily searchable, pre-defined structure;
such as bookings, e-mail addresses or data stored in relational databases,

• unstructured, i.e. data without a pre-defined structure; such as media
content, medical records or human language (speech or written).

Once the proper data sources have been identified, a decision on the pro-
cessing approach must be made. There are two main approaches to big data
processing: batch and streaming, each with its benefits and drawbacks that
need to be considered for individual use cases [34]. While the former ap-
proach is more periodical (or potentially on an ad-hoc basis) and takes in
larger amounts of data at once (e.g. hourly or daily sales reports), the lat-
ter is based on real-time processing of continuously arriving data (e.g. stock
prices in high-frequency trading systems). To accommodate for more specific
use cases, hybrid methods such as micro-batching have emerged [35], which

8



1.2. Life Cycle of Machine Learning Projects

work on the basis of fixed small-sized batches and short intervals and execute
when either of the two limits has been reached.

Depending on the nature of the ingested data and the design of the data
pipeline, it is usually stored in storage solutions such as data lakes (for raw
data), data warehouses (for organized, filtered data; used for analytics) or
databases [36].

In real-life scenarios, data rarely comes in a clean form and must there-
fore undergo transformations based on rules set up by the data engineering
team [20], utilizing processes such as ETL (extract-transform-load) or ELT
(extract-load-transform). The transformations the data undergoes from its
raw to processed form can be standardized and defined, using various orches-
tration tools, in the form of data pipelines, allowing for easier reproducibility
and identification of errors in the transformation process.

Some of the processes involved in data preprocessing might comprise the
following [37]:

• Data cleaning. Raw data sets are often dirty, mislabeled, and contain
data that is wrongly formatted, missing or incorrect. The process of data
cleaning increases the consistency and usability of the data by removing
its imperfections.

• Data augmentation. If the volume or variance of raw data is not
sufficient, additional data points can be generated by applying transfor-
mation techniques to the existing ones, which can help reduce overfitting.

• Data annotation. In supervised learning scenarios, all learning sam-
ples must be properly labelled. If the data does not contain these labels,
the annotation process must be done manually. Data labelling tools use
machine learning features to simplify this process and automate daunt-
ing tasks.

• Data analysis. In order to work with data, we must first understand
it properly. Taking the extra time to analyze the relationships and
correlations often results in a higher-quality model.

• Feature engineering. This process involves the design of features
which better represent the underlying relationship between data points
by combining properties of the data which by themselves may not pro-
vide as much value.

• Data validation. To ensure that we performed all the transformation
steps correctly, we can use existing tools that verify the proper format-
ting, uniqueness, range, type and existence of data points; as well as
statistical properties of the data in question.

9
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1.2.2 Model-Related Phases

Once the data has been transformed into its desired form, the project enters
the stage of model development (or model selection). In academia, this
often entails the design of the model, and comparison of various architectures
to find the one that gives the best results. In practice, it is more common
to use a suitable pre-trained model and fine-tune in on the given task. Many
machine learning tools come pre-packaged with such models that can be freely
used as a basis of model training, such as TensorFlow [38] or Hugging Face [39].

Every model needs to be optimized for the given task, which often involves
model tuning, or more specifically, hyper-parameter optimization. This
process involves testing the performance of the chosen model depending on
different combinations of parameters, and helps in choosing the optimal val-
ues [33]. To make this process easier and allow for subsequent visual compar-
ison of HPO runs, many individual tools and end-to-end platforms provide
built-in implementations of algorithms for searching the parameter space. Af-
ter selecting the best parameters, the model is trained on the train data until
desirable values of performance metrics are achieved, or until a termination
condition is met [20]. Depending on the complexity of the task at hand, the
model architecture and the amount of underlying data, the training process
might require extensive computing power. The training process is usually run
in one of three places:

• locally on a development machine (for simpler, non-production tasks),

• using on-premise architecture,

• in the cloud, which is becoming increasingly popular due to its availabil-
ity and scalability [40].

Depending on the choice, processes must be set in place that can trans-
fer the code to the execution environment, run it, and extract the results
afterwards. Production-grade workflow orchestrators can be used to make
this process easier, and usually even support automatic provisioning of cloud
resources, if enough computing power is not available on-premise. Finally,
in model validation, the model’s ability to accurately predict data is com-
pared to the requirements placed by the business objectives, and is either sent
back to the beginning of the model engineering phase, or pushed forward into
staging and production [20].
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1.2.3 Operations-Related Phases

Once a model that has been validated and approved for deployment into pro-
duction, it needs to be packaged into a format suitable for its deployment on
the target infrastructure. This phase is better known as model deployment
(or model serving), and typically comprises the following steps [20]:

1 The model is registered to the model registry (or model store). As part
of this process, it is packaged, along with associated metadata, into a
special format dictated by the implementation of the model registry.

2 The model serving component pulls the model from the model registry
and deploys it on the target infrastructure. By the latter, we usually
refer to one of the following:

• Docker containers with pre-defined REST API endpoints,
• Kubernetes clusters,
• cloud-based services (e.g. Heroku, AWS EC2, Google Cloud Run),
• ML platforms (e.g. Azure ML, Amazon SageMaker),

If the infrastructure does not exist, some tools have built-in features
that can automatically provision cloud-based resources with specified
properties.

3 The deployed model is served to its consumers, usually via REST API.
Individual tools may provide additional ways of running inference on the
deployed models.

In a successful practice of MLOps, the development process does not end
with deployment. Rather than that, models in production need continuous
monitoring to ensure that their performance continues to meet the estab-
lished requirements and does not decay over time as a result of changes in the
structure of ingested data, a shift in the paradigm the model is to represent
or as a consequence of unnoticed data engineering errors. This phenomenon
is generally referred to as model drift and can be categorized into two main
groups: concept drift and data drift.

Concept Drift A concept drift occurs when there is a change in the statisti-
cal distribution in one or more target variables of the model, or in other
words, when its assumptions of stationarity about the relationships be-
tween input and output variables no longer apply due to a change in
ground truths. One example of such occurrence could be the effect of
a sudden change in customers’ purchasing behaviour (e.g. a tendency
to purchase different types of products) on a recommendation system,
as was the case during the COVID-19 pandemic [29, 41]. The changes,
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however, do not necessarily have to be abrupt [42], but can also hap-
pen gradually, periodically or even sporadically for a short period of
time (so-called blips), making them more difficult to detect and address
should the proper monitoring tools not be in place.

Data Drift A data drift, also known as covariate shift, results from a change
in the statistical distributions of one or more of the models’ independent
variables, leading to inaccurate and biased results [29]. An example of
such drift in the previously mentioned context could be a change in the
user demographics, such as age, sex or income levels.

To make the identification of model drifts easier and avoid the overhead
of implementing their own drift detection system, teams can incorporate one
of many open-source monitoring tools available on the market. These tools
usually come with built-in implementations of commonly used methods for
drift detection [43] and provide their users with convenient features such as
dashboards with visualizations of the model’s performance and automatic drift
alerts (Figure 1.3). Consequently, developers can detect model drift in its
early stages and adjust the model’s performance through the application of
continuous training [21].

Figure 1.3: A feature drift monitoring feature in Deepchecks [44].

1.3 Chapter Summary

In this chapter, we:

• delineated the evolution of MLOps, summarized its main principles, and
explored its relationship to DevOps,

• summarized the life cycle of a machine learning project and described
how individual MLOps tools fall into this process.
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Chapter 2
Tools and Frameworks

This chapter provides an overview of existing tools and frameworks for MLOps.
First, we provide a deeper overview of workflow orchestrators and experiment
trackers, and a description of a few selected individual tools. Second, we sum-
marize additional categories of MLOps tools and enumerate notable solutions.

Methodology

The selection of tools in Subsections 2.1.2 and 2.2.2 was done mainly based
on the tool’s uniqueness, popularity and maturity. In many cases, the dif-
ferences between individual tools are very marginal, and given the limited
scope of the thesis, describing each one in detail would result in information
redundancy. Additionally, we tried to minimize the selection of tools bound
to a hosted platform, which partially contradicts the open-source nature of
the tools. This condition was satisfied in all cases except for the selection
of Weights & Biases, which we chose as an alternative to DVC due to the
latter’s experiment tracking features being too closely bound to the usage of
other tools from the parent’s company offering of MLOps solutions.

2.1 Workflow Orchestrators

Arguably, one of the most important steps of operationalizing machine learn-
ing processes is the proper standardization of pipelines. In every project,
numerous steps are required to turn raw data into a deployable model — each
with its own business logic, dependencies and resource requirements. The
tools known as workflow orchestrators help establish a pre-defined structure
for pipelines and ensure that all their steps are executed correctly, with all
their dependencies met and properties set.
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2.1.1 Key Features

The most common features of workflow orchestrators include the following:

• dependency management: The vast majority of orchestration tools
are based around the concept of pipelines consisting of one or more
steps, where each of the latter represents a well-defined task such as
downloading a data set, performing pre-processing tasks on it, training
a machine learning model, and deploying it. To ensure that steps are
executed in the proper order and that all of their dependencies are met,
pipelines are usually implemented in the form of directed acyclic graphs
(Figure 2.1).

Figure 2.1: A DAG-based pipeline implementation in Apache Airflow [45].

• scheduling: If a step needs to be executed periodically at given times,
it might be suitable to opt for an orchestrator that supports scheduling.
This feature is commonly implemented using cron expressions.

• dynamic workflows: Most pipelines are defined statically, and their
behaviour does not change during their run. In some cases, however,
parameters based on which we logically decide how a task should be
performed are only known at runtime.

• step containerization: The containerization of steps is often used for
transferring parts of a pipeline to be executed in remote environments,
such as cloud-based GPU machines or Kubernetes clusters.

• versioning: Conceptually, a machine learning pipeline is an arrange-
ment of steps whose order or content may change over time. To keep
track of these changes, certain tools implement native pipeline version-
ing features that automatically detect when a pipeline definition has
changed, registering a new versioning.

• caching: To avoid unnecessary execution of steps, such as when the
inputs and outputs of one remain unaltered, orchestration tools often
implement caching features which can automatically detect if a step
needs to be executed or if it can be skipped.
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2.1.2 Overview of Selected Tools

2.1.2.1 Apache Airflow

Logo

Maintainer Apache Software Foundation
Release Year 2014
License Apache License 2.0
Website www.airflow.apache.org

Table 2.1: The basic information on Apache Airflow [45].

Key Features & Benefits

• Airflow (Table 2.1) is one of the most mature workflow management
tools on the market, dating back to the pre-MLOps era. Due to its
maturity and being scoped to orchestration only, it provides many
time-tested features and integrations, making it an ideal solution
for companies looking for a stable open-source solution with a well-
established community behind it.

• The pipelines in Airflow are written in Python. Their atomic build-
ing blocks (so-called operators) are widely available from official
and community sources, alleviating the need to re-invent code for
common tasks. Python functions can be turned into tasks using
a simple decorator, while more complex tasks (e.g. operations on
cloud storage buckets) usually already have a designated operator
implemented and ready for use.

• It offers a feature-rich user interface that allows for pipeline man-
agement and visualization using a variety of themed views (e.g. Gannt
chart, calendar view).

• As one of few orchestrator tools, it supports plugins that allow the
design of pipelines using Jupyter notebooks as steps.

Drawbacks

• As the tool is not specifically meant for MLOps purposes, it may
be questionable whether it will keep up with the future trends in
the field.

• It does not provide native support for pipeline versioning.
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2.1.2.2 DVC

Logo

Maintainer Iterative
Release Year 2017
License Apache License 2.0
Website www.dvc.org

Table 2.2: The basic information on DVC [46].

Key Features & Benefits

• DVC (Table 2.2) provides a unique way of designing pipelines via
the command line or directly as YAML files (the former gets con-
verted into the latter automatically).

• It is closely built around the principles of working with Git. Along
with its sister tools from Iterative — CML and MLEM – they form
an ideal solution for teams who need to build an MLOps stack on
top of an existing Git infrastructure.

