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Abstract

This work introduces and demonstrates innovative progress in the algebraic
analysis of the small-scale variants of the stream cipher E0 from the Bluetooth
standard. We design the small-scale variants and represent them using a set
of polynomial equations. Our work reveals a possible linear relation between
the number of keystream bits and the size of the small-scale E0 variants,
improving the performance of the used solvers. Our best run finds the initial
configuration in 178.5 seconds for the 22-bit E0 version. Using local sensitivity
hashing, we improved the computational time of the SAT solver from 453.1
seconds to 85.3 seconds for the 19-bit E0 version.

Keywords E0, small-scale variants, algebraic cryptanalysis, Gröbner bases,
SAT, LSH
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Abstrakt

Tato práce představuje a demonstruje nové postupy v algebraické analýze
zmenšených variant proudové šifry E0 ze standardu Bluetooth. V práci jsme
formulovali podobu zmenšených variant šifry a ty reprezentujeme pomocí mno-
žiny polynomiálních rovnic. Naše práce odhaluje existenci možného lineárního
vztahu mezi počtem keystream bitů a počtem neznámých, snižujíc výpočetní
čas použitých řešičů. Náš nejlepší experiment odhalil počáteční konfiguraci
za 178, 5 sekund pro 22 bitovou verzi E0. Pomocí lokálně citlivého hašování
jsme zlepšili výpočetní čas SAT řešiče z 453,1 sekundy na 85,3 sekundy pro
19bitovou verzi E0.

Klíčová slova E0, zmenšené varianty, algebraická kryptoanalýza, Gröbne-
rovy báze, SAT, LSH
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Introduction

Encryption has become one of the significant parts of our daily lives. And,
without much of an exaggeration, our lives depend on encryption. Encryption
is used while we perform online bank transactions, message our friends or
family, or even watch the news online. Without encryption, our lives would
become much easier to track by large companies or government agencies. And
yet, last year has shown that encryption may be endangered, as the politicians
of Great Britain [1] and the members of the EU council [2] stood against
it. What was the reason for such a decision? Encryption not only protects
innocent citizens but also criminals, who use it for drug deals, sexual child
abuse, ransomware, and many more. Law enforcement agencies refer to this
as going dark, as it is hard for them, if not impossible, to uncover the encrypted
messages [3].

But what makes it difficult for the agencies to uncover encrypted mes-
sages? One would assume they require the secret key for the messages only.
Not precisely; they need the knowledge of the key, but they also require the
knowledge of the encryption scheme used to uncover the original message, in
other words, plaintext. We can assume we know the encryption scheme and
only search for the key. The encryption scheme should make guessing the key
so hard that brute force should be the only option. Keys have various lengths.
Modern ciphers, such as AES [4], can use keys that have 128, 196, or 256
bits. And to brute force such a key, we would need to try 2128, 2196, or 2256

combinations. If every combination were to take a second, 213 combinations
would take a little over an hour, 217 a day and a half, 221 three weeks and a
half, and 225 a little over a year. This makes the brute force search impossible,
considering that the universe's age is approximately 233.67 years.

In summary, it is the quality of the cipher that ensures that the key is going
to be hard to guess. This is where cryptanalysis comes into play. Cryptanalysis
aims to find weaknesses that may be included in the cipher [5]. We can break
the cipher and show that the claimed bit security is not as strong as claimed.
For example, the secret key length is 128, but a cipher's weakness reduces the
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key's security to 96 bits. Thus, we require only 296 combinations instead of
the 2128.

In this work, we perform an algebraic cryptanalysis of the stream cipher
E0 from the Bluetooth standard [6]. E0 has been studied over the last 25
years, yet there is a missing specification of small-scale variants, and the use
of the Gröbner basis has been applied just recently. In this thesis, we aim to
fill in the gap and perform the cryptanalysis on the small-scale versions using
an appropriate cipher formulation and suitable solvers.

Chapter 1 goes through the essential mathematical structures required
to understand the core concepts used in the experimental part.

Chapter 2 reviews the mathematical description of Linear Feedback Shift
Registers, and describes the E0 stream cipher.

Chapter 3 briefly explains our implementation and the tools required for
our work.

Chapter 4 combines the knowledge from previous chapters and analyzes
the usage of two computational methods. Both methods are supplied
with a different number of keystream bits, which improves the computa-
tional times significantly in the case of one of the approaches. Further-
more, we test an equation reduction technique to improve the results of
the second approach.

Chapter 5 reviews related work that has either been used as a literature
source or provides different perspectives on the E0 cipher.
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Chapter 1
Essential Mathematical

Structures

This chapter introduces the underlying theory of Gröbner bases for ideals
in polynomial rings. The name comes from Austrian mathematician Bruno
Buchberger [7], who named Gröbner bases after his advisor Wolfgang Gröb-
ner in his dissertation in 1965. A Russian mathematician, Nikolai Maximovich
Gjunter (or Ghunter) published a similar idea in 1913 [8]. It remained un-
known until 1941, when he published a paper on his previous work.

Buchberger summarized the idea of Gröbner bases in [9] in less than 20
pages. However, it should be noted the text assumes previous knowledge of
the theory that Gröbner bases are built upon. Undergraduate and gradu-
ate texts, such as [10, 11, 12], capture the theory of Gröbner bases in a few
hundred pages. However, covering Gröbner bases in depth would be beyond
the scope of this work; thus, we lay the background with the most impor-
tant mathematical concepts and refer the reader to the mentioned literature.
Unless stated otherwise, we will follow the theory given by [10].

1.1 Polynomials
Polynomials became familiar to many during earlier education. We learned to
analyze their roots, derivatives, asymptotes, and various other characteristics,
often focusing on polynomials with a single variable. These properties are also
of interest for the general form of a polynomial. Consider the following poly-
nomial h(x, y, z) = x + yz + xyz. The atomic parts of h are called monomials
and are the products of the input variables.

Definition 1 (Monomial). A product of the following form

xα1
1 · xα2

2 · · · xαn
n (1.1)

3



1. Essential Mathematical Structures

is called a monomial, where α1, . . . , αn ∈ N0. The total degree of this monomial
is α1 + . . . + αn.

We can simplify the notation by introducing an n-tuple α = (α1, . . . , αn)
and setting

xα = xα1
1 · xα2

2 · · · xαn
n , (1.2)

and let |α| = α1 + . . . + αn denote the total degree of the monomial xα.
Following the definition, we see that h contains three monomials, x, yz and

xyz. However, we have not yet properly defined what a polynomial is.

Definition 2 (Polynomial). A sum over a finite number of n-tuples α =
(α1, . . . , αn)

f =
∑

α

aαxα, aα ∈ k, (1.3)

is called a polynomial. We call aα the coefficients in the field k. The set of
all polynomials in the field k is denoted k[x1, . . . , xn].

We refer to k[x1, . . . , xn] as a polynomial ring. In our case, h would be
defined over a polynomial ring k[x, y, z]. For example, we can set k = F2,
where F2 is a finite field of order two (or a Galois field of order two) [13].
Then, aα ∈ {0, 1}. We extend the terminology for polynomials with the
following definition.

Definition 3. For polynomial f =
∑

α aαxα in k[x1, . . . , xn], we use the
following terminology.

• We refer to aα as the coefficient of the monomial xα.

• We call aαxα a term of f if aα 6= 0.

• If f 6= 0, then the total degree of f is the maximum |α|, where aα 6= 0.
The total degree of f = 0 is undefined. We denote the total degree of f
as deg(f).

Thus, we refer to xyz as the term of h, as its coefficient aα = 1. The total
degree of h is deg(h) = 3.

1.2 Varieties and Ideals
When working with polynomials, we may be interested in evaluating a poly-
nomial with specific values for its variables. By considering all possible values
of the variables, we get an affine space.

Definition 4 (Affine Space). Let k be a field and n ∈ N. The n-dimensional
affine space over k is defined as follows.

kn = {(a1, . . . , an) | a1, . . . , an ∈ k} (1.4)

4



1.2. Varieties and Ideals

Let h(x, y) = x + y + xy be a polynomial in F2[x, y]. Then, its affine space
is F2

2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. Note that h is an algebraic representation
of logical OR. Naturally, this leads to a question: At what points does the
polynomial evaluate to zero? The answer is given by affine varieties.

Definition 5 (Affine Variety). Given a field k, and polynomials f1, . . . , fs in
k[x1, . . . , xn], we define an affine variety to be the set

V(f1, . . . , fs) = {(a1, . . . , an) ∈ kn | fi(a1, . . . , an) = 0, ∀i : 1 ≤ i ≤ s} . (1.5)

We say that V(f1, . . . , fs) is defined by f1, . . . , fs.

Given the h(x, y) above, we see its affine variety is V(h) = {(0, 0)}.
The next definition introduces an ideal, an important mathematical con-

cept from ring theory [13]. We can understand ideals as a way to factorize a
ring, in our case, a polynomial ring, and understand them as a language to
help us compute affine varieties [10]

Definition 6 (Ideal). An ideal I is a subset of k[x1, . . . , xn] that satisfies the
following:

• 0 ∈ I.

• If f, g ∈ I, then f + g ∈ I.

• If f ∈ I and h ∈ k[x1, . . . , xn], then hf ∈ I.

The next definition gives us a naturally occurring ideal that can be used
to represent a system of polynomial equations.

Definition 7. Let k[x1, . . . , xn] be a polynomial ring and f1, . . . , fs its poly-
nomials. We set

〈f1, . . . , fs〉 =
{

s∑
i=1

hifi | h1, . . . , hs ∈ k[x1, . . . , xn]
}

(1.6)

Before giving an example of the definition, we will first state that the
definition indeed represents an ideal.

Lemma 1. Let f1, . . . , fs be polynomials in k[x1, . . . , xn]. Then, 〈f1, . . . , fs〉
is an ideal of k[x1, . . . , xn] and we say that it is generated by f1, . . . , fs.

We can prove Lemma 1 using the definition of an ideal (Definition 6). The
proof is shown in [10].

5



1. Essential Mathematical Structures

Definition 7 can be interpreted using a set of polynomial equations [10].
Let f1, . . . , fs and h1, . . . , hs be from k[x1, . . . , xn] and we have the following
set of equations:

f1 = 0,

f2 = 0,

...
fs = 0.

We can then write
h1f1 + h2f2 + . . . + hsfs = 0.

The following proposition puts a relation on two bases representing the same
ideal.

Proposition 1. Let f1, . . . , fs and g1, . . . , gt be bases of an ideal in k[x1, . . . , xn],
and 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉, then V(f1, . . . , fs) = V(g1, . . . , gt).

Consider the following variety V(2x2 +3y2 −30, x2 −y2 −5). We can show,
that 〈2x2 + 3y2 − 30, x2 − y2 − 5〉 = 〈x2 − 9, y2 − 4〉, so that

V(2x2 + 3y2 − 30, x2 − y2 − 5) = V(x2 − 9, y2 − 4) = {(±3, ±2)} (1.7)

using the proposition above. By using a different basis, it may be easier to
determine the variety.

Let us now consider the opposite direction. Given an affine variety, we
search for an ideal that represents it.

Definition 8. Given an affine variety V , where V is a subset of kn, we set

I(V ) = {f ∈ k[x1, . . . , xn] | f(a1, . . . , an) = 0, ∀(a1, . . . , an) ∈ V }. (1.8)

Without proving we state, that I(V ) is an ideal (see [10]).

Lemma 2. Let V ⊆ kn be an affine variety. We say that I(V ) ⊆ k[x1, . . . , xn]
is an ideal, and we will call the ideal of V .

Consider the variety {(0, 0)}. Its ideal is I({(0, 0)}) = 〈x, y〉 [10]. Natu-
rally, we could ask whether I(V(f1, . . . , fs)) = 〈f1, . . . , fs〉 is true. We can
give one simple counter-example. Consider the variety V(x2, y2) = {(0, 0)}.
We know that I({(0, 0)}) = 〈x, y〉 and thus I(V(x2, y2)) 6= 〈x2, y2〉 (x, y /∈
〈x2, y2〉).

6



1.3. Monomials and Orderings

1.3 Monomials and Orderings
In solving linear equations with a limited number of variables, e.g., x, y, and z,
some algorithms decide in what order the variables will be solved. The order
of the elimination can be better illustrated through Gaussian elimination. By
swapping some of the columns, we change the order in which we eliminate the
variables. The result remains the same. However, one order could potentially
lead to the solution quicker than the other.

