
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Security Analysis of Data Stewardship Wizard Project

Konstantin Shadakh

Computer Security and Information technology

Department of Computer Systems

until the end of summer semester 2024/2025

Instructions

The aim of this bachelor thesis is to conduct a comprehensive security analysis of the

Data Stewardship Wizard (DSW), an open-source platform designed to support data

stewards in the research data management planning process. The analysis will focus on

identifying potential security risks and vulnerabilities within the system, as well as

evaluating the effectiveness of the existing security measures in place. Additionally, the

thesis will propose recommendations and strategies for enhancing the overall security

posture of the DSW platform, in order to ensure the confidentiality, integrity, and

availability of sensitive research data.

- Familiarize yourself with DSW, describe its architecture, components, features, and

technical background.

- Analyze the security measures that are already in place such as static analysis,

(automatic) dependency checks, or hashing/encryption algorithms used.

- Specify recommendations in terms of technologies and procedures to improve security

of DSW.

- Determine which DSW features across its components could be vulnerable to relevant

well-known issues and attacks (such as XSS, SQL injection, or STTI) and perform the

penetration testing in a monitored environment.

- Evaluate the results of the tests performed and compose a list of implementation

recommendations as a prioritized list of tasks.

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 30 June 2023 in Prague.

Ing. Marek Suchánek, Ph.D

Informatics

Bachelor’s thesis

Security Analysis of Data Stewardship Wizard
Project

Konstantin Shadakh

Department of Information Security
Supervisor: Ing. Marek Suchánek, Ph.D.

January 6, 2024

Acknowledgements

I want to start by expressing my deepest thanks to my supervisor, Ing. Marek
Suchánek, Ph.D. His guidance and support have been invaluable throughout
this thesis journey. His expertise and regular, insightful feedback have been
crucial in shaping my research. I’m especially grateful for his dedication in
guiding me through the intricacies of the application and the structure of the
thesis, which played a significant role in the success of my work.

I’m also incredibly grateful to Bc. Aleksei Kravtsov for sharing his extensive
knowledge and experience in security analysis and penetration testing. His
guidance was key in helping me understand these complex areas and conduct a
detailed examination of the Data Stewardship Wizard’s functionalities, greatly
enhancing the quality of my analysis.

A big thank you goes to my parents for their constant support and encour-
agement throughout my academic journey. Their unwavering belief in me and
their sacrifices have been fundamental to my success.

I also want to acknowledge the hard work and dedication I put into this
thesis. It’s been a journey of both personal and professional growth, and I’m
proud of what I’ve achieved.

This thesis is a culmination of not just my efforts but also the collaborative
support and inspiration from those who have guided me along this path.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46 (6) of the Act, I hereby grant a nonexclusive autho-
rization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any way
(including for-profit purposes) that does not detract from its value. This au-
thorization is not limited in terms of time, location and quantity. However, all
persons that makes use of the above license shall be obliged to grant a license
at least in the same scope as defined above with respect to each and every
work that is created (wholly or in part) based on the Work, by modifying the
Work, by combining the Work with another work, by including the Work in
a collection of works or by adapting the Work (including translation), and at
the same time make available the source code of such work at least in a way
and scope that are comparable to the way and scope in which the source code
of the Work is made available.

In Prague on January 6, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Konstantin Shadakh. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of In-
formation Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Shadakh, Konstantin. Security Analysis of Data Stewardship Wizard Project.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2024. Also available from: ⟨http://site.example/thesis⟩.

http://site.example/thesis

Abstrakt

Tato práce přináš́ı hloubkovou bezpečnostńı analýzu Data Stewardship Wi-
zard (DSW), open-source nástroje určeného pro efektivńı plánováńı správy dat.
Hlavńım ćılem této studie bylo určit a posoudit potenciálńı bezpečnostńı zrani-
telnosti v nástroji DSW a také posoudit robustnost jeho současných bezpečnost-
ńıch protokol̊u. Prostřednictv́ım kombinace ručńıho zkoumáńı, penetračńıho
testováńı a technik skenováńı zranitelnost́ı byla odhalena řada bezpečnostńıch
problémů. Patř́ı mezi ně zranitelnosti souvisej́ıćı se slabými zásadami přihlašova-
ćıch údaj̊u, zranitelnost systému v̊uči útok̊um hrubou silou a rizika spojená
s injekćı šablon na straně serveru.

Výsledky výzkumu zd̊urazňuj́ı potřebu zlepšit bezpečnostńı opatřeńı v rámci
systému DSW, zejména pokud jde o správu hesel, procesy ověřováńı uživatel̊u
a d̊usledné ověřováńı vstup̊u. K řešeńı těchto problémů práce poskytuje sou-
bor ćılených doporučeńı zaměřených na zlepšeńı bezpečnostńıho rámce systému
DSW. Tyto návrhy maj́ı nejen pośılit obranu společnosti DSW, ale také nab́ıd-
nout cenné poznatky pro širš́ı oblast kybernetické bezpečnosti v rámci platfo-
rem pro správu dat. Tato práce tak slouž́ı jako významný př́ıspěvek k prob́ıhaj́ı-
ćımu úsiĺı o pośıleńı bezpečnosti nástroj̊u pro správu dat, jako je DSW.

Kĺıčová slova Data Stewardship Wizard, kybernetická bezpečnost, pene-
tračńı testováńı, hodnoceńı zranitelnosti, správa dat.

vii

Abstract

This thesis offers an in-depth security analysis of the Data Stewardship Wizard
(DSW), an open-source tool designed for efficient data management planning.
The main goal of this study was to pinpoint and assess potential security vulner-
abilities within DSW, as well as to gauge the robustness of its current security
protocols. Through a blend of manual examination, penetration testing, and
vulnerability scanning techniques, a range of security issues were discovered.
These include vulnerabilities related to weak credential policies, the system’s
vulnerability to brute-force attacks, and risks associated with server-side tem-
plate injection.

The research findings underscore the need for improved security measures
within DSW, especially concerning password management, user authentication
processes, and rigorous input validation. To address these issues, the thesis pro-
vides a set of targeted recommendations aimed at enhancing DSW’s security
framework. These suggestions are intended not only to fortify DSW’s defences
but also to offer valuable insights into the wider field of cybersecurity within
data management platforms. This thesis thus serves as a significant contribu-
tion to the ongoing efforts to strengthen the security of data management tools
like DSW.

Keywords Data Stewardship Wizard, Cybersecurity, Penetration Testing,
Vulnerability Assessment, Data Management.

ix

Contents

Introduction 1

1 Local Deployment for Analysis and Penetration Testing 3

2 DSW Analysis 5
2.1 General Ideas and Aims . 5
2.2 FAIR Principles . 5

2.2.1 Findable . 6
2.2.2 Accessible . 6
2.2.3 Interoperable . 6
2.2.4 Reusable . 6

2.3 Overall Properties, Ideas, What It Does and How It Is Done . . 7
2.3.1 Core Objectives and Features 7

2.4 Main Features for Different Roles 8
2.4.1 Anonymous . 8
2.4.2 Researchers . 9
2.4.3 Data Stewards . 9
2.4.4 Administrators . 10

2.5 Architecture . 10

3 Relevant Vulnerabilities and Attacks 13
3.1 Terminology . 13
3.2 SQL Injection . 14
3.3 Brute-Force Attack . 15
3.4 Cross-Site Scripting . 16
3.5 Cross-Site Request Forgery . 16
3.6 Broken Authentication . 17
3.7 Broken Access Control . 18
3.8 Token Leakage . 19
3.9 File Inclusion Vulnerabilities . 19
3.10 Server-Side Template Injection 20
3.11 Vulnerabilities Introduced in Programming Languages and Li-

braries . 21
3.12 Conclusion . 21

xi

4 Current security measures 23
4.1 Authentication . 23

4.1.1 Create a New User . 23
4.1.2 Login . 28

4.2 Authorization . 30
4.3 Data Validation . 33

4.3.1 File Upload Validation 34
4.3.2 Client-Side Validation 36
4.3.3 Server-Side Validation 37

4.4 Error Handling . 38
4.5 Encryption . 39
4.6 Hashing . 40
4.7 Session Management . 41
4.8 Logging and Monitoring . 41
4.9 Security Checks . 42

5 Technology recommendations 43
5.1 Login Process . 43
5.2 Cryptography . 43
5.3 Authorization and Logging . 44

6 Vulnerabilities analysis 45
6.1 Penetration Testing Setup . 45
6.2 Penetration Testing . 46

6.2.1 Disclamer for Penetration Testing Report 46
6.2.2 Brute-force Attack . 47
6.2.3 SQL Injection . 49
6.2.4 Cross-Site Scripting . 52
6.2.5 Cross-Site Request Forgery 53
6.2.6 Broken Authentication 54
6.2.7 Broken Access Control 57
6.2.8 Token Leakage . 60
6.2.9 Server-Side Template Injection 61
6.2.10 File Inclusion . 62

7 Evaluate 65
7.1 The Common Vulnerability Scoring System (CVSS) 65
7.2 Summary . 66

7.2.1 Weak Credential Policy - Password Strength 66
7.2.2 Password Brute-Force Attack 67
7.2.3 User Enumeration . 67
7.2.4 Email Verification Denial of Service 68
7.2.5 Broken Access Control 68
7.2.6 Access Tokens in URL 68
7.2.7 Server-Side Template Injection 69

7.3 Prioritized List of Recommendations for DSW 69
7.3.1 High Severity Vulnerabilities 70
7.3.2 Medium Severity Vulnerabilities 70
7.3.3 Other Considerations 70

xii

8 Conclusion 73

Bibliography 75

A Acronyms 77

B Contents of Electronic Attachment 79

xiii

List of Figures

2.1 Layout of the modules in Data Stewardship Wizard 12

4.1 Login form . 23
4.2 Registration form . 24
4.3 2FA authentication form . 25
4.4 Filled registration form . 25
4.5 Permissions for Admin . 31
4.6 Permissions for Researcher . 31
4.7 Permissions for Data Steward . 31

6.1 Wordlist for the attack . 49
6.2 The result of the attack . 49
6.3 Setting up the Bulk Account Registration Attack using Burp Suite 55
6.4 Results of the Bulk Account Registration Attack 56

xv

Introduction

In an era where data drives decisions, the sanctity and security of research data
have never been more crucial. Researchers and data stewards pour countless
hours into their work, ensuring that their findings can pave the way for new
discoveries and innovations. The Data Stewardship Wizard (DSW) stands as
a beacon in this landscape, offering a platform designed to streamline the re-
search data management planning process. But with the digital realm’s vast
opportunities come challenges, especially when it concerns the safety of sensi-
tive information.

Many tools and platforms promise efficient data management, but how
many truly consider the myriad of threats lurking in the cyber shadows? The
open-source nature of DSW is a double-edged sword. While it thrives on com-
munity contributions and the shared knowledge of many, it also stands exposed
to those with less noble intentions.

This thesis is born out of a genuine concern and curiosity. How secure is
DSW? Where might its defences falter, and how can I fortify them? Through a
meticulous journey, I aim to dissect DSW’s security measures, probe for vulner-
abilities, and ultimately chart a path towards a more secure data stewardship
experience.

This journey is structured into distinct chapters, each echoing a phase of
my exploration. I begin by immersing in the world of DSW, understanding its
heartbeat and mechanics in the analysis chapter. The design chapter sketches
the blueprint of my investigative approach. As I delve deeper, the implemen-
tation chapter recounts my discoveries, the challenges faced, and the insights
gained. In the testing chapter, I put DSW to the test, gauging its resilience
and robustness against potential threats.

1

Chapter 1
Local Deployment for Analysis and

Penetration Testing

In this analysis, I have focused on the Data Stewardship Wizard version 3.28.0.
This specific version was chosen as it represents the state of the application at
a particular point in time, providing a stable reference for detailed examination
and discussion. The features, functionalities, and security measures discussed
throughout this document are based on the capabilities and characteristics of
DSW as they existed in version 3.28.0. It’s important to note that subsequent
versions of DSW may include updates, enhancements, or changes that are not
covered in this analysis.

This version of the application is deployed locally using Docker. This setup
allows for a controlled environment to conduct thorough testing and analysis
of the application, focusing specifically on the application itself rather than the
deployment infrastructure. The docker image included several key services,
each running in its own Docker container:

• dsw-server

• dsw-client

• docworker

• mailer

• postgres (the database used by DSW, running PostgreSQL version 15.5)

• minio(an object storage service used by DSW).

A more detailed description of the main services can be found in Section 2.5.

3

Chapter 2
DSW Analysis

“We present a tool, the “Data Stewardship Wizard”, that can bring together
researchers, data stewards, and data experts pursuing better research through
data management planning.” [25].

2.1 General Ideas and Aims

The description of the Data Stewardship Wizard application, encompassing its
foundational principles, components, and various other aspects, is primarily
sourced from the official DSW website at ds-wizard.org/. Additional insights
and information have been gathered from its GitHub repository at github.com/
ds-wizard, as well as through official videos available on YouTube. Further-
more, scholarly articles and publications by Robert Pergl, Marek Suchánek,
and other contributors to the DSW project have significantly informed the
content of this thesis.

The Data Stewardship Wizard is a tool for data management planning
that focuses on maximizing the value of data management planning for the
project itself rather than merely fulfilling obligations. It emphasizes the impor-
tance of data stewardship, which extends beyond the project’s duration and
encompasses the long-term maintenance of the resulting research data. The
term “Wizard” is used to denote the tool as an “expert system” that provides
context-dependent guidance to its users.

The DSW aims to change the perception of data management planning from
a burden to a benefit. It does this by highlighting the advantages of data man-
agement for the research project and the researcher, rather than focusing solely
on obligations. For instance, the DSW points out appropriate tools that can
assist in assembling and maintaining provenance metadata and relevant data
standards. It also clearly indicates the impact of each answer on the adherence
to the principles that data should be Findable, Accessible, Interoperable, and
Reusable (FAIR).

2.2 FAIR Principles

The FAIR principles, an acronym for Findability, Accessibility, Interoperabil-
ity, and Reusability, are essential guidelines for managing digital assets. These

5

ds-wizard.org/
github.com/ds-wizard
github.com/ds-wizard

2. DSW Analysis

principles are designed to ensure that data and metadata are easily manage-
able and usable by both humans and computational systems, with a focus on
minimizing human intervention. This approach is increasingly vital due to the
growing amount and complexity of data being generated. The description of
the FAIR principles, along with their individual components, is derived from
the article titled “Introducing the FAIR Principles for research software”, which
was published on nature.com [4] and the description of the FAIR principles on
the official DSW web-page on ds-wizard.org/fair [8].