• Apart from workflow orchestration, it comes with data versioning
features, allowing the users to version their data in a Git-like fashion
using integrations with a variety of storage solutions.

• For developers using Visual Studio Code, DVC offers an extension
which allows the execution of experiments directly from the IDE,
with subsequent support for their visualization, along with associ-
ated metrics.

• Iterative provides a platform-based solution called Iterative Studio,
which serves as a centralized platform for DVC and associated tools.

• It supports live tracking of metrics using DVCLive.

Drawbacks

• Although the approach DVC takes to pipeline design is unique,
developers might find it inconvenient to design pipelines using the
CLI or YAML files rather than using Python code. While there
is a Python API available, it is primarily for the retrieval of data
from DVC repositories, and its usage for experiment management
is very limited.
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2.1.2.3 Flyte

Logo

Maintainer Flyte
Release Year 2019
License Apache License 2.0
Website www.flyte.org

Table 2.3: The basic information on Flyte [47].

Key Features & Benefits

• Flyte (Table 2.3) is a Kubernetes-grade orchestrator suitable for
more complex use cases. It comes with a multitude of advanced
features such as intra-task checkpointing, visualizations of data and
its lineage, and more.

• It is language-agnostic, providing ways of implementing functions in
various languages as tasks (e.g. decorators in Python, base classes
in Java).

• It is suitable as an alternative to Kubeflow, as it offers similar fea-
tures but provides a more user-friendly way of designing pipelines.

• Like Airflow, it can utilize extensions to execute Jupyter notebooks
as pipeline steps.

• It provides a variety of production-grade integrations in comparison
to other reviewed tools.

Drawbacks

• Due to its complexity, it might have a higher learning curve than
the other alternatives and may be an excessive choice for simpler
use cases.
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2.1.2.4 ZenML

Logo

Maintainer ZenML
Release Year 2021
License Apache License 2.0
Website www.zenml.io

Table 2.4: The basic information on ZenML [48].

Key Features & Benefits

• Apart from providing workflow orchestration, ZenML (Table 2.4)
differentiates itself from the competition by facilitating the creation
of entire MLOps stacks through abstractions called stack compo-
nents. These stack components are effectively abstractions of the
code needed to make ZenML interact with other MLOps tools.
Once configured, the integrations can be used using the unified
ZenML API, rather than setting them up manually and using the
API of the respective tool. Additionally, one can extend one of the
provided base component classes, introducing support for a frame-
work of their own choice.

• To avoid being completely dependent on third-party tools, ZenML
comes with a native implementation of all the components needed
for local development. Furthermore, it supports the automatic cre-
ation of an MLflow Tracking Server during local pipeline runs, mak-
ing it an ideal out-of-the-box solution for simple use cases.

• Over the course of writing this thesis, we have registered a high
frequency of useful updates, releasing new features approximately
every other week, making it a prospective tool to use in the future.

Drawbacks

• The tool is still in its relative infancy and undergoes frequent API
changes, making it unsuitable for those looking for a stable solution.

• The integrations with other tools may not support the tools’ entire
feature set (e.g. ZenML only supports two out of six deployment
scenarios of the MLflow Tracking Server). Therefore, it is necessary
to check whether it can satisfy the requirements of the project, or
whether the integration has to be implemented manually.
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2.1.3 Summary

To summarize the information about the individual frameworks, we provide a
comparison of the reviewed tools in the following table:

Airflow DVC Flyte ZenML

D
E

SI
G

N

D1 j z j j
D2 z j z z
D3 j z j j
D4 jt j jt j
D5 j j z j

D1: Design pipelines using the command line.
D2: Design pipelines using Python code (e.g. classes, decorators).
D3: Design pipelines as YAML files.
D4: Use Jupyter Notebook files as pipeline steps.
D5: Design pipelines using other programming languages (e.g. R, Java, etc.).

F
E

A
T

U
R

E
S F1 z j z z

F2 z j z jt
F3 j j z z
F4 j z z z
F5 j z z z

F1: Create pipelines dynamically at runtime.
F2: Schedule your pipelines to run at specific times.
F3: Run your pipeline steps in isolated containers.
F4: Keep track of how your workflow changes over time with pipeline versioning.
F5: Avoid redundant computations by automatically caching pipeline artifacts.

Legend: z supported jt supported using plugins j not supported

Table 2.5: The comparison of the reviewed workflow orchestration tools.

2.1.4 Additional Tools

The subset of reviewed orchestration tools is only a small part of the current
offering. There are other notable implementations, including:

• Kedro [49], a Python framework with pipeline visualizations, built-in
connectors for retrieving data from various storage solutions, and project
templating support.
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• Kubeflow [50], a Kubernetes-native orchestrator from Google with
built-in Jupyter notebook support, hyperparameter tuning component
and multi-tenancy.

• Metaflow [51], an orchestration tool for Python and R from Facebook
that is similar to Flyte.

• MLflow Recipes [52], an experimental component of MLflow which
allows defining pipelines with a special YAML structure and integrates
natively with other features of MLflow.

• Orchest [53], a workflow orchestrator that allows the design of pipelines
by connecting Jupyter notebooks and Python scripts inside a drag-and-
drop style user interface.

2.2 Experiment Trackers

The development of machine learning models is rarely a matter of a single
run. Finding the right parameters for a model is an exhaustive process, and
as the number of experiments increases, it becomes increasingly important
that developers have a way of mapping runs to their parameters for later
retrieval and inspection in an easily comprehensible user interface. This is
facilitated by tools known as experiment trackers.

2.2.1 Key Features

The most common features of experiment tracking tools include the following:

• Autologging. The need for manual logging of every artifact, parameter
or metric would prolong the development process and increase the risk
of human error. Therefore, many experiment trackers have implemented
autologging support, which enables the tool to automatically log various
metadata from supported ML libraries using a single line of code.

• Visualization tools. The availability of a user interface is without
a doubt one of the most important aspects of a tracking tool. The
feature set of user interfaces varies by tool, but usually includes various
interactive graph visualizations and run comparisons.

• Filtering. To quickly filter out runs based on values of metrics or pa-
rameters, some trackers have implemented a Pythonic way of searching
using conditions such as:

run.learning_rate in [0.001, 0.002] and run.batch_size == 32
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• Integrations with storage solutions. Each team may take a different
approach to storing the outputs of their experiment runs. Whether it
is on-premise or cloud-based storage, pre-built integrations with storage
solutions are a crucial factor in the selection of a tracking tool.

2.2.2 Overview of Selected Tools

2.2.2.1 Aim

Logo

Maintainer AimStack
Release Year 2019
License Apache License 2.0
Website www.aimstack.io

Table 2.6: The basic information on Aim [54].

Key Features & Benefits

• The user interface of Aim (Table 2.6) is partitioned into sections
called explorers, each of which contains adjustable visualization
tools tailored for a specific type of artifact, such as metrics, hyper-
parameters, images, audio or text.

• For easier filtering, developers can use the built-in query language,
AimQL, to filter runs based on metrics in a Python-like way.

• Developers can bookmark commonly used visualization configura-
tions (e.g. queries, graph settings) for subsequent access.

• Runs can be marked with color tags, categorized into named ex-
periments for easier querying, live-tracked, logged, send an alert on
stagnation or failure, or trigger callbacks on specified events.

• The user interface of Aim can be rendered inside a Jupyter note-
book cell, without having to open it in a separate window.

• It can be used to explore runs tracked by both MLflow and W&B.
• It provides multiple interactive demonstrations of the user interface

directly on their website.

Drawbacks

• It does not currently support authentication or user isolation.
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2.2.2.2 MLflow

Logo

Maintainer Databricks
Release Year 2018
License Apache License 2.0
Website www.mlflow.org

Table 2.7: The basic information on MLflow [52].

Key Features & Benefits

• MLflow (Table 2.7) is one of the most commonly used experiment
tracking solutions, with a managed solution available and backed
by Databricks.

• It is a fairly mature, well-documented solution with a large com-
munity behind it.

• It supports a variety of deployment scenarios, both local and re-
mote.

• Apart from experiment tracking, it provides additional functional-
ities such as project management (MLflow Projects), workflow or-
chestration (MLflow Recipes), model registry (MLflow Model Reg-
istry) and deployment (MLflow Models), making it an end-to-end
solution.

• It is language-agnostic, and provides an API for Python, R and
Java. For all other purposes, language agnosticism is ensured via
the REST API.

Drawbacks

• It does not currently support user isolation.
• The support for server authentication has been added very recently,

and at the time of the publishment of this work, it has not been
fully implemented yet.

22

www.mlflow.org


2.2. Experiment Trackers

2.2.2.3 Weights & Biases

Logo

Maintainer Weights & Biases
Release Year 2018
License MIT
Website www.wandb.ai

Table 2.8: The basic information on Weights & Biases [55].

Key Features & Benefits

• Weights & Biases (Table 2.8) supports real-time tracking of exper-
iments.

• It has a built-in feature for tracking hardware usage during exper-
iment runs.

• The free tier includes unlimited usage and 100 gigabytes of storage
for artifacts.

• Once registered on the platform, the user can use other features of
Weights & Biases, such as dataset and model versioning, hyperpa-
rameter optimization, automatic report generation, model registry
and more.

Drawbacks

• As a platform-based solution released under the MIT license, it
requires the user to register on their website and obtain a license
key to use the tool, which complicates the initial setup.

• The free plan can only be used for personal projects.
• Only the client application is open-source, meaning that the server

cannot be generally self-hosted (although this option is offered for
specific scenarios).
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2.2.3 Summary

Due to fairly marginal differences between the reviewed frameworks in terms
of key features, we omit the comparison table. Overall, MLflow strikes a bal-
ance between maturity and availability. It is a well-established solution that
provides additional features on top of experiment tracking, and is completely
open-source and ready for self-hosting, as opposed to Weights & Biases. How-
ever, if the use case of experiment tracking is for personal projects, choosing
W&B may be the most comfortable solution. Furthermore, Aim can be used
to display experiments tracked using both MLflow and W&B, should the de-
veloper prefer the user interface of the former, but would like to retain the
functionalities of the latter.

2.2.4 Additional Tools

As opposed to workflow orchestrators, there is a lack of experiment tracking
solutions that are not a part of a platform. Regardless, there are other notable
solutions, such as:

• DVC [46], which provides lightweight experiment tracking features on
the command line or in Visual Studio Code and is best suited for use in
conjunction with CML [56] and MLEM [57].

• End-to-end ML platforms, e.g. ClearML [58] or Neptune.ai [59], which
provide extensive experiment tracking features, along with other com-
ponents to fill in the rest of the MLOps stack.

2.3 Other Categories

Apart from workflow orchestrators and experiment trackers, there are other
categories of MLOps tools, each of which is designed to facilitate a certain
subset of the machine learning development cycle discussed in Section 1.2.

2.3.1 Data Versioning Tools

Code versioning has long been an integral part of the development process in
software engineering. The data used in ML model development — whether it
is tables, documents, media or even pre-trained models — consists of the same
”ones and zeroes” as code, only with a more complex structure. Consequently,
it is reasonable to demand that the same versioning practices are applied to
data and models as to code.

Unfortunately, typical version control platforms have yet to adjust their
platforms to accommodate such requests, as they usually impose file limits
that are easily exceeded by most data sets in commercial settings. As a result,
it is common to use services provided by cloud service providers which offer
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a wide array of scalable, versatile storage solutions, often at a fraction of the
cost it would take to host the same data on other platforms. These limitations
have created a niche in the market for data versioning tools, which combine
the power of versioning with the versatility of such storage solutions, allowing
developers to easily track, store and version data sets of virtually any kind or
size.

• DVC [46] offers Git-like versioning of data by storing the physical files
in one of many supported storage locations, and using Git to only store
versioned ’pointers’ to the actual data. To make it easier to use, its CLI
commands are almost identical to the ones used by git.

• Pachyderm [60] offers not only data versioning features but doubles as a
production-grade data pipeline creation tool with extensive integrations
and native support for both batch and data streaming. It also offers a
user interface for better ease of use. Although its recent versions have
been released under a proprietary license, the community edition offers
a generous free tier.