Definition 9 (Linear Ordering). A relation � on Nn
0 is called a linear or-

dering, if for each pair α ∈ Nn
0 and β ∈ Nn

0 only one of the three following
statements is true.

α � β, α = β, β � α (1.9)

This corresponds to what we have written above and generalizes the idea
in terms of relations. We would naturally expect the existence of the least
significant term in such a case. If so, we say that the terms are well-ordered.

Definition 10 (Well-Ordering). Given a relation � on Nn
0 and a subset A ⊆

Nn
0 , such that A 6= ∅, we call � a well-ordering, if there exists α ∈ A, such

that β � α for every β 6= α in A.

We can now combine both properties of linear and well-ordering together
with transitivity to get the following definition of monomial ordering.

Definition 11 (Monomial Ordering). Let k[x1, . . . , xn] be a polynomial ring,
a relation � on Nn

0 is called a monomial ordering on k[x1, . . . , xn] if and only
if the following applies:

• � is a linear ordering on Nn
0 .

• If α � β and γ ∈ Nn
0 , then α + γ � β + γ.

• � is a well-ordering on Nn
0 .

One of the most well-known orderings is the alphabet. The alphabet is
a lexicographic ordering, allowing us to sort words in alphabetical or lexico-
graphical order. For example, we know that FIT �lex Matfyz.

Definition 12 (Lexicographic Ordering). Given two vectors α, β ∈ Nn
0 , we

say that α �lex β if the leftmost nonzero entry of α − β ∈ Zn is positive. We
call �lex a lexicographic ordering. If α �lex β, we write xα �lex xβ.

We can now distinguish between two monomials, for example, x2yz �lex

y4z, since (2, 1, 1) − (0, 4, 1) = (2, −3, 0) (assuming that x � y � z). The
lexicographic ordering is a good academic example, although it is not much
used in practice. The ordering may appear too simple in some cases, as, for
example, x �lex y2z6 for x � y � z. Another example of a monomial ordering

7



1. Essential Mathematical Structures

is graded lex ordering, which considers the total degree of a monomial first
and then uses the lexicographic ordering to distinguish between monomials of
the same order.

Definition 13 (Graded Lex Ordering). Let α, β ∈ Nn
0 . If

|α| =
n∑

i=1
αi > |β| =

n∑
i=1

βi,

or
|α| = |β| and α �lex β,

we write α �grlex β. �grlex is a graded lexicographic ordering.

Using the same example from above, we would write that y4z �lex x2yz,
since the total degree of the first monomial is 5 and the total degree of the
second monomial is 4. The last example of a monomial ordering in this work is
the graded reverse lex ordering, which is most commonly used in computations
for its efficiency [10].

Definition 14 (Graded Reverse Lex Ordering). Let α, β ∈ Nn
0 . If

|α| =
n∑

i=1
αi > |β| =

n∑
i=1

βi,

or |α| = |β| and the rightmost nonzero entry of α − β ∈ Zn is negative, then
we write α �grevlex β. �grevlex is a graded reverse lex ordering.

Let us now compare the monomial orderings. Let f = x3yz4 + x2y7z +
xy4z + x6y2z8 + x5y4z7 ∈ k[x, y, z] with x � y � z. With respect to �lex, we
get:

f = x6y2z8 + x5y4z7 + x3yz4 + x2y7z + xy4z.

With respect to �grlex, we get:

f = x6y2z8 + x5y4z7 + x2y7z + x3yz4 + xy4z.

With respect to �grevlex, we get:

f = x5y4z7 + x6y2z8 + x2y7z + x3yz4 + xy4z.

We end this section by extending the terminology for polynomials with regards
to a given monomial ordering.

Definition 15. Let f =
∑

α aαxα ∈ k[x1, . . . , xn], f 6= 0, and let � be a
monomial ordering. We add the following terminology to polynomials.

8



1.4. Gröbner Bases

• The multidegree of f is

multideg(f) = max(α ∈ Nn
0 | aα 6= 0), (1.10)

where the maximum is taken with respect to �.

• The leading coefficient of f is

LC(f) = amultideg(f) ∈ k. (1.11)

• The leading monomial of f is

LM(f) = xmultideg(f). (1.12)

• The leading term of f is

LT(f) = LC(f) · LM(f). (1.13)

1.4 Gröbner Bases
Without the knowledge of the Gröbner bases, we will assume, for now, that
Gröbner basis gives us a different finite generating set for an ideal, allowing
us to find varieties more easily. Division is one of the main components of
the algorithms that compute the Gröbner basis. The division allows us to
describe one polynomial in terms of other polynomials. Although the theory
in this text may seem not to require the division algorithm, it is used in some
of the proofs omitted from this text.

Theorem 1 (Division Algorithm). Given a monomial ordering � on Nn
0 , and

given an ordered s-tuple of polynomials F = (f1, . . . , fs) in k[x1, . . . , xn], we
can write every f ∈ k[x1, . . . , xn] as follows

f = q1f1 + . . . + qsfs + r, (1.14)

where qi, r ∈ k[x1, . . . , xn], and r must be either 0, or a linear combination with
coefficients in k[x1, . . . , xn], which are not divisible by any of LT(f1), . . . , LT(fs).
r is called a remainder of f on division by F . Additionally, if qifi 6= 0, then

multideg(f) ≥ multideg(qifi). (1.15)

We will denote the remainder r as f
F .

A special case of ideals is a monomial ideal, which we will now define.

Definition 16 (Monomial Ideal). Let I ⊂ k[x1, . . . , xn] be an ideal. We say
that I is a monomial ideal if there is a subset A ⊂ Nn

0 , such, that I contains all
polynomials ∑

α∈A hαxα, where hα ∈ k[x1, . . . , xn]. We write I = 〈xα | α ∈ A〉.

9



1. Essential Mathematical Structures

For example, 〈x2y3, x5y7〉 is a monomial ideal. We can then determine
whether a monomial lies in the ideal through division.

Lemma 3. Given a monomial ideal I = 〈xα | α ∈ A〉 we say that a monomial
xβ lies in I if and only if xα | xβ (xβ is divisible by xα) for some α.

Using the example above, we say that x3y4 ∈ 〈x2y3, x5y7〉, as x2y3|x3y4.
But x2y2 /∈ 〈x2y3, x5y7〉, as none of the monomials in the ideal divide x2y2.

The division algorithm (see Theorem 1) uses the leading terms of polyno-
mials to check whether one polynomial divides the other [10]. In the following
definition, we only consider the leading terms of an ideal and the ideal they
span.

Definition 17. Given an ideal I ⊂ k[x1, . . . , xn] other than {0} and a fixed
monomial ordering on k[x1, . . . , xn] we introduce the following notation:

• Let LT(I) be the set of leading terms of nonzero elements of I:

LT(I) = {cxα | ∃f ∈ I \ {0}, LT(f) = cxα} (1.16)

• 〈LT(I)〉 denotes the ideal generated by the elements of LT(I).

Note that for an ideal I = 〈f1, . . . fs〉 it is not necessarily true that
〈LT(f1), . . . , LT(fs)〉 would be the same as 〈LT(I)〉 [10]. The next theorem
gives us an important feature of ideals.

Theorem 2 (Hilbert Basis Theorem). For every ideal I ⊂ k[x1, . . . , xn]
there exists a finite generating set. We can write I = 〈g1, . . . , gt〉 for some
g1, . . . , gt ∈ I.

One of the major outcomes of the Hilbert Basis Theorem is the existence
of a basis with special properties, which we call the Gröbner basis.

Definition 18 (Gröbner Basis). Let I ⊂ k[x1, . . . , xn] be an ideal with fixed
monomial order on k[x1, . . . , xn], and I 6= {0}. A finite subset G = {g1, . . . , gt}
of I is called a Gröbner basis, if

〈LT(g1), . . . , LT(gt)〉 = 〈LT(I)〉. (1.17)

In some cases, an infinite amount of Gröbner bases for a given ideal can
exist. The ambiguity can be avoided if we apply a stricter condition on the
form of the bases.

Definition 19 (Reduced Gröbner Basis). Let I be a polynomial ideal and let
G be a Gröbner basis of I. We will call G a reduced Gröbner basis, if

• ∀p ∈ G : LC(p) = 1.

• ∀p ∈ G : p /∈ 〈LT(G \ {p})〉.

10



Chapter 2
The E0 Algorithm

In this chapter, we describe one of the main building blocks used within the
E0 cipher, the linear feedback shift registers. We proceed to describe the
cipher itself, formulating the specification from the Bluetooth standard in
mathematical terms. We design small-scale cipher variants and express the
cipher using polynomial equations. Lastly, we illustrate an approach that
could be used to generate more equations and an approach that would reduce
the equations to speed up retrieving the initial configuration of the linear
feedback shift registers used within E0.

2.1 Linear Feedback Shift Register
Linear feedback shift registers (LFSRs) are one of the building blocks of
E0. LFSRs are generally used for their efficiency and undemanding hardware
implementation requirements [14]. LFSRs are also used for their excellent
statistical properties but are cryptographically insecure. Thus, the output of
LFSRs is usually nonlinearly combined, which is also the case of E0. Unless
stated otherwise, this section is based on [14].

Definition 20 (Linear Feedback Shift Register). An LFSR of length L over Fq

produces a semi-infinite 1 sequence (st)t≥0, which satisfies a linear recurrence
relation of degree L over Fq

st+L =
L∑

i=1
cist+L−i, ∀t ≥ 0, (2.1)

where the coefficients ci ∈ Fq, ∀i ∈ {1, . . . , L}. We call the coefficients ci the
feedback coefficients of the LFSR.

1Semi-infinite refers to mathematical objects bounded in one direction but unlimited in
the other [15]. For example, the interval (c, +∞) is semi-infinite, as it is bounded by the
constant c.
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2. The E0 Algorithm

There are two ways to represent an LFSR: the Fibonacci and the Galois
representation. The Fibonacci representation (see Figure 2.1) essentially cor-
responds to the Definition 20. A current state is represented by the contents
of (st, . . . , st+L−1). An initial state of the register, (s0, . . . , sL−1), is filled with
arbitrary values from Fq.

Figure 2.1: Fibonacci LFSR

In Figure 2.1, to get the next state, we first calculate st+L, and then we
shift all register states to the right. This process is controlled by an external
clock, which may or may not be regular. Note that in the figure, the output of
the LFSR is the rightmost stage, st. This is not the case for E0, as it uses the
output from stage st+k (see Section 2.2.1). However, the choice of the output
stage does not change the properties of the LFSR. We can clock the LFSR k
times to get st+k as the rightmost stage, thus, the output. By clocking the
LFSR, we change its internal state.

In this thesis, we will be working over F2. We can simplify the visualiza-
tion of the LFSR, as the feedback coefficients are from {0, 1}. For example,
consider the LFSR of length 5 with feedback coefficients (c1, c2, c3, c4, c5) =
(1, 0, 0, 1, 1), which is displayed in Figure 2.2.

Figure 2.2: Fibonacci LFSR over F2
L = 5 and feedback coefficients are (1, 0, 0, 1, 1).

We can represent the feedback coefficients of an LFSR of length L with a
vector (c1, . . . , cL). However, this is not very common, and we usually repre-
sent the LFSR with its feedback polynomial or its characteristic polynomial.

Definition 21 (Feedback and Characteristic Polynomial). For an LFSR of
length L with feedback coefficients (c1, . . . , cL) we define its feedback polynomial
P as follows:

P (X) = 1 −
L∑

i=1
ciX

i. (2.2)

12



2.1. Linear Feedback Shift Register

Similarly, we define its characteristic polynomial as follows:

P ∗(X) = XLP (1/X) = XL −
L∑

i=1
ciX

L−i. (2.3)

Thus, for the LFSR with feedback coefficients (1, 0, 0, 1, 1) over F2, we
would get P (X) = X5 + X4 + X + 1 and P ∗(X) = X5 + X4 + X + 1.

An LFSR of length L over Fq can produce up to qL different sequences, de-
pending on the initial state. Using the following theorem, we can characterize
all such sequences.

