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Abstract

Machine learning represents a highly effective and currently popular approach
for network traffic classification. However, network traffic represents a chal-
lenging domain, and trained models may degrade quickly after the deployment.
Other than biases present during the data capturing and model creation, con-
cept drift represents a major source of model degradation. As the distributions
evolve, the trained data patterns may stop being accurate. Because of that,
the thesis focused on creating a basis for a framework for concept drift de-
tection and analysis tailored to the domain of network traffic. The behaviour
of network traffic was examined using a variety of experiments studying the
development of distributions, simulating model deployment and observing the
degradation over time. The presence of multiple recurring concepts was dis-
covered with weekend traffic differing from the one of the working week. When
concept drift wasn’t addressed, the test F1 scores dropped from 0.92 to around
0.7 in a matter of days. Sometimes, only a few severely drifted features were
the source of model degradation, so a novel approach of weighing the drift re-
sult by the feature importances was invented. The created drift detector may
be enhanced by modules for additional analysis of the detected drift. A novel
idea of classifying types of drift for better drift understanding is introduced.
The created detector was tested to guide the model retraining and was able to
not only prevent the model from degrading but also improve its performance
over time.

Keywords network traffic classification, concept drift, active learning, ma-
chine learning model robustness, machine learning
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Abstrakt

Strojové učení představuje vysoce efektivní a v současnosti oblíbený přístup
ke klasifikaci síťového provozu. Vytvořené modely ale mohou po nasazení
rychle degradovat, jelikož síťový provoz představuje náročnou doménu. Kromě
zkreslení přítomných během sběru dat a vytváření modelu (tzv. bias) před-
stavuje concept drift hlavní zdroj degradace modelu. Vzory v datech objevené
při trénování mohou přestat být přesné kvůli vývoji distribucí. Z tohoto dů-
vodu se práce zaměřila na vytvoření základů frameworku pro detekci a analýzu
driftu na míru pro doménu síťového provozu. Chování síťového provozu bylo
zkoumáno pomocí různých experimentů studujících vývoj distribucí a simu-
lujících nasazení modelu a zkoumajících jeho degradaci modelu v čase. Byla
zjištěna přítomnost opakujících se konceptů s víkendovým provozem odlišným
od provozu v pracovním týdnu. Když se drift neřešil, F1 skóre kleslo z 0,92
na přibližně 0,7 během několika dní. Jelikož byly případy kdy zdrojem de-
gradace modelu bylo pouze několik silně driftovaných příznaků, byl vynalezen
nový přístup vážení výsledků testů driftu podle důležitostí příznaků. Vytvo-
řený detektor může být rozšířen o moduly pro dodatečnou analýzu deteko-
vaného driftu. Je představena nová myšlenka klasifikace typů driftu pro lepší
pochopení vývoje provozu. Vytvořený detektor byl testován na experimentu,
kde sloužil k přetrénování modelu po detekci a byl schopen nejen zabránit
degradaci modelu, ale také zlepšit jeho výkon v průběhu času.

Klíčová slova Klasifikace síťového provozu, concept drift, aktivní učení,
robustnost modelů strojového učení, strojové učení
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Introduction

Network traffic classification is a crucial aspect of network security and mon-
itoring. Machine learning (ML) models have recently become widely adopted
for this task due to their ability to identify complex patterns in the modelled
data. However, these models are not immune to the challenges of concept
drift and biases present in the dataset, which can lead to the model underper-
forming or degrading over time.

Concept drift refers to the phenomenon where the underlying data distri-
bution changes over time, making the learned model less effective in making
accurate predictions. Various factors, including changes in network usage
patterns, the introduction of new protocols, or network infrastructure modifi-
cations, can cause this. Biases can be present because of how the dataset was
captured, and the dynamic nature of network traffic patterns can be prob-
lematic for the classification. New applications emerge, existing applications
change their traffic patterns, and adversaries adapt their techniques to evade
detection. We aim to mitigate these effects and create a robust model whose
performance doesn’t deteriorate over time.

Several approaches have been proposed to address this issue, such as the
Active Learning Framework (ALF) [1] that can maintain and retrain mod-
els autonomously. However, this approach could be vastly improved when
extended with the ability to detect and adapt to concept drift in a timely
manner and to understand how the monitored traffic develops over time. The
implemented concept drift detector could thus make the model update guided
and retrained precisely when needed.

Given these challenges, this thesis aims to explore the existing methods
for concept drift detection and design a novel concept drift detector focused
on the domain of network traffic classification, which can enhance the existing
ALF. On top of that, the detector can prove to be an effective analysis tool
that can help people become acquainted with an unknown dataset or assess its
quality. Real long-term network traffic datasets provided by CESNET are used
to develop the detector and to demonstrate the aforementioned challenges.
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Introduction

Structure of the Thesis
The thesis is structured into four chapters, with the first one focusing on the
theoretical background and research, which can be divided into several topics.
The first one provides an overview of network traffic classification and show-
cases the various techniques currently used, with an emphasis on ML-based
classification of network flows. The following sections revise the correspond-
ing machine learning paradigms with the main focus put on describing how
concept drift or biases can impair the accuracy of machine learning models.
Concept drift, the main focus of this thesis, is properly defined and examined,
and the approaches to its detection are outlined. The idea of active learning
is then introduced. The workings of the existing Active Learning Framework
are explored.

The second chapter presents a practical analysis of real-world network traf-
fic datasets, with many being captured at CESNET’s network. The emphasis
is put on exploring the behaviour of network traffic and providing evidence of
concept drift in these datasets, showcasing how it can lead to the model de-
grading over time. Existing solutions for concept drift detections are examined
and analysed for use in the development of the novel drift detector.

The core contribution of this thesis, the concept drift detector itself, is de-
scribed in the third chapter. The chapter serves to describe the design choices
made, analysis modules of the detector, its usage and the various implemented
statistical tests. The ways the model can enhance ALF or become a useful
analysis tool are discussed.

All the findings on how to create robust network traffic classification mod-
els with the help of understanding how the properties of the modelled traffic
change over time are discussed in the last chapter. The created drift detec-
tor is properly examined using a simulation of long-term model deployment
with updates based on drift detections. Various possible improvements and
discoveries leading to possible future research are discussed.
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Chapter 1
Theoretical background

The research into the theory corresponding to the goals of the work is pre-
sented in this chapter. It is divided into multiple parts, with the first one
presenting the current approaches and challenges in the area of network traf-
fic classification. The theoretical background of the main topic of concept
drift is then established, together with other causes of machine learning (ML)
model degradation, such as biases. The paradigm of active learning is then
explored, together with the framework utilising those paradigms in the area
of network traffic classification called Active Learning Framework (ALF).

1.1 Network traffic classification

Network traffic classification presents an important part of network traffic
monitoring and analysis. It can be a crucial step in the network administra-
tors’ work for managing network resources, ensuring the quality of service or
discovering malicious behaviour. It is important not only for internet service
providers but also for corporations and countries, as it can be used to enforce
policies, block the usage of specific applications, or fulfil lawful interception
regulations.

The core idea of network traffic classification is identifying the traffic and
classifying it by the applications, protocols, or services used. The granularity
of the classes depends on the specific use case. It may be general internet traf-
fic types such as web browsing, streaming video, file transfers, or individual
applications, such as YouTube, Netflix, or Spotify. As the field is highly evolv-
ing and the approaches depend on the specific use case, there are many ways
to classify network traffic. The following sections further describe the vari-
ous approaches, ranging from the simple ones historically used to the current
state-of-the-art techniques using machine learning.

3



1. Theoretical background

1.1.1 Packet-based analysis
One of the approaches to network traffic classification is examining the content
of data packets. Visualised in Figure 1.1 is the structure of the IPv4 packet.
The simplest but the least reliable method is using the information present
in the packet header, specifically the port numbers, as they are assigned to
the common services by the global standards organisation IANA (Internet
Assigned Numbers Authority). For example, HTTP traffic is assigned to port
80, with HTTPS being assigned to port 443. One may classify email traffic
by SMTP servers commonly using TCP on port 25 or 857. However, there
are many reasons why this approach isn’t reliable. Not only is the granularity
of the classes and the accuracy of the whole method low but many applica-
tions are deployed randomly or may use masquerading (allocation of common
ports to deliver other traffic than expected on that specific port), making this
method infeasible in those cases. The only advantages of this approach would
be the simplicity and low computational cost [2].

Figure 1.1: Structure of the IPv4 packet. Source: [3]

Deep packet inspection (DPI) represents a more powerful approach that
combats the issues of the port-based methods by also utilising the payloads
in their classification process. DPI presents a highly effective and widely used
tool as it extracts a larger range of metadata, which is then used to match
against known patterns. Today, the trend is to use encrypted traffic, with the
usage of HTTPS overcoming that of HTTP in recent years. The latest report
from Internet Security Research Group [4] notes that HTTPS made up 84%
of page loads on average in 2023. Because encryption provides a challenge to
the traditional DPI methods, more complex methods using decryption have
to be used.

This raises a major ethical question about the use of DPI and its possible
breach of the privacy of the users. There are concerns about how it may be
misused by Internet service providers or governments and used for surveillance
and censorship, especially in countries with less democratic regimes. The ethi-
cal sides of using DPI are a complex topic warranting its own interdisciplinary
research, such as [5].
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1.1. Network traffic classification

Another downside of DPI methods is their computational insensitivity. In
some cases, they may negatively impact the performance of the network or
may not be feasible for real-time network monitoring. However, the methods
are usually highly accurate and offer fine granularity as patterns of many
popular services are known. There exist not only paid corporate solutions
but also those publicly available under open source licenses, such as the nDPI
library [6].

1.1.2 Flow-based analysis
There are many advantages of working with a different structure than the
packets themselves. Said structure should aggregate the raw traffic data from
a single data transfer and provide information about it. Methods working
with it wouldn’t analyse the payloads themselves and thus wouldn’t present a
possible breach of privacy. The idea of aggregating packets and working with
traffic statistics would also require vastly less computational resources. The
mentioned structure is called the network flow.

The terminology concerning network flows (also called IP flows) was laid
by the Internet Engineering Task Force (IETF) working group in their publi-
cation RFC 3917 [7] and further developed in RFC 5103 [8] and RFC 7011 [9].
According to RFC 3917 [7], ”A flow is defined as a set of IP packets passing
an observation point in the network during a certain time interval. All packets
belonging to a particular flow have a set of common properties.” Source and
destination IP address, source and destination port, and the used protocol
are the frequently chosen set of common properties from the definition, also
called a flow key. Packets matching the same flow key get aggregated into the
network flow until one of the following reasons for flow termination occurs.
The connection may terminate naturally, the longest allowed time between
two packets may be exceeded, or the flow duration may reach the maximal
allowed duration of a single flow.

The first network flow standard called NetFlow was designed by the Cisco
company. After that, IETF published their definition of IPFIX standard,
which we used as a basis for a general definition of network flow. The definition
implies that the network flows aggregate packets heading in the same direction,
this approach later being defined as yielding unidirectional flows (uniflows).
As it is useful to monitor the whole communication, not only the one from
source to destination, bidirectional flows (biflows) were introduced. Biflows
merge two corresponding uniflows together and then calculate flow statistics
in each direction.

Tools called flow meters (or flow exporters) are used to accumulate packets
into flows. Examples of flow meters would be Joy [10] from Cisco, the original
creator of NetFlow, Flowmon Probe [11], CICFlowMeter [12], or ipfixprobe
[13]. Ipfixprobe flow exporter is a part of the NEMEA open-source network
traffic analysis framework developed by CESNET. It is designed to create
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1. Theoretical background

biflows and can both work on live networks or process captured PCAP files.
Ipfixprobe was used to export flows that created most of the datasets used in
this thesis. The aggregated flow metadata exported by ipfixprobe in its default
configuration can be seen in Table 1.1. On top of that, ipfixprobe allows the
use of various plugins to export additional information. For example, PSTATS
plugin is used to export the metadata such as payload lengths, timestamps
and TCP flags of the first n packets.