2.3.2 Feature Stores

Feature stores act as a centralized store for designed features, allowing them
to be easily managed, reused and shared across different machine learning
projects.

• Feast [61] is an open-source feature store that supports integrations
with numerous batch and streaming data sources, as well as serving of
said features to deployed models for training and inference.

2.3.3 Hyperparamer Optimization Tools

Hyperparameter optimization tools help facilitate the homonymous process
during the model tuning phase. They implement common algorithms used for
HPO and allow them to be used directly in the code.

• Optuna [62] is a tool which provides simple abstractions of the search
process through trials and studies, which refer to individual runs and
entire experiments on objective functions, respectively. It implements
a wide selection of algorithms, uses an imperative approach that makes
it easy to understand, supports parallelism, and offers a dashboard for
visualizing parameter searches.

2.3.4 Data Annotators

To aid with mundane tasks such as data annotation, some tools provide fea-
tures that help organize and speed up the annotation process.
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• Label Studio [63] is a data annotation tool that supports the labelling
of data types such as text, audio, video, images or time series. It provides
a collaborative user interface and uses machine learning to assist in the
process.

2.3.5 Data Validators

Data validators often come with built-in checks that can be run on data sets
to confirm the correctness of the data preprocessing pipeline.

• Deepchecks [44] offers running various validation suites directly from
your Python code, such as data integration and train-test validation
checks. This helps with the early detection of errors like label mis-
matches or data leakage. It supports tabular, computer vision and NLP
data. It also provides an interface for creating custom checks.

• Evidently [64] offers similar features to Deepchecks in terms of creating
and running pre-built test suites using Python code, but is currently
limited to tabular data. However, it supports the automatic generation
of validation reports in multiple formats.

• Great Expectations [65] is another feature-rich tool for tabular data
validation, which defines the requirements on data in terms of self-
documenting assertions called ”expectations”. To alleviate the need to
define every single assertion about the data manually, it can generate
expectations through automatic data profiling.

2.3.6 Model Testers & Validators

Model testing and validation tools are used to evaluate the performance of
a selected model using a selection of test suites. Deepchecks [44] and Evi-
dently use the same checks for both model testing and monitoring. To learn
more about them, refer to Section 2.3.8.

2.3.7 Model Registries & Deployers

Model registries are centralized stores for registered models and their associ-
ated metadata. They are used to persist development, staging and production
models in a specialized format that can be later used for deployment.

Model deployers (or model serving components) facilitate the deployment
of production-ready models to on-premise or cloud infrastructure and expose
REST API endpoints for inference purposes (1.2.3).

The tools below double as both registries and deployers, and also support
model serving and integrations with commonly used ML tools:
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• BentoML [66] is a feature-rich solution for storing and deploying models
which also comes with Yatai, a UI-enabled tool for easy management of
models deployed in Kubernetes clusters.

• MLEM [57] is a Git-friendly model registry and deployment tool that
works best in conjunction with DVC [46] and CML [56]. It can be used
to build a model registry on top of existing Git infrastructure.

• MLflow [52] provides both model registry and deployment features and
is an ideal choice for those who already use it for experiment tracking.

2.3.8 Monitoring Tools

Monitoring tools are used to track the live performance of models in pro-
duction, provide visualization dashboards to inspect their metrics, and often
include features that can automatically detect and alert the developers if the
performance of a model begins to deteriorate (Section 1.2.3).

• Deepchecks [44] provides a well-rounded user interface for model mon-
itoring. It supports various checks for tabular and computer vision data,
automatic sending of alerts and built-in analysis features for when an
issue occurs.

• Evidently [64] currently offers early access to its monitoring features,
which include a dashboard with visualizations, a wide selection of built-
in test suites and metrics, and automatic report generation.

2.4 Chapter Summary

In this chapter, we:

• described different categories of MLOps tools and their purpose,

• provided an in-depth look at selected workflow orchestration and exper-
iment tracking tools,

• enumerated additional notable tools in all categories.
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Chapter 3
Analysis

This chapter delineates the purposes and scope of the implementation part
of this thesis. First, we identify the typical user roles in a classroom setting.
Finally, we describe the functional and non-functional requirements which will
be used to design an appropriate solution.

3.1 Purpose and Scope

In recent years, there has been a steady growth in the number of artificial
intelligence subjects taught at the Czech Technical University in Prague. As
the popularity of the field grows and more students apply to study in this
programme, teachers maximize their effort to broaden students’ horizons by
introducing specialized subjects that discuss exciting subfields of AI and ML.
However, it was not until this year that a subject was first introduced that
covered the topic of machine learning operationalization. Although typical
use cases of machine learning in classroom settings do not require extensive
operationalization, we are confident that spreading the word of its advantages
and applying a subset of its principles on the processes would benefit both
students and teachers alike.

Rather than being a fully-featured implementation based on the analysis of
requirements and resources, the practical part is scoped as a complement to the
theoretical review of benefits that come with the adoption of MLOps, serving
as a proof of concept that can be used a basis for a more focused approach in
the future as part of another student’s coursework, study project or a thesis.
Its main purpose is to demonstrate the possibility of exposing the university’s
computing resources to students and academics in a safe and simple manner,
standardizing the model development process by utilizing some of the features
provided by open-source MLOps frameworks, and simplifying the process of
coursework evaluation through use of experiment tracking tools.
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3.2 User Requirements

From the perspective of a student, there are two typical scenarios in which
they work on a machine learning project as part of their course:

Homework and semestral projects. In this scenario, the student works:

• on multiple simpler tasks with shorter deadlines,
• on a more complex task over the course of the whole semester.

The data sets related to the task are usually static and do not require
advanced processing. The work is often done in Jupyter notebooks, and
users utilize their own computing resources or platforms, such as Google
Colaboratory or Kaggle, which provide limited access to free GPUs.
After the student finishes working on the task, they usually submit the
notebooks, along with a commentary or report, to the teacher who then
evaluates their approach and the correctness of their results.

Theses. In this scenario, the scope and complexity of projects is usually
larger. This may include performing extensive research or cooperating
with a company. Consequently, there might be additional requirements
for computing resources beyond what free platforms can provide; the
subsequent deployment of the model into production; or the report of
experiments taken during research.

These scenarios clearly identify the main actors in our setting:

1 Students or academics, who are the primary contributors to the
code, run most of the experiments and are in charge of maintaining
the pipeline. They need to have an easy way of writing the code in the
form of an executable pipeline; running and visualising experiments; and
storing, evaluating and deploying desirable iterations of the model for
evaluation and inference purposes.

2 Teachers or advisors, who mainly evaluate the development progress
by viewing the experiment runs and running inference on the model.
They may also be responsible for overseeing and ensuring the proper
use of computing resources provided by the university and need a way
of exposing them to the researcher.

3.3 Functional Requirements

The functional requirements define the expectations placed on the feature set
of the implementation, and describe its underlying logic and resources.
In cooperation with the supervisor, we established the following:
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• FR1: Workflow Orchestration
The user(s) of the stack can write new or modify their existing code
into runnable pipelines, whose execution will be handled by one of the
reviewed workflow orchestration tools.

• FR2: Experiment Tracking
The user(s) of the stack can visualize their past experiment runs, along
with their associated metadata and artifacts, using one of the reviewed
experiment management tools.

• FR3: Resource Management
The administrator(s) can limit the computing and storage resources
available to the stack users in the remote development scenario. This
includes specifying the timeout for individual pipeline runs.

• FR4: User Management
The administrator(s) can create and delete user accounts to grant them
explicit access to the underlying resources.

3.4 Non-Functional Requirements

The non-functional requirements define the expectations of the qualitative
properties of the implementation in terms of usability, reliability, availability
and security. We identified the following requirements for our work:

• NFR1: Availability via GitLab FIT
The stack should be deployable in the GitLab instance self-hosted by
the faculty (https://gitlab.fit.cvut.cz).

• NFR2: Agnosticity of Development Approach
The stack should not force the developer to use a specific execution
environment or approach to writing their code. The pipelines must be
executable in any environment that supports the execution of Python
code (e.g. IDEs, command line, Jupyter notebooks).

• NFR3: Security
The external security layer is assumed to be provided by the faculty’s
virtual private network. The implementation should provide a way of
restricting access to resources from within the university network.

• NFR4: Caching
The workflow orchestration should support caching to save computing
resources by avoiding the unnecessary re-execution of unchanged steps.

• NFR5: Isolation
The individual pipeline runs will be executed in isolated environments
in order to protect the host machine’s resources and prevent tampering.
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3.5 Chapter Summary

In this chapter, we:

• briefly described the setting in which machine learning is taught at the
university’s Faculty of Information Technology,

• identified the main actors in the process of machine learning project
development in the specified setting,

• explained the purpose and scope of the implementation part of this work,

• clearly defined the functional and non-functional requirements for the
implementation based on a previous agreement with the supervisor.
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Chapter 4
Design

The following chapter describes our stack design process, justifies individual
choices and summarizes the challenges we encountered, along with workarounds
that needed to be implemented to overcome them. We begin by presenting
a diagram of our architecture and an overview of the individual elements.
Next, we describe the selection process of each component, summarizing its
advantages over the alternatives and the ways they integrate with the rest of
the stack. Finally, we provide an overview of resource management, such as
accounts, credentials and storage buckets.

4.1 Architecture Proposal

To aid in understanding the architecture of the proposed stack, we provide a
simple diagram (Figure 4.1) depicting the main components, actors and some
of the main interactions between them.

The primary component of the proposal is the virtual machine (VM).

Figure 4.1: The components and interactions of the proposed architecture.
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It serves as the host for the tools and services that make up the stack
and are deployed in the form of Docker containers. This choice of deployment
provides extra security through isolation [NFR5] and allows the administrator
to specify resource limits for specific containers [FR3]. This is especially useful
in the case of the GitLab Runner container to prevent it from consuming the
entire resource pool of the host machine during pipeline execution. To make
the provisioning of these services and resources easier and relieve as much
configuration burden as possible, we simplified the process to the following
form:

1 The administrator triggers the corresponding Ansible playbook (A) on
their computer.

2 Ansible will connect to the host machine and execute all tasks in the
order specified in the playbook (B).

Each playbook has its specific purpose, such as putting the host machine
into a ready-to-use state by deploying all the services using Docker, setting
up a root account in each service, and creating default resources. Every time
a new, more complex operation is to be defined, an Ansible playbook should
be written for it. Otherwise, the configuration process can easily become very
complex, and manual execution, or even execution using Bash scripts, can
lead to unexpected errors.

Within the VM, there are four permanently running containers. Additional
containers are created temporarily for each pipeline run (depicted in orange).
The permanent containers include the following:

• a MySQL database, which serves as the backend store for ZenML’s
pipelines, stacks, users, secrets and other resources (1); the storage for
MLflow’s run metadata such as parameters and metrics (4); and stores
the custom database schema used to keep track of currently registered
users (not depicted),

• a ZenML Server deployment, which is used to orchestrate workflows
using the machine’s computing resources,

• a MinIO server, which serves primarily as the storage for the artifacts
and metadata generated by ZenML (2) and MLflow (5), but can be
used for any purpose, such as for storing study materials or data sets,

• a GitLab Runner deployment, which is used to provision job containers
for eligible pipeline runs.

To further elaborate on the temporary containers, GitLab Runner creates a
separate Docker container for each job (3), up to the number configured by the
administrator. A virtual environment is created within this job container, and
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all the project dependencies are installed. The job container further connects
to the ZenML Server (6) and runs a tracking server that connects to the
MinIO and MySQL containers so that the outputs of the experiments can
be persisted. While this might sound counter-intuitive at first, we provide a
deeper explanation for this design choice later in this chapter.

