
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Binary Data Balancing Methods

Bc. Michaela Kučerová

Ing. Magda Friedjungová, Ph.D.

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2023/2024

Instructions

Imbalanced data typically refers to a problem with classification tasks where the classes

are not represented equally. One of the possible ways how to solve this problem is to use

data-level methods to generate artificial training data to balance the dataset. The aim of

this thesis is to experimentally compare several balancing methods.

1. Survey common (such as SMOTE) and state-of-the-art oversampling algorithms (for

example based on generative adversarial networks (GAN)) for tabular data balancing.

Focus on binary classification.

2. Use an existing implementation or implement at least five of the reviewed

approaches. Consider usage of SMOTE, VAE and GAN-based methods.

3. Experimentally compare their performance (classification accuracy and F1 score) on

publicly available datasets frequently used in papers reviewed in Step 1. Comparison of

data balancing methods will be done using a classification model learned on both,

original (unbalanced) and synthetically balanced data.

4. Design and implement your own method to generate synthetical tabular data.

Experimentally compare its performance as described in Step 3.

5. Discuss the results obtained and the benefits and limitations of the algorithms used.

Electronically approved by Ing. Karel Klouda, Ph.D. on 15 November 2022 in Prague.

Master’s thesis

BINARY DATA
BALANCING METHODS

Bc. Michaela Kučerová

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: Ing. Magda Friedjungová, Ph.D.
January 11, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Bc. Michaela Kučerová. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Kučerová Michaela. Binary Data Balancing Methods. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of abbreviations x

Introduction 1

1 Background 3
1.1 Binary Classification . 3
1.2 Tabular Dataset . 3
1.3 Imbalanced Data . 4

1.3.1 Approaches . 5

2 Existing Methods 7
2.1 Traditional Oversampling Algorithms . 7

2.1.1 Synthetic Data Generation . 7
2.1.2 Borderline Oversampling Methods . 10
2.1.3 Cluster-based Oversampling Methods . 12
2.1.4 Boosting Oversampling Methods . 13
2.1.5 Relabeling Methods . 15

2.2 Generative-based Algorithms . 15
2.2.1 GAN-based . 16
2.2.2 AE-based . 21
2.2.3 GAN+AE-based . 22
2.2.4 Score-based . 23

2.3 Combined Algorithms . 24
2.3.1 TAEI . 24
2.3.2 SMOTified-GAN . 25

2.4 Summary . 25

3 Selected Methods 27
3.1 SMOTE . 27
3.2 Polynom-Fit-SMOTE . 27
3.3 LoRAS . 28
3.4 Borderline-SMOTE . 28
3.5 k-means-SMOTE . 29
3.6 CTGAN . 30
3.7 CTAB-GAN . 30
3.8 TVAE . 31
3.9 TAEI . 32
3.10 SMOTified-GAN . 32

iii

iv Contents

3.11 Summary . 33

4 Implementation 35
4.1 Datasets . 35

4.1.1 Preprocessing . 35
4.2 Evaluation Metrics . 36
4.3 Classifiers . 38
4.4 Experiment Setup . 39

5 Novel Method 41
5.1 Inspiration . 41
5.2 Preprocessing . 41
5.3 Architecture . 42
5.4 Tuning . 43
5.5 Training . 43
5.6 Sampling . 46

6 Results 47
6.1 Performance . 47

6.1.1 Results Without Tuned Classifiers Hyperparameters 47
6.1.2 Results With Tuned Classifiers Hyperparameters 52

6.2 Change of Interpolation Method . 55
6.3 Time . 59
6.4 Discussion . 59

7 Conclusion 61
7.1 Contribution . 61
7.2 Future Work . 62

A Figures 69

B Tables 73

C Hyperparameters of Classifiers 91

List of Figures

1.1 IDS Concepts . 5

2.1 Polynom-Fit-SMOTE Topologies . 9
2.2 LoRAS . 10
2.3 Cluster-SMOTE . 13
2.4 k-means-SMOTE . 14
2.5 SPY . 16
2.6 TGAN . 18
2.7 CTGAN . 18
2.8 cWGAN . 20
2.9 CTAB-GAN . 20
2.10 MedGAN . 23
2.11 SOS . 24
2.12 TAEI . 25
2.13 SMOTified-GAN . 25
2.14 Timeline of Presented Methods Origins . 26

4.1 Confusion Matrix . 37

5.1 LIT-GAN: VAE Training . 44
5.2 LIT-GAN: GAN Training . 45

A.1 SMOTE Algorithm Extensions . 70
A.2 SMOTE-based Ensemble Methods . 71

List of Tables

4.1 Datasets Specification . 36

6.1 F1-score without Classifiers HPs Tuning . 48
6.2 Accuracy without Classifiers HPs Tuning . 49
6.3 F1-score without Classifiers HPs Tuning Summary 50
6.4 Accuracy without Classifiers HPs Tuning Summary 51
6.5 Best Results without Classifiers HPs Tuning . 51
6.6 F1-score with Classifiers HPs Tuning . 53
6.7 Accuracy with Classifiers HPs tuning . 54
6.8 F1-score with Classifiers HPs Tuning Summary 55
6.9 Accuracy with Classifiers HPs Tuning Summary 55

v

vi List of Tables

6.10 Best Results with Classifiers HPs Tuning . 55
6.11 F1-score of LIT-GAN Variants . 56
6.12 F1-score of LIT-GAN Variants Summary . 57
6.13 Accuracy of LIT-GAN Variants . 57
6.14 Accuracy of LIT-GAN Variants Summary . 58
6.15 Best Results of LIT-GAN Variants . 58
6.16 Duration of LIT-GAN Variants . 59
6.17 Oversampling Durations . 59

B.1 Balanced Accuracy without Classifiers HPs Tuning 74
B.2 Balanced Accuracy with Classifiers HPs Tuning 75
B.3 Balanced Accuracy without Classifiers HPs Tuning Summary 76
B.4 Balanced Accuracy with Classifiers HPs Tuning Summary 76
B.5 Precision without Classifiers HPs Tuning . 77
B.6 Precision with Classifiers HPs Tuning . 78
B.7 Precision without Classifiers HPs Tuning Summary 79
B.8 Precision with Classifiers HPs Tuning Summary 79
B.9 Recall without Classifiers HPs Tuning . 80
B.10 Recall with Classifiers HPs tuning . 81
B.11 Recall without Classifiers HPs Tuning Summary 82
B.12 Recall with Classifiers HPs Tuning Summary . 82
B.13 AUC without Classifiers HPs Tuning . 83
B.14 AUC with Classifiers HPs Tuning . 84
B.15 AUC without Classifiers HPs Tuning Summary 85
B.16 AUC with Classifiers HPs Tuning Summary . 85
B.17 Balanced Accuracy of LIT-GAN Variants . 86
B.18 Balanced Accuracy of LIT-GAN Variants Summary 86
B.19 Precision of LIT-GAN Variants . 87
B.20 Precision of LIT-GAN Variants Summary . 87
B.21 Recall of LIT-GAN Variants . 88
B.22 Recall of LIT-GAN Variants Summary . 88
B.23 AUC of LIT-GAN Variants . 89
B.24 AUC of LIT-GAN Variants Summary . 89

C.1 Hyperparameters for Decision Tree Classifier . 91
C.2 Hyperparameters for MLP Classifier . 91
C.3 Hyperparameters for Logistic Regression . 91
C.4 Hyperparameters for Random Forest Classifier 91
C.5 Hyperparameters for Linear SVM . 92
C.6 Hyperparameters for k Neighbors Classifier . 92

First of all, I would like to thank my supervisor, Ing. Magda Fried-
jungová, Ph.D., for her guidance and valuable advice throughout the
whole writing process. I would also like to express my gratitude to
the entire Faculty of Information Technology for the excellent study
programme I was lucky to absolve. My thanks also go to my family
and friends who supported me, believed in me, and gave me strength
to reach this point.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Czech Tech-
nical University in Prague has the right to conclude a licence agreement on the utilization of this
thesis as a school work pursuant of Section 60 (1) of the Act.

In Prague on January 11, 2024

viii

Abstract

Many real-world tabular datasets are imbalanced, which has a negative effect on the quality
of the models applied to those data. More ways exist to deal with this problem, and one of
them is re-balancing the dataset. This master’s thesis presents a review of existing oversampling
methods, such as SMOTE, for imbalanced datasets of binary classification problem. Traditional
methods, as well as generative-based techniques, are outlined in this work. Moreover, a novel
oversampling method called LIT-GAN is presented. LIT-GAN combines an interpolation tech-
nique with generative models. Selected ten oversampling methods and the novel method are
compared experimentally using classification on frequently used datasets with six different eval-
uation metrics.

Keywords binary classification, oversampling, data balancing, tabular data, class imbalance

Abstrakt

Spousta tabulkových datasetů reálného světa je nevyvážená, což má negativní dopad na kvalitu
výstupů modelů, jež používají tato nevyvážená data. Existuje řada přístupů, jak se s tímto prob-
lémem vypořádat, přičemž jedním z nich je balancování datasetu. Tato magisterská práce ob-
sahuje přehled existujících balančních metod, jako je například SMOTE, pro nevyvážené datasety
problému binární klasifikace. V práci jsou nastíněny tradiční metody i techniky založené na gen-
erativních metodách. Kromě toho je představena nová metoda vzorkování nazvaná LIT-GAN.
Tato metoda kombinuje techniku interpolace s generativními modely. Vybraných deset metod
vzorkování a tato nová metoda LIT-GAN jsou experimentálně porovnány pomocí klasifikace na
často používaných datasetech se šesti evaluačními metrikami.

Klíčová slova binární klasifikace, vzorkování, balancování dat, tabulková data, nevyváženost
tříd

ix

x

xi

List of abbreviations

AAE Adversarial Autoencoder
AC Auxiliary Classifier

ACAI Adversarially Constrained Autoencoder Interpolation
ADASYN Adaptive Synthetic

AE Autoencoder
AUC Area Under The ROC Curve

BA Balanced Accuracy
CBO Cluster-Based Oversampling
CNN Convolutional Neural Network

CTAB-GAN Conditional Table Generative Adversarial Network
CTGAN Conditional Tabular Generative Adversarial Network
cWGAN Conditional Wasserstein GAN
DCGAN Deep Convolutional Generative Adversarial Network

DTC Decision Tree Classifier
ENN Edited Nearest Neighbors
GAN Generative Adversarial Network
GBC Gradient Boosting Classifier

GDPR European General Data Protection Regulation
GMM Gaussian Mixture Model

HP Hyperparameter
IAAE Interpolate Adversarial Autoencoder

IDS Imbalanced Dataset
IR Imbalance Ratio

kNN k Nearest Neighbors
KNN k Neighbors Classifier

LIT-GAN Latent Interpolation Tabular Generative Adversarial Network
LOGIT Logistic Regression
LoRAS Localized Random Affine Shadowsampling
LSTM Long-Short-Term Memory

ML Machine Learning
MLP Multi-Layer Perceptron

MedGAN Medical Generative Adversarial Network
MGVAE Majority-Guided Variational Autoencoder

MWMOTE Majority Weighted Minority Oversampling Technique
OA Overall Accuracy

OCC One-class Classification
PL Proximity Level

Poly Polynom-Fit-SMOTE
ProWSyn Proximity Weighted Synthetic Oversampling Technique

RAMOBoost Ranked Minority Oversampling in Boosting
RAE Regularized Autoencoder
RFC Random Forest Classifier
ROC Receiver Operating Characteristics
ROS Random Oversampling
SDE Stochastic Differential Equation
SGM Score-based Generative Model

SMOTE Synthetic Minority Oversampling Technique
SOS Score-based OverSampling

SVM Support Vector Machine
TAEI Tabular Autoencoder Interpolation

TTGAN Tabular Translation Generative Adversarial Network
VAE Variational Autoencoder

VGM Variational Gaussian Mixture Model

xii List of abbreviations

Introduction

“What I dream of is an art of balance.”

- Henri Matisse, 1869–1954

Data are everywhere. In recent years, people have produced enormous amounts of data in their
everyday lives that can be used to gain knowledge and can help to make decisions. However,
not all of them are adequate for such a usage. The data must be stored correctly; if the primary
use is making a classification decision, the data should be ideally balanced. However, we live
in a world where not everything is ideal. For example, real-world datasets can be imbalanced,
which can cause problems when trying to gain knowledge using the data. The problem of
imbalanced datasets has been researched for more than two decades. There have been conferences
and workshops concentrating on this topic, such as AAAI’2000 Workshop on Learning from
Imbalanced Data Sets1 and ICML’2003 Workshop on Learning from Imbalanced Data Sets (II)2

and from the recent years, Classifier Learning from Difficult Data: CLD220193.
Several approaches exist to overcome the imbalanced dataset (IDS) problem, such as re-

balancing the dataset or adjusting the model. The goal of this thesis is to survey standard
methods dealing with this problem by oversampling and implement at least five of those methods.
Furthermore, the goal is to use a classifier learned on the original (imbalanced) dataset and
datasets balanced by adding synthetic samples produced by the oversampling algorithms and
compare those performances. Additionally, this work aims to introduce a novel data-balancing
approach and compare its performance to the standard oversampling algorithms.

This thesis focuses on oversampling tabular data for binary classification. However, the topic
of imbalanced datasets is broad. There exist also other types of datasets, such as image or
time series datasets that can be imbalanced and need to be oversampled and handled differently.
What is more, other approaches than oversampling for dealing with this problem exist. However,
those other domains and approaches are not the subject of this thesis.

1https://www.site.uottawa.ca/~nat/Workshop2000/workshop2000.html
2https://www.site.uottawa.ca/~nat/Workshop2003/workshop2003.html
3http://cldd.kssk.pwr.edu.pl/

1

https://www.site.uottawa.ca/~nat/Workshop2000/workshop2000.html
https://www.site.uottawa.ca/~nat/Workshop2003/workshop2003.html
http://cldd.kssk.pwr.edu.pl/

2 Introduction

Chapter 1

Background

In this Chapter, the fundamentals related to this thesis topic are introduced. Firstly, the binary
classification problem and tabular datasets are presented. Secondly, the problem of learning from
an imbalanced dataset is outlined.

1.1 Binary Classification
This work focuses on binary classification, which deals with the problem of assigning each data
sample a label Y based on its characteristics. The characteristic is given by values of features
X0, X1, ...Xn. We are looking for a classifier f, for which it holds:

Y ≈ f(X0, X1, . . . , Xn)

Different classification models exist, and some are introduced in Section 4.3. The classifier’s
complexity depends on the label Y. [1]

In the case of binary classification, variable Y can take only two values, for example, 0, 1 or
in the case of images, using binary classification, it can say if there is a man or a woman in the
image. However, the main goal is the same: construct a model that best predicts the value of Y.

1.2 Tabular Dataset
In Section 1.1, the binary classification problem is introduced, which is directly related to the
variable Y. However, nothing is said there about the features X0, X1, . . . , Xn. Those features
can differ in their data types.

In the case of binary images, features represent individual pixels and take values in a given
range. Their order is also important. On the other hand, a tabular dataset refers to data that
can be stored in a table with rows and columns. Each column of this table represents one feature,
and each row represents one sample1. What is more, the order of the columns is not essential.
This thesis focuses exclusively on tabular datasets.

Tabular data are common in the real world. For example, each computer folder can represent
tabular data, with each file being a sample and its name, creation date, file type, etc., representing
features. Another example can be a list of personal data, having a name, age, sex, etc., as features
for each item, where one personal data represent one observation.

Each feature in a tabular dataset has a specified domain. The domains can be either quan-
titative or qualitative [2].

1In this work, sample and observation are used interchangeably.

3

4 Background

Qualitative data cannot be measured the same as numbers. They can be subdivided into two
types: nominal and ordinal.

Nominal data types do not have an order. An example of a nominal data type is a movie
genre (fantasy, thriller, comedy,…). Dichotomous data types are special nominal types with only
two values. An example is a gender with values man and woman. Ordinal data types are nominal
data types with an order of their values but without specified distance between them. Examples
of ordinal data types are a T-shirt size (XS, S, M, L) and a grade (A, B, C, D, E, F).

Quantitative data types, on the other hand, represent numerical types. They can be counted,
and a difference between each two values is defined. Quantitative data types are further subdi-
vided into two types: discrete and continuous.

Discrete data are represented by whole numbers. They are countable and cannot be further
subdivided. Their values are also finite. Examples of discrete data types are age or number of
students in a class. Fractional numbers represent continuous data. They can be further divided
and can have any value in a range. Examples of continuous data are height, temperature, or
speed. From the storage point of view, discrete data are stored as integers, whereas continuous
data are stored as floats or doubles.

Generating tabular data raises some challenges that differ from generating images. Tabular
data can have various data types of features, each having to be handled individually.

1.3 Imbalanced Data
Having an imbalanced dataset is a common issue in science, industry, and everyday life. An
imbalanced dataset is one where one class is represented by a much smaller number of instances
than the other class [3]. The first class is called the minority or also the positive class, and the
second one is called the majority or negative class.2 Some examples where the problem of having
imbalanced data occurs are medicine, fraud detection, bioinformatics, manufacturing process
failures, or anomaly detection [4], [3], [5].

Having such an imbalanced dataset means a problem for a classification model to identify
cases of interest, which are usually the minority class samples. The classifiers can be biased
towards majority class recognition because they aim to achieve overall accuracy (OA) [5]. In
medicine, for example, the main focus can be to identify if a person suffers from a disease or not.
However, if the disease is rare, it represents the minority class in a dataset with a label saying if
the person has or does not have the disease because the number of healthy people outnumbers
the ill ones.

In the work by Visa et al. [5], the authors distinguish two main components of imbalanced
datasets. Those are the imbalance ratio (IR) and the lack of information (LI) for the minority
class. Imbalance ratio is defined as a fraction of the number of majority class samples (N−) and
the number of minority class samples (N+) in a dataset [6]:

IR =
N−

N+
.

Two datasets having the same IR can have a different LI. The dataset suffers more from the lack
of information when there are only a few minority samples.

However, the problem of an imbalanced dataset is not only having too few samples in the
minority class. If the two classes are separable and have a clear decision boundary, there is no
need to modify the training dataset by balancing. Therefore, the problem arises if the classes are
overlapping. In the overlapping areas, for example, using neural networks, the minority samples
can be considered noise and, therefore, even discarded [5]. What is more, the complexity of the
data plays a significant role in the classification performance of a model trained on this dataset.

2Whenever sign + or − appears by an observation or a set of samples, it denotes belonging to positive,
respectively negative class.

Imbalanced Data 5

Figure 1.1 IDS Concepts taken from [7]: (a) between-class imbalance and noise (b) between-class
imbalance, within-class imbalance, overlapping, and noise

In the article by Lemnaru et al. [3], the problem of IDS is described as having two different
components. Those are insufficient data for model building and many special cases in the minority
class. The first issue concerns LI about the minority class, and the second is the problem of
considering minority samples as noise. In the latter case, subclusters occur. Subclusters are
subdivisions of a whole that combine elements to form a smaller group. In Section 2.1.3, some
methods dealing with this particular problem are introduced.

Having subclusters is directly connected to the problem of IDS, where the imbalance can
occur not only between classes, as described above, but also within each one. Those two types
of class imbalance are called between-class and within-class imbalance. The latter occurs when
the class samples exist in subclusters with a limited number of instances in some of them. For
those subclusters, it is hard for the model to learn rules for their correct classification. [7]

The problem of imbalanced learning from tabular data is rather complex. The class instances
appear in subclusters that can be sparse or dense, noise observations can also appear in the
dataset, and classes can overlap. Moreover, both between-class and within-class imbalances can
occur in the dataset. All those concepts are presented in Figure 1.1.

1.3.1 Approaches
Several methods for dealing with the IDS problem exist, and they can be divided into three
groups of approaches: data-level, algorithm-level, and hybrid [8].

The data-level approach can be subdivided into undersampling and oversampling methods,
where both modify the training set [9]. The main idea of undersampling is removing samples of
the majority class. This can be done until the number of majority class samples matches the
number of minority class samples. Oversampling, on the other hand, is based on adding synthetic
samples into the minority class. The advantage of oversampling compared to undersampling is no
loss of information. However, oversampling can lead to the creation of meaningless synthetic
samples. The advantage of re-sampling methods is that they are part of preprocessing, and
therefore, they do not affect the training and do not require a specific model to be used for
downstream tasks. They can be applied to minority class samples, majority class samples, or
both. [10]

The algorithm-level approach, in contrast, concentrates on modifying the model [9]. Those
methods require insight into the algorithm because it has to be known why it performs poorly and
what has to be changed [8]. One possible way is to adjust the algorithm’s weights. The minority
class samples are assigned a higher weight in the cost function than the majority class samples.
This results in bigger penalization when the minority class observations are misclassified. Another
solution is applying a one-class classification that concentrates only on the target group, thus
eliminating bias towards one class [9]. The classifier is fitted on the majority class, and the

6 Background

minority class samples are considered outliers. Therefore, this method is also used for anomaly
and outlier detection.

The third approach is a hybrid one, and it represents a mix of the previous two approaches
to extract the advantages of both and reduce their weaknesses. One example is combining
sampling and cost-sensitive learning [8]. In cost-sensitive learning, each observation is assigned
a misclassification cost and the aim is to minimize the total cost [11]. This idea of merging
data-level and algorithm-level approaches results in having a robust model [9].

This thesis concentrates on the data-level oversampling approach for the tabular data binary
classification problem. However, the whole overview is outlined here to give an idea of how
complex the IDS problem is and what the possibilities are to deal with it.

Chapter 2

Existing Methods

This chapter contains an overview of standard oversampling algorithms, which can be subdivided
based on their approach and structure. Some of the most used algorithms are introduced for
each of those approaches.

The problem of an imbalanced dataset has been studied for over two decades; therefore,
many oversampling approaches exist to deal with this problem. The algorithms are divided into
three parts: traditional, generative, and their combination. Traditional methods are the older
ones that first appeared more than twenty years ago. On the other hand, generative methods
became popular in recent years with the popularity of deep learning, especially the introduction
of Generative Adversarial Network (GAN) [12].

2.1 Traditional Oversampling Algorithms
In the work by Kovács [6], 85 minority oversampling methods are compared, supporting the claim
that the IDS problem is focused on by many researchers who invent new, improved methods.

The first presented and the most naive algorithm is Random Oversampling (ROS). ROS does
the oversampling by randomly selecting minority class samples and creating exact duplicates of
them. The problem with this algorithm is that instead of generalizing the decision boundary, it
becomes smaller and more specific and, therefore, can lead to overfitting. [13]

2.1.1 Synthetic Data Generation
Using synthetic data generation, new samples, not only duplicates, are created. Compared to
ROS, this approach can create a more generalized decision boundary and improve classification
performance.

2.1.1.1 SMOTE
Many oversampling methods exist based on the Synthetic Minority Oversampling TEchnique
(SMOTE) [14]. SMOTE can be further combined with boosting, kernel-based learning, or clean-
ing noisy samples.

SMOTE is one of the oldest minority oversampling techniques. It was introduced in 2002
by Chawla et al. [14]. In contrast to ROS, which duplicates samples, SMOTE creates synthetic
samples rather than duplicates. The idea was taken from an article about handwritten character
recognition, where original data were modified in order to generate more training data.

7

8 Existing Methods

SMOTE algorithm takes each minority sample and its k nearest neighbors (kNN) in the fea-
ture space. From those kNN samples, one is chosen randomly, and a synthetic sample is generated
on the line connecting the original sample and the selected neighbor. The number of selected
neighbors for oversampling depends on the amount of synthetic data to be oversampled. The
samples are generated as follows: “Take the difference between the feature vector (sample) under
consideration and its nearest neighbor. Multiply this difference by a random number between 0
and 1 and add it to the feature vector under consideration.” [14]

xsyn = δ · (xtrain − xneighbor) + xtrain, δ ∈ [0, 1] (2.1)

This leads to the generalization of the decision boundary contrary to ROS. However, mi-
nority class samples may disturb the space of the majority class. In that case, it can be useful
to combine SMOTE with data cleaning methods like Tomek links or Edited Nearest Neighbors
(ENN) [15].

SMOTE-NC
Synthetic Minority Oversampling Technique-Nominal Continuous is a SMOTE extension de-
signed for datasets with nominal and continuous features. This algorithm takes all minority
class samples and counts the median of their standard deviations for all continuous features.
This value is added to the Euclidean distance of the selected sample and its neighbor if they
differ in the value of a nominal feature (one addition for each difference). The value of a nominal
feature of the synthetic sample is selected by the majority of its kNN. [14]

SMOTE-N
SMOTE-NC works only for data with both continuous and nominal features. SMOTE-Nominal,
as the name says, is another SMOTE extension that can be applied to datasets with only nominal
features [14].

However, SMOTE does not consider the majority class samples. It generates the same amount
of synthetic samples for each minority sample. The problem with this algorithm is that some
observations are harder to classify than others, but SMOTE does not compensate for skewed
distributions [7]. To solve this problem, adaptive oversampling methods operating mainly near
the decision boundary were introduced. Some of those methods are outlined in Section 2.1.2.

Furthermore, SMOTE is a widely used oversampling technique also used as a baseline in many
research works for comparison. In an article marking its 15-year anniversary [16], an overview
of dozens of SMOTE-based methods is presented. This overview can be seen in Appendix A in
Figures A.1 and A.2 that show more than 85 SMOTE algorithm extensions and 17 SMOTE-based
ensemble methods. The authors presented these as an overview instead of a detailed description
because of space limitations for their article. However, the essential characteristics are captured
in those Figures.

2.1.1.2 Polynom-Fit-SMOTE
Polynom-Fit-SMOTE (Poly) [10] represents a SMOTE extension. It can use four different poly-
nomial fitting functions based on their topologies: Star, Mesh, Bus, and Polynomial curved-bus.
“The method operates in feature space and generates new samples using Curve Fitting methods
to find the coefficients of a polynomial p(x) of degree n that fits the minority class.” [10]

The names of the topologies denote the way synthetic samples are generated. The topologies
can be found in Figure 2.1. For example, generated samples are arranged into a star using the
Star topology. Having the Mesh topology, connections to all other minority samples from the
selected sample are used to generate a new observation. Based on the original article [10], those
two topologies perform the best. In the work by Kovács [6], Poly proved to be the best overall
oversampling technique from 85 SMOTE extensions that have been used.

Traditional Oversampling Algorithms 9

(a) Star and Polynomial curved-bus (b) Bus and Mesh

Figure 2.1 Polynom-Fit-SMOTE taken from [10]: Topologies

2.1.1.3 ProWSyn
Proximity Weighted Synthetic Oversampling Technique (ProWSyn) [17] is an oversampling
method that creates weights for minority class samples, which are assigned based on their dis-
tance from majority class samples. This is the first introduced method using information from
the majority class for minority class oversampling. In the work by Kovács [6], this algorithm
appeared to be the second best overall. The minority class samples are divided into groups based
on their proximity level (PL), given by the distance from the majority class samples.

The algorithm searches for L partitions with increasing PL. In each of the L loops, it searches
for each majority class sample x− for its kNN of the minority class from P, where P is initialized
as the set of all minority class samples. All those neighbors are unioned and create a partition
with PL assigned a value of the loop step i: Pi = i. Those minority class samples belonging to
the current partition Pi are removed from P, and the algorithm proceeds with another round.

After all minority class samples are assigned a partition with a PL, the weights are counted
for each partition j belonging to PLj as:

wj = exp(−θ · PLj − 1)

where θ is used for smoothing. The weights are normalized for each j to get ŵj , and the
number of samples to be generated for each PLj is counted based on those weights.

The minority class samples are then clustered, and for each minority sample xi, samples from
its cluster are randomly selected and synthetic samples are generated the same way as in 2.1.

2.1.1.4 LoRAS
“Localized Random Affine Shadowsampling (LoRAS) oversamples from approximated data man-
ifold of the minority class.” [18] This oversampling technique was introduced in 2020 and confirms
that traditional methods are not just a part of history but are still being developed and used.
The synthetic samples are taken from the approximation of the minority class data manifold.

10 Existing Methods

Figure 2.2 LoRAS taken from [18]

SMOTE uses two minority class samples and creates a new sample as their convex combina-
tion. LoRAS, on the other hand, generates noisy samples (shadowsamples) from Gaussian noise
in the neighborhood of a minority sample, and the final synthetic sample (Localized Random
Affine Shadowsample) is created as a random affine combination of those shadowsamples.

The steps for each minority sample x are the calculation of its kNN, then, for each sample
in the kNN, retrieval of shadowsamples from the normal distribution N (0, h(σf)), where h(σf)
is some function of the sample variance σf for feature f ∈ F . This is done for all features. The
next step is LoRAS sample generation from a randomly selected fixed number of shadowsamples
multiplied by random normalized weights (affine weights). The idea is demonstrated in the
Figure 2.2.

According to the original article [18], LoRAS can, for each minority sample, better estimate
the mean of the underlying local distribution than other techniques like SMOTE.

2.1.2 Borderline Oversampling Methods
These techniques do not generate new samples uniformly or randomly for each minority class
observation. They try to identify the samples near the decision boundary and sample more in
those regions around hard-to-learn samples.

2.1.2.1 Borderline-SMOTE
Borderline-SMOTE [13] is a SMOTE extension that deals with the problem of different classifi-
cation difficulties of minority class samples. The idea is to synthesize new samples more around

Traditional Oversampling Algorithms 11

minority observations located near the decision boundary. In the work by Han et al. [13], two
versions Borderline-SMOTE1 and Borderline-SMOTE2 were presented.