Table 1.1: Fields exported by the ipfixprobe flow exporter in its default con-
figuration without additional plugins [13]

Field Type Description
DST_MAC macaddr destination MAC address
SRC_MAC macaddr source MAC address
DST_IP ipaddr destination IP address
SRC_IP ipaddr source IP address
BYTES uint64 number of bytes (src to dst)
BYTES_REV uint64 number of bytes (dst to src)
LINK_BIT_FIELD uint64 exporter identification
TIME_FIRST time first time stamp
TIME_LAST time last time stamp
PACKETS uint32 number of packets (src to dst)
PACKETS_REV uint32 number of packets (dst to src)
DST_PORT uint16 transport layer destination port
SRC_PORT uint16 transport layer source port
DIR_BIT_FIELD uint8 determines outgoing/incoming traffic
PROTOCOL uint8 transport protocol
TCP_FLAGS uint8 TCP protocol flags (src to dst)
TCP_FLAGS_REV uint8 TCP protocol flags (dst to src)

1.1.3 Use of machine learning
The exported metadata itself can be useful for network traffic monitoring
and indicative of incidents happening on the network. However, for the task
of network traffic classification, additional steps have to be taken. Machine
learning models provide powerful tools that can classify the captured flows.
However, the metadata usually exported by the flow meters isn’t in the final
form suitable for training the models on. Because of that, feature engineering
represents one of the most crucial steps in the process of creating ML network
classifiers. Its goal is to extract statistical features from flow data, which are
well-suited to distinguishing the various services or protocols. There are many
approaches to selecting the features, ranging from the global statistics of the
whole flow to monitoring the behaviour of the first few packets [2].
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1.1. Network traffic classification

How to choose the best-performing feature vector represents a complex
topic. As an example of commonly used features for the classification of
network flows, look at the features used in the CESNET DataZoo [14] project,
listed in table 1.2. DataZoo provides access to various large-scale, long-term
datasets with the flows being preprocessed into features suitable for training
ML models. Because of that, CESNET’s datasets are the primary source of
data for analysis and testing of the created concept drift detector.

Table 1.2: Examples of some of the features used in datasets available with
DataZoo [15]; The transmission direction from the client to server is shortened
as forward, reverse denotes the direction from server to client. A per-packet
information (PPI) sequence describes the first 30 packets of a flow.

Feature Description
DURATION Duration of the flow in seconds
BYTES Number of transmitted bytes – forward
BYTES_REV Number of transmitted bytes – reverse
PACKETS Number of transmitted packets – forward
PACKETS_REV Number of transmitted packets – reverse
PPI_LEN Number of packets in the PPI sequence
PPI_DURATION Duration of the PPI sequence in seconds
PPI_ROUNDTRIPS Number of roundtrips in the PPI sequence
FLOW_ENDREASON The reason of flow termination
PHIST_SRC_SIZES Histogram of packet sizes – forward
PHIST_DST_SIZES Histogram of packet sizes – reverse
PHIST_SRC_IPT Histogram of inter-packet times – forward
PHIST_DST_IPT Histogram of inter-packet times – reverse

The paradigm of supervised learning is widely used for network traffic
classification as it is better suited than unsupervised. However, this presents a
challenge to the creation of said models – the need for quality dataset labelling.
The training procedure of providing the sets of input variables together with
the corresponding target variable requires the ability to annotate the modelled
services or protocols when capturing the flows for the training data. Another
challenge is the uncertain generalisation of the knowledge gained when the
capturing process was done on a specific network in a specific state at one point
in time. This can lead to incorrect patterns in data, called biases. On top of
that, network traffic represents a highly evolving domain where the behaviour
of classes evolves, and the models can become degraded over time. This effect
is called concept drift. Both of these challenges are further described in detail
in the following sections. Nevertheless, even if those challenges should be
addressed, it still provides high accuracy and reasonable computational cost
and adheres more to privacy and ethical norms [2].
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1. Theoretical background

1.2 Overview of related machine learning concepts
In recent years, machine learning techniques have proved to be more than
capable in a large number of fields and thus have become widely used, not
only in the examined domain of network traffic classification, such as [16].
However, several challenges still exist that can lead to the degradation of
machine learning models. This can be due to biases and concept drift, which
should be addressed when creating robust, long-lasting models.

A basic understanding of the core machine learning concepts is expected of
the reader. This section focuses on how biases present in the dataset can yield
a model with unsatisfactory performance and how concept drift can make the
model worsen in time. Before exploring these ideas, a short overview of key
machine learning concepts is presented.

Machine learning projects usually come through complex life cycles before
resulting in fully deployed and maintained models. Several analytic models
have been proposed to describe the life cycle of the project, with CRISP-DM
(Cross-industry standard process for data mining) [17], visualised in Figure
1.2, being generally used as an example. It is first necessary to understand the
target domain and the modelled data. Before creating the models, data has
to be collected and processed in a way suitable for training machine learning
models. This means selecting or designing an appropriate feature vector.
Its creation in the case of network traffic classification was discussed in the
previous section.

Business
understanding

Data
understanding

Data
preparation Modelling Evaluation

Deployment

Figure 1.2: Broad overview of the life cycle of machine learning project based
on the CRISP-DM model

If the process isn’t thorough enough, incorrect assumptions or patterns
in data, so-called biases, further described in the following section, may exist,
which lead to the models underperforming. After a model is trained, evaluated
and deployed, another source of model degradation presents itself – concept
drift. Because of that, models have to be appropriately maintained to prevent
their performance from deteriorating, especially in online learning tasks in
highly evolving domains, such as network traffic classification.

In the case of a supervised learning task, the goal is to find a function that
satisfies the best y ≈ f(X) where X denotes the set of input variables, y is the
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target variable, and f represents the trained model. Given a feature vector
X, the model provides predictions of ŷ ≡ ŷ(X). Statistically speaking, the
underlying distribution of the modelled domain is unknown and is modelled
using empirical observations – the pairs of target variable samples with the
corresponding feature vector. We aim to create a model of the underlying
probability distribution that generated the training data, as this model should
be able to generalise to new, previously unseen data [18].

A model’s performance degrades when the training data is no longer rep-
resentative of the current distribution or when there exist additional patterns
in the training data. The issue can be with the model overfitting to those
incorrect patterns in the training data when they aren’t properly addressed.
Several metrics are used to enumerate the model’s performance. In the case
of classification, accuracy, the estimate of the probability P (ŷ = y), is often
used. However, it is not a suitable metric in the case of imbalanced datasets.
In general, F1 score is a more suitable metric, defined as F1 = 2∗T P

2∗T P +F P +F N ,
where TP denotes the count of true positive samples, FP false positive and
FN false negative [19].

1.3 Biases
When creating robust models, the presence of biases in data should be anal-
ysed and addressed. Bias refers to the systematic errors in the model that
affect its predictions. There exists a plethora of bias sources, ranging from
technical aspects of the models to the societal structure and human behaviour.
It may arise from preferences or assumptions of the used model infrastructure
or from the way data was collected or processed [20].

Another aspect of bias is from the point of view of artificial intelligence
(AI) fairness, which is becoming a more and more pressing issue every day as
AI models get used in high-stakes scenarios, such as hiring and giving loans.
In this context, the definition of bias shifts from having systematic errors in
prediction to providing decisions which are unfair. Mehrabi et al. [21] define
Fairness as the ”absence of any prejudice or favouritism toward an individual
or group based on their inherent or acquired characteristics.” However, at that
point, the discussion becomes interdisciplinary and without proper consensus
in the scientific community because this definition is viewed from the point of
ethics and not statistics. This thesis will discuss the former point of view on
bias and present the perspective of addressing bias in the domain of network
traffic classification.

1.3.1 Examples of bias

Many types of bias have been defined, some described by Hellström et al. [20]
Following examples may occur in the domain of network traffic classification:

9
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Sampling bias (sometimes called selection bias) occurs when the training
data sample is chosen in a way that is not representative of the real-
world distribution. Specific classes may be under or over-represented,
or only a subset of some class is present in the training sample. This
differs from a class imbalance in a way that not only classes may be over-
represented but also trends in data, which aren’t general and present in
the real-world distribution.
For example, in the area of image classification, if all the objects in the
training images are placed in the centre, the classifier may underperform
when they are placed in the corners. In the studied domain of network
traffic, sampling bias can occur when selecting only one or a small num-
ber of services to represent the labelled class, for example, sampling only
Spotify traffic for the class of ”Audio streaming”. Another issue could
arise with how the network traffic patterns evolve over time, sometimes
called temporal bias. For example, the model could be biased toward
night traffic, or if the different classes were sampled at different times,
the model would be biased towards deciding by the time patterns in-
stead of the differences between the classes. An example of incorrect
sampling resulting in wrong models can be seen in Figure 1.3.

Measurement bias arises when there exist inconsistencies or inaccuracies in
the data capturing. Apart from unreliable or noisy measurements, this
issue can present itself when the inference procedure differs from the
training one. For example, a model trained on network traffic collected
on a backbone network may underperform when deployed on a local
network with low throughput.

Label bias presents another source of model underperformance, brought in
by the inconsistencies in the labelling process. There may be human
error in the labelling or a systematic one. The models may learn the
training sample perfectly, but these errors may bring in patterns not
present in the underlying distribution.

Algorithmic bias may be introduced when choosing an algorithm which
isn’t well-suited for the modelled distribution or domain. The different
algorithms make different assumptions or may be more sensitive to some
distributions. For example, linear regression makes the assumption that
the modelled distribution is linear, homoscedastic (having the same vari-
ance), and the errors are independent. The illustrations of examples of
algorithmic bias can be seen in Figure 1.4.
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Figure 1.3: Visualisation of sampling bias: Presume we have a simple dataset
of a single feature x and the distribution of the target variable y has periodic
behaviour. If we sampled the distribution incorrectly, instead of discovering
that the underlying distribution follows a sine function, we would observe a
linear relationship.

Figure 1.4: Visualisation of algorithmic bias sources: Presume we have a
simple dataset of a single feature x and observed these distributions of tar-
get variable y. Linear regression wouldn’t be well-suited in the case of het-
eroscedasticity (left) or higher-order distributions (right).

One should be aware of such biases when designing machine learning mod-
els. The models may underperform when deployed if not created robustly or
have a negative impact on society, considering the second meaning of the word
bias. The goal is always to create models that generalise the modelled domain
well and continue performing well when deployed in real life. Having robust
procedures where the conditions are the same in model creation and deploy-
ment and potential sources of bias are addressed usually yields a better model
than simply looking for the best validation score.
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1.4 Concept drift
Concept drift presents a challenge causing model degradation over time, es-
pecially in dynamic domains such as network traffic. Concept drift can be
defined as a change in the statistical properties of the target variable that
the model predicts, properly defined in the following section. In the studied
domain of network traffic classification, this can be caused by changes in user
behaviour or network protocols, the emergence of new applications, etc. As
mentioned earlier, when developing machine learning models, we should aim
to create a model that properly generalises the target domain and behaves
well when presented with new and unseen data. However, concept drift can
pose a challenge if not dealt with. Even if we created a model that perfectly
reflected the state of the network at a certain point in time, the models might
underperform when deployed in a different time period.

1.4.1 Problem definiton
The phenomenon of concept drift was first proposed by Schlimmer et al. [22],
where they called for a need for robust algorithms to react to concept change
over time. This effect of the statistical properties of the target variable chang-
ing over time is commonly [23] [24] [25] [26] defined as follows:

Concept drift occurs between time steps t0 and t1 if

∃X : Pt0(X, y) ̸= Pt1(X, y)

where Pt(X, y) denotes the joint distribution between the set of input variables
X and the target variable y at time step t. The concept itself is defined as
the joint distribution Pt(X, y) or Pt(X) in the case of unsupervised learning
where there is no target variable.