At last, we provide an explanation of basic operations performed by the
consumers of the stack. To embrace user-friendliness, we aimed to minimize
the need to learn new concepts. Users can keep using GitLab as their code
repository the same way they are used to, while the technicalities are handled
in the CI/CD pipeline definition file. In the simplest case, each push to a
code repository (C) should result in a pipeline run execution on the remote
server when there is enough capacity for the GitLab Runner to create a job
container (D). Otherwise, the pipeline should be queued until there is an
empty slot. These functionalities are built into GitLab and require no explicit
configuration on our side. Finally, to inspect their previous runs, users can
launch an instance of the MLflow Tracking Server (E) on their machine using a
specific command, which configures the server to connect to the corresponding
storage bucket in MinIO (F) and database schema in MySQL (G).

4.2 Component Selection

Due to the fairly low complexity of the machine learning projects in question
(Section 3.2), at least in terms of not requiring Kubernetes-grade execution
or monitoring features, we built our stack using three main components: a
workflow orchestrator, an artifact store and an experiment tracker.

To decide on the best tool in each category, we asked ourselves the following
questions where applicable:

• Does the tool satisfy our requirements established in the analysis?

• Can the tool be used for both local and remote development?

• How difficult is integrating the tool into our stack compared to alterna-
tives? If it is more difficult, do the advantages of this tool over others
outweigh the added complexity of implementation?

• Does the tool integrate well with libraries commonly used in university
courses, such as Pandas, sklearn, TensorFlow, PyTorch or Keras?

• Does the tool provide sufficient documentation? How large is the com-
munity behind the project?

• If a decision was made in the future to swap the tool for another one,
how difficult would the transition be?

• What does the tool’s learning curve look like from a developer’s per-
spective?
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4.2.1 Workflow Orchestration

Selecting the right orchestration tool was one of the primary objectives [FR1].
To ensure that writing new projects or converting old ones is as user-friendly
as possible, we needed to select an easy-to-use tool that does not require the
user to learn new, complicated concepts. After weighing the benefits and
limitations of all reviewed tools, we made the decision to use ZenML. Given
the assumption of being limited to a single virtual machine and the scope of
machine learning projects in university courses and theses, we established that
there was no immediate need for a complex, Kubernetes-grade orchestrator
such as Flyte or Kubeflow. To further justify our selection, we provide a list
of the main advantages of ZenML for our use case:

• It can be configured for local development purposes in no more than
three simple commands: pip install zenml; zenml init; zenml up.
Apart from providing built-in workflow orchestrator and artifact store
components, it also supports the automatic deployment of a local MLflow
Tracking Server.

• As mentioned in Section 2.1.2.4, it can be expanded at any time in the
future to support a different implementation of workflow orchestration,
or any other stack component, without making any changes to the actual
code. If used properly, the only changes needed will be made to the
infrastructure the code is executed on.

• If the users want to experiment with different tools on their own, they
are not bound to the configuration of the server. They can define their
own stack for local development, which may use components that are
not deployed on the server. Most importantly, there is little-to-none
configuration needed to run the same code in both environments.

• Apart from scheduling, its built-in orchestrator supports all the key
features described in Section 2.1.1 (including caching [NFR4]. However,
there is no significant use for scheduling in our setting. If needed, the
stack can be modified to use the Airflow orchestrator (Section 2.1.2.1),
which supports scheduling using cron expressions.

• It provides a simple-to-understand way of creating and executing pipelines
using both a functional and class-based Python API [NFR2].

Originally, we intended to create a separate ZenML account for each stack
user. This would allow users to connect to the dashboard and use its features,
such as visualizing their pipelines and stack configurations. After deeper anal-
ysis, this idea had to be cancelled due to the incompleteness of user manage-
ment features in ZenML. While it supports the creation of users, groups and
roles, as well as isolation of user-owned stacks, pipelines and runs within the
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dashboard, it is currently possible to remove other users without any restric-
tions once a user has connected to the ZenML Server using any credentials,
regardless of their permissions. To prevent potential misuse of this flaw, we
had to resort to a temporary workaround, which involves not using the built-
in user management features of ZenML and restricting the users’ direct access
to the ZenML Server deployment by using a single, shared account to execute
pipelines without exposing the account’s credentials to the developer. The
implementation details of this temporary workaround are discussed in more
detail in the following chapter.

4.2.2 Experiment Tracking

The next decision we needed to make was to select a tool allowing the users
to track the metrics of their pipeline runs and visualize them in a user in-
terface [FR2]. Additionally, we needed to consider the tool’s capability to
track metrics of the most commonly used machine learning frameworks in an
automated fashion to minimize the need for manual logging of models and
artifacts. Due to the relative lack of tools that are not bound to a hosted
platform (e.g. Weights & Biases, which requires the user to register on their
website, acquire a free license and use a client to connect to their servers),
we ended up choosing MLflow. The following advantages further backed this
decision:

• It is a well-established tool that many world-renowned companies use.
On top of that, the enterprise version of MLflow is backed by Databricks.

• It supports many deployment scenarios, including a local deployment
using an SQLite database and local folders.

• It provides autologging features for various machine learning libraries,
alleviating the need to manually enumerate all parameters, artifacts and
models to be saved.

• ZenML, which we had chosen as the workflow orchestrator, provides
integration for MLflow for both local and remote scenarios, making it
easier to set up.

• It is completely open-source and self-hosted, unlike many of the other
experiment tracking tools.

• It also doubles as a model registry and deployment component.

Initially, we planned to run a multi-tenant tracking server permanently,
allowing both the pipeline runs to connect to it for tracking purposes and
the users to inspect and visualize their experiments as needed. However, at
the time of writing the thesis, MLflow did not implement user isolation. Had
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we chosen to deploy a permanently running tracking server connected to a
shared database schema, users would have not only had unlimited access to
all experiments tracked using the server but also possess the rights to deletion
of any resources at will. This forced us to look for an alternative solution,
one of which was to run a tracking server temporarily after a remote pipeline
run has finished, with the possibility of running a certain number of tracking
servers on-demand by creating a manually executable GitLab job. However,
this was not viable due to configuration issues related to GitLab’s self-hosted
runners and the added resource requirements it would introduce. At last, we
decided to deploy the tracking server in the following manner:

• For the purposes of tracking experiment runs using the server’s resources,
each job container would launch its own private instance of the MLflow
Tracking Server and have it connect to the database schema and storage
bucket owned by the user that executed the pipeline. The artifacts and
metadata for would be stored in their corresponding locations for further
inspection.

• For the purposes of inspecting past experiment runs, each user can run
an instance of the tracking server locally on their machine and have it
connect to their respective schema and bucket.

This approach not only helped us simulate user isolation (as the artifacts
and metadata are stored in places to which only the owner and administrators
have access to), but also reduce the performance requirements on the server, as
the number of concurrently deployed tracking servers is equal to the number of
running pipelines, which is expected to be low (or even equal to 1). Although
the computational requirements of running a tracking server are delegated to
the user, they are generally negligible. Furthermore, this allows the user to
visualize their experiments on-demand and alleviates the need to implement
waiting for empty slots on the server.

4.2.3 Continuous Integration & Delivery

The selection of the continuous integration and delivery platform was mostly
influenced by the non-functional requirements [NFR1] resulting from the use
use of a self-hosted instance of GitLab by the university. This instance is
used as the main source code repository for course pages, study materials and
students’ projects. Therefore, running the pipeline using GitLab CI/CD was
more or less a natural choice which allows the users to execute pipeline runs
automatically when code is pushed into the repository.

However, the main issue with implementing CI/CD was the ability to
use on-premise resources for pipeline execution. By default, GitLab executes
pipelines on shared runners that are not powerful enough for machine learning
use cases. Furthermore, the number of minutes a user or organization can use
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these shared runners free of charge is limited. By combining these two factors
together, it is not difficult to imagine that a single execution of a pipeline could
easily consume a large portion of this budget. Working under the assumption
of having at least one GPU available on the host machine, we needed a way
of providing these resources to pipeline jobs. For these purposes, GitLab
implements a way of registering and using on-premise machines as self-hosted
runners via GitLab Runner, which then can be associated with a specific
project, group or the entire instance of GitLab.

During the registration process of a new runner, the administrator can
specify various options related to the job executor type (i.e. the type of en-
vironment used for jobs, such as shell, Docker or Kubernetes), the runner’s
behaviour and the resources it has access to. While the full list of available
options is extensive, we provide a subset of the options we found useful for
our use case:

• the number of concurrent jobs that can be run across all runners or
within a specific runner,

• the base Docker image to use in job containers (this only applies to the
Docker executor),

• options allowing the use of MinIO for caching mamba and pip packages,

• any additional options that are supported by Docker containers (such as
--oom-kill-disable to prevent the container from being shut down if
the memory limit is surpassed).

Once we have registered our runners, we must provide a link between
the code and the registered runners. This is done using a pipeline definition
file that specifies the steps to prepare the build environment and execute
the pipeline code. The default name for this file is gitlab-ci.yml, and it’s
located in the repository root by default. It is important that administrators
keep in mind that exposing the pipeline file to users might be potentially
dangerous if an unprivileged user has malicious intent. While the damage is
not catastrophic, users can potentially edit the pipeline to include jobs that
would block a runner until it times out or change tags in a job to make the step
execute on a runner that the administrator has registered for specific purposes.
This can be prevented by introducing pre-receive hooks that prevent certain
users from committing changes to the pipeline file. On the other hand, such a
step could become counterproductive in certain situations, such as when the
user’s code depends on a package that needs to be installed using a script
or the command line. The specific requirements may differ from project to
project, so it is recommended that consequences of malicious intentions are
communicated to the users and boundaries are set in place for what changes
to the pipeline are allowed, should a developer need to make some.
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Given that all pipeline runs are executed in a newly created environment,
there is a need to download all package dependencies every time a pipeline is
run. Depending on the project, this could amount to hundreds of megabytes
that are downloaded from public package repositories. Therefore, we exper-
imented with the possibility of introducing a per-user distributed package
cache, which would cache the dependencies of a user’s project and publish
them to a designated storage bucket. With caching enabled, we would pre-
vent the re-downloading of all packages every time a pipeline is run, which
comes at the cost of additional storage requirements. Once again, the benefits
of either option might be project-specific and need to be reconsidered by the
administrator.

4.2.4 Storage

Every time a pipeline is run, unless configured otherwise, ZenML and MLflow
generate outputs (e.g. artifacts, metrics, metadata) that need to be persisted
somewhere. In our scenario, this implied that we needed a way of allocating a
certain portion of the available disk storage to each user, which would primar-
ily serve as storage for run outputs, and secondarily as storage for additional
content such as study materials or package cache for GitLab CI/CD.

Upon analyzing the possibilities, we found that the most convenient way
of provisioning storage would be by using MinIO, an S3-compatible storage
solution with extensive user and bucket management capabilities. This choice
would enable us to:

• Create an account for each individual stack user. The user could access
the console on-demand to view or modify the contents of buckets they
have been granted access to using their designated credentials.

• Define granular bucket access policies. For administrators, we would
define a policy that grants them full access to all resources on the server.
For developers, we designed a policy that would grant them read-only
access to buckets with a specific prefix, and read-write access to their
private storage bucket identified by their username.

• Organize stack users into groups and simplify the management of policies
by using roles with pre-attached corresponding bucket access policies.

• Define object lifetime rules to preserve disk storage. For example, we
can set all objects to be automatically deleted after a given period of
time has passed since their creation.

Due to MinIO’s compatibility with S3, all components that provide inte-
grations with the latter will also support integrations with MinIO. This way,
we were able to configure the S3 Artifact Store stack component in ZenML to
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push artifacts to specific buckets, and the MLflow Tracking Server to push its
outputs in a likewise manner.

For local development, users have two distinct options to select from. They
can either utilize the built-in capabilities of ZenML and MLflow and configure
their stack(s) to output artifacts and metadata to local folders and databases,
which are provisioned automatically by the tools; or use the resources they
have been allocated on the remote server by configuring the stack components
to connect to these resources using their assigned credentials. It is important
to remember that once the outputs have been pushed to either destination,
they can only be visualized if the dashboard or server is configured to point
to the corresponding storage. Simply put, a pipeline run locally can only be
inspected if we set the backend and artifact locations to the corresponding run
folder. Likewise, to inspect runs on the remote machine, the tracking server
must be connected to the remote database and storage.