2.2.1 Findable

The essence of Findability is to ensure that both data and metadata are
straightforward to locate for both human users and computer systems. This
involves assigning unique and persistent identifiers to metadata and data, en-
riching data with comprehensive metadata, ensuring metadata accurately ref-
erences the data it describes, and making sure that both data and metadata
are indexed in a searchable resource.

2.2.2 Accessible

Accessibility requires that once data is located, the means to access it are
clear, possibly encompassing authentication and authorization processes. This
involves using standardized communication protocols that are open and uni-
versally implementable for retrieving metadata and data via their identifiers.
These protocols may include measures for authentication and authorization if
needed. Additionally, it’s important that metadata remains available even if
the data itself is no longer accessible.

2.2.3 Interoperable

Interoperability focuses on the ability of data to integrate with other datasets
and to function seamlessly within various applications or workflows. This is
achieved by using a formal, accessible, shared, and broadly applicable language
for knowledge representation in metadata and data. It also involves adhering
to FAIR principles in the use of vocabularies and including qualified references
to other metadata and data.

2.2.4 Reusable

The goal of Reusability is to maximize the potential for data to be reused in
different contexts. This requires that both metadata and data are described in
detail with multiple relevant attributes to facilitate replication or combination
in various settings. Key aspects include releasing metadata and data with a
clear data usage license, providing detailed provenance, and ensuring that they
meet the standards of the relevant domain communities.

6

nature.com
ds-wizard.org/fair

2.3. Overall Properties, Ideas, What It Does and How It Is Done

2.3 Overall Properties, Ideas, What It Does and How It
Is Done

The Data Stewardship Wizard can be used as a pivotal tool in the realm of
research data management, aiming to bridge the gap between data stewards,
researchers, and data experts. Its inception and continual development are
driven by a clear set of goals and a robust array of features, all meticulously
designed to enhance the efficiency, accuracy, and overall quality of data man-
agement practices. This section delves into the core objectives that shape the
DSW’s functionality and the key features that empower users to navigate the
complexities of data stewardship with ease and precision.

By exploring the main goals, I unravel the strategic vision behind DSW,
understanding how it seeks to transform data management from a mandatory
task into a value-adding activity. Concurrently, an examination of its features
provides insight into the practical tools and resources that DSW offers, eluci-
dating how it stands out as a comprehensive solution in the data stewardship
landscape.

2.3.1 Core Objectives and Features

By gathering and summarizing information from the official Data Stewardship
Wizard website, I can identify the four main objectives that DSW aims to
achieve

• Data Stewardship: The discipline of data stewardship is intricate, de-
manding clear definition of data, establishment of processes and proce-
dures, assurance of data quality, workflow optimization, and monitoring
of data utilization to support teams, all while upholding data security and
compliance standards. This responsibility falls on anyone engaged with
digital data, spanning activities from collection and analysis to storage
and usage.
“The ultimate goal is to provide high-quality data that is easily accessible
in a consistent manner.” [28].
The DSW serves as a facilitator in the data stewardship process, sim-
plifying the development of data management plans. To begin with, it
provides a number of the most used templates for knowledge models
(KM) and DMPs. Moreover, DSW allows users to create and manage
their own DMP templates, which can be tailored to the specific needs
of their research project or institution. It aids users by offering insights
on effective data management practices, evaluating the FAIRness of their
plans, and ensuring that the inquiries posed are pertinent to the specific
project at hand.

• Decision Support: Creating a plan for managing data and ensuring the
research data is of top-notch quality involves numerous factors that might
seem overwhelming and challenging to initiate. In DSW, extensive writ-
ing is not necessary. You are prompted to respond to clear and straight-
forward questions in intelligent questionnaires, receive references to ex-
ternal materials, indications of FAIR metrics, and additional resources.

7

2. DSW Analysis

Depending on your responses, these questions may lead to further in-
quiries or direct you to external resources. This objective is implemented
by the “Data Management Plans”.
A Data Management Plan (DMP) is a formal document that outlines
how data will be handled both during and after a research project. It
details the strategies for managing, storing, and securing data, ensuring
that the data is well-organized and accessible. DMPs are increasingly
becoming a required component of grant applications and are recognized
as a best practice in conducting research.
DSW offers an extensive solution for perfect DMPs across various dis-
ciplines. The platform provides extensive guidance throughout the data
stewardship journey, posing relevant questions, and offering tips, multi-
media content, external resources, and community support. With per-
mission from the Taylor & Francis Group, the DSW integrates insights
and advice from “Data Stewardship for Open Science” by Barend Mons,
directly into the platform.

• Collaboration: In today’s collaborative work environment, being part of a
team is essential. DSW offers a variety of ways to share your project with
others. You have the ability to collaborate in real-time, discuss questions
through comments, and instantly observe modifications made by your
teammates. It’s easy to track who has responded to which questions,
and every alteration is meticulously recorded in the version history. This
allows you to mark particular versions or revert to any previous state in
the project’s history.

• Researcher Goals: Individuals conducting research with the aid of DSW
are advised to carefully consider the numerous obstacles related to man-
aging data throughout every phase of their study. The primary goal
is to develop an all-encompassing strategy for managing data from the
beginning to the end, resulting in the formulation of a DMP.

• Integration: DSW offers integration with external resources, simplifying
the task of responding to queries in the surveys. This approach not only
accelerates the procedure but also guarantees that the responses are con-
sistently in accordance with the FAIR principles. A tangible illustration
of this functionality is DSW’s linkage with FAIRsharing, providing users
with direct access to its meticulously curated content.

2.4 Main Features for Different Roles

The Data Stewardship Wizard distinguishes itself in the field of data manage-
ment by offering specialized tools tailored to different user roles. These roles
include anonymous users, researchers, data stewards, and administrators.

2.4.1 Anonymous
Previously, users of DSW who were not logged in, referred to as anonymous
users, had limited capabilities. They could register, log in, or recover a forgot-
ten password via a confirmed email address. Additionally, they had access to a

8

2.4. Main Features for Different Roles

Questionnaire Demo, available next to the Log In and Sign Up buttons in the
navigation bar. This demo allowed users to try out questionnaires without the
ability to save or export answers, serving as a learning tool. This functionality
was always accessible in the public instance of DSW.

However, recent updates have expanded the functionalities available to
anonymous users. With the introduction of Public Knowledge Models, anony-
mous users can now create projects and fill out questionnaires, a feature pre-
viously unavailable to them. These anonymous projects function similarly to
other projects, with a public link set to edit permissions. Notably, if a logged-in
user accesses such a project, they can claim ownership by clicking the “Add to
my projects” button. Despite these enhancements, anonymous users still can-
not create new documents; for such actions, registration and login are required.

2.4.2 Researchers
Researchers are at the forefront of scientific exploration, and DSW provides
them with tools to manage their data effectively:

• Questionnaire Completion: Researchers can complete questionnaires
to generate data management plans (DMPs) and other essential data
stewardship documentation.

• Collaboration: They have the ability to collaborate with data stewards
on various data management tasks.

• Guidance: DSW offers guidance on best practices for data management,
ensuring researchers follow established protocols.

• Progress Tracking: Researchers can monitor their progress on data
management tasks, ensuring timely completion.

• Export Options: The platform allows researchers to export their data
management documentation in multiple formats and templates, catering
to diverse needs.

2.4.3 Data Stewards
Data stewards play a pivotal role in ensuring data quality and adherence to
best practices. DSW equips them with:

• Knowledge Models: They can create and manage knowledge models,
serving as templates for questionnaires.

• Questionnaire Configuration: Data stewards can tailor knowledge
models to the unique requirements of their institution or research com-
munity.

• DMP Review: They are responsible for reviewing and approving DMPs
submitted by researchers, ensuring compliance and quality.

• Template Management: Data stewards can also upload document
templates and edit the existing ones.

9

2. DSW Analysis

2.4.4 Administrators
Administrators ensure the smooth operation of the DSW platform and its align-
ment with institutional goals:

• User Management: Administrators can manage user accounts, set
roles, and define permissions, ensuring the right access for every user.

• DSW Configuration: They have the tools to configure the DSW in-
stance, tailoring it to the needs of their institution or research community.

• Monitoring: Administrators can keep an eye on the usage of DSW,
ensuring optimal performance and addressing issues proactively.

With these features, the Data Stewardship Wizard ensures that every stake-
holder, from researchers to administrators, has the tools they need for effective
and efficient data management.

2.5 Architecture

The Data Stewardship Wizard system is modular, with different components
handling distinct functionalities (see Figure 2.1). The main three of them are:

• engine-frontend: The front-end application is the user interface of
DSW. It’s written in Elm, a functional language that compiles JavaScript.
The front-end is responsible for presenting the user with an intuitive and
responsive interface, allowing them to interact with the system and man-
age their data stewardship activities.

• engine-backend: The backend application is the server part of DSW.
It’s written in Haskell, a statically typed, purely functional program-
ming language. The backend handles various functionalities including
User Management, Organization Management, Knowledge Model Man-
agement, Knowledge Model Editor, Migration Tools for obsolete Knowl-
edge Models and Questionnaires, and a Data Management Plan Gen-
erator. It communicates with the front-end application and the tools
components to ensure smooth operation of the system.

• engine-tools: These are additional components that support the func-
tionality of DSW. They include:
Libraries:

– Command Queue (dsw-command-queue): This is a part of the
engine-tools that handles the queue of commands or tasks that need
to be executed. It ensures that all tasks are executed in the correct
order and allows for efficient management of resources.

– Config (dsw-config): This tool is responsible for managing the
configuration settings of DSW. It allows to configure optional DSW
features including registration or configurable questionnaire visibil-
ity by users, external authentication using OpenID standard, set up
information texts and dashboard shown in the client (before login,
after login, etc.).

10

2.5. Architecture

– Database (dsw-database): This tool handles all database-related
operations for DSW. It ensures that all data is stored and retrieved
efficiently. The database tool is crucial for operations like user man-
agement, organization management, and knowledge model manage-
ment.

– Storage (dsw-storage): This tool manages the storage needs of
DSW. It’s responsible for storing and retrieving files and other data
that are not stored in the database. For example, it could be used
to store files uploaded by users or generated by DSW.

Utilities:

– Template Development Kit (dsw-tdk): You can use these util-
ities to manage and develop templates for the Data Stewardship
Wizard. Those tools include new, list, get, put, verify and package.
For example, you can create a new template project, make edits,
and then update the template in DSW with dsw-tdk put. Alterna-
tively, you can create a distribution ZIP package that is importable
via DSW web interface with dsw-tdk package.

Workers: These are components of the system that perform specific
tasks. Each worker is designed to handle a particular type of operation
or process within the DSW system.

– Data Seeder (dsw-data-seeder): a worker that seeds data into
the database (seeding is the process of initializing a random number
generator with an initial value, called a seed. The seed is used to
generate a sequence of random numbers that are not truly random
but are instead pseudorandom).

– Document Worker (dsw-document-worker): a worker that
generates documents based on templates.

– Mailer (dsw-mailer): a worker that sends emails.

All additional components are currently kept compatible with Python
3.10 and higher.

In this analysis, my primary focus will be on the engine-frontend, engine-
backend, mailer (dsw-mailer), and document worker (dsw-document-worker)
components of the Data Stewardship Wizard system. These components are
selected for detailed examination because they constitute the main line of de-
fence in the system’s architecture and play a crucial role in ensuring the overall
security and functionality of the platform.

While my analysis primarily focuses on these components, it is important
to acknowledge the significance of the other components within the engine-
tools suite. Components such as the Command Queue, Config, Database, and
Storage, though not the main focus of this investigation, support the overall
functionality and stability of the DSW system. They contribute to efficient
task management, configuration settings, data storage and retrieval, and file
management, respectively. Their roles, while more background in nature, are
essential for the smooth operation of the system and indirectly contribute to
its security posture.

11

2. DSW Analysis

Figure 2.1: Layout of the modules in Data Stewardship Wizard

12

Chapter 3
Relevant Vulnerabilities and

Attacks

In today’s fast-changing digital world, securing web applications and platforms
is increasingly critical. As global interconnectivity rises, the variety and com-
plexity of threats against these applications also escalate. Platforms like DSW
are not exempt from these challenges. Recognizing potential vulnerabilities
and the types of attacks that could exploit them is crucial in developing strong
protective measures.

This chapter focuses on the typical vulnerabilities that web applications,
including platforms like DSW, may encounter. It aims to shed light on the
nature of these vulnerabilities, the ways in which attackers might exploit them,
and the possible repercussions of such security breaches. Understanding these
risks enables developers and administrators to better prepare and implement
effective security strategies, thereby safeguarding the integrity, confidentiality,
and availability of their platforms.

3.1 Terminology

Before delving into the specifics of various vulnerabilities and attacks, it’s essen-
tial to familiarize yourself with some key terms and concepts. This will ensure
a clear understanding of the subsequent sections and provide a foundation for
grasping the intricacies of web application security.

• Vulnerability: A weakness in an IT system that can be exploited by an
attacker to deliver a successful attack [5].

• Exploit: A piece of software, chunk of data, or sequence of commands
that takes advantage of a vulnerability to cause unintended behavior in
a system [14].

• Attack: An attempt to exploit a vulnerability to harm the system or its
users.

• Application Programming Interface (API): A way used by appli-
cations to communicate with each other.

13

3. Relevant Vulnerabilities and Attacks

• Token: A piece of data that serves as a credential or identifier, often used
for authentication and authorization purposes. There are three types of
tokens: authentication tokens (to confirm a user’s identity), API Token
(authenticate requests to API), and CSRF tokens (unique tokens gener-
ated by the server and included in forms to prevent Cross-Site Request
Forgery attack) [2].

• Hypertext Transfer Protocol Secure (HTTPS): An extension for
the Hypertext Transfer Protocol that uses encryption for secure commu-
nication over a computer network [6].

• Data Transfer Object (DTO): These are objects that carry data be-
tween processes in order to reduce the number of methods calls [3].

• Graphical User Interface (GUI): A graphics-based operating system
interface that uses icons, menus and a mouse (to click on the icon or pull
down the menus) to manage interaction with the system [10].

• The Open Worldwide Application Security Project (OWASP):
an online community that produces freely available articles, methodolo-
gies, documentation, tools, and technologies in the fields of IoT, system
software and web application security [16].

Understanding these terms is crucial as they form the backbone of the
discussion on web application vulnerabilities and attacks. As I proceed, I’ll
delve deeper into each vulnerability, exploring how they work, their potential
impact, and the common attacks associated with them.