The joint distribution Pt(X, y) defining concept can be rewritten as follows:

Pt(X, y) = Pt(X) × Pt(y|X)

where Pt(X) denotes the distribution of the features and Pt(y|X) the posterior
probability of the classes. When observing the two parts the joint distribution
was decomposed into, three possible cases can describe how the distribution
shifted, as outlined by Lu et al. [25] :

1. Pt0(X) ̸= Pt1(X) ∧ Pt0(y|X) = Pt1(y|X)

In this case, there is a shift in the distribution of the features, but no
shift in Pt(y|X) is present. This means that the decision boundary
of the model remains unchanged, and thus, the performance doesn’t
degrade. Because of that, the term virtual drift was coined [23] for this
phenomenon.
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2. Pt0(X) = Pt1(X) ∧ Pt0(y|X) ̸= Pt1(y|X)
This is the case where concept drift leads to model degradation as the
decision boundary changes. In other words, given the same feature dis-
tribution, the probability of observing the classes differs, and the pre-
dictions, once correct, may not be valid anymore.

3. Pt0(X) ̸= Pt1(X) ∧ Pt0(y|X) ̸= Pt1(y|X)
It is often the case that both of the previous drift sources occur.

Opposed to the virtual drift, the last two cases where the Pt(y|X) changes
are sometimes referred to [27] as actual drift or real drift, as these cases result in
model degradation as the decision boundary changes. Figure 1.5 demonstrates
the various cases and their effect on the model performance (visualised by the
change of decision boundary).

Figure 1.5: Visualisation of concept drift sources; Presume we have a feature
space X = {x0, x1} and two classes y = {y0, y1} visualised as triangles and
hexagons. The data distribution before shift (Xt0) is visualised in blue, while
the shifted distribution (Xt1) is visualised in red.

Because of these three cases describing the source of concept drift, which
is defined as a shift of Pt(X, y), several other terms have been used in the
literature [28] [29]. The terms data drift or dataset shift are sometimes used,
which encompass various drift types, such as covariate shift, prior probability
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shift and concept drift, which is only used to describe the second case of only
the Pt(y|X) changing. However, for better clarity and consistency with the
commonly used terminology today [23] [24] [25] [26], we will regard concept
drift as we defined earlier as the change of the joint distribution Pt(X, y).

It can be noted how the previously studied construct of biases can be
considered interconnected with concept drift. For example, selection bias, the
phenomenon where the dataset is created in a way that is not reflective of
real-world distribution, can be one of the sources of concept drift as this can
lead to the change of Pt(X) during deployment.

1.4.2 Categorising concept drift
To further understand how the concept develops and how to react to the
changes, several categories of the concept drift patterns have been introduced,
as reported by Gama et al. [24] and Lu et al. [25]. The different forms of
concept change are visualised on simplified one-dimensional data distributions
and can be seen in Figure 1.6 and are further discussed.

Figure 1.6: Visualisation of concept drift categories on simplified distributions.

The first type of drift, called sudden or abrupt, happens when there’s an
immediate switch from one concept to another. For example, in our studied
domain of network traffic, this can occur with a change of certificates, which
can make the corresponding features irrelevant.

Concept drift can also occur gradually, where the behaviour of the users
of the network evolves and changes over time, for example. Similar to gradual
drift is the behaviour of the incremental drift. In this case, the idea of an
intermediate concept was introduced. Concept drift may last for a longer
period of time, so this term describes the mixture of starting and ending
concepts.

Concept recurrence describes the situation where the ending concept isn’t
a completely new one but was previously seen. Some of the causes of the drift
can be temporary, and the previous concept can return. There is a possibility
of an anomaly, so-called outlier, which doesn’t present a new concept we should
adapt to but a once-off random deviation instead.

14



1.4. Concept drift

The idea of recurring concepts presents novel approaches to concept drift
adaptation. The approach of adapting to the first three drift types is min-
imising the model degradation by the faster re-learning of the new concept.
In the case of recurring concepts, it is to find the closest historical concepts
quickly. However, the behaviour of concept drift is often complex and presents
a mixture of those drift categories.

1.4.3 Concept drift detection
The overall process of model maintenance when learning under concept drift
can be seen in Figure 1.7. There are many aspects of working with data with
concept drift present. The first is the concept drift detection itself, where a
decision is made whether the drift is present in the current batch of incoming
data. In that case, the area of concept drift understanding focuses on providing
other information about when and where it happened, how severe it is, etc.
This leads to the field of concept drift adaptation, which studies how to guide
the retraining of the models effectively.

Model training Prediction Drift detection Understanding AdaptationStream data

No drift detected

Drift detected

Figure 1.7: Overview of the framework of learning under concept drift

This section focuses on methods of detecting whether drift is present in
the incoming data or not. Lu et al. [25] present a generalised overview of the
pipeline of drift detection and how it can be divided into the following stages:

Data retrieval aims to retrieve relevant chunks from the data stream. It is
accomplished by retrieving a pair of time windows, one representing the
historical data and the second one representing the current data.

Data modelling represents an optional step of further pre-processing of the
retrieved samples. For example, data can be further sampled, key fea-
tures chosen, or a dimensionality reduction algorithm such as PCA can
be used. This can be done to meet storage and speed requirements for
tasks where we require quick inference, which is often the case in an
online learning environment.

Test statistics calculation is the formation of test statistics for the hy-
pothesis test and the corresponding dissimilarity or distance between
the retrieved data samples. This presents the greatest challenge of drift
detection: how to design a test or dissimilarity metric that is accurate
and robust.
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Hypothesis test represents the final part of the pipeline, where the statisti-
cal significance of the change observed in the previous stage is evaluated.
The tests are usually designed to decide whether the two samples come
from the same distribution, with test rejection leading to drift detection.
The p-value of the test (the probability of observing the same or more
extreme test results if the null hypothesis were true) is sometimes used
to decide if drift is present with statistical significance. Other methods,
such as using Hoeffding’s inequality, permutation tests or estimating the
distribution of the test statistics by maximising the likelihood, can also
be used.

These four stages work together to make a statistically significant decision
of whether the drift is present at that specific point in time. In that case, an
alarm signal is sent, and the model is retrained to adapt to the new concept.
There are many variations of this generalised pipeline, which differ by the tests
they use, their sampling approaches, etc. These variations can be divided into
the following categories, as described by Lu et al. [25]:

Error rate-based drift detection works by tracking the changes in the model
error rate. Drift Detection Method (DDM) [30], a representative of
this approach, serves as one of the first commonly used algorithms for
drift detection. DDM works by comparing the online error rates of two
learners. The first is the historical one, and the second one is created by
adding the new data to the training dataset. A statistically significant
increase in the error rate of the new model, which was trained on both
the historical and the current data, leads to the detection of concept
drift. Many variations of this method exist, differing mainly in how the
hypothesis test is designed.

Data distribution-based drift detection models work by addressing the
root cause of the concept drift itself instead of monitoring the model
degradation. The distributions of the historical sample and the cur-
rent one are compared using a test or distance metric to prove their
dissimilarity. While these models usually incur higher computational
costs than the error rate-based approaches, their benefits are a better
understanding of where the drift is happening and the usefulness of the
dissimilarity metric to act as a measure of the severity of the drift. On
top of that, their results are interpretable as they directly describe how
the data samples are different. For example, Reis et al. [31]. use the
two-sample Kolmogorov–Smirnov test as the core of their drift detec-
tion algorithms. The null hypothesis presumes that the two samples
were drawn from the same underlying distribution. Rejection of the null
hypothesis leads to the detection of concept drift.
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Multiple hypothesis test approaches are similar to the idea of ensemble
learning. Multiple tests are carried out, and the final decision is a mix-
ture of those weak decisions. The test can be either run in parallel or
hierarchically. In the latter case, some tests can have lower precision,
but also lower computational cost and their drift detection leads to a
validation by a test which is higher quality but slower.

1.4.4 Understanding concept drift
For the most suitable reaction to the occurring concept drift, it is optimal to
have a thorough understanding of how it develops. Detection frameworks can
present information about when the drift took effect, how severe it is, and
where the drift regions are. Lu et al. [25] discuss and categorise the following
aims and methods of concept drift understanding:

Time of detection: Concept drift is defined as ∃X : Pt0(X, y) ̸= Pt1(X, y),
occurring between the time steps t0 and t1. The most trivial ability of
the concept drift detector is to identify the timestamp of drift appearing.
The aforementioned approaches to drift detection are used to decide
whether drift occurred on the current timestamp based on the historical
and current windows. In that case, an alarm signal is sent, which can be
used to force the model to update itself and react to the new concept.
This presents two challenges: minimising both the false detection rate
and the speed of drift discovery.
The drift alarm should have a statistical guarantee with a predefined
false alarm rate. The aforementioned Kolmogorov–Smirnov test, with
the null hypothesis being that the two samples come from the same
distribution, can be used as an example. The false alarm rate is derived
from the significance level of the test α, the probability of rejecting the
null hypothesis when it is true. Drift detection, in this case, means the
p-value of the test being lower than α and knowing that the probability
of the historical and current samples coming from the same distribution
is significantly low.
The second issue is that there exists a delay between the actual drifting
timestamp and the timestamp of the alert, as the detectors often require
some amount of new data to process. One of the approaches can be
specifying two thresholds, one for the detection itself and a second for
a preemptive warning. For example the warning level of 2σ = 95%
and alarm level of 3σ = 99% is sometimes used, with the corresponding
significances αwarn = 0.05 and αalarm = 0.01.

Drift severity: On top of detecting the drift, some algorithms can provide
additional information about the severity of the occurring drift. Severity
can be a metric that quantifies the dissimilarity between two concepts.
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Data distribution-based approaches are generally better suited to this
discipline than error rate-based ones as the core of their tests is to find
the dissimilarity of the distributions compared to monitoring the drop
in performance of the learning system. The difference in performance
on historical and current samples can be used to estimate the severity
of the drift. These estimates aren’t well explainable, though.

Distribution-based approaches often work with test metrics that can
be reasonably explainable and suitable for determining the severity of
the drift. In the case of the previously mentioned Kolmogorov–Smirnov
test, the p-values of the test can serve as drift severity. The stronger the
rejection of the test, the more severe the drift is. Following are examples
of other metrics of similarity between distributions that are well suited
for drift detection and severity measurement.

Kullback–Leibler divergence, also called relative entropy, is a popular
measure of how two probability distributions, P and Q differ from each
other. It is defined as DKL(P ||Q) =

∑
x P (x) log(P (x)

Q(x)). However, it
cannot be called a metric as it doesn’t satisfy some of the axioms of
metric space. It isn’t symmetric, and it doesn’t hold the triangle in-
equality. To improve on this measure, Jensen–Shannon divergence was
introduced. Its square root is often called the Jensen-Shannon distance
and is a metric ranging from zero to one, zero meaning identical distri-
butions and one completely different. This makes it fairly explainable
and a good fit for being a metric of drift severity [32].

Another metric used for detecting concept drift and judging its severity
is called the Wasserstein metric, sometimes known as the earth mover’s
distance. To put it simply, it represents the minimal cost of transforming
one distribution to another, as in moving piles of dirt over each other.
Wasserstein distance can be normalised, resulting in a relative distance
better suited for drift detection. After normalisation, it is fairly explain-
able but isn’t well-defined for categorical data and can be relatively
computationally expensive [27] [33].

Drift location: There are drift detection algorithms which can also provide
where are the regions of concept drift located. In some systems, this
information can be used for better concept drift adaptation. As some
data regions can remain stable as others drift, the old model can be used
for inference in the stable regions before the new model is retrained.