In connection with the previous section, if we choose to use distributed
cache for package dependencies, we must provide the runner(s) with MinIO
credentials at runner registration time. For these purposes, we created a
separate bucket access policy that only grants read-write access on the specific
path where the cache will be stored.

4.2.5 Database

In order for the deployments of ZenML and MLflow to function properly, we
needed to incorporate an SQLAlchemy-compatible database into our stack.
We opted for MySQL, as the same database is used in the recommended
Docker image for remote ZenML Server deployments. As the purposes of the
database were previously discussed in the first section, we will only discuss
some caveats associated with the database deployment.

Due to the way we incorporated MLflow into our stack architecture, i.e. by
using a separate database schema for each user, we must ensure the associated
schema is created along with the user account. Additionally, the database
schema must be properly protected from foreign access. We can ensure this
by giving administrators full access to all schemas and limiting the access of
developers to only have access to their own schema.

In order to keep track of currently active user accounts, we use a separate
database schema with a single table for users. Depending on the use case, we
can at the very least store the user’s login and role. This has many advantages,
such as letting Ansible know not to attempt to create a user that already exists
or delete one that is not registered.

4.3 Identity and Resource Management

In a multi-tenant environment, e.g. when students and teachers utilize the
resources of a dedicated virtual machine, it is important to provide each user
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with their own isolated workspace and resources. This is mainly to protect
the users’ privacy and prevent malicious activity (whether it is accidental or
intentional). The amount of private resources, the degree of access to the
shared ones, and the user’s visibility of other users’ content is usually tied to
the user’s role. In the context we are working with, this can be simplified to
two main roles: students and teachers (or in broader terms, developers and
administrators). Generally, the former usually plays the role of a consumer,
whereas the latter is assumed to have executive rights over the underlying
resources and infrastructure.

4.3.1 Users

The concept of isolated user accounts has become a standard in software
applications and is available in all services that we have selected. However,
due to the workarounds we mentioned, we must identify the cases in which
we do not want to create an account for specific users.

• In MySQL, we want to create a separate account for each user, regardless
of whether it is a developer or administrator. Every user will use their
assigned credentials to log in; the difference between the two roles will be
in the privileges. While developers will be limited to their own database
schema used for MLflow, administrators will have access to all resources.
This will allow the latter to inspect any user’s experiments.

• In MinIO, we want to take the same approach. In this case, the priv-
ileges will be handled using bucket policy definitions. Developers will
be able to make changes to their own bucket and read the contents of
buckets with a specified prefix, which can be used by administrators for
sharing materials with developers. Administrators will have access to
all resources, once again allowing them access to developers’ artifacts.

• In ZenML Server, we must take a more reserved approach, mostly due to
the drawbacks mentioned in Section 4.2.1). For this reason, we will resort
to using the root account for all operations. To safely expose the root
credentials to developers’ CI/CD pipeline definitions, we will use GitLab
CI/CD masked variables. The administrators may use the credentials
directly. Optionally, a separate non-root account can be created and
used, but it currently provides no added benefit apart from the fact that
the root user account cannot be deleted using the dashboard (which
developers do not have access to).

4.3.1.1 User Resources

To properly implement user isolation, we must first identify all the resources
a user needs to be able to operate on the stack seamlessly. In our case, the
enumeration goes as follows:
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1 a MySQL user account and private DB schema for MLflow metadata,

2 a MinIO user account and private MinIO bucket for artifacts and cache,

3 an entry in the stack management schema to mark the user’s existence,

4 a private ZenML stack comprising of private components configured to
work with the user’s database schema and storage bucket,

5 any ZenML secrets needed to connect to the components safely.

4.3.2 Credentials

In order to access the running services, users must be provided with credentials
[NFR3]. Their generation will be performed in the following manner:

• By default, root credentials will be generated randomly at the beginning
of the server provisioning process. If needed, values can be specified
explicitly. These credentials will be used to set up the services.

• The credentials for other users will be generated by the user management
playbook on account creation. This password will be used for all the
user’s resources [FR4].

All credentials will be saved to the administrator’s computer upon their
generation. For now, the responsibility of delivering passwords will be left to
the administrator.

4.4 Chapter Summary

In this chapter, we:

• illustrated and explained the architecture of our stack,

• enumerated the selected components and justified their selection,

• elaborated on the inner workings of individual components,

• explained the abstractions used for managing accounts and credentials.
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Chapter 5
Implementation

This chapter contains the implementation details of the stack. First, we list
and describe the technologies used to provision and run the resources on the
host machine. Second, we explain the configuration process. Third, we outline
the Ansible playbooks used to set up the host machine and manage users and
their resources. Next, we describe the individual Docker containers and their
interactions. Finally, we provide an example of a pipeline definition file that
can be used to link the host machine with the GitLab infrastructure.

5.1 Tools and Libraries

5.1.1 Ansible

Ansible is an open-source tool that facilitates various IT tasks such as config-
uration management, resource provisioning and software deployment [67]. It
works in an agentless manner, i.e. without the need for a daemon or service to
be present on the target nodes. Instead, it connects to the nodes using SSH
(or WinRM if the node runs on Windows).

The scripts that execute tasks in Ansible are called playbooks and are writ-
ten in YAML, making it simpler to learn and use than similar infrastructure-
as-code utilities such as Puppet [68], which uses a custom declarative language,
or Chef [69], which uses Ruby. A playbook consists of one or more tasks,
each of which calls an Ansible module. This encapsulation of common tasks
in modules makes it more robust, as they are written in Python and often
implemented as wrappers around APIs, making them platform-independent.
Developers can use built-in models, acquire new ones from additional sources
such as Ansible Galaxy (Ansible’s built-in module repository), source code
repositories like GitHub, or they can develop their own. The listing below
shows a slightly modified excerpt from one of our playbooks and how the
community.mysql.mysql user module can be used to create a new user in
the MySQL database deployment.
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- name: Create a user account in MySQL
community.mysql.mysql_user:

# The credentials of the user to create.
name: "{{ username }}" # Ansible supports Jinja templating.
password: "{{ password }}"
# The credentials of the account
# which executes the user creation.
login_user: "root"
login_password: "root"
host: "%"
# Specify the privileges of the new user.
priv: "mlflowdb_{{ username }}.*:ALL"
state: present # Use 'absent' to delete the user.

Listing 5.1: The use of a community Ansible module in practice.

Our choice of Ansible was motivated by the following reasons:

• The provisioning of resources for the stack is a complicated process.
Were this process only to be documented as a step-by-step guide, it
could only discourage people from using it but would also be prone to
human error. Instead of dedicating time to writing the instructions, we
can write an Ansible playbook that can be executed repeatedly, taking
the burden away from the administrator. Additionally, as Ansible uses
YAML, the playbooks themselves are, to a degree, self-documenting.

• In comparison to the use of regular shell scripts, Ansible provides a more
flexible and robust way of writing infrastructure code. The availability
of open-source community modules saves time and eliminates the need
to write boilerplate code for every routine task in the process.

• Ansible provides many useful features, such as Jinja templating support,
organization of target nodes into groups by functionality, and encapsu-
lation of tasks, files and variables into reusable roles.

• By using Ansible, we can easily add support for multiple hosts and
various platforms with minimal changes to existing infrastructure code.

• The execution of playbooks using Python API via the ansible-runner
package, the command line or directly from some IDEs such as Visual
Studio Code.

A more detailed look at the playbook we use for provisioning resources
will be provided in Section 5.3.
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5.1.2 Docker

Docker [70] is a virtualization platform for running applications in lightweight
container environments which are isolated from the host system, apart from
utilizing its system resources. Running applications in containers instead of
installing them directly on the host machine helps us not only with the de-
ployment process, as all of the services we use are also available in the form of
Docker images but also helps us protect the host machine from malicious in-
tent through encapsulation. The use of Docker further provides us with these
advantages:

• Ansible provides a collection of community modules (community.docker)
for interacting with Docker containers, including their deployment and
the execution of commands within them.

• It provides functionalities for limiting resources available to containers,
which we can use to limit the computing power available to the pipeline
executors and prevent them from consuming too many resources and
influencing the functionality of other services.

• Docker containers are platform-independent, placing no additional re-
quirements on the selection of the operating system on the host machine.

• The deployment of services as containers simplifies the installation pro-
cess, as we can use the same API for all deployments rather than having
to follow instructions based on the operating system and service.

We provide an overview of the configuration of individual containers in
Section 5.4.

5.2 Configuration Files

There are several configuration files that need to be adjusted for our implemen-
tation to work properly. They are located at the root of the ansible/ folder.
For better understanding, we provide an overview of each other configuration
file’s purpose below.

5.2.1 ansible.cfg

This file is used to configure Ansible itself and provides granular control over
its behaviour. However, for most use cases, overriding the default values is
unnecessary. In our work, we only override the following values:

• We set the inventory file path to ./inventory.yml, instead of the de-
fault /etc/ansible/hosts, to prevent the administrator from having
to edit their global Ansible configuration.
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• We use a custom standard output logging callback [71] to make the
console output more compact. This callback also makes potential errors
more readable. This is a matter of personal preference and may be
commented out or replaced with another callback. The full list of official
callbacks in available in the Ansible documentation [67].

For a full list of configuration options, one can run the ansible-config
init --disabled command (and optionally pipe it into a new file). This
requires Ansible to be installed, so we have included an example in the extras/
subdirectory. Please note that the file format may change with future Ansible
versions, so it is only intended for illustration purposes.

5.2.2 inventory.yml

This file is used by Ansible to identify individual hosts and allows the ad-
ministrator to define a hierarchy of managed nodes. In our use case, we only
assume the existence of a single managed node, but altering the inventory file
makes it simple to register additional host machines.

The inventory file used in our implementation goes as follows:

all:
hosts:

localhost:
ansible_connection: local
ansible_python_interpreter: "{{ansible_playbook_python}}"

children:
remote:

hosts:
vm1:

ansible_host: ...
ansible_port: ...
ansible_user: ...
ansible_password: ...
ansible_ssh_private_key_file: ...

Listing 5.2: The included Ansible inventory file with basic hierarchy.

Ansible allows the declaration of hosts on multiple levels. For example,
we use hosts: remote to implicitly run all tasks in a playbook on the host
machine and override this setting with delegate to: localhost when we
need a specific task to execute on the control node.

The hierarchy established in Listing 5.2 allows us to do the following:

• If we want to run tasks on both the control node and all managed node,
we can use hosts: all.
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• If we want to run tasks on the control node, we can use hosts: localhost.
The same applies for hosts: remote and managed nodes.

• If we had multiple managed nodes (e.g. vm1, vm2, vm3) and we wanted
to execute tasks on a specific one, we could use hosts: vm2.

The inventory system in Ansible is a powerful tool that can not be fully
utilized with a single host machine, but at the very least, it helps with orga-
nization. For each node, we then define the following properties:

• ansible host: The IP address of the server.

• ansible port: The server port to use for SSH. If not specified, it defaults
to 22.

• ansible user: The account that will be implicitly used to execute tasks,
unless explicitly overridden or using elevated privileges via one of the
become options.

• ansible password: The password to use for SSH connection (not rec-
ommended).

• ansible ssh private key file: The path to the private key on the con-
trol node to use for SSH connection (recommended).

These settings correspond to the following ssh command call:

ssh [ansible_user]@[ansible_host]:[ansible_port] \
-i [ansible_ssh_private_key_file]

# If not using '-i', the system prompts for [ansible_password].

5.2.3 runners.yml

This file is used to define the properties of the GitLab Runner container, as well
as individual runners to provision on the server. Effectively, it works as an An-
sible variable file that is consumed by the Ansible role used for GitLab Runner
container provisioning (see Section 5.4). Our implementation provides a sim-
plified version of the full file, which can be found under defaults/main.yml
in the role’s GitHub repository [72]. If the administrator does not explicitly
override these values, the default ones will be used from the currently installed
version of the role on the control node. Due to the size of the file, we only
summarize the properties that can be adjusted:

• The URL of the GitLab instance and the GitLab Runner registration
token. Upon registration, the runner will automatically link itself to the
project, group or instance it is configured for.
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• If GitLab Runner is configured to deploy as a container, we can configure
its properties (e.g. name, tags, volume mount path, networks, etc.).