Theorem 3. Given an LFSR of length L over Fq with feedback polynomial P ,
we say that a sequence (st)t≥0 is generated by the LFSR if and only if there
exists a polynomial Q ∈ Fq[X] with deg(Q) < L such that the linear recurrence
(st)t≥0 of degree L satisfies ∑

t≥0
stX

t = Q(X)
P (X)

. (2.4)

We say, that the polynomial Q is completely determined by the coefficients of
P and the initial state of the LFSR:

Q(X) = −
L−1∑
j=0

Xj

 j∑
k=0

skcj−k

 , (2.5)

and P (X) = −
∑L

i=0 ciX
i.

The proof can be found in [14]. Theorem 3 has two key implications. Any
LFSR with a feedback polynomial P is also generated by a different LFSR with
a feedback polynomial, which is a multiple of P . We can also use this property
to find a more suitable representation of the LFSR that could potentially
have better properties. For example, the hardware implementation cost of
LFSR could be reduced. Hence the following question: what is the minimal
representation of the LFSR? The following definition answers the question.

Definition 22. Let (st)t≥0 be a linear recurring sequence, then there exists
a unique polynomial P0 such that its constant term is equal to 1, and the
generating function of (st)t≥0 is given by∑

t≥0
stX

t = Q0(X)
P0(X)

, (2.6)

where P0 and Q0 are relatively prime.
The shortest LFSR which generates (st)t≥0 has length

L = max (deg(P0), deg(Q0) + 1), and its feedback polynomial is equal to P0.
The characteristic polynomial of the shortest LFSR, which generates (st)t≥0,
is called the minimal polynomial of the sequence.
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2. The E0 Algorithm

The minimal polynomial has a crucial role in determining the period of an
LFSR.

Proposition 2. Let P0 be a minimal polynomial. Then, the least period of a
linear recurring sequence equals minimal e ∈ N0 such that P0(X)|Xe + 1.

A minimal polynomial P0, for which a sequence has a maximal period
2deg(P0) −1 is called a primitive polynomial. In this work, we will use primitive
polynomials for the LFSRs to design small-scale variants of the E0 cipher.

Earlier in this chapter, we stated that the choice of the output does not
change the properties of LFSRs and that we can clock k times to get the
output from stage st+k. Once we know the state of the LFSR at time t + k,
we can also determine the state at time t. In other words, we can also clock
the LFSR in the opposite direction, which we prove in the following theorem.

Theorem 4. For an LFSR of length L over Fq with its feedback coefficients
(c1, . . . , cL), where cL 6= 0, there exists an LFSR′ of length L over Fq with
feedback coefficients −c−1

L (cL−1, . . . , c2, c1, −1) that produces the output of the
LFSR in reverse.

Proof. By using Definition 20 we can write

st+L =
L∑

i=1
cist+L−i = c1st+L−1 + . . . + cLst

cLst = st+L − (c1st+L−1 + . . . + cL−1st+1)
st = c−1

L st+L − c−1
L c1st+L−1 − . . . − c−1

L cL−1st+1

Let c′
i = −c−1

L cL−i for i ∈ {1, . . . , L − 1}, and c′
L = c−1

L . We can then
simplify st to

st =
L∑

i=1
c′

ist+i. (2.7)

Let s′
t+k = st−k. We can then get the general form of s′

t+L

s′
t+L =

L∑
i=1

c′
ist−L+i =

L∑
i=1

c′
is

′
t+L−i, (2.8)

which is the linear recurrence relation of degree L over Fq for LFSR′.

2.2 Description Of The E0 Algorithm
As of writing this text, the Bluetooth technology is already 25 years old [16]. It
was officially launched in 1998 to connect computers and mobile devices [17].
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2.2. Description Of The E0 Algorithm

The name itself was supposed to be a placeholder only; however, after a thor-
ough research from the marketing team, they have decided to keep the name
as is.

The Bluetooth standard has changed over the course of its existence [6].
The encryption within the Bluetooth Basic Rate/Enhanced Data Rate
(BR/EDR) utilizes Advanced Encryption Standard (AES). Some older de-
vices can still use the legacy stream cipher E0. That is, if at least one of the
two devices does not support the newer Bluetooth standard, the encryption
is downgraded to E0.

We can divide the encryption process of E0 into three parts:

• initialization of four LFSRs,

• keystream generation,

• encryption/decryption.

In this work, we will mainly focus on the second part. E0 is a symmetric
cipher; thus, the keystream is used for both encryption and decryption – it is
XORed with a plaintext or a ciphertext.

2.2.1 Encryption
We begin by describing the encryption part of E0. E0 is a combination gener-
ator built from four regularly clocked LFSRs, whose output is combined with
a Boolean function with four memory bits. The generator is used twice, once
during the initialization and then during the keystream generation.

The four LFSRs used in E0 have lengths L1 = 25, L2 = 31, L3 = 33, and
L4 = 39, that is, their lengths in total are 128. Their feedback polynomials
are

P1(x) = x25 + x20 + x12 + x8 + 1
P3(x) = x31 + x24 + x16 + x12 + 1
P3(x) = x33 + x28 + x24 + x4 + 1
P4(x) = x39 + x36 + x28 + x4 + 1,

where all Pi(x) are primitive polynomials. The output bit of the i-th LFSR,
where i ∈ {1, 2, 3, 4} is x

(i)
t . The outputs of the LFSRs are combined using a

finite state machine (FSM) with 24 states. The FSM is also referred to as a
summation combiner [14]. The outline of the encryption used in E0 is shown
in Figure 2.3.

As a first step, a 3-bit value yt ∈ Z is computed

yt = x
(1)
t + x

(2)
t + x

(3)
t + x

(4)
t . (2.9)
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2. The E0 Algorithm

Figure 2.3: Outline of E0 encryption

yt is then used as an input for the FSM, and its least significant bit y
(0)
t is

XORed with output from the FSM. The FSM uses an internal memory that
consists of four bits, ct = (qt, pt) ∈ {0, 1}2 and ct−1 = (qt−1, pt−1) ∈ {0, 1}2.
The memory bits are first set in the initialization part of the algorithm. Inside
of the FSM, values yt and ct are combined as follows:

st+1 =
⌊

yt + ct

2

⌋
, (2.10)

where st+1 ∈ {0, 1, 2, 3}. Next, the update of the memory bits contains two
linear bijections T1 and T2:

T1 : (x1, x0) 7→ (x1, x0),
T2 : (x1, x0) 7→ (x0, x1 ⊕ x0).

Finally, the update of the memory bits is:

ct+1 = (qt+1, pt+1) = st+1 ⊕ T1(ct) ⊕ T2(ct−1). (2.11)

In Figure 2.4, Z is a lag operator

Zct+1 = ct, ∀t > 0. (2.12)

Finally, the generated keystream from is the combination of the outputs of
the LFSRs the FSM:

zt = x
(1)
t ⊕ x

(2)
t ⊕ x

(3)
t ⊕ x

(4)
t ⊕ pt = y

(0)
t ⊕ pt. (2.13)
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Figure 2.4: E0 Finite State Machine

2.2.2 Initialization

The Bluetooth communication is carried out between a central device and
peripheral devices. The central device supplies a synchronization reference to
the peripheral devices; in the case of E0, the central device shares its clock.
E0 is a symmetric cipher; therefore, all devices require the same initialization
variables for the algorithm. More specifically, the initialization variables are
required to initialize the four LFSRs and the four memory bits, as mentioned
in Section 2.2.1.

Figure 2.5: E0 with its inputs and output

E0 accepts three inputs – the central device's Bluetooth device address
and its real-time clock, and an encryption key generated by a hash function
E3. The Bluetooth device address, which we will denote by B (BC for the
central device), has 48 bits. From the central device's clock, CLK, 26 bits
are used. We will not go into the details of the hash function E3. Its output
is the encryption key, Kenc, which always has 128 bits. The size of Kenc can
be internally reduced to multiples of 8, more specifically, to size 8L, where
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2. The E0 Algorithm

L ∈ {1, . . . , 16}. The resulting key with the new size, Kses, is calculated as

Kses =
∣∣∣g(L)

2 Kenc
∣∣∣
g

(L)
1

, (2.14)

where g
(L)
1 and g

(L)
2 are polynomials specified in Table C.1. Additionally, to

the three inputs, six constant bits 111001 are used to initialize the LFSRs and
the memory bits. In total, 208 bits are used for the initialization. A simple
way to visualize E0 is given by Figure 2.5. However, it is unclear that the
encryption process is carried out twice. A better way to visualize E0 is given
by Figure 2.6.

Figure 2.6: E0 with initialization

Before describing the process of initialization of the LFSRs, we are going
to separate the 208 initialization bits into four vectors. For the initializa-
tion variables, we will use the following bit notation: BC = (b1, . . . , b48),
CLK = (clk1, . . . , clk26), and Kses = (k1, . . . , k128). Then, we define vec-
tors I(1), I(2), I(3), and I(4), each corresponding to LFSR1, LFSR2, LFSR3, and
LFSR4 respectively.

I(1) =
(clk25, k1, . . . , k8, k33, . . . , k40, k65, . . . , k72, k97, . . . , k104,

clk9, . . . , clk16, b17, . . . , b24),

I(2) =
(1, 0, 0, clk1, . . . , clk4, k9, . . . , k16, k41, . . . , k48, k73, . . . , k80,

k105, . . . , k112, b1, . . . , b8, b25, . . . , b32),

I(3) =
(clk26, k17, . . . , k24, k49, . . . , k56, k81, . . . , k88, k113, . . . , k120,

clk17, . . . , clk24, b33, . . . , b40),

I(4) =
(1, 1, 1, clk5, . . . , clk8, k25, . . . , k32, k57, . . . , k64, k89, . . . , k96,

k121, . . . , k128, b9, . . . , b16, b41, . . . , b48).

(2.15)

Note, that the size of I(1) and I(3) is 49 bits, and the size of I(2) and I(4) is 55
bits. At the beginning, we set t = 0 for the LFSRs. All of the operations below
are done simultaneously bit by bit. However, different LFSRs may be doing
different operations at time t. For example, for t = 38, LFSR4 has last bit of
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2.2. Description Of The E0 Algorithm

its initial state set (x(4)
38 = I

(4)
39 , see Equation 2.16), while LFSR1 is updating

its stage x
(1)
38 (see Definition 20) mixed with the initialization variable bit I

(1)
39

(see Equation 2.17)
Using the notation for the LFSRs' output from Section 2.2.1, we set

(x(1)
0 , . . . , x

(1)
24 ) = (I(1)

1 , . . . , I
(1)
25 ),

(x(2)
0 , . . . , x

(2)
30 ) = (I(2)

1 , . . . , I
(2)
31 ),

(x(3)
0 , . . . , x

(3)
32 ) = (I(3)

1 , . . . , I
(3)
33 ),

(x(4)
0 , . . . , x

(4)
38 ) = (I(4)

1 , . . . , I
(4)
39 ).

(2.16)

Then, stages x
(1)
25 , . . . , x

(1)
48 . x

(2)
31 , . . . , x

(2)
54 , x

(3)
33 , . . . , x

(3)
48 , and x

(4)
39 , . . . , x

(4)
54 are

updated according to Definition 20 mixed with bits from the initialization
variables as follows:

x
(1)
ℓ+25 = x

(1)
ℓ ⊕ x

(1)
ℓ+5 ⊕ x

(1)
ℓ+13 ⊕ x

(1)
ℓ+17 ⊕ I

(1)
ℓ+L+1, ∀ℓ ∈ {0, . . . , 23}

x
(2)
ℓ+31 = x

(2)
ℓ ⊕ x

(2)
ℓ+7 ⊕ x

(2)
ℓ+15 ⊕ x

(2)
ℓ+19 ⊕ I

(2)
ℓ+L+1, ∀ℓ ∈ {0, . . . , 23}

x
(3)
ℓ+33 = x

(3)
ℓ ⊕ x

(3)
ℓ+5 ⊕ x

(3)
ℓ+9 ⊕ x

(3)
ℓ+29 ⊕ I

(3)
ℓ+L+1, ∀ℓ ∈ {0, . . . , 15}

x
(4)
ℓ+39 = x

(4)
ℓ ⊕ x

(4)
ℓ+3 ⊕ x

(4)
ℓ+11 ⊕ x

(4)
ℓ+35 ⊕ I

(4)
ℓ+L+1, ∀ℓ ∈ {0, . . . , 15}

(2.17)

After this, the stages of the LFSRs are updated in a standard manner up(as in
Definition 20). The LFSRs are shifted with each clock regularly until t = 239.