3.2 SQL Injection

Structured query language (SQL) is a programming language for storing and
processing information in a relational database [1]. It is widely used in various
applications due to its compatibility with multiple programming languages.
It’s a go-to tool for data analysts and developers, as it seamlessly integrates
with programming languages, enabling the creation of efficient data process-
ing applications that work with major SQL databases, including Oracle and
PostgreSQL, which is used in the Data Stewardship Wizard.

Because SQL utilizes common English terms in its syntax, the queries, a
message request to the database, are relatively straightforward to understand.
For example, let’s assume I have a table user data, that contains information
about users, including their identification number (ID), login names, passwords,
and other data. If in the application I decided that I need to get a user’s
username based on the ID, I would use a query like this:

const auto userId = GetStringFromInput("Enter userId");
const auto userUsername = FetchSqlData(

"SELECT user_name FROM user_data WHERE user_id = " + userId
);

Listing 1: Simplest SQL setup in C++

14

3.3. Brute-Force Attack

If GetStringFromInput returns a number, for example, 14, it will be used
in the query like this:

SELECT user_name FROM user_data WHERE user_id = 14

Listing 2: SQL query when user id is correct

As a result, I will get the user name based on their ID. But what would
happen if, instead of the correct number, the GetStringFromInput function
returned 14 OR 1 = 1?

SELECT user_name FROM user_data WHERE user_id = 14 OR 1 = 1

Listing 3: SQL query when user id is not correct (option 1)

In this case, I would get a list of all usernames stored in the table. And if
I go even further and add UNION part to the query, I would be able to extract
all the data from this and other tables:

SELECT user_name FROM user_data WHERE user_id = 14
UNION
SELECT password FROM user_data
UNION
SELECT tablename FROM pg_tables;

Listing 4: SQL query when user id is not correct (option 2)

The result of this query is the list of all usernames, passwords, and the list
of all tables in the database, if PostgreSQL is used.

SQL Injection attacks pose a significant threat, particularly when they lead
to the compromise of sensitive data like personal details or financial records.
To counter these attacks, web applications need to implement strong input
validation and sanitization measures. This involves the use of prepared state-
ments with parameterized queries, which effectively treat user input strictly as
data, preventing it from being interpreted as part of the SQL command. Ad-
ditionally, conducting regular security audits and tests, including penetration
testing, is essential for detecting and addressing SQL Injection vulnerabilities.

3.3 Brute-Force Attack

A brute-force attack is an unsophisticated yet often effective method used by
cybercriminals to gain unauthorized access to systems or data. This approach
involves methodically trying every possible combination of passwords or phrases
until the correct one is identified. The term “brute-force’ reflects the reliance
on relentless effort and power rather than subtlety or tactical approaches.

In such attacks, the perpetrator typically employs automated tools to gen-
erate a vast number of sequential guesses. These tools are used to crack user
account passwords, decrypt data, or even discover hidden web pages. The
key to this method’s simplicity is computational power – these tools can test
thousands or millions of combinations in a short time.

15

3. Relevant Vulnerabilities and Attacks

Brute-force attacks are particularly effective against systems with lax pass-
word policies, like those allowing simple or commonly used passwords. The
success rate of these attacks largely hinges on the password’s complexity and
length; more intricate and longer passwords significantly increase the number
of required attempts, reducing the attack’s feasibility.

To safeguard against brute- force attacks, implementing stringent password
policies is crucial. These policies should encourage users to create complex
passwords and update them regularly. Account lockout mechanisms, which
block access after several failed login attempts, and two-factor authentication
(2FA), which adds a second verification layer, are also effective. Monitoring
login attempts and employing rate limiting to decelerate password attempts
are additional strategies that can help mitigate brute-force attack risks.

3.4 Cross-Site Scripting

Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious
scripts are injected into otherwise benign and trusted websites [18]. XSS attacks
exploit the trust a user has for a particular site, allowing attackers to bypass
access controls and potentially gain unauthorized access to sensitive data.

There are three main types of XSS attacks:

• Reflected XSS: This happens when an attacker tricks a user into click-
ing a seemingly legitimate link that contains a malicious script. Upon
clicking, the script is sent to a vulnerable website, which then reflects
the script back to the user’s browser. The browser executes the script,
mistaking it for a trusted source. For instance, an attacker could send a
deceptive email with a link that, when clicked, executes a script to steal
the user’s browser cookies.

• Stored XSS: Here, the harmful script is permanently stored on the
target server, such as in a comment section, forum, or database. When
users access this stored content, the malicious script is activated. A
typical example is a script embedded in a blog comment, which executes
every time the comment is displayed.

• DOM-based XSS: This form of XSS attack arises from vulnerabilities
in the client-side code rather than server-side code. It occurs when a
web application’s client-side script inappropriately writes user-supplied
data to the Document Object Model (DOM) without proper sanitization.
A common example is a URL that manipulates the page content using
JavaScript based on URL parameters, thereby running the attacker’s
script.

3.5 Cross-Site Request Forgery

Cross-Site Request Forgery (CSRF) is a security vulnerability found in web
applications. It enables attackers to trick users into executing unintended ac-
tions on a web application where they are authenticated. Unlike attacks aimed
at data theft, CSRF targets requests that change the state of the application,
as the attacker can’t actually view the response to the forged request. The

16

3.6. Broken Authentication

definition and description of the CSRF are based on the “Cross site request
forgery (CSRF) attack” on www.imperva.com [11].

To illustrate CSRF, consider this scenario:

• Scenario: A user is logged into their online banking account, a web appli-
cation, and simultaneously visits a malicious website in another browser
tab.

• Attack Setup: The malicious site contains a hidden form, automatically
submitted via JavaScript upon page load. This form is designed to send
a request to the banking application, such as transferring funds to the
attacker’s account, with the form action pointing to the banking app’s
URL for executing transfers.

• Execution: As the user visits the malicious page, the form gets submit-
ted to the banking application. Since the user is already authenticated
on the banking site, the application processes this request as if it were a
legitimate action initiated by the user.

• Outcome: Without adequate CSRF protection, the banking application
might carry out the action, unaware that the request originated from a
malicious site. Consequently, the user’s account could be manipulated to
perform actions they never intended.

To combat CSRF attacks, web applications employ anti-CSRF tokens. Uni-
que to each user session, these tokens are embedded in forms and server re-
quests. The server verifies the token with each request, ensuring it corresponds
to the user’s session, thus validating the request’s authenticity and intent. If
the token is absent or incorrect, the server rejects the request. This defence is
effective because while a malicious site can generate requests to the target site,
it cannot foresee or duplicate a user’s session-specific CSRF token.

3.6 Broken Authentication

Broken Authentication is a security vulnerability that occurs when a web ap-
plication’s authentication and session management processes are implemented
incorrectly, allowing attackers to compromise passwords, keys, session tokens,
or exploit other implementation flaws to assume other users’ identities.

Based on OWASP Top Ten [22], this is one of the most common vulnerabil-
ities out there. The definition of the attack along with its description is based
on the related OWASP articles. There are three main scenarios of the attack:

• Scenario #1 - Credential Stuffing Vulnerability: Credential stuff-
ing, involving the use of known password lists, is a prevalent attack
method. If an application lacks automated defences against such threats
or credential stuffing, it can inadvertently serve as a “password oracle”,
helping attackers verify the validity of stolen credentials. This vulnera-
bility arises when the application fails to detect and block repeated login
attempts using different credentials, often sourced from data breaches.

17

www.imperva.com

3. Relevant Vulnerabilities and Attacks

• Scenario #2 - Overreliance on Passwords and Outdated Prac-
tices: Many authentication breaches stem from the reliance on passwords
as the sole authentication factor. Practices once deemed secure, such as
frequent password changes and complex requirements, are now seen as
counterproductive. They often lead users to choose weaker, easily re-
membered (and often reused) passwords. Following NIST 800-63 guide-
lines, organizations are advised to move away from these outdated prac-
tices and adopt multi-factor authentication (MFA), which significantly
enhances security by requiring additional verification methods beyond
just a password.

• Scenario #3 - Inadequate Session Timeout Management: Proper
session timeout settings are crucial for application security, especially
when users access the application on public computers. Consider a user
who accesses an app on a public computer but only closes the browser tab
without logging out. If the application’s session timeout isn’t configured
correctly, the session remains active. This oversight can allow an attacker
to access the same browser later and find the user still authenticated, po-
tentially leading to unauthorized access and data breaches. This scenario
underscores the importance of setting appropriate session timeouts and
educating users about the importance of actively logging out, especially
in public settings.

3.7 Broken Access Control

Access control, also known as authorization, is a critical aspect of web ap-
plication security. It determines which users can access specific content and
functionalities within an application. This process occurs post-authentication
and dictates the actions that authorized users can perform. While the concept
of access control may seem straightforward, its proper implementation is often
complex and challenging.

The access control model of a web application is intrinsically linked to
the site’s content and functionalities. Users typically fall into various groups
or roles, each with distinct capabilities and privileges. However, developers
often underestimate the complexity involved in creating a robust access control
system. In many cases, these systems evolve organically alongside the website,
leading to access control rules being scattered throughout the codebase. This
ad-hoc approach can result in a convoluted set of rules that are difficult to
manage, especially as the site approaches deployment.

Poorly designed access control systems are not only common but also rela-
tively easy to exploit. According to OWASP Top Ten 2021 [20], this vulnera-
bility is one of the easiest to exploit, and yet the 5th most popular attack on
applications. Attackers can often gain unauthorized access simply by crafting
requests for restricted content or functions. The repercussions of such breaches
can be severe, ranging from unauthorized viewing or alteration of content to
performing restricted functions or even hijacking site administration.

A particular concern in access control is the management of administrative
interfaces. These interfaces are essential for site administrators to manage
users, data, and content efficiently. Often, sites support various administrative
roles to provide more detailed control over site management. However, due to

18

3.8. Token Leakage

their extensive capabilities, these interfaces are prime targets for attacks, both
from external sources and from within the organization. The security of these
administrative portals is paramount, as they hold the keys to the entire site’s
functionality and data.

3.8 Token Leakage

Token leakage or theft is when an unauthorized party obtains or intercepts an
OAuth token, either from the user, the client application, or the network [13].
There are many ways how this can happen:

• Via URLs: If tokens are included in URLs (for example, in the query
string of a GET request), they can be leaked. URLs can be logged in
server logs, browser history, or can be seen by third parties in unsecured
network environments.

• Referer Header: When a user clicks a link on a webpage, the browser
typically sends the URL of the current page as the “Referer” header to
the destination server. If a token is in the URL, it can be leaked to the
destination server.

• Cross-Site Scripting: If a web application is vulnerable to XSS, an
attacker can inject malicious scripts to steal tokens stored in cookies or
accessible via JavaScript.

• Insecure Storage or Transmission: Tokens stored insecurely on the
client-side, or transmitted over unencrypted connections, can be inter-
cepted and used by attackers.

To prevent token leakage, tokens should never be included in URLs, should
be transmitted securely (e.g., over HTTPS), and should be stored securely on
the client-side (e.g., in HTTPOnly cookies that are not accessible via JavaScript).
Additionally, implementing robust security measures to protect against XSS
and other injection attacks is very important.

3.9 File Inclusion Vulnerabilities

The File Inclusion vulnerability allows an attacker to include a file, usually
exploiting a “dynamic file inclusion” mechanisms implemented in the target
application. The vulnerability occurs due to the use of user-supplied input
without proper validation [23]. Based on the related OWASP articles, there
are two main types of this vulnerability:

• Local File Inclusion (LFI): This vulnerability arises when a web ap-
plication permits the integration of files located on its own server into
its web pages. Attackers can exploit LFI by altering input parameters to
incorporate files stored on the server, such as configuration files, logs, or
executable scripts. For instance, an LFI vulnerability might enable an at-
tacker to include and run a PHP script located on the server, potentially
leading to unauthorized access or control.

19

3. Relevant Vulnerabilities and Attacks

• Remote File Inclusion (RFI): RFI occurs when a web application
allows the inclusion of files from external servers. In an RFI attack,
the attacker manipulates the application to include and execute a script
from a remote server. This can result in the execution of malicious code,
controlled by the attacker, on the web server. RFI can be particularly
dangerous as it gives attackers the ability to inject harmful scripts or
programs into the web server, potentially compromising the server and
affecting its operations.

As an example of this vulnerability, imagine a web application that dynam-
ically includes content based on user input, such as:

include('pages/' . $_GET['page']);

Listing 5: PHP file inclusion

In this PHP code, the page to be included is determined by a user-supplied
input ($ GET[’page’]). If this input is not properly sanitized, an attacker
could supply a path to a file that should not be accessible. For example, some-
thing like this http://page.com/index.php?page=../../../../etc/passwd
could print the contents of the passwd file.

To mitigate the risks, the developers must properly handle file path vali-
dation. This includes input validation, full path variables, correct application
configuration, and proper error handling.

3.10 Server-Side Template Injection

Server-side template injection (SSTI) is a vulnerability found in web appli-
cations that utilize templating engines. These engines are tools that allow
developers to create dynamic HTML pages. They work by incorporating spe-
cial template tags or placeholders into HTML files, which are then substituted
with real data when the page is loaded or rendered. SSTI occurs when user
input is not adequately sanitized before being integrated into a template. This
oversight can lead to situations where an attacker is able to inject harmful
template code.

In such a scenario, if the user input is directly inserted into the template
without proper checks, it can lead to the execution of unintended template
commands or code. This could potentially allow attackers to manipulate the
server-side processing of web pages, leading to a range of malicious activities.
These activities might include data theft, website defacement, or even gaining
unauthorized access to the server’s backend systems. The risk with SSTI is par-
ticularly high because it directly affects the server-side execution environment,
making it a critical vulnerability to address in web application security.

For example, consider a web application using a templating engine where a
user’s input is directly inserted into a template:

If the name parameter is not properly sanitized, an attacker could inject
template code through the URL:

20

3.11. Vulnerabilities Introduced in Programming Languages and Libraries

@app.route('/')
def index():

name = request.args.get('name', 'World')
return render_template_string('Hello ' + name + '!')

Listing 6: Python code that writes input name to the template

http://example.com/?name={{ <malicious_code> }}

Listing 7: Example of exploiting SSTI

3.11 Vulnerabilities Introduced in Programming
Languages and Libraries

Programming languages and their libraries are crucial in software development,
but they can also be sources of vulnerabilities. Even with robust security mea-
sures in place for an application, vulnerabilities in the programming languages
or libraries can still pose significant risks.