• The enumeration of individual runners and their properties (e.g. execu-
tors, job concurrency, image, tags, cache, etc.).

5.2.4 stack.yml

For other configuration variables which are used in the playbooks but not
necessarily bound to a specific tool, we created a separate configuration file,
and currently lets us specify the following:

• A custom root username and/or password. If not specified, it uses root
and a randomly generated password, respectively.

• The name for the Docker bridge network to which all containers will be
connected, and the list of user accounts that will have elevated privileges
when running docker commands.

• The list of pip packages to install on the managed node.

• The list of buckets to create after MinIO has been set up.

• The size and object lifetime of the developers’ buckets.

• The list of ZenML integrations to install (i.e. those required by the
configured stacks).

5.3 Ansible Playbooks

Our implementation uses Ansible primarily to set up the infrastructure on
the virtual machine and the subsequent creation and deletion of user accounts
and their respective resources. These functionalities are split into two separate
playbooks:

• run server.yml, which puts the host machine in a state where it is
ready to execute users’ pipelines,

• manage users.yml, which adds or removes users along with their asso-
ciated resources.

5.3.1 run server.yml

This playbook handles the installation of prerequisites on the host, setting
up root credentials, deploying and configuring the containerized services and
creating the administrator’s account and resources on the server.

In more detail, the process goes as follows:
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1 A check for the presence of root credentials on the control node
(credentials/root.passwd) is performed. If not found, it will either
use the user-provided values from stack.yml, or will use root as the
username, along with a randomly generated password, which will be
stored in previously mentioned file.

2 The geerlingguy.docker and geerlingguy.pip roles are used to in-
stall and set up Docker and Pip, along with the latter’s dependencies.
This puts the host into a state where it can run Docker containers. To
allow containers to communicate with each other without having to re-
solve the IP addresses manually, a custom bridge network is created.

3 The custom role mysql is used to deploy the MySQL container. Before
that, the database initialization script is copied into the container so
that it can be deployed during its creation.

4 The custom role minio is used to deploy the MinIO container. Once
deployed, the MinIO Client binaries are downloaded to the host and
an alias is set up for the container’s MinIO API endpoint. Afterwards,
the bucket policy definitions are copied to the host and registered; the
shared buckets are created as defined in stack.yml, along with an ac-
count through which GitLab Runner jobs will access the package cache.

5 The role riemers.gitlab-runner is used to deploy the GitLab Runner
container and register the runners as specified in runners.yml. At this
point, the runner should be visible as active in the CI/CD section in
your GitLab project, group or instance.

6 The custom role zenml-server is used to deploy the ZenML Server con-
tainer. Once deployed, a connection is established to the ZenML Server,
a ZenML repository is initialized, and default ZenML integrations are
installed.

7 An account with administrative privileges is created for the executor of
the playbook.

Once the playbook successfully finishes execution, the server should be
ready to serve pipeline requests. The administrator can verify the correct-
ness of the deployment by connecting to the machine, inspecting the running
Docker containers and their logs, and connecting to the individual services
(e.g. the database, MinIO console or ZenML dashboard) using their or the
root user credentials. At this point, they can create or delete administrator
and developer accounts using the manage users.yml playbook.
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5.3.2 manage users.yml

This playbook facilitates the creation and deletion of user accounts along
with their associated resources. It utilizes the custom role user, more specif-
ically the two task definition files create.yml and delete.yml located in
roles/user/tasks.

The process of account creation comprises the following steps:

1 A check is performed to ensure the user does not already exist. Other-
wise, the operation is aborted.

2 A random password is generated for the user and is stored in the
credentials/{username}.passwd file. This can then be distributed to
the user so that they can access their resources.

3 A MySQL account is created, followed by database schema with the
name mlflow {username}, to which the user is assigned full access to
it.

4 A MinIO user account with corresponding privileges is created, along
with a storage bucket with the name {username}. The user account is
also assigned to the corresponding MinIO group, from which it inherits
the bucket policies associated with it.

5 The user is provisioned with the following ZenML resources:

• a ZenML secret with the user’s credentials for connecting to their
storage bucket,

• an empty ZenML secret for connecting to the MLflow Tracking
Server (as a workaround for ZenML’s requirement to supply a secret
even if the tracking server does not require authentication),

• a local ZenML orchestrator component (to allow for recursive dele-
tion using ZenML CLI),

• an S3 artifact store component, which is configured to connect to
the user’s storage bucket using the previously mentioned secret,

• a MLflow experiment tracker component used to connect to the
tracking server instance launched during pipeline execution run on
GitLab CI/CD,

• a ZenML stack comprising of the three previously mentioned com-
ponents.

6 The user’s addition is acknowledged by adding them to the users table
of the stack management database schema.

The deletion process follows a similar scenario in reverse, prompting the
administrator to confirm the deletion process before the resources are deleted
irreversibly.
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5.4 Docker Containers

As previously mentioned in Section 4.1, there are four Docker containers
that run continuously on the server. Their deployment is handled by the
run server.yml playbook, more specifically:

• MySQL, MinIO and ZenML Server are deployed
using the community.docker.docker container module, which allows
us to specify the properties of the container in the following way:

- name: Deploy ZenML Server as a Docker container
community.docker.docker_container:
name: zenml-server
image: "zenmldocker/zenml-server:{{ zenml_server_image_version }}"
state: started
restart_policy: always
networks:

- name: "{{ docker_bridge_name }}"
env:

ZENML_STORE_URL:
"mysql://{{ root_username}}:{{ root_password }}@mysql/zenml"

ZENML_DEFAULT_USER_NAME: "{{ root_username }}"
ZENML_DEFAULT_USER_PASSWORD: "{{ root_password }}"

published_ports:
- 8080:8080

etc_hosts:
host.docker.internal: "host-gateway"

Listing 5.3: The deployment of ZenML Server using Ansible.

• GitLab Runner is deployed using the riemers.gitlab-runner role [72],
which, apart from deploying GitLab Runner in a container, also helps
automate its configuration and the provisioning of individual runners.

5.4.1 MySQL

The first containerized service running on the server is the MySQL database.
Its deployment and configuration are encapsulated in the mysql role, using the
Ansible task shown in Listing 5.4. Additionally, we define the init.sql file
(Listing 5.5) located in roles/mysql/files, which creates a simple database
schema stack management for keeping track of registered users, and creates
an empty zenml schema, which is then filled in during the deployment of the
ZenML Server container. This file is moved to the /etc/mysql/scripts folder
on the host, which is mapped to the docker-entrypoint-initdb.d folder in
the container and automatically executed after the container is deployed.
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- name: "Deploy MySQL as a Docker container"
community.docker.docker_container:

name: mysql
hostname: mysql
image: mysql:{{ mysql_docker_image_version }}
restart_policy: always
networks:

- name: "{{ docker_bridge_name }}"
published_ports:

- "3306:3306"
volumes:

- /etc/mysql/data:/var/lib/mysql
- /etc/mysql/scripts:/docker-entrypoint-initdb.d

env:
MYSQL_ROOT_USER: "{{ root_username }}"
MYSQL_ROOT_PASSWORD: "{{ root_password }}"

state: started

Listing 5.4: The Ansible task used for MySQL deployment.

CREATE DATABASE IF NOT EXISTS stack_management;

CREATE TABLE IF NOT EXISTS stack_management.users (
username VARCHAR(32),
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
account_type ENUM('administrator', 'developer')

);

CREATE DATABASE IF NOT EXISTS zenml;

Listing 5.5: The schema initialization file used during MySQL deployment.

The container is exposed via the standard port 3306 on the host machine,
allowing registered users to access their resources on demand using a client
of their own choice. However, developer accounts only possess access to their
MLflow database schema, contents of which may not be comprehensible in
their raw form and will mostly be accessed in a structured form via the UI
provided by the MLflow Tracking Server. The administrators, who have access
to all database schemas, can therefore launch a tracking server that connects
to any developer’s schema and inspect their experiments without manually
needing this information from the developer.
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5.4.2 MinIO

The second container in order of deployment is MinIO, whose deployment is
handled by the task shown in Listing 5.6. The container exposes two ports to
the host:

• port 9000, which is the API port used to perform resource management
operations. As developer buckets are used for artifact storage, this port
will be used to access resources from ZenML and the MLflow Tracking
Server. Administrators, who have access to all buckets, will be able to
connect their tracking server instances to any developer’s bucket and
visualize their experiments,

• port 9090, which hosts a web server that users can access to interact with
the MinIO deployment in a visual, user-friendly way, after entering their
credentials. Administrators can use this console to manage resources if
preferred over using the CLI client.

- name: "Deploy MinIO as a Docker container"
community.docker.docker_container:

name: minio
hostname: minio
image: minio/minio:{{ minio_docker_image_version }}
restart_policy: always
published_ports:

- "9000:9000"
- "9090:9090"

volumes:
- /etc/minio/data:/mnt/minio/data

command:
["server", "--console-address", ":9090", "/mnt/minio/data"]

networks:
- name: "{{ docker_bridge_name }}"

env:
MINIO_ROOT_USER: "{{ root_username }}"
MINIO_ROOT_PASSWORD: "{{ root_password }}"

state: started

Listing 5.6: The Ansible task used for MinIO deployment.

The deployment of resources themselves is handled using the mc client,
which allows resource management using the command line. To allow the
automatic application of bucket policies, we have defined three default policies
in the roles/minio/files folder. These policies are in the form of JSON
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files and are written using the same API as in Amazon S3. Listing 5.7 shows
the default bucket access policy for developers, who have read-only access to
buckets that use the prefix shared, and read-write access to buckets whose
name is identical to their username. After the deployment, these files are
copied to the host machine, applied using the MinIO client and attached to
corresponding roles.

{
"Version": "2012-10-17",
"Statement": [

{
"Sid": "ReadObjectsInSharedBuckets",
"Action": [

"s3:ListBucket",
"s3:GetObject"

],
"Effect": "Allow",
"Resource": [

"arn:aws:s3:::shared*",
"arn:aws:s3:::shared*/*"

]
},
{

"Sid": "ModifyObjectsInUserBuckets",
"Action": [

"s3:ListBucket",
"s3:GetObject",
"s3:PutObject",
"s3:DeleteObject",
"s3:GetObjectRetention"

],
"Effect": "Allow",
"Resource": [

"arn:aws:s3:::${aws:username}/*"
]

}
]
}

Listing 5.7: The default bucket access policy used for developer accounts.
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5.4.3 GitLab Runner

The GitLab Runner container deployment and configuration is handled by the
riemers.gitlab-runner role. It is the only container that does not publish
any ports, so it cannot be directly accessed from outside the host machine.
Instead, the communication between GitLab and the runner container is han-
dled internally over HTTPS, where the latter constantly polls the server for
new tasks (the communication is one-way from the runner to the server). The
container launches CI/CD jobs when triggered by GitLab. In our case, it
launches additional Docker images on the host machine, once again without
exposing any ports, providing an added layer of security and isolation.

5.4.4 ZenML Server

At last, we deploy the ZenML Server using the zenml-server role. The task
overseeing the deployment is shown in Listing 5.3. ZenML Server exposes port
8080, which can be used to access both the API and the dashboard. However,
due to the reasons mentioned in 4.2.1, the access to the ZenML server (and
the UI) is only allowed using the root account, whose credentials are hidden
from unprivileged users via GitLab masked variables.

5.5 GitLab CI/CD

To let the runners know what to do with the code in the developer’s repos-
itories, we must define the GitLab CI/CD pipeline. The one we used can
be found in src/extras/gitlab-ci.yml, and can be modified to the needs
of the group or project. For better clarity, we provide an overview of what
happens in individual sections of the pipeline definition file:

• image: In this section, we specify the Docker image that will be used in
the job container. If not explicitly specified, the default value from the
runner configuration file will be used.