At the same time, we initialize the memory bits with zeros,

(c0, . . . , c39) = (0, . . . , 0). (2.18)

The memory bits ct+1 for t ≥ 39 and t ≤ 239 are updated according to
Equation 2.11.

Starting at t = 39, the output symbols 2 (or output bits, see Equation 2.13)
are generated. Thus, in total, 200 output symbols are generated. Out of them,
the last 128 output symbols are used. We will use the following notation: the
output symbol at time t = 112 is denoted o1, at time t = 113 it is denoted
o2, up to t = 239, where the last output symbol is denoted o128. We define
four reinitialization vectors O(1), O(2), O(3), and O(4), each corresponding to

2Section 2.2.1 refers to the output symbols as keystream bits. However, the output bits
are not used for encryption but rather to reinitialize the LFSRs.
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2. The E0 Algorithm

LFSR′
1, LFSR′

2, LFSR′
3, and LFSR′

4 respectively.

O(1) = (o97, o72, . . . , o65, o40, . . . , o33, o8, . . . , o1),

O(2) =
(o104, . . . , o98, o80, . . . , o73, o48, . . . , o41,

o16, . . . , o9),

O(3) =
(o121, o112, . . . , o105, o88, . . . , o81, o56, . . . , o49,

o24, . . . , o17),

O(4) =
(o128, . . . , o122, o120, . . . , o113, o96, . . . , o89,

o64, . . . , o57, o32, . . . , o25).

(2.19)

Note, that the sizes of O(i) for i ∈ {1, 2, 3, 4} each correspond to the sizes of
the LFSRs respectively. We also use a different notation, LFSR′

i, as after the
reinitialization the LFSRs are used to generate the keystream bits. Finally,
using the reinitialization variables, we can set the initial state of all of the
LFSRs as follows.

(x′(1)
0 , . . . , x

′(1)
24 ) = (O(1)

1 , . . . , O
(1)
25 ),

(x′(2)
0 , . . . , x

′(2)
30 ) = (O(2)

1 , . . . , O
(2)
31 ),

(x′(3)
0 , . . . , x

′(3)
32 ) = (O(3)

1 , . . . , O
(3)
33 ),

(x′(4)
0 , . . . , x

′(4)
38 ) = (O(4)

1 , . . . , O
(4)
39 ).

(2.20)

2.2.3 Small-Scale Variants of E0
Since working with the original size of E0 would not be feasible for the equip-
ment we are using (see Chapter 4), we will be working with small-scale variants
of E0. In short, we will be reducing the sizes of the LFSRs used within the
cipher. We will not change the FSM, as it is the main source of the unique
behavior of E0.

To reduce the size of the LFSRs, we can focus on their feedback poly-
nomials, which are, by the Bluetooth standard [6], required to be primitive;
otherwise, the period of the LFSRs would not be maximal. The authors of E0
have decided to use such polynomials, whose hamming weight (HW) is equal
to 5. HW of a polynomial is defined as the number of non-zero coefficients of
the polynomial. The choice of HW equal to 5 is reasoned by good statistical
properties and better hardware design [6]. However, for lower-degree polyno-
mials, having HW equal to 5 is not possible. Thus, if it is not possible to
follow the requirements, we choose polynomials with HW 3 equal to 3 – this
choice is then kept the same among all of the four polynomials.

The calculation of HW can be seen well from the binary representation of a
polynomial. For example, the polynomial x4+x3+1 has binary representation

3We have evaluated all primitive polynomials from [18] up to length 20 and we have not
found any primitive polynomials with HW equal to 2 or 4.
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11001, and its HW is equal to 3. It is also a primitive polynomial. In general,
every primitive polynomial includes the constant 1; thus, we can simplify the
binary representation to 1100. The hexadecimal form of this polynomial is
then 0xC. We will represent all primitive and feedback polynomials using the
hexadecimal notation.

We will use the following notation for small-scale E0 variants:

E0(A, B, C, D), (2.21)

where A, B, C, D are primitive polynomials of LFSR1, LFSR2, LFSR3, and
LFSR4 respectively. For example, E0(0x3, 0x6, 0xC, 0x14) tells us, that
LFSR1 uses primitive polynomial 0x3, i.e. x2 + x + 1, LFSR2 uses primitive
polynomial 0x6, i.e. x3 + x2 + 1, and so on. From now on we will assume
that only hexadecimal representation is used when referring to the small-scale
variants; thus, using the example above we will write E0(3, 6, C, 14). We do
not change the initialization, as the experiments will be carried out only after
the reinitialization phase of the LFSRs. The small-scale variants of E0 that
keep the ratio of the original sizes will be denoted E0∗(. . .). We calculate the
respective lengths of the new LFSRs L′

i, where i ∈ {1, 2, 3, 4} as

L′
i =


⌊
L′ Li

L

⌋
, if i = 1

L′
i−1 + max

(
1,

⌊
Li−Li−1

L L′
⌋)

, otherwise,
(2.22)

where L′ is the total length of the LFSRs in the small-scale version of E0, and
L is the original length of the full-scale version of E0 (L = 128). For example,
for L′ = 18 we get L′

1 =
⌊
18 · 25

128

⌋
= 3, for L′

2 we get

L′
2 = L′

1 + max
(

1,

⌊31 − 25
128

· 18
⌋)

= 3 + 1 = 4. (2.23)

Similarly, for L′
3 = 5 and for L′

4 = 6. Note, that Equation 2.22 also holds for
L′ = L = 128.

2.2.4 Representing E0 Encryption Using Polynomial
Equations

To represent the whole encryption algorithm algebraically, we need to convert
the FSM from Section 2.2. The FSM updates the memory bits, for which we
need the equations. By representing the FSM with a truth table and using,
for example, Sage [19] mathematical software, we can extract its algebraical
normal form (ANF). See Appendix C.2 for more details. Before writing down
the equations for the memory bits, let us first define a symmetric polynomial.

Definition 23 (Symmetric Polynomial). A symmetric polynomial is defined
as follows

πn
t,N =

⊕
1≤i1<i2<...<in≤N

x
(i1)
t x

(i2)
t · · · x

(in)
t , (2.24)
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where x
(i)
t ∈ F2.

Since E0 uses N = 4, we will assume that πn
t,4 = πn

t . Furthermore, xi
t is

the output of the i-th LFSR. For example, π2
t,4 = π2

t = x
(1)
t x

(2)
t ⊕ x

(1)
t x

(3)
t ⊕

x
(1)
t x

(4)
t ⊕ x

(2)
t x

(3)
t ⊕ x

(2)
t x

(4)
t ⊕ x

(3)
t x

(4)
t . Using Definition 23 of a symmetric

polynomial, we can rewrite the Equation 2.13 for the keystream bit zt:

zt = π1
t ⊕ pt. (2.25)

From Appendix C.2 we have that the memory bits qt+1 and pt+1 are updated
with the following equations:

qt+1 = π4
t ⊕ π3

t pt ⊕ π2
t qt ⊕ π1

t ptqt ⊕ qt ⊕ pt−1

pt+1 = π2
t ⊕ π1

t pt ⊕ qt ⊕ qt−1 ⊕ pt−1 ⊕ pt

(2.26)

This way, we get a tool for generating equations for each bit of the keystream
zt. However, the equations for qt+1 and pt+1 will grow quickly in size while
increasing their degree. We can express the equations differently by following
Armknecht's approach [20] (see Appendix C.3). The main idea behind the
transformation is based on the fact that the output of the FSM and the LFSRs
is linearly combined (see Equation 2.25). We can eliminate the memory bits
one by one and get the following equation that applies to every four subsequent
keystream bits:

0 = zt+3(zt+1π1
t+1 ⊕ π2

t+1 ⊕ π1
t+1 ⊕ 1) ⊕

zt+2(zt+1π1
t+2π1

t+1 ⊕ zt+1π1
t+1 ⊕ π2

t+1π1
t+2⊕

π2
t+1 ⊕ π1

t+2π1
t+1 ⊕ π1

t+2 ⊕ π1
t+1 ⊕ 1) ⊕

zt+1(ztπ
1
t+1 ⊕ π3

t+1 ⊕ π2
t+2π1

t+1 ⊕ π2
t+1⊕

π1
t+3π1

t+1 ⊕ π1
t+1π1

t ⊕ π1
t+1 ⊕ 1) ⊕

zt(π2
t+1 ⊕ π1

t+1 ⊕ 1) ⊕
π4

t+1 ⊕ π2
t+2(π2

t+1 ⊕ π1
t+1 ⊕ 1) ⊕

π2
t+1(π1

t+3 ⊕ π1
t ) ⊕

π1
t+3(π1

t+1 ⊕ 1) ⊕ π1
t+1π1

t ⊕ π1
t

(2.27)

Note, that the Equation 2.27 has degree four, specifically given by π2
t+1π2

t+2
and π4

t+1. Thanks to Armknecht's results, we know that this is the lowest
degree for four and five subsequent keystream bits.

2.2.5 Generating Additional Equations
Let us now explore the cipher, considering the generated keystream first. The
keystream is generated by the algorithm described in Section 2.2.1 above. For
each keystream bit zt at time t, we have 8 bits that we can set, the LFSRs'
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output, x
(1)
t , x

(2)
t , x

(3)
t , x

(4)
t , and the memory bits qt, pt, qt−1 and pt−1. Thus, we

have 28 possible combinations, which give us the keystream bit zt. If zt = 0,
we have 27 possible configurations of the bits. The same applies if zt = 1.
When given a keystream (zt, zt+1, . . . , zt+ℓ), we should conclude that there
exist 22(25)ℓ+1 possible configurations of the LFSR bits and the memory bits.
This is not necessarily true, as the number of possible states will decline with
more keystream bits. However, it is not clear how many keystream bits would
be required to reduce the number of possible states sufficiently.

The following question can be raised: can we build valid equations for
certain consecutive keystream bits and equations possibly simpler than the
derived Equation 2.27 in Section 2.2.4? To answer the question, we propose
the following. Given a keystream (zt, zt+1, . . . , zt+ℓ), we will find valid con-
figurations of the LFSR and the memory bits4. Let A be a matrix whose
columns represent the LFSR and the memory bits at times t, t + 1, . . . , t + ℓ.
The rows of A represent the valid configurations.

We can use the column variables to build new monomials. For example,
we can build a monomial of degree two using x

(1)
t and x

(2)
t , getting x

(1)
t x

(2)
t .

We can do this for all column variables, but similarly, as in Section 2.2.4, we
will use only the LFSR output variables. Note that combining two or more
variables corresponds to a logical AND of the specific values in the columns.
Let B be the matrix which consists of all possible monomials of a degree up
to k, where k can be at most 4(ℓ + 1). The number of columns of B will be
m =

∑k
i=1

(4(ℓ+1)
i

)
.

Finally, we will build matrix C, whose columns will represent polynomials
built from the monomials given by matrix B. For example, we can combine
columns x

(1)
t x

(2)
t and x

(2)
t x

(3)
t , from which we get the polynomial x

(2)
t (x(1)

t +
x

(3)
t ). The combination of the columns of the matrix B corresponds to a logical

XOR. Similarly, as we did for the matrix B, we will limit the number of terms
by l (that is, the number of monomials in a polynomial cannot surpass l). l
can be at most 2m − 1 (we ignore zero polynomial). The number of columns
of C will be ∑l

i=1
(m

i

)
. In matrix C we will search for columns whose values

are the same row-wise (that is, the columns are either 0 or 1). Such columns
represent polynomials, which are valid for keystream (zt, zt+1, . . . , zt+ℓ), when
equal to the value in the column.

Such a computational approach is expensive, as the number of monomials
and the number of polynomials grows with factorial, and we have not been able
to identify any equations for ℓ = 3, k = 4 and l = 2 (4 consecutive keystream
bits, monomials of maximum degree 4 and 2 terms in a polynomial). The
Jupyter Notebook Possible States implements the approach. Some of the
steps could be eliminated; for example, if the search is conducted for two
consecutive keystream bits first, one could use this as prior knowledge when

4We can recursively search for correct configurations, checking whether the bits satisfy
equations given by Section 2.2.1.
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2. The E0 Algorithm

examining three consecutive keystream bits (that is, one does not have to
examine the relationship between states for the second and the third bit).
Despite the expense of the approach, it only needs to run once.