A notable example of such a vulnerability is the Heartbleed Bug, a severe
flaw discovered in the widely-used OpenSSL cryptographic software library.
Under normal circumstances, OpenSSL’s SSL/TLS encryption is meant to pro-
vide secure communication over the Internet for various applications, including
web browsing, email, instant messaging, and some VPNs. It’s designed to en-
sure both security and privacy in these communications.

However, the Heartbleed bug exposed a critical weakness. It allowed anyone
on the Internet to read the memory of systems protected by the affected versions
of OpenSSL. This vulnerability compromised the secret keys used for service
provider identification and traffic encryption, as well as user names, passwords,
and actual content. The implications were severe: attackers could potentially
eavesdrop on communications, directly steal data from services and users, and
impersonate services and users. This bug highlighted the importance of not
only securing the application but also ensuring the security of the underlying
libraries and frameworks used in software development.

3.12 Conclusion

To test for these vulnerabilities, you can use automated tools known as vulner-
ability scanners. These tools scan web applications from the outside looking for
security vulnerabilities such as XSS, SQL Injection, and others. They simulate
known attack patterns and analyze the response of the website. However, it’s
important to note that these tools have their own strengths and weaknesses
and should be used as part of a comprehensive security testing approach.

21

Chapter 4
Current security measures

Ensuring the security and integrity of data is paramount, especially for plat-
forms like the Data Stewardship Wizard that handle sensitive research data.
Over the years, DSW has implemented a range of security measures to secure
its platform and its users. This section provides an overview of the current
security practices and tools in place.

4.1 Authentication

This is the process of verifying a user’s identity. It includes checking whether a
user is who they are claiming to be. Authentication is typically done by asking
for a username and password, but it can also include other methods such as
biometrics or Two-Factor Authentication.

4.1.1 Create a New User
Before delving into the code, it would be beneficial to illustrate what the au-
thentication process looks like for an average DSW user. Figure 4.1 displays
the main screen that users encounter when they wish to log in.

Figure 4.1: Login form

If the user is not registered in the system, they are allowed to sign up in
order to access anything except public knowledge models that allow anonymous

23

4. Current security measures

users. On the picture 4.2 you can find what the user sees on the registration
page. However, the locally deployed version of the application does not support
email verification, so the signup process could not be finished.

Figure 4.2: Registration form

If desired, users have the option to enable two-factor authentication. How-
ever, this feature can only be activated by an administrator for all members
of the project. It is found under Administration >Settings >Authorization
>Two-Factor Authorization and is disabled by default. This setting allows
the administrator to specify the code length and the expiration period for the
one-time code, which is sent via email (as shown in Figure 4.3).

24

4.1. Authentication

Figure 4.3: 2FA authentication form

Also, there is another option for creating the user – an admin can create a
user, assign their role, and set their password (it can be changed later by the
user). In this case, the user will not need to verify the email, so the account
will be activated immediately. The process of user creation by admin is shown
in Figure 4.4.

Figure 4.4: Filled registration form

With the main processes outlined, let’s delve into the code. As you are
already aware, there are two methods to create a user, depending on the role
of the current user (or the requestor). If the user is:

25

4. Current security measures

• an admin: createUserByAdmin is called.

createUserByAdmin :: UserCreateDTO ->
AppContextM UserDTO

createUserByAdmin reqDto =
runInTransaction $ do

checkPermission _UM_PERM
uUuid <- liftIO generateUuid
appUuid <- asks currentAppUuid
clientUrl <- getAppClientUrl
createUserByAdminWithUuid reqDto

uUuid
appUuid
clientUrl
False

Listing 8: createUserByAdmin function

Based on the code, the function starts by invoking checkPermission
UM PERM, which checks if the current user has the necessary permissions

to create a new user. If they do, the function generates Universally
Unique Identifier (UUID) for the user being created. After retrieving the
app UUID and Client URL, all the information and one boolean value
is passed to createUserByAdminWithUuid, where the user gets created.
The purpose of this boolean value is to indicate whether a registration
email should be sent to the user.

createUserByAdminWithUuid :: UserCreateDTO -> U.UUID -> U.UUID
-> String -> Bool -> AppContextM UserDTO↪→

createUserByAdminWithUuid reqDto uUuid appUuid clientUrl
shouldSendRegistrationEmail =↪→

runInTransaction $ do
uPasswordHash <- generatePasswordHash reqDto.password
serverConfig <- asks serverConfig
appConfig <- getAppConfig
let uRole = fromMaybe appConfig.authentication.defaultRole

reqDto.uRole↪→

let uPermissions = getPermissionForRole serverConfig uRole
userDto <- createUser reqDto uUuid uPasswordHash uRole

uPermissions appUuid clientUrl
shouldSendRegistrationEmail

↪→

↪→

auditUserCreateByAdmin userDto
return userDto

Listing 9: createUserByAdminWithUuid function

Here is what happens in createUserByAdminWithUuid:

– Password hashing: the user’s password from reqDto is hashed us-
ing generatePasswordHash function.That ensures that the actual
password in not stored as a plain text in the database.

26

4.1. Authentication

generatePasswordHash :: String -> AppContextM String
generatePasswordHash password = do

hash <- liftIO $ BS.unpack <$> PasswordStore.makePasswordWith
PasswordStore.pbkdf2 (BS.pack password) 17

return $ "pbkdf2:" ++ hash

Listing 10: generatePasswordHash function

– Fetching configuration: the system fetches the server configura-
tion using asks serverConfig and the app configuration using the
getAppConfig function. These configurations contain settings and
parameters required for user creation.

– Determining user role: the user’s role can defined in reqDto.uRole.
But if it’s not, the default role from the app configuration is used
appConfig.authentication.defaultRole

– Determining user permissions: the user’s permissions are determined
using the getPermissionForRole function, which maps roles to a
set of permissions. It will be described in more detail in the next
chapter.

– User creation: create a new user in the system, check the user’s
limits, validate the uniqueness of the email, prepare the user data,
insert it into the database, create an action key for registration, send
registration email and then return the userDto.

– Auditing: auditUserCreateByAdmin function is called with the cre-
ated user’s data userDto. This suggests that the system keeps an
audit trail or log of user creation events, which can be useful for
tracking and security purposes.

– Returning: the created user’s data userDto is returned as the result
of the function.

• not an admin: registerUser is called.
Here is what happens in registerUser:

– Registration check: check if the “registration” feature is enabled in
c.authentication.internal.registration.enabled.

– UUID Generation: generates a new UUID for the user being regis-
tered. The liftIO function is used to lift an IO action (in this case,
generateUuid) into the current monadic context AppContextM.

– Password hashing: the user’s password from reqDto is hashed using
generatePasswordHash function.

– Fetching configuration: the system fetches the server configura-
tion using asks serverConfig and the app configuration using the
getAppConfig function. These configurations contain settings and
parameters required for user creation.

– Determining user role: the user’s role can defined in reqDto.uRole.
But if it’s not, the default role from the app configuration is used
appConfig.authentication.defaultRole

27

4. Current security measures

registerUser :: UserCreateDTO -> AppContextM UserDTO
registerUser reqDto =

runInTransaction $ do
checkIfRegistrationIsEnabled
uUuid <- liftIO generateUuid
uPasswordHash <- generatePasswordHash reqDto.password
serverConfig <- asks serverConfig
appConfig <- getAppConfig
let uRole = appConfig.authentication.defaultRole
let uPermissions = getPermissionForRole serverConfig

uRole
clientUrl <- getClientUrl
appUuid <- asks currentAppUuid
createUser reqDto

uUuid
uPasswordHash
uRole
uPermissions
appUuid
clientUrl
True

Listing 11: registerUser function

– Determining user permissions: the user’s permissions are determined
using the getPermissionForRole function, which maps roles to a
set of permissions.

– Fetching client URL: get the client’s URL.

– Fetching app UUID: using getCurrentAppUuid.

– User Creation: create a new user in the system, check the user’s
limits, validate the uniqueness of the email, prepare the user data,
insert it into the database, create an action key for registration, send
a registration email and then return the userDto.

4.1.2 Login

To verify that the user’s credentials correspond to a specific person, a new
LoginDTO (DTO means Data Transfer Object) with those credentials is created.

data LoginDTO = LoginDTO
{ email :: String
, password :: String
, code :: Maybe Int
}
deriving (Generic)

Listing 12: Definition of LoginDTO

28

4.1. Authentication

Then this object is transferred to LoginService.hs, where DSW matches
login credentials to a particular user using createLoginTokenFromCredentials
function. To do that, the following steps are made:

• Find user by email: another function findUserByEmail is called. If the
user is not found, it throws an error indicating an incorrect email or
password. Otherwise, continues.

• Validation: if the user is found, the system validates the provided cre-
dentials against the stored ones using the validate function:

validate :: LoginDTO -> User -> AppContextM ()
validate reqDto user = do
validateIsUserActive user
validateUserPassword reqDto user

Listing 13: Definition of validate function

Based on the code, the application subsequently calls two functions –
validateIsUserActive and validateUserPassword.

– validateIsUserActive: This function checks if the active attribute
of the User is True. If the user is active (active is True), it does
nothing and returns. If the user is not active (active is False), it
throws an error indicating that the account is not activated.

– validateUserPassword: This function checks if the provided pass-
word (from LoginDTO) matches the hashed password of the User
using verifyPassword. If no user is found, it throws an error indi-
cation incorrect email or password. Otherwise, it uses the password
hash, which is stored in passwordHashFromDB for further processing.

verifyPassword :: String -> String -> Bool
verifyPassword incomingPassword

passwordHashFromDB =
case splitOn ":" passwordHashFromDB of

["pbkdf1", hashFromDB] ->
PasswordStore.verifyPassword

(BS.pack incomingPassword)
(BS.pack hashFromDB)

["pbkdf2", hashFromDB] ->
PasswordStore.verifyPasswordWith

PasswordStore.pbkdf2
(2 ˆ)
(BS.pack incomingPassword)
(BS.pack hashFromDB)

_ -> False

Listing 14: Definition of verifyPassword function

Based on the code, the system stores not only the hash in the
database but also a prefix indication of the hashing algorithm used,

29

4. Current security measures

followed by the actual hash. Based on the split, the system decides
how the password matching is handled:

∗ If the split results in two parts, and the first part is
pbkdf1, it uses the PasswordStore.verifyPassword (a func-
tion from Crypto.PasswordStore library) function to check if
the incomingPassword matches the hashFromDB. The BS.pack
function is used to convert the String to a ByteString.

∗ If the split results in two parts, and the first part
is pbkdf2, it uses a different verification function,
PasswordStore.verifyPasswordWith, along with the
PasswordStore.pbkdf2 hashing algorithm. Again, the
password and hash are converted to ByteString before
verification.

∗ If the split doesn’t match any of the first two formats, the func-
tion returns False, indicating, that the password verification
failed.

• Two-Factor Authentication: the system checks if two-factor authentica-
tion (2FA) is enabled for the user.

– if two-factor authentication is not enabled: it updates the user’s
last visited timestamp and creates a login token.

– if two-factor authentication is enabled, but no code provided in
LoginDTO: any existing action keys for the user are deleted. A new
2FA code is generated and stored as an action key in the database.
The 2FA code is then sent to the user via email. The system returns
a CodeRequiredDTO, indicating that the user needs to provide the
2FA code to complete the authentication.

– if two-factor authentication is enabled and the code is provided: the
system validates the provided code against the stored action key
using the validateCode function. It checks the database to see if
there’s a matching ActionKey for the user’s UUID and the provided
code. If a match is found, the function checks if the code has expired.
If the code is valid and hasn’t expired, the function completes suc-
cessfully. If the code is incorrect or has expired, appropriate errors
are thrown.

• JSON Web Token generation: once the user is authenticated (with
or without 2FA), a JSON Web Token (JWT) is generated for
the user. It contains claims such as user.uuid, user.appUuid,
serverConfig.jwt.expiration. Then the token is signed, stored in
the database as a user token and returned to the user, which they can
use for subsequent authenticated requests.

4.2 Authorization

Authorization refers to the procedure of allowing or restricting access to a
resource, depending on the authenticated user’s rights. It entails verifying
if a user possesses the required permissions to access a certain resource or

30

4.2. Authorization

carry out a particular task. Typically, authorization goes hand in hand with
authentication, ensuring that the server has an understanding of the identity
of the client seeking access.

The system employs a function named getPermissionForRole to map each
user to their respective permissions based on their role. This function acts as
a gatekeeper, determining what actions a user is authorized to perform within
the application. The roles are configured in config.roles.*, and each role
comes pre-equipped with a specific set of permissions.

It is important to note that these permissions are set by default and are
intrinsic to the roles themselves. This means that they are not directly modi-
fiable on a per-user basis. In other words, a user’s permissions are inherently
tied to their role, and any change in permissions would necessitate a change in
the user’s role.

The application maintains a comprehensive list of permissions, each of
which can be assigned to different roles. However, it is crucial to carefully con-
sider which permissions are assigned to which roles to maintain the integrity
and security of the system. Here is the list of all permissions introduced in the
DSW:

Figure 4.5: Permissions for Admin

Figure 4.6: Permissions for
Researcher

Figure 4.7: Permissions for Data
Steward

• UM PERM - User Management Permission - used for various opera-
tions on users - create, read, update, delete (CRUD). Available for:

31

4. Current security measures

– USER ROLE ADMIN

• KM PERM - allows CRUD operations on branches. Available for:

– USER ROLE ADMIN
– USER ROLE DATA STEWARD

• KM PUBLISH PERM - permission to publish packages. Available
for:

– USER ROLE ADMIN
– USER ROLE DATA STEWARD

• KM UPGRADE PERM - allows CRUD operations on migrations.
Available for:

– USER ROLE ADMIN
– USER ROLE DATA STEWARD

• PM READ PERM - permission to read or access package informa-
tion. Available for:

– USER ROLE ADMIN
– USER ROLE DATA STEWARD
– USER ROLE RESEARCHER

• PM WRITE PERM - permission related to writing, modifying, im-
porting, and deleting package information. Users must have this per-
mission to import and convert package bundles, pull package bundles
from a registry, modify package details, delete packages based on query
parameters, and delete specific package. Available for:

– USER ROLE ADMIN
– USER ROLE DATA STEWARD

• QTN PERM - allows CRUD operations on questionnaires. Available
for:

– USER ROLE ADMIN
– USER ROLE DATA STEWARD
– USER ROLE RESEARCHER

• QTN TML PERM - permission to create a questionnaire with given
UUID. Available for:

– USER ROLE ADMIN
– USER ROLE DATA STEWARD

• QTN IMPORTER PERM - permission to modify questionnaire im-
porter. Available for:

– USER ROLE ADMIN

32

4.3. Data Validation

– USER ROLE DATA STEWARD

• SUBM PERM - permission to submit a document. Available for:

– USER ROLE ADMIN
– USER ROLE DATA STEWARD
– USER ROLE RESEARCHER

• DOC TML READ PERM - permission to get document template
and template suggestions. Available for:

– USER ROLE ADMIN
– USER ROLE DATA STEWARD
– USER ROLE RESEARCHER

• DOC TML WRITE PERM - allows CRUD operation on templates,
template assets, and drafts. Available for:

– USER ROLE ADMIN
– USER ROLE DATA STEWARD

• DOC PERM - permission to read information about document. Avail-
able for:

– USER ROLE ADMIN

• LOC PERM - allows CRUD operations on locales. Available for:

– USER ROLE ADMIN

• CFG PERM - permission to modify client customization, get and mod-
ify application configuration, and delete and update application logo.
Available for:

– USER ROLE ADMIN

The application creates records that chronologically catalogue system activ-
ities. By recording who performed an action, what action was performed, and
when it was performed. They are essential for maintaining security, providing
a way to track user actions, helping to detect and investigate unauthorised
access or anomalies, and ensuring accountability within the application.