The algorithm works like this: for each minority sample (target), its kNN are found. If all
of them are from the majority class, the target is considered to be a noise. If more than half
of the neighbors are majority class samples, the target is added to a set called DANGER. For all
samples in DANGER, kNN from minority samples are found, and the algorithm proceeds further
as SMOTE (Eq. 2.1).

This is how Borderline-SMOTE1 works. Borderline-SMOTE2 differs in the kNN searching
step for each sample in the DANGER set. The neighbors are found not only in the minority class
samples but also in the majority class samples. For those, the distance between the target and
its neighbor is multiplied by a random number between 0 and 1

2 (δ ∈ [0, 1
2]) instead of [0, 1]. This

forces the synthesized sample to be created closer to the target, in a safer region.

2.1.2.2 ADASYN
Adaptive Synthetic (ADASYN) [19] oversampling is an adaptive method introduced by Shutao
Li in 2008. This algorithm concentrates on the class distributions. The synthetic samples are not
generated uniformly for each minority sample, but more samples are generated for those that are
hard to classify.

For each minority sample xi, its kNN are found, and the ratio ri of majority class samples
between them is computed. The ratios are normalized to r̂i, and the number of synthetic samples
to be generated for each of the minority class samples (gi) is proportional to the normalized ratio:

gi = r̂i ·G

where G is the total number of samples to be generated, counted as:

G = (N− −N+) · β, β ∈ [0, 1].

The new samples are generated in the same way as for SMOTE. Only kNN of the minority class
are considered for each xi, gi of those are randomly chosen, and new samples are created on the
line connecting xi and the neighbor as in Eq. 2.1.

2.1.2.3 Safe-Level-SMOTE
Safe-Level-Synthetic Minority Oversampling Technique [20] deals with the problem of SMOTE:
not considering the majority class samples. It assigns each of the minority class observations
a safe level and generates new samples based on those values. The safe level is defined as the
number of positive instances in the kNN for each positive sample.

For each minority sample x with safe level slx, one of its kNN denoted as n with safe level
sln is randomly selected. From their safe levels, the safe level ratio is counted as:

slratio =
slx
sln

.

Based on the values slx, sln, and slratio, it is decided where the synthetic sample should be
generated. The possibilities are:

both instances represent a noise (slx = 0, sln = 0): no sample is generated

n is a noise (sln = 0): x is duplicated

slx = sln, slratio = 1: new sample is generated along the line connecting x and n (same as for
SMOTE 2.1)

slx > sln, slratio > 1: new sample is generated closer to x

12 Existing Methods

slx < sln, slratio < 1: new sample is generated closer to n

The main idea is to generate new samples around safer levels, which are recognized by the
number of minority and majority samples in the kNN. According to the authors, thanks to this,
Safe-Level-SMOTE does not generate noisy samples.

2.1.3 Cluster-based Oversampling Methods
Cluster-based oversampling methods deal not only with the between-class imbalance but also
with the within-class imbalance [21]. In the case of SMOTE, for example, the synthetic sample
is generated between two minority class samples where one lies in the kNN of the other sample.
However, this approach does not consider the majority samples that can appear between those
minority samples. Therefore, if there are majority class samples between the neighboring mi-
nority class samples, the generated sample would be noise rather than a representative minority
observation. Cluster-based algorithms deal with this problem by searching for clusters and over-
sampling only within those clusters. This approach helps to mitigate the potential generation of
meaningless, noisy samples.

Most of the algorithms adopt k-means clustering algorithm. At first, k samples are randomly
selected as centroids. In the second step, the distance of all samples to all centroids is calculated,
and each sample is assigned the closest centroid. Then, the centroids are updated to be an
average of all samples assigned to the same cluster. The second and third steps are repeated
until the centroids and clusters change. The algorithm terminates when these two elements
become stable. [22]

2.1.3.1 Cluster-Based Oversampling
Cluster-Based Oversampling (CBO) [22] was introduced in 2004, and it aims to solve the problems
of both between-class and within-class imbalances. This algorithm first uses k-means clustering
for each class separately to create clusters.

Then, the number of samples in each cluster is counted. For the majority class, each cluster
is oversampled to get the same number of samples in each cluster as there are in the largest
one. The minority class is oversampled in the way that each cluster contains the same number
of samples after oversampling, and their total number is equal to the number of samples in
the oversampled majority class. As the oversampling algorithm, ROS is used in CBO in the
original article [22]. The authors claim that Cluster-based oversampling works well, especially
for complex datasets with only a few samples.

2.1.3.2 Cluster-SMOTE
Cluster-SMOTE [23] was introduced in 2006 and is one of the simplest clustering-based over-
sampling algorithms. Its idea is to first apply clustering to the dataset, including only minority
samples. For this purpose, k-means clustering is used in the original article. The second step
is applying SMOTE to the dataset. However, the oversampling is done only within the created
clusters of the minority samples. This leads to improvement of the oversampling on the local-
ization basis of the new synthetic data. The described oversampling method idea can be seen in
Figure 2.3.

Compared to CBO, both algorithms use k-means clustering. However, CBO does not con-
centrate only on the minority class but oversamples both classes and, therefore, deals with the
within-class imbalance of both classes. Moreover, both techniques use different oversampling
algorithms.

Traditional Oversampling Algorithms 13

Figure 2.3 Cluster-SMOTE taken from [23]: (-) majority samples, (+) minority samples, (0) synthetic
samples

2.1.3.3 MWMOTE
Majority Weighted Minority Oversampling TEchnique (MWMOTE) [24], as the name says,
uses information from both classes for oversampling. The article presenting this method draws
attention to the fact that methods such as Borderline-SMOTE and ADASYN, in some cases,
fail to select correct samples for oversampling, or they generate samples into the majority class
sample space. The goal of MWMOTE is to improve the selection of samples for oversampling
and the generation itself.

The clustering of the minority class samples is used to ensure that the new samples are
generated within the minority class clusters and not between majority class samples. The weight
for selection for oversampling of each minority observation is assigned based on the sample
importance. The importance is given by the distance from the decision boundary, the sparsity
of the cluster the sample belongs to, and the sparsity of the closest majority class cluster.

These more complex steps for oversampling weight assigning ensure that correct probabilities
are given to the minority class samples and that new samples are generated within minority class
clusters.

2.1.3.4 k-means-SMOTE
k-means-SMOTE [25] is another oversampling technique that combines k-means clustering and
SMOTE. This algorithm consists of three main steps: clustering, filtering, and oversampling.

In the first phase, the whole dataset is clustered regardless of the data labels using k-means
clustering. In the filtering phase, only clusters having more than 50 % of their samples from
the minority class are selected. Each of the selected clusters is assigned a sampling weight. The
weight depends on the sparsity of the minority class samples within the cluster. Higher weight
is given to the clusters with sparse minority areas. In the last oversampling phase, SMOTE is used
to generate synthetic samples within the selected clusters (Eq. 2.1). The number of generated
samples for each cluster depends on its sampling weight. The idea of k-means-SMOTE can be
seen in Figure 2.4.

Compared to other methods, k-means-SMOTE aims to eliminate more false positives. It also
detects safe areas for generating synthetic samples. This is done by clustering and filtering only
those clusters having at least half of their samples from the minority class. This way, generating
is not done for noisy samples as it is done in SMOTE. This algorithm deals with the within-class
imbalance by assigning sampling weight based on the cluster sparsity.

2.1.4 Boosting Oversampling Methods
Those methods combine the advantages of traditional oversampling and boosting algorithms.
Boosting is an ensemble method that sequentially uses weak learners, which together create
a robust model. It focuses on the misclassified samples in each iteration of the ensemble learning.

14 Existing Methods

Figure 2.4 k-means-SMOTE taken from [25]

However, the weak learners still have to be trained on representative training data, and it can be
problematic when having an imbalanced dataset. That is why ensemble methods are combined
with oversampling techniques. Oversampling is integrated into each of the iterations of the
boosting algorithm to create better predictions of the final model.

2.1.4.1 SMOTEBoost
SMOTEBoost [26] is an approach combining SMOTE and boosting, in the original article con-
cretely AdaBoost.M2 [27]. In each boosting iteration, SMOTE is used to oversample the minority
class. The idea of SMOTEBoost is to enlarge the training dataset in each boosting iteration by
synthesizing the minority class, leading to a more balanced dataset. Each minority sample in
each iteration is assigned a sampling weight. The weight is higher for misclassified samples and
lower for correctly classified samples.

The advantage is that different samples are created and used for training in each iteration,
which helps generalization. The synthetic samples are again removed from the training dataset
after each iteration is done. This algorithm updates the data distribution by generating synthetic
samples instead of traditional uniform updates. The predictions then can be done on the learned
boosted classifier.

2.1.4.2 DataBoost-IM
DataBoost-IM [28], opposite to SMOTEBoost, uses both classes, does not concentrate on or
favour any, and oversamples for both classes. In each boosting iteration, the algorithm finds
hard-to-learn observations from each class separately. It uses those for generating synthetic
samples, which are added to the training set, and the newly formed set is rebalanced. The weak
learner is trained using this training set, and based on its performance, it is assigned a weight,
which is used in the final prediction.

The hard-to-learn samples are selected so that all training samples are sorted based on their
weights in descending order. Only defined top samples are used in the following steps. The
amount depends on the classifier error and the size of the training set. Then, the numbers of
majority and minority samples are selected based on their counts in the top samples.

In the data generation step, each class is taken separately again. Nominal and continuous

Generative-based Algorithms 15

values are also handled differently. For each nominal feature, the number of its values is counted,
and in the same amount, they are randomly assigned to the synthetic samples. For each con-
tinuous attribute, the synthetic samples are generated from the same distribution as the actual
data, considering the mean, standard deviation, and minimal and maximal values.

After generating the synthetic samples, each of them is assigned a weight, which is given by
the fraction of the weight of the original sample it was generated from and the total number of
samples generated from this original sample. The total weight for each class is computed, and
based on their ratio, the weights of instances of the class with a smaller weight are multiplied by
a fraction of the total weights so that the two weights are the same.

The main advantage of this method is concentrating on all hard-to-learn observations, gen-
erating samples for both classes separately, and reweighting accordingly to have a balanced
dataset.

2.1.4.3 RAMOBoost
Ranked Minority Oversampling in Boosting (RAMOBoost) [29] is a method that combines adap-
tive synthetic data generation with boosting. Same as in ADASYN, each minority sample is as-
signed a weight based on the number of majority class samples within its kNN. The difference
between those two algorithms is that ADASYN directly assigns each sample number of synthetic
samples to be generated from it, and samples with no majority samples in their kNN are not
considered for oversampling. On the other hand, RAMOBoost only assigns each minority sample
a probability of being chosen for oversampling. Hard-to-learn samples near the decision boundary
have a higher probability of being chosen, but it is not absolute as in the case of ADASYN.

RAMOBoost uses the AdaBoost.M2 algorithm for boosting. Each iteration of the algorithm
corresponds to one weak learner. In each iteration, mislabeled data are sampled and given a prob-
ability for oversampling. The boosting procedure is similar to SMOTEBoost, but because of the
adaptive weighting, RAMOBoost performs better, based on the RAMOBoost article results.

2.1.5 Relabeling Methods
Relabeling methods do not add or remove new samples to or from the dataset, as it is done when
oversampling or undersampling is used. Still, they balance the dataset by changing the class
label of some observations.

2.1.5.1 SPY
For SPY [21], the majority class samples lying close to the decision boundary are marked as SPY
samples, and their label is changed to the minority class label. This way, the number of majority
class samples decreases, and the number of minority class samples increases. This approach
is particularly interesting because in the work by Kovács [6], this method was discovered to be
the fastest of all 85 methods used in the experiments, and therefore, it is presented in this thesis.
Change of the decision boundary when SPY is used on a dataset can be seen in Figure 2.5.

2.2 Generative-based Algorithms

In this Section, generative-based oversampling methods are presented. Based on their archi-
tecture and generation procedure, those techniques are divided into GAN-based, AE-based,
GAN+AE-based, and Score-based.

16 Existing Methods

Figure 2.5 SPY taken from [21]: Relabeling

2.2.1 GAN-based
In recent years, generative models have become popular because of their excellent performance,
especially on image datasets. GANs were first introduced in 2014 by Ian J. Goodfellow [12], and
since then, they have been used extensively. GAN consists of two neural networks: a generative
model (generator G) and a discriminative model (discriminator D). The generator produces fake
samples from the latent space and tries to fool the discriminator. The discriminator is fed with
real and fake observations generated by the generator, and its task is to distinguish fake samples
from real ones. G and D play the so-called minmax game, the mathematical expression of which
looks as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.2)

where pz(z) represents an input noise, pdata is the real data distribution, and D(x) represents
a probability that x is from real data [12].

After training both G and D, the generator is used for synthetic data generation. GANs
are popular mainly for generating images but can also be used for tabular data generation.
However, not many GAN architectures are currently focusing on oversampling the minority class
exclusively for datasets with a mix of feature types.

2.2.1.1 TableGAN
TableGAN [30] is a generative model that concentrates primarily on the privacy problem. Its
primary purpose is to generate synthetic data that can be used instead of real observations
as training data. The reason for this is that the real data can contain sensitive information that
should not be leaked. TableGAN, therefore, generates synthetic data that should minimize the
possibility of information leakage while trying to maximize model compatibility. The trade-off
between those two requirements is controlled by the parameters of the model. Model compat-
ibility means that the performance of a machine learning model learned on real and synthetic
datasets is similar regarding the test set. This algorithm is not specialized in the IDS problem
but can be used for synthesizing data of the minority class as well.

TableGAN is a GAN-based model having three main components: generator, discriminator,
and classifier. The roles of the generator and discriminator are the same as in vanilla GAN [12].
However, the classifier is added parallel to the discriminator to ensure the semantic integrity of
the synthetic samples. This means that the generator is penalized for generating samples that
do not make sense (a combination of their feature values is not seen in the real observations).

TableGAN also changes its loss function compared to vanilla GAN. There are three types of
loss functions: original loss from deep convolutional GAN (DCGAN)[31], information loss, and

Generative-based Algorithms 17

classification loss. The information loss ensures preserving the same statistical aspects as the
real data. The classification loss ensures semantic integrity.

The architecture of TableGAN is based on DCGAN. Each component (generator, discrimina-
tor, classifier) is represented by a convolutional neural network (CNN); hence, the data have to
be converted into a square matrix and padded if needed. The architecture of the classifier is the
same as the discriminator’s, differing only in the output layer. The network is trained on real
observations and learns the correlation between features to ensure that the generator produces
semantically correct data.

TableGAN is, based on the original paper result, the best method for handling the pri-
vacy preservation and model compatibility trade-off. When dealing with the IDS problem, the
parameter controlling the trade-off can be adjusted to create more compatible data with the
original dataset. In the work by Kim et al. [32], TableGAN was used for oversampling and, as it
is a simpler method than further presented CTGAN, it gave worse results.

2.2.1.2 TGAN
Tabular GAN (TGAN) [33] is a model similar to TableGAN. However, there are differences
between those two algorithms: TGAN generates data feature by feature, concentrating on each
one with respect to the previous ones, whereas TableGAN focuses on the whole data sample at
once.

TGAN introduces mode-specific normalization for continuous features. The distribution of
continuous features can be multimodal. Therefore, normalization into [−1, 1], [0, 1], or stan-
dardization would not work well. The mode-specific normalization idea is to assign each sample
a mode and normalize data within each mode. The data are clustered into the modes using the
Gaussian Mixture Model (GMM) with a fixed number of components. The categorical variables,
on the contrary, are handled by using smoothing: one-hot encoding is used, and noise is added
to each binary value. Finally, the values are normalized.

The architecture of TGAN consists of long-short-term memory (LSTM) with an attention
mechanism for the generator and multi-layer perceptron (MLP) for the discriminator. The ar-
chitecture can be seen in the Figure 2.6.

TGAN is a method used for synthetic tabular data generation. It can generate samples of
both classes to replace real data, or it can be used for oversampling, as shown in the work
by Quintana et al. [34]. The advantage of this algorithm is straightforward post-processing,
allowing data reconstruction with the original structure.

2.2.1.3 CTGAN
TGAN was introduced in 2018, and a year later, the same authors presented another generative
method that builds upon TGAN, namely Conditional Tabular GAN (CTGAN) [35]. As the name
says, CTGAN conditions its generator while TGAN generates data in an unconditioned manner.
The model can be conditioned by the categorical columns, and this architecture addresses the
problem of having imbalanced categorical features. CTGAN uses mode-specific normalization,
as TGAN does. However, CTGAN applies a variational Gaussian mixture model (VGM) instead
of GMM, which means that the number of modes is computed and is not fixed as in the case of
GMM. What is more, a conditional generator and training-by-sampling are implemented in the
CTGAN architecture.

CTGAN concentrates not on the imbalance of the target feature but on the imbalance within
each categorical column. All categories in a categorical column should be sampled evenly. The
generator loss is modified by adding a cross-entropy loss to penalize the generation of data that
differ from the conditional vector.

Training-by-sampling is used in CTGAN, which refers to sampling the conditional vector
properly. The feature for conditioning is selected randomly, with all features having the same

18 Existing Methods

LSTM

()

1f

<GO>
0a

z

1v
Generator

()

2f

1f
1a

z

1u

()

3f

2f
2a

z

1d

()

4f

3f
3a
/

z

2v

()

5f

4f
4a

z

2u

()

6f

5f
5a

z

2d

Age Education Income/h label

numerical categorial numerical categorial

0 ~ 120 0 ~ 1000 <50000
>50000

highschool
college...

Data

1v 1u

1
(D)f

1
(D)(f)

1d

diversity
2
(D)(f)

diversity
log probability

2
(D)f

2v 2u 2d
1v
1u 1d 2v

2u 2d

Discriminator

Figure 2.6 TGAN taken from [33]

Generator G(.)

Critic C(.)

Score

 z ~ N(0, 1)
Select from
D1 and D2

α

Say D2 is selected

Pick a row from T with D2 = 1

1, j 	β1, j α2, j 	β2, j d d1, j 2, j α1, j 	β1, j α2, j 	β2, j d d1, j 2, j

train

Select a category
from D2

D2 D1

0 0 0 1 0

Say category 1 is selected

Figure 2.7 CTGAN taken from [35]

probability. However, the category within the feature is selected randomly according to the
probability mass that corresponds to the logarithm of the frequency of each category. This
ensures proper exploration of the feature space, giving minority-represented categories a chance.

When CTGAN is used for oversampling, the target feature is marked as a categorical feature
to ensure its proper sampling. In the work by Eom et al. [36], CTGAN is used for oversampling
a medical dataset of Parkinson’s disease dementia patients. How CTGAN works can be seen in
Figure 2.7.

Another difference from TGAN is in the architecture. In CTGAN, both the generator and
discriminator consist of fully connected layers instead of LSTMs.

The advantage of CTGAN is more controlled training and sampling because of the usage of
a conditional generator. The results also show that CTGAN is more resistant to mode collapse
than other methods, from the presented ones concretely MedGAN and TableGAN. Mode collapse
is a scenario when the generator learns to produce samples that fool the discriminator, but the
generator’s output lacks variety as it maps each input into those indistinguishable synthetic
samples instead of producing diverse output.

Generative-based Algorithms 19

2.2.1.4 cWGAN
Conditional Wasserstein GAN (cWGAN) [37] is a method that can generate data having categor-
ical and numerical features and concentrates on the IDS problem exclusively. cWGAN combines
conditional GAN (cGAN) [38] and Wasserstein GAN (WGAN) [39].

The numerical features are scaled into [0, 1], and Gaussian noise is added to the normalized
feature value of both real and synthetic observations. The categorical features are one-hot en-
coded, and Gumbel-softmax [40] activation function is used on their output. Gumbel-softmax
is computed as follows:

Gumbel-softmax(xi) =
exp((xi + gi)/τ)∑k

j=1 exp((xj + gj)/τ)
for i = 1, ..., k (2.3)

where g1, ..., gk are drawn i.i.d. from Gumbel(0, 1), xi is one component of vector x, and
τ is an adjustable temperature parameter, which controls the smoothing. This results in soft
one-hot encoding that is differentiable [37].

Having tabular data, the features might correlate. Therefore, the numerical output of the
generator is conditioned by the categorical output, and the authors call this approach self-
conditioning.

The conditioning in cWGAN is not done as in CTGAN, where the conditional vector is used,
but cWGAN uses conditioning on the target feature, concretely minority class label, during the
sampling. As the name implies, Wasserstein loss with gradient penalty [41] is used in cWGAN.
The objective function of Wasserstein GAN with gradient penalty is:

min
G

max
D

x∼pdata [D(x)]−z∼pz [D(G(z))]− λ x̂∼px̂
[(∥∇x̂D(x̂)∥2 − 1)2] (2.4)

where λ is the gradient penalty coefficient and x̂ represents the linear interpolations between
real and fake samples [37].

Moreover, in cWGAN, an auxiliary classifier (AC) with architecture similar to the discrimi-
nator’s is used parallel to the discriminator to ensure the generation of samples belonging to the
class used as a condition. It is done by adding the AC loss into the cWGAN objective function:

λACz∼pz
[BCE(AC(G(z)))]

where BCE is the binary cross entropy between the predicted class label probability and the
true class label.

cWGAN generator and discriminator can be seen in Figure 2.8.
In the original article [37], the authors claim that synthetic data generation for re-balancing

datasets using cWGAN results in better performance of the classifiers in the downstream task
than re-balancing using traditional methods such as SMOTE and ADASYN.

2.2.1.5 CTAB-GAN
Conditional Table GAN (CTAB-GAN) [42] is one of the state-of-the-art generative methods for
tabular datasets. It was introduced in 2021. CTAB-GAN addresses privacy problems, strict
regulations (GDPR) as well as data imbalance and skewed distribution problems. Compared to
other methods, CTAB-GAN can handle not only continuous and categorical features but also
a combination of continuous features with special discrete values. The authors call this a mixed
variable or mixed data type. Other methods handle those features as continuous, which is not
correct due to the wrong estimation of fixed numbers with meaning (e.g. number zero). In the
article [42], a Mixed-type Encoder is presented to deal with mixed variables.

CTAB-GAN, compared to CTGAN, adds classification loss and encodes all features, regard-
less of the data type, into the conditional vector. The generator can produce semantically incor-
rect data. Therefore, CTAB-GAN, the same as TableGAN, adds a classifier with classification

20 Existing Methods

(a) generator (b) Discriminator

Figure 2.8 cWGAN taken from [37]: Generator and Discriminator

Figure 2.9 CTAB-GAN taken from [42]: Synthetic Data Generation

loss to the architecture to ensure semantic integrity. CTAB-GAN is inspired by other methods
and combines their advantages, e.g., it uses information loss as TableGAN does, has a conditional
generator with generator loss, and uses training-by-sampling as CTGAN does. What is more,
a log-frequency sampler is used to address the problem of mode collapse.

Training-by-sampling in the case of CTAB-GAN does not include only categorical features
in the conditional vector but rather all features: continuous, categorical, and mixed. The log
probability, instead of the frequency of each mode or category, is used when generating the
conditional vector. Log probability distributes the chance of being selected more evenly, giving
a higher chance to the minority. This also helps to alleviate the IDS problem for continuous and
mixed variables. The correlation of all features is also captured by the generator when all of them
occur in the conditional vector. A logarithmic transformation is also used for preprocessing the
continuous features having a long tail before their encoding because it has been observed that
the encoding of such variables is difficult.

The architecture of CTAB-GAN consists of three neural networks: generator, discriminator,
and classifier. The generator and discriminator networks are the same as those of TableGAN,
using CNNs. The classifier is implemented as MLP. CTAB-GAN synthetic data generation
process can be seen in Figure 2.9.

The results in the work by Zhao et al. [42] show that CTAB-GAN outperforms other methods
like TableGAN, MedGAN, and CTGAN based on the machine learning (ML) utility, meaning
that the classifiers perform the most similarly when it is trained on the real training dataset and
synthetic dataset and further tested on the real test dataset. The benefits of this method are

Generative-based Algorithms 21

mainly the construction of the conditional vector, including all feature types and the addition of
a classifier into the architecture to ensure semantic integrity.

2.2.1.6 TTGAN
Tabular Translation Generative Adversarial Network (TTGAN) [43] is a technique for minority
class oversampling on binary classification tabular datasets. The idea is to use majority class
samples as input to the generator and translate them into synthetic minority class samples.
What is more, by adjusting the loss function, the generated data are placed close to the decision
boundary.

The network architecture has four parts: 2 generators, G and G’, and 2 discriminators, D
and D’. G and D are the generator and discriminator from the traditional GAN architecture
for adversarial training. G’ and D’ are networks used for sampling from the majority class in
CycleGAN [44], upon which TTGAN builds. All parts of TTGAN are multi-layer, fully connected
networks.

Next to the adversarial loss (Eq. 2.2), TTGAN intercorporates three other loss functions:
translation loss and cycle-consistency loss and identity loss from CycleGAN. Translation loss LT

is used to minimize the distance between the generator’s input sample and its output translated
sample:

LT (z) = ||z −G(z)||1.

Cycle-consistency loss LC ensures that translating back and forth should result in getting
a sample close to the initial one:

LC(z) = ||G(G′(x+))− x+||1 + ||G′(G(x−))− x−||1.

Identity loss LI assures that when a sample of the output domain is used as a generator’s
input, the mapping should be close to the identity mapping:

LI(z) = ||G(x+)− x+||1 + ||G′(x−)− x−||1
where x+, x− represent minority, resp. majority class samples, and z is sampled from the

majority class samples in the training dataset.
The generator’s objective function is:

LG = LG
orig + λTLT + λCLC + λILI

where λT , λC , λI are hyperparameters of the model. The discriminator’s objective function
stays the same as in the original GAN objective function: LD = LD

orig.
What is more, not all of the generated samples are added to the original training dataset.

They are sorted in descending order based on their likelihood of belonging to the minority class.
Based on the cut-off limit, samples with scores that are too high are removed because they
represent data far from the decision boundary. From the rest of the samples, only a specified
number, which is a multiple of the minority class samples, is retained and added to the original
training dataset.

The generator does not generate data from noise but rather translates from the majority
class: z ∼ X−. This is the main difference from the above-presented GAN-based techniques.

2.2.2 AE-based
Autoencoders (AE) represent a bidirectional mapping scheme [45]. AE architecture consists of
two neural networks, namely, encoder and decoder. The encoder’s function is to map input
data to lower dimensional latent space, whereas the decoder maps data from the latent space

22 Existing Methods

to the original space. The goal is for the decoder to reconstruct the input by minimizing the
reconstruction error.

2.2.2.1 TVAE
TVAE was introduced together with CTGAN in the work by Xu et al. [35]. It is a generative
model that can be used for data generation as well as for dataset oversampling of a particular
class. It is implemented as a variational autoencoder (VAE) for tabular data generation and
uses the same preprocessing as CTGAN. TVAE consists of two neural networks: an encoder and
a decoder. The architecture of both consists of fully connected layers. In the original paper, the
performance of TVAE is competitive with CTGAN.

2.2.2.2 MGVAE
Majority-Guided Variational Autoencoder (MGVAE) [46] was introduced in 2023, and it focuses
exclusively on the IDS problem. It is an approach that “generates new minority samples under
the guidance of a majority-based prior” [46]. This algorithm can effectively deal with the problem
of having a big IR and only a few minority-class samples. The idea is that the classes are related,
and the generation of samples from the minority class can benefit from the knowledge of the
majority class. “MGVAE generates the minority sample according to a majority-based prior,
resulting in one-to-one sample mapping.” [46]

MGVAE architecture consists of fully connected layers for tabular datasets. However, in the
case of bigger image datasets, the architecture uses CNN. This shows the adaptability of the
method and its usage in different domains.

The training of the model has two parts: pre-training on the majority class samples and
fine-tuning on the minority class samples. This is done to avoid mode collapse and overfitting.
The fine-tuning has to be controlled in order to prevent forgetting the training on the majority
class. This is done by adding the Elastic Weight Consolidation [47] regularization that penalizes
the model parameter changes.

The sampling has three parts: firstly, data are drawn randomly from the majority-based
prior. Secondly, latent codes are sampled in the latent space conditioned by the data selected
in the first phase. In the last part, those sampled latent codes are transformed via a decoder to
create minority-class synthetic samples.

This method can be used on images as well as on tabular datasets. Its advantage is that
it uses the information from both classes, minority and majority, to generate diverse synthetic
samples whose usage helps to avoid overfitting in the downstream tasks.

2.2.3 GAN+AE-based
As different oversampling architectures of GANs and AEs exist, there are also models that use
a combination of those two.

2.2.3.1 MedGAN
Medical Generative Adversarial Network (MedGAN) [48] is a state-of-the-art model for gene-
rating realistic data similar to electronic health records of patients. MedGAN combines an
autoencoder with GAN and is meant for generating high-dimensional data with discrete variables.
In the original article [48], minibatch averaging is introduced, which is a technique used to deal
with the mode collapse problem.

The MedGAN architecture contains four parts: generator and discriminator of GAN and
encoder and decoder of VAE. The architecture is shown in Figure 2.10. The trained decoder

Generative-based Algorithms 23

z

G(z)

Dec(G(z))

D

Enc(x)

Dec(Enc(x))

Real or Fake?

x

Figure 2.10 MedGAN taken from [48]

is used on the continuous output of the generator to create the discrete output before it is fed
into the discriminator.

First, VAE is trained to minimize the reconstruction error between the input and output data.
Secondly, GAN is trained. However, the generator does not generate realistic data directly. It
generates a representation that serves as an input to the pre-trained decoder, which generates
synthetic patient data based on its input.

The authors of MedGAN also introduced minibatch averaging to deal with mode collapse.
Minibatch averaging allows the discriminator to view the whole minibatch of input samples as an
average, and the objective function is modified to work with the average accordingly.