2.3 Reduction of the Equations
Following the works of Berušková [21] and Minarovič [22], we decided to em-
ploy a preprocessing technique on the generated equations from the E0 cipher.
The idea is to reduce the equations to improve the computational time of a
given technique. This work will test one reduction technique, Local Sensitivity
Hashing (LSH).

LSH aims to find the most similar elements in a given set and place such
elements in different sets, called buckets [23]. We refer to the elements that
are the most similar as nearest neighbors. We can formalize the problem of
searching for the nearest neighbor as follows: Given an element q we search for
x ∈ {x1, . . . , xn} such, that minizes the distance between q and x, dist(q, x).
We can define the distance between the elements in various ways; however,
the properties of a metric space must be met [21]. One such metric is given
by the XOR of two polynomials, also utilized by [21, 22]

We can separate the process of LSH into three steps [24, 22]: shinling,
MinHashing, Bucketing.

2.3.1 Shinling
This step aims to create a set of monomials (shinlings) for each polynomial
in the polynomial system of equations. Then, by assigning all of the unique
monomials in the polynomial system a unique integer, we create a dictionary.
For example, consider two polynomials f = x + y + z + xy and g = x + xy +
xz + yz. The set of unique monomials for f is fs = {x, y, z, xy}, and for g
gs = {x, xy, xz, yz}. We then proceed to create a dictionary, incrementing a
counter for each unique monomial in the polynomial system: D = {x : 1, y :
2, z : 3, xy : 4, xz : 5, yz : 6}.

Using the dictionary D, we can now create sparse vectors for f and g,
representing whether the monomial is present (1) in the original polynomial
or not (0). Hence, following the results from Table 2.1, v1 = (1, 1, 1, 1, 0, 0)
and v2 = (1, 0, 0, 1, 1, 1).

2.3.2 MinHashing
The MinHashing step creates dense vectors, or signatures, from the sparse
vectors from the previous step. The MinHashing step uses m random permu-
tations whose sizes equal the number of unique polynomials in the polynomial
system. We search for the minimum number such that the position in the
sparse vector is non-zero for each permutation. For example, we will use
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Table 2.1: Creating sparse vectors for shinlings

fs gs D v1 v2

x x x : 1 1 1
y y : 2 1 0
z z : 3 1 0

xy xy xy : 4 1 1
xz xz : 5 0 1
yz yz : 6 0 1

Table 2.2: Creating dense vectors – signatures

p1 p2 p3 v1

6 6 2 1
5 5 4 1
4 2 3 1
3 1 5 1
2 4 6 0
1 3 1 0

m = 3 random permutations for the sparse vectors from the previous section.
In Table 2.2, we first search for the minimum number where the position
given by permutation p1 in the sparse vector v1 is non-zero. For the first two
numbers, 1 and 2, the positions in v1 are 0. The first non-zero number for
the permutation is 3. For p2, we have the first non-zero element in v1 for 1.
And finally, for p3, we have the first non-zero element in v1 for 2. Thus, the
resulting signature of v1 is s1 = (3, 1, 2). Similarly, for v2 we get s2 = (1, 1, 1).

2.3.3 Bucketing

The last step of LSH is to create buckets from the signatures. The signatures
are separated into subparts used to identify similar items from different sig-
natures in the buckets. After adding a signature to the buckets, its items are
used as an index into the bucket, adding the index of the signature as an item.
Using the signatures from the previous section, we use s1 to index the empty
buckets with each of its items. Since the index of s1 is 1, we add 1 to all of
the buckets at the indices.

(3 : 1)
(1 : 1)
(2 : 1)
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2. The E0 Algorithm

Using signature s2 we index the buckets again, this time using index 2.

(3 : 1, 1 : 2)
(1 : 1, 2)
(2 : 1, 1 : 2)

As we can see, the second element of both signatures is 1, thus resulting in
bucket with two two items, (1 : 1, 2).

Finally, we search for buckets containing at least two items. Then, we
combine all the items in such buckets, resulting in candidate pairs, which can
be used for equation reduction. All of the candidate polynomial pairs are
XORed together.

We then use the following metric: if the number of monomials in a poly-
nomial is less than t · M , where t is a threshold and M is the average number
of monomials for all polynomials from the original polynomial system, we add
the polynomial to a new set. We search for such polynomials from the original
polynomial system and the new polynomials created through the candidate
pairs.
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Chapter 3
Implementation

We used several different programming/scripting languages, each suitable for
different tasks:

• C/C++ for the initial implementation of E0,

• Python >v3.8 for computational tasks, scripting, visualisations,

• Sage v9.0 & v10.1 [19] for algebraic tasks and connection with Magma,

• Magma 2.25-5 [25] for computation of Gröbner basis,

• {ba,z}sh for scripting.

3.1 Implementation of E0
Following Section 2.2.1 and Arnaud Delmas' implementation [26] of E0, we
produced our version of E0 (see bt_utils.cpp) to give us a better under-
standing of the inner workings of the cipher. We verified the correctness of
the implementation using Sections 1.1.2-1.1.5 of the Bluetooth Standard [6].

File keystream_gen.py contains a simplified version of the E0 algorithm
without the initialization phase. We use the script to generate keystream bits
with randomly initialized LFSRs at the beginning. The random initialization
of the LFSRs substitutes the reinitialization phase. After initializing each
LFSR, we check whether their initial states are non-zero. If the initial state
were a zero one, we simply perform the random initialization again until we
find a non-zero initial state.

We can specify the number of keystreams we want to generate using -runs,
the number of keystream bits we want to generate using -kbits, and the
random seed using -random. The primitive polynomials used in the LFSRs
and their outputs are specified using -lfsrX and -oX, where X is the number
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3. Implementation

corresponding to the LFSR. For example, to specify the primitive polynomial
and the output of the first LFSR, we would write -lfsr1 0x3 -o1 0.

We use primitive polynomials only for the LFSRs in the cipher.

3.2 Symbolic Representation of E0
Similarly, we implemented a simplified symbolic version of E0. We use a
symbolic representation of the LFSRs – instead of specific bits, we output
the combinations of the LFSRs' unknowns, which are then used in Equa-
tion 2.27. The specific outputs of the LFSRs, x

(i)
t , where i ∈ {1, 2, 3, 4} (see

Section 2.2.1), are precalculated first.
File E0.sage implements the symbolic representation of E0 after the reini-

tialization phase and implements a way to generate equations depending on
what formulation we require – both recursive and Armknecht's formulation
are implemented. Equations are then pickled using Python's pickle module
and we store information about the generated equations in a separate file.

Using the file generate_rec.py we can specify the primitive polynomials
and outputs of the LFSRs in the same manner as in Section 3.1. We can
also set the type of equations we would like to generate. For Armknecht's
formulation, we would use -type armknecht.

The sage to magma interface is not as efficient when converting the equa-
tions. The interface has to represent the polynomials as a list of strings and
is limited by the size of the strings. Converting one polynomial to magma re-
quires more operation than just generating the equations. For this reason, we
created a file generate_equations.m that generates the equations directly in
magma. The difference is that this has to be done for each keystream, as, for
performance reasons, one has to substitute the keystream bits while generating
the equations.

3.3 Local Sensitivity Hashing
File LSH.py implements local sensitivity hashing (LSH), which is a method
we use to reduce the number of equations used in a given experiment. The
implementation is based on pinecone's [27] implementation in Python. The
specifics of LSH can be found in Section 2.3 and its usage in Section 4.2.

3.4 Running the Experiments
Our work uses two approaches to equation solving – Magma's [25] F4 algorithm
and CryptoMiniSat's [28] SAT solver. Since the symbolic implementation of
E0 is done solely in Sage, we need to convert the equations to Magma. Even
though Sage has an interface to Magma, we needed to implement the conversion
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of equations from Sage to Magma, as the interface is unable to convert large
equations. This problem was also encountered in Bielik's work [29].

Although the implementation is done efficiently in Magma, for some in-
stances, it tends to either not finish the computation or freeze entirely. It
is unclear what causes these issues since Magma is a closed source software;
however, when encountered, we re-run the experiments, which usually solved
the problem. After Magma finishes the computation of the Gröbner basis, we
let it calculate the affine variety of the calculated basis. This gives us a better
understanding of the sparsity of the solutions and how much time would be
needed to verify the initial configuration of the LFSRs.

To compare the efficiency of calculating the Gröbner basis, we also use
CryptoMiniSat's SAT solver. In the version of Magma we used, the F4 algo-
rithm is only single-threaded; thus, we set the number of threads of the SAT
solver to one. Since we search for all possible solutions with Magma, we do
the same with the SAT solver. Since the equations are in ANF, they must be
converted to the conjunctive normal form (CNF). We use Martin Albrecht's
converter [30], which is implemented in sage [19]. Note that this is the dense
form of the ANF to CNF conversion. sage [30] also implements a sparse form.
Unfortunately, it is computationally unfeasible for large equation systems be-
cause of the approach through truth tables [30].
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Chapter 4
Experiments

In this chapter, we describe our experimental approach to attacking small-
scale variants of E0. In the experiments we assume the knowledge of both the
plaintext and the ciphertext, thus allowing us to work with keystream only.
The experiments were run on a single computer platform with two processors
(Intel Xeon Gold 6136 CPU @ 3.00 GHz), with 755 GB of DDR4 RAM running
the Ubuntu 20.04.5 LTS operating system.

In each experiment, we use different versions of the small-scale variants of
E0 (see Section 2.2.3). For each version, we generate 15 different keystreams.
The keystreams are generated with randomly initialized LFSRs after the reini-
tialization phase following the E0 algorithm (see Section 2.2.1). All of the
LFSRs must have a non-zero initial state.

We compare two approaches, the computation of Gröbner basis using
Magma's [25] implementation of the F4 algorithm and CryptoMiniSat's SAT
solver [28]. Once the Gröbner basis is calculated, we also search for its affine
variety to verify the solution. CryptoMiniSat allows parallelizing the compu-
tation, but since Magma runs on a single thread only, we run the SAT solver
with a single thread only. Using the SAT solver, we also search for all possible
solutions; thus, the results from the computation of Gröbner basis (and their
affine varieties) and SAT solver are essentially the same. The SAT solver times
include conversion from the algebraic form of the equations to the logical form
(CNF) [30].

In the early stage of this work, we tried to utilize the recursive formulation
of the memory bits (see Equations 2.26). However, this approach proved to
be computationally infeasible as the equations grow exponentially in size, and
also the fact that we are required to find the solution for four more unknows,
(qt, pt, qt−1, pt−1).
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Table 4.1: Initial experiments with keystream bits equal to the number of
unknowns

F4 SAT

Kba G. Basis Variety
E0 type Ucb Time (s) Time (s) Mem (GiB) Time (s)

E0∗(3, 6, c, 14) 14 4.9 ± 0.1 2.1 ± 0.1 0.3 ± 0.0 3.1 ± 0.1
E0(3, 6, c, 30) 15 12.0 ± 0.1 6.2 ± 0.6 0.5 ± 0.0 6.6 ± 0.2
E0(3, 6, c, 60) 16 47.7 ± 1.1 27.5 ± 8.5 2.1 ± 0.0 12.0 ± 0.2
E0(3, 6, 12, 60) 17 196.6 ± 2.6 79.5 ± 50.4 8.1 ± 0.3 32.9 ± 0.5
E0∗(6, c, 14, 30) 18 1283.9 ± 29.2 253.6 ± 162.0 28.1 ± 1.3 120.1 ± 2.1
E0(6, c, 14, 60) 19 3465.5 ± 49.3 494.3 ± 41.9 53.7 ± 2.3 230.0 ± 5.2
E0(6, c, 30, 60) 20 26400.3 ± 324.9 2077.6 ± 756.1 224.3 ± 2.5 624.7 ± 28.3

a Keystream bits
b Unknowns count

4.1 Initial Experiments Using Armknecht's
Formulation

Armknecht's formulation of the E0 cipher (see Section 2.2.1) efficiently gen-
erates the equations. The set of equations is only generated once; it is then
necessary to substitute the keystream into the equations. The substitution
becomes more demanding with the increasing number of unknowns and the
increasing number of equations; however, for the experiments in this work, we
assume that the substitution is negligible.