Generally, these methods work by partitioning the feature space by a
decision tree or more complex tree structures. The logic of drift detection
is contained in the leaf nodes, each corresponding to a hyper-rectangle
in the data feature space. Because of that, the detection results are
associated with the corresponding regions.
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1.5 Active learning

When training machine learning models under the paradigm of supervised
learning, large amounts of quality labelled data are needed for creating well-
performing models. Another common challenge is keeping the model per-
forming as the data distribution and patterns change over time. Both of these
challenges can be addressed by the field of machine learning called active
learning, where the models are created in a way that minimises the number
of labelled samples needed and allows the model to be continually retrained.
The following sections describe the main principles of active learning and how
they are utilised in the current Active learning framework, which the drift
detector aims to extend.

1.5.1 Principles of active learning

As the survey paper by Settles [34] describes, the core idea of active learning
is minimising the amount of labelling that needs to be done by allowing the
learning algorithm to train only on an intelligently chosen subset of data.
The annotation process can be computationally expensive, time-consuming or
require an annotator who is an expert in the field. For example, as described
by El-Hasnony et al. [35], active learning can have a huge impact in the field of
medicine, where the amount of human experts is limited and the annotations
complex and costly. In the studied field of network traffic, detectors can be
deployed on networks with hundreds of thousands of network flows generated
every second, making the online annotation of each flow infeasible.

Two main approaches to active learning (AL) exist based on how the data is
processed. Pool-based approaches work with processing a large pool of offline
data, while stream-based approaches are designed for processing an online
stream of data. The general overview of the process of active learning can be
seen in the example of pool-based AL overview, visualised in Figure 1.8.

Unlabelled samples poolLabelled training set

Machine learning model

Annotation by oracle Query the pool

Train the model

Figure 1.8: Overview of pool-based active learning
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The core idea of sampling only a subset of the training data is applied
using query strategies. Query strategies are methods to decide whether to
query or discard the current instance in the case of stream-based AL or to
choose the most informative subset in the pool-based case. For example, the
strategy of uncertainty sampling selects the instances in which the model is the
least certain about what label to give. The selected candidates for annotation
are then presented to the oracle, the source of truth, which can be human
experts or some more computationally expensive model, based on the modelled
domain. The annotated data samples are then stored in the labelled training
set, which is used to train the new iteration of the ML model. This process
makes the models iteratively improve and provide the same performance with
a vastly smaller amount of training data because query strategies can make
the training process focus on instances closest to its decision boundary instead
of irrelevant ones.

1.5.2 ALF: Active Learning Framework

Active Learning Framework (ALF) [1] incorporates the ideas of active learning
into a robust framework for training and maintaining network traffic classifi-
cation models. The concepts of active learning are used to enable the frame-
work to be deployed for flow-based analysis of high-speed networks, while also
presenting the benefits of continuously retraining a model in a highly evolv-
ing domain of network traffic. ALF is primarily focused on the paradigm of
stream-based AL as it reduces the required storage needed, which is espe-
cially useful in the case of monitoring high-speed networks. However, it can
also work in the pool-based scenario to evaluate offline datasets.

Figure 1.9: General overview of the whole pipeline of ALF; Image source: [1]
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The broad overview of the ALF pipeline can be seen in Figure 1.9. The
whole knowledge of the ML model is continuously updated and represented
by the current training dataset Di. In the beginning, the initial dataset (D0)
is presented, together with the chosen ML classifier, annotator, etc. For each
retraining loop, a new version of the classifier (Mi+1) is created, and the per-
formance of the new model is monitored. The one retraining loop generating
the next iteration of the dataset can be seen in Figure 1.10 and can be divided
into the following phases:

Figure 1.10: Overview of the ALF update loop. Image source: [1]

Read stage processes all the incoming network flows. Data gets preprocessed
into features suitable for machine learning training and inference. Pre-
diction of the current model Mi is done on the whole batch of incoming
flows.

Query uses strategies to sample a subset of data to annotate and include in
the next generation of the dataset.

Annotate stage provides the labels for the currently selected subset of data.
The role of the oracle is represented by a software module that uses
additional sources of knowledge (e.g., OSINT, system logs, service logs,
or any monitoring/auditing tools running at end-point devices). These
annotators may not be usable in all scenarios, or their time complex-
ity may make them infeasible at large scale, which is the case in the
decryption of encrypted traffic, for example.

Postprocess stage presents a novel addition to the usual AL pipeline. It
allows the analysis of the quality of the current dataset and addresses
possible quality issues. For example, undersampling is done to have a
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dataset of manageable size, and class imbalance is handled. The detec-
tion of concept drift would provide an additional model-enhancing pro-
cedure that would help ALF update the datasets appropriately. These
procedures are often time-consuming and may be done once per longer
time period.

Train stage represents the training of the new generation of ML model (Mi+1)
based on the latest version of the dataset (Di+1).

Authors of ALF put great emphasis on creating a robust framework that
goes beyond implementing the common active learning loop and focuses on
dataset optimization and quality assessment. Detection of concept drift may
present an additional step beyond the currently implemented performance
monitoring and dataset optimization procedures. The retraining process could
become guided by the drift detector and make the model avoid unnecessary
retraining or increase it under a sudden change of the underlying distribution.
Because of that, the authors perceived drift detection as an open research chal-
lenge. This thesis tackles the challenge by creating a tool that can implement
these changes into ALF, among other use cases.
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Chapter 2
Analysis of network traffic

behaviour

The theoretical research introduced many challenges in creating robust, well-
performing and long-lasting machine learning models for network traffic clas-
sification. It was described how the models may underperform when the cap-
turing process doesn’t address the possible biases and how concept drift can
make the models become degraded over time. The goal of this thesis is to
create a concept drift detector that can be a part of methods for combat-
ing those challenges. To create a solution for said problems, one should first
analyse them and understand their behaviour. Because of that, this chapter
provides an analysis of multiple network traffic datasets, documents how net-
work traffic evolves over time and showcases the effect of concept drift and
biases on the performance of machine learning models. The knowledge gained
in this chapter aims to aid in creating a concept drift detector tailored to the
domain of network traffic and provide useful insights into the best practices
for creating network traffic classification models.

2.1 MAWI WIDE dataset
In order to properly study the evolution of network traffic, the first experi-
ments analyse it from the long-term point of view. MAWI WIDE dataset [36]
presents a perfect candidate for such long-term analysis as the MAWI Working
Group has provided traffic samples since 1999. They provide daily traces from
various sampling points, with sampling point F being operational since 2006,
enabling us to study how the network traffic has evolved for 17 years. The
mentioned sampling point monitors the transit link from the WIDE academic
network in Japan to an upstream provider. With some exceptions, they sam-
pled the traffic each day for 15 minutes, starting at 14:00. The whole trace
can be downloaded as a tcdump file, and the website aggregates various statis-
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tics describing the current sample. For the experiment, a website crawler was
created that parsed statistics of the daily traces as they are used in studying
the long-term evolution of network traffic.

The first analysis examines how network throughput evolves over time as
it is a general statistic of the state of the network that can also have an impact
on the possible statistical features used in the creation of ML models. The
time series of the mean daily throughput is visualised in Figure 2.1. The
following insights can be gained from observing it: The behaviour of network
traffic is highly dynamic, with a large variance in the observed data. Other
than this behaviour, there are other global and local trends present. Some of
them may be outliers – daily anomalies whose source may be an unexpected
load of the network that day or an error in their sampling process, but the
time series was cleaned up from the most easily recognisable outliers before
plotting it. There exist more intense network changes which could severely
impact the following performance of the model trained on the data before the
change, presuming throughput can be used as a general metric influencing the
feature vector. Such change can be seen in 2015 when the values doubled on
average in a matter of months.

Figure 2.1: Mean daily and monthly throughput of the MAWI WIDE dataset.

Further analysis focuses on a six-month long time window, visualised in
Figure 2.2. The noise in the data represents a recurring periodic behaviour, not
some random variance. This implies that the weekend network traffic differs
from the one during a working week. On top of that, the time series was well
predictable when analysed using models for time-series modelling, illustrating
the strength of the periodic behaviour. This presents the suggestion that
network traffic periodically changes, which could impact the performance of
classification models (assuming the relationship between the throughput and
the used features), meaning that models trained on working week data would
be less capable of recognising weekend data and vice versa. However, to fully
explore that idea, an analysis of additional examples of traffic from other
networks has to be made to assess whether the assumption is correct and
whether this periodic trend can be seen in other datasets.
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Figure 2.2: The time series of the mean daily throughput of the MAWI WIDE
dataset, with a six-month subset of data being presented.

2.2 CESNET TLS dataset
The following experiments further explore the idea of network traffic evolving
periodically through the week and the performance of classifiers differing on
working week versus weekend data. In other words, the experiments aim
to indicate whether concept recurrence can be observed with weekend traffic
representing a different concept than working week traffic.

The aforementioned theory was tested on a year-long dataset capturing
a large number of web services (180) running in HTTPS communications
called CESNET-TLS-Year22 [37]. With some exceptions, that dataset pro-
vides network flows that were captured continually through the year 2022.
Some experiments have been conducted on a reduced sample set provided
by the supervisor. The whole dataset was later published on their DataZoo
platform [14].

2.2.1 Simulated model deployment
The goal of the following experiment is to support the discovery of the periodic
behaviour of network traffic. In order to achieve that, a classifier was created,
and the dataset was then used for simulated model deployment. The gradual
decline of the model over time was observed. The whole first day was used as
a training dataset, which was the 1st of January 2022 – a national holiday and
Saturday. For the remainder of the dataset, a five-minute sample beginning
at 10:00 was used to represent the day because of the computational and
storage requirements of such a large experiment. This decision was made to
emphasise the periodical behaviour and showcase the effect of biases, but it
shouldn’t be made when designing actual models as it represents an example
of sampling bias. The model is trained on a subset of data and may thus
overfit to data patterns only correct at that point in time instead of learning
how the modelled network traffic generally behaves.
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This reduced version of the dataset was available in the form of flows
captured by the ipfixprobe flow exporter with the PSTATS plugin used. To
generate a feature vector from the captured flows, Feature Exploration Toolkit
[38] was used. It uses a variety of statistics, such as mean and standard de-
viation regarding packet lengths, inter-arrival times, etc. Instead of services
themselves, general categories, such as streaming media, file sharing, etc., were
used as classes. Histogram-based Gradient Boosting classifier from the sklearn
library was used as the model for this experiment as Gradient Boosting Ma-
chines (and XGBoost used in following experiments) represent highly popular
and effective model architectures currently used.

The results of the experiment simulating model deployment can be ob-
served in Figure 2.3. F1 scores of the model prediction for the daily data
sample represent the quality of the model’s predictions to judge how it would
degrade over time. We can gain many interesting insights into the behaviour
of models for network traffic classification. First is how quickly the model’s
performance deteriorated, with the F1 score dropping from 0.92 on the first
test day to around 0.7 in the following working days. This implies that the
behaviour of weekend traffic indeed differs, and the model may have overfit-
ted to the patterns only present in the weekend data and failed to generalise
properly. This presents a strong practical example of sampling bias and urges
following more robust procedures when designing models for network traf-
fic classification. If not properly addressed, one would create a model with
satisfactory validation scores that would nonetheless fail to perform in the
deployment phase on a different day.

Figure 2.3: Results of the simulated model deployment experiment on the
TLS dataset. F1 scores indicate how the model degraded over time.