The results of MedGAN were also shown to a doctor who could distinguish the real and fake
data only if there was a semantic mistake. This shows the possibility of using MedGAN in health-
care and generating realistic synthetic tabular samples. Although the MedGAN algorithm does
not concentrate exclusively on the IDS problem, it can be used for minority data oversampling,
as it is done in other articles focusing on this problem [32].

2.2.4 Score-based
Score-based generative models (SGMs) represent another type of generative model next to GANs
and AEs. They are primarily used for generating images. SGMs use the stochastic differential
equation (SDE). They are similar to other generative methods from the architectural point of
view. Like GANs or AEs, their network consists of two parts: one for the forward diffusion process
and the reverse one for the de-noising process. During the diffusion process, noise is added to
the data. In contrast, during the de-noising process, as the name suggests, it is removed in order
to reconstruct the original data as best as possible. [32]

2.2.4.1 SOS
Score-based OverSampling (SOS) [32] is, according to the authors, the first score-based generative
oversampling method, and therefore, the score neural network had to be re-designed accordingly
for the purpose of generating tabular data instead of images. SOS can handle both continuous
and categorical features. It uses one-hot encoding for categorical features and normalization into
the interval [0, 1] for continuous features.

The score network consists of fully connected layers. The idea of SOS is to train SGMs for

24 Existing Methods

Reverse SDE with
Forward SDE (Brownian Motion)

(Non-target) (Noise)

Reverse SDE with
Forward SDE (Brownian Motion)

(Target) (Noise)

Forward SDE Reverse SDE

Reverse SDE

Option 1:

Option 2:

Figure 2.11 SOS Concept taken from [32]: The authors use different notation and denote majority
class samples with + and minority class samples with −.

each class separately. Then, the forward SDE for the majority class is used to create a noisy
sample x−

T , and the reverse SDE for the minority class is used on x−
T to create a synthetic minority

sample x̂+
0 . The authors compare this approach to Borderline-SMOTE, as the samples are also

generated near the decision boundary. Moreover, Kim et al. [32] create the synthetic samples
without using the forward SDE for the majority class and sample from noise, too. The authors
also compare this approach to SMOTE, as the synthetic samples are not created informatively,
only near the decision boundary. Both approaches can be seen in Figure 2.11.

In the original article [32], the results show that SOS surpasses other oversampling methods,
both traditional and generative-based, such as CTGAN, TableGAN, MedGAN, SMOTE, and
Borderline-SMOTE. Thus, score-based generative methods look as promising ways to solve the
imbalance dataset problem.

2.3 Combined Algorithms
This Section presents oversampling techniques that combine traditional methods such as SMOTE
and generative algorithms, both GANs and AEs.

2.3.1 TAEI
Tabular AutoEncoder Interpolation (TAEI) [45] is a method combining AE and an interpolation
method. TAEI deals with the problem of high-dimensional data. It maps them to a lower-
dimensional dense latent space. Synthetic samples are then interpolated in this space. Thus, the
oversampler does not have to deal with the problem of having categorical and continuous data
types or sparse distribution, but those problems are handled by the autoencoder.

The architecture contains three parts: an encoder and decoder of AE and an oversampler.
The algorithm first uses the encoder that maps original data to a continuous latent space. There,
the oversampler creates synthetic data by interpolation, and the decoder maps those data back to
the feature space. In the original article [45], more AE schemes are used, concretely: AE, VAE,
Regularized AE, Adversarial AE, Interpolate Adversarial AE, and Adversarially Constrained AE
Interpolation. Poly and SMOTE are used as oversamplers. However, the algorithm can also be
implemented with other interpolation methods. The scheme of TAEI can be seen in Figure 2.12.

In the work by Darabi et al. [45], the authors optimize two metrics: Cover and Error. Cover
shows how well synthetic data represent the real data, and Error represents the synthetic data
reliability. Ideally, the balance between those metrics should be found. The results show that
the performance of TAEI is higher, considering those two metrics, than the performance of using
only the oversampler applied to the original data.

Summary 25

Figure 2.12 TAEI taken from [45]

Figure 2.13 SMOTified-GAN taken from [49]

2.3.2 SMOTified-GAN
SMOTified-GAN [49] is a method combining SMOTE for minority class oversampling and GAN
for data generation. The idea is to first run SMOTE to create synthetic minority class samples.
The second step is training GAN on those synthetic data and real minority class data. The
generator takes the synthetic data as input and adjusts them to be similar to the real ones
so that the discriminator is unable to distinguish between the fake and real minority data.

The combination of SMOTE and GAN should overcome the weaknesses of SMOTE, as it
can create samples that do not match the original data distribution. Therefore, GAN is used to
adjust those samples to create better ones that match this distribution. The generator does not
sample from noise but is fed with data generated by SMOTE. The model of SMOTified-GAN
can be found in Figure 2.13.

2.4 Summary
Comparing the traditional, generative-based, and combined oversampling techniques, the first
mentioned do not need training as synthetic samples are generated immediately based on the
given training data. On the other hand, generative-based and combined methods require training,
which can be computationally demanding, but the sampling itself is then simple and fast.

Figure 2.14 shows the timeline of the origin years of all presented methods. There, it can be
seen that traditional oversampling methods were mainly introduced between years 2002 and
2015, while generative-based and combined methods have gained popularity in the last six
years. Dozens of traditional oversampling methods exist, including state-of-the-art methods like
Borderline-SMOTE or ADASYN. On the contrary, the field of oversampling with generative-
based methods is still not much researched, and this can be expected to change in the future.

26 Existing Methods

2003

SMOTE

2005

Cluster-based
Oversampling

2007

Cluster-SMOTE

2009 2011

SMOTEBoost DataBoost-IM Borderline-
SMOTE

Polynomial-fit-
SMOTE

ADASYN

Safe-level-
SMOTE RAMOBoost

MWMOTE k-means-
SMOTESPY MedGAN LoRAS cWGAN SOSProWSyn

TableGAN

TGAN

CTGAN

TVAE TAEI

CTAB-GAN

2015 2017 2019 20212013 2023

MGVAE

Generative

Combined

2002 2004 2012201020082006

20222020201820162014

SMOTified-
GAN

TTGAN

Traditional

Figure 2.14 Timeline of Presented Methods Origins

Chapter 3

Selected Methods

In this Chapter, methods selected for implementation, evaluation, and comparison are presented
in more detail. In the practical part of this thesis, for balancing the training dataset, we want to
compare all types of methods: traditional, generative-based, and combined. For the experiments,
methods with publicly available implementation are used.

From the traditional oversampling techniques for the implementation, SMOTE, Polynom-Fit-
SMOTE, LoRAS, Borderline-SMOTE, and k-means-SMOTE were selected. From the generative-
based techniques, both GAN-based and VAE-based are represented concretely by CTGAN and
CTAB-GAN for the first type and by TVAE for the latter type. The combined techniques are
represented by TAEI and SMOTified-GAN.

3.1 SMOTE
SMOTE [14] is one of the oldest oversampling algorithms that is widely used also nowadays,
and it serves as a baseline for comparison with other methods. Its implementation used in this
thesis comes from imblearn library1. SMOTE is defined in Section 2.1.1.1, where the equation
for a synthetic sample generation is also presented (Eq. 2.1).

The synthetic sample is placed on the line connecting the selected minority sample x and its
neighbor xneighbor that is selected from the k nearest neighbors. k is specified by SMOTE parame-
ter k_neighbors, and its default value is 5. Another of the SMOTE imblearn implementation’s
parameters is the sampling_strategy that defines which classes should be oversampled. In our
case, minority is chosen to oversample only the minority class to get a balanced dataset.

3.2 Polynom-Fit-SMOTE
Poly [10] was selected from the traditional methods. In the work by Kovács [6], it is the overall
best traditional oversampling technique from 85 techniques used. There exists a library called
smote-variants [50] that serves as an implementation for the article comparing all 85 algo-
rithms. A version of Poly from this library is used in our experiments, concretely we chose
polynom_fit_SMOTE_mesh as Mesh and Star topologies give the best results in the original arti-
cle [10].

This algorithm takes as a parameter proportion. The number of generated minority samples
G is computed as:

1https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html

27

https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html

28 Selected Methods

G = proportion · (N− −N+).

When proportion is set to 1, the resulting dataset will be balanced.
The idea behind Poly is: “Curve Fitting Methods are used to find a coefficient of a polynomial

p(x) of degree n that fits the minority instances.” [10] Considering Mesh topology: for each
minority sample in the feature space, a straight line is added, connecting this point with another
minority class sample point. This is done for all minority class observations. Each line can be
described as:

fi(x) = ax+ b.

The coefficients a and b have to be defined to fit the training minority data. Based on the
proportion, k linearly-spaced value xk is generated, where k ∈ [−1, 1]. The synthetic sample
is generated by evaluation fi(x) at xk.

3.3 LoRAS
LoRAS [18] was added to our implementation because it is one of the newest traditional methods
with publishing year 2020. There exists a publicly available implementation on GitHub2 which
is used in this thesis.

“LoRAS oversamples from an approximated data manifold in the minority class.” [18] Having
|F| features, the authors of LoRAS define small dataset as a dataset where for the number of
samples n and the number of features |F| holds: log10(n

|F |) < 1. When a sample’s k neighborhood
is selected, it creates such a small dataset. Let us call those selected minority neighboring samples
as parents. For each parent, noise from a normal distribution N (0, h(σf)), where h(σf) is some
function of the sample variance σf for feature f ∈ F , is added to each feature f from F. This
way, m shadowsamples can be created, where k ·m >> |F |.
|F | shadowsamples are then chosen by randomly selecting a parent, and shadowsamples are

generated from this parent. Random affine combination of the selected |F | samples creates one
Localized Random Affine Shadowsample (LoRAS) in the same |F | − 1-dimensional plane. This
plane is assumed to be “the approximation of the latent data manifold in the small neighbor-
hood ” [18] that locally approximates the whole data manifold. Thus, the generated samples are
assumed to be representative. Illustrative picture of LoRAS creation can be seen in Figure 2.2.

There is one callable method for oversampling with LoRAS, concretely fit_resample, which
takes the minority samples and the majority samples of the training dataset as parameters.
Other parameters, such as the number of shadow points or the number of generated points, are
optional and computed within the function when not specified.

3.4 Borderline-SMOTE
Borderline-SMOTE [13] represents the traditional borderline oversampling methods outlined in
Section 2.1.2. Same as SMOTE, its implementation is part of the imblearn library3. As men-
tioned in Section 2.1.2.1, there are two Borderline-SMOTE variants: Borderline-SMOTE1 and
Borderline-SMOTE2. The second version of the algorithm is used in the experiments of this
thesis.

Having N+ minority and N− majority samples in the training dataset, for each minority
sample x, its k1 nearest neighbors are calculated from all training samples. Let us denote the
number of majority samples within the neighbors as m. There are three scenarios for each x:

2https://github.com/sbi-rostock/LoRAS
3https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.

BorderlineSMOTE.html

https://github.com/sbi-rostock/LoRAS
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.BorderlineSMOTE.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.BorderlineSMOTE.html

k-means-SMOTE 29

1. k1 = m: x is considered to be a noise

2. k1
2 ≤ m < k1: x is considered to be a borderline sample and is added to DANGER set

3. 0 ≤ m < k1
2 : x is considered to be a safe sample

For each sample x in DANGER, its k2 nearest neighbors are computed, and some of those neigh-
bors are randomly selected for synthetic data generation. The synthetic samples are generated
as in SMOTE (Eq. 2.1) when the neighbor is a minority class observation. When the neighbor
is a majority sample, the synthetic sample is generated closer to the sample x. This means that
the interval for δ in Eq. 2.1 is δ ∈ [0, 1

2].
Same as SMOTE, the imblearn implementation takes the sampling_strategy as a param-

eter. Other parameters are k_neighbors and m_neighbors denoting the number of kNN used
in the algorithm, above denoted as k1 and k2. Their default values are 5, resp. 10.

3.5 k-means-SMOTE
k-means-SMOTE [25] represents, in the experimental part of this thesis, the cluster-based tra-
ditional oversampling techniques described in Section 2.1.3. Its implementation is also available
in the imblearn library4. Coming from the same library as SMOTE and Borderline-SMOTE,
k-means-SMOTE also has the sampling_strategy parameter and it is set to minority to receive
balanced dataset where only minority class is oversampled. A parameter n_cluster denoting
the number of clusters can be specified, and its default value is 8. During the implementation,
we had trouble selecting the proper number of clusters for some datasets. Even a big number
of clusters with lowering the cluster_balance_threshold resulted in error. This is the reason
why the results are not presented in Chapter 6 for the combination of k-means-SMOTE and
those problematic datasets.

This algorithm concentrates on cluster density and generates samples in sparse areas. This
way, not only the between-class imbalance but also the within-class imbalance of the minority
class is handled. It is achieved in three steps: clustering, filtering, and oversampling. The
clustering is done regardless of the class label using the k-means clustering algorithm described
in Section 2.1.3. In the second phase, only those clusters having a high number of minority
samples are retained. This is where the parameter cluster_balance_threshold plays its role.
The synthetic data generation is then executed as in SMOTE (Eq. 2.1) with the difference that
oversampling is done only within the filtered clusters, having more samples generated in sparse
areas of the minority class.

The sparsity of each selected cluster c has to be computed. This is done in more steps.
First, the Euclidean distance matrix for each cluster and its mean distances are computed. The
density is then computed as a fraction of the number of minority samples within the cluster and
the average Euclidean distance power to the number of features m:

density(c) =
minority_count(c)

avg_minority_distance(c)m
.

Sparsity is the inverse of density:

sparsity(c) =
1

density(c)
.

The sampling weight is calculated as a fraction of the sparsity and the sum of all sparsities:

sampling_weight(c) =
sparsity(c)∑

f∈filtered_clusters sparsity(f)
.

4https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.KMeansSMOTE.
html

https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.KMeansSMOTE.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.KMeansSMOTE.html

30 Selected Methods

The number of synthetic samples to be generated in each cluster is counted as the multiplication
of the sampling weight and the total number of samples to be generated G:

number_of_samples(c) = G · sampling_weight(c).

The G samples are generated using the modified SMOTE algorithm, and synthetic samples
are added to the original training set.

3.6 CTGAN
CTGAN [35] represents the GAN-based techniques. It is a generative method, not concentrating
only on the minority class oversampling but rather on the problem of having imbalanced cat-
egorical features. Its implementation comes from a library of the same name5 and consists of
three main classes: DataTransformer, DataSampler, and CTGAN.

The DataTransformer is responsible for data transformation into the representation that
is suitable for GAN. For continuous features, a mode-specific normalization is used, and for cate-
gorical features, one-hot encoding is used. The transformer is fitted individually for each feature,
and training data are transformed feature by feature. The advantage is that the transformation
is reversible. After sampling, the synthetic data can be converted back into the original feature
space.

The DataSampler uses the transformed data for sampling a conditional vector and real data
sampling based on the conditional vector. The sampling of a training conditional vector is done
by randomly selecting a categorical feature and selecting a category within the feature based on
the logarithm of its frequency. This so-called training-by-sampling ensures the examination of
all values within a categorical feature [51].

During the training, CTGAN performs several actions in each step of the epoch. For the
discriminator update, fake samples are generated from Gaussian noise and are concatenated
with the sampled conditional vector. Real data are sampled based on the conditional vector.
A discriminator is trained on the real and fake samples. CTGAN uses Wasserstein loss with
gradient penalty (Eq. 2.4). In the same way, fake samples are created also for a generator
update. The generator loss is counted as a Wasserstein loss plus conditional loss. Conditional
loss penalizes the generator for creating arbitrary data given a conditional vector. It is computed
as a cross-entropy on the conditioned categorical feature.

The architecture of both the generator and discriminator consists of two fully connected
hidden layers and an output layer. Discriminator architecture was inspired by PacGAN [52],
which means that it makes decisions based on packs of given samples. The activation function
of the generator’s output layer differs based on the feature type. It can be either tanh for the
normalized values or Gumbel-softmax (Eq. 2.3) for the one-hot vectors. In the hidden layers of
the generator, ReLU is used as an activation function and in the discriminator’s hidden layers,
LeakyReLU is used.

CTGAN has many parameters, such as the parameters of Adam optimizers for the generator
and the discriminator, the number of epochs, batch size, and the dimensions of the network
layers.

3.7 CTAB-GAN
CTAB-GAN implementation is also available on GitHub6. CTAB-GAN was designed to handle
continuous, categorical, and mixed data types. The mixed data type combines a continuous
feature with special discrete values. Having a dataset, the information about each feature type

5https://github.com/sdv-dev/CTGAN
6https://github.com/Team-TUD/CTAB-GAN/tree/main

https://github.com/sdv-dev/CTGAN
https://github.com/Team-TUD/CTAB-GAN/tree/main

TVAE 31

has to be given externally. The difference from CTGAN is in the conditional vector. Not only
categorical features but all features are used as a part of it.

The implementation of CTAB-GAN was inspired by previous works. It also contains Da-
taTransformer but adds a Mixed-type Encoder for mixed features. However, CTAB-GAN has
a more complicated update. Next to the adversarial loss, there are three more loss functions:
classification, information, and generator loss. An auxiliary classifier is added parallel to the
discriminator to calculate the classification loss that is computed as the binary cross entropy
between the real and predicted class labels to force the generator to create semantically correct
samples. Information loss is a loss between real and generated data. Concretely, it compares
their means and standard deviations. Generator loss is computed as a cross-entropy between the
generated output values and the sampled conditional vector to ensure that the generator creates
samples as conditioned by the conditional vector. The generator objective function is calculated
as follows:

LG = LG
orig + LG

info + LG
class + LG

generator

whereas the discriminator objective function stays unchanged: LD = LD
orig.

The architecture of CTAB-GAN adopts CNN in the generator and discriminator. Tabular
data are, therefore, transformed into an image domain to be fed into CNN. Classifier network,
on the other hand, contains fully connected layers with LeakyReLU as an activation function in
all four hidden layers and sigmoid in the output layer.

CTAB-GAN takes as a parameter the path to the csv file containing the training dataset;
therefore, for each experiment in this thesis, the training data were stored before oversam-
pling. As mentioned earlier, the types of features have to be specified externally. CTAB-GAN
takes categorical_columns, integer_columns, mixed_columns and log_columns as param-
eters. The last parameter is used for features with skewed exponential distribution. Another
parameter is problem_type as CTAB-GAN can be used not only for the binary classification
problem but also for regression tasks.

3.8 TVAE
TVAE [35] was introduced in the same article as CTGAN, and its implementation also comes
from the same library ctgan. Both encoder and decoder architectures consist of fully connected
layers.

The encoder consists of 2 hidden layers with ReLU activation function and a dimension 128.
There are two output layers, one representing the mean and one for the standard deviation,
without an activation function.

The decoder also consists of 2 hidden layers with ReLU activation function and a dimension
of 128. The activation function differs for the output layer based on the feature type. It can
be either softmax for the one-hot vectors or tanh for the standardized value of the continuous
features within the mode.

The same DataTransformer is used as in the case of CTGAN. The dimensions of each hidden
layer can be adjusted through parameters compress_dims and decompress_dims of TVAE, the
same as the latent space dimension embedding_dim. Other parameters of the model are the
weight decay for the Adam optimizer, factor used in the objective function, the number of
epochs, and batch size.

TVAE is used for oversampling, for example, by Kim et al. [32], who train the model only
on the minority class. In contrast, in the work by Darabi et al. [45], CTGAN, which comes from
the same library, is trained on the whole dataset, and sampling is done by generating synthetic
samples until the needed amount of minority class samples is obtained. In our work, we used
the latter approach for CTGAN, CTAB-GAN, and TVAE. However, we encountered a problem

32 Selected Methods

with haberman dataset, as it is the smallest used. TVAE was not able, in some cases, to learn
to generate minority-class data.

3.9 TAEI

TAEI [45] implementation comes from the library sagemaker-scikit-learn-extension7. This
method can be implemented as an instance of LatentSpaceOversampler, which takes model
and base_oversampler as parameters. We have chosen VAE as the model because AE and
VAE perform the best, as stated in the original article [45], and SMOTE as the oversam-
pler. However, as the article says, any interpolation method can be used. For VAE, the fea-
tures must be divided into categorical and continuous and fed into the model separately in
parameters categorical_features and continuous_features. For the categorical features,
TAEI also takes the dimensions of the features as the parameter categorical_dims. The
sampling_strategy is a parameter of the oversampler that specifies which classes should be
sampled. In our experiment, it is set to minority to get a balanced dataset.

The steps for TAEI are using an encoder to map data to a dense latent space, interpolating
data in the latent space using SMOTE or other interpolation methods, and using a decoder
to map data back to the original feature space. What is more, categorical features have to be
transformed before being used as input to the encoder. Therefore, the embedding layer is applied
first on each sample that is represented by a vector created by concatenation of all features. This
embedding layer’s output is a vector that serves as an input to the encoder.

During the training, reconstruction loss is minimalized. Having both continuous and cate-
gorical features, the reconstruction loss consists of the sum of mean squared error (MSE) and
softmax loss:

Jrecon(D; θ, ϕ) =
∑
xi

|C|∑
c

||hθ(zi)
c − xc

i ||22 + α
∑
xi

|T |∑
t

∑
o

1[xt
i = o] log(hθ(zi)

o)

where x is the input vector, z is the encoder output z = gϕ(x), hθ(z) represents the decoder
mapping, and C and T represent the continuous and categorical features.

After AE training, the oversampler is used for generating synthetic data in the latent space.
Those generated samples are then mapped with the decoder back to the feature space.

3.10 SMOTified-GAN
SMOTified-GAN [49] is not implemented as a part of any library. However, the implementation
from its authors can be found on GitHub 8.

The algorithm has two steps. First, SMOTE is used to oversample the minority class data
the same way as described in Section 3.1. The second step is training GAN with the training
minority class data and oversampled minority data from SMOTE.

The generator consists of 4 blocks of fully connected layers with batch normalization, ReLU
activation function and increasing output dimensions. The last layer is also a fully connected layer
but without batch normalization and with sigmoid as the activation function. Discriminator’s
architecture consists of 3 fully connected hidden layers with LeakyReLU activation function and
shrinking dimensions. The output layer is also a fully connected layer with sigmoid as the
activation function.

7https://github.com/aws/sagemaker-scikit-learn-extension/tree/master/src/sagemaker_sklearn_
extension/contrib/taei

8https://github.com/sydney-machine-learning/GANclassimbalanced/tree/main

https://github.com/aws/sagemaker-scikit-learn-extension/tree/master/src/sagemaker_sklearn_extension/contrib/taei
https://github.com/aws/sagemaker-scikit-learn-extension/tree/master/src/sagemaker_sklearn_extension/contrib/taei
https://github.com/sydney-machine-learning/GANclassimbalanced/tree/main

Summary 33

The objective function of this model is binary cross-entropy between the true and predicted
values. As the optimizer, Adam is used with a learning rate of 0.00001, as stated in the original
article [49].

3.11 Summary
In the experimental part of this thesis, we have chosen 10 oversampling techniques with pub-
licly available implementations, concretely 5 traditional ones, 2 GAN-based, 1 AE-based, and
2 combined. Traditional and combined techniques usually need preprocessing, where features
are transformed using one-hot encoding for categorical features and standardization for contin-
uous features as described in more detail in the following Chapter 4, whereas generative-based
techniques handle preprocessing within their implementations. For a fair comparison, the hyper-
parameters of the methods are set to default values or to values stated in their corresponding
articles, and they are not tuned.

34 Selected Methods

Chapter 4

Implementation

This Chapter describes the implementation details and the experiments. Firstly, the selected
datasets with preprocessing, classifiers, and metrics that are used in the experiments are outlined,
followed by the description of the experiment setup.

4.1 Datasets
For the experiments, 9 datasets were selected. Those datasets appear repeatedly in the reviewed
articles and were chosen such that they have different IR, number of features, and different data
types. They come from KEEL1 [53], imblearn library2, and UCI Machine Learning Reposi-
tory3 [54]. Concretely 6 datasets are coming from KEEL: pima, haberman, abalone9-18, yeast3,
abalone20-vs-8-9-10, and winequality-red-4, 2 from UCI: adult and german, and 1 dataset comes
from imblearn: mammography.

4.1.1 Preprocessing
Preprocessing is an integral part of ML projects working with datasets. The preprocessing
steps are, for example, handling noisy data, imputing null values, removing columns that are
not essential for the ML task, standardization or normalization, and transformation into the
embedding suitable as an input for a machine learning model.

KEEL datasets follow a structure where the target feature is always called Class. Therefore,
all datasets are adjusted so that they match this pattern. What is more, the values of the
target feature are negative and positive for all KEEL datasets. However, as Class represents
a binary feature, those values are transformed into numbers 0 and 1.

For simplicity, we have decided to drop rows containing null values instead of their imputation
as their amount is not significant, and they are mostly coming from the majority class. Duplicates
of rows and constant columns are also removed as they do not bring any new information to the
data. The specifications of each preprocessed dataset can be seen in Table 4.1.

The datasets consist of numerical as well as categorical features. Both types require prepro-
cessing before the dataset can be used by the oversamplers and classifiers. Numerical features
are scaled using StandardScaler4 that for each feature independently subtracts mean µ from

1https://sci2s.ugr.es/keel/datasets.php
2https://imbalanced-learn.org/stable/references/datasets.html
3https://archive.ics.uci.edu/datasets
4https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler

35

https://sci2s.ugr.es/keel/datasets.php
https://imbalanced-learn.org/stable/references/datasets.html
https://archive.ics.uci.edu/datasets
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler

36 Implementation

Name Shape Data types Imbalance Ratio
pima (768, 9) num: 9 1.866
german (1000, 21) cat: 13, num: 8 2.333
haberman (289, 4) num: 4 2.658
adult (45175, 15) cat: 8, num: 7 3.033
yeast3 (1453, 9) num: 9 7.969
abalone9-18 (731, 9) num: 8, cat: 1 16.405
winequality-red-4 (1359, 12) num: 12 24.642
mammography (7849, 7) num: 7 29.902
abalone20-vs-8-9-10 (1916, 9) cat: 1, num: 8 72.692

Table 4.1 Datasets Specification: name of the datasets, shape (number of samples, number of fea-
tures), data types (numerical and categorical), and imbalance ratio

the initial value x and divides this difference by standard deviation σ resulting in a value of
a zero mean and unit variance:

z =
x− µ

σ
.

The categorical features are encoded using OneHotEncoder5 to a one-hot vector. OneHotEn-
coder has a parameter handle_unknown which specifies what should be done when an unknown
category appears in data transformed by this encoder. This can happen during encoding test
data with an encoder fitted to training data. We have chosen to set the value of this parameter
to ignore, which means that the one-hot vector for the unknown categories will contain only zeros
and in the inverse transformation, the value of the category will be None. Both StandardScaler
and OneHotEncoder come from sklearn library.

In the researched works, preprocessing steps differ and are not the same for all, using, for
example, standardization or normalization into [−1, 1] or [0, 1] for continuous features and one-
hot, label, or ordinal encoding for categorical features, making their results incomparable. What
is more, some works do not describe the preprocessing steps at all.

However, standardization and encoding are not needed for all oversampling techniques used in
this thesis. Some of them handle preprocessing by themselves. Concretely, standardization and
one-hot encoding are done for SMOTE, Borderline-SMOTE, Polynomial-Fit-SMOTE, k-means-
SMOTE, LoRAS, and SMOTified-GAN. CTGAN, TVAE, and CTAB-GAN implementations
contain DataTransformer, which is responsible for correct data transformation, as stated in
Chapter 3. TAEI accepts both numerical and categorical data types. However, the categorical
features must be transformed with OrdinalEncoder before they are used by the model and the
continuous features are preprocessed as in the case of traditional oversampling techniques.

4.2 Evaluation Metrics
Several metrics exist for model evaluation, but not all of them are suitable for learning from
imbalanced datasets. Some of the commonly used metrics are overall accuracy, balanced accuracy,
f1-score, G-mean, ROC, and AUC [3].

Most metrics values are calculated from the elements of the confusion matrix that can be
seen in Figure 4.1.

Overall accuracy
Overall accuracy6 is the ratio of the number of correctly classified samples and the number of

5https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder
6Whenever only accuracy is used in this work, it denotes overall accuracy.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder

Evaluation Metrics 37

P
re

di
ct

ed

Actual

Positive (P) Negative (N)

P
os

it
iv

e
(p

)
True Positive

(TP)
False Positive

(FP)

N
eg

at
iv

e
(n

)

False Negative
(FN)

True Negative
(TN)

Figure 4.1 Confusion Matrix

all samples [19].
OA =

TP + TN

TP + TN + FP + FN

This metric is very popular. However, it is not suitable for an imbalanced dataset. For exam-
ple, having a test dataset with 95 majority and 5 minority samples, the classification model can
classify all samples as majority ones, and the OA would still be high, concretely 95 %.

Balanced accuracy
Balanced accuracy (also called average accuracy) is a more suitable metric for imbalanced do-
mains.

BA =
1

2
· (TP

TP + FN
+

TN

TN + FP
)

If a classifier favours one class, BA drops because the performance on the other class is not
accurate. On the contrary, OA stays high even if one class is favoured [3].

F1-score
F1-score represents a harmonic mean of precision and recall.

f1-score = 2 · Precision ·Recall

Precision+Recall

where precision and recall are calculated as follows:

precision =
TP

TP + FP

recall =
TP

TP + FN

F1-score balances those two metrics and tries to keep both of them high [8].