4.3 Data Validation

Input validation is performed to ensure only properly formed data is enter-
ing the workflow in an information system, preventing malformed data from
persisting in the database and triggering malfunction of various downstream
components. Input validation should happen as early as possible in the data
flow, preferably as soon as the data is received from the external party. [19]

It’s essential to apply input validation to data from all sources that might
not be completely secure. Any of these sources could be compromised and
might begin to transmit improperly formatted data. For a complete immersion

33

4. Current security measures

in this topic, familiarization with a very important resource of information –
OWASP is necessary.

The Open Web Application Security Project (OWASP) is a worldwide non-
profit dedicated to enhancing software security. It’s a community-driven orga-
nization, with security professionals around the world contributing to its wealth
of freely accessible resources, which include articles, methodologies, documen-
tation, tools, and technologies focused on web application security.

Among the key resources provided by OWASP is the “Input Validation
Cheat Sheet”. This resource is a detailed guide designed to help developers
grasp the best practices for input validation. It details methods for effectively
checking, filtering and cleaning data before it’s processed by the system. Here
are all the steps of input validation from the cheat sheet and their implemen-
tation in the Data Stewardship Wizard:

4.3.1 File Upload Validation
Many web applications, including the Data Stewardship Wizard, offer users the
ability to upload various types of files, such as project templates, knowledge
models, and locales. However, it’s crucial for these files to undergo thorough
verification and validation on the backend. This process includes checking the
file format, ensuring uniqueness, and implementing other security measures. To
accomplish this, DSW developers have implemented multiple functions. In this
section, I will go through the most critical file validation function – template
validation, implemented in importAndConvertBundle.

This is a Haskell function that takes two arguments: a ByteString, rep-
resenting the content of a document template bundle, and a Bool, indicating
whether the bundle originates from a registry or not. Initially, by using the
fromDocumentTemplateArchive function, the file content is converted into a
document template archive. This function returns an Either type, which can
be either Right (indicating success) or Left (indicating an error). In the
case of success, the system checks whether the number of document templates
or the storage used exceeds a predefined limit using findCurrentAppLimit
function. If no error occurs, the bundle is converted into a document tem-
plate using the fromBundle function, which is then validated by utilizing the
validateNewDocumentTemplate function.

The validateNewDocumentTemplate function is designed to perform a se-
ries of validation checks:

• validateCoordinateFormat: The function starts with splitting the
coordinate part using “:” as a separator. This must result in three parts:
identification number, organization ID, and template ID. The identifica-
tion number and organization ID must not be empty. If either of these
conditions is not met, the function throws an error indicating an invalid
coordinate format ERROR VALIDATION INVALID COORDINATE FORMAT. Oth-
erwise, the function returns the result of matching the third part to the
regular expression

validationRegex = mkRegex "ˆ[0-9]+\\.[0-9]+\\.[0-9]+$"

• validateDocumentTemplateIdUniqueness: Using function
findDocumentTemplateById it checks whether the given document ID

34

4.3. Data Validation

importAndConvertBundle :: BSL.ByteString ->
Bool ->
AppContextM DocumentTemplateBundleDTO

importAndConvertBundle contentS fromRegistry =
case fromDocumentTemplateArchive contentS of

Right (bundle, assetContents) -> do
checkDocumentTemplateLimit
let assetSize =

foldl (\acc (_, content) -> acc +
(fromIntegral . BS.length $ content)) 0 assetContents

checkStorageSize assetSize
appUuid <- asks currentAppUuid
let tml = fromBundle bundle appUuid
validateNewDocumentTemplate tml True
deleteOldDocumentTemplateIfPresent bundle
traverse_ (\(a, content) ->

putAsset tml.tId a.uuid a.contentType content)
assetContents

insertDocumentTemplate tml
traverse_

(insertFile . fromFileDTO tml.tId appUuid tml.createdAt)
bundle.files

traverse_
(\(assetDto, content) ->

insertAsset $ fromAssetDTO tml.tId
(fromIntegral . BS.length $ content)
appUuid tml.createdAt assetDto

)
assetContents

if fromRegistry
then auditBundlePullFromRegistry tml.tId
else auditBundleImportFromFile tml.tId

return bundle
Left error -> throwError error

Listing 15: Definition of importAndConvertBundle function

already exists in the database. If it is, it raises an error
ERROR VALIDATION DOC TML ID UNIQUENESS.

• validateCoordinateWithParams: It extracts the identification number,
organization ID, template ID, and version from the template, and tries to
create a new template using those values using the template constructor
by simple concatenation using “:” as a delimiter. The created string is
then compared to the coordinate of the file. If they don’t match, an error
is raised ERROR VALIDATION COORDINATE MISMATCH.

• shouldValidateMetamodelVersion: This part is optional, but in my
case, it gets executed. It ensures that the template metamodel version is
equal to a constant value stored in documentTemplateMetamodelVersion.

35

4. Current security measures

validateNewDocumentTemplate :: DocumentTemplate ->
Bool ->
AppContextM ()

validateNewDocumentTemplate tml
shouldValidateMetamodelVersion = do

validateCoordinateFormat False tml.tId
validateDocumentTemplateIdUniqueness tml.tId
validateCoordinateWithParams tml.tId

tml.organizationId
tml.templateId
tml.version

when shouldValidateMetamodelVersion
(validateMetamodelVersion tml)

Listing 16: Definition of validateNewDocumentTemplate function

If those values are different, the function throws an error
ERROR VALIDATION TEMPLATE UNSUPPORTED METAMODEL VERSION.

After making sure that the template is valid, the importAndConvertBundle
function checks whether there’s an existing document template with the same
ID, this function removes it along with its associated assets. This step is crucial
for ensuring that the new template does not conflict with existing ones. After
this step, the template, including its assets and files, records an audit log entry
indicating the source of the bundle is stored.

4.3.2 Client-Side Validation
Client-side data validation is the first line of defence against incorrect or ma-
licious user input. It takes place directly on the user’s device, usually within
a web browser, prior to the data being transmitted to the server. This form
of validation offers quick feedback to the user, improving the overall experi-
ence by promptly identifying mistakes and minimizing the need for extensive
server-side validations.

The developers have primarily utilized Elm to construct this segment of the
application. For the purposes of validating and confirming data, they have used
the Validate library. For example, let’s take a look at the signup validation
process:

signupFormValidation : Validation e SignupForm
signupFormValidation =

Validate.map5 SignupForm
(Validate.field "organizationId"

(validateRegex "ˆˆ(?![.])(?!.*[.]$)[a-zA-Z0-9.]+$"))
(Validate.field "name" Validate.string)
(Validate.field "email" Validate.email)
(Validate.field "description" Validate.string)
(Validate.field "accept" validateAcceptField)

Listing 17: Definition of signupFormValidation function

36

4.3. Data Validation

The organizationId field is validated using a regular expression, which is
used in validateRegex function. Important to mention, that validateRegex
is a wrapper over the Validate function that checks if a string matches a given
regular expression pattern. Also, the regular expression does not seem to be
correct, as it cannot start with ˆˆ.

Name, email, and description is validated using Validate.string func-
tion. To validate the accept field, a special function has been created –
validateAcceptField, which basically checks if the user has checked a re-
quired checkbox (such as one to accept terms and conditions), before they can
successfully submit the form.

4.3.3 Server-Side Validation
Server-side validation is an important aspect of creating secure and stable web
applications. It differs from client-side validation, which is performed in the
user’s browser and is vulnerable to being overridden by the user. Server-side
validation occurs on the web server once the data has been sent. This validation
step is very important as it serves as the ultimate checkpoint, confirming that
all incoming data matches the required format, type, and content before any
processing or storage takes place.

The server-side validation offers a more secure and trustworthy method for
data verification. It’s especially vital for thwarting various attack vectors, such
as SQL injection, cross-site scripting, and other forms of data manipulation that
could endanger the application’s integrity and the data it manages. Choosing
the right programming language for the client-side is a critical decision. That’s
why Haskell was chosen.

Haskell, as a high-level, statically typed functional programming language,
removes the need for developers to handle memory manipulation directly. It
automatically oversees memory management and lacks the features for direct
memory address access or manual memory management tasks that are typically
found in lower-level languages. This design significantly reduces the risk of
buffer overflows and other possible attacks:

• Memory Safety – the language handles memory allocation and garbage
collection without exposing the low-level details to a programmer.

• Immutable Data – once the object is created, it cannot be modified.

• Strong Typing – the language ensures that functions receive inputs of the
correct type and typically of a known size.

• Bounds Checking – when working with arrays, vectors or other similar
data structures, Haskell checks at the run-time for the bounds.

• Avoidance of Null – Haskell does not have null values. Instead, it uses the
“Maybe” type to explicitly handle the presence or absence of the value,
which avoids null pointer exceptions.

In addition to the type checking inherent to Haskell, it’s important to ensure
that the data being saved to the database is of the correct type. For this
purpose, the project utilizes the Database.PostgreSQL.Simple library, which
offers type-safe methods to engage with a PostgreSQL database from Haskell.

37

4. Current security measures

However, it’s important to note that this library is labelled as experimental
in terms of stability. This designation implies that certain features might be
unreliable and could potentially be exploited.

To verify that the data conforms to a specific format. This type of check
is done mostly by using regular expressions, but basic formats such as phone
numbers or emails are verified on the client side. For other things, such as files
and projects, the matchRegex function from Text.Regex library is used.

4.4 Error Handling

Error handling is a critical aspect of software development, particularly in
web applications where a variety of issues can occur due to network problems,
user input errors, or internal server faults. Proper error handling ensures that
the application can gracefully manage unexpected situations, providing infor-
mative feedback to the user, and preventing the exposure of sensitive system
information that could be exploited by malicious actors.

Error handling in web applications is a vital mechanism designed to ad-
dress unexpected conditions during run-time. It serves multiple purposes: it
enhances user experience by providing meaningful error messages, it helps de-
velopers diagnose issues through logging, and it secures the application by
preventing the leakage of sensitive information and system details that could
be leveraged in cyber attacks.

Within the Data Stewardship Wizard, effective error handling is essential.
Considering the delicate task of data management planning and the intricate
interactions that can occur in the system, DSW is designed to adeptly manage
a broad spectrum of possible errors.

data AppError
= AcceptedError
| MovedPermanentlyError String
| FoundError String
| ValidationError [LocaleRecord] (M.Map String [LocaleRecord])
| UserError LocaleRecord
| SystemLogError LocaleRecord
| UnauthorizedError LocaleRecord
| ForbiddenError LocaleRecord
| NotExistsError LocaleRecord
| LockedError
| GeneralServerError String
| HttpClientError Status String
deriving (Show, Eq)

Listing 18: Definition of AppError

• AcceptedError – represents a successful operation that is still processing
(HTTP 202).

• MovedPermanentlyError – represents a resource that has been moved to
a new URL (HTTP 301). The new URL provided as a string.

38

4.5. Encryption

• FoundError – represents a resource that has been found but is temporar-
ily located at a different URL (HTTP 302).

• ValidationError – represents an error due to validation failure, with
details about the error provided in a list of LocaleRecord and a map
from field names to lists of LocaleRecord.

• UserError – represents a generic error that can be shown to the user,
with a localized message i.e
ERROR SERVICE COMMON FEATURE IS DISABLED.

• SystemLogError – represents an error that should be logged by the sys-
tem.

• UnauthorizedError – Represents an authentication error where the user
is not authorized (HTTP 401).

• ForbiddenError – represents an authorization error where the user is
forbidden from accessing a resource (HTTP 403).

• NotExistsError – represents an error where a resource does not exist
(HTTP 404).

• LockedError – represents a resource that is locked and cannot be accessed
(HTTP 423).

• GeneralServerError – represents a generic server error, with a message
as a String.

• HttpClientError – represents an error related to an HTTP client oper-
ation, with a status indicating the HTTP status code and a String for an
additional message.

The complete list of all errors can be found in Public.hs files.
As previously noted, the client-side component of the application is devel-

oped in Elm, a language known for its absence of exceptions. Elm is renowned
for its promise of eliminating run-time errors in practice. This is achieved in
part because Elm handles errors as data. Instead of causing a crash, Elm ex-
plicitly models the potential for failure using custom types, allowing for more
graceful error handling. This feature has been extensively utilized in the client-
side development.

4.5 Encryption

Encryption is a crucial security strategy that safeguards the confidentiality and
integrity of data, whether it’s stored or being transmitted. This technique con-
verts accessible data, or plain text, into a scrambled form, referred to as cypher
text, that can only be interpreted or utilized once it’s been decrypted. Encryp-
tion is vital for protecting sensitive information from unauthorized access, a
concern especially relevant for applications like DSW that manage sensitive
research data.

Based on the code, DSW uses a cryptographic utility module that includes
functions for generating random strings, encrypting and decrypting sensitive

39

4. Current security measures

data and configurations with AES-256, hashing with MD5, and reading RSA
keys from memory Crypto.hs. This module includes a wrapper for the en-
cryption and decryption of data.