The Bluetooth standard [6] sets the maximum number of keystream bits
for the full-scale version of the E0 cipher to 2745. It is unclear how this num-
ber would scale for small-scale cipher variants, but for the minimum number
of keystream bits, we will assume that it is equal to the number of unknowns
(for example, a 14-bit variant of E0 would generate at least 14 keystream bits
before reset). Thus, we begin the experiments using an equal amount of bits
of the keystream to the number of unknowns. We show the average computa-
tional times and the average memory consumption for the F4 algorithm with
the standard deviation 5 in Table 4.1.

We can immediately see the exponential growth in computational time
when the number of unknowns increases. There is a notable difference between
the two approaches. The time for the F4 algorithm increases around 6.5 times
when moving from 17 to 18 unknowns, while the time for the SAT solver
increases 3.7 times. Similarly, when moving from 19 to 20 variables, the time
for the F4 algorithm increases around 7.6 times, while the time for the SAT
solver increases around 2.7 times. The more significant jumps between times
in the F4 algorithm may be related to higher memory consumption. Note that

5average ± standard deviation
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Table 4.2: Unique monomials in the equations

monomial degrees

Uca unique
E0 type Kbb 1 2 3 4 monomials

E0∗(3, 6, c, 14) 14 14 90.1 347.7 842.0 88.08%
E0(3, 6, c, 30) 15 15 104.2 1000.0 426.9 79.75%
E0(3, 6, c, 60) 16 16 117.9 1094.0 507.9 69.03%
E0(3, 6, 12, 60) 17 17 134.0 1509.0 622.8 71.08%
E0∗(6, c, 14, 30) 18 18 152.2 2439.0 778.3 83.73%
E0(6, c, 14, 60) 19 19 170.1 2669.0 911.1 74.88%
E0(6, c, 30, 60) 20 20 189.0 3333.0 1069.6 74.46%
E0(6, 14, 30, 60) 21 21 209.4 1255.3 4364.0 77.53%
E0∗(c, 14, 30, 60) 22 22 230.5 1468.0 5636.0 80.78%
E0(6, 14, 30, 110) 23 23 251.7 1639.8 5972.0 72.35%
E0(c, 14, 30, 110) 24 24 275.6 1890.9 7473.0 74.63%
E0(c, 14, 30, 204) 25 25 289.7 2068.0 9424.0 77.30%
...
E0 128 128 8128.0 319807.0 8005426.0 75.64%

a Keystream bits
b Unknowns count

the memory used by the SAT solver does not surpass 1 GiB, which is why it
is omitted from the statistics.

We examined the percentage of all monomials used within the equations
using the same equations as above (as in Table 4.1). Within the few iterations,
E0 and its small-scale variants can use most possible combinations of mono-
mials. We show this in Table 4.2. We omitted the standard deviation from
the table as it was close to zero for most values. The average is calculated
from 15 random keystreams except for the full-scale version, where two were
used. The percentage of all unique monomials used for one random keystream
is calculated as

#unique monomials∑4
i=1

(Uc
i

) · 100, (4.1)

where Uc is the number of unknowns. Table 4.1 calculates the percentage
of unique monomials as the average across all the random keystreams. Using
Armknecht's results [20], we can improve the estimate of all possible monomial
combinations to 223.07, which gives us 94.63% instead of 75.64%. We could
improve the estimates for the other small-scale variants as well.
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Table 4.3: Determing the minimum number of bits to find one solution

F4 SAT

Keystream G. Basis
E0 type Uca bits Time (s) Mem (GiB) Time (s)

E0∗(3, 6, c, 14) 14 50.5 ± 6.9 1.4 ± 0.3 0.1 ± 0.0 2.6 ± 0.4
E0(3, 6, c, 30) 15 58.7 ± 5.2 3.0 ± 0.3 0.2 ± 0.0 5.7 ± 0.4
E0(3, 6, c, 60) 16 60.5 ± 7.7 7.2 ± 1.9 0.5 ± 0.1 10.1 ± 0.8
E0(3, 6, 12, 60) 17 60.9 ± 4.7 27.5 ± 8.5 2.5 ± 0.9 27.5 ± 1.4
E0∗(6, c, 14, 30) 18 65.2 ± 10.1 137.2 ± 45.1 6.8 ± 2.3 79.9 ± 14.0
E0(6, c, 14, 60) 19 67.1 ± 5.5 402.4 ± 35.5 15.1 ± 4.6 215.1 ± 31.1
E0(6, c, 30, 60) 20 73.5 ± 9.4 1208.2 ± 108.1 33.9 ± 7.8 487.2 ± 97.1

a Unknowns count

At the beginning of this section, we discussed what amount of keystream
bits can be generated by each version of the small-scale variant of the cipher.
Let us now assume that the number of keystream bits generated by the variants
would scale with the number of all possible configurations for the initial states
of the LFSRs (after the reinitialization phase). The maximum number of bits
generated per frame for the full-scale version of E0 is 2745, while all possible
initial values are 2128. In logarithmic scale we have log2

2745
2128 = −116.57. If we

wanted this to be the same for, e.g., the 14 unknown versions of E0, we would
need to set the number of bits to be equal to 2745

2114 . Meaning that the algorithm
should not generate even one keystream bit6. A very rough estimate on the
minimum number of bits required to solve the system is also given by Ars [31]:
2n − 2.

If the keystream bits were generated using a combination of the LFSRs
only (without the FSM), we would only require n keystream bits, where n is
the number of unknowns. This applies if we know the primitive polynomials
used within the LFSRs. Without their knowledge, the number of required
keystream bits to find the initial configuration is 2n and can be found using
the Berlekamp–Massey algorithm [14]. Thus, in the next experiment, we first
search for the minimum number of bits that give us exactly one solution. In
Table 4.3, we display the number of minimum keystream bits to find a unique
system solution. On average, the number of required keystream bits does
not surpass 4n, where n is the number of unknowns. However, the sample
is too small to be statistically significant, and we cannot determine whether
the relationship would hold for more unknowns. On the other hand, we can
see the improvement in computational times for both methods, mainly for the
F4 algorithm. We visualized the minimum number of bits according to the
number of unknowns in Figure 4.1. The figure indicates the linear growth

6The first small-scale version of E0 would have to have 117 unknowns to be allowed to
generate at least one bit.
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of the minimum number of keystream bits necessary to solve the system. In
total, we have five outliers for 105 runs in this case. It would be interesting
to see if this trend holds for even more data.

Figure 4.1: Minimum number of bits required to find one solution

We focused on the small-scale version of E0 with 20 unknowns – E0(6, C,
30, 60), and we run the experiments with a different number of keystream
bits (increasing in multiples of 10). The results are shown in Table 4.4. The
computational time results for the F4 algorithm do not change significantly
once supplied with more than 60 bits. Notice that memory usage does not
necessarily decrease with more keystream bits, which is probably caused by the
new equations leading to different and more expensive computational steps.
The computational times for the SAT solver increase after adding more than
40 keystream bits. CryptoMiniSat does not, by default, do any preprocessing
of the equations7. Thus, in the case of the SAT solver, the increased times are
reasonable, as the SAT solver needs to ensure that all clauses are satisfied. In
Table 4.5, we examine the change of degrees of polynomials in the resulting
Gröbner bases. We display the percentage of the degrees across all of the
calculated Gröbner bases for the given number of keystream bits. The last
column shows the average number of found solutions (affine varieties). Note

7Before compiling, one can turn on the Gauss-Jordan Elimination [32]. We did not test
the performance of this option.
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Table 4.4: Changing the number of keystream bits for E0(6, C, 30, 60)

F4 SAT

G. Basis Variety
E0 type Kba Time (s) Time (s) Mem (GiB) Time (s)

E0(6, c, 30, 60) 20 26400.3 ± 324.9 2077.6 ± 756.1 224.3 ± 2.5 624.7 ± 28.3
E0(6, c, 30, 60) 30 13503.2 ± 460.1 406.3 ± 1337.9 138.3 ± 0.1 522.2 ± 22.2
E0(6, c, 30, 60) 40 6757.9 ± 206.5 2.8 ± 3.2 87.2 ± 0.0 508.5 ± 18.1
E0(6, c, 30, 60) 50 6499.1 ± 205.1 0.1 ± 0.1 100.0 ± 0.0 549.9 ± 24.4
E0(6, c, 30, 60) 60 1376.7 ± 7.8 0.0 ± 0.0 43.1 ± 0.0 627.3 ± 59.4
E0(6, c, 30, 60) 70 1285.2 ± 16.1 0.0 ± 0.0 38.8 ± 0.0 566.1 ± 32.0
E0(6, c, 30, 60) 80 1041.6 ± 6.6 0.0 ± 0.0 26.8 ± 0.0 623.7 ± 55.2
E0(6, c, 30, 60) 90 1225.7 ± 33.5 0.0 ± 0.0 37.4 ± 0.0 697.5 ± 79.3
E0(6, c, 30, 60) 100 1078.9 ± 36.2 0.0 ± 0.0 15.4 ± 0.0 729.7 ± 90.9

a Keystream bits

Table 4.5: Degrees of polynomials in the resulting Gröbner bases for E0(6, c,
30, 60)

Kba deg 1 deg 2 deg 3 deg 4 deg 5 deg 6 solutions

20 - - - 0.13% 31.79% 68.08% 16374.2 ± 505.4
30 - - - 99.94% 0.06% - 2200.1 ± 473.0
40 - - 100.00% - - - 256.9 ± 21.1
50 0.04% 99.63% 0.33% - - - 30.5 ± 5.2
60 70.97% 29.03% - - - - 4.9 ± 1.5
70 99.66% 0.34% - - - - 1.7 ± 0.6
80 100.00% - - - - - 1.1 ± 0.3
90 100.00% - - - - - 1.1 ± 0.2
100 100.00% - - - - - 1.1 ± 0.2

a Keystream bits

that for 20 unknowns, there are 220 possible combinations. When ten more
keystreams are added, the degree of the polynomials in the resulting Gröbner
basis is, in most cases, reduced by one (except when moving from 50 to 60
keystream bits). After using more than 70 keystream bits, the degree of the
found Gröbner basis is 1, which means that the number of found solutions
must be close to 1.

For the next experiment, we will assume that the maximum number of
keystream bits generated by the small-scale variants of E0 is linearly related to
the number of unknowns. We allow the variants to generate at most bUc· 2745

128 c
(Uc is the number of unknowns) keystream bits, which are then used in the
equations. We show the results in Table 4.6. The F4 algorithm efficiently
utilized the new equations and significantly reduced the computational times.
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Table 4.6: Using as many keystream bits as possible

F4 SAT

G. Basis
E0 type Uca Kbb Time (s) Mem (MiB) Time (s)

E0∗(3, 6, c, 14) 14 300 0.1 ± 0.0 32.1 ± 0.0 1.7 ± 0.2
E0(3, 6, c, 30) 15 321 0.3 ± 0.0 64.1 ± 0.0 3.7 ± 1.2
E0(3, 6, c, 60) 16 343 1.6 ± 0.0 64.1 ± 0.0 17.5 ± 1.6
E0(3, 6, 12, 60) 17 364 3.0 ± 0.0 192.2 ± 0.0 58.3 ± 4.4
E0∗(6, c, 14, 30) 18 386 10.3 ± 0.1 1257.3 ± 0.0 140.9 ± 14.3
E0(6, c, 14, 60) 19 407 20.0 ± 0.2 2091.3 ± 0.0 453.1 ± 30.8
E0(6, c, 30, 60) 20 428 36.7 ± 0.3 4302.8 ± 0.0 653.8 ± 71.8
E0(6, 14, 30, 60) 21 450 79.8 ± 0.3 7539.4 ± 0.0 1334.8 ± 110.7
E0∗(c, 14, 30, 60) 22 471 178.5 ± 1.2 9462.8 ± 0.0 3678.7 ± 281.5
E0(6, 14, 30, 110) 23 493 1320.6 ± 73.2 12012.4 ± 0.0 7257.0 ± 1022.4

a Unknowns count
b Keystream bits

For E0(6, C, 30, 60) with 20 unknowns, the computation required around 7
hours on average when only 20 keystream bits were used (see Table 4.1). With
428 keystream bits, the F4 algorithm requires around 36 seconds on average
(approximately 733x faster with only 21x more bits). We added three more
small-scale versions of E0 to see whether using more keystream bits would
resolve in lower computational times for different small-scale E0 variants with
more unknowns. Although the versions with 21 and 22 unknowns benefit from
the additional keystream bits, the version with 23 unknowns significantly in-
creases computational time. The SAT solver's time increased compared to the
results in Table 4.1, which may be associated with the missing preprocessing
we discussed earlier in this chapter.