38 Implementation

G-mean
G-mean represents a geometric mean. This metric is more suitable for imbalanced domains than
OA, as it is counted as the root of the product of sensitivity and specificity. G-mean tries to
keep accuracies of both classes balanced [3].

G-mean =

√
TP

TP + FN
· TN

TN + FP

ROC curve
ROC curve measures the performance of a classifier considering all possible trade-offs between
true positive rate (TPR) and false positive rate (FPR) [3].

TPR =
TP

TP + FN

FPR =
FP

FP + TN

AUC
The Area Under The ROC Curve (AUC) is a scalar value representing and summarizing the
ROC curve. Its advantage is that AUC is not biased towards any class.

Having an imbalanced problem, TPR is usually the most important metric, as the minority
class is often the important one. A suitable metric should be chosen based on the problem.
When both classes are supposed to be identified correctly, BA or G-Mean should be selected. If
the goal is to have the highest accuracy, OA can be used. However, there is a chance of poor
performance on the minority class.

In this thesis, we have decided to measure both balanced and overall accuracies. OA may
drop after oversampling because, having an imbalanced dataset, classifiers can be biased towards
the majority class and perform poorly on the minority class, which cannot be captured by this
metric. We also measure the f1-score and its components, precision and recall, since the f1-score
is a suitable metric for learning from imbalanced datasets, and values of its components can give
us additional information about the performance. The last measured metric we use is AUC.

4.3 Classifiers
The selection of a classification model plays a big role in the imbalance dataset problem. As many
evaluation metrics exist, there are also several classifiers that can be used for a binary classifica-
tion. However, some of them are more sensitive to class imbalance than others.

In the work by Gala [55], Logistic Regression (LOGIT), Decision Tree Classifier (DTC), and
Random Forest Classifier (RFC) are used, and the results show that those learners are sensitive
to class imbalance. For this reason, those models are also used in this work.

The results in the work by Lemnaru et al. [3] indicate that the Support Vector Machine (SVM)
is less sensitive to the IDS problem and, as the previous study has shown, DTC is sensitive to
the class imbalance. MLP is less sensitive than DTC but more sensitive than SVM.

The reason why DTC is so popular considering the IDS problem is its simplicity and the
fact that it is built greedily and is not resistant to overfitting. That means that if oversampling
together with DTC results in a good performance, the quality of the generated data is high.

Another classification model is k Neighbors Classifier (KNN), and it is also sensitive to the
quality of the generated samples. As a distance-based learner, the distance between synthetic

Experiment Setup 39

samples and samples in the test set is essential. The distance is the measure of how well the
generated samples approximate the minority class distribution.

Based on the research done as a part of this thesis, 6 repeatedly used classification models,
concretely Decision Tree Classifier, Random Forest Classifier, Logistic Regression, Support Vec-
tor Machine, Multilayer Perceptron, and k Neighbors Classifier are used for evaluation in the
practical part.

4.4 Experiment Setup
As part of this thesis, 10 existing oversampling techniques introduced in Chapter 3 and 1 novel
method presented in the following Chapter 5 are implemented and used for oversampling the
training dataset for the downstream binary classification task of 9 tabular datasets. Together,
we have 11 oversampling techniques, 9 datasets, 6 classifiers, and 6 evaluation metrics. For the
implementation, the Python programming language is used.

First of all, we have to get and preprocess datasets described in Section 4.1. After the data
preparation, for each oversampling technique, one core function scoring_dfs is called with a dif-
ference in the parameter oversampling_func, which returns the oversampled training dataset.
Before the data are oversampled, each dataset is split into train and test sets in a stratified way
to ensure the same data distributions of both sets. The split ratio is 70− 30.

Subsequently, only the training dataset is oversampled. For each oversampling technique, we
measure the time of data generation in seconds. In the case of methods that need training, we
measure this time as well because it is part of the oversampling process. Methods like CTGAN,
TVAE, and CTAB-GAN generate both minority and majority samples. Thus, the class label
is added as a categorical feature, and after the sampling, only synthetic minority samples are
retained. This is repeated until there are sufficient minority-class samples. The same approach
was used in the work by Darabi et al. [45].

As mentioned in Chapter 3, some methods like CTGAN and CTAB-GAN handle the data
transformation themselves, and as the oversampling result, we get data in their original input
format. Therefore, after the data balancing, we use the same standardization and one-hot en-
coding as before the oversampling in the case of SMOTE, Borderline-SMOTE, etc., to get a fair
comparison of the techniques in the downstream tasks.

After having a balanced training dataset, we can measure the performance of the classifica-
tion models. The scoring function takes as a parameter flag, which denotes whether classifiers’
hyperparameters (HPs) should be tuned or left with default values. The HPs are tuned using
grid search that does a complete search over a given grid of parameters. Grid search is done using
10-fold stratified cross-validation over the training dataset and f1-score as the evaluation metric.
The values used for each classification model in the grid search can be found in Appendix C.

HPs of the oversampling techniques are not tuned and are used with their default values or
with values stated in the corresponding articles. For SMOTE, it means, for example, setting
k_neighbors to 5. The same value is the default in all other traditional oversampling techniques
used in our experiment.

After having a classifier with default or tuned HPs, it is fitted to the whole training set, and
predictions are made using the test set. Eventually, each of the 6 metrics is evaluated on the
predictions and true labels.

All those values, namely, oversampled data, oversampling duration, classifiers’ parameters,
obtained results, and classification reports, are stored during the algorithm run for evaluation
and comparison. A pseudo-code of the simplified scoring function without values storing can be
seen in Algorithm 1.

40 Implementation

Algorithm 1 Scoring function
1: procedure scoring_dfs(dfs, clfs,metrics, default_clf, oversampling_func, transform)
2: for df ∈ dfs do
3: X_train, y_train,X_test, y_test← df
4: X_train, y_train← oversampling_func(X_train, y_train)
5: if transform then
6: X_train,X_test ←use one-hot encoding and standardization of

X_train,X_test
7: end if
8: for clf_name ∈ clfs do
9: if defaulf_clf then

10: classifier ← create classifier of clf_name with default HPs
11: else
12: params← get HPs grid for classifier with clf_name
13: classifier ← grid_search(X_train, y_train, params, clf_name,Metrics.f1)
14: end if
15: classifier.fit(X_train, y_train)
16: predicted← classifier.predict(X_test)
17: for metric ∈ metrics do
18: score← metric(y_test, predicted)
19: end for
20: end for
21: end for
22: return
23: end procedure

Chapter 5

Novel Method

In this Chapter, our proposed oversampling technique for the imbalanced tabular dataset of
binary classification problem is presented. The inspiration for its structure is given here, same
as details about the data preprocessing, architecture, training and synthetic data generation.

5.1 Inspiration
In Chapter 2, techniques combining traditional and generative-based methods are introduced,
concretely TAEI and SMOTified-GAN. The idea of TAEI is to use an encoder to map data into
the latent space, oversample in the dense latent space using an arbitrary interpolation technique,
such as SMOTE or Poly, and map the interpolated samples back to the feature space. The idea of
SMOTified-GAN is that SMOTE can create samples that do not match the real data distribution.
Therefore, GAN takes the oversampled minority class samples as input and transforms them to
match the minority class distribution.

Our method combines those two ideas. VAE, together with an interpolation method, is used
to create synthetic minority samples as in TAEI. Those samples are used as input to GAN to
transform them in a similar way as in SMOTified-GAN.

The idea is that oversampling in a dense latent space creates better synthetic samples than
in sparse high-dimensional space, and the quality of those samples is further improved by trans-
formation using GAN to match the minority class distribution. We call our method Latent
Interpolation Tabular GAN (LIT-GAN).

5.2 Preprocessing
Tabular datasets often include a mix of continuous and categorical features. Inspired by CTGAN
and CTAB-GAN, LIT-GAN uses DataTransformer, which is responsible for data transformation
for both types.

The DataTransformer is fitted to the training data, and each feature is handled independently
by the transformer. Continuous features are transformed using VGM, and the result for each
value consists of two parts: a one-hot vector representing a mode and a normalized value within
the mode. The default maximal number of modes is set to 10, the same as in CTGAN and CTAB-
GAN. Categorical features are transformed using one-hot encoding. ClusterBasedNormalizer
and OneHotEncoder from Reversible Data Transforms (rdt1) library are used. Both transformers

1https://docs.sdv.dev/rdt/#owned-and-maintained-by-datacebo

41

https://docs.sdv.dev/rdt/##owned-and-maintained-by-datacebo

42 Novel Method

also implement a method for a reverse transformation. The reverse transformation is used after
synthetic data are sampled by the generator in the oversampling process.

Compared to TAEI, the data preprocessing differs. TAEI, in its original article [45], uses
OrdinalEncoder for categorical features and normalization into [−1, 1] for continuous features.
In the original article of SMOTified-GAN [49], the preprocessing steps are not described, only
mentioned as “basic preprocessing steps”.

5.3 Architecture
LIT-GAN consists of 3 main parts: VAE, oversampler, and GAN. VAE and GAN can be further
divided into encoder Enc and decoder Dec, respectively, generator G and discriminator D. VAE
is optimized to generate data similar to the training data, and GAN is optimized to transform the
output of VAE to match minority class distribution. Our implementation of LIT-GAN is done
using tensorflow 2 library.

The oversampler is given as a parameter of LIT-GAN, and it can be an arbitrary interpo-
lation technique that implements function sample(X,y), as the oversampling methods in the
smote-variants library, which we use in our model. In the experiment, we use SMOTE for the
comparison with TAEI and SMOTified-GAN.

VAE architecture was inspired by TVAE [35], as we use the same preprocessing techniques.
Both Enc and Dec networks contain two fully connected hidden layers with ReLU activation
function. The encoder’s output layers are also fully connected layers, mapping the output of the
last hidden layer to the latent space.

The data are transformed as described in the previous section before they are used as inputs
for the encoder. Nc is the number of continuous features, and Nt is the number of categorical
features. The transformed data structure looks as follows: x = α1 ⊕ β1 ⊕ . . . ⊕ αNc

⊕ βNc
⊕

t1 ⊕ . . . ⊕ tNt
. αi represents the normalized continuous value within the mode after applying

the normalization on the i-th continuous feature. βi represent the one-hot vector for mi modes
of the i-th continuous feature. ti is the one-hot vector for the i-th categorical feature, and ⊕
denotes concatenation of the values.

Having training data x, the architecture of the encoder is:

h0 = x

h1 = ReLU(FC|x|→128(h0))

h2 = ReLU(FC128→128(h1))

µ = FC128→32(h2)

σ = exp(12 · FC128→32(h2))

Having z value counted as:
z = µ+ ϵ · σ

where ϵ ∼ N(0, I), the decoder reconstructs data from the latent space into the feature space.
Its architecture of the hidden layers is the opposite of the encoder’s. The whole decoder network
looks as follows: 

h0 = z

h1 = ReLU(FC32→128(h0))

h2 = ReLU(FC128→128(h1))

α′
i = tanh(FC128→1(h2)) 1 ≤ i ≤ Nc

β′
i = softmax(FC128→mi

(h2)) 1 ≤ i ≤ Nc

t′i = softmax(FC128→|Ti|(h2)) 1 ≤ i ≤ Nt

2https://www.tensorflow.org/

https://www.tensorflow.org/

Tuning 43

The architecture differs from TVAE in the dimensions of the layers.
GAN architecture was inspired by CTGAN and consists of two networks: generator G and

discriminator D. Both are fully connected multi-layer networks. In the case of the generator,
there are 2 hidden layers with batch normalization and ReLU activation function and an output
layer that differs in the activation function based on the feature type. The discriminator contains
2 hidden layers with LeakyReLU activation function and dropout and output layer without an
activation function. The dimensions of the hidden layers of the generator and discriminator are
the same, while the output layer of G has the same dimension as its input, and the D output
layer has a dimension of 1.

Formally, having VAE’s decoder output representing a synthetic minority class sample x′
V =

α′
1 ⊕ β′

1 ⊕ . . .⊕ α′
Nc
⊕ β′

Nc
⊕ t′1 ⊕ . . .⊕ t′Nt

, the generator architecture is:

h0 = x′
V

h1 = ReLU(BN(FC|x̂V |→256(h0)))

h2 = ReLU(BN(FC256→256(h1)))

α̂i = tanh(FC256→1(h2)) 1 ≤ i ≤ Nc

β̂i = gumbel0.2(FC256→mi
(h2)) 1 ≤ i ≤ Nc

t̂i = gumbel0.2(FC256→|Ti|(h2)) 1 ≤ i ≤ Nt

The discriminator architectures for generator’s output x̂G = α̂1⊕ β̂1⊕ . . .⊕ α̂Nc
⊕ β̂Nc

⊕ t̂1⊕
. . .⊕ t̂Nt

is: 
h0 = x̂G

h1 = drop0.5(LeakyReLU0.2(FC|x̂G|→256(h0)))

h2 = drop0.5(LeakyReLU0.2(FC256→256(h1)))

D(·) = FC256→1(h2)

In our network, the generator does not sample from Gaussian noise but takes synthetic
samples generated by VAE as an input. What is more, the real data are not sampled from the
whole training dataset but only from the minority class.

5.4 Tuning
Our method has many parameters that have to be set properly in order to perform well. Those
parameters are optimizer, learning rates, dimensions of network layers, and number of epochs
for VAE and GAN training. The values of those parameters were set based on the results of
grid search using 5-fold cross-validation on training data from abalone9-18 dataset with LOGIT
as the classification model and f1-score as the evaluation metric.

Our method consists of 2 parts: VAE and GAN. As there are many combinations of those
parameters, we first searched the space of parameters for VAE and then for GAN with the
parameters of VAE set by the first step. Finally, having an idea of a possible smaller amount of
suitable parameters for both parts, we searched for the parameters of the whole network. As an
optimizer, Adam is used with a learning rate of 0.0001. The number of epochs for VAE is set
to 300, whereas for GAN, it is 500. The selected dimensions of the layers can be seen in the
previous Section 5.3.

5.5 Training
Training consists of 2 main parts. First, VAE is learned to reconstruct the whole training dataset.
In each epoch, batches of the training dataset are passed through VAE one by one, and the entire

44 Novel Method

Training
Data

Latent
space Reconstructed

Data

Update

Encoder Decoder

Figure 5.1 LIT-GAN: VAE Training

VAE network is trained by optimizing the reconstruction loss and Kullback-Leibler divergence:

KLD =
1

2

|batch|∑
i

(µ2
i + σ2

i − 1− log(σ2
i))

where µ and σ are values obtained from the encoder.
The VAE training procedure is outlined in Algorithm 2 and in Figure 5.1.

Algorithm 2 LIT-GAN: VAE Training
procedure train_vae(train_data)

batches← create batches from train_data
for epoch ∈ vae_epochs do

for batch ∈ batches do
mu, std, logvar ← encoder(batch)
eps← sample from N(0, I)
z ← eps · std+mu
reconstruction, sigmas← decoder(z)
loss← calculate loss
compute and apply gradients

end for
end for
return

end procedure

The second phase is GAN training. The generator and discriminator are trained as a tradi-
tional unconditional GAN with Wasserstein loss with a gradient penalty (Eq. 2.4). In each epoch,
the encoder is applied to the whole training dataset to map it into the latent space. There, an
oversampler, such as SMOTE, is used to generate minority samples, which are mapped back to
the original space using the decoder. Those synthetic samples are divided into batches, and each
batch is used as input for the generator. The same number of observations is randomly sampled
from the training data of the minority class. The output of the generator and the sampled mi-
nority data are then used as input for the discriminator. The goal is for the generator to produce
samples that are indistinguishable from the real minority samples. GAN training procedure can
be seen in Algorithm 3 and in Figure 5.2.

Compared to SMOTified-GAN, LIT-GAN in each GAN training epoch uses its VAE and
oversampler to create minority-class synthetic samples, whereas SMOTified-GAN uses the same
synthetic samples across all epochs. We have chosen our approach based on the similarity with
data generation from noise, where the noise is sampled also in each epoch.

Finally, the whole LIT-GAN training procedure can be seen in Algorithm 4.

Training 45

Algorithm 3 LIT-GAN: GAN Training
procedure train_gan(train_data, y)

for epoch ∈ gan_epochs do
mu← encoder(batch)
x_sampled, y_sampled← oversampler(mu, y)
x_decoded← decoder(x_sampled)
batches← create batches from x_decoded
for batch ∈ batches do

fakes← generator(batch)
reals← sample minority data from train_data
y_fake← discriminator(fakes)
y_real ← discriminator(reals)
loss← calculate loss for generator and discriminator
compute and apply gradients

end for
end for
return

end procedure

SMOTE

Generator

Oversampled
Data (Min)

Reconstructed
Data (Min)

Training
Data (Min)

Regenerated
Data (Min)

Oversampled
Data (Min)

Update

Training
Data

Latent
space

Discriminator

Encoder Decoder

Figure 5.2 LIT-GAN: GAN Training: (Min) denotes data belonging to the minority class.

46 Novel Method

Algorithm 4 LIT-GAN Training
procedure train(X, y, categorical_columns)

train_data← transform X with DataTransformer
train_data_dim← dimension of the train_data
initialize encoder, decoder, generator, discriminator with correct dimensions
train_vae(train_data)
train_gan(train_data, y)
return

end procedure

5.6 Sampling
Sampling of the synthetic data is done after the whole network consisting of VAE and GAN
is trained. The encoder is used to map the train data into the latent space. In the latent space,
the oversampler creates synthetic minority samples that are mapped back to the original space
with the decoder. Next, the generator is applied to the output of the decoder to create final
synthetic minority samples. The last step is transforming those samples back to the feature space
with a reverse transformation of the DataTransformer instance fitted to the training dataset,
as described in Section 5.2. The sampling procedure can be seen in Algorithm 5.

Algorithm 5 LIT-GAN Sampling
procedure sample

train_data← transformed training data with DataTransformer
mu← encoder(train_data)
x_sampled, y_sampled← oversampler(mu, y)
x_decoded← decoder(x_sampled)
x_synthetic← generator(x_decoded)
return x_synthetic, y_sampled

end procedure

Chapter 6

Results

In this Chapter, the results of the experiments are presented. The methods are compared based
on their duration and performance using different classification methods and evaluation metrics
on the selected datasets that are described in Chapter 4. In some of the presented tables, the
names of the oversampling techniques and datasets had to be shortened due to space limitations.

6.1 Performance
In this Section, we present the results of evaluating the classification models on all 9 datasets.
The measurement was first done on the original imbalanced datasets and then on the datasets
oversampled by techniques presented in Chapter 3.

As mentioned in Chapter 4, the scoring function has a parameter which decides if each
classifier should be used with default hyperparameters or tuned through grid search. We have
run the oversampling 3 times with different random seeds for the train-test split. Then, the
classifiers were fitted to those oversampled datasets with HPs tuning and without HPs tuning
for all 3 runs, and the results were averaged.

6.1.1 Results Without Tuned Classifiers Hyperparameters
By running the program more times with a different random seed, we retrieved the mean and
standard deviation of the results. This is done as follows: we take the results from all runs for
each dataset, the oversampling technique, and the classification method separately, and then we
compute the mean and standard deviation. For each technique and dataset, the result of the
classifier with the best average score is taken.

The average f1-score and accuracy of those runs for each technique and dataset can be seen
in Tables 6.1 and 6.2. Results for all other measured metrics are in Appendix B. Only the
result of the best-performing classifier, together with the mean value, standard deviation, and
the difference from the best average result of a classification done using the original imbalance
dataset, are shown. The datasets are sorted by their imbalance ratios in ascending order. The
imbalance ratios can be found in Table 4.1. The highest score for each dataset is highlighted.

It can be seen that we do not have the result for the combination of k-means-SMOTE and
abalone9-18 dataset. This is caused by the problem described in Section 3.5. The oversampling
resulted in an error while creating the clusters. Even a high number of clusters did not help to
overcome this problem.

47

48
R

esults

dataset none lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan

pima
MLP
0.658
±.028

MLP
0.657
±.042
(-0.001)

SVM
0.687
±.033
(0.029)

LOGIT
0.686
±.05
(0.028)

MLP
0.691
±.037
(0.033)

MLP
0.664
±.033
(0.006)

SVM
0.679
±.044
(0.021)

LOGIT
0.665
±.043
(0.007)

LOGIT
0.678
±.033
(0.02)

SVM
0.675
±.058
(0.017)

RFC
0.689
±.042
(0.031)

MLP
0.681
±.043
(0.023)

german
MLP
0.522
±.027

LOGIT
0.571
±.027
(0.049)

SVM
0.591
±.026
(0.069)

SVM
0.61
±.019
(0.088)

LOGIT
0.582
±.034
(0.06)

LOGIT
0.5
±.0
(-0.022)

LOGIT
0.599
±.037
(0.077)

RFC
0.565
±.04
(0.043)

LOGIT
0.576
±.015
(0.054)

SVM
0.594
±.026
(0.072)

LOGIT
0.555
±.025
(0.033)

LOGIT
0.543
±.022
(0.021)

haberman
DTC
0.401
±.097

RFC
0.455
±.108
(0.054)

MLP
0.514
±.031
(0.113)

MLP
0.509
±.066
(0.108)

MLP
0.515
±.073
(0.114)

LOGIT
0.388
±.032
(-0.013)

MLP
0.514
±.032
(0.113)

RFC
0.463
±.033
(0.062)

RFC
0.426
±.0
(0.025)

MLP
0.489
±.003
(0.088)

RFC
0.512
±.065
(0.111)

MLP
0.471
±.068
(0.07)

adult
RFC
0.677
±.001

LOGIT
0.679
±.005
(0.002)

LOGIT
0.688
±.001
(0.011)

RFC
0.678
±.002
(0.001)

LOGIT
0.693
±.003
(0.016)

RFC
0.68
±.003
(0.003)

LOGIT
0.688
±.001
(0.011)

LOGIT
0.673
±.011
(-0.004)

RFC
0.674
±.005
(-0.003)

LOGIT
0.681
±.003
(0.004)

LOGIT
0.682
±.005
(0.005)

RFC
0.678
±.002
(0.001)

yeast3
MLP
0.783
±.037

RFC
0.786
±.014
(0.003)

RFC
0.776
±.053
(-0.007)

DTC
0.717
±.018
(-0.066)

RFC
0.76
±.044
(-0.023)

RFC
0.77
±.03
(-0.013)

RFC
0.781
±.02
(-0.002)

RFC
0.786
±.022
(0.003)

RFC
0.775
±.024
(-0.008)

RFC
0.763
±.024
(-0.02)

RFC
0.751
±.035
(-0.032)

MLP
0.759
±.051
(-0.024)

abalone9-18
MLP
0.559
±.114

MLP
0.508
±.126
(-0.051)

SVM
0.552
±.054
(-0.007)

SVM
0.493
±.074
(-0.066)

MLP
0.539
±.039
(-0.02)

nan

SVM
0.524
±.042
(-0.035)

MLP
0.55
±.086
(-0.009)

SVM
0.493
±.054
(-0.066)

SVM
0.241
±.01
(-0.318)

MLP
0.497
±.07
(-0.062)

SVM
0.57
±.057
(0.011)

winequality-red-4
DTC
0.097
±.032

RFC
0.21
±.029
(0.113)

MLP
0.184
±.015
(0.087)

SVM
0.228
±.034
(0.131)

LOGIT
0.178
±.01
(0.081)

LOGIT
0.236
±.052
(0.139)

KNN
0.21
±.053
(0.113)

KNN
0.197
±.083
(0.1)

SVM
0.216
±.005
(0.119)

DTC
0.145
±.021
(0.048)

KNN
0.234
±.064
(0.137)

SVM
0.129
±.007
(0.032)

mammography
MLP
0.69
±.011

RFC
0.637
±.052
(-0.053)

RFC
0.664
±.015
(-0.026)

RFC
0.522
±.022
(-0.168)

RFC
0.596
±.025
(-0.094)

MLP
0.68
±.019
(-0.01)

RFC
0.683
±.003
(-0.007)

RFC
0.43
±.055
(-0.26)

RFC
0.61
±.08
(-0.08)

RFC
0.66
±.009
(-0.03)

RFC
0.502
±.043
(-0.188)

RFC
0.674
±.023
(-0.016)

abalone-20-vs-8-9-10
MLP
0.414
±.094

MLP
0.46
±.111
(0.046)

MLP
0.378
±.016
(-0.036)

MLP
0.452
±.041
(0.038)

MLP
0.374
±.019
(-0.04)

LOGIT
0.417
±.0
(0.003)

MLP
0.406
±.051
(-0.008)

MLP
0.354
±.06
(-0.06)

DTC
0.326
±.135
(-0.088)

DTC
0.107
±.023
(-0.307)

MLP
0.251
±.072
(-0.163)

MLP
0.454
±.041
(0.04)

Table 6.1 F1-score without Classifiers HPs Tuning: Best performing classifier, mean value, standard deviation of the results, and difference from the
results obtained on the original dataset. The best result is highlighted.

P
erform

ance
49

dataset none lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan

pima
MLP
0.773
±.029

MLP
0.749
±.043
(-0.024)

SVM
0.768
±.033
(-0.005)

RFC
0.755
±.048
(-0.018)

MLP
0.771
±.036
(-0.002)

MLP
0.759
±.036
(-0.014)

RFC
0.763
±.033
(-0.01)

RFC
0.742
±.027
(-0.031)

LOGIT
0.763
±.036
(-0.01)

MLP
0.752
±.029
(-0.021)

RFC
0.763
±.043
(-0.01)

MLP
0.773
±.035
(0.0)

german
RFC
0.757
±.007

RFC
0.743
±.008
(-0.014)

RFC
0.751
±.006
(-0.006)

RFC
0.754
±.013
(-0.003)

RFC
0.759
±.01
(0.002)

RFC
0.753
±.0
(-0.004)

RFC
0.761
±.006
(0.004)

RFC
0.714
±.019
(-0.043)

RFC
0.747
±.022
(-0.01)

RFC
0.751
±.013
(-0.006)

RFC
0.731
±.011
(-0.026)

RFC
0.758
±.009
(0.001)

haberman
SVM
0.739
±.02

MLP
0.72
±.022
(-0.019)

MLP
0.701
±.049
(-0.038)

MLP
0.697
±.069
(-0.042)

MLP
0.732
±.047
(-0.007)

SVM
0.724
±.034
(-0.015)

MLP
0.716
±.038
(-0.023)

MLP
0.693
±.033
(-0.046)

MLP
0.609
±.0
(-0.13)

SVM
0.67
±.069
(-0.069)

MLP
0.682
±.029
(-0.057)

MLP
0.72
±.053
(-0.019)

adult
RFC
0.85
±.001

RFC
0.844
±.002
(-0.006)

RFC
0.837
±.001
(-0.013)

RFC
0.837
±.001
(-0.013)

RFC
0.847
±.001
(-0.003)

RFC
0.849
±.002
(-0.001)

RFC
0.839
±.0
(-0.011)

RFC
0.84
±.002
(-0.01)

RFC
0.835
±.004
(-0.015)

RFC
0.848
±.0
(-0.002)

RFC
0.824
±.005
(-0.026)

RFC
0.851
±.001
(0.001)

yeast3
MLP
0.953
±.006

RFC
0.952
±.003
(-0.001)

RFC
0.947
±.012
(-0.006)

DTC
0.931
±.004
(-0.022)

MLP
0.942
±.004
(-0.011)

RFC
0.946
±.007
(-0.007)

RFC
0.949
±.008
(-0.004)

RFC
0.952
±.005
(-0.001)

RFC
0.95
±.004
(-0.003)

RFC
0.95
±.003
(-0.003)

RFC
0.944
±.01
(-0.009)

MLP
0.948
±.008
(-0.005)

abalone9-18
LOGIT
0.964
±.006

MLP
0.942
±.019
(-0.022)

MLP
0.92
±.011
(-0.044)

RFC
0.927
±.026
(-0.037)

MLP
0.927
±.011
(-0.037)

nan

RFC
0.944
±.006
(-0.02)

MLP
0.952
±.013
(-0.012)

LOGIT
0.924
±.017
(-0.04)

RFC
0.909
±.006
(-0.055)

MLP
0.911
±.021
(-0.053)

MLP
0.959
±.006
(-0.005)

winequality-red-4
KNN
0.962
±.003

KNN
0.927
±.006
(-0.035)

RFC
0.929
±.015
(-0.033)

RFC
0.922
±.016
(-0.04)

RFC
0.881
±.015
(-0.081)

RFC
0.954
±.008
(-0.008)

RFC
0.956
±.004
(-0.006)

KNN
0.948
±.008
(-0.014)

RFC
0.922
±.007
(-0.04)

RFC
0.958
±.003
(-0.004)

KNN
0.891
±.031
(-0.071)

RFC
0.96
±.001
(-0.002)

mammography
MLP
0.983
±.001

RFC
0.972
±.007
(-0.011)

RFC
0.975
±.001
(-0.008)

RFC
0.953
±.005
(-0.03)

RFC
0.965
±.004
(-0.018)

RFC
0.981
±.002
(-0.002)

RFC
0.982
±.001
(-0.001)

RFC
0.93
±.016
(-0.053)

RFC
0.969
±.009
(-0.014)

RFC
0.98
±.0
(-0.003)

RFC
0.953
±.009
(-0.03)

RFC
0.982
±.001
(-0.001)

abalone-20-vs-8-9-10
MLP
0.988
±.002

MLP
0.984
±.006
(-0.004)

RFC
0.977
±.004
(-0.011)

RFC
0.98
±.001
(-0.008)

MLP
0.974
±.004
(-0.014)

RFC
0.988
±.0
(0.0)

RFC
0.987
±.001
(-0.001)

KNN
0.977
±.004
(-0.011)

RFC
0.979
±.006
(-0.009)

RFC
0.976
±.001
(-0.012)

KNN
0.945
±.008
(-0.043)

MLP
0.989
±.001
(0.001)

Table 6.2 Accuracy without Classifiers HPs Tuning: Best performing classifier, mean value, standard deviation of the results, and difference from the
results obtained on the original dataset. The best result is highlighted.