The strong differences in performance continued throughout the whole
dataset, which urges further investigation of how the behaviour changes when
training on the dataset sampled on the whole first week. When assessing the
general trends other than the periodic behaviour, one can see an example
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of a possible strong concept drift at the beginning of March, indicated by an
additional drop in performance. Some distribution changes probably impacted
the performance of the model. This behaviour was explored and analysed in
more detail in the following experiments. As with the previous experiment,
the resulting time series was modelled and analysed, and the observations were
the same. The change in the model’s performance is well-predictable and thus
deterministic, which one may not expect.

In order to study how to make models more robust and provide examples
of challenges already present in the usual process, further experiments stud-
ied the causes of model degradation and looked for proof of the suspected
distribution change at the beginning of March. The second experiment with
this dataset was designed to observe the development of the most correlated
features with the F1 Score of the models. The comparison of the time series
of model quality and mean values of the two most correlated features is vi-
sualised in Figure 2.4. Many features were studied in this way, all showing
similar behaviour, with these two plotted – lengths_std (standard deviation
of packet lengths) and fwd_pkt_iat_max (maximal packet inter-arrival time
in the forward direction) – showcasing the strongest trends.

Figure 2.4: Comparison of time series of model quality indicated by its F1 score
on a daily subset of data and mean value of lengths_std and fwd_pkt_iat_max
features. A change in the distribution of both features can be observed in
March.

The experiment results provide evidence of the distribution change in
March. After the change, the variance of values through the week either dra-
matically decreased or increased. This provides an example of concept drift
and provides an explanation of the model degradation. On top of that, it can
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be noted how heavily correlated the time series are. Before the process change
in March, the time series of lengths_std and F1 scores are almost perfectly
correlated. In creating robust models, the ability of one feature to impact the
quality of the model this heavily would not be wanted.

Further experiments explored the robustness of the used feature vector. It
was indicated that they are often correlated with throughput, meaning that
just a higher load on the network would impact the quality of the model, on
top of the aforementioned weekly period. There exists a need to study the
robustness of feature vectors used for training network traffic classification
models further. However, this falls out of the scope of the researched topic of
concept drift and is thus left as a future research challenge.

2.2.2 Concept drift analysis
The main research topic of this thesis is the concept drift itself as the goal is the
creation of a novel concept drift detector tailored to the needs of network traffic
classification. Because of that, the focus shifted from analysis of the features
and simulated model deployment to using existing solutions for concept drift
detection and observing how to tailor the created drift detector. The goal of
these experiments is first to explore how the drift detection approaches react
to the previously described periodic development and to the major process
change in March. Other experiments then serve to gain insights used in the
development of the drift detector.

The library for evaluating machine learning models called Evidently [39]
was used to detect drift in this section. In the case of numerical data, the
default drift tests Evidently uses are the Two-sample Kolmogorov-Smirnov
test (KS test) or the test based on the Wasserstein distance in samples with
more than a thousand data instances. A test is built for each feature and
the whole sample is considered drifted if more than half of the features are
detected as drifted. A feature is considered drifted with the rejection of the
null hypothesis of the KS test that the two samples come from the same
distribution, with the default value of α = 0.05. In the latter case, normalised
Wasserstein distance is used, with the default detection threshold set at 0.1,
meaning that drift is detected when the cost of transforming one distribution
to another is more than 10% of standard deviation. This presumes the default
thresholds are used.

Experiments with both approaches have been made – undersampling the
dataset and using the KS test or working with normalised Wasserstein dis-
tance. The results from both of these methods were similar, with the KS test
being more sensitive as it usually marked more features as drifted. Creators
of Evidently suggest [33] that this sensitivity of the KS test increases even
more in the case of large datasets. Because of that, the following experiments
are based on normalised Wasserstein distance, as the created drift detector
should be designed to work with hundreds of thousands of data instances.
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Another question that presented itself is how to deal with the fact that
the usual feature vector can have up to a hundred features, and some of
them have a vastly larger impact on the model’s decision than others. It was
later observed in an experiment with a different feature vector that one of
the features was static and had no use whatsoever. This feature should be
thrown away during preprocessing, but this work aims to create a robust drift
detector that can also be used for quick analysis of unknown datasets. It
was experimented with choosing a subset of the most prominent features and
making the final detection in other ways than by shares of drifted features,
such as counting the mean drift severity across all features. More complex
methods will be later used in the final developed detector but in the case of
the first analysis of the drift present in this dataset, a subset of the ten most
prominent features (based on the feature importance provided by the trained
model) was used. The whole daily sample is considered drifted if half or more
of those features are drifted. The historical data comes from the time window
of the last seven days and the new daily data represents the current one. The
results of this drift detection experiment can be seen in Figure 2.5.

Figure 2.5: Results of the TLS drift detection experiment; Subset of ten most
important features was chosen and concept drift detection test based on nor-
malised Wasserstein distance was used. Share of the features detected as drifted
is shown with a share larger than half or equal would mean that drift was de-
tected at the whole daily sample (with a historical window of last week).

It can be observed that the distribution varied the most before the pro-
cess change in March, where simply a difference between working week and
weekend traffic could trigger drift detection or be close to triggering it. There
was a data outage at the end of January associated with multiple drift detec-
tions. Another drift detection occurs in March, accompanying the previously
discussed process change, providing evidence that drift detection algorithms
would detect it and may thus guide the dataset update and prevent the model
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from deteriorating. Another drift detection happened in June, following the
drop in performance to the lowest measured F1 score. The performance im-
proved the next day and no drift was detected, meaning it may have been a
temporary anomaly.

The previous experiment showcased the traditional approaches to drift de-
tection in choices of historical and current windows that would detect concept
drift at the current timestamp. In the next experiment, the idea of concept
drift is further generalised to study the development of the distribution, which
can be used for additional analysis and a better understanding of the behaviour
of network traffic in this dataset. Drift is detected for each day of the test
data (data from said day – Di – representing the current window) and four
tests are carried out, each with a different choice of historical window.

Figure 2.6: Analysis of the development of the TLS dataset by additional
historical window choices; Drift detection test using normalised Wasserstein
distance is carried out for new daily data subset (Di). The following choices
of historical windows have been made: Last week – Di−7 to Di−1, First week
– D0 to D6, Day before – Di−1 and seven days before – Di−7.

The results of this experiment zoomed at the area of process change in
March can be seen in Figure 2.6 and are analysed below:

Last week represents the usual approach to drift detection, also used in the
previous experiment. Data from days Di−7 to Di−1 are used for the
historical window. It can be studied that the process change was de-
tected in one day, after which the performance worsened, but no more
detections were made after that.

First week uses data from days D0 to D6 for the historical window. This
experiment represents the cumulative development of the distribution
compared to the beginning of the dataset. Compared to the first week,
each weekend’s data would be considered drifted. After the process
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change, the data would be considered drifted (or nearly drifted) for
each day. This provides evidence of the model being degraded as the
distribution has substantially changed and retraining was needed.

Day before compares the days Di and Di−1. The differences between the
consecutive days aren’t strong enough to detect the process change, and
spikes in the share of drifted features are located around the weekends.

7 days before analyses the changes cleaned from the periodical effects, com-
paring Di and Di−7. Some detections occurred on days when no other
window choices had an increased share of drifted features and the effect
on the performance isn’t visible. However, the most revealing is the be-
haviour around the process change, where the distribution vastly differed
from the one from the same day last week for seven consecutive days,
providing further proof of this idea of a more complex process change
happening.

2.3 CESNET QUIC dataset
To properly assess whether the patterns observed on the previous datasets
represent general behaviour, similar experiments were carried out on another
dataset. CESNET-QUIC [40] dataset provides four weeks of data samples
captured in November 2022 and is comprised of 102 captured services using
the QUIC protocol. It is also available on the CESNET DataZoo platform [14]
in the form of already preprocessed flows with features suitable for training
machine learning models.

With this new dataset and feature vector, the experiment of simulated
model deployment was repeated. In this case, a Histogram-based Gradient
Boosting classifier was used to classify the dataset into a chosen subset of
general categories, such as streaming media, file sharing, etc. The first week
was used as a training dataset and the remaining three weeks were used for
testing. The trained model was used to classify daily subsets of the testing
dataset, showcasing how the model would degrade over time. The results of
this experiment can be seen in Figure 2.7. The previously observed periodic
behaviour is also present in this dataset, although the differences in perfor-
mance seem to be less severe. On top of observing differences in weekend
traffic, a change in behaviour can be seen during the Czech national holiday
on November 17, when the performance improved, similarly to the weekend
traffic. Outside of this period, slight degradation can be observed during the
first week of testing, after which the downward trend stabilised. This periodic
behaviour was observed with the choice of different datasets and different fea-
ture vectors, so it can be presumed that this issue generally exists in the area
of network traffic classification.
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Figure 2.7: Results of the simulated model deployment experiment on the
QUIC dataset. F1 scores indicate how the model degraded over time.

As with the previous dataset, the Evidently library was used to detect con-
cept drift present in the dataset. The test based on the normalised Wasserstein
distance was performed and its results can be seen in Figure 2.8. For the cur-
rent time window of data from day Di, a historical time window is created
from the data from the last seven days (Di−7 to Di−1). For this choice of
classes and undersampling used, no drift detection would occur under the de-
fault thresholds Evidently uses. It can be observed that usually, no features
or only a minor number were detected as drifted, with slight increases during
the degradation in the first week and during the holiday on November 17. Be-
cause of these observations, it can be presumed that the majority of features
were drifted but slightly under the detection threshold, or the few features
detected as drifted had severe changes in distribution and could cause the
model degradation themselves. A further analysis of this behaviour is needed.

Figure 2.8: Results of the QUIC drift detection experiment; Subset of ten
most important features was chosen and concept drift detection test based on
normalised Wasserstein distance was used. Share of the features detected as
drifted is shown with a share larger than half or equal would mean that drift
was detected at the whole daily sample (with a historical window of last week).
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Because of these discoveries, an experiment was designed to study the
drift of the features separately. Drift detection tests, historical windows, etc.,
were the same, but the features were then analysed independently, with the
most illustrative chosen for visualisation in Figure 2.9. It was discovered that a
single feature, PSIZE_REV_4, was consecutively detected and, in some cases,
more severely drifted. In some cases, the features presented sudden spikes in
drift severity or were slightly under the detection threshold. Because of this
observation, the created drift detector should have the ability to fine-tune the
detection thresholds and work with a more robust approach of combining the
final decision than by the share of drifted features.

Figure 2.9: Independently detected drift of the features of the QUIC dataset;
Drift detection test based on normalised Wasserstein distance was used to
detect drift independently on each feature and the development of three chosen
illustrative features is shown.

Figure 2.10: Results of the simulated model deployment experiment on the
QUIC dataset. A subset of services was chosen. It can be observed how the
model degrades for each class.
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The following experiment analysed how the individual classes can drift in
different ways. A new model was created to classify the subset of the dataset
of several chosen services, and the same simulation procedure was replicated to
test the model, with the F1 scores measured independently for each service and
the experiment results visualised in Figure 2.10. It can be observed how some
of the classes (e.g. Instagram) present no visible decline in performance, and
some classes (e.g. Spotify) recovered after a short underperformance period.
Another case was when the drift occurred and the performance never recovered
(e.g. Google-services). Luxemburk et al. [16] provided a study of QUIC traffic
classification using the same dataset and discovered concept drift present in
various services from Google. Because of that, a drift detection experiment
was performed specifically on data from Google-services class. In this case,
the KS test was performed at it is more suitable when presented with a lower
amount of data instances. The chosen subset of features and windows were
the same. Results of this detection can be seen in Figure 2.11, and the share
of drifted features is higher, especially during the first week. However, drift
detection would only occur in one day, further showcasing the importance of
a more robust method of providing the final decision of whether the drift was
present in the whole sample.

Figure 2.11: Drift detection of the Google services class; Subset of ten most
important features were chosen and the KS test was used for the detection.
Share of the features detected as drifted is shown with a share larger than half
or equal would mean that drift was detected at the whole daily sample (with a
historical window of last week).