In Figure 4.2, we compare the computational times of the F4 algorithm
and CryptoMiniSat's SAT solver based on the number of keystream bits. As
we have already indicated, the F4 algorithm can use more keystream bits
(hence equations) to speed up the computation. On the other hand, the SAT
solver does not seem to benefit from the larger portion of the data without
any preprocessing.

4.2 Using Local Sensitivity Hashing For Reduction
Following the works [21, 22], we employed the Local Sensitivity Hashing
(LSH) method to reduce the number of monomials in polynomials (see Sec-
tion 2.3). We will use the equations from the experiments in Table 4.6.

As described in Section 2.3, our version allows us to pick equations that
contain fewer monomials than a given threshold t multiplied by the mean
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(a) Gröbner basis – F4 algorithm (b) SAT solver

Figure 4.2: Comparison of computational times required based on the number
of keystream bits (Kb)

Table 4.7: Using LSH with t = 0.5 on equations from Table 4.6

F4 SAT

G. Basis
E0 type Uca Time (s) Mem (GiB) Time (s)

E0∗(3, 6, c, 14) 14 4.4 ± 0.5 0.3 ± 0.0 1.2 ± 0.1
E0(3, 6, c, 30) 15 1.0 ± 0.2 0.1 ± 0.0 1.2 ± 0.3
E0(3, 6, c, 60) 16 25.8 ± 6.4 1.4 ± 0.4 5.5 ± 0.5
E0(3, 6, 12, 60) 17 98.5 ± 18.4 3.9 ± 1.4 18.6 ± 1.9
E0∗(6, c, 14, 30) 18 254.0 ± 50.6 8.9 ± 1.5 32.7 ± 2.1
E0(6, c, 14, 60) 19 964.0 ± 647.5 22.7 ± 12.9 85.3 ± 6.9
E0(6, c, 30, 60) 20 1355.5 ± 173.6 26.5 ± 9.5 544.5 ± 38.9

a Unknowns count

number of monomials in polynomials for a given keystream. For this experi-
ment, we are using 20 buckets and 100 random permutations. Using LSH, we
aim to decrease the computational times for the SAT solver. We tested three
different thresholds (t ∈ {0.5, 0.55, 0.6}), out of which the threshold t = 0.5
gave us the best results for the SAT solver regarding the computational time.
The results for t = 0.5 are displayed in Table 4.7, and the results for t = 0.55
and t = 0.6 are displayed in Table C.3 and Table C.5 in Appendix. The
computational times for the SAT solver decreased compared to the results in
Table 4.6, although the small-scale variant with 20 unknowns seems to require
the use of fewer equations. Table 4.8 shows how much the polynomials were
reduced on average. In most cases, the condition with the threshold t = 0.5
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Table 4.8: Polynomials and monomials after LSH with t = 0.5 on equations
from Table 4.6

� #polynomials � #monomials in polynomials

E0 type Before LSH After LSH Before LSH After LSH

E0∗(3, 6, c, 14) 300 67.8 ± 35.2 375.7 ± 67.9 126.4 ± 65.5
E0(3, 6, c, 30) 321 248.4 ± 31.0 462.7 ± 70.5 175.7 ± 91.6
E0(3, 6, c, 60) 343 267.3 ± 14.2 559.9 ± 48.2 216.0 ± 96.7
E0(3, 6, 12, 60) 364 328.7 ± 19.5 683.7 ± 55.6 277.3 ± 113.5
E0∗(6, c, 14, 30) 386 402.3 ± 9.0 828.0 ± 82.6 361.3 ± 143.1
E0(6, c, 14, 60) 407 375.3 ± 5.0 961.2 ± 65.8 412.5 ± 148.7
E0(6, c, 30, 60) 428 668.3 ± 19.8 1181.9 ± 242.2 555.9 ± 247.0

� average

generated fewer equations than the initial number, except for E0(6, c, 14, 30)
and E0(6, c, 30, 60). For the latter, the average number of equations increased
by approximately 55%, which may explain the increase in computational time
for the SAT solver. It may be useful to limit the number of equations as well.

4.3 Searching For Additional Equations With
Certain Probability

In Section 2.2.5, we described how we could derive additional equations. In
this section, we will verify whether it is possible to derive any equations using
the keystream bits. In the Jupyter Notebook Possible States, we used
Python to search for valid configurations recursively, and we built matrices B
and C specified in Section 2.2.5 using numpy (mainly np.prod and np.sum).
Note that this task is well-parallelizable.

As stated in Section 2.2.5, we could not find any equations for ℓ = 3, k = 4
and l = 2. The Python implementation is cumbersome, even though we try
to use the most effective methods available. The upcoming research aims to
reimplement this part using C++, allowing us to work with the arrays more
efficiently. Although we were unable to do further calculations, we calculated
the number of unique states for 4, 5, 6, 7 and 8 consecutive keystream bits8 in
Table 4.9. The number of expected states is 24c, where c is the number of
consecutive keystream bits. Adding more consecutive keystream bits shows
that the number of unique states does not grow as quickly as expected. After

8The number of unique states for 1, 2, and 3 consecutive keystream bits equals the
number of expected states.
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Table 4.9: Unique number of states for a given number of consecutive
keystream bits

Consecutive bits 4 5 6 7 8

Expected states 65 536 1 048 576 16 777 216 268 435 456 4 294 967 296
Approximate growth 65 536 524 288 4 194 304 33 554 432 268 435 456
Unique states 53 248 487 424 4 083 712 33 230 848 267 440 128

four successive keystream bits, the number of unique states approximately
grows with 21623(c−4) (Approximate growth in Table 4.9).

The alternative to searching for the equations is to search for equations
that are true with a certain probability. That is, for ℓ + 1 consecutive bits, we
search for equations that would hold with probability p, such that pc−ℓ > P ,
where c is the number of keystream bits, and P is the probability that all the
keystream bits must hold. For example, if P = 0.99, c = 14 and ℓ = 3, we
would require p = c−ℓ

√
P = 11√0.99 ≈ 0.999. Using ℓ = 3, k = 4 and l = 2,

we found equations with probability p = 0.96, which does not satisfy our
requirements that p11 > 0.99 (p11 ≈ 0.63). For four consecutive keystream bits
(zt, 0, zt+2, zt+3), we found 49 monomials of degree 4 and 436 polynomials of
degree 4 with two terms. For (zt, 1, zt+2, zt+3) there exists only one monomial
of degree 4.
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Chapter 5
Related Works

Over the course of the existence of the E0 cipher, many analyses were con-
ducted together with various attack techniques that generally show that E0 is
not a safe cipher. In this chapter we briefly review some of the works regarding
E0, with the focus on algebraic attacks.

One of the main personalities involved in E0 research was Frederik Armknecht.
Armknecht used the idea of algebraic attacks combined with linearization. In
his first work [33], Armknecht removed the memory bits out of the equations,
and made an estimate that the total number of distinct monomials would
be approximately 224.0569. The linearization attack would require an equal
amount of bits. Armknecht improved the estimation on the number of bits to
223.07 in his follow-up research [20], while using an improved version of Cour-
tois [34] algebraic attacks, called fast algebraic attacks. Armknecht showed,
that no equations of degree lower than four exist for four and five consecutive
keystream bits (see Section 2.2.4).

Armknecht [31] also investigated the use of Gröbner bases on LFSRs with
simple combiners. He compared the computation of Gröbner basis (using the
F5 algorithm [35]) with correlation attacks and searched for the minimum
number of outputs require to find a unique solution of the system.

A different way to attack E0 is through using Ordered Binary Decision
Diagram (OBDD) [36], using a short keystream attack (in case of E0, only
128 are sufficient). Using Binary Decision Diagrams (BDDs), we can repre-
sent a boolean function as acyclic graph, where the leaf vertices are considered
sinks, and are unique for each assignment of the boolean function. The es-
timated time complexity is 287 and the authors claim the task is massively
parallelizable with very low memory requirements (223).

The most recent research on E0 was done by Scala [37], using guess-and-
determine technique. Scala et al. used 14 special variables, which, after eval-

9We discussed this in Section 4.1, the maximum number of monomials of degree 4,
without considering the properties of E0, is

∑4
i=1

(128
i

)
≈ 223.393.
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uation, led to linear relations among other variables. Then, with 83 more bits
guessed, they performed an algebraic cryptanalysis, employing both Gröbner
basis and SAT solvers. Scala et al. estimated the complexity of the attack to
279 seconds.

In addition to the attacks already mentioned, Lu et al. [38] performed a
correlation analysis of analysis, which assumes that E0 would be used outside
of the Bluetooth environment (without the limitation of 2745 keystream bits
per frame). The attack uses some weak of the weak statistical properties of the
FSM used in E0, resulting in attack of complexity 239 with 239 bits required.
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Conclusion

The theoretical part of this work outlined the most important mathematical
concepts necessary to understand the underlying theory used in the experi-
mental part. Furthermore, we analyzed the inner workings of the E0 cipher,
mathematically formulated the initialization, and designed small-scale cipher
variants using linear feedback shift registers with feedback primitive polyno-
mials of lower degrees. To be more specific, the small-scale variants of the
cipher were designed using four LFSRs of lower lengths.

We suggested an exhaustive search of new equations dependent on specific
keystream bits. This part deserves more attention in the future, as the current
environment does not allow us to scale appropriately for more bits. In the
experimental part, we suggested using additional equations that hold with a
certain probability. This leaves us with an open problem of whether more
probable equations exist and how to recover if the found solution is wrong.

Using our described implementation, we run several experiments, test-
ing how different amounts of keystream bits (hence equations) influence the
solvers (F4 algorithm and SAT solver). We have found that using additional
keystream bits improves the performance of the F4 algorithm and that a lin-
ear relation may exist between the number of required keystream bits and a
unique solution. For the 20-bit version of E0, using 428 equations resulted in
an improvement of the computational time of the F4 algorithm from 26 400.3
seconds to 36.7 seconds. The SAT solver did not benefit from the more signif-
icant number of equations; for this reason, we have used a reduction method
(local sensitivity hashing) and improved the run times of the SAT solver. For
the 19-bit E0 version, we reduced the computational time from 453.1 sec-
onds to 85.3 seconds. However, a comparison needs to be made between this
approach and Gauss elimination.