50 Results

results lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan
better 6 5 6 5 4 5 5 4 5 5 7
same 0 0 0 0 0 0 0 0 0 0 0
worse 3 4 3 4 4 4 4 5 4 4 2
avg diff [%] 1.8 2.59 1.04 1.41 1.16 3.14 -1.31 -0.3 -4.96 -1.42 1.76
avg std 0.008 -0.022 -0.013 -0.017 -0.02 -0.018 -0.001 -0.01 -0.029 -0.002 -0.014

Table 6.3 F1-score without Classifiers HPs Tuning Summary: Table shows how many times classi-
fication with the oversampled dataset for each technique gives better, the same, or worse f1-score than
classification on the original dataset. Avg diff and avg std are the average differences from means and
standard deviations obtained on the original datasets. Avg diff is presented in percentages.

From the obtained values, we computed how many times each method has performed better,
the same, or worse than using original imbalanced data for the classification1. The results for
the f1-score can be seen in Table 6.3.

There we can see that none of the oversampling techniques has improved the average f1-score
over 3 runs for all datasets. This result supports the fact that dealing with the IDS problem
is not an easy task. The maximum number of improvements is for 7 out of 9 datasets, and it
was achieved by SMOTified-GAN. LIT-GAN and Borderline-SMOTE improved the classification
result in 6 cases considering the f1-score. SMOTE, Poly, LoRAS, CTGAN, TAEI, and CTAB-
GAN improved the classification results for 5 datasets. TVAE and k-means-SMOTE were better
in 4 cases.

The second part of the table shows the average differences of means and standard deviations
from no oversampling over all datasets. A better average of mean differences for the f1-score over
all datasets was the best for LoRAS, followed by SMOTE, our method LIT-GAN, SMOTified-
GAN, Poly, k-means-SMOTE, and Borderline-SMOTE. The rest of the methods resulted in
a worse average difference from no oversampling.

Looking at the standard deviations, only LIT-GAN has a positive average value of the dif-
ferences between its standard deviation and standard deviation of no oversampling. This means
that its results vary the most.

In Table 6.1, we can also see that RFC and MLP classification models gave the best results
across all datasets in 31 cases each, followed by LOGIT and SVM, which gave the best results
in 21 and 15 cases respectively.

Comparing only LIT-GAN, SMOTified-GAN and TAEI, as our method combines ideas of
the latter two, the ratio for being better, the same, or worse than classification with an original
dataset for the f1-score, SMOTified-GAN gave the best result 7-0-2. Our method is worse for
one more dataset as its result is 6-0-3, and TAEI is worse for one more dataset. However, LIT-
GAN has the highest average difference of means from no oversampling from those 3 techniques.
Considering only this value, TAEI actually gives the worst result out of all the methods.

Table 6.4 shows the results summary for the accuracy as the evaluation metric. As expected,
the accuracy usually lowers after oversampling because it is not a suitable metric for classification
on imbalanced datasets, as the classification models can get biased towards the majority class.
However, there are oversampling techniques that improve the average accuracy for at least one
dataset. Those are Poly, LoRAS, and SMOTified-GAN, where SMOTified-GAN gave higher
accuracy 3 times. What is more, SMOTified-GAN and k-means-SMOTE had the same average
accuracy as the classification without oversampling in one case. Other methods resulted in worse
average accuracy than results obtained on the original imbalanced dataset.

Looking at the average of differences between accuracies obtained on oversampled datasets
and original ones, SMOTified-GAN gives the best results, followed by k-means-SMOTE, Lo-

1For shortening, in this chapter we use only the names of the oversampling techniques for the results meaning
the results of a classification obtained using a dataset oversampled with a given technique. The classification
results obtained on the original dataset we denote as no oversampling.

Performance 51

results lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan
better 0 0 0 1 0 1 0 0 0 0 3
same 0 0 0 0 1 0 0 0 0 0 1
worse 9 9 9 8 7 8 9 9 9 9 5
avg diff [%] -1.51 -1.82 -2.37 -1.9 -0.64 -0.8 -2.46 -3.01 -1.94 -3.61 -0.32
avg std 0.005 0.006 0.012 0.006 0.003 0.002 0.006 0.003 0.005 0.01 0.004

Table 6.4 Accuracy without Classifiers HPs Tuning Summary: Table shows how many times classifi-
cation with the oversampled dataset for each technique gives better, the same, or worse accuracy value
than classification on the original dataset. Avg diff and avg std are the average differences from means
and standard deviations obtained on the original datasets. Avg diff is presented in percentages.

metric none lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan
balanced accuracy 0 1 3 2 3 0 1 0 0 0 0 0
accuracy 6 0 0 0 0 0 1 0 0 0 0 3
f1-score 1 2 0 1 3 1 0 1 0 0 0 1
auc 0 1 3 2 3 0 1 0 0 0 0 0
precision 7 0 0 0 0 0 0 0 0 0 0 2
recall 0 1 1 4 1 0 1 0 0 1 2 0
total 14 5 7 9 10 1 4 1 0 1 2 6

Table 6.5 Best Results without Classifiers HPs Tuning: This table shows the number of times each
oversampling technique (or no oversampling) gave the best score for a given metric.

RAS, LIT-GAN, SMOTE, Poly, TAEI, Borderline-SMOTE, CTGAN, TVAE, and CTAB-GAN.
However, all those values are negative, meaning that the accuracy lowers on average. The aver-
age difference of standard deviations is the biggest for Borderline-SMOTE. However, this value
is positive for all techniques, meaning that the standard deviations are higher on average than
the standard deviations obtained on classification with the original dataset. The best results
from Table 6.2 that were summarized in Table 6.4 were achieved mainly by RFC.

Table 6.5 shows the number of times each method gave the best average results over 3 runs
with different random seeds. It summarises highlighted values from Tables 6.1 and 6.2 for the
f1-score and accuracy and values from Tables in Appendix B for all other evaluation metrics.

Classification without oversampling, considering the f1-score as an evaluation metric, gave
the best results for mammography dataset. This dataset has the second highest imbalance ratio,
concretely 29.902. Our method LIT-GAN performed the best in average for yeast3 dataset and
abalone-20-vs-8-9-10. The second dataset has the highest imbalanced ratio of all used datasets,
and its value is 72.692. The biggest number of the best average f1-score has Poly oversampling
technique, giving the best results for 3 datasets. Considering the accuracy as an evaluation
metric, classification without oversampling gives the best result 6 times, followed by SMOTified-
GAN with 3 wins and LoRAS with 1 best score.

Focusing only on the combined oversampling techniques, our method is the best considering
the f1-score, whereas SMOTified-GAN is the winner for most datasets for the accuracy.

When we look at BA, Poly and SMOTE achieved the best results 3 times. Focusing on AUC,
those two techniques again dominate the number of wins. Borderline-SMOTE is the winner in
most of the cases considering recall. Recall shows how many times the positive samples were
classified correctly. We can see that the obtained results were always better than no oversampling
for at least one of the oversampling methods for all datasets. On the other hand, looking at the
best precision, no oversampling dominates on most datasets; only SMOTified-GAN is better for
2 out of 9 datasets. This means that for oversampled datasets, more false positives appear. In
the total number of wins across all measured metrics, Poly gives the highest number from the
oversampling techniques, followed by Borderline-SMOTE, SMOTE, SMOTified-GAN, and our
method LIT-GAN in the fifth place.

52 Results

6.1.2 Results With Tuned Classifiers Hyperparameters
We have run the classification on oversampled datasets for all techniques also 3 times with classi-
fiers’ HPs tuning. The tuning was done with grid search using 10-fold stratified cross-validation
on the original or balanced training dataset. Some of the classification models, concretely SVM,
KNN, DTC, and MLP, are also used in another article comparing traditional oversampling meth-
ods [6] with HPs tuning. Inspired by this article, we use the same HPs value options for those
classifiers within the grid search. The choices of parameters can be found in Appendix C. We use
the same oversampled data as in the case of classification without tuning the hyperparameters
instead of rerunning the whole oversampling procedure. The best average results over the 3 runs
can be seen in Tables 6.6 and 6.7 for the f1-score and accuracy, and their summaries can be seen
in Tables 6.8 and 6.9. Results for other evaluation metrics can be found in Appendix B.

When the HPs of classifiers are tuned, the best performance lowers for 1 out of 9 datasets
than in the case of no HPs tuning for the f1-score. Looking at the average differences of the
f1-score in Table 6.8, the results indicate that the differences became smaller or even worse for
most of the methods in favour of no oversampling. The same holds for the standard deviation
differences for most of the methods. There, the average differences of standard deviations from no
oversampling are bigger for LIT-GAN, SMOTE, Poly, LoRAS, CTGAN, and SMOTified-GAN.

We can see that in the case of the f1-score, LIT-GAN has 1 same score as no oversampling
and 5 higher scores. The ratios of winner-same-worse are the same or worse than in the case
of no HPs tuning, except for k-means-SMOTE and LoRAS. LoRAS is better for 7 datasets,
which is the highest number. Other methods achieved better results than no oversampling for 5
datasets at most.

In Table 6.6, RFC, followed by MLP and LOGIT, gave the best results in most cases.
Considering only LIT-GAN, SMOTified-GAN, and TAEI, our method has the best ratio of

being better-same-worse than no oversampling. However, SMOTified-GAN, has higher average
differences of means for the f1-score.

Looking at the accuracy, most of the classifications with oversampling obtained worse results
than those without oversampling. RFC is the classification model that gave the best results
considering the accuracy in more than half of the cases. The average of differences from no
oversampling in Table 6.9 is the best for SMOTified-GAN, followed by k-means-SMOTE, LoRAS,
and our method in the fourth place. SMOTified-GAN and LoRAS achieved higher accuracy for
2 datasets than no oversampling. SMOTE, Poly, k-means-SMOTE and TAEI were better for
1 dataset. The other techniques performed worse than the classification done on the original
dataset for all datasets considering the accuracy.

Comparing only combined oversampling techniques LIT-GAN, TAEI, ald SMOTified-GAN,
our method LIT-GAN gave the worst ratio of being better-same-worse than no oversampling
considering the accuracy. However, the average differences of means and the average difference
of standard deviations from no oversampling are higher, respectively lower, for LIT-GAN than
for TAEI.

P
erform

ance
53

dataset none lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan

pima
RFC
0.636
±.028

SVM
0.644
±.045
(0.008)

LOGIT
0.684
±.046
(0.048)

LOGIT
0.687
±.052
(0.051)

RFC
0.683
±.036
(0.047)

RFC
0.668
±.031
(0.032)

SVM
0.68
±.043
(0.044)

SVM
0.666
±.043
(0.03)

LOGIT
0.678
±.033
(0.042)

LOGIT
0.673
±.058
(0.037)

MLP
0.669
±.018
(0.033)

LOGIT
0.678
±.049
(0.042)

german
MLP
0.562
±.02

SVM
0.571
±.025
(0.009)

SVM
0.589
±.023
(0.027)

SVM
0.612
±.017
(0.05)

LOGIT
0.581
±.033
(0.019)

LOGIT
0.497
±.0
(-0.065)

LOGIT
0.599
±.037
(0.037)

RFC
0.576
±.036
(0.014)

LOGIT
0.576
±.015
(0.014)

SVM
0.592
±.017
(0.03)

MLP
0.552
±.033
(-0.01)

LOGIT
0.54
±.02
(-0.022)

haberman
DTC
0.391
±.075

DTC
0.457
±.006
(0.066)

MLP
0.476
±.077
(0.085)

MLP
0.488
±.079
(0.097)

MLP
0.501
±.092
(0.11)

LOGIT
0.405
±.025
(0.014)

MLP
0.457
±.06
(0.066)

RFC
0.475
±.007
(0.084)

DTC
0.426
±.0
(0.035)

RFC
0.501
±.043
(0.11)

RFC
0.527
±.044
(0.136)

MLP
0.477
±.061
(0.086)

adult
RFC
0.679
±.002

LOGIT
0.679
±.005
(0.0)

LOGIT
0.688
±.001
(0.009)

RFC
0.68
±.004
(0.001)

LOGIT
0.693
±.003
(0.014)

RFC
0.681
±.004
(0.002)

LOGIT
0.688
±.001
(0.009)

RFC
0.674
±.005
(-0.005)

RFC
0.675
±.006
(-0.004)

LOGIT
0.682
±.002
(0.003)

LOGIT
0.682
±.005
(0.003)

LOGIT
0.679
±.008
(0.0)

yeast3
MLP
0.783
±.037

RFC
0.778
±.018
(-0.005)

RFC
0.765
±.038
(-0.018)

RFC
0.731
±.033
(-0.052)

RFC
0.758
±.04
(-0.025)

RFC
0.767
±.028
(-0.016)

RFC
0.787
±.027
(0.004)

RFC
0.784
±.022
(0.001)

RFC
0.759
±.024
(-0.024)

DTC
0.772
±.031
(-0.011)

DTC
0.786
±.029
(0.003)

DTC
0.768
±.041
(-0.015)

abalone9-18
LOGIT
0.618
±.079

MLP
0.501
±.123
(-0.117)

MLP
0.543
±.06
(-0.075)

SVM
0.517
±.07
(-0.101)

MLP
0.555
±.065
(-0.063)

nan

MLP
0.579
±.067
(-0.039)

MLP
0.515
±.109
(-0.103)

SVM
0.493
±.054
(-0.125)

LOGIT
0.236
±.015
(-0.382)

MLP
0.513
±.047
(-0.105)

LOGIT
0.597
±.087
(-0.021)

winequality-red-4
KNN
0.122
±.043

RFC
0.219
±.066
(0.097)

MLP
0.193
±.05
(0.071)

LOGIT
0.229
±.036
(0.107)

LOGIT
0.177
±.009
(0.055)

LOGIT
0.239
±.054
(0.117)

KNN
0.22
±.044
(0.098)

SVM
0.193
±.03
(0.071)

KNN
0.235
±.049
(0.113)

LOGIT
0.132
±.005
(0.01)

KNN
0.239
±.062
(0.117)

LOGIT
0.128
±.014
(0.006)

mammography
MLP
0.691
±.021

RFC
0.648
±.05
(-0.043)

RFC
0.665
±.005
(-0.026)

RFC
0.521
±.012
(-0.17)

RFC
0.61
±.022
(-0.081)

MLP
0.697
±.019
(0.006)

RFC
0.692
±.011
(0.001)

RFC
0.436
±.047
(-0.255)

RFC
0.61
±.08
(-0.081)

RFC
0.663
±.027
(-0.028)

RFC
0.497
±.044
(-0.194)

RFC
0.674
±.023
(-0.017)

abalone-20-vs-8-9-10
LOGIT
0.421
±.058

MLP
0.442
±.091
(0.021)

MLP
0.387
±.073
(-0.034)

MLP
0.369
±.055
(-0.052)

MLP
0.389
±.088
(-0.032)

SVM
0.4
±.0
(-0.021)

MLP
0.414
±.092
(-0.007)

MLP
0.351
±.073
(-0.07)

MLP
0.288
±.054
(-0.133)

MLP
0.157
±.061
(-0.264)

MLP
0.252
±.071
(-0.169)

MLP
0.478
±.071
(0.057)

Table 6.6 F1-score with Classifiers HPs Tuning: Best performing classifier, mean value, standard deviation of the results, and difference from the results
obtained on the original dataset. The best result is highlighted.

54
R

esults

dataset none lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan

pima
RFC
0.763
±.032

MLP
0.745
±.028
(-0.018)

RFC
0.769
±.037
(0.006)

RFC
0.756
±.047
(-0.007)

MLP
0.763
±.039
(0.0)

RFC
0.768
±.033
(0.005)

RFC
0.766
±.037
(0.003)

RFC
0.743
±.023
(-0.02)

LOGIT
0.763
±.036
(0.0)

LOGIT
0.743
±.05
(-0.02)

RFC
0.749
±.037
(-0.014)

MLP
0.768
±.039
(0.005)

german
RFC
0.754
±.007

RFC
0.726
±.026
(-0.028)

RFC
0.743
±.012
(-0.011)

RFC
0.753
±.007
(-0.001)

RFC
0.757
±.014
(0.003)

RFC
0.747
±.0
(-0.007)

RFC
0.756
±.01
(0.002)

RFC
0.719
±.019
(-0.035)

MLP
0.73
±.031
(-0.024)

RFC
0.758
±.007
(0.004)

RFC
0.732
±.01
(-0.022)

RFC
0.759
±.008
(0.005)

haberman
SVM
0.739
±.02

MLP
0.728
±.029
(-0.011)

MLP
0.678
±.074
(-0.061)

MLP
0.674
±.087
(-0.065)

MLP
0.724
±.056
(-0.015)

SVM
0.732
±.033
(-0.007)

MLP
0.67
±.062
(-0.069)

RFC
0.67
±.057
(-0.069)

DTC
0.598
±.0
(-0.141)

SVM
0.67
±.069
(-0.069)

MLP
0.69
±.038
(-0.049)

MLP
0.728
±.046
(-0.011)

adult
RFC
0.852
±.001

RFC
0.845
±.004
(-0.007)

RFC
0.843
±.007
(-0.009)

RFC
0.844
±.007
(-0.008)

RFC
0.849
±.003
(-0.003)

RFC
0.851
±.003
(-0.001)

RFC
0.839
±.0
(-0.013)

RFC
0.842
±.004
(-0.01)

RFC
0.836
±.006
(-0.016)

RFC
0.848
±.0
(-0.004)

RFC
0.825
±.006
(-0.027)

RFC
0.851
±.001
(-0.001)

yeast3
MLP
0.953
±.006

RFC
0.95
±.003
(-0.003)

RFC
0.943
±.01
(-0.01)

RFC
0.93
±.02
(-0.023)

RFC
0.942
±.014
(-0.011)

RFC
0.945
±.006
(-0.008)

RFC
0.95
±.009
(-0.003)

RFC
0.952
±.005
(-0.001)

RFC
0.947
±.0
(-0.006)

RFC
0.949
±.004
(-0.004)

DTC
0.948
±.008
(-0.005)

RFC
0.95
±.004
(-0.003)

abalone9-18
MLP
0.962
±.002

MLP
0.938
±.018
(-0.024)

MLP
0.93
±.013
(-0.032)

RFC
0.924
±.024
(-0.038)

MLP
0.935
±.012
(-0.027)

nan

RFC
0.942
±.004
(-0.02)

MLP
0.947
±.015
(-0.015)

MLP
0.924
±.02
(-0.038)

RFC
0.909
±.006
(-0.053)

MLP
0.92
±.014
(-0.042)

LOGIT
0.961
±.006
(-0.001)

winequality-red-4
SVM
0.961
±.0

RFC
0.927
±.016
(-0.034)

RFC
0.922
±.019
(-0.039)

RFC
0.924
±.018
(-0.037)

MLP
0.894
±.022
(-0.067)

RFC
0.958
±.003
(-0.003)

RFC
0.953
±.004
(-0.008)

KNN
0.944
±.0
(-0.017)

RFC
0.922
±.008
(-0.039)

RFC
0.958
±.003
(-0.003)

KNN
0.894
±.031
(-0.067)

RFC
0.961
±.0
(0.0)

mammography
MLP
0.983
±.001

RFC
0.973
±.006
(-0.01)

RFC
0.975
±.0
(-0.008)

RFC
0.953
±.004
(-0.03)

RFC
0.967
±.004
(-0.016)

RFC
0.981
±.002
(-0.002)

RFC
0.982
±.001
(-0.001)

RFC
0.933
±.013
(-0.05)

RFC
0.969
±.009
(-0.014)

RFC
0.98
±.002
(-0.003)

RFC
0.954
±.009
(-0.029)

RFC
0.982
±.001
(-0.001)

abalone-20-vs-8-9-10
LOGIT
0.989
±.001

MLP
0.983
±.005
(-0.006)

MLP
0.978
±.003
(-0.011)

RFC
0.98
±.001
(-0.009)

MLP
0.978
±.004
(-0.011)

RFC
0.986
±.0
(-0.003)

RFC
0.987
±.001
(-0.002)

KNN
0.976
±.001
(-0.013)

RFC
0.977
±.007
(-0.012)

RFC
0.976
±.002
(-0.013)

MLP
0.941
±.014
(-0.048)

MLP
0.989
±.001
(0.0)

Table 6.7 Accuracy with Classifiers HPs tuning: Best performing classifier, mean value, standard deviation of the results, and difference from the results
obtained on the original dataset. The best result is highlighted.

Change of Interpolation Method 55

results lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan
better 5 5 5 5 5 7 5 4 5 5 4
same 1 0 0 0 0 0 0 0 0 0 1
worse 3 4 4 4 3 2 4 5 4 4 4
avg diff [%] 0.4 0.97 -0.77 0.49 0.86 2.37 -2.59 -1.81 -5.5 -2.07 1.29
avg std 0.007 0.001 -0.001 0.003 -0.015 0.002 0.001 -0.005 -0.012 -0.001 0.001

Table 6.8 F1-score with Classifiers HPs Tuning Summary: Table shows how many times classification
with the oversampled dataset for each technique gives better, the same, or worse f1-score than classifica-
tion on the original dataset. Avg diff and avg std are the average differences from means and standard
deviations obtained on the original datasets. Avg diff is presented in percentages.

results lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan
better 0 1 0 1 1 2 0 0 1 0 2
same 0 0 0 1 0 0 0 1 0 0 2
worse 9 8 9 7 7 7 9 8 8 9 5
avg diff [%] -1.57 -1.94 -2.42 -1.63 -0.32 -1.23 -2.56 -3.22 -1.83 -3.37 -0.08
avg std 0.007 0.012 0.016 0.011 0.002 0.006 0.007 0.005 0.008 0.011 0.004

Table 6.9 Accuracy with Classifiers HPs Tuning Summary: Table shows how many times classification
with the oversampled dataset for each technique gives better, the same, or worse accuracy value than
classification on the original dataset. Avg diff and avg std are the average differences from means and
standard deviations obtained on the original datasets. Avg diff is presented in percentages.

The winning times for each method and evaluation metric can be seen in Table 6.10 for
all measured metrics. Looking at those metrics, our method is the best for 1 dataset in the
case of BA, AUC, and recall. Compared to the results without classifiers’ HPs tuning, where
Poly gave the best results, here we can see that from the oversampling techniques, Borderline-
SMOTE performs the best, considering the number of being the winner across all metrics. The
numbers for classification without oversampling are the same compared to the classification
without HPs tuning, except for the accuracy. When the classifiers’ hyperparameters are tuned,
no oversampling is the best for one more dataset for the accuracy as the evaluation metric.

metric none lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan
balanced accuracy 0 1 1 3 1 0 2 0 0 0 1 0
accuracy 7 0 1 0 0 0 0 0 0 0 0 3
f1-score 1 0 0 2 1 2 1 0 0 0 2 1
auc 0 1 1 3 1 0 2 0 0 0 1 0
precision 7 0 0 0 0 0 0 0 0 0 0 2
recall 0 1 1 5 0 0 1 0 0 1 1 0
total 15 3 4 13 3 2 6 0 0 1 5 6

Table 6.10 Best Results with Classifiers HPs Tuning: This table shows the number of times each
oversampling technique (or no oversampling) gave the best score for a given metric.

6.2 Change of Interpolation Method
As mentioned in Chapter 5, LIT-GAN can be used together with any interpolation method, such
as SMOTE. For a comparison with TAEI and SMOTified-GAN, we used SMOTE in the previous
experiments. In this Section, we compare LIT-GAN performance with different interpolation
methods as its oversampler, concretely SMOTE, Poly, and Borderline-SMOTE. We use Poly
with the Mesh topology, and from the Borderline-SMOTE variants, we use Borderline-SMOTE2.

56 Results

The experiment was done as in Section 6.1.1. The hyperparameters of classifiers were not tuned,
and the program ran 3 times with different random seeds. The resulting average f1-score and
accuracy of those 3 runs can be seen in Tables 6.11 and 6.13. A summary of the comparison of
LIT-GAN variants and the classification done on the original dataset can be seen in Tables 6.12
and 6.14. For the rest of the evaluation metrics, the results can be found in Appendix B.

dataset none litgan-smote litgan-poly litgan-borderline

pima
MLP
0.658
±.028

MLP
0.657
±.042
(-0.001)

LOGIT
0.668
±.045
(0.01)

MLP
0.659
±.021
(0.001)

german
MLP
0.522
±.027

LOGIT
0.571
±.027
(0.049)

SVM
0.569
±.028
(0.047)

SVM
0.57
±.041
(0.048)

haberman
DTC
0.401
±.097

RFC
0.455
±.108
(0.054)

RFC
0.375
±.092
(-0.026)

RFC
0.409
±.072
(0.008)

adult
RFC
0.677
±.001

LOGIT
0.679
±.005
(0.002)

LOGIT
0.675
±.005
(-0.002)

LOGIT
0.68
±.003
(0.003)

yeast3
MLP
0.783
±.037

RFC
0.786
±.014
(0.003)

RFC
0.781
±.016
(-0.002)

RFC
0.775
±.029
(-0.008)

abalone9-18
MLP
0.559
±.114

MLP
0.508
±.126
(-0.051)

RFC
0.465
±.058
(-0.094)

MLP
0.575
±.1
(0.016)

winequality-red-4
DTC
0.097
±.032

RFC
0.21
±.029
(0.113)

MLP
0.233
±.05
(0.136)

SVM
0.235
±.052
(0.138)

mammography
MLP
0.69
±.011

RFC
0.637
±.052
(-0.053)

RFC
0.606
±.021
(-0.084)

RFC
0.649
±.043
(-0.041)

abalone-20-vs-8-9-10
MLP
0.414
±.094

MLP
0.46
±.111
(0.046)

MLP
0.335
±.105
(-0.079)

MLP
0.399
±.072
(-0.015)

Table 6.11 F1-score of LIT-GAN Variants: Best performing classifier, mean value, standard devi-
ation of the results, and difference from the results obtained on the original dataset. The best result
is highlighted.

Based on Table 6.11 and 6.12, we can see that none of the interpolation techniques used within
LIT-GAN achieved a higher f1-score on the mammography dataset, which is a dataset with the
second highest IR from those used in our work. The average difference between the f1-score
measured on the oversampled dataset and the f1-score of classification without oversampling
of the training dataset is positive for LIT-GAN + SMOTE and LIT-GAN + Borderline-SMOTE
interpolation methods, with the higher value for the first mentioned.

If we look at the number of times each oversampling method gave a higher f1-score than no
oversampling, we can see that again LIT-GAN + SMOTE and LIT-GAN + Borderline-SMOTE
resulted in having the same result, concretely being better for 6 datasets out of 9, LIT-GAN + Poly
performed better for less than a half of the datasets, being better only on pima, german, and

Change of Interpolation Method 57

results litgan-smote litgan-poly litgan-borderline
better 6 3 6
same 0 0 0
worse 3 6 3
avg diff [%] 1.8 -1.04 1.67
avg std 0.008 -0.002 -0.001

Table 6.12 F1-score of LIT-GAN Variants Summary: Table shows how many times classification with
the oversampled dataset for each variant gives better, the same, or worse f1-score than classification on
the original dataset. Avg diff and avg std are the average differences from means and standard deviations
obtained on the original datasets. Avg diff is presented in percentages.

winequality-red-4 datasets.

dataset none litgan-smote litgan-poly litgan-borderline

pima
MLP
0.773
±.029

MLP
0.749
±.043
(-0.024)

MLP
0.762
±.032
(-0.011)

MLP
0.76
±.026
(-0.013)

german
RFC
0.757
±.007

RFC
0.743
±.008
(-0.014)

RFC
0.749
±.018
(-0.008)

RFC
0.746
±.009
(-0.011)

haberman
SVM
0.739
±.02

MLP
0.72
±.022
(-0.019)

RFC
0.617
±.096
(-0.122)

MLP
0.674
±.053
(-0.065)

adult
RFC
0.85
±.001

RFC
0.844
±.002
(-0.006)

RFC
0.845
±.001
(-0.005)

RFC
0.845
±.003
(-0.005)

yeast3
MLP
0.953
±.006

RFC
0.952
±.003
(-0.001)

RFC
0.951
±.002
(-0.002)

RFC
0.95
±.006
(-0.003)

abalone9-18
LOGIT
0.964
±.006

MLP
0.942
±.019
(-0.022)

KNN
0.941
±.004
(-0.023)

MLP
0.959
±.011
(-0.005)

winequality-red-4
KNN
0.962
±.003

KNN
0.927
±.006
(-0.035)

MLP
0.902
±.023
(-0.06)

RFC
0.955
±.003
(-0.007)

mammography
MLP
0.983
±.001

RFC
0.972
±.007
(-0.011)

RFC
0.968
±.003
(-0.015)

RFC
0.975
±.005
(-0.008)

abalone-20-vs-8-9-10
MLP
0.988
±.002

MLP
0.984
±.006
(-0.004)

KNN
0.973
±.011
(-0.015)

MLP
0.988
±.001
(0.0)

Table 6.13 Accuracy of LIT-GAN Variants: Best performing classifier, mean value, standard devi-
ation of the results, and difference from the results obtained on the original dataset. The best result
is highlighted.