• variables: Here, we define a unique name for the virtual environment,
consisting of the username, project name, and commit hash. This is
not mandatory but improves clarity and prevents possible collisions of
environment names. We then define the path to the conda.yaml file,
which each user can edit to define their project dependencies. Finally,
we specify the paths to directories where the package manager store
downloaded packages.

• cache: This section specifies the key which will be used to search the
corresponding cache. Right now, we are using the branch name. Alter-
natively, we can the username or even a common key to force all pipeline
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runs to use the same cache (note that runners need to be configured ac-
cordingly to point to the correct location as well). We also specify the
directories whose contents should be cached.

• stages: Here, we specify the names of individual stages. As we only
have a single job, this can be skipped entirely and will only have cosmetic
effects.

Finally, we proceed to the definition of the Run the pipeline job. All
code within this section is executed inside a job container. The outline of the
script goes as follows:

1 Conda is used to install Mamba, a lightweight C++ re-implementation
of the former. This has allowed us to slightly increase the package down-
loading process (along with caching). Alternatively, a Docker image with
Mamba pre-installed can be used to avoid this extra step. The tool is
initialized, and the shell is restarted to apply changes.

2 The APT repository cache is updated, and required APT dependencies
are installed (the two included packages are required for establishing an
SQL connection by the tracking server).

3 A virtual environment is created using the supplied requirements file
and activated.

4 Environment variables required by the MLflow Tracking Server are ex-
ported. These include the MinIO endpoint URL and the access and
secret keys (i.e. username and password).

5 An instance of MLflow Tracking Server is configured to connect to the
repository owner’s database schema and storage bucket, and launched
as a background job (to prevent it from blocking the shell, which is the
default behaviour of MLflow

6 A connection is established to the ZenML Server on the host, the user’s
private stack is activated, and the entry point (pipeline execution) com-
mand is run, triggering the pipeline.

7 Once the pipeline execution has finished, we kill the MLflow Tracking
Server, disconnect from the ZenML Server, and conclude the job.

5.6 Chapter Summary

In this chapter, we:

• described the tools used in our implementation,
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• explained the configuration process of the stack,

• outlined the functioning of Ansible playbooks and described the contents
of included ones,

• explained the configuration of individual Docker containers,

• elaborated on the individual steps in the GitLab CI/CD pipeline file.
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Chapter 6
Conclusion

This diploma thesis discusses the growing importance of MLOps and explores
the possibilities of its practical application in university courses and research
tasks at our university. In the introductory part of our work, we outlined the
benefits that machine learning operationalization has brought to organizations
that have successfully integrated its principles into their business processes,
supported by surveys that reflect on the state of AI adoption in the business
sector. Furthermore, we delineated the main objectives for our work:

• summarizing the key principles of MLOps and identifying its potential
for the facilitation of individual phases of the machine learning project
life cycle,

• providing an overview of the currently available open-source tools and
highlighting their unique features,

• analyzing the setting in which machine learning projects are taught at
our university, and identifying processes that could be improved by the
use of MLOps tools,

• designing and implementing a proof of concept that demonstrates the
potential of MLOps adoption for the benefit of students, researchers and
teachers.

To provide strong foundational knowledge of the subject matter, we explored
the reasons behind the formation of the paradigm, outlining the key principles
by which it differentiates from operationalization in software engineering, and
highlighting its hidden potential for the standardization and simplification of
processes involved in every stage of a machine learning project’s life cycle. We
performed an overview of different categories of open-source tools available
on the market, pointed out their strengths and weaknesses, and elaborated
on a subset of tools that applied to our use case and fell within the scope of
our work. Furthermore, we analyzed the typical scenarios of machine learning
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project development at our university in order to identify the main actors and
interactions involved, and established the requirements for the practical part
of this thesis. Based on the collected knowledge, we designed an architecture
that allows the exposure of computing and storage resources to developers
and allows for the future incorporation of additional components. Finally, we
provided an implementation using Ansible playbooks, which can automatically
deploy the proposed infrastructure on a selected host machine. Additionally,
we provide a tutorial for both administrators and developers that elaborates
on how to configure the architecture to work with the university’s GitLab
infrastructure, and how to configure their code and GitLab accounts to be
able to utilize the provided resources, respectively.

Evaluation

Based on the enumeration of our achievements, we consider the objectives of
this diploma thesis to be fulfilled. We provided the reader with a sufficient
amount of foundational knowledge of the subject matter to the extent needed
to understand the concepts in the thesis, summarized the current offering
of relevant open-source tools and their features, and identified processes at
our university which could benefit from their integration. These theoretical
foundations were then used to design a suitable architecture and implement a
proof of concept that demonstrates some of the possibilities of application in
the learning and research processes at our university.

To objectively reflect on the shortcomings, we must acknowledge that
the provided example project is somewhat lacklustre and only fit as a quick
demonstration of the configuration. At the time of writing the assignment,
we planned to include a project that would cover the entire life cycle, as de-
scribed in Chapter 1. However, it soon became clear that building a project
that would utilize such a wide selection of tools could not only easily fall
within the scope of a separate thesis, but would also require a proportional
architecture of similar complexity. Instead, we adjusted our goals to put more
focus on providing a foundational knowledge of the paradigm and the tools
that help implement it, so that possible future work could put more focus on
the implementation part and use the outputs of this work as a reference.

Future Work

Although our work displays some of the advantages of the adoption of MLOps,
a fully-featured implementation based on a methodological analysis of the
requirements and preferences of students and teachers is far beyond the scope
of this thesis. Instead, our work is meant to advocate this effort, and hopefully
marks the first step of a long but rewarding path of incorporating some of its
principles into the learning process, perhaps as a result of a joint effort of
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software engineering and artificial intelligence students’ coursework or theses
in the future.

To contribute to the pool of ideas in which the implementation could
be improved, we provide the following suggestions that can be considered in
future works:

Addition of new stack components.

A structured, in-depth analysis of the preferences and requirements of the
teaching staff, researchers and students will introduce the need to incorporate
additional stack components. We strongly believe that the selection of ZenML
as the workflow orchestrator will greatly facilitate the expansion process.

Re-evaluation of the proposed architecture.

The selected tools will likely advance in the future and their limitations which
led to the implementation of workarounds may be removed. Therefore, it will
be necessary to reconsider the architecture and evaluate the possibility of its
simplification.

Further automation of mundane tasks.

Ansible is a powerful and versatile tool that helps with the automation of
various tasks, especially from the administrator’s perspective. We further
advocate its use to standardize the execution of generic tasks such as password
distribution or automatic provisioning of user resources on certain events, such
as their addition to a GitLab group.

Encapsulation of common tasks.

Although the underlying tools and resources can be used manually through
their respective APIs, it would be suitable to identify the most common ones
and provide a way to execute them in a user-friendly way, such as a web
application or a command line utility. This may include processes such as
password management, starting an instance of the tracking server that points
to specific resources, and more. This would greatly improve the usability of
the stack in practice.

Expansion of the architecture

If the proposed architecture was ever to be used in production, it would be
suitable to add additional components such as a reverse proxy that would allow
for easier authentication and user management, or monitoring tools that would
allow the administrators to keep track of resource usage or identify problems,
should any arise.
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Appendix A
Administrator Guide

The following chapter contains a step-by-step guide for setting up the designed
stack on the host machine, enabling its use by the developers, and performing
basic operations using the provided playbooks and tools.

Note: To save space, please assume that all file names mentioned in this
guide have an implicit prefix of src/provisioning/ (relative to the root of
the attachment).

A.1 Prerequisites

A.1.1 Host Machine

This guide works with the following assumptions:

• The administrator has root-level access to the host machine.

• The host is a physical or virtual machine running on one of the following:
Debian 11.6, Ubuntu 20.04 or Ubuntu 22.04.

In situations where the host machine is running on a different version or
Linux distribution, there might be issues such as missing dependencies or
incompatibility of the tasks within Ansible playbooks. One way to test the
compatibility with a given OS is to provision a box using Vagrant [73] and
try to deploy the server there. The same process was applied to verify the
compatibility with the distributions mentioned above. We provide a simple
Vagrantfile that spins up these instances in extras/Vagrantfile.

A.1.2 Virtual Environment

To prevent conflicts with your base environment, we recommend creating a
new one using your preferred environment management system. Ensure both
Python and Ansible are present in the environment.
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A.2 Configuration

Before you run the run server.yml playbook, ensure that you have undergone
the following configuration steps.

A.2.1 Ansible

1 Download all the requirements used by our playbooks by running the
following command:

ansible-galaxy install -r requirements.yml

2 Our implementation includes a very minimal ansible.cfg file that over-
rides some of the default settings. Depending on your use case, you might
find it useful to override additional options. Try running the command
ansible-config init --disabled to see the default configuration file
and check if there are any options you would like to override. If so, either
copy them into the provided configuration file, or pipe the output of the
command into a new one. Do not forget to set the value of inventory
to point to the correct inventory file.

3 Ensure that the user account under which you want to execute com-
mands on the server exists. If you want to use SSH keys to communicate
with the server, ensure the public key is located in the corresponding
folder on the server and that you have access to the private key.

4 Fill in the required information about the host machine in the Ansible
inventory file (inventory.yml). You may change the vm1 to a desired
name, this value is mostly used for naming purposes (e.g. MinIO server
alias, ZenML stack names).

vm1:
ansible_host: <enter the IP address of your VM>
ansible_port: <leave empty unless not using port 22>
ansible_user: <enter the executing account username>
ansible_password: <leave empty if using PK>
ansible_ssh_private_key_file: <path to the PK>

A.2.2 General

This section refers to the stack.yml configuration file.

1 If you wish to use a custom root username and/or password, uncom-
ment and fill in the corresponding values. If you leave the username
commented out, it will default to root. If you leave the password
commented out, a random password will be generated and placed into
credentials/root.passwd. If a (root) password file exists, it is not
regenerated.
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2 Add the ansible user’s username into the docker users list. This will
allow the user to execute Docker commands without needing elevated
privileges.

3 Add any Pip packages to the list as needed. Do not remove any existing
ones, as you may break the playbooks. If needed, you may modify the
versions or try using the latest.

4 Add any additional shared buckets that you want to create automati-
cally. Modify the default values for developer buckets. Using the MinIO
client or web server, you can add new buckets afterwards.

A.2.3 Runners

This section refers to the runners.yml configuration file.

1 The included runners.yml is a subset of all available options. To get
the original file, visit the original GitHub repository [72] and use the
contents of the defaults/main.yml file.

2 Set the gitlab runner coordinator url with the URL of the GitLab
instance, e.g. https://gitlab.com or https://gitlab.fit.cvut.cz.

3 Obtain the GitLab Runner registration token for your instance, group
or project. Set the gitlab runner registration token to this value.
For more info on how to obtain the registration token, refer to GitLab’s
documentation [74].

4 Add or remove individual runners in the gitlab runner runners section
as needed. Use the comments to aid you or get inspired by the default
values.

Note that GitLab has announced the removal of the registration token
architecture in a future release, which will introduce a breaking change. The
author will likely update the role to correspond to the new system, but this
cannot be guaranteed. Everything should remain functional if your instance
runs a version lower than 17.0.

A.3 Server Provisioning

Once you have successfully configured all four configuration files, you can run
the run server.yml playbook. Ansible will start setting up the infrastructure
and logging the progress to standard output. Once finished, all services should
be running and two users should be registered on the server: the root user
and the administrator.
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A.4 GitLab Configuration

Due to the workaround related to ZenML’s lacking enforcement of user priv-
ileges, you must expose the credentials to the ZenML Server using GitLab’s
masked variables, which you can find under Settings > CI/CD > Variables.
Make sure you mark the variable as masked to obfuscate it in developers’ build
logs.