Lastly, the formulation of the cipher we used has not been previously used
for the Guess-and-determine approach. To use the approach, we will need to
identify such variables whose guessing will lead to an overall improvement of
the computation. Lastly, since the implementation is mainly done in Sage,
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we will need to re-implement some of the parts for better performance since
Sage was not designed for tasks of this scale.
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Appendix A
Acronyms

AES Advanced Encryption Standard

ANF Algebraic Normal Form

BDD Binary Decision Diagram

BR/EDR Bluetooth Basis Rate/Enhanced Data Rate

CLK Central Device Clock

CNF Conjunctive Normal Form

E0 Encryption Algorithm From The Bluetooth Standard

E3 Hash Function Used Together With The E0 Algorithm

FSM Finite State Machine

GB Gröbner Basis (or Bases)

GF Galois Field

HW Hamming Weight

LFSR Linear Feedback Shift Register

LSH Local Sensitivity Hashing

OBDD Ordered Binary Decision Diagram
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Appendix B
Contents of enclosed SD Card

README.md ...................................... Description of the folder
src

README.md ..................................Description of the folder
e0 ....................................c implementation of the cipher
generator ......................Tools used for the algebraic analysis
text ......................................Source code for the thesis

text
MT_Dolejs_Jan.pdf ...................................Master thesis
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Appendix C
Additional Content

C.1 Polynomials Used For Transformation of Kenc
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C.2. Finding Algebraic Representation Of qt+1 and pt+1 Over F2

C.2 Finding Algebraic Representation Of qt+1 and
pt+1 Over F2

In this section, we will derive an algebraic representation for qt+1 and pt+1
over F2. In Section 2.2.1 all of the bits x

(4)
t , x

(3)
t , x

(2)
t , x

(1)
t , qt, pt, qt−1 and

pt−1 are combined to get qt+1 and pt+1. We can evaluate the output bits for all
possible combinations; we show this in Table C.2. Using the truth table, we
can search for the ANF using, for example, sage. We will derive the following
equations:

qt+1 = x
(1)
t x

(2)
t x

(3)
t x

(4)
t ⊕

(x(1)
t x

(2)
t x

(3)
t ⊕ x

(1)
t x

(2)
t x

(4)
t ⊕ x

(1)
t x

(3)
t x

(4)
t ⊕

x
(2)
t x

(3)
t x

(4)
t )pt ⊕ (x(1)

t x
(2)
t ⊕ x

(1)
t x

(3)
t ⊕ x

(1)
t x

(4)
t ⊕

x
(2)
t x

(3)
t ⊕ x

(2)
t x

(4)
t ⊕ x

(3)
t x

(4)
t )qt⊕

(x(1)
t ⊕ x

(2)
t ⊕ x

(3)
t ⊕ x

(4)
t )ptqt ⊕ qt ⊕ pt−1

= π4
t ⊕ π3

t pt ⊕ π2
t qt ⊕ π1

t ptqt ⊕ qt ⊕ pt−1

(C.1)

pt+1 = x
(1)
t x

(2)
t ⊕ x

(1)
t x

(3)
t ⊕ x

(1)
t x

(4)
t ⊕ x

(2)
t x

(3)
t ⊕ x

(2)
t x

(4)
t ⊕ x

(3)
t x

(4)
t ⊕

(x(1)
t ⊕ x

(2)
t ⊕ x

(3)
t ⊕ x

(4)
t )pt ⊕ qt ⊕ qt−1 ⊕ pt ⊕ pt−1

= π2
t ⊕ π1

t pt ⊕ qt ⊕ qt−1 ⊕ pt−1 ⊕ pt

(C.2)

We used the definition of a symmetric polynomial (see Definition 23) to shorten
the notation.

Table C.2: Calculating Values Of pt+1 and ct+1

x
(4)
t x

(3)
t x

(2)
t x

(1)
t qt pt qt−1pt−1qt+1 pt+1 x

(4)
t x

(3)
t x

(2)
t x

(1)
t qt pt qt−1pt−1qt+1 pt+1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0
0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1
0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0

Continued on next page
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Table C.2 – continued from previous page

x
(4)
t x

(3)
t x

(2)
t x

(1)
t qt pt qt−1pt−1qt+1 pt+1 x

(4)
t x

(3)
t x

(2)
t x

(1)
t qt pt qt−1pt−1qt+1 pt+1

0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1
0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1
0 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0
0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 1
0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 0
0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 1
0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1
0 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1
0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 1 1 1 0
0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1
0 0 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1
0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0
0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1
0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0
0 0 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 0
0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1
0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 1 1
0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 0 1 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0
0 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1
0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0
0 0 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0 1
0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 0
0 0 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0
0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1
0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1
0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0

Continued on next page
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Table C.2 – continued from previous page

x
(4)
t x

(3)
t x

(2)
t x

(1)
t qt pt qt−1pt−1qt+1 pt+1 x

(4)
t x

(3)
t x

(2)
t x

(1)
t qt pt qt−1pt−1qt+1 pt+1

0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0
0 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1
0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1
0 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0
0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 0
0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 0 1
0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1
0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1
0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0
0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1
0 0 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 0 0 1
0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0
0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0
0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1
0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1
0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1
0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0
0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 1
0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1
0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0
0 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1
0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0
0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0
0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
0 1 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1
0 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0
0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0
0 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1
0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1
0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 0
0 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1 0 1
0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0

Continued on next page
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Table C.2 – continued from previous page

x
(4)
t x

(3)
t x

(2)
t x

(1)
t qt pt qt−1pt−1qt+1 pt+1 x

(4)
t x

(3)
t x

(2)
t x

(1)
t qt pt qt−1pt−1qt+1 pt+1

0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1
0 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1
0 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0
0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1
0 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 0 1
0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0
0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0
0 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0
0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1
0 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1
0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 0 0
0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0
0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1
0 1 1 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0
0 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1
0 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 1
0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0
0 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 0
0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1
0 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 1
0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0
0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0
0 1 1 1 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1
0 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1
0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0
0 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1
0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0
0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 0
0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1
0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1
0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0
0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0
0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1
0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1
0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1

Continued on next page
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Table C.2 – continued from previous page

x
(4)
t x

(3)
t x

(2)
t x

(1)
t qt pt qt−1pt−1qt+1 pt+1 x

(4)
t x

(3)
t x

(2)
t x

(1)
t qt pt qt−1pt−1qt+1 pt+1

0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

C.3 Deriving Equations Without Memory Bits

Since the recursive equations may produce too complex, it would be appro-
priate to derive a different form of the equations. Following Armknecht's
procedure [20], we can remove the memory bits since the output equation for
keystream bits is linear. We include the steps to derive an equation without
memory bits. We begin by defining two additional variables, at and bt:

at = π4
t ⊕ π3

t pt ⊕ pt−1,

bt = π2
t ⊕ π1

t pt ⊕ 1.
(C.3)

Using both variables at and bt, we can now rewrite Equation C.1 and Equa-
tion C.2.

qt+1 = at ⊕ btqt

pt+1 = bt ⊕ 1 ⊕ pt−1 ⊕ pt ⊕ qt ⊕ qt−1
(C.4)

We can now multiply qt+1 by bt and get a new equation:

0 = bt(at ⊕ qt ⊕ qt+1). (C.5)

Furthermore, we can rewrite pt+1 from Equation C.4:

qt ⊕ qt−1 = bt ⊕ 1 ⊕ pt−1 ⊕ pt ⊕ pt+1. (C.6)

We can now use the last Equation C.6 where we substitute t with t + 1 and
insert it into Equation C.5, thus, getting:

0 = bt(at ⊕ bt+1 ⊕ 1 ⊕ pt ⊕ pt+1 ⊕ pt+2). (C.7)

Using the fact, that the memory bit pt is combined linearly with π1
t (zt =

π1
t + pt), we can substitute all memory bits in Equation C.7, deriving the

59



C. Additional Content

Table C.3: Using LSH with t = 0.55 on equations from Table 4.6

F4 SAT

G. Basis
E0 type Uca Time (s) Mem (GiB) Time (s)

E0∗(3, 6, c, 14) 14 2.3 ± 0.6 0.2 ± 0.0 1.1 ± 0.1
E0(3, 6, c, 30) 15 1.0 ± 0.2 0.1 ± 0.0 1.7 ± 0.4
E0(3, 6, c, 60) 16 7.5 ± 1.0 0.6 ± 0.1 7.1 ± 0.8
E0(3, 6, 12, 60) 17 26.3 ± 0.5 2.8 ± 0.1 25.5 ± 3.5
E0∗(6, c, 14, 30) 18 152.9 ± 44.8 5.3 ± 0.3 41.4 ± 3.9
E0(6, c, 14, 60) 19 423.5 ± 57.0 14.8 ± 3.1 105.6 ± 7.2
E0(6, c, 30, 60) 20 1245.5 ± 68.9 35.6 ± 3.6 787.1 ± 60.0
a Keystream bits

following equation for four consecutive keystream bits:

0 = zt+3(zt+1π1
t+1 ⊕ π2

t+1 ⊕ π1
t+1 ⊕ 1) ⊕

zt+2(zt+1π1
t+2π1

t+1 ⊕ zt+1π1
t+1 ⊕ π2

t+1π1
t+2⊕

π2
t+1 ⊕ π1

t+2π1
t+1 ⊕ π1

t+2 ⊕ π1
t+1 ⊕ 1) ⊕

zt+1(ztπ
1
t+1 ⊕ π3

t+1 ⊕ π2
t+2π1

t+1 ⊕ π2
t+1⊕

π1
t+3π1

t+1 ⊕ π1
t+1π1

t ⊕ π1
t+1 ⊕ 1) ⊕

zt(π2
t+1 ⊕ π1

t+1 ⊕ 1) ⊕
π4

t+1 ⊕ π2
t+2(π2

t+1 ⊕ π1
t+1 ⊕ 1) ⊕

π2
t+1(π1

t+3 ⊕ π1
t ) ⊕

π1
t+3(π1

t+1 ⊕ 1) ⊕ π1
t+1π1

t ⊕ π1
t

(C.8)

Note that the final equation is incorrect in both Armknecht's papers [20, 39].
We verified the correctness with sage in the Jupyter Notebook Armknecht's
Formulation. Armknecht [20] further analyzed Equation 2.27 and found out
that the number of all possible monomials is approximately equal to 223.07,
which is the number of keystream bits needed in case of linearization. We
refer the reader to [20, 39] for more details.

C.4 LSH - Additional Results
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C.4. LSH - Additional Results

Table C.4: Polynomials and monomials after LSH with t = 0.55 on equations
from Table 4.6

� Number of polynomials � #monomials in polynomials

E0 type Before LSH After LSH Before LSH After LSH

E0∗(3, 6, c, 14) 300 85.4 ± 36.1 375.7 ± 83.4 126.4 ± 77.9
E0(3, 6, c, 30) 321 297.9 ± 41.4 462.7 ± 94.7 175.7 ± 104.0
E0(3, 6, c, 60) 343 308.1 ± 15.4 559.9 ± 75.8 216.0 ± 120.1
E0(3, 6, 12, 60) 364 373.1 ± 19.0 683.7 ± 97.3 277.3 ± 148.0
E0∗(6, c, 14, 30) 386 418.9 ± 9.0 828.0 ± 114.1 361.3 ± 168.1
E0(6, c, 14, 60) 407 387.7 ± 5.6 961.2 ± 103.1 412.5 ± 186.4
E0(6, c, 30, 60) 428 817.3 ± 29.6 1181.9 ± 325.9 555.9 ± 266.3

Table C.5: Using LSH with t = 0.6 on equations from Table 4.6

F4 SAT

G. Basis
E0 type Uca Time (s) Mem (GiB) Time (s)

E0∗(3, 6, c, 14) 14 1.6 ± 0.3 0.1 ± 0.0 1.1 ± 0.1
E0(3, 6, c, 30) 15 1.0 ± 0.2 0.1 ± 0.0 2.4 ± 0.5
E0(3, 6, c, 60) 16 6.1 ± 0.7 0.4 ± 0.1 9.3 ± 0.8
E0(3, 6, 12, 60) 17 19.0 ± 4.9 1.0 ± 0.3 42.3 ± 5.3
E0∗(6, c, 14, 30) 18 64.6 ± 1.1 6.9 ± 0.3 60.9 ± 6.1
E0(6, c, 14, 60) 19 444.1 ± 28.9 10.4 ± 4.3 172.0 ± 14.5
E0(6, c, 30, 60) 20 1165.1 ± 55.6 16.8 ± 0.5 1230.7 ± 82.4

a Unknowns count

Table C.6: Polynomials and monomials after LSH with t = 0.60 on equations
from Table 4.6

� Number of polynomials � #monomials in polynomials

E0 type Before LSH After LSH Before LSH After LSH

E0∗(3, 6, c, 14) 300 94.2 ± 34.6 375.7 ± 118.5 126.4 ± 84.3
E0(3, 6, c, 30) 321 337.1 ± 48.1 462.7 ± 123.7 175.7 ± 113.4
E0(3, 6, c, 60) 343 357.1 ± 14.1 559.9 ± 113.2 216.0 ± 141.3
E0(3, 6, 12, 60) 364 463.1 ± 27.8 683.7 ± 149.0 277.3 ± 175.5
E0∗(6, c, 14, 30) 386 503.1 ± 15.7 828.0 ± 161.6 361.3 ± 199.9
E0(6, c, 14, 60) 407 454.4 ± 8.1 961.2 ± 159.8 412.5 ± 228.7
E0(6, c, 30, 60) 428 999.8 ± 34.0 1181.9 ± 383.4 555.9 ± 279.8
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