The authors of the study suspect that a change in the certificate could
have been the source of the observed drift. The experiment of independently
detecting drift for each feature was repeated on Google-services, visualised in
Figure 2.12. In this case, the training dataset from the first week was fixed
as a historical window as this helps discover whether the changes are perma-
nent. It can be seen that the previously discovered feature, PSIZE_REV_4,
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drifted and never recovered and may be the source of drift. Another fea-
ture, PSIZE_4, was severely drifted during the first couple of days but then
recovered to the same training distribution. These discoveries support the
hypothesis of change in a certificate being the source of the drift as it would
correlate with the change of the PSIZE_REV_4 feature.

Figure 2.12: Independently detected drift of the features of the Google services
class; KS test was used for the detection and differences between the training
and current dataset were compared. P-values of the test are shown, with values
under the threshold meaning drift presence.

2.4 Conclusions of the analysis

This chapter provided three main points of view on the topic of creating robust
network traffic classifiers. One was to analyse the behaviour of network traffic
and practically observe the challenges that need to be addressed. Subsequent
experiments showcased how the models would degrade if those challenges were
not handled. The last experiments worked directly with existing methods
of concept drift detection and observed how they would detect drift in the
datasets they used. The conclusions gained from those experiments can be
summarised as follows:

Behaviour of network traffic: The periodic development of network traf-
fic represents the first major discovery about the behaviour of network
traffic. The paradigm of multiple recurring concepts was observed, with
working week traffic having a different distribution than the weekend
one. The statistical features used as a basis of ML models are often
correlated with throughput and thus depend on the current load on the
network, which can differ not only during weekends but also holidays.
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Model degradation: If the previously discovered challenges aren’t properly
addressed, the model may quickly degrade. An experiment illustrating
sampling bias showcased that a model trained only on weekend traffic
from a single day may provide significantly worse predictions only a cou-
ple of days later (dropping from F1 score of 0.92 to 0.7). A long-term
experiment simulated half a year of model deployment and showcased
that concept drift may severely and permanently change the underlying
distribution. The trained patterns in data may not be accurate anymore
and the model may become ineffective if it is not retrained. This section
provided evidence that network traffic indeed represents a challenging
and highly evolving domain, and further work is needed in creating ro-
bust network traffic classifiers. It was also showcased that there may be
more sources of model degradation, and the performance of the individ-
ual classes may evolve differently.

Concept drift: The last section experimented with existing methods of con-
cept drift detection to demonstrate how they react to the periodic be-
haviour and the previously discovered concept drift. The relationship
between drift being detected and model underperforming was illustrated.
It was discovered that in some cases, the methods discover drift in places
where it is expected by the underperformance of the model, but in other
cases, a low number of severely drifted features seemed to be the cause
of degradation. Because of that, a search for a more robust approach
of combining the final decision than by the share of drifted features is
advisable. The idea of detecting concept drift was then generalised for
additional analysis of the distribution change, where various choices of
time windows enabled different observations of how the distributions
develop. For example, if drift is calculated compared to the reference
training dataset, it may stack up, and the model may further degrade.
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Chapter 3
Concept drift detector

The main goal of this thesis is the creation of a prototype for a novel concept
drift detector tailor-made for the domain of network traffic. The observed
patterns from the thorough analysis of multiple network traffic datasets, such
as the periodic behaviour or a single heavily drifted prominent feature being
the cause of model degradation, serve as a basis to fine-tune the detection
method. The primary use case of the drift detector is incorporating it into
the existing infrastructure of the Active Learning Framework, where it can
guide the model retraining by the drift detected. During the development of
the detector, the focus was also given to the secondary use case of a tool for
offline analysis of existing datasets, and additional features were implemented
to help further with this use case.

3.1 Design choices
The main approaches to designing concept drift detectors are the Error rate-
based detectors, Data distribution-based detectors and those utilising Multiple
hypothesis tests. Data distribution-based methods are currently implemented
as they are usually based on well-explainable metrics, which address the root
cause of the concept drift, and the detector may be used for analysing the
drift in datasets without having a machine learning model to observe its error
rate. Lu et al. [25] categorise various capabilities and aims of the detectors
for better concept drift understanding, which were addressed as follows:

Time of detection: The primary ability of the concept drift detector is to
identify whether the drift is present for the current timestamp. This is
done by providing the detector with two distributions – historical and
current. Drift is detected if the tests provide a statistically significant
decision that the two samples come from different distributions, and a
signal is sent, which can be used to make the model update itself to
react to the change of concept.
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There exist multiple ways of choosing the historical and current time
windows and their lengths. As the primary goal of this detector is to
expand the existing infrastructure of the Active Learning Framework,
this process is deliberately left out of the detection method. ALF works
with continuously maintaining its knowledge in an evolving dataset. It
is presented with a stream of new data to classify and choose which to
incorporate into the latest version of the dataset. ALF could thus supply
the detector with valid window choices. If the concept of the current
stream of data doesn’t match the concept of the knowledge base in the
dataset, there is a need to update it. In the case of using the detector
as a tool for analysing unknown datasets, the user should supply the
detector with the choice of windows suitable for the aims of the specific
experiment.

Drift severity: The importance of having a representative metric that quan-
tifies the dissimilarity between two concepts was observed during the
analysis. Such metric, usually called drift severity or strength, should
be well explainable and representative of the observed dissimilarities.
The work focuses on finding a suitable severity candidate as it could be
used to modify the intensity of the retraining, replacing larger subsets
of the dataset in cases of more severe drifts.

In the case of network traffic, the feature vectors often have up to a hun-
dred features, some of them providing negligible information, and thus, a
shift in their distribution may not lead to the decision boundary change.
Another observed behaviour was a couple of important shifted features
leading to major model degradation. There exist multiple methods of
factoring in the various feature distributions into the final decision of
whether drift is present. One may adopt multivariate two-sample tests
which regard the whole feature vector as a multidimensional distribu-
tion, each feature corresponding to one dimension. Some methods use
dimensionality reduction first. Another approach is running a test for
each feature distribution and then combining the decision, usually by
the share of the drifted features.

However, none of these approaches address the previously described issue
of various features differently contributing to the final model degrada-
tion. Because of that, the tests are run independently for each feature
distribution and their drift severities stored. They may be used for fur-
ther analysis of the most drifted features, features that are often drifted,
etc. The final drift strength is then calculated as the weighted arithmetic
mean of those individual severities, where the feature importances sup-
plied by the classifier serve as weights. Because of that, the detector
will be triggered by cases such as observed in the TLS-QUIC dataset,
where a couple of important and heavily drifted features were the cause
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of model degradation. When analysing a dataset without the presence of
an ML model to supply the weights, the unweighted mean is used. The
default threshold corresponds with the commonly used drift detection
if half or more features are considered drifted. The detector considers
the whole sample drifted when the final drift strength exceeds 50% of
the detection threshold of a single test, presuming default thresholds are
used. This presents a novel approach to tackle these challenges.

Drift location: Some methods exist which can also provide where are the re-
gions of concept drift located by partitioning the feature space, running
multiple tests, and associating the detection results with the correspond-
ing regions. However, different approaches were chosen to analyse where
the drift is located. Firstly, calculating the drift severity independently
for each feature has the advantage of making the monitoring of which
features are often drifted possible. Secondly, the detector is designed to
run secondary tests for each class independently and provide informa-
tion on which classes are the most drifted. The workings of this class
detection will be further described in the following sections.

3.2 Implemented tests
As reasoned above, Data distribution-based methods were implemented as they
are well suited for our use case. The detector was designed to be modular and
can be easily expanded by implementing new tests. They have to follow the
general interface of a drift detection test, which means providing the decision
if a single feature should be considered drifted and calculating the final drift
severity for the whole sample. Commonly used default detection thresholds
are implemented in the tests but may be changed during the construction of
the test instance. Currently, there are three drift tests implemented:

Kolmogorov–Smirnov test is built around the null hypothesis that the
two samples were drawn from the same underlying distribution. Drift
severity is represented by the p-value of the test, meaning the lower
the value stronger the rejection of the null hypothesis and the stronger
the drift. The default α level used is 0.05, so features with lower p-
values are considered drifted. The KS test is best suited for comparing
lower sample sizes (e.g., under 1000) as it can be overly sensitive for
larger sample sizes. It is defined for continuous distributions, so it isn’t
suitable for detecting drift on categorical data.

Wasserstein distance measures the dissimilarity between two distributions
and represents the minimal cost of transforming one distribution to an-
other. The absolute Wasserstein distance is then normalised by dividing
it by the standard deviation, resulting in a fairly explainable drift sever-
ity. The default detection threshold is 0.1, meaning features with larger
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normalised distances are considered drifted. It is advised to be used as
the primary method for the global drift detector. However, it is also
only well-defined for continuous distributions, so another test should be
used for categorical data.

Jensen-Shannon distance is the square root of Jensen–Shannon divergence
(symmetrised and smoothed version of the Kullback–Leibler divergence).
It is a metric ranging from zero to one, zero meaning identical distribu-
tions and one completely different. The default behaviour of the test is
that features with a distance larger than 0.1 are considered drifted. As
it is calculated by comparing two probability vectors, binning has to be
performed on the distribution. The main advantage of this approach is
that it may be used for categorical data.

3.3 Detector infrastructure
The general overview of the drift detector infrastructure can be seen in Figure
3.1. The design of the drift detector is modular and some modules may be
used for further analysis. The detector may be tuned to the needs of the user
by specifying the various modules. After the detector and its modules are
initialised, the intended usage is to provide it with the historical and current
data samples for a single round of drift detection. The primary and mandatory
module is the global drift detector, which provides the drifted features, drift
strength and signal to retrain the model. Further analysis may be done by
running tests independently for each class and studying which classes are the
most drifted. The drift analyser classifies the occurring drift into categories
to further explain how the distributions develop by running separate tests for
its own time windows. Each of these modules may be configured to work with
different tests independently of each other. The logger module may be used
to store the test results and prevent the need for outside monitoring of the
detection results.

Concept
drift

detector

Historical sample
Current sample

Global drift detection Class drift detection

Logger module

Drift analyser

Alarm signal
Drift statistics

Figure 3.1: Overview of the infrastructure of the created drift detector
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The detector is initialised by supplying it with the configuration for the
primary global detection and optionally for the class drift detection. Logger
and drift analyser are then supplied as instances of their individual classes,
with the analyser being set up by the same Config class as the other modules.
It encapsulates the following possibilities for configuring the detector:

chosen_features expects a list of feature names specifying the subset of
features to run the drift detection on. Some of the tests are not suitable
for categoric features, so this argument may be used to exclude them.

feature_importances expects a Pandas series of model’s feature impor-
tances indexed by the feature names. It is used for supplying the weights
to the final drift strength calculation. It is an optional argument and an
unweighted mean is used if it is not specified.

drift_test expects an instance of Test class with the test used to provide
the decision on which features are drifted and calculate the final drift
strength.

class_name is an optional argument for the class drift detector and expects
the name of the column which contains the class labels.

The process of a single round of detection is performed by calling the
detector.detect() method and providing it with the two samples to com-
pare, presuming detector is an instance of DriftDetector class. The ex-
pected format of the samples is a Pandas dataframe. The single round of
detection carried out by said function call returns a boolean value of whether
the drift was detected and an alarm signal was sent. Presuming all of the
implemented modules are used, the round of detection is comprised of the
following procedures:

Global drift detection provides the primary decision on whether drift was
detected for the current choice of data samples. For each of the chosen
features, the chosen detection test is run and the drift severities are mea-
sured. They are then used to decide which of these features are consid-
ered drifted and for calculation of the final drift strength. Global drift
statistics are returned by calling detector.get_drift_statistics()
and the Pandas series of drifted features with their severities by calling
detector.get_drifted_features().