Looking at the accuracy in Table 6.13, the classification model trained on the original training

58 Results

results litgan-smote litgan-poly litgan-borderline
better 0 0 0
same 0 0 1
worse 9 9 8
avg diff [%] -1.51 -2.9 -1.3
avg std 0.005 0.013 0.005

Table 6.14 Accuracy of LIT-GAN Variants Summary: Table shows how many times classification
with the oversampled dataset for each variant gives better, the same, or worse accuracy value than
classification on the original dataset. Avg diff and avg std are the average differences from means and
standard deviations obtained on the original datasets. Avg diff is presented in percentages.

metric none litgan-smote litgan-poly litgan-borderline
balanced accuracy 0 7 2 0
accuracy 9 0 0 1
f1-score 1 4 1 3
auc 0 7 2 0
precision 9 0 0 0
recall 0 6 3 0
total 19 24 8 4

Table 6.15 Best Results of LIT-GAN Variants: This table shows the number of times each variant
or no oversampling gave the best score for a given metric.

dataset gave the best accuracy value for all 9 datasets. However, this is not surprising, as men-
tioned in Section 6.1.1. From LIT-GAN variants, only LIT-GAN + Borderline-SMOTE achieved
the same accuracy on abalone-20-vs-8-9-10 dataset.

Table 6.15 shows the number of winning times for each LIT-GAN variant for all measured
metrics. LIT-GAN + SMOTE has the highest number of winning times for all metrics, except
for the accuracy and precision, where no oversampling dominates. There, we can also see that
LIT-GAN + Poly has more wins than LIT-GAN + Borderline-SMOTE focusing on BA, AUC,
and recall.

We also measured the duration of oversampling using different interpolation methods. The
results are in seconds and can be seen in Table 6.16. The datasets are sorted in ascending order
based on their size. The differences are not significant. However, LIT-GAN + SMOTE is the
slowest, except for the 2 biggest datasets. On those 2 datasets LIT-GAN + Borderline-SMOTE
takes the longest time to oversample.

To summarize, 2 LIT-GAN variants give better results, considering the f1-score for more than
half of the datasets, concretely 6 out of 9. Those variants are LIT-GAN + SMOTE and LIT-
GAN + Borderline-SMOTE. Considering the average difference of mean values from no oversam-
pling, LIT-GAN + SMOTE would be a better option because it gives a higher average difference
for the f1-score. On the other hand, the differences in standard deviations from no oversampling
are, on average, smaller for LIT-GAN + Borderline-SMOTE. From the accuracy point of view,
LIT-GAN + Borderline-SMOTE is the only variant that achieved at least the same value for one
dataset as no oversampling. However, looking at Table 6.15, LIT-GAN + SMOTE dominates
from the presented LIT-GAN variants for all metrics, except for the accuracy. Considering this
fact, LIT-GAN + SMOTE would be the best choice from the proposed variants. From the dura-
tion point of view, for the smaller datasets, LIT-GAN variants with Poly and Borderline-SMOTE
are faster, but as the number of samples increases, LIT-GAN +SMOTE again dominates.

Time 59

dataset litgan-smote litgan-poly litgan-borderline
haberman 115.7614 104.0266 103.7043
abalone9-18 510.9182 428.072 456.4113
pima 311.6711 265.483 257.9664
german 505.3241 420.2579 427.5395
winequality-red-4 1055.5894 859.2533 897.6886
yeast3 454.6102 418.8299 432.1946
abalone-20_vs_8-9-10 671.3989 642.7156 768.59
mammography 1586.2494 1687.5678 1711.9607
adult 4365.0659 5034.1993 5296.1138

Table 6.16 Duration of LIT-GAN Variants in Seconds

6.3 Time
Next to the classification performance, we also measured the duration of oversampling for each
technique. The results are in Table 6.17. The times are averaged from the 3 oversampling runs
with different random seeds. The datasets are sorted in increasing order based on the number of
observations. As we do not have results for the combination of k-means-SMOTE and abalone9-18
dataset, the duration is not presented.

dataset lit-gan (ours) smote borderline poly k_means loras ctgan tvae taei ctab_gan smotified_gan
haberman 115.7614 0.0037 0.0047 0.0012 0.0188 0.84 10.4762 4.4451 12.2716 10.2554 10.9292
abalone9-18 510.9182 0.0047 0.0058 0.002 nan 6.4497 35.0422 23.326 17.6299 52.1691 27.0309
pima 311.6711 0.005 0.0073 0.0013 0.0329 0.9895 37.0067 16.614 22.6001 56.5302 27.7271
german 505.3241 0.0125 0.0164 0.0016 0.4592 2.3454 73.9081 21.2383 34.0925 86.9136 39.9359
winequality-red-4 1055.5894 0.0045 0.0065 0.0025 0.466 9.8999 70.1114 48.916 24.156 104.3212 49.8295
yeast3 454.6102 0.0045 0.0078 0.0022 0.0786 5.081 35.4325 17.6938 35.1945 66.5927 45.8387
abalone-20_vs_8-9-10 671.3989 0.0044 0.0064 0.0045 0.8463 29.4004 41.3515 55.8164 40.4723 89.1225 69.4966
mammography 1586.2494 0.0054 0.0099 0.0079 1.1386 25.0117 125.5668 53.6856 217.3072 143.6011 527.0128
adult 4365.0659 0.1439 0.3459 0.0491 1.4829 85.9357 643.0461 202.9194 1794.6873 1109.6364 4724.0642

Table 6.17 Oversampling Durations in Seconds

We can see that traditional methods are much faster than those using generative models. This
is due to the fact that generative-based techniques require training of the networks, whereas the
traditional ones do not. LIT-GAN, as it combines two generative networks and one interpolation
method, takes the longest time for oversampling, except for adult dataset, where SMOTified-
GAN takes the longest time. The two networks of LIT-GAN have to be trained sequentially
because GAN is dependent on the VAE output. SMOTE, Borderline-SMOTE, and Poly take
less than a second to oversample each one of the datasets. k-means-SMOTE takes more than
one second to oversample the two largest datasets, mammography and adult. LoRAS, one of the
newest traditional methods, takes more than 85 seconds to oversample for the biggest dataset.

6.4 Discussion
Based on our experiments, traditional oversampling methods are the best choice from the dura-
tion point of view. The reason is that GANs and AEs need training, and traditional methods do
not, which can be seen as their advantage.

When it comes to the evaluation with the f1-score as the evaluation metric, there is no
method that would outperform others on all datasets. If we consider only the number of best
performances across all measured metrics, Poly performs the best when classifiers’ HPs are not
tuned, and Borderline-SMOTE is the best when they are tuned.

60 Results

Our method, LIT-GAN, gives competitive results to other oversampling techniques. However,
as it combines two generative models, its downside is the time consumption.

From the results of our experiment, we can see that traditional oversampling methods also
outperform the generative ones when it comes to being better than no oversampling on average on
all datasets while using the f1-score and accuracy as the evaluation metrics. From the combined
techniques, LIT-GAN and SMOTified-GAN give competitive results considering the f1-score. In
the case of experiments with HPs tuning of the classifiers, SMOTified-GAN gives the highest
average difference from the classification with no oversampling over all datasets for the accuracy
and second highest for the f1-score.

Looking at data preprocessing, generative-based techniques handle the preprocessing of cate-
gorical and continuous features within their architectures, which is not the case for traditional
methods. In fact, to the best of our knowledge, only SMOTE-NC is a traditional oversam-
pling technique that handles categorical features explicitly. Other techniques need external
preprocessing, such as one-hot encoding. This can be seen as a disadvantage of traditional
methods compared to the generative-based ones. Focusing on the combined techniques, our
implementation handles the data preprocessing in the same way as generative-based methods,
while SMOTified-GAN needs external preprocessing. For TAEI, categorical features have to be
embedded externally using an OrdinalEncoder before they are used as an input of TAEI, and
continuous features have to be preprocessed as in the case of traditional techniques.

Chapter 7

Conclusion

The aim of this thesis was to do an extensive survey of the existing oversampling techniques for
imbalanced binary classification tabular datasets, select at least five of them, and implement,
evaluate and compare those selected techniques. What is more, a new oversampling technique
had to be presented, implemented, and compared to the other techniques, and the results should
have been discussed.

There exist dozens of methods, especially the traditional ones, together with their overviews
like the one presented by Kovács [6]. In Chapter 2, we have outlined commonly used traditional
and generative-based methods and their combinations. Chapter 3 contains a more detailed de-
scription of the selected 10 methods used in this work for comparison and performance evaluation.
Chapter 4 consists of the description of the used metrics, classifiers, and datasets, together with
the implementation details of the experiments. In this thesis, we use 6 classification models, 6
evaluation metrics, and 9 datasets. In Chapter 5, our novel oversampling technique, which we
called Latent Interpolation Tabular GAN, is presented. Details about the data preprocessing
and its architecture, the same as LIT-GAN training and synthetic data generation, are pre-
sented there. Chapter 6 shows the performance of the techniques using combinations of different
classification models and metrics, durations of oversampling for each combination of oversam-
pling technique and dataset, comparison of the methods, and discussion over the results and
advantages and disadvantages of the techniques.

7.1 Contribution
In this thesis, we present a novel oversampling technique for tabular data balancing in the binary
classification problem. We call our method Latent Interpolation Tabular GAN (LIT-GAN). It
is competitive with other oversampling techniques, considering performance. LIT-GAN can
be used together with datasets of both numerical and categorical features. The oversampling
approach of LIT-GAN combines the ideas of two other methods, concretely TAEI and SMOTified-
GAN, to generate synthetic data matching the minority class distribution. However, we use
different preprocessing steps, the architecture of the network, and the training of GAN also
slightly differs from SMOTified-GAN.

What is more, in the research part of our work, we present 28 techniques that can be used
for oversampling the training dataset. However, articles on those oversampling techniques use
different preprocessing steps, experiment setup, and evaluation metrics, making their results
incomparable. We have done a comparison of selected traditional, generative-based and combined
techniques using 6 classification models and 6 evaluation metrics on 9 datasets frequently used
in works that focus on the IDS problem.

61

62 Conclusion

7.2 Future Work
Given the results presented in Chapter 6, the novel method LIT-GAN does not systematically
outperform SMOTified-GAN, although LIT-GAN adopts SMOTified-GAN idea. However, the
preprocessing, architecture, and training processes differ in LIT-GAN. All those steps have an
effect on the oversampling quality. Therefore, as future work, different preprocessing can be used
for LIT-GAN.

What is more, our method accepts as a parameter oversampler. The oversampler can be any
interpolation method such as SMOTE, Borderline-SMOTE, or Poly, as shown in Section 6.2.
A comparison of more interpolation techniques within our method could be a possible extension
of this thesis.

Furthermore, as we measured the performance on each dataset more times, statistical tests like
the Friedman test could be used to compare the oversampling techniques to determine whether
classifications on the oversampled datasets perform similarly or not. The same holds for different
LIT-GAN variants, such as the ones presented in Section 6.2.

Last but not least, although this thesis concentrates on tabular datasets for binary clas-
sification, as a future work, the idea of LIT-GAN could be extended for multi-class dataset
classification problems.

Bibliography

1. KLOUDA, Karel. Strojové učení 1: Supervizované učení, klasifikační úloha, rozhodovací
stromy [online]. 2022. [visited on 2023-09-08]. Available from: https://courses.fit.
cvut.cz/BI-ML1/lectures/files/BI-ML1-02-cs-handout.pdf. [File available after
signing into CTU website - copy of this file is available on the attached CD].

2. FRIEDJUNGOVÁ, Magda. Předzpracování dat: Úvod, analýza dat, validace a čištění [on-
line]. 2023. [visited on 2023-09-09]. Available from: https://courses.fit.cvut.cz/NI-
PDD/tutorials/index.html. [File available after signing into CTU website - copy of this
file is available on the attached CD].

3. LEMNARU, Camelia; POTOLEA, Rodica. Imbalanced Classification Problems: Systematic
Study, Issues and Best Practices. In: ZHANG, Runtong; ZHANG, Juliang; ZHANG, Zhenji;
FILIPE, Joaquim; CORDEIRO, José (eds.). Enterprise Information Systems. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2012, pp. 35–50. isbn 978-3-642-29958-2.

4. CHAWLA, Nitesh V. Data Mining for Imbalanced Datasets: An Overview. In: Data Mining
and Knowledge Discovery Handbook. Ed. by MAIMON, Oded; ROKACH, Lior. Boston, MA:
Springer US, 2010, pp. 875–886. isbn 978-0-387-09823-4. Available from doi: 10.1007/978-
0-387-09823-4_45.

5. VISA, Sofia; RALESCU, Anca. Issues in mining imbalanced data sets-a review paper. In:
Proceedings of the sixteen midwest artificial intelligence and cognitive science conference.
sn, 2005, vol. 2005, pp. 67–73.

6. KOVÁCS, György. An empirical comparison and evaluation of minority oversampling tech-
niques on a large number of imbalanced datasets. Applied Soft Computing. 2019, vol. 83,
p. 105662. issn 1568-4946. Available from doi: https://doi.org/10.1016/j.asoc.2019.
105662.

7. HE, Haibo; GARCIA, Edwardo A. Learning from Imbalanced Data. IEEE Transactions on
Knowledge and Data Engineering. 2009, vol. 21, no. 9, pp. 1263–1284. Available from doi:
10.1109/TKDE.2008.239.

8. CANUMA, Pronce. How to Deal With Imbalanced Classification and Regression Data [on-
line]. Neptune AI, 2023 [visited on 2023-09-10]. Available from: https://neptune.ai/
blog/how-to-deal-with-imbalanced-classification-and-regression-data.

9. KRAWCZYK, Bartosz. Learning from imbalanced data: Open challenges and future direc-
tions. Progress in Artificial Intelligence. 2016, vol. 5. Available from doi: 10.1007/s13748-
016-0094-0.

10. GAZZAH, Sami; ESSOUKRI BEN AMARA, Najoua. New Oversampling Approaches Based
on Polynomial Fitting for Imbalanced Data Sets. In: 2008, pp. 677–684. Available from doi:
10.1109/DAS.2008.74.

63

https://courses.fit.cvut.cz/BI-ML1/lectures/files/BI-ML1-02-cs-handout.pdf
https://courses.fit.cvut.cz/BI-ML1/lectures/files/BI-ML1-02-cs-handout.pdf
https://courses.fit.cvut.cz/NI-PDD/tutorials/index.html
https://courses.fit.cvut.cz/NI-PDD/tutorials/index.html
https://doi.org/10.1007/978-0-387-09823-4_45
https://doi.org/10.1007/978-0-387-09823-4_45
https://doi.org/https://doi.org/10.1016/j.asoc.2019.105662
https://doi.org/https://doi.org/10.1016/j.asoc.2019.105662
https://doi.org/10.1109/TKDE.2008.239
https://neptune.ai/blog/how-to-deal-with-imbalanced-classification-and-regression-data
https://neptune.ai/blog/how-to-deal-with-imbalanced-classification-and-regression-data
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1109/DAS.2008.74

64 Bibliography

11. LING, Charles X.; SHENG, Victor S. Cost-Sensitive Learning. In: Encyclopedia of Machine
Learning. Ed. by SAMMUT, Claude; WEBB, Geoffrey I. Boston, MA: Springer US, 2010,
pp. 231–235. isbn 978-0-387-30164-8. Available from doi: 10.1007/978-0-387-30164-
8_181.

12. GOODFELLOW, Ian J.; POUGET-ABADIE, Jean; MIRZA, Mehdi; XU, Bing; WARDE-
FARLEY, David; OZAIR, Sherjil; COURVILLE, Aaron; BENGIO, Yoshua. Generative
Adversarial Networks. 2014. Available from arXiv: 1406.2661 [stat.ML].

13. HAN, Hui; WANG, Wen-Yuan; MAO, Bing-Huan. Borderline-SMOTE: A New Over-Sampling
Method in Imbalanced Data Sets Learning. In: HUANG, De-Shuang; ZHANG, Xiao-Ping;
HUANG, Guang-Bin (eds.). Advances in Intelligent Computing. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 878–887. isbn 978-3-540-31902-3.

14. CHAWLA, N. V.; BOWYER, K. W.; HALL, L. O.; KEGELMEYER, W. P. SMOTE:
Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research.
2002, vol. 16, pp. 321–357. Available from doi: 10.1613/jair.953.

15. BATISTA, Gustavo; PRATI, Ronaldo; MONARD, Maria-Carolina. Balancing Strategies
and Class Overlapping. In: 2005, pp. 24–35. isbn 3-540-28795-7. Available from doi: 10.
1007/11552253_3.

16. FERNÁNDEZ, Alberto; GARCÍA, Salvador; HERRERA, Francisco; CHAWLA, N. SMOTE
for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year An-
niversary. J. Artif. Intell. Res. 2018, vol. 61, pp. 863–905. Available also from: https:
//api.semanticscholar.org/CorpusID:3373087.

17. BARUA, Sukarna; ISLAM, Md. Monirul; MURASE, Kazuyuki. ProWSyn: Proximity Weight-
ed Synthetic Oversampling Technique for Imbalanced Data Set Learning. In: PEI, Jian;
TSENG, Vincent S.; CAO, Longbing; MOTODA, Hiroshi; XU, Guandong (eds.). Advances
in Knowledge Discovery and Data Mining. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 317–328. isbn 978-3-642-37456-2.

18. BEJ, Saptarshi; DAVTYAN, Narek; WOLFIEN, Markus; NASSAR, Mariam; WOLKEN-
HAUER, Olaf. LoRAS: An oversampling approach for imbalanced datasets. 2020. Available
from arXiv: 1908.08346 [cs.LG].

19. HE, Haibo; BAI, Yang; GARCIA, Edwardo A.; LI, Shutao. ADASYN: Adaptive synthetic
sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference
on Neural Networks (IEEE World Congress on Computational Intelligence). 2008, pp. 1322–
1328. Available from doi: 10.1109/IJCNN.2008.4633969.

20. BUNKHUMPORNPAT, Chumphol; SINAPIROMSARAN, Krung; LURSINSAP, Chidcha-
nok. Safe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEchnique for Han-
dling the Class Imbalanced Problem. In: THEERAMUNKONG, Thanaruk; KIJSIRIKUL,
Boonserm; CERCONE, Nick; HO, Tu-Bao (eds.). Advances in Knowledge Discovery and
Data Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 475–482. isbn 978-
3-642-01307-2.

21. DANG, Xuan Tho; TRAN, Dang Hung; HIROSE, Osamu; SATOU, Kenji. SPY: A Novel
Resampling Method for Improving Classification Performance in Imbalanced Data. In: 2015
Seventh International Conference on Knowledge and Systems Engineering (KSE). 2015,
pp. 280–285. Available from doi: 10.1109/KSE.2015.24.

22. JO, Duke Taeho; JAPKOWICZ, Nathalie. Class imbalances versus small disjuncts. SIGKDD
Explorations. 2004, vol. 6, pp. 40–49. Available from doi: 10.1145/1007730.1007737.

23. CIESLAK, David; CHAWLA, Nitesh; STRIEGEL, Aaron. Combating imbalance in network
intrusion datasets. In: 2006, pp. 732–737. Available from doi: 10.1109/GRC.2006.1635905.

https://doi.org/10.1007/978-0-387-30164-8_181
https://doi.org/10.1007/978-0-387-30164-8_181
https://arxiv.org/abs/1406.2661
https://doi.org/10.1613/jair.953
https://doi.org/10.1007/11552253_3
https://doi.org/10.1007/11552253_3
https://api.semanticscholar.org/CorpusID:3373087
https://api.semanticscholar.org/CorpusID:3373087
https://arxiv.org/abs/1908.08346
https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.1109/KSE.2015.24
https://doi.org/10.1145/1007730.1007737
https://doi.org/10.1109/GRC.2006.1635905

Bibliography 65

24. BARUA, Sukarna; ISLAM, Md. Monirul; YAO, Xin; MURASE, Kazuyuki. MWMOTE–
Majority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning.
IEEE Transactions on Knowledge and Data Engineering. 2014, vol. 26, no. 2, pp. 405–425.
Available from doi: 10.1109/TKDE.2012.232.

25. DOUZAS, Georgios; BACAO, Fernando; LAST, Felix. Improving imbalanced learning through
a heuristic oversampling method based on k-means and SMOTE. Information Sciences.
2018, vol. 465, pp. 1–20. issn 0020-0255. Available from doi: https://doi.org/10.1016/
j.ins.2018.06.056.

26. CHAWLA, Nitesh V.; LAZAREVIC, Aleksandar; HALL, Lawrence O.; BOWYER, Kevin
W. SMOTEBoost: Improving Prediction of the Minority Class in Boosting. In: LAVRAČ,
Nada; GAMBERGER, Dragan; TODOROVSKI, Ljupčo; BLOCKEEL, Hendrik (eds.).
Knowledge Discovery in Databases: PKDD 2003. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2003, pp. 107–119. isbn 978-3-540-39804-2.

27. FREUND, Yoav; SCHAPIRE, Robert E. Experiments with a New Boosting Algorithm.
In: Proceedings of the Thirteenth International Conference on International Conference
on Machine Learning. Bari, Italy: Morgan Kaufmann Publishers Inc., 1996, pp. 148–156.
ICML’96. isbn 1558604197.

28. GUO, Hongyu; VIKTOR, Herna. Learning from imbalanced data sets with boosting and
data generation: The DataBoost-IM approach. SIGKDD Explorations. 2004, vol. 6, pp. 30–
39. Available from doi: 10.1145/1007730.1007736.

29. CHEN, Sheng; HE, Haibo; GARCIA, Edwardo A. RAMOBoost: Ranked Minority Oversam-
pling in Boosting. IEEE Transactions on Neural Networks. 2010, vol. 21, no. 10, pp. 1624–
1642. Available from doi: 10.1109/TNN.2010.2066988.

30. PARK, Noseong; MOHAMMADI, Mahmoud; GORDE, Kshitij; JAJODIA, Sushil; PARK,
Hongkyu; KIM, Youngmin. Data synthesis based on generative adversarial networks. Pro-
ceedings of the VLDB Endowment. 2018, vol. 11, no. 10, pp. 1071–1083. issn 2150-8097.
Available from doi: 10.14778/3231751.3231757.

31. RADFORD, Alec; METZ, Luke; CHINTALA, Soumith. Unsupervised Representation Learn-
ing with Deep Convolutional Generative Adversarial Networks. 2016. Available from arXiv:
1511.06434 [cs.LG].

32. KIM, Jayoung; LEE, Chaejeong; SHIN, Yehjin; PARK, Sewon; KIM, Minjung; PARK,
Noseong; CHO, Jihoon. SOS: Score-based Oversampling for Tabular Data. 2022. Available
from arXiv: 2206.08555 [cs.LG].

33. XU, Lei; VEERAMACHANENI, Kalyan. Synthesizing Tabular Data using Generative Ad-
versarial Networks. 2018. Available from arXiv: 1811.11264 [cs.LG].

34. QUINTANA, Matias; MILLER, Clayton. Towards Class-Balancing Human Comfort Datasets
with GANs. 2019. Available from doi: 10.1145/3360322.3361016.

35. XU, Lei; SKOULARIDOU, Maria; CUESTA-INFANTE, Alfredo; VEERAMACHANENI,
Kalyan. Modeling Tabular data using Conditional GAN. 2019. Available from arXiv: 1907.
00503 [cs.LG].

36. EOM, Gayeong; BYEON, Haewon. Searching for Optimal Oversampling to Process Im-
balanced Data: Generative Adversarial Networks and Synthetic Minority Over-Sampling
Technique. Mathematics. 2023, vol. 11, no. 16. issn 2227-7390. Available from doi: 10.
3390/math11163605.

37. ENGELMANN, Justin; LESSMANN, Stefan. Conditional Wasserstein GAN-based over-
sampling of tabular data for imbalanced learning. Expert Systems with Applications. 2021,
vol. 174, p. 114582. issn 0957-4174. Available from doi: https://doi.org/10.1016/j.
eswa.2021.114582.

https://doi.org/10.1109/TKDE.2012.232
https://doi.org/https://doi.org/10.1016/j.ins.2018.06.056
https://doi.org/https://doi.org/10.1016/j.ins.2018.06.056
https://doi.org/10.1145/1007730.1007736
https://doi.org/10.1109/TNN.2010.2066988
https://doi.org/10.14778/3231751.3231757
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/2206.08555
https://arxiv.org/abs/1811.11264
https://doi.org/10.1145/3360322.3361016
https://arxiv.org/abs/1907.00503
https://arxiv.org/abs/1907.00503
https://doi.org/10.3390/math11163605
https://doi.org/10.3390/math11163605
https://doi.org/https://doi.org/10.1016/j.eswa.2021.114582
https://doi.org/https://doi.org/10.1016/j.eswa.2021.114582

66 Bibliography

38. MIRZA, Mehdi; OSINDERO, Simon. Conditional Generative Adversarial Nets. 2014. Avail-
able from arXiv: 1411.1784 [cs.LG].

39. ARJOVSKY, Martin; CHINTALA, Soumith; BOTTOU, Léon. Wasserstein GAN. 2017.
Available from arXiv: 1701.07875 [stat.ML].

40. JANG, Eric; GU, Shixiang; POOLE, Ben. Categorical Reparameterization with Gumbel-
Softmax. 2017. Available from arXiv: 1611.01144 [stat.ML].

41. GULRAJANI, Ishaan; AHMED, Faruk; ARJOVSKY, Martin; DUMOULIN, Vincent; COUR-
VILLE, Aaron. Improved Training of Wasserstein GANs. 2017. Available from arXiv: 1704.
00028 [cs.LG].

42. ZHAO, Zilong; KUNAR, Aditya; BIRKE, Robert; CHEN, Lydia Y. CTAB-GAN: Effective
Table Data Synthesizing. In: BALASUBRAMANIAN, Vineeth N.; TSANG, Ivor (eds.).
Proceedings of The 13th Asian Conference on Machine Learning. PMLR, 2021, vol. 157,
pp. 97–112. Proceedings of Machine Learning Research. Available also from: https://
proceedings.mlr.press/v157/zhao21a.html.

43. GRADSTEIN, Jonathan; SALHOV, Moshe; TULPAN, Yoav; LINDENBAUM, Ofir; AVER-
BUCH, Amir. Imbalanced Classification via a Tabular Translation GAN. 2022. Available
from arXiv: 2204.08683 [cs.LG].

44. ZHU, Jun-Yan; PARK, Taesung; ISOLA, Phillip; EFROS, Alexei A. Unpaired Image-to-
Image Translation using Cycle-Consistent Adversarial Networks. 2020. Available from arXiv:
1703.10593 [cs.CV].

45. DARABI, Sajad; ELOR, Yotam. Synthesising Multi-Modal Minority Samples for Tabular
Data. 2021. Available from arXiv: 2105.08204 [cs.LG].

46. AI, Qingzhong; WANG, Pengyun; HE, Lirong; WEN, Liangjian; PAN, Lujia; XU, Zenglin.
Generative Oversampling for Imbalanced Data via Majority-Guided VAE. 2023. Available
from arXiv: 2302.10910 [cs.LG].

47. KIRKPATRICK, James; PASCANU, Razvan; RABINOWITZ, Neil; VENESS, Joel; DES-
JARDINS, Guillaume; RUSU, Andrei A.; MILAN, Kieran; QUAN, John; RAMALHO,
Tiago; GRABSKA-BARWINSKA, Agnieszka; HASSABIS, Demis; CLOPATH, Claudia;
KUMARAN, Dharshan; HADSELL, Raia. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of Sciences. 2017, vol. 114, no. 13, pp. 3521–
3526. issn 1091-6490. Available from doi: 10.1073/pnas.1611835114.

48. CHOI, Edward; BISWAL, Siddharth; MALIN, Bradley; DUKE, Jon; STEWART, Walter F.;
SUN, Jimeng. Generating Multi-label Discrete Patient Records using Generative Adversarial
Networks. 2018. Available from arXiv: 1703.06490 [cs.LG].

49. SHARMA, Anuraganand; SINGH, Prabhat Kumar; CHANDRA, Rohitash. SMOTified-
GAN for Class Imbalanced Pattern Classification Problems. IEEE Access. 2022, vol. 10,
pp. 30655–30665. issn 2169-3536. Available from doi: 10.1109/access.2022.3158977.

50. KOVÁCS, György. smote-variants: a Python Implementation of 85 Minority Oversampling
Techniques. Neurocomputing. 2019, vol. 366, pp. 352–354. Available from doi: 10.1016/j.
neucom.2019.06.100. (IF-2019=4.07).

51. FIGUEIRA, Alvaro; VAZ, Bruno. Survey on Synthetic Data Generation, Evaluation Meth-
ods and GANs. Mathematics. 2022, vol. 10, no. 15. issn 2227-7390. Available from doi:
10.3390/math10152733.

52. LIN, Zinan; KHETAN, Ashish; FANTI, Giulia; OH, Sewoong. PacGAN: The power of
two samples in generative adversarial networks. 2018. Available from arXiv: 1712.04086
[cs.LG].

https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1704.00028
https://proceedings.mlr.press/v157/zhao21a.html
https://proceedings.mlr.press/v157/zhao21a.html
https://arxiv.org/abs/2204.08683
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/2105.08204
https://arxiv.org/abs/2302.10910
https://doi.org/10.1073/pnas.1611835114
https://arxiv.org/abs/1703.06490
https://doi.org/10.1109/access.2022.3158977
https://doi.org/10.1016/j.neucom.2019.06.100
https://doi.org/10.1016/j.neucom.2019.06.100
https://doi.org/10.3390/math10152733
https://arxiv.org/abs/1712.04086
https://arxiv.org/abs/1712.04086

Bibliography 67

53. ALCALA-FDEZ, Jesus; FERNÁNDEZ, Alberto; LUENGO, Julián; DERRAC, J.; GARC’IA,
S; SANCHEZ, Luciano; HERRERA, Francisco. KEEL Data-Mining Software Tool: Data
Set Repository, Integration of Algorithms and Experimental Analysis Framework. Journal
of Multiple-Valued Logic and Soft Computing. 2010, vol. 17, pp. 255–287.