For example, here is a function that encrypts plain text into a cypher text
using AES-256:

encryptAES256WithB64 :: String -> String -> String
encryptAES256WithB64 key plainData =

if B64.isBase64 (BS.pack plainData)
then BS.unpack $ encryptAES256Raw (BS.pack key)

(B64.decodeBase64Lenient . BS.pack $ plainData)↪→

else BS.unpack . B64.encodeBase64' \$ encryptAES256Raw
(BS.pack key) (BS.pack plainData)↪→

Listing 19: Definition of encryptAES256WithB64 function

This function is designed to handle encryption of data that may or may
not already be Base64-encoded. If plainData is already Base64 encoded, it
gets decoded from Base64, but it will happen leniently, meaning that all non-
Base64 characters will be ignored. The decoded data is then encrypted using
the encryptAES256Raw function with the provided key. The encrypted data,
which is a ByteString, is then unpacked back into a string. If plainData
is not Base64 encoded, the function encrypts the data and then encodes it in
Base64: encrypt the message with the key, encode the cypher into Base64, pad
it, and, finally, unpack it into a string.

4.6 Hashing

Unlike encryption, which is designed to be reversible, hashing is a one-way pro-
cess that converts data into a fixed-size string of characters, which is typically a
digest that represents the data. Hashing is widely used for securing passwords
as it allows systems to verify data integrity without needing to know the actual
data.

Hashing methods are located in the same file as the encryption ones. Here
is an example:

hashMD5 :: String -> String
hashMD5 text =

let digest :: Digest MD5
digest = hash . TE.encodeUtf8 . T.pack \$ text

in show digest

Listing 20: Definition of hashMD5 function

This function receives a plain text, which is a string. Inside the func-
tion, a digest is computed by first packing the input into a Text type us-
ing T.pack. Then it is encoded into a UTF-8 ByteString. After all, using
Crypto.Hash.hash function, the hash is generated. Digest MD5 is a type-safe
representation of the MD5 hash. Finally, the show function converts Digest

40

4.7. Session Management

MD5 into a string. The result is the MD5 hash of the input as a hexadecimal
string.

4.7 Session Management

A web session represents is a series of HTTP requests and responses linked
to a single user. Contemporary and sophisticated web applications need to
maintain user-specific information or status across numerous requests. Sessions
enable the setting of certain variables, like access permissions and language
preferences, that persist throughout all of a user’s interactions with the web
application for the time the session is active.

Session management in DSW is meticulously designed to handle user states
across multiple requests. When a user logs in, DSW creates a unique session
identifier (session ID) that is securely transmitted between the client and server
for the duration of the session. This session ID is a critical component, as it is
the key to accessing the user’s session data stored on the server.

Based on the code, the whole session management is based on the session
key, a variable set to session/wizard, which is consistently used across dif-
ferent parts of the code to access the session information using the function
localStorage(sessionKey). This data includes a JSON Web Token, whitch
is used to authenticate API requests. JSON Web Token (JWT) is a com-
pact, URL-safe means of representing claims to be transferred between two
parties [12]. This token is included in the Authorization header of HTTP
requests made to the server.

When a user enters their credentials, if the server-side authentication pro-
cess verifies them, the session token is generated, which includes its session
expiration time. Once the expiration time is reached, the session is closed, all
the data from localStorage is wiped out, and the user is notified that the
session has expired.

4.8 Logging and Monitoring

The concept of logging is a very important aspect of the security of the system.
Logging is used for debugging applications and their diagnostic. Monitoring is
the live review of application and security logs using various forms of automa-
tion[17]. Application logging might be useful for identifying security incidents,
monitoring them, and identifying system problems, and actors who allowed
this. However, by being too specific, the same logs can be used as a source of
sensitive information.

In the server part of the DSW, logs can go to two places – standard output
(runStdoutLoggingT) and/or to the Sentry (sendToSentry) if the type of the
log is Error. Sentry is a software monitoring tool that helps developers identify
and fix code-related issues. From error tracking to performance monitoring,
Sentry provides code-level observability that makes it easy to diagnose issues
and learn continuously about your application code health [26].

There are four types of logging functions:

• logDebugI – for logging debug-level messages.

• logInfoI – for logging informational messages.

41

4. Current security measures

• logWarnI – for logging warnings.

• logErrorI – for logging errors.

Each function corresponds to its log level LogLevel, which is a part of the
Control.Monad.Logger module introduced in Haskell. The application also
keeps audit trails – records that chronologically catalogue system activities by
recording who performed an action, what action was performed, and when it
was performed.

4.9 Security Checks

The Data Stewardship Wizard demonstrates a commitment to maintaining a
secure and reliable application through its implementation of automated se-
curity checks. A key component of this security strategy is the utilization of
Grype, a service integrated into the application’s GitHub repository for lo-
cal deployment. Grype specializes in scanning and identifying vulnerabilities
within the application’s dependencies.

One of the most notable aspects of DSW’s security approach is the daily
execution of security audits. These audits are automated and rigorously scan
the application to identify potential vulnerabilities. The results of these au-
dits are transparently stored in the Security Audit section, accessible publicly.
This level of transparency not only fosters trust but also allows for continuous
monitoring and assessment of the application’s security posture.

The audit results reveal various vulnerabilities within the application. How-
ever, it is important to note that none of these vulnerabilities have been clas-
sified as “critical”. This classification indicates that while there are areas of
concern, they do not pose an immediate and severe threat to the application’s
overall security.

DSW’s official documentation highlights a responsive approach to handling
serious bugs and vulnerabilities. In the event that a critical vulnerability is
identified, the development team is immediately notified. This prompt response
is crucial for mitigating potential risks and is followed by the swift release of
a hotfix. Such a proactive stance on addressing security issues underscores the
development team’s dedication to ensuring the application’s integrity and the
safety of its users.

In addition to its existing robust security measures, the Data Stewardship
Wizard also utilizes Dependabot, a crucial tool for enhancing its security frame-
work. Dependabot, an automated service integrated within GitHub, routinely
checks the project’s dependencies for any known vulnerabilities or outdated
components. Upon detecting such issues, Dependabot automatically creates
pull requests to upgrade these dependencies to their latest, more secure ver-
sions. This ongoing process of monitoring and updating plays a significant role
in mitigating the risk of security breaches linked to vulnerable dependencies.
By integrating Dependabot into its operational routine, DSW ensures that it
consistently applies the latest security updates, thus bolstering the platform’s
defence against new and evolving threats.

42

Chapter 5
Technology recommendations

Based on the analysis of the code and documentation, several modifications
have been identified that could greatly enhance the overall security of the ap-
plication.

5.1 Login Process

The login procedure appears to be well-implemented. Nonetheless, the absence
of rate limiting on login attempts could leave the door open for brute-force
attacks. Implementing a rate-limiting mechanism could be an effective strategy
to prevent such security breaches. Rate limiting is a strategy for limiting
network traffic by putting a “cap” on how often someone can repeat an action
within a certain timeframe [7]. Additionally, introducing rate limiting can
protect the system against DoS, DDoS, and web scraping attacks.

Concerns were also raised regarding password strength. Currently, the
system allows weak passwords such as password1234, passwordpassword, or
aaaaaaaaaa. The strength of these passwords can be checked online using tools
like Password Monster (https://www.passwordmonster.com/). Furthermore,
using the Rumkin library’s validator (https://rumkin.com/tools/password),
it’s evident that passwords accepted by the application can range from weak to
strong. This indicates a need for more advanced security measures in the login
process, such as CAPTCHA implementation, timeouts after a series of incorrect
login attempts, and a stricter password policy to enhance overall security.

5.2 Cryptography

Based on the code, the implementation of encryption and decryption is good,
because AES256 is currently considered a secure algorithm. But because it
uses CTR (counter) mode, and the initial vector (IV) is null ’nullIV’, which
is a static IV of all zeroes, this can be a significant vulnerability, because the
same plain text will always result in the same cypher text, when encrypted with
the same key, making the encryption deterministic ans susceptible to various
attacks. The IV must be generated randomly for each encryption operation.

Additionally, the hashing algorithm MD5, which is used as the main hash-
ing algorithm, is outdated. The MD5 hash function’s security is considered to
be severely compromised. Collisions can be found within seconds, and they

43

https://www.passwordmonster.com/
https://rumkin.com/tools/password

5. Technology recommendations

can be used for malicious purposes [15]. It is advisable to switch from MD5
to a more secure hashing algorithm like ARGON2, which, despite its compu-
tational intensity, offers enhanced security. If the data isn’t highly sensitive,
a less complex yet still secure option like SHA-256 or SHA-3 could be con-
sidered. These algorithms are generally secure and are suitable for tasks that
require data integrity verification or authenticity checks, although they are less
resource-intensive than ARGON2.

5.3 Authorization and Logging

The application strikes a balance with logs that are informative without being
overly detailed. Nevertheless, it would be beneficial to implement an automated
audit analysis system to swiftly detect anomalies and potential security threats.
Given the critical nature of these logs, it’s also wise to consider regular backups.
In the event of a disaster, these backups could serve as a crucial component of
the recovery strategy.

44

Chapter 6
Vulnerabilities analysis

As I delve deeper into the security analysis of the Data Stewardship Wizard,
it’s crucial to build upon the insights and observations from the previous chap-
ters. The application, crafted with a focus on robust and secure programming
practices, stands as a formidable barrier against a range of common cybersecu-
rity threats. However, the inherent complexities of web applications, combined
with the dynamic and ever-evolving nature of cyber threats, call for a more
comprehensive and nuanced examination that extends beyond a standard ob-
servation based on the code review.

While DSW has been diligent in implementing a variety of security mea-
sures, a fundamental principle in cybersecurity is the acknowledgement that
no system is entirely invulnerable to attacks. Potential security weaknesses
in DSW might not always be directly linked to the application’s core coding.
Instead, they could be the result of external factors, such as dependencies on
third-party libraries, the integration of external APIs, or even the methodolo-
gies employed in certain feature implementations.

For instance, the application uses a third-party Jinja2 template format.
Based on the code in dsw-document-worker, after successful validation, which
is described in Section 4.3.1, the template is built based on the ByteString.
However, it is later executed, which could be exploited by injecting malicious
code into the template body.

Moreover, the application’s interaction with external services and between
components can also introduce vulnerabilities. Issues such as data leakage,
improper error handling, or insufficient validation of external data can pose
significant risks. Additionally, the evolving landscape of user behavior and
expectations can lead to new security challenges. Features that were once
considered secure may become liabilities as new attack vectors are discovered
and exploited by malicious actors.

In this chapter, I will summarize the issues identified in the code from
previous chapters, and then I will use this knowledge to perform penetration
testing on the application.

6.1 Penetration Testing Setup

For the security testing of the Data Stewardship Wizard application, I utilized
a virtual machine running Kali Linux, a popular choice for penetration testing

45

6. Vulnerabilities analysis

due to its comprehensive suite of tools. The following is a detailed list of the
main tools employed in the testing process, along with their respective versions:

• Kali Linux Version: 2023.4 - This version of Kali Linux provided a
stable and up-to-date environment for conducting the tests.

• Sqlmap Version: 1.7.12#stable - Sqlmap was used for automating the
detection and exploitation of SQL injection vulnerabilities.

• Burp Suite Community Edition Version: 2023.10.3.6-24994 - The
Community Edition of Burp Suite offered essential features for web ap-
plication security testing.

• Burp Suite Professional Edition Version: 2023.11.1.2-25469 - The
Professional Edition of Burp Suite, used for its advanced capabilities in
security testing, was a key component in the testing process.

Each of these tools played a critical role in the comprehensive security
assessment of DSW, ensuring a thorough evaluation of potential vulnerabilities
and security weaknesses within the application.

6.2 Penetration Testing

In this section, I will methodically explore and attempt some of the most
critical and potentially devastating attacks on the locally deployed version of
the application. My focus will be on systematically applying each attack, one
by one, to assess the application’s resilience and identify any vulnerabilities.

6.2.1 Disclamer for Penetration Testing Report
This penetration testing report has been compiled with the utmost diligence
and attention to detail, aiming to provide a comprehensive evaluation of the
security posture of the application under test. Despite the thoroughness of the
testing methodology and the extensive range of tests conducted, it is important
to acknowledge certain limitations inherent in any penetration testing process.

Firstly, while every effort has been made to cover a broad spectrum of poten-
tial vulnerabilities, it is impossible for any test to encompass all possible combi-
nations and scenarios. The field of cybersecurity is vast and ever-evolving, and
new vulnerabilities or attack vectors may emerge that were not known or con-
sidered at the time of testing. Consequently, there may be security weaknesses
within the application that this test has not detected.

Secondly, it is also possible that some of the findings reported may include
features or behaviors that were intentionally designed and implemented as part
of the application. These may have been identified as potential vulnerabilities
in the context of this test, but they could be intentional aspects of the appli-
cation, designed to meet specific requirements or functionalities.

Therefore, while this report provides valuable insights and identifies poten-
tial areas of concern, it should not be considered an exhaustive or definitive
assessment of the application’s security. It is recommended that security test-
ing be an ongoing process, complementing this report with regular updates,
reviews, and tests to adapt to new threats and changes in the application.

46

6.2. Penetration Testing

The findings and recommendations in this report are intended to enhance
the security of the application and should be used as a guide for further in-
vestigation and remediation efforts. It is the responsibility of the application’s
developers and security team to assess the relevance and impact of each finding
in the context of the application’s specific environment and requirements.

6.2.2 Brute-force Attack

Recalling previous chapters, a brute-force attack is a trial-and-error method
used to decode encrypted data such as passwords. This attack method involves
systematically checking all possible combinations until the correct one is found.
It is a straightforward approach where the attacker tries numerous possibilities,
hoping to eventually guess correctly. The attack’s success largely depends on
the complexity and length of the password.

In my penetration testing scenario, I focused on executing a brute-force
attack against the locally deployed Data Stewardship Wizard application. The
setup involved a Kali Linux environment and the DSW application running on
127.0.0.1:8080. My tool of choice for this attack was Burp Suite, a powerful
tool for web application security testing.

The environment setup required configuring a proxy server, so I decided to
go with 127.0.0.1:8081. The best way to do that as fast as possible was using
FoxyProxy. This application helps to easily switch between proxy setups, which
is very helpful with this and following attacks. However, the new version of
the application didn’t work well. User reviews were good proof that something
wasn’t right there. Having this figured out, I installed an older version of the
application. After the setup, the application was accessed through this proxy,
allowing Burp Suite to intercept the HTTP requests.

Upon loading the DSW login page, a test email address and an incorrect
password were entered, resulting in an “Incorrect email or password” message.
Using Burp Suite connected to the proxy, the login attempt was captured
(Listing 21).

OPTIONS /wizard-api/tokens HTTP/1.1
Host: localhost:3000
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:109.0)

Gecko/20100101 Firefox/115.0↪→

Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
Access-Control-Request-Method: POST
Access-Control-Request-Headers: content-type
Referer: http://localhost:8080/
Origin: http://localhost:8080
Connection: close
Sec-Fetch-Dest: empty
Sec-Fetch-Mode: cors
Sec-Fetch-Site: same-site

Listing 21: Captured first login request

47

6. Vulnerabilities analysis

The initial request intercepted did not contain credential information, so
it was released. The subsequent request captured (Listing 22) contained the
relevant fields for the brute-force.