Class drift detection was implemented to present additional information
about the drift location. It requires the existence of class labels, which
are available when analysing an existing dataset or may be provided by
the oracle in the case of active learning. Each sample is grouped by the
specified column containing the class labels, and a detection is run on
each group corresponding to a class that is available in both samples.
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The same process of independent tests for each feature and calculation
of final drift strength is performed for each group. The results of this
analysis may be returned by calling detector.get_class_drift() and
are presented as a Pandas dataframe containing the drift strength, the
share of drifted features and a decision whether the class is considered
drifted for each class.

Drift analyser presents a novel approach to concept drift understanding by
classifying the drift into multiple classes, somewhat inspired by the theo-
retical categories used to describe various types of drift. Implementation
of this idea is done using a process of combining detection from several
separate windows, where the analyser itself stores its own data subset to
perform the analysis on. The current implementation uses a week-long
time window, which is then divided into additional subsets and multiple
detection tests are performed. The overview of the window choices for
the specific test used for the drift classification may be seen in table 3.1.

Table 3.1: Window choices for analysis module tests

Test name Historical window Current window
Last week Di−7 to Di−1 Di

Yesterday Di−1 Di

Week ago Di−7 Di

There are currently five drift classes given by the analyser. Unknown
drift label is given before sufficient time for collecting the analysis data
sample passes. No drift label is given when there is no strong chnage
present. It was observed how network traffic may shift between recurring
concepts, especially between the concept of working week and weekend.
Periodic drift label is for cases when the drift may be explained by
the switch of these concepts and behaviour is similar to what it was
a period ago. When the drift is not expected and some unforeseen
change in the underlying distribution has occurred, Sudden drift label
is given. Incremental drift describes the case where the distribution is
in the process of changing between two concepts, and the intermediate
concept is present.

The classification is currently implemented by logic inferred from the
analysis of the datasets. For each test corresponding to the choice of
windows, it is decided whether the drift occurred, and the final clas-
sification is done by combining these results. The decision tree repre-
senting the classification can be observed in Figure 3.2. The Analyser
is an abstract class, so more advanced classifiers of drift types may be
implemented in the future.
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Week ago test

Yesterday test Last week test

Last week test Yesterday testSudden drift

Gradual drift No drift

Periodic drift

Periodic drift No drift

Detected

Detected

Detected

Detected

Detected

Not detected

Not detectedNot detected

Not detectedNot detected

Figure 3.2: Decision tree represents the workings of the currently implemented
drift type classifiers. Multiple tests are performed, and their results correspond
to the tree nodes. The decision of the classifier is presented in the leaves.

Logger module provides a useful tool for storing the drift results without
the need for outside logging of the drift development. It is available in
the form of an instance of Logger class passed to the detector during
initialisation. Its contents may be returned by calling the get_logs()
method and are available as a Pandas dataframe. An example of a
detection log may be seen in table 1.8.

Table 3.2: Example of a log monitoring the test results

Date Detection Strength Features share Type
3.1.2024 False 0.027 0.025 Unknown
4.1.2024 False 0.021 0.0 No drift
5.1.2024 False 0.029 0.025 No drift
6.1.2024 True 0.057 0.35 Sudden drift

3.4 Detector showcase
Many experiments have been performed on the available datasets from CES-
NET while developing the various modules of the detector and testing its
performance. The following experiments demonstrate how the detector may
be used for the analysis of an unknown dataset. A similar simulation of the
model being deployed and monitored how it degrades over time was performed,
this time using the feature vector supplied by CESNET’s DataZoo package.
Currently highly popular XGBoost classifier was chosen as the model infras-
tructure and the model was trained to classify all the available services. The
first week was used as a training dataset, and the following months were used
for testing. One may use the detector to analyse how the dataset evolves over
time and choose the training dataset as the historical sample given to the de-
tector. Another possibility is using the floating time window of the last week.
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Both of these approaches are compared in the experiment results visualised
in Figure 3.3. It may be observed how the individual daily drifts would stack
up compared to the training dataset if no retraining were to be done. This
presents another example of the importance of concept drift detection.

Figure 3.3: Detector showcase on the simulated deployment of a model using
the TLS dataset. The choice of the historical window of either the last week
of data or the reference training week may be compared.

The decisions of the drift analysis module can be seen in Figure 3.4. The
module needs some time to gather enough data to make the decision. After
that, the classes given by the analyser are as expected. On Mondays, the drift
is analysed as periodic, where a change between the two recurring concepts
was spotted but is expected. When the change was larger than expected, the
drift was classified as sudden. In the case of drift continuing the following
day, it was labelled as incremental, as it probably represented an intermediate
concept during the change between two concepts happening.

Figure 3.4: Workings of the drift analysis module using the TLS dataset. The
model’s performance and the global drift severity may be observed together
with the predicted classes represented by the dotted lines of specific colours.
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Chapter 4
Thesis outcomes

This thesis extensively studied various aspects of creating more robust models
for network traffic classification. Many challenges making network traffic a
particularly difficult domain to classify were described, and approaches to ad-
dressing those challenges were tried. Some challenges, such as biases present
in the creation of the models, should be handled by a more thorough train-
ing process. One of the primary sources of model degradation over time is
concept drift, which was addressed by the creation of a detector that can
guide the retraining of the models to prevent the model’s performance from
deteriorating.

4.1 Best practices
Many experiments were performed to study the behaviour of network traffic
on a variety of long-term real-world datasets. Commonly used feature vectors
use features whose distributions largely vary over time, as the statistics used
may correlate with the throughput of the network. Because of that, the same
class can be observed to have different distributions during different states
of the network. The paradigm of multiple recurring concepts was observed,
with working week traffic having a different distribution than the weekend
one. This periodic behaviour was observed on multiple datasets and feature
vector choices.

Because of that, a bias may be introduced when capturing network traffic
datasets. One should capture the dataset through longer time periods and
avoid capturing different classes during different states of the network or dif-
ferent times. In that case, the model may overfit to differences between the
time-specific behaviour instead of generally correct patterns. Another source
of bias may be training the model on a small subset of data only, possibly
also overfitting to the time-specific behaviour. It was showcased that a model
trained this way managed to substantially degrade in a manner of days. In
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some cases, the created models may be highly performing on minor experi-
mental datasets, but may not be suitable for use for real-world traffic. Proper
long-term testing and model monitoring is thus encouraged.

Concept drift represents the main source of model degradation. The dis-
tributions evolve over time and the trained data patterns may not be cor-
rect anymore. This presents a major challenge to model deployment as the
model’s performance decreases over time. It is highly advisable to use meth-
ods for model maintenance which monitor the model’s performance and have
the ability to retrain the models, such as the Active Learning Framework. The
detection of concept drift represents a further increase in the quality of model
maintenance as the retraining process may react to the observed changes in the
distributions. The created concept drift detector may be used to enhance the
existing model maintenance frameworks and the results of tests of its abilities
may be seen in the following section.

4.2 Testing
The created drift detector was analysed on the QUIC and TLS datasets to
provide proof of how it may aid model retraining and prevent the models from
degrading because of concept drift. Experiments simulating model deployment
and retraining guided by the drift detector’s alarm signals were performed.
The behaviour of the Active Learning Framework was simulated with a process
corresponding to the strategy of random sampling being used. In both cases,
the data from the first week was used to train the reference model. In the case
of drift detection, the model’s dataset is updated and the model is retrained.
The current data subset is used to replace the corresponding number of oldest
instances in the dataset, which was circa 30% of the dataset. The knowledge
base of the model is present in this dataset, which simulates the way ALF
would operate. The dataset also represents the historical sample supplied to
the drift detector. XGBoost classifier is used as the model as it presents one
of the model infrastructures currently often used. The feature vector supplied
by CESNET DataZoo was used and the goal of the model is to classify all of
the captured services, which is more than a hundred classes. The goal of the
experiments is to compare the performance of the reference model with the
performance of the model retrained after drift detection. The results of the
experiment on the year-long TLS dataset may be observed in the table 4.1.

Table 4.1: Model performance, measured using F1 Score, on the TLS dataset
when utilising model update guided by the drift detector. Validation dataset
was a subset of the first week of the data, while the test was performed on the
rest of the year-long dataset.

Validation F1 Reference test F1 Retrained test F1
0.725 0.602 0.748
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It can be seen how the performance over the whole year-long dataset vastly
improves. Surprisingly, the maintained model not only keeps its performance,
but it even increases compared to the validation performance in the first week.
The possible explanation of the observed phenomenon is that the concept drift
led to the simplification of the problem by the differences between the classes
being more recognisable or the distributions more stable. The visualisation
present in Figure 4.1 may be used to judge how the model reacted to the
dataset update. It shows when the drift detection happened, and the F1 scores
of the reference and the maintained models may be compared to understand
how the model degradation was prevented. In some cases, a single retraining
was sufficient to keep the model performing for several months. In other,
several retrainings were needed. This may be due to the incremental drift
being present, where the change of concepts may take a longer time. The
single retraining may only lead to the learning of the intermediate concept
and another is needed when the new concept stabilises. The reference drift
severity may be observed to understand how strongly the model would drift if
it weren’t updated. The periodic behaviour can also be observed, where the
severity increases each weekend, sometimes getting close to the drift detection
threshold.

Figure 4.1: Simulated model maintenance on the TLS dataset guided by the
drift detection. In the case of drift detection, visualised by a yellow vertical
line, a model is retrained. The model performance and drift severities may be
compared between the reference and the continuously retrained model.

During the analysis, a severe drift accompanied by a major change in
most of the feature distributions was observed in March. This knowledge
can be used for judging how the drift detection would react to this change.
Figure 4.2 presents the view selecting only March to study the detection and
dataset update corresponding to the known area of severe drift. It may be seen
that the model degradation was successfully prevented, and the performance
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drastically improved. This change seemed to happen under the paradigm of
incremental drift, where a couple of days passed between the concepts fully
changed. Because of that, the first detection happened at the start of the
process change, and the second one retrained the model when the new concept
stabilised. This simulation showcased how the model update guided by the
drift detection may lead to a successful and long-lasting model performance
on the year-long TLS dataset.

Figure 4.2: Simulated model maintenance on the March subset of the TLS
dataset guided by the drift detection. In the case of drift detection, visualised
by a yellow vertical line, a model is retrained. The model performance and
drift severities may be compared between the reference and the continuously
retrained model.

Compared to the year-long TLS dataset, CESNET QUIC was captured
during four weeks. As with the previous experiment, the first week was used
for training and validation, and the remaining three weeks for testing. As seen
in table 4.2, this experiment provides another example of successful model re-
training preventing model degradation, where the test performance remained
in line with the validation performance. The development of drift severity
and model performance can be observed in Figure 4.3. It can be seen that
retraining was needed several times to adapt to the change of concepts.

Table 4.2: Model performance, measured using F1 Score, on the QUIC dataset
when utilising model update guided by the drift detector. The validation
dataset was a subset of the first week of the data, while the test was performed
on the remaining three weeks.

Validation F1 Reference test F1 Retrained test F1
0.748 0.631 0.743
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Figure 4.3: Simulated model maintenance on the QUIC dataset guided by the
drift detection. In the case of drift detection, visualised by a yellow vertical
line, a model is retrained. The model performance and drift severities may be
compared between the reference and the continuously retrained model.

In both cases, model retraining guided by the drift detector resulted in
vast improvements in model F1 scores. The capabilities of this method were
showcased and further incorporation of it into Active Learning Framework is
advised. On top of the drift detection itself, the drift detector exceeded the
assigned requirements by implementing various other tools for concept drift
analysis. The drift detector is implemented as a basis for a more complex
modular detection framework instead of a simple prototype and the primary
goal of this thesis can be considered more than successful.