54. HOFMANN, Hans. UCI Machine Learning Repository [UCI Machine Learning Repository].
1994. DOI: https://doi.org/10.24432/C5NC77.

55. GALA, Nirav Bharat. Generation of synthetic examples for imbalanced tabular data. 2023.
PhD thesis. Dublin, National College of Ireland.

68 Bibliography

Appendix A

Figures

69

70 Figures

Figure A.1 SMOTE algorithm extensions taken from [16]

71

Figure A.2 SMOTE-based ensemble methods taken from [16]

72 Figures

Appendix B

Tables

73

74
Tables

dataset none lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan

pima
MLP
0.738
±.021

MLP
0.733
±.034
(-0.005)

SVM
0.758
±.026
(0.02)

LOGIT
0.755
±.043
(0.017)

MLP
0.761
±.03
(0.023)

MLP
0.74
±.026
(0.002)

SVM
0.75
±.036
(0.012)

LOGIT
0.737
±.037
(-0.001)

LOGIT
0.75
±.027
(0.012)

SVM
0.747
±.049
(0.009)

RFC
0.758
±.034
(0.02)

MLP
0.754
±.033
(0.016)

german
SVM
0.662
±.014

LOGIT
0.691
±.021
(0.029)

SVM
0.706
±.022
(0.044)

SVM
0.723
±.017
(0.061)

LOGIT
0.699
±.028
(0.037)

LOGIT
0.644
±.0
(-0.018)

LOGIT
0.712
±.031
(0.05)

RFC
0.688
±.03
(0.026)

LOGIT
0.696
±.012
(0.034)

SVM
0.709
±.022
(0.047)

LOGIT
0.68
±.018
(0.018)

LOGIT
0.674
±.016
(0.012)

haberman
RFC
0.59
±.037

RFC
0.624
±.069
(0.034)

MLP
0.66
±.024
(0.07)

MLP
0.653
±.051
(0.063)

MLP
0.664
±.05
(0.074)

LOGIT
0.596
±.022
(0.006)

MLP
0.662
±.023
(0.072)

MLP
0.625
±.008
(0.035)

RFC
0.58
±.0
(-0.01)

MLP
0.637
±.006
(0.047)

RFC
0.652
±.055
(0.062)

MLP
0.635
±.046
(0.045)

adult
RFC
0.777
±.001

LOGIT
0.814
±.002
(0.037)

LOGIT
0.822
±.001
(0.045)

LOGIT
0.816
±.001
(0.039)

SVM
0.82
±.002
(0.043)

RFC
0.781
±.001
(0.004)

LOGIT
0.822
±.001
(0.045)

LOGIT
0.809
±.007
(0.032)

LOGIT
0.802
±.003
(0.025)

LOGIT
0.819
±.001
(0.042)

LOGIT
0.81
±.002
(0.033)

LOGIT
0.788
±.004
(0.011)

yeast3
MLP
0.867
±.032

MLP
0.899
±.02
(0.032)

KNN
0.901
±.013
(0.034)

LOGIT
0.888
±.011
(0.021)

KNN
0.908
±.03
(0.041)

KNN
0.889
±.019
(0.022)

MLP
0.895
±.009
(0.028)

RFC
0.881
±.036
(0.014)

SVM
0.885
±.009
(0.018)

LOGIT
0.888
±.004
(0.021)

MLP
0.885
±.003
(0.018)

MLP
0.858
±.046
(-0.009)

abalone9-18
SVM
0.714
±.046

SVM
0.822
±.066
(0.108)

SVM
0.884
±.035
(0.17)

SVM
0.852
±.045
(0.138)

LOGIT
0.871
±.06
(0.157)

nan

SVM
0.88
±.034
(0.166)

SVM
0.781
±.112
(0.067)

SVM
0.78
±.031
(0.066)

SVM
0.775
±.029
(0.061)

MLP
0.832
±.066
(0.118)

LOGIT
0.836
±.016
(0.122)

winequality-red-4
DTC
0.53
±.018

LOGIT
0.733
±.058
(0.203)

LOGIT
0.728
±.041
(0.198)

SVM
0.761
±.04
(0.231)

LOGIT
0.733
±.037
(0.203)

LOGIT
0.691
±.038
(0.161)

LOGIT
0.727
±.043
(0.197)

LOGIT
0.682
±.023
(0.152)

SVM
0.679
±.021
(0.149)

LOGIT
0.661
±.015
(0.131)

RFC
0.673
±.049
(0.143)

SVM
0.622
±.003
(0.092)

mammography
DTC
0.801
±.009

MLP
0.901
±.021
(0.1)

MLP
0.916
±.007
(0.115)

MLP
0.903
±.009
(0.102)

KNN
0.904
±.011
(0.103)

SVM
0.863
±.021
(0.062)

MLP
0.902
±.009
(0.101)

MLP
0.893
±.015
(0.092)

MLP
0.895
±.016
(0.094)

LOGIT
0.871
±.01
(0.07)

KNN
0.848
±.019
(0.047)

LOGIT
0.83
±.01
(0.029)

abalone-20-vs-8-9-10
MLP
0.645
±.03

LOGIT
0.894
±.06
(0.249)

LOGIT
0.851
±.05
(0.206)

SVM
0.858
±.053
(0.213)

LOGIT
0.851
±.049
(0.206)

LOGIT
0.803
±.0
(0.158)

LOGIT
0.865
±.028
(0.22)

MLP
0.74
±.004
(0.095)

DTC
0.697
±.03
(0.052)

LOGIT
0.681
±.103
(0.036)

SVM
0.823
±.03
(0.178)

LOGIT
0.813
±.033
(0.168)

Table B.1 Balanced Accuracy without Classifiers HPs Tuning: Best performing classifier, mean value, standard deviation of the results, and difference
from the results obtained on the original dataset. The best result is highlighted.

75
dataset none lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan

pima
RFC
0.722
±.023

MLP
0.724
±.013
(0.002)

LOGIT
0.754
±.037
(0.032)

LOGIT
0.756
±.044
(0.034)

RFC
0.753
±.029
(0.031)

RFC
0.743
±.024
(0.021)

SVM
0.751
±.035
(0.029)

SVM
0.738
±.037
(0.016)

LOGIT
0.75
±.027
(0.028)

LOGIT
0.744
±.05
(0.022)

MLP
0.742
±.016
(0.02)

LOGIT
0.749
±.041
(0.027)

german
MLP
0.688
±.014

SVM
0.692
±.02
(0.004)

SVM
0.704
±.019
(0.016)

SVM
0.724
±.015
(0.036)

LOGIT
0.698
±.027
(0.01)

LOGIT
0.642
±.0
(-0.046)

LOGIT
0.713
±.031
(0.025)

RFC
0.696
±.027
(0.008)

LOGIT
0.696
±.012
(0.008)

SVM
0.707
±.015
(0.019)

MLP
0.678
±.025
(-0.01)

LOGIT
0.672
±.014
(-0.016)

haberman
RFC
0.593
±.032

MLP
0.627
±.026
(0.034)

MLP
0.627
±.06
(0.034)

MLP
0.633
±.064
(0.04)

MLP
0.655
±.063
(0.062)

LOGIT
0.606
±.02
(0.013)

MLP
0.618
±.052
(0.025)

RFC
0.631
±.008
(0.038)

DTC
0.58
±.0
(-0.013)

RFC
0.648
±.037
(0.055)

RFC
0.667
±.036
(0.074)

MLP
0.64
±.04
(0.047)

adult
RFC
0.778
±.001

LOGIT
0.814
±.002
(0.036)

LOGIT
0.821
±.001
(0.043)

LOGIT
0.816
±.001
(0.038)

SVM
0.821
±.002
(0.043)

RFC
0.781
±.001
(0.003)

LOGIT
0.822
±.001
(0.044)

SVM
0.81
±.006
(0.032)

LOGIT
0.802
±.003
(0.024)

LOGIT
0.819
±.001
(0.041)

SVM
0.81
±.002
(0.032)

LOGIT
0.782
±.008
(0.004)

yeast3
DTC
0.89
±.036

MLP
0.906
±.013
(0.016)

KNN
0.894
±.025
(0.004)

LOGIT
0.887
±.01
(-0.003)

DTC
0.909
±.022
(0.019)

SVM
0.898
±.016
(0.008)

SVM
0.896
±.021
(0.006)

DTC
0.894
±.031
(0.004)

LOGIT
0.887
±.007
(-0.003)

DTC
0.905
±.036
(0.015)

DTC
0.905
±.03
(0.015)

DTC
0.893
±.031
(0.003)

abalone9-18
LOGIT
0.764
±.061

LOGIT
0.818
±.063
(0.054)

LOGIT
0.882
±.035
(0.118)

SVM
0.868
±.053
(0.104)

LOGIT
0.859
±.022
(0.095)

nan

SVM
0.889
±.038
(0.125)

LOGIT
0.775
±.112
(0.011)

SVM
0.78
±.031
(0.016)

LOGIT
0.763
±.038
(-0.001)

MLP
0.825
±.059
(0.061)

LOGIT
0.751
±.064
(-0.013)

winequality-red-4
KNN
0.536
±.015

LOGIT
0.733
±.058
(0.197)

SVM
0.749
±.015
(0.213)

LOGIT
0.754
±.038
(0.218)

SVM
0.737
±.019
(0.201)

LOGIT
0.692
±.039
(0.156)

SVM
0.741
±.033
(0.205)

LOGIT
0.682
±.023
(0.146)

SVM
0.678
±.032
(0.142)

LOGIT
0.661
±.014
(0.125)

MLP
0.673
±.055
(0.137)

LOGIT
0.615
±.015
(0.079)

mammography
KNN
0.791
±.019

MLP
0.899
±.011
(0.108)

MLP
0.911
±.008
(0.12)

MLP
0.898
±.007
(0.107)

KNN
0.906
±.012
(0.115)

SVM
0.873
±.02
(0.082)

MLP
0.907
±.006
(0.116)

MLP
0.895
±.02
(0.104)

MLP
0.895
±.017
(0.104)

LOGIT
0.871
±.01
(0.08)

LOGIT
0.847
±.024
(0.056)

LOGIT
0.83
±.01
(0.039)

abalone-20-vs-8-9-10
LOGIT
0.645
±.029

SVM
0.901
±.059
(0.256)

SVM
0.85
±.0
(0.205)

SVM
0.857
±.054
(0.212)

SVM
0.867
±.027
(0.222)

LOGIT
0.74
±.0
(0.095)

LOGIT
0.866
±.028
(0.221)

MLP
0.739
±.005
(0.094)

MLP
0.659
±.024
(0.014)

LOGIT
0.683
±.103
(0.038)

LOGIT
0.822
±.031
(0.177)

MLP
0.686
±.05
(0.041)

Table B.2 Balanced Accuracy with Classifiers HPs Tuning: Best performing classifier, mean value, standard deviation of the results, and difference from
the results obtained on the original dataset. The best result is highlighted.

76 Tables

results lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan
better 8 9 9 9 7 9 8 8 9 9 8
same 0 0 0 0 0 0 0 0 0 0 0
worse 1 0 0 0 1 0 1 1 0 0 1
avg diff [%] 8.74 10.02 9.83 9.86 4.96 9.9 5.69 4.89 5.16 7.08 5.4
avg std 0.016 0.001 0.007 0.01 -0.004 0.001 0.007 -0.007 0.003 0.008 -0.0

Table B.3 Balanced Accuracy without Classifiers HPs Tuning Summary: Table shows how many
times classification with the oversampled dataset for each technique gives better, the same, or worse
result than classification on the original dataset. Avg diff and avg std are the average differences from
means and standard deviations obtained on the original datasets. Avg diff is presented in percentages.

results lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan
better 9 9 8 9 7 9 9 7 8 8 7
same 0 0 0 0 0 0 0 0 0 0 0
worse 0 0 1 0 1 0 0 2 1 1 2
avg diff [%] 7.86 8.72 8.73 8.87 4.15 8.84 5.03 3.56 4.38 6.24 2.34
avg std 0.004 -0.003 0.006 -0.001 -0.006 0.002 0.004 -0.009 0.008 0.005 0.005

Table B.4 Balanced Accuracy with Classifiers HPs Tuning Summary: Table shows how many times
classification with the oversampled dataset for each technique gives better, the same, or worse result
than classification on the original dataset. Avg diff and avg std are the average differences from means
and standard deviations obtained on the original datasets. Avg diff is presented in percentages.

77
dataset none lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan

pima
MLP
0.71
±.077

MLP
0.641
±.079
(-0.069)

RFC
0.66
±.058
(-0.05)

RFC
0.634
±.074
(-0.076)

RFC
0.666
±.054
(-0.044)

RFC
0.672
±.068
(-0.038)

RFC
0.671
±.071
(-0.039)

RFC
0.625
±.043
(-0.085)

LOGIT
0.656
±.063
(-0.054)

RFC
0.647
±.055
(-0.063)

RFC
0.647
±.07
(-0.063)

RFC
0.7
±.065
(-0.01)

german
RFC
0.673
±.02

RFC
0.575
±.01
(-0.098)

RFC
0.613
±.016
(-0.06)

RFC
0.626
±.033
(-0.047)

RFC
0.651
±.032
(-0.022)

RFC
0.66
±.0
(-0.013)

RFC
0.616
±.009
(-0.057)

RFC
0.519
±.027
(-0.154)

RFC
0.595
±.048
(-0.078)

RFC
0.634
±.043
(-0.039)

RFC
0.555
±.023
(-0.118)

RFC
0.679
±.032
(0.006)

haberman
SVM
0.72
±.227

MLP
0.494
±.046
(-0.226)

MLP
0.484
±.082
(-0.236)

MLP
0.485
±.119
(-0.235)

MLP
0.522
±.097
(-0.198)

SVM
0.513
±.11
(-0.207)

MLP
0.5
±.071
(-0.22)

MLP
0.458
±.051
(-0.262)

MLP
0.353
±.0
(-0.367)

LOGIT
0.435
±.095
(-0.285)

RFC
0.447
±.094
(-0.273)

MLP
0.513
±.126
(-0.207)

adult
LOGIT
0.74
±.011

RFC
0.704
±.005
(-0.036)

RFC
0.659
±.002
(-0.081)

RFC
0.665
±.006
(-0.075)

RFC
0.712
±.003
(-0.028)

RFC
0.718
±.006
(-0.022)

RFC
0.667
±.002
(-0.073)

RFC
0.684
±.005
(-0.056)

RFC
0.663
±.013
(-0.077)

RFC
0.721
±.001
(-0.019)

RFC
0.619
±.01
(-0.121)

RFC
0.729
±.001
(-0.011)

yeast3
KNN
0.827
±.018

RFC
0.79
±.046
(-0.037)

RFC
0.747
±.065
(-0.08)

DTC
0.674
±.046
(-0.153)

MLP
0.714
±.035
(-0.113)

RFC
0.738
±.042
(-0.089)

RFC
0.764
±.069
(-0.063)

RFC
0.794
±.06
(-0.033)

RFC
0.797
±.063
(-0.03)

RFC
0.816
±.059
(-0.011)

RFC
0.772
±.086
(-0.055)

RFC
0.796
±.029
(-0.031)

abalone9-18
LOGIT
1.0
±.0

MLP
0.535
±.161
(-0.465)

SVM
0.411
±.048
(-0.589)

RFC
0.46
±.134
(-0.54)

MLP
0.438
±.051
(-0.562)

nan

RFC
0.556
±.08
(-0.444)

MLP
0.646
±.172
(-0.354)

SVM
0.415
±.059
(-0.585)

RFC
0.218
±.043
(-0.782)

MLP
0.38
±.059
(-0.62)

MLP
0.768
±.076
(-0.232)

winequality-red-4
KNN
0.333
±.471

RFC
0.187
±.035
(-0.146)

RFC
0.139
±.12
(-0.194)

MLP
0.147
±.047
(-0.186)

MLP
0.111
±.067
(-0.222)

RFC
0.167
±.236
(-0.166)

MLP
0.156
±.024
(-0.177)

KNN
0.263
±.13
(-0.07)

RFC
0.166
±.007
(-0.167)

DTC
0.111
±.016
(-0.222)

KNN
0.17
±.06
(-0.163)

KNN
0.143
±.202
(-0.19)

mammography
SVM
0.875
±.102

RFC
0.558
±.076
(-0.317)

RFC
0.585
±.012
(-0.29)

RFC
0.392
±.027
(-0.483)

RFC
0.476
±.036
(-0.399)

RFC
0.737
±.037
(-0.138)

RFC
0.793
±.026
(-0.082)

RFC
0.297
±.051
(-0.578)

RFC
0.537
±.122
(-0.338)

RFC
0.74
±.013
(-0.135)

RFC
0.388
±.055
(-0.487)

RFC
0.842
±.027
(-0.033)

abalone-20-vs-8-9-10
SVM
0.778
±.157

MLP
0.505
±.217
(-0.273)

RFC
0.296
±.078
(-0.482)

MLP
0.356
±.05
(-0.422)

MLP
0.29
±.034
(-0.488)

RFC
0.667
±.0
(-0.111)

RFC
0.556
±.079
(-0.222)

MLP
0.28
±.071
(-0.498)

SVM
0.438
±.401
(-0.34)

DTC
0.082
±.019
(-0.696)

MLP
0.156
±.053
(-0.622)

MLP
0.783
±.165
(0.005)

Table B.5 Precision without Classifiers HPs Tuning: Best performing classifier, mean value, standard deviation of the results, and difference from the
results obtained on the original dataset. The best result is highlighted.

78
Tables

dataset none lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan

pima
SVM
0.717
±.098

RFC
0.647
±.102
(-0.07)

RFC
0.671
±.068
(-0.046)

RFC
0.638
±.072
(-0.079)

MLP
0.653
±.06
(-0.064)

RFC
0.678
±.072
(-0.039)

RFC
0.664
±.061
(-0.053)

RFC
0.626
±.039
(-0.091)

LOGIT
0.656
±.063
(-0.061)

RFC
0.625
±.04
(-0.092)

SVM
0.63
±.064
(-0.087)

RFC
0.69
±.086
(-0.027)

german
RFC
0.658
±.026

RFC
0.545
±.042
(-0.113)

RFC
0.599
±.028
(-0.059)

RFC
0.631
±.021
(-0.027)

RFC
0.646
±.042
(-0.012)

RFC
0.63
±.0
(-0.028)

RFC
0.603
±.019
(-0.055)

RFC
0.525
±.027
(-0.133)

MLP
0.551
±.054
(-0.107)

RFC
0.643
±.014
(-0.015)

RFC
0.557
±.021
(-0.101)

RFC
0.694
±.044
(0.036)

haberman
SVM
0.72
±.227

MLP
0.514
±.066
(-0.206)

MLP
0.452
±.12
(-0.268)

MLP
0.461
±.136
(-0.259)

MLP
0.508
±.112
(-0.212)

RFC
0.555
±.124
(-0.165)

MLP
0.435
±.084
(-0.285)

RFC
0.444
±.063
(-0.276)

DTC
0.351
±.0
(-0.369)

RFC
0.435
±.053
(-0.285)

RFC
0.459
±.068
(-0.261)

MLP
0.526
±.115
(-0.194)

adult
LOGIT
0.741
±.012

DTC
0.754
±.006
(0.013)

RFC
0.687
±.035
(-0.054)

RFC
0.695
±.032
(-0.046)

RFC
0.722
±.011
(-0.019)

RFC
0.727
±.012
(-0.014)

RFC
0.667
±.003
(-0.074)

DTC
0.734
±.017
(-0.007)

RFC
0.666
±.018
(-0.075)

DTC
0.765
±.015
(0.024)

RFC
0.62
±.012
(-0.121)

DTC
0.796
±.003
(0.055)

yeast3
MLP
0.817
±.017

RFC
0.774
±.041
(-0.043)

RFC
0.716
±.056
(-0.101)

RFC
0.692
±.135
(-0.125)

RFC
0.742
±.108
(-0.075)

RFC
0.733
±.035
(-0.084)

RFC
0.76
±.064
(-0.057)

RFC
0.797
±.057
(-0.02)

RFC
0.787
±.054
(-0.03)

RFC
0.799
±.055
(-0.018)

RFC
0.786
±.096
(-0.031)

RFC
0.807
±.043
(-0.01)

abalone9-18
MLP
0.87
±.094

MLP
0.499
±.163
(-0.371)

MLP
0.449
±.062
(-0.421)

RFC
0.429
±.111
(-0.441)

MLP
0.472
±.058
(-0.398)

nan

RFC
0.533
±.065
(-0.337)

MLP
0.597
±.197
(-0.273)

MLP
0.418
±.091
(-0.452)

RFC
0.196
±.072
(-0.674)

MLP
0.407
±.044
(-0.463)

LOGIT
0.75
±.068
(-0.12)

winequality-red-4
KNN
0.236
±.086

RFC
0.201
±.079
(-0.035)

MLP
0.162
±.054
(-0.074)

RFC
0.172
±.043
(-0.064)

LOGIT
0.101
±.006
(-0.135)

RFC
0.233
±.205
(-0.003)

MLP
0.189
±.057
(-0.047)

KNN
0.187
±.064
(-0.049)

RFC
0.178
±.029
(-0.058)

DTC
0.099
±.02
(-0.137)

KNN
0.175
±.059
(-0.061)

KNN
0.149
±.057
(-0.087)

mammography
RFC
0.86
±.012

RFC
0.575
±.075
(-0.285)

RFC
0.58
±.005
(-0.28)

RFC
0.388
±.019
(-0.472)

RFC
0.494
±.034
(-0.366)

RFC
0.738
±.037
(-0.122)

RFC
0.8
±.03
(-0.06)

RFC
0.304
±.045
(-0.556)

RFC
0.538
±.121
(-0.322)

RFC
0.751
±.042
(-0.109)

RFC
0.391
±.061
(-0.469)

RFC
0.842
±.027
(-0.018)

abalone-20-vs-8-9-10
KNN
0.833
±.236

MLP
0.45
±.156
(-0.383)

MLP
0.317
±.061
(-0.516)

RFC
0.332
±.026
(-0.501)

MLP
0.318
±.076
(-0.515)

RFC
0.5
±.0
(-0.333)

RFC
0.611
±.079
(-0.222)

MLP
0.279
±.083
(-0.554)

SVM
0.433
±.403
(-0.4)

MLP
0.111
±.041
(-0.722)

MLP
0.157
±.052
(-0.676)

SVM
0.756
±.175
(-0.077)

Table B.6 Precision with Classifiers HPs Tuning: Best performing classifier, mean value, standard deviation of the results, and difference from the results
obtained on the original dataset. The best result is highlighted.

79

results lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan
better 0 0 0 0 0 0 0 0 0 0 2
same 0 0 0 0 0 0 0 0 0 0 0
worse 9 9 9 9 8 9 9 9 9 9 7
avg diff [%] -18.52 -22.91 -24.63 -23.07 -9.8 -15.3 -23.22 -22.62 -25.02 -28.02 -7.81
avg std -0.045 -0.067 -0.061 -0.075 -0.073 -0.072 -0.053 -0.034 -0.082 -0.064 -0.04

Table B.7 Precision without Classifiers HPs Tuning Summary: Table shows how many times clas-
sification with the oversampled dataset for each technique gives better, the same, or worse result than
classification on the original dataset. Avg diff and avg std are the average differences from means and
standard deviations obtained on the original datasets. Avg diff is presented in percentages.

results lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan
better 1 0 0 0 0 0 0 0 1 0 2
same 0 0 0 0 0 0 0 0 0 0 0
worse 8 9 9 9 8 9 9 9 8 9 7
avg diff [%] -16.59 -20.21 -22.38 -19.96 -9.85 -13.22 -21.77 -20.82 -22.53 -25.22 -4.91
avg std -0.009 -0.035 -0.024 -0.033 -0.029 -0.038 -0.024 0.003 -0.051 -0.037 -0.021

Table B.8 Precision with Classifiers HPs Tuning Summary: Table shows how many times classification
with the oversampled dataset for each technique gives better, the same, or worse result than classification
on the original dataset. Avg diff and avg std are the average differences from means and standard
deviations obtained on the original datasets. Avg diff is presented in percentages.

80
Tables

dataset none lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan

pima
DTC
0.63
±.03

MLP
0.679
±.03
(0.049)

LOGIT
0.733
±.038
(0.103)

LOGIT
0.77
±.029
(0.14)

MLP
0.728
±.027
(0.098)

MLP
0.675
±.012
(0.045)

LOGIT
0.728
±.027
(0.098)

LOGIT
0.745
±.015
(0.115)

LOGIT
0.704
±.0
(0.074)

LOGIT
0.749
±.056
(0.119)

RFC
0.741
±.017
(0.111)

SVM
0.728
±.02
(0.098)

german
DTC
0.507
±.01

SVM
0.615
±.014
(0.108)

SVM
0.696
±.021
(0.189)

SVM
0.759
±.014
(0.252)

KNN
0.726
±.037
(0.219)

LOGIT
0.489
±.0
(-0.018)

SVM
0.711
±.018
(0.204)

SVM
0.652
±.05
(0.145)

LOGIT
0.615
±.014
(0.108)

SVM
0.696
±.019
(0.189)

LOGIT
0.604
±.055
(0.097)

LOGIT
0.537
±.026
(0.03)

haberman
DTC
0.403
±.052

LOGIT
0.444
±.071
(0.041)

MLP
0.569
±.071
(0.166)

SVM
0.556
±.02
(0.153)

KNN
0.556
±.071
(0.153)

RFC
0.347
±.039
(-0.056)

KNN
0.583
±.034
(0.18)

RFC
0.556
±.052
(0.153)

RFC
0.542
±.0
(0.139)

MLP
0.597
±.039
(0.194)

RFC
0.611
±.02
(0.208)

LOGIT
0.5
±.034
(0.097)

adult
DTC
0.635
±.006

SVM
0.836
±.007
(0.201)

SVM
0.853
±.002
(0.218)

SVM
0.903
±.004
(0.268)

SVM
0.829
±.005
(0.194)

RFC
0.645
±.001
(0.01)

SVM
0.853
±.005
(0.218)

SVM
0.832
±.006
(0.197)

SVM
0.816
±.01
(0.181)

SVM
0.861
±.005
(0.226)

SVM
0.804
±.015
(0.169)

LOGIT
0.705
±.009
(0.07)

yeast3
MLP
0.755
±.067

LOGIT
0.871
±.035
(0.116)

KNN
0.884
±.038
(0.129)

SVM
0.952
±.01
(0.197)

KNN
0.884
±.067
(0.129)

SVM
0.864
±.035
(0.109)

KNN
0.864
±.038
(0.109)

SVM
0.912
±.035
(0.157)

SVM
0.837
±.029
(0.082)

SVM
0.952
±.025
(0.197)

LOGIT
0.959
±.017
(0.204)

SVM
0.932
±.025
(0.177)

abalone9-18
DTC
0.436
±.036

SVM
0.795
±.131
(0.359)

SVM
0.846
±.063
(0.41)

SVM
0.795
±.073
(0.359)

LOGIT
0.846
±.109
(0.41)

nan

LOGIT
0.846
±.063
(0.41)

SVM
0.615
±.218
(0.179)

SVM
0.615
±.063
(0.179)

SVM
0.897
±.073
(0.461)

MLP
0.744
±.145
(0.308)

LOGIT
0.744
±.036
(0.308)

winequality-red-4
DTC
0.104
±.029

SVM
0.708
±.106
(0.604)

SVM
0.729
±.106
(0.625)

SVM
0.708
±.059
(0.604)

SVM
0.729
±.106
(0.625)

SVM
0.5
±.051
(0.396)

SVM
0.729
±.106
(0.625)

LOGIT
0.542
±.029
(0.438)

SVM
0.479
±.059
(0.375)

SVM
0.667
±.029
(0.563)

LOGIT
0.646
±.059
(0.542)

SVM
0.5
±.051
(0.396)

mammography
DTC
0.618
±.019

LOGIT
0.89
±.033
(0.272)

LOGIT
0.886
±.012
(0.268)

SVM
0.921
±.011
(0.303)

KNN
0.851
±.016
(0.233)

SVM
0.754
±.041
(0.136)

LOGIT
0.873
±.016
(0.255)

MLP
0.882
±.019
(0.264)

SVM
0.833
±.012
(0.215)

LOGIT
0.886
±.016
(0.268)

LOGIT
0.882
±.021
(0.264)

SVM
0.851
±.006
(0.233)

abalone-20-vs-8-9-10
MLP
0.292
±.059

LOGIT
0.875
±.102
(0.583)

LOGIT
0.75
±.102
(0.458)

SVM
0.75
±.102
(0.458)

LOGIT
0.75
±.102
(0.458)

LOGIT
0.625
±.0
(0.333)

LOGIT
0.792
±.059
(0.5)

MLP
0.5
±.0
(0.208)

DTC
0.417
±.059
(0.125)

LOGIT
0.667
±.212
(0.375)

SVM
0.833
±.059
(0.541)

LOGIT
0.667
±.059
(0.375)

Table B.9 Recall without Classifiers HPs Tuning: Best performing classifier, mean value, standard deviation of the results, and difference from the results
obtained on the original dataset. The best result is highlighted.