POST /wizard-api/tokens HTTP/1.1
Host: localhost:3000
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:109.0)

Gecko/20100101 Firefox/115.0↪→

Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
Content-Type: application/json
Content-Length: 74
Origin: http://localhost:8080
Connection: close
Referer: http://localhost:8080/
Sec-Fetch-Dest: empty
Sec-Fetch-Mode: cors
Sec-Fetch-Site: same-site

{"email":"albert.einstein@example.com","password":"password1"," ⌋

code":null}↪→

Listing 22: Captured second login request

The captured request was sent to Burp Suite’s Intruder module. Intruder
is a tool within Burp Suite designed for automating customized attacks against
web applications. In this case, it was configured to perform a brute-force attack.

Positions: As I was trying to crack the password, I had to modify the
password field in the following way:

{
"email":"albert.einstein@example.com",
"password":"§Spassword§",
"code":null

}

Listing 23: Modified JSON part of the request

Attack Type: Sniper mode was selected, which is effective for testing in-
dividual parameters. Payload: A custom wordlist (Fugure 6.1) was used as
the payload. This list included several incorrect passwords and one correct
password. The absence of a timeout feature in the application’s login process
allowed for rapid testing without significant delays. Grep - Match: The error
message “Incorrect email or password” was set up in the Grep - Match section
to identify failed login attempts.

48

6.2. Penetration Testing

Figure 6.1: Wordlist for the attack

The attack was initiated, and Burp Suite’s Intruder sent two requests. The
first request, containing password1, failed to log in, as indicated by the presence
of the error message. However, the second request, containing the correct
password password, succeeded, evidenced by the absence of the error message
in the response (see Figure 6.2).

Figure 6.2: The result of the attack

Conclusion: The brute-force attack successfully identified the correct pass-
word, highlighting a potential vulnerability in the DSW application. The ab-
sence of account lockout mechanisms or timeout features after consecutive failed
login attempts made the application susceptible to this type of attack. This test
underscores the importance of implementing robust authentication controls to
safeguard against brute-force attempts.

6.2.3 SQL Injection
In the previous sections, I’ve established that the Data Stewardship Wizard ex-
hibits strong capabilities in managing SQL operations. This section will further
explore the application’s defence against SQL Injection vulnerabilities, with a
specific focus on three key components: engine-frontend, engine-backend,
and engine-tools.

49

6. Vulnerabilities analysis

• engine-frontend: based on the code analysis, this component of the
application does not directly interact with SQL. Instead, it serves as
an intermediary, passing values and data to the backend for SQL query
processing. This architecture inherently reduces the front-end’s exposure
to SQL Injection risks.

• engine-tools: while the tools repository does engage with SQL, it’s
important to note that the inputs for these SQL queries are statically
defined within the code. This means that they are not influenced by
external user input, thereby mitigating the risk of SQL Injection through
this component.

• engine-backend: given these observations, the primary focus of my SQL
Injection vulnerability test will be on the engine-backend component.
This part of the application is responsible for handling and executing
SQL queries, making it a critical area for assessing the application’s vul-
nerability to SQL Injection attacks.

The testing will employ two highly effective tools: Sqlmap and Burp Pro-
fessional. Sqlmap is an open-source penetration testing tool that automates
the process of detecting and exploiting SQL injection flaws and taking over
of database servers [27]. Burp, on the other hand, is a half-automated tool
which allows running an active search for every field of the HTTP request. By
combining these tools, I will be able to simulate hundreds of requests which
might be able to identify vulnerable places.

Burp Suite, conversely, is a semi-automated tool that facilitates active
searches across all fields of an HTTP request. By utilizing both tools in tandem,
I aim to simulate numerous requests that could potentially uncover vulnerabil-
ities.

Through code analysis, it was determined that the Data Stewardship Wiz-
ard employs the Database.PostgreSQL.Simple library for executing queries.
As discussed in previous chapters, this approach, composing a separate SQL
query string, preparing a list of parameters for the string, and then invoking the
Database.PostgreSQL.Simple::query function – is deemed a secure method
for executing SQL statements.

To ensure thorough testing, I will select specific areas based on the code for
conducting tests. The first area is the login page. Initially, I intercepted the
login request the same way I did for the Brute-Force attack (see Listing 22).
This request was then altered by inserting “§” symbols before and after the
input fields – email, password, and code. Subsequently, the modified request
was sent for an active scan. As anticipated, no issues were found. Following
this, the same request, without any modifications, was saved to a file for later
use with Sqlmap. To execute the attack, I used the following command:

sudo sqlmap --dbms=PostgreSQL --level=5 --risk=3
--proxy=https://127.0.0.1:8081 -r req4.txt -p parameter
--os-shell --os-pwn

↪→

↪→

–dbms=PostgreSQ This option specifies that the target database is Post-
greSQL.
–level=5 This option specifies how deep the test has to be performed - how

50

6.2. Penetration Testing

many test and how many entry points will be used, where 5 is the maximum.
–risk=3 This option specifies the risk level, where 3 is the maximum.
–proxy=https://127.0.0.1:8081 This options specifies the proxy settings.
-r request This option specifies the file with the request.
-p parameter This option specifies what parameter should be tested i.e.
“email”.
–os-shell If the vulnerability is found, this option will prompt for an interac-
tive operating system shell.
–os-pwn If the vulnerability is found, this option will ask to Prompt for an
Out-of-Band (OOB) shell, Meterpreter or VNC.

The first step involved specifying the request file and input parameters and
then running the command through Sqlmap. This initial test did not reveal
any vulnerabilities.

The next request I examined was one related to “creating a template editor”.

POST /document-template-drafts HTTP/1.1
Host: localhost:3000
Content-Length: 101
sec-ch-ua: "Chromium";v="119", "Not?A_Brand";v="24"
Content-Type: application/json
sec-ch-ua-mobile: ?0
Authorization: Bearer DELETED AUTH TOKEN
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/119.0.6045.199 Safari/537.36

↪→

↪→

sec-ch-ua-platform: "Linux"
Accept: */*
Origin: http://localhost:8080
Sec-Fetch-Site: same-site
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost:8080/
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9
Connection: close

{"name":"dfasfasd","templateId":"dfasfasdfaf","version":"1.0.0" ⌋

,"basedOn":"myorg1:dfasfasdfaf:1.0.0"}↪→

During this phase, both the active analysis and Sqlmap were employed
to scrutinize various aspects of the request, including the name, templateId,
and basedOn columns. However, these tests also did not indicate any
vulnerabilities.

The final request I chose to investigate was related to changing system set-
tings. Due to the extensive nature of this request, which includes a large JSON
segment encompassing various settings and their values, I have not included
the full request here.

PUT /configs/app HTTP/1.1

51

6. Vulnerabilities analysis

In this instance, I again utilized Sqlmap and Burp’s active analysis, testing
different settings within the request. Similar to the previous tests, this com-
prehensive examination did not uncover any vulnerabilities. This thorough
testing process, encompassing a range of critical requests and employing ad-
vanced tools, reinforces the robustness of the application’s security measures
against SQL injection and other potential vulnerabilities.

6.2.4 Cross-Site Scripting
Despite Cross-Site Scripting (XSS) no longer being featured in the OWASP
Top 10, it continues to be a common and relatively easy attack to execute.
Bounty hunters are often well-compensated for discovering XSS vulnerabilities,
given their significant impact. In the Data Stewardship Wizard application,
various requests involve user input, presenting potential opportunities for XSS
exploits. The goal of this test was to confirm that none of these requests were
susceptible to over 100 different XSS attack combinations, as identified in Burp
Suite’s wordlists. Below is a comprehensive list of all HTTP requests that were
thoroughly analyzed, with each possible input parameter being tested:

GET /packages?page=0&q=test&sort=name,asc&size=20 HTTP/1.1

GET /branches?page=0&q=test&sort=updatedAt,desc&size=20 HTTP/1.1

GET /document-templates?page=0&q=test&sort=name,asc&size=20
HTTP/1.1↪→

GET /document-template-drafts?page=0&q=test&sort=updatedAt,desc ⌋

&size=20
HTTP/1.1

↪→

↪→

GET /questionnaires?page=0&q=test&sort=updatedAt,desc&size=20
HTTP/1.1↪→

GET /questionnaire-importers?page=0&q=test&sort=name,asc&size=2 ⌋

0
HTTP/1.1

↪→

↪→

GET /documents?page=0&q=test&sort=createdAt,desc&size=20
HTTP/1.1↪→

PUT /configs/app HTTP/1.1

GET /questionnaires/{questionnaireID}/websocket?Authorization=B ⌋

earer%REST-OF-AUTH-TOKEN
HTTP/1.1

↪→

↪→

GET /questionnaire-importers/suggestions?page=0&sort=name,asc&s ⌋

ize=20&questionnaireUuid={questionnaireID}&enabled=true
HTTP/1.1

↪→

↪→

GET /questionnaires/{questionnaireID}/report HTTP/1.1

52

6.2. Penetration Testing

PUT /questionnaires/{questionnaireID} HTTP/1.1

GET /users/suggestions?page=0&q=test&size=20 HTTP/1.1

Throughout this testing process, over 2000 requests were made, and im-
pressively, no vulnerabilities were found. However, it’s important to note that
while semi-automated tools like these are powerful, they cannot provide a 100%
guarantee of security. XSS attacks, which often hinge on the subtleties of user
input and application responses, can sometimes slip through even the most
advanced detection methods. As such, while the findings from this test are
promising, they should be considered as part of a continuous security evalua-
tion process, rather than a final verdict on the application’s immunity to XSS
attacks.

6.2.5 Cross-Site Request Forgery

In this security analysis of the Data Stewardship Wizard, the testing methodol-
ogy was specifically designed to suit the project’s unique goals and limitations.
Although Cross-Site Request Forgery (CSRF), Denial of Service (DoS), and
Distributed Denial of Service (DDoS) attacks are crucial in web application
security, they were not the primary focus of this project for several reasons.

Cross-Site Request Forgery (CSRF): CSRF attacks leverage the trust
a web application places in an authenticated user, deceiving the user into mak-
ing an unintended request. These attacks are particularly pertinent in multi-
user environments, often involving a victim unknowingly performing actions
on the attacker’s behalf.

The chosen test environment, a locally deployed instance with a single user,
lacks the multi-user dynamics needed to effectively simulate CSRF attacks.
The controlled nature of this environment, without real-world user interactions,
limits the relevance of CSRF testing in this scenario.

While not a focus of my project, CSRF is a significant security concern
for applications with numerous active users. Recognized in the OWASP Top
7 API Security Risks 2023 [21], CSRF underscores the importance of strong
protective measures in live, production settings.

A more appropriate setting for CSRF vulnerability testing would involve a
deployed application with multiple active users and simulated interactions that
reflect real-world usage, enabling a more accurate evaluation of CSRF attack
susceptibility.

Denial of Service (DoS) and Distributed Denial of Service (DDoS):
DoS and DDoS attacks aim to render a web service unavailable by inundating
it with traffic. These attacks target the availability aspect of security, focusing
on the application’s infrastructure and network resilience.

This project concentrates on DSW’s application-level security, not its net-
work or infrastructure resilience. DoS and DDoS attacks pertain more to these
layers, which are outside my analysis scope.

Conducting DoS or DDoS attacks also requires a setup that often involves
simulating network traffic and stress-testing infrastructure. Such tests also
carry ethical and legal considerations, particularly if not performed in a con-
trolled, authorized environment.

53

6. Vulnerabilities analysis

Given the nature of my testing environment and my project’s focus on
application-level vulnerabilities, my approach is more targeted. The efforts
are thus dedicated to identifying and addressing vulnerabilities that can be
effectively tested and analyzed within my local, single-user deployment of DSW.

6.2.6 Broken Authentication

In the Section 6.2.2, I discussed how the Data Stewardship Wizard shows con-
siderable susceptibility to brute-force attacks. This vulnerability is primarily
due to the lack of protective measures like timeouts, CAPTCHAs, or account
lockout policies. Such shortcomings make the application an easy target for
these types of attacks, raising serious concerns about its security framework.

A specific issue arises during the DSW signup process. The application
indicates if an email address is already in use by displaying a message stating
“Email is already in use”. This response enables user enumeration, a technique
where attackers can determine which email addresses are registered on the ap-
plication. By using a tool like Burp Suite to sort responses by length, attackers
can efficiently compile a list of valid user emails. This information becomes a
valuable asset for launching targeted brute-force attacks to guess passwords.

The implications of having a list of known user emails are significant. At-
tackers can systematically attempt brute-force attacks on each account, dra-
matically increasing the chances of unauthorized access. Moreover, these valid
email addresses can be exploited in phishing campaigns, making them more
effective. The absence of email validation timeouts is another concern, as it
allows attackers to create multiple accounts, potentially using real users’ email
addresses.

{
"email":"test@gmail.com",
"firstName":"Anything",
"lastName":"Anything",
"affiliation":null,
"password":"Anything1",
"role":null

}

Listing 24: JSON part from the signup request.

On the Listing 24 you can see how the entered data is transferred in the
HTTP request. By inserting “test” within “§” signs (§test§@gmail.com), I can
execute the attack using Burp (see Figure 6.3), which will sequentially create
an increasing number of accounts (refer to Figure 6.4). However, since these
accounts will not be deleted if they are not activated after a certain period, this
approach could lead to a situation where legitimate users are unable to register
with their own email addresses, or the application could run out of resources.

54

6.2. Penetration Testing

Figure 6.3: Setting up the Bulk Account Registration Attack using Burp Suite

55

6. Vulnerabilities analysis

Figure 6.4: Results of the Bulk Account Registration Attack

What’s also worth mentioning is the fact that by updating a user pass-
word by using the PUT /users/userID/password HTTP/1.1 request, which is
responsible for updating a user’s password by an admin, the changed password
can be even simpler or even be empty:

{

56

6.2. Penetration Testing

"password":"",
}

On a more positive note, DSW’s session management seems to be well-
implemented. Each login session is linked to a unique token, enhancing se-
curity by maintaining session integrity. These tokens are designed to expire
after a certain period, requiring users to re-authenticate, which is a commend-
able security measure. However, despite the robustness of the session manage-
ment system, it does not fully compensate for the vulnerabilities present in the
authentication process. These issues, if not addressed, could undermine the
overall security of the application.