If you are using the default GitLab CI/CD pipeline file, define the following
variables:

• ZENML ROOT USERNAME: the name of the ZenML root account (this does
not necessarily have to be masked, an short usernames such as root
cannot be masked in GitLab anyway),

• ZENML ROOT PASSWORD: the password of the ZenML root account.

A.5 User Management

The management of users is possible using the manage users.yml playbook.
To add or delete a user, run the playbook with the following parameters:

ansible-playbook manage_users.yml \
--extra-vars "username=[GITLAB_USERNAME] role=[ROLE]" \
--tags "[OP]"

[GITLAB_USERNAME]: The username as it appears on GitLab.
[ROLE]: One of 'developer', 'administrator'.
[OP]: One of 'add', 'create' to add; 'remove', 'delete' to remove.

If you try to do an invalid operation (e.g. delete a non-existing user or
create a duplicate), the execution will abort due to an existing/missing entry
in the stack management database schema.

Once the playbook finishes execution, the user will be ready to configure
their stack according to Section B.4.

A.6 Experiment Inspection

As an administrator, you have unlimited access to all resources on the server.
This includes everyone’s database schema that stores run metadata and the
storage bucket that stores artifacts. To run a tracking server connected to a
developer’s resources, you only need to do the following:

1 Prior to running the script, make sure to export the following variables:

• MY ACCESS KEY: your assigned username on the server,
• MY SECRET KEY: your password provided by the administrator,
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• SERVER IP: the IP address of the host machine.

2 Run the provided script extras/mlflow track user.sh and pass the
username (access key) of the target developer as the first argument,
such as:

extras/mlflow_track_user.sh bacigmic

This command can be used identically to access your own resources by replac-
ing the developer’s username with your own.

A.7 Direct Pipeline Executions

The stack currently contains a local orchestrator, meaning that if you need to
run a pipeline directly on the host machine, you would have to copy the files
to the host and execute them according to the local or hybrid deployment sce-
nario in Sections B.2 and B.3, respectively. Enabling direct access to the host
from a remote machine to avoid the overhead of pushing the code to GitLab
would require running at least an Airflow server on the host machine, which
would introduce additional resource requirements. If the need to perform this
action is only occasional, follow the instructions mentioned above.
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This section provides a step-by-step guide to configuring one’s machine and
project repository to work with the proposed stack in three distinct scenarios
described in the following table (Table B.1):

Scenario local (B.2) hybrid (B.3) remote (B.4)
The computing resources
are provided by the... user’s machine user’s machine host machine

Artifacts and metadata
are stored in the... user’s machine remote storage remote storage

Table B.1: The three different scenarios of stack interaction.

Please note that this guide is not meant to explain the process of building
pipelines. You can inspect the provided example or read about it in the
corresponding documentation. This guide focuses on the configuration aspect
of the stack.

B.1 Prerequisites

Virtual Environment It is highly recommended to use Conda [75] or Mamba [76]
as your top-level virtual environment manager. The pre-defined GitLab
CI/CD pipeline is configured to install the required packages from a
Conda-compatible environment file located in the environments sub-
folder of your project root. You can find an example of this file in
the tool’s documentation or the src/demo/environments folder in the
thesis attachment. Following this approach will alleviate the need to
modify the CI/CD pipeline file. If you need to make changes, find the
corresponding line and alter it to your needs.

Libraries The minimum requirement for working with the stack as designed
is to install Python, ZenML and MLflow.
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B.2 Local Development

This scenario allows developers to write and execute their code offline without
relying on remote resources. ZenML fully enables this by utilizing file-based
databases and folders on the local filesystem.
To set up your machine for local development, follow these steps:

1 Create and activate a new virtual environment.

2 Install the required libraries mentioned in Section B.1.

3 Create a new directory for your project.

• Initialize a new ZenML repository using zenml init.
• Alternatively, for demonstration purposes, you can quickly set up

an example project by installing the extra dependencies for ZenML:

pip install zenml[templates] && zenml init --template

This will also allow you to explore the recommended directory
structure for ZenML projects. However, these projects do not in-
clude an experiment tracking component.

4 Register the proposed stack with ZenML by running the provided script
in src/demo/stacks/local.sh. This will install the integration for
MLflow and register a local equivalent of the designed stack. ZenML
uses a local database to store registered stacks, which can be used across
projects. You may, however, need to activate the desired stack when
switching to a different virtual environment using the zenml stack set
command.

5 At this point, the initial configuration process is over. You should be
able to run any ZenML pipeline that includes the three registered com-
ponents.

We will now demonstrate the local workflow on a simple MNIST classifi-
cation task, adapted from PyTorch Lightning [77] and ZenML [48].

1 Copy the contents of the example project in src/demo to the previously
created folder, or create a new one and repeat the ZenML repository
creation process.

2 Update your virtual environment using the YAML configuration file in
the environments subfolder or create a new one.

3 Ensure that you have selected our local example stack by running the
zenml stack get command.
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4 Run the pipeline using python run mnist.py.

5 Once the pipeline has finished running, you should be able to inspect
your outputs:

5.1 ZenML will automatically prompt you to run the zenml up com-
mand, which will start a local dashboard server where you can
inspect your pipeline run. It also has many interesting features
you can try. In the remote deployment scenario, you will not be
able to access this dashboard due to the limitations we previously
discussed.

5.2 In the case of local MLflow deployments, by default, ZenML stores
the runs in a very obscurely named folder which may be difficult
to find manually. However, you can add the following code to the
script you use to run the pipeline:
from zenml.integrations.mlflow.mlflow_utils import (

get_tracking_uri
)
print(f"mlflow ui --backend-store-uri '{get_tracking_uri()}'")

This will print out the command that can be used to launch the
MLflow UI and inspect the past runs of this specific pipeline.

The output for the example project should look like this:

Pipeline run mnist_pipeline-2023_05_03-20_21_05_888897 has finished in 26.278s.
Pipeline visualization can be seen in the ZenML Dashboard.
Run zenml up to see your pipeline!
mlflow ui --backend-store-uri 'file:/...(some long path).../mlruns'

You can use the provided commands to run the dashboard and access the
tracking server.

B.2.1 Advanced Configuration

One of the advantages of local development is that you can try out all the
features of ZenML without being limited by the server’s configuration. We
strongly recommend you visit the ZenML Documentation [48] and explore the
possibilities of adding additional stack components based on your needs, using
a different orchestrator flavor, or getting inspired by more advanced examples
of ZenML usage, some of which we describe in Section B.5.
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B.3 Hybrid Development

In this scenario, you will execute the pipelines locally but store the artifacts
and metadata in your designated remote storage. This is essentially what
happens inside job containers on the remote server.

To successfully set up this scenario, follow these steps:

1 Ensure you have executed the first three steps mentioned in Section B.2.

2 If you have not registered the hybrid stack yet, you can do so by running
the provided script in src/demo/stacks/hybrid.sh.

3 In this case, ZenML does not handle the provisioning of the tracking
server. You must do it manually by running the script in
src/demo/scripts/mlflow tracking.sh.
Prior to running the script, make sure to export the following variables:

• MY ACCESS KEY: your assigned username on the server,
• MY SECRET KEY: your password provided by the administrator,
• SERVER IP: the IP address of the host machine.

This spins up an instance of the MLflow Tracking Server, which connects
to your remote bucket and database schema. Your registered hybrid
stack’s experiment tracking component is configured to point to this
server running on your local machine and will use push artifacts to the
remote server.

The remainder of the process is identical to the previous scenario. You can
manage your artifacts by accessing the MinIO Console on the host server’s port
9090 and logging in with your credentials, or directly via the API available on
port 9000 (the use of MinIO’s mc client is recommended). You can also access
your database schema in MySQL directly by using an SQL client and logging
in on port 3306, however, the raw data might not be of much benefit to you.

B.4 Remote Development

In this final scenario, you will execute pipelines by pushing commits to a
GitLab repository. Each commit will request a job from the registered runners,
which will pick up the job when a free slot is available, and execute it using
its allocated resources.

To properly configure your GitLab project, follow these steps:

1 Fill in the conda.yaml and requirements.txt files accordingly based
on your project environment, as shown in src/demo/environments. Do
not delete the pip section in the former, it is used to automatically
install the packages from the latter file using pip.
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2 If you use the provided GitLab CI/CD pipeline definition file, set the
following environment variables in your project (you can find them in
Settings > CI/CD > Variables):

• MY ACCESS KEY: your assigned username on the server,
• MY SECRET KEY: your password provided by the administrator,
• ZENML ENTRYPOINT: the command used to run the pipeline (in our

case, it is python run mnist.py). The reason for the use of this
environment variable is to avoid altering the pipeline definition file,
if possible.

Alternatively, you can embed the values in the pipeline definition file
directly. This is only a security measure.

3 At this point, you can execute a pipeline by pushing a commit or man-
ually in the CI/CD > Pipelines section. You should see the pipeline
start as soon as a slot is available. The outputs of the pipeline will be
pushed to your schema and bucket.

4 Use the provided script in src/demo/scripts/mlflow tracking.sh to
run a tracking server that connects to your resources.

B.5 Additional Remarks

Due to the unanticipated scope of the task at the time of assignment, resulting
from unexpected workarounds and the broadness of the tool offering on the
market, the supplied project used for demonstration does not properly reflect
all the capabilities provided by the stack. While its purpose was primarily as
a quick way to demonstrate the configuration, we feel that we should, at the
very least, provide the reader with suggestions on the next steps in exploring
everything the selected (or reviewed) tools offer.

Luckily, some of these tools already have a corresponding stack component
implemented in ZenML and can be easily added by following the instructions
in the documentation. As for DVC and Optuna, ZenML has already added
them to their roadmap, and it is likely that their corresponding stack com-
ponents will be implemented in the following months, making their use even
easier.

B.5.1 Data Versioning with DVC

First, we suggest obtaining a (tabular) data set that you can easily edit (add
or remove items) and install DVC. As previously reviewed, it offers Git-like
commands to version data that does not normally fit into Git repositories. The
company which maintains DVC has multiple video tutorials demonstrating the
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process of working with DVC — all you need is a compatible storage source.
For simple use cases, you store your files using Google Drive.

B.5.2 Data Validation with Deepchecks

If your data set from the previous step has not been already cleaned, you can
try out the data validation feature of Deepchecks (or another compatible data
validation flavor) using ZenML’s built-in Data Validator component. ZenML
provides built-in steps that you can import and use after registering the com-
ponent and activating a stack that deploys it (use the included scripts and
ZenML’s CLI as inspiration). Optionally, you can download a ”toy data set”
from a website like Kaggle.

B.5.3 Hyperparameter Optimization with Optuna

There is a readily available example of how to use Optuna in your ZenML
pipelines1. As there is no corresponding stack component, you must manually
set up Optuna, but all information is available in the GitHub repository.

B.5.4 Model Registry and Deployment

While you will probably not be deploying the model to a Kubernetes cluster
just for demonstration purposes, using MLflow within our stack enables you
to deploy the trained model to a local MLflow server. You can enable this
by registering the MLflow flavors of the Model Registry and Model Deployer
components and following the documentation which explains how to integrate
it into your code.

1https://github.com/dnth/zenml-optuna
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List of Abbreviations

AI artificial intelligence

API application programming interface

CI/CD continuous integration / continuous delivery

CLI command line interface

DAG directed acyclic graph

DB database

DevOps development and operations

GPU graphics processing unit

IDE integrated development environment

HPO hyper-parameter optimization

ML machine learning

MLOps machine learning operations

NLP natural language processing

OS operating system

UI user interface

VM virtual machine

W&B Weights & Biases
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Enclosed Media Contents

README.txt............the rendering of the directory structure in ASCII
src........................................implementation-related files

demo......................... the example project used in the guides
provisioning................. implementation of server provisioning

text..................................................text-related files
DP Bacigal Michal 2023.pdf..........a PDF rendering of the thesis
thesis assignment.pdf ... a PDF rendering of the thesis assignment

src ............................ the source files for the thesis text
assets..............................images used in the thesis
sections...................individual chapters in TeX format
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