81
dataset none lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan

pima
DTC
0.593
±.08

DTC
0.708
±.084
(0.115)

DTC
0.749
±.091
(0.156)

SVM
0.774
±.035
(0.181)

DTC
0.745
±.078
(0.152)

RFC
0.663
±.006
(0.07)

LOGIT
0.733
±.021
(0.14)

LOGIT
0.741
±.017
(0.148)

LOGIT
0.704
±.0
(0.111)

LOGIT
0.749
±.056
(0.156)

MLP
0.724
±.032
(0.131)

SVM
0.733
±.032
(0.14)

german
MLP
0.544
±.031

SVM
0.615
±.014
(0.071)

SVM
0.696
±.021
(0.152)

SVM
0.77
±.014
(0.226)

SVM
0.674
±.014
(0.13)

LOGIT
0.489
±.0
(-0.055)

LOGIT
0.711
±.027
(0.167)

SVM
0.652
±.05
(0.108)

LOGIT
0.615
±.014
(0.071)

SVM
0.693
±.01
(0.149)

LOGIT
0.593
±.055
(0.049)

MLP
0.533
±.018
(-0.011)

haberman
DTC
0.403
±.052

DTC
0.486
±.104
(0.083)

DTC
0.569
±.071
(0.166)

DTC
0.556
±.086
(0.153)

DTC
0.583
±.034
(0.18)

LOGIT
0.333
±.0
(-0.07)

KNN
0.514
±.109
(0.111)

RFC
0.542
±.102
(0.139)

DTC
0.542
±.0
(0.139)

MLP
0.597
±.071
(0.194)

DTC
0.639
±.039
(0.236)

SVM
0.486
±.052
(0.083)

adult
RFC
0.632
±.001

SVM
0.836
±.007
(0.204)

SVM
0.853
±.002
(0.221)

LOGIT
0.901
±.002
(0.269)

SVM
0.842
±.005
(0.21)

LOGIT
0.644
±.013
(0.012)

SVM
0.853
±.005
(0.221)

SVM
0.845
±.012
(0.213)

SVM
0.82
±.008
(0.188)

SVM
0.858
±.004
(0.226)

DTC
0.865
±.03
(0.233)

LOGIT
0.655
±.027
(0.023)

yeast3
DTC
0.816
±.093

MLP
0.871
±.035
(0.055)

SVM
0.891
±.042
(0.075)

SVM
0.966
±.019
(0.15)

DTC
0.878
±.05
(0.062)

SVM
0.898
±.029
(0.082)

SVM
0.905
±.048
(0.089)

SVM
0.912
±.035
(0.096)

SVM
0.844
±.038
(0.028)

SVM
0.952
±.025
(0.136)

LOGIT
0.959
±.017
(0.143)

LOGIT
0.932
±.025
(0.116)

abalone9-18
LOGIT
0.538
±.126

LOGIT
0.795
±.131
(0.257)

SVM
0.846
±.063
(0.308)

SVM
0.821
±.096
(0.283)

SVM
0.795
±.036
(0.257)

nan

SVM
0.872
±.073
(0.334)

LOGIT
0.615
±.218
(0.077)

SVM
0.615
±.063
(0.077)

LOGIT
0.872
±.096
(0.334)

MLP
0.718
±.131
(0.18)

LOGIT
0.513
±.131
(-0.025)

winequality-red-4
DTC
0.083
±.029

LOGIT
0.708
±.106
(0.625)

SVM
0.792
±.059
(0.709)

SVM
0.688
±.051
(0.605)

SVM
0.771
±.078
(0.688)

LOGIT
0.5
±.051
(0.417)

SVM
0.771
±.078
(0.688)

LOGIT
0.542
±.029
(0.459)

SVM
0.458
±.078
(0.375)

LOGIT
0.667
±.029
(0.584)

LOGIT
0.646
±.059
(0.563)

SVM
0.479
±.059
(0.396)

mammography
KNN
0.588
±.038

LOGIT
0.89
±.033
(0.302)

LOGIT
0.882
±.011
(0.294)

LOGIT
0.921
±.011
(0.333)

KNN
0.855
±.019
(0.267)

SVM
0.772
±.038
(0.184)

LOGIT
0.873
±.016
(0.285)

MLP
0.886
±.022
(0.298)

MLP
0.82
±.038
(0.232)

LOGIT
0.886
±.016
(0.298)

LOGIT
0.882
±.021
(0.294)

LOGIT
0.851
±.006
(0.263)

abalone-20-vs-8-9-10
MLP
0.292
±.059

SVM
0.875
±.102
(0.583)

SVM
0.75
±.0
(0.458)

SVM
0.75
±.102
(0.458)

SVM
0.792
±.059
(0.5)

LOGIT
0.5
±.0
(0.208)

SVM
0.792
±.059
(0.5)

MLP
0.5
±.0
(0.208)

MLP
0.333
±.059
(0.041)

SVM
0.667
±.295
(0.375)

LOGIT
0.833
±.059
(0.541)

MLP
0.375
±.102
(0.083)

Table B.10 Recall with Classifiers HPs tuning: Best performing classifier, mean value, standard deviation of the results, and difference from the results
obtained on the original dataset. The best result is highlighted.

82 Tables

results lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan
better 9 9 9 9 6 9 9 9 9 9 9
same 0 0 0 0 0 0 0 0 0 0 0
worse 0 0 0 0 2 0 0 0 0 0 0
avg diff [%] 25.92 28.51 30.38 27.99 11.94 28.88 20.62 16.42 28.8 27.16 19.82
avg std 0.025 0.016 0.002 0.026 -0.012 0.006 0.013 -0.007 0.018 0.011 -0.005

Table B.11 Recall without Classifiers HPs Tuning Summary: Table shows how many times classi-
fication with the oversampled dataset for each technique gives better, the same, or worse result than
classification on the original dataset. Avg diff and avg std are the average differences from means and
standard deviations obtained on the original datasets. Avg diff is presented in percentages.

results lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan
better 9 9 9 9 6 9 9 9 9 9 7
same 0 0 0 0 0 0 0 0 0 0 0
worse 0 0 0 0 2 0 0 0 0 0 2
avg diff [%] 25.5 28.21 29.53 27.18 10.6 28.17 19.4 14.02 27.24 26.33 11.87
avg std 0.012 -0.017 -0.01 -0.015 -0.031 -0.008 -0.003 -0.023 0.01 -0.007 -0.006

Table B.12 Recall with Classifiers HPs Tuning Summary: Table shows how many times classification
with the oversampled dataset for each technique gives better, the same, or worse result than classification
on the original dataset. Avg diff and avg std are the average differences from means and standard
deviations obtained on the original datasets. Avg diff is presented in percentages.

83
dataset none lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan

pima
MLP
0.738
±.021

MLP
0.733
±.034
(-0.005)

SVM
0.758
±.026
(0.02)

LOGIT
0.755
±.043
(0.017)

MLP
0.761
±.03
(0.023)

MLP
0.74
±.026
(0.002)

SVM
0.75
±.036
(0.012)

LOGIT
0.737
±.037
(-0.001)

LOGIT
0.75
±.027
(0.012)

SVM
0.747
±.049
(0.009)

RFC
0.758
±.034
(0.02)

MLP
0.754
±.033
(0.016)

german
SVM
0.662
±.014

LOGIT
0.691
±.021
(0.029)

SVM
0.706
±.022
(0.044)

SVM
0.723
±.017
(0.061)

LOGIT
0.699
±.028
(0.037)

LOGIT
0.644
±.0
(-0.018)

LOGIT
0.712
±.031
(0.05)

RFC
0.688
±.03
(0.026)

LOGIT
0.696
±.012
(0.034)

SVM
0.709
±.022
(0.047)

LOGIT
0.68
±.018
(0.018)

LOGIT
0.674
±.016
(0.012)

haberman
RFC
0.59
±.037

RFC
0.624
±.069
(0.034)

MLP
0.66
±.024
(0.07)

MLP
0.653
±.051
(0.063)

MLP
0.664
±.05
(0.074)

LOGIT
0.596
±.022
(0.006)

MLP
0.662
±.023
(0.072)

MLP
0.625
±.008
(0.035)

RFC
0.58
±.0
(-0.01)

MLP
0.637
±.006
(0.047)

RFC
0.652
±.055
(0.062)

MLP
0.635
±.046
(0.045)

adult
RFC
0.777
±.001

LOGIT
0.814
±.002
(0.037)

LOGIT
0.822
±.001
(0.045)

LOGIT
0.816
±.001
(0.039)

SVM
0.82
±.002
(0.043)

RFC
0.781
±.001
(0.004)

LOGIT
0.822
±.001
(0.045)

LOGIT
0.809
±.007
(0.032)

LOGIT
0.802
±.003
(0.025)

LOGIT
0.819
±.001
(0.042)

LOGIT
0.81
±.002
(0.033)

LOGIT
0.788
±.004
(0.011)

yeast3
MLP
0.867
±.032

MLP
0.899
±.02
(0.032)

KNN
0.901
±.013
(0.034)

LOGIT
0.888
±.011
(0.021)

KNN
0.908
±.03
(0.041)

KNN
0.889
±.019
(0.022)

MLP
0.895
±.009
(0.028)

RFC
0.881
±.036
(0.014)

SVM
0.885
±.009
(0.018)

LOGIT
0.888
±.004
(0.021)

MLP
0.885
±.003
(0.018)

MLP
0.858
±.046
(-0.009)

abalone9-18
SVM
0.714
±.046

SVM
0.822
±.066
(0.108)

SVM
0.884
±.035
(0.17)

SVM
0.852
±.045
(0.138)

LOGIT
0.871
±.06
(0.157)

nan

SVM
0.88
±.034
(0.166)

SVM
0.781
±.112
(0.067)

SVM
0.78
±.031
(0.066)

SVM
0.775
±.029
(0.061)

MLP
0.832
±.066
(0.118)

LOGIT
0.836
±.016
(0.122)

winequality-red-4
DTC
0.53
±.018

LOGIT
0.733
±.058
(0.203)

LOGIT
0.728
±.041
(0.198)

SVM
0.761
±.04
(0.231)

LOGIT
0.733
±.037
(0.203)

LOGIT
0.691
±.038
(0.161)

LOGIT
0.727
±.043
(0.197)

LOGIT
0.682
±.023
(0.152)

SVM
0.679
±.021
(0.149)

LOGIT
0.661
±.015
(0.131)

RFC
0.673
±.049
(0.143)

SVM
0.622
±.003
(0.092)

mammography
DTC
0.801
±.009

MLP
0.901
±.021
(0.1)

MLP
0.916
±.007
(0.115)

MLP
0.903
±.009
(0.102)

KNN
0.904
±.011
(0.103)

SVM
0.863
±.021
(0.062)

MLP
0.902
±.009
(0.101)

MLP
0.893
±.015
(0.092)

MLP
0.895
±.016
(0.094)

LOGIT
0.871
±.01
(0.07)

KNN
0.848
±.019
(0.047)

LOGIT
0.83
±.01
(0.029)

abalone-20-vs-8-9-10
MLP
0.645
±.03

LOGIT
0.894
±.06
(0.249)

LOGIT
0.851
±.05
(0.206)

SVM
0.858
±.053
(0.213)

LOGIT
0.851
±.049
(0.206)

LOGIT
0.803
±.0
(0.158)

LOGIT
0.865
±.028
(0.22)

MLP
0.74
±.004
(0.095)

DTC
0.697
±.03
(0.052)

LOGIT
0.681
±.103
(0.036)

SVM
0.823
±.03
(0.178)

LOGIT
0.813
±.033
(0.168)

Table B.13 AUC without Classifiers HPs Tuning: Best performing classifier, mean value, standard deviation of the results, and difference from the results
obtained on the original dataset. The best result is highlighted.

84
Tables

dataset none lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan

pima
RFC
0.722
±.023

MLP
0.724
±.013
(0.002)

LOGIT
0.754
±.037
(0.032)

LOGIT
0.756
±.044
(0.034)

RFC
0.753
±.029
(0.031)

RFC
0.743
±.024
(0.021)

SVM
0.751
±.035
(0.029)

SVM
0.738
±.037
(0.016)

LOGIT
0.75
±.027
(0.028)

LOGIT
0.744
±.05
(0.022)

MLP
0.742
±.016
(0.02)

LOGIT
0.749
±.041
(0.027)

german
MLP
0.688
±.014

SVM
0.692
±.02
(0.004)

SVM
0.704
±.019
(0.016)

SVM
0.724
±.015
(0.036)

LOGIT
0.698
±.027
(0.01)

LOGIT
0.642
±.0
(-0.046)

LOGIT
0.713
±.031
(0.025)

RFC
0.696
±.027
(0.008)

LOGIT
0.696
±.012
(0.008)

SVM
0.707
±.015
(0.019)

MLP
0.678
±.025
(-0.01)

LOGIT
0.672
±.014
(-0.016)

haberman
RFC
0.593
±.032

MLP
0.627
±.026
(0.034)

MLP
0.627
±.06
(0.034)

MLP
0.633
±.064
(0.04)

MLP
0.655
±.063
(0.062)

LOGIT
0.606
±.02
(0.013)

MLP
0.618
±.052
(0.025)

RFC
0.631
±.008
(0.038)

DTC
0.58
±.0
(-0.013)

RFC
0.648
±.037
(0.055)

RFC
0.667
±.036
(0.074)

MLP
0.64
±.04
(0.047)

adult
RFC
0.778
±.001

LOGIT
0.814
±.002
(0.036)

LOGIT
0.821
±.001
(0.043)

LOGIT
0.816
±.001
(0.038)

SVM
0.821
±.002
(0.043)

RFC
0.781
±.001
(0.003)

LOGIT
0.822
±.001
(0.044)

SVM
0.81
±.006
(0.032)

LOGIT
0.802
±.003
(0.024)

LOGIT
0.819
±.001
(0.041)

SVM
0.81
±.002
(0.032)

LOGIT
0.782
±.008
(0.004)

yeast3
DTC
0.89
±.036

MLP
0.906
±.013
(0.016)

KNN
0.894
±.025
(0.004)

LOGIT
0.887
±.01
(-0.003)

DTC
0.909
±.022
(0.019)

SVM
0.898
±.016
(0.008)

SVM
0.896
±.021
(0.006)

DTC
0.894
±.031
(0.004)

LOGIT
0.887
±.007
(-0.003)

DTC
0.905
±.036
(0.015)

DTC
0.905
±.03
(0.015)

DTC
0.893
±.031
(0.003)

abalone9-18
LOGIT
0.764
±.061

LOGIT
0.818
±.063
(0.054)

LOGIT
0.882
±.035
(0.118)

SVM
0.868
±.053
(0.104)

LOGIT
0.859
±.022
(0.095)

nan

SVM
0.889
±.038
(0.125)

LOGIT
0.775
±.112
(0.011)

SVM
0.78
±.031
(0.016)

LOGIT
0.763
±.038
(-0.001)

MLP
0.825
±.059
(0.061)

LOGIT
0.751
±.064
(-0.013)

winequality-red-4
KNN
0.536
±.015

LOGIT
0.733
±.058
(0.197)

SVM
0.749
±.015
(0.213)

LOGIT
0.754
±.038
(0.218)

SVM
0.737
±.019
(0.201)

LOGIT
0.692
±.039
(0.156)

SVM
0.741
±.033
(0.205)

LOGIT
0.682
±.023
(0.146)

SVM
0.678
±.032
(0.142)

LOGIT
0.661
±.014
(0.125)

MLP
0.673
±.055
(0.137)

LOGIT
0.615
±.015
(0.079)

mammography
KNN
0.791
±.019

MLP
0.899
±.011
(0.108)

MLP
0.911
±.008
(0.12)

MLP
0.898
±.007
(0.107)

KNN
0.906
±.012
(0.115)

SVM
0.873
±.02
(0.082)

MLP
0.907
±.006
(0.116)

MLP
0.895
±.02
(0.104)

MLP
0.895
±.017
(0.104)

LOGIT
0.871
±.01
(0.08)

LOGIT
0.847
±.024
(0.056)

LOGIT
0.83
±.01
(0.039)

abalone-20-vs-8-9-10
LOGIT
0.645
±.029

SVM
0.901
±.059
(0.256)

SVM
0.85
±.0
(0.205)

SVM
0.857
±.054
(0.212)

SVM
0.867
±.027
(0.222)

LOGIT
0.74
±.0
(0.095)

LOGIT
0.866
±.028
(0.221)

MLP
0.739
±.005
(0.094)

MLP
0.659
±.024
(0.014)

LOGIT
0.683
±.103
(0.038)

LOGIT
0.822
±.031
(0.177)

MLP
0.686
±.05
(0.041)

Table B.14 AUC with Classifiers HPs Tuning: Best performing classifier, mean value, standard deviation of the results, and difference from the results
obtained on the original dataset. The best result is highlighted.

85

results lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan
better 8 9 9 9 7 9 8 8 9 9 8
same 0 0 0 0 0 0 0 0 0 0 0
worse 1 0 0 0 1 0 1 1 0 0 1
avg diff [%] 8.74 10.02 9.83 9.86 4.96 9.9 5.69 4.89 5.16 7.08 5.4
avg std 0.016 0.001 0.007 0.01 -0.004 0.001 0.007 -0.007 0.003 0.008 -0.0

Table B.15 AUC without Classifiers HPs Tuning Summary: Table shows how many times classi-
fication with the oversampled dataset for each technique gives better, the same, or worse result than
classification on the original dataset. Avg diff and avg std are the average differences from means and
standard deviations obtained on the original datasets. Avg diff is presented in percentages.

results lit-gan (ours) smote borderline poly k-means loras ctgan tvae taei ctab-gan sm-gan
better 9 9 8 9 7 9 9 7 8 8 7
same 0 0 0 0 0 0 0 0 0 0 0
worse 0 0 1 0 1 0 0 2 1 1 2
avg diff [%] 7.86 8.72 8.73 8.87 4.15 8.84 5.03 3.56 4.38 6.24 2.34
avg std 0.004 -0.003 0.006 -0.001 -0.006 0.002 0.004 -0.009 0.008 0.005 0.005

Table B.16 AUC with Classifiers HPs Tuning Summary: Table shows how many times classification
with the oversampled dataset for each technique gives better, the same, or worse result than classification
on the original dataset. Avg diff and avg std are the average differences from means and standard
deviations obtained on the original datasets. Avg diff is presented in percentages.

86 Tables

dataset none litgan-smote litgan-poly litgan-borderline

pima
MLP
0.738
±.021

MLP
0.733
±.034
(-0.005)

LOGIT
0.743
±.036
(0.005)

MLP
0.737
±.017
(-0.001)

german
SVM
0.662
±.014

LOGIT
0.691
±.021
(0.029)

SVM
0.69
±.021
(0.028)

SVM
0.69
±.032
(0.028)

haberman
RFC
0.59
±.037

RFC
0.624
±.069
(0.034)

RFC
0.551
±.076
(-0.039)

MLP
0.59
±.033
(0.0)

adult
RFC
0.777
±.001

LOGIT
0.814
±.002
(0.037)

LOGIT
0.811
±.003
(0.034)

SVM
0.813
±.002
(0.036)

yeast3
MLP
0.867
±.032

MLP
0.899
±.02
(0.032)

SVM
0.896
±.018
(0.029)

SVM
0.882
±.001
(0.015)

abalone9-18
SVM
0.714
±.046

SVM
0.822
±.066
(0.108)

SVM
0.766
±.013
(0.052)

SVM
0.756
±.059
(0.042)

winequality-red-4
DTC
0.53
±.018

LOGIT
0.733
±.058
(0.203)

LOGIT
0.709
±.04
(0.179)

SVM
0.712
±.042
(0.182)

mammography
DTC
0.801
±.009

MLP
0.901
±.021
(0.1)

MLP
0.913
±.011
(0.112)

MLP
0.894
±.01
(0.093)

abalone-20-vs-8-9-10
MLP
0.645
±.03

LOGIT
0.894
±.06
(0.249)

SVM
0.843
±.044
(0.198)

MLP
0.645
±.03
(0.0)

Table B.17 Balanced Accuracy of LIT-GAN Variants: Best performing classifier, mean value, stan-
dard deviation of the results, and difference from the results obtained on the original dataset. The best
result is highlighted.

results litgan-smote litgan-poly litgan-borderline
better 8 8 6
same 0 0 2
worse 1 1 1
avg diff [%] 8.74 6.64 4.39
avg std 0.016 0.006 0.002

Table B.18 Balanced Accuracy of LIT-GAN Variants Summary: Table shows how many times clas-
sification with the oversampled dataset for each technique gives better, the same, or worse result than
classification on the original dataset. Avg diff and avg std are the average differences from means and
standard deviations obtained on the original datasets. Avg diff is presented in percentages.

87

dataset none litgan-smote litgan-poly litgan-borderline

pima
MLP
0.71
±.077

MLP
0.641
±.079
(-0.069)

MLP
0.661
±.061
(-0.049)

RFC
0.665
±.084
(-0.045)

german
RFC
0.673
±.02

RFC
0.575
±.01
(-0.098)

RFC
0.594
±.031
(-0.079)

RFC
0.59
±.017
(-0.083)

haberman
SVM
0.72
±.227

MLP
0.494
±.046
(-0.226)

RFC
0.365
±.131
(-0.355)

MLP
0.441
±.105
(-0.279)

adult
LOGIT
0.74
±.011

RFC
0.704
±.005
(-0.036)

RFC
0.706
±.001
(-0.034)

RFC
0.708
±.007
(-0.032)

yeast3
KNN
0.827
±.018

RFC
0.79
±.046
(-0.037)

RFC
0.791
±.05
(-0.036)

RFC
0.8
±.072
(-0.027)

abalone9-18
LOGIT
1.0
±.0

MLP
0.535
±.161
(-0.465)

KNN
0.537
±.094
(-0.463)

MLP
0.769
±.182
(-0.231)

winequality-red-4
KNN
0.333
±.471

RFC
0.187
±.035
(-0.146)

MLP
0.174
±.048
(-0.159)

RFC
0.272
±.097
(-0.061)

mammography
SVM
0.875
±.102

RFC
0.558
±.076
(-0.317)

RFC
0.502
±.029
(-0.373)

RFC
0.607
±.08
(-0.268)

abalone-20-vs-8-9-10
SVM
0.778
±.157

MLP
0.505
±.217
(-0.273)

MLP
0.277
±.124
(-0.501)

MLP
0.639
±.104
(-0.139)

Table B.19 Precision of LIT-GAN Variants: Best performing classifier, mean value, standard devi-
ation of the results, and difference from the results obtained on the original dataset. The best result
is highlighted.

results litgan-smote litgan-poly litgan-borderline
better 0 0 0
same 0 0 0
worse 9 9 9
avg diff [%] -18.52 -22.77 -12.94
avg std -0.045 -0.057 -0.037

Table B.20 Precision of LIT-GAN Variants Summary: Table shows how many times classification with
the oversampled dataset for each technique gives better, the same, or worse result than classification on
the original dataset. Avg diff and avg std are the average differences from means and standard deviations
obtained on the original datasets. Avg diff is presented in percentages.

88 Tables

dataset none litgan-smote litgan-poly litgan-borderline

pima
DTC
0.63
±.03

MLP
0.679
±.03
(0.049)

LOGIT
0.683
±.023
(0.053)

LOGIT
0.679
±.017
(0.049)

german
DTC
0.507
±.01

SVM
0.615
±.014
(0.108)

SVM
0.622
±.042
(0.115)

SVM
0.611
±.033
(0.104)

haberman
DTC
0.403
±.052

LOGIT
0.444
±.071
(0.041)

LOGIT
0.472
±.071
(0.069)

RFC
0.458
±.148
(0.055)

adult
DTC
0.635
±.006

SVM
0.836
±.007
(0.201)

SVM
0.832
±.005
(0.197)

SVM
0.835
±.004
(0.2)

yeast3
MLP
0.755
±.067

LOGIT
0.871
±.035
(0.116)

LOGIT
0.85
±.038
(0.095)

SVM
0.844
±.025
(0.089)

abalone9-18
DTC
0.436
±.036

SVM
0.795
±.131
(0.359)

LOGIT
0.641
±.036
(0.205)

SVM
0.538
±.109
(0.102)

winequality-red-4
DTC
0.104
±.029

SVM
0.708
±.106
(0.604)

LOGIT
0.688
±.102
(0.584)

SVM
0.562
±.051
(0.458)

mammography
DTC
0.618
±.019

LOGIT
0.89
±.033
(0.272)

MLP
0.873
±.033
(0.255)

SVM
0.846
±.053
(0.228)

abalone-20-vs-8-9-10
MLP
0.292
±.059

LOGIT
0.875
±.102
(0.583)

LOGIT
0.792
±.059
(0.5)

DTC
0.292
±.059
(0.0)

Table B.21 Recall of LIT-GAN Variants: Best performing classifier, mean value, standard deviation of
the results, and difference from the results obtained on the original dataset. The best result is highlighted.

results litgan-smote litgan-poly litgan-borderline
better 9 9 8
same 0 0 1
worse 0 0 0
avg diff [%] 25.92 23.03 14.28
avg std 0.025 0.011 0.021

Table B.22 Recallof LIT-GAN Variants Summary: Table shows how many times classification with
the oversampled dataset for each technique gives better, the same, or worse result than classification on
the original dataset. Avg diff and avg std are the average differences from means and standard deviations
obtained on the original datasets. Avg diff is presented in percentages.

89

dataset none litgan-smote litgan-poly litgan-borderline

pima
MLP
0.738
±.021

MLP
0.733
±.034
(-0.005)

LOGIT
0.743
±.036
(0.005)

MLP
0.737
±.017
(-0.001)

german
SVM
0.662
±.014

LOGIT
0.691
±.021
(0.029)

SVM
0.69
±.021
(0.028)

SVM
0.69
±.032
(0.028)

haberman
RFC
0.59
±.037

RFC
0.624
±.069
(0.034)

RFC
0.551
±.076
(-0.039)

MLP
0.59
±.033
(0.0)

adult
RFC
0.777
±.001

LOGIT
0.814
±.002
(0.037)

LOGIT
0.811
±.003
(0.034)

SVM
0.813
±.002
(0.036)

yeast3
MLP
0.867
±.032

MLP
0.899
±.02
(0.032)

SVM
0.896
±.018
(0.029)

SVM
0.882
±.001
(0.015)

abalone9-18
SVM
0.714
±.046

SVM
0.822
±.066
(0.108)

SVM
0.766
±.013
(0.052)

SVM
0.756
±.059
(0.042)

winequality-red-4
DTC
0.53
±.018

LOGIT
0.733
±.058
(0.203)

LOGIT
0.709
±.04
(0.179)

SVM
0.712
±.042
(0.182)

mammography
DTC
0.801
±.009

MLP
0.901
±.021
(0.1)

MLP
0.913
±.011
(0.112)

MLP
0.894
±.01
(0.093)

abalone-20-vs-8-9-10
MLP
0.645
±.03

LOGIT
0.894
±.06
(0.249)

SVM
0.843
±.044
(0.198)

MLP
0.645
±.03
(0.0)

Table B.23 AUC of LIT-GAN Variants: Best performing classifier, mean value, standard deviation of
the results, and difference from the results obtained on the original dataset. The best result is highlighted.

results litgan-smote litgan-poly litgan-borderline
better 8 8 6
same 0 0 2
worse 1 1 1
avg diff [%] 8.74 6.64 4.39
avg std 0.016 0.006 0.002

Table B.24 AUC of LIT-GAN Variants Summary: Table shows how many times classification with
the oversampled dataset for each technique gives better, the same, or worse result than classification on
the original dataset. Avg diff and avg std are the average differences from means and standard deviations
obtained on the original datasets. Avg diff is presented in percentages.

90 Tables

Appendix C

Hyperparameters of Classifiers

During the evaluation, hyperparameters of the classification models were tuned. The values for
each model used in the grid search can be seen in the following tables.

hyperparameter values
max_depth 3, 5, None
criterion gini, entropy

Table C.1 Hyperparameters for Decision Tree Classifier

hyperparameter values
activation relu, logistic
max_iter 200, 400

Table C.2 Hyperparameters for MLP Classifier

hyperparameter values
penalty l1, l2
solver lbfgs, liblinear
C 1, 10

Table C.3 Hyperparameters for Logistic Regression

hyperparameter values
max_depth 3, 5, None
criterion gini, entropy

Table C.4 Hyperparameters for Random Forest Classifier

91

92 Hyperparameters of Classifiers

hyperparameter values
penalty l1, l2
C 1, 10
loss hinge, squared_hinge

Table C.5 Hyperparameters for Linear SVM

hyperparameter values
n_neighbors 3, 5, 7
weights uniform, distance

Table C.6 Hyperparameters for k Neighbors Classifier

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Background
	Binary Classification
	Tabular Dataset
	Imbalanced Data
	Approaches

	Existing Methods
	Traditional Oversampling Algorithms
	Synthetic Data Generation
	Borderline Oversampling Methods
	Cluster-based Oversampling Methods
	Boosting Oversampling Methods
	Relabeling Methods

	Generative-based Algorithms
	GAN-based
	AE-based
	GAN+AE-based
	Score-based

	Combined Algorithms
	TAEI
	SMOTified-GAN

	Summary

	Selected Methods
	SMOTE
	Polynom-Fit-SMOTE
	LoRAS
	Borderline-SMOTE
	k-means-SMOTE
	CTGAN
	CTAB-GAN
	TVAE
	TAEI
	SMOTified-GAN
	Summary

	Implementation
	Datasets
	Preprocessing

	Evaluation Metrics
	Classifiers
	Experiment Setup

	Novel Method
	Inspiration
	Preprocessing
	Architecture
	Tuning
	Training
	Sampling

	Results
	Performance
	Results Without Tuned Classifiers Hyperparameters
	Results With Tuned Classifiers Hyperparameters

	Change of Interpolation Method
	Time
	Discussion

	Conclusion
	Contribution
	Future Work

	Figures
	Tables
	Hyperparameters of Classifiers