4.3 Future research
While using concept drift detection to guide the retraining of ML models
yielded massive performance improvements, there still exist unanswered ques-
tions about dealing with the periodic nature of network traffic. When working
under the paradigm of multiple recurring concepts, simply retraining the mod-
els may not be enough to gain the best-performing model possible. Increasing
the sensitivity of the tests isn’t the answer, as then the models would simply
learn and then forget the recurring concept of weekend traffic at the beginning
and end of each weekend.

There exists the approach of concept matching, utilising multiple models
and using the one representing the closest concept to current data for infer-
ence. This seems to be a promising technique to develop an even more robust
classification infrastructure. To explore that idea, an experiment using two
models was designed and tested on the TLS dataset. The traditional approach
would train the model on the whole first week of data for proper generalisa-
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tion. However, the behaviour of multiple recurring concepts was observed
with weekend traffic differing from the one of a working week. Because of
that, two models are trained on the subsets of the training dataset. One is
trained on the days representing the working week, and the second is trained on
weekend data. The experiment presumes that an advanced concept-matching
framework would always choose the model trained on the closest concept for
inference, resulting in a combined model with better performance. The results
of the simulation of this method are showcased in Figure 4.4.

Figure 4.4: Experiment simulated theoretical concept matching frameworks.
A combined model switching between two models trained on the subsets of
the training dataset representing different concepts outperforms a referential
model trained on the whole week.

The experiment simulated how the four different models would behave un-
der long-term deployment. No dataset update was performed after training on
the first week (or its subsets). Not only did this simulation serve as proof that
one should experiment with methods of concept matching further, but it also
provided unexpected observations of how drift affects the multiple concepts
present. In the first couple of simulated deployment weeks, the behaviour
was as expected. The working week model performed vastly better during
the working week and the weekend model during the weekend. However, the
effects of concept drift resulted in such degradation of the working week model
that it underperformed and was beaten during the working week. The drift of
the working week concept brought it closer to the concept of training weekend
traffic than the one of training working week.

Outside of this observation, the results illustrate that this approach pro-
vides an increase in performance and should be further studied. For every
day, choosing the model representing the closer concept for inference yielded
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a better F1 score than using the reference model trained on the data from the
whole week. The testing F1 scores can be observed in table 4.3. The combined
model provided an increase of 0.015 of the average F1 score.

Table 4.3: Testing F1 scores of the models used for the concept matching
simulation.

Reference Working week Weekend Combined
0.667 0.666 0.675 0.682

While the previous concept matching simulation showcased that such meth-
ods would result in increased performance, the combined model still under-
performed during the working week. The experiment presumed the existence
of two recurring concepts – the working week and weekend traffic. However,
as the features may develop with the different network load, there may be
more concepts present or the working week off-peak hour traffic may be closer
to the weekend one. The following experiment was designed to explore those
ideas further. The created drift detector was used to analyse the develop-
ment of traffic (using the Wasserstein distance test) through the day on two
chosen days: D0 – 1.1.2022, Saturday and national holiday; D2 – 3.1.2022,
Monday. Each time window was an hour long, with the first hour creating the
historical time window. Every other hour represented the different current
windows, and the drift severity between those samples was studied. As can be
seen in the visualisation of the experiment results in Figure 4.5, the possible
source of models generally underperforming on the working week traffic may
be the existence of multiple concepts during a single day. This differs from
the weekend sample, where every test lies under the drift detection threshold.

Figure 4.5: Comparison of distribution development through day on weekend
and working week. Two days were chosen: D0 – 1.1.2022, Saturday and
national holiday; D2 – 3.1.2022, Monday.
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The methods of concept matching present a novel and promising approach
that should be further studied as it may bring further increase in model per-
formance. However, these experiments lie outside of the scope of this thesis
and were done to demonstrate that these methods may deliver the most ro-
bust approach to network traffic classification. Further research into concept
matching is advised as it was showcased how the traffic may not only drift be-
cause of a major process change, but also through the week and even through
the day. Another possible solution is to research the use of other feature
vectors than those currently used. The features are often correlated with
throughput and are thus dependent on the state of the network. In an ideal
world, the features would be stable and independent of the current load of
the network. If such features exist, the distributions may develop differently
than under the current paradigm of multiple recurring concepts, which would
result in less complex classification tasks and more robust models.
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The thesis delved into various aspects of creating more robust models for
network traffic classification. Machine learning approaches are currently often
utilised. However, there still exist the challenges of biases present in the model
and concept drift. If these challenges are not addressed, the performance of
the models may degrade over time. Biases should be handled by ensuring that
no false data patterns are introduced during the process of data capturing and
model creation. Concept drift makes the model underperform as the trained
data patterns become obsolete because of the changes in the distribution.
In those cases, models should be retrained, which can be done by utilising
model maintenance frameworks, such as the Active Learning Framework. The
created drift detector may then serve to enhance those frameworks by guiding
the dataset update.

The main goal of this thesis is the creation of said concept drift detector.
As it was tailor-made to the domain of network traffic, many experiments have
been performed to analyse the domain behaviour first. It was discovered that
distributions periodically develop, with working week traffic having a different
distribution than the weekend one. The features used as a basis of ML models
may correlate with the throughput and thus depend on the current load on
the network. If drift is not addressed, the model may quickly degrade. An
experiment of simulated model deployment showcased that a model trained
only on weekend traffic from a single day may provide significantly worse
predictions only a couple of days later (dropping from F1 score of 0.92 to 0.7).
Other than this periodic behaviour, slow long-term decay and sudden severe
change have been observed. If the models are not retrained after such severe
process changes, they become ineffective, as the trained data patterns may not
be useful anymore. It was showcased that network traffic indeed represents a
complex domain, and such research was needed.

The following research experimented with existing concept drift detectors
to study if the currently available methods were able to detect concept drift
in samples associated with model underperforming. This would be the case
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for the TLS dataset but not for the QUIC dataset. It was discovered that a
couple of severely drifted features could be the main source of model degrada-
tion. This urged further research into improving the detection to handle such
scenarios. It was discovered that classes may drift differently. The idea of de-
tecting concept drift was then generalised for complex analysis of the change
of the distribution, where various choices of time windows enabled different
observations of how the distributions develop. This idea is addressed in the
final drift detector by allowing the user to supply the time windows in a way
suitable for the current experiment.

The created novel concept drift detector is available as a basis for a mod-
ular drift detection framework. The primary use case of the drift detector is
incorporating it into the existing infrastructure of the Active Learning Frame-
work but it may also be used for offline analysis of existing datasets. To tailor
the detector to this use case, various analysis modules have been implemented.
Detection is done on the whole sample, but then independently for each class
to discover which classes are the most drifted. On top of that, a novel ap-
proach to drift understanding of classifying drift types and further explaining
the change in data was implemented. To solve the issue of several drifted
features being the cause of model degradation, a novel logic for drift detection
was invented. Tests are run independently for each feature and the final drift
severity is calculated as a weighted mean, using feature importances supplied
by the ML model.

This approach was showcased to be highly effective in simulated model
deployment and retraining guided by the detector. With this restraining, the
model was prevented from degrading and in one case, the performance even
improved compared to the validation dataset. Usage of such techniques is thus
advised and the detector is prepared to be incorporated into model mainte-
nance frameworks, such as ALF. There still exist areas of possible future
research. As network traffic can be characterised by the paradigm of multi-
ple recurring concepts, the model performance could be further increased by
creating a complex concept-matching framework which would retrain multiple
models and choose the one most suitable for the current state of the network.
The search for the most stable and robust feature vectors is also advised.
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Appendix A
Acronyms

AL Active learning

DPI Deep packet inspection

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IANA Internet Assigned Numbers Authority

IETF Internet Engineering Task Force

IP Internet Protocol

IPFIX Internet Protocol Flow Information Export

ISRG Internet Security Research Group

KS Kolmogorov–Smirnov

ML Machine learning

TCP Transmission Control Protocol

SMTP Simple Mail Transfer Protocol

PCA Principal Component Analysis

PPI Per-packet information
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Appendix B
Included contents

README.md...........................Description of the included contents
analysis....................Jupyter notebooks used during the analysis
detector...........Implementation of the created concept drift detector

analyser.py................Implementation of the Analyser module
detector.py..............Implementation of the main detection class
logger.py.....................Implementation of the Logger module
test.py...........Implementation of the various drift detection tests

testing.................Jupyter notebooks used for testing the detector
ALF_simulation_QUIC.ipynb.Test of detector guided dataset update
ALF_simulation_TLS.ipynb .. Test of detector guided dataset update

thesis.............................................Thesis text directory
thesis_Jancicka.pdf......................PDF version of the thesis
thesis_source ...................... LATEX source codes of the thesis

usage_example ........ Jupyter notebooks showcasing the detector usage
showcase_quic_analysis.ipynb......Example of the detector usage
showcase_tls_long-term.ipynb......Example of the detector usage
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Appendix C
Usage example

The following example describes how to use the drift detector to perform one
round of detection to compare two time windows of one dataset to analyse how
it evolves. Cesnet-QUIC dataset was used as an example, available through
their DataZoo platform, which is used as follows:

1 from cesnet_datazoo.datasets import CESNET_QUIC22
2 from cesnet_datazoo.config import DatasetConfig
3
4 data = CESNET_QUIC22("./datasets/QUIC/", size="XS")
5
6 #Get the first week of data
7 dataset_config = DatasetConfig(dataset=data,
8 train_period="W-2022-44")
9 data.set_dataset_config_and_initialize(dataset_config)

10 data_ref = data.get_train_df()
11
12 #Get the first week of data
13 dataset_config = DatasetConfig(dataset=data,
14 train_period="W-2022-45")
15 data.set_dataset_config_and_initialize(dataset_config)
16 data_curr = data.get_train_df()

The process of initialising drift detector is done by supplying it with con-
figuration for the global detection test. Additionaly, one may supply the
configuration for the class-based test or use the Logger or Analyser mod-
ules. Only class-based test is showcased in this example, where one may use
different tests for the different detection modules.

1 from detector.detector import DriftDetector , Config
2 from detector.test import KSTest , WassersteinTest
3
4 #Specify which features to run the test on
5 #Chosen test aren't suitable to work with categorical features
6 feat_names = ['BYTES','BYTES_REV','PACKETS',...,'IPT_BIN8_REV']
7
8 #Define the configuration of the global drift detection
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C. Usage example

9 global_config = Config(
10 chosen_features = feat_names ,
11 drift_test=WassersteinTest()
12 )
13
14 #Define the configuration of the class -based drift detection
15 class_config = Config(
16 chosen_features = feat_names ,
17 drift_test=KSTest(),
18 class_name="APP"
19 )
20 #Initialise the detector
21 detector = DriftDetector(global_config , class_config)

The single round of drift detection is run as follows:
1 detector.detect(data_ref ,data_curr)

No drift was discovered between those two chosen samples. Some of the
features could still be detected as drifted. They may be returned by calling:

1 detector.get_drifted_features()

Two features were detected as drifted and their severities may be observed:

Feature Drift severity
PSIZE_BIN5_REV 0.248
PSIZE_BIN4_REV 0.127

Each global statistic measured for the current round of detection can be
returned in the following way. If one used the Analyser module, the inferred
drift type would also be returned. This represents the same statistics that
would be stored by the Logger module.

1 detector.get_drift_statistics()

Drift detection Drift severity Drifted feature share
False 0.03 0.05

The class-based tests are run separately and their result may be obtained
in this way. KS test was used for the class test, so severity represents the
p-values of test based around distributions being the same.

1 detector.get_class_drift()

Class Drift detection Drift severity Drifted feature share
99 True 0.068 0.875
100 True 0.072 0.875
97 True 0.089 0.825
... ... ... ...
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