6.2.7 Broken Access Control
In the previous sections, I established that the Data Stewardship Wizard
has implemented a sophisticated system to control application functionalities
among different user roles. As mentioned earlier, the primary roles in the appli-
cation are admin, data steward, researcher, and anonymous. However, within
a project, the access control system is more nuanced, with roles determining
varying levels of privileges:

• Owner: Project owners have comprehensive control over their projects.
They can fill out questionnaires, access metrics, preview the project, cre-
ate documents, leave comments, and change settings. It’s important to
note that users with the basic application role of admin have all the
privileges of a project owner, regardless of their assigned project role.

• Editor: Project editors can perform all actions available to project own-
ers, except for altering project settings.

• Commenter: Project commenters are allowed to do everything editors
can, except for filling out questionnaires and creating documents.

• Viewer: Project viewers are limited to viewing filled-in questionnaire
information, metrics, previews, and created project documents.

These roles are manually assigned using the Share option, where each user
is designated a specific role. A project can also be made public to those who
have the link. Users accessing the project via the link also have roles, but this
role is common to all link-holders and is set in the same menu.

For the description of access based on roles, I need to consider two sets of
roles, each arranged in descending order of permissions:

• Application Roles: Admin, Data Steward, Researcher.

• Project Roles: Admin, Owner, Editor, Commenter, Viewer, Not Logged
In User.

The aim of this test, conducted from a non-developer perspective and with-
out access to published documentation on user permissions, is to simulate a
variety of API requests across different application and project roles. This ap-
proach is based on observing the capabilities and restrictions within the GUI -

57

6. Vulnerabilities analysis

essentially, what different users can or cannot do. The objective is to validate
that users who are not authorized to perform certain actions, as indicated by
their GUI access, are indeed unable to execute these actions through the API.

A detailed enumeration of all the requests simulated during the testing
phase is comprehensively documented in the file http requests.pdf. In this
section, however, I have selectively highlighted only those requests that elicited
particular interest or raised questions. This focus is primarily due to discrep-
ancies observed between their access rules and the functionalities as presented
from the graphical user interface perspective. For a more extensive review,
readers are encouraged to refer to the mentioned file, where each request is
meticulously catalogued.

POST /document-template-drafts HTTP/1.1

Description: Create document template editor
Access Requirements: Accessible for Data Steward and above.
Result: Failed. This request not only can be executed by a researcher, but it
also will create a document template editor, which is not allowed in the GUI.

GET /document-templates/{templateID} HTTP/1.1

Description: Get information about the document template.
Access Requirements: Accessible for Data Steward and above.
Result: Failed. This request can be executed by a researcher, and the template
information will be sent in the response. This is not allowed in the GUI.

POST /document-templates/bundle HTTP/1.1

Description: Import a new template from a file.
Access Requirements: Accessible for Data Steward and above.
Result: Failed. This request can be executed by a researcher, and the template
will be created using the information in the request. This is not allowed in the
GUI.

POST /knowledge-models/preview HTTP/1.1

Description: Preview a knowledge model.
Access Requirements: Accessible for Data Steward and above.
Result: Failed. This request can be executed by a researcher, and the knowl-
edge model preview will be displayed in the response. This is not allowed in
the GUI.

GET /packages HTTP/1.1

Description: Get the list of all knowledge models.
Access Requirements: Accessible for Data Steward and above.
Result: Failed. This request can be executed by a researcher. This is not
allowed in the GUI.

GET /packages/{knowledgeModelID} HTTP/1.1

58

6.2. Penetration Testing

Description: Get information about the knowledge model.
Access Requirements: Accessible for Data Steward and above.
Result: Failed. This request can be executed by a researcher. This is not
allowed in the GUI.

GET /packages/{knowledgeModelID}/bundle HTTP/1.1

Description: Export the knowledge model.
Access Requirements: Accessible for Data Steward and above.
Result: Failed. This request can be executed by a researcher. This is not
allowed in the GUI.

GET /questionnaire-importers HTTP/1.1

Description: Get questionnaire importers.
Access Requirements: Accessible for Data Steward and above.
Result: Failed. This request can be executed by a researcher. This is not
allowed in the GUI.

POST /questionnaires/{questionnaireID}/revert/preview HTTP/1.1

Description: Preview the questionnaire of the project document
Access Requirements: Accessible for Viewer and above.
Result: Failed. This request can be executed by anyone with the questionnaire
ID, even if the project is not accessible via link. Using this request, I managed
to intercept all the information which was filled in the questionnaire.

GET /questionnaires/{questionnaireID}/events HTTP/1.1

Description: View the history of the project.
Access Requirements: Accessible for Owner and Admin.
Result: Failed. This request can be executed by anyone with the questionnaire
ID, even if the project is not accessible via link.

GET /configs/bootstrap?clientUrl=http%3A%2F%2Flocalhost%3A8080
HTTP/1.1↪→

Description: Get the application’s configuration.
Access Requirements: Accessible for Admin only.
Result: Failed. All users can run this request and receive the application’s
configuration.

GET /usage HTTP/1.1

Description: Get the application usage - number of users, active users, projects
etc.
Access Requirements: Accessible for Admin only.
Result: Failed. All authenticated users can run this request and receive the
application’s usage information.

POST /users HTTP/1.1

59

6. Vulnerabilities analysis

Description: Create a user.
Access Requirements: Accessible for Admin only.
Result: Failed. All authenticated users can run this request and create inacti-
vated user accounts. But if in the application’s settings the default role is not
researcher, users with less privileged accounts might be able to create accounts
with higher roles.

It’s crucial to note that the requests covered here are all that I could identify,
but there may be additional ones. This is particularly relevant for features like
email validation, document submission, and creating locales, as these either
cannot be tested on a locally deployed application or require essential files that
are missing. Based on the requests described earlier, the application appears
to have some issues with access controls. These issues were promptly reported
to the application developers for them to issue a fix.

Moreover, certain features of the application, while not accessible to unau-
thorized users, are still visible to them. This includes options like “Start migra-
tion” and “Delete project” in a project. Should an unauthorized user attempt
to use these options in the GUI, they would encounter an error message stating,
“You do not have permission to view this page”. This message is somewhat
misleading, as the issue is not about viewing a page but rather about the
authorization to perform certain actions.

6.2.8 Token Leakage
As it was described above, token leakage is a situation when an unauthorized
party obtains an authentication token. This situation can also be achieved
when the OAuth token is shared in the URL.

In the Data Stewardship Wizard, a specific instance of token leakage is ob-
served during the process of retrieving information about a knowledge model
or a knowledge model’s fork. This issue becomes apparent in the second con-
secutive request to the system. The request format, as observed, is as follows:

GET /questionnaires/{questionnaireID}/websocket?Authorization=B ⌋

earer%REST-OF-AUTH-TOKEN
HTTP/1.1

↪→

↪→

Host: localhost:3000
Connection: Upgrade
Pragma: no-cache
Cache-Control: no-cache
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/119.0.6045.199 Safari/537.36

↪→

↪→

Upgrade: websocket
Origin: http://localhost:8080
Sec-WebSocket-Version: 13
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9
Sec-WebSocket-Key: GUSF1jW7XSZd6b4XS22PkA==

In this scenario, the most significant issue is that the authentication token (a
Bearer token) is included in the URL of the GET request. URLs are generally

60

6.2. Penetration Testing

logged in various places such as web server logs, proxy server logs, browser
history, and potentially other monitoring tools. This exposure means that the
token, which should be confidential, could be accessed by unauthorized parties.
This practice is problematic for several reasons:

• URL Logging: URLs are often logged by web servers, browsers, and
intermediary devices or software. This means that the token, embedded
in the URL, could be inadvertently logged and stored in an unsecured
manner.

• Browser History: URLs with tokens can also be saved in the browser
history, making them accessible to anyone with access to the user’s device.

• Referer Headers: When a web request is made, browsers typically send
the URL of the current page as a Referer header to the destination server.
If the URL contains the token, it could be inadvertently shared with third
parties.

• Cache Storage: URLs may also be cached by the browser or by inter-
mediary proxies, further increasing the risk of exposure.

• Stateless Authentication The token appears to be a JSON Web Token,
which is often used for stateless authentication. If this token is leaked, it
could allow an attacker to impersonate the user it represents, potentially
gaining unauthorized access to sensitive resources or data.

6.2.9 Server-Side Template Injection
Server-side template injection is a critical security vulnerability that targets
template engines, such as Jinja2, which is employed by the Data Stewardship
Wizard. To assess the susceptibility of DSW to SSTI, I conducted a series of
tests using a template provided by one of the developers and my supervisor,
Marek Suchanek. The template’s content, designed to test the application’s
template processing capabilities, is as follows:

<!DOCTYPE html>
<html lang=\"en\">

<head>
<meta charset=\"utf-8\">
<title>Testing SSTI</title>

</head>

<body>
<h1>Testing SSTI</h1>

{#- possibly something unsecured/SSTI -#}
Questionnaire name: \"{{ ctx.questionnaireName }}\"

{#
<pre>{{ ctx|tojson(2)}}</pre>
#}

61

6. Vulnerabilities analysis

</body>
</html>

The initial step in identifying the potential for an SSTI attack was the
proof-of-concept, which involved modifying the ctx.questionnaireName in
the template to 7*7. Upon rendering this modified template within the appli-
cation’s editor and previewing it, the output displayed 49. This result indicated
that the template engine was executing the embedded Python code, confirming
the possibility of exploiting this behavior.

To further demonstrate the exploitability of this vulnerability, I introduced
an additional line into the template, which was created introduced by Pwn-
Function in the “Server-Side Template Injections Explained” video [24]:

<p>Script : "{{ ''.__class__.__base__.__subclasses__()[141].__i ⌋

nit__.__globals__['sys'].modules['os'].popen("id").read()
}}"<\p>

↪→

↪→

This complex line of code exploits Python’s introspection capabilities. It
starts with an empty string (a Python object), accesses its class, then its base
class, and navigates through the subclasses to find a specific class that allows
importing the sys module. From there, it directly accesses the os module
to execute the popen function with the command id. The execution of this
command reveals sensitive information about the server’s environment:

Script : "uid=1000(user) gid=100(users) groups=100(users) "

The successful execution of arbitrary Python code via the template engine
reveals a substantial Server-Side Template Injection (SSTI) vulnerability in
DSW. This vulnerability enables an attacker to carry out system-level com-
mands, which could result in unauthorized access to sensitive data, alteration
of server operations, or further exploitation of the system.

6.2.10 File Inclusion
As previously discussed, there are two main types of file inclusion attacks: Local
File Inclusion (LFI) and Remote File Inclusion (RFI). In the Data Steward-
ship Wizard’s architecture, file uploads are limited to a user’s local computer,
with no provision for specifying external URLs for file imports. This design
significantly mitigates the risk of Remote File Inclusion attacks. Therefore,
my testing focused on the security of local file uploads, especially examining
the validation process for knowledge model uploads, a critical functionality of
DSW.

To thoroughly evaluate the security of knowledge model file uploads, I
utilized the upload scanner feature in Burp Suite Professional. This tool is
adept at scrutinizing file upload handling and pinpointing potential vulnera-
bilities. The initial step was to intercept the HTTP POST request responsible
for knowledge model uploads POST /package/bundle HTTP/1.1, which con-
tains the data of the knowledge model being uploaded. After capturing this
request, I rerouted it to Burp Suite’s upload scanner and dropped the original

62

6.2. Penetration Testing

request, enabling an in-depth analysis of DSW’s processing and validation of
the uploaded knowledge model files.

For a comprehensive assessment, I chose to activate all options in the up-
load scanner’s configuration. While this method was resource-intensive, it was
essential for a detailed examination.

The testing proved to be quite demanding in terms of resource usage, con-
suming considerable CPU power for over an hour. Nonetheless, this extensive
analysis was vital for a complete evaluation of the file upload feature. At the
end of the test, the upload scanner did not detect any major issues or vul-
nerabilities in DSW’s handling of knowledge model file uploads. This result
indicates that the application’s mechanisms for processing and validating up-
loaded files are robust, effectively countering the threats tested.

The lack of vulnerabilities found in the knowledge model upload process is
an encouraging sign of DSW’s defence against file inclusion attacks, particularly
regarding local file uploads. This insight adds to the overall understanding of
the application’s security stance, especially in terms of managing user-supplied
content.

63

Chapter 7
Evaluate

In this chapter, I summed up the results of the test that were performed on
the Data Stewardship Wizard. Those evaluations will include a description of
found vulnerabilities, their severity according to the base Common Vulnera-
bility Scoring System (CVSS), and the prioritized list of recommendations for
DSW.

7.1 The Common Vulnerability Scoring System (CVSS)

The Common Vulnerability Scoring System (CVSS) is a universally recognized
and open standard for evaluating the severity of security vulnerabilities in
computer systems. It plays a crucial role in determining the urgency and
priority of responses to these vulnerabilities.

CVSS offers a systematic approach to capture the key characteristics of a
vulnerability and compute a numerical score reflecting its severity. This score
is then converted into a qualitative representation (like low, medium, high,
and critical), aiding organizations in effectively assessing and prioritizing their
vulnerability management efforts.

CVSS has evolved through several versions, with CVSS v3.1 being the stan-
dard nowadays. Each iteration enhances the previous one, providing more
precise and comprehensive methods for vulnerability assessment.

CVSS scores are derived from various metrics, and categorized into three
groups:

Base Metrics: These metrics reflect the inherent qualities of a vulnera-
bility that remain constant over time and across different user environments.
They include:

• Attack Vector (AV): The means by which the vulnerability can be
exploited (e.g., locally, adjacent network, network).

• Attack Complexity (AC): The complexity involved in exploiting the
vulnerability.

• Privileges Required (PR): The level of privileges needed for an at-
tacker to exploit the vulnerability.

• User Interaction (UI): The necessity of user interaction for exploiting
the vulnerability.

65

7. Evaluate

• Scope (S): The potential of a vulnerability in one component to affect
other components beyond its security scope.

• Confidentiality (C), Integrity (I), and Availability (A) Impact:
These assess the extent to which the vulnerability affects these three
fundamental aspects of information security.

Temporal Metrics: These metrics vary over time but not among dif-
ferent user environments. They include metrics like Exploit Code Maturity,
Remediation Level, and Report Confidence.

Environmental Metrics: These are tailored to the significance of the
affected IT asset within an organization, factoring in existing mitigations. They
encompass metrics such as Collateral Damage Potential, Target Distribution,
and the requirements for Confidentiality, Integrity, and Availability.

However, as I used a locally deployed version of the application, I will use
only the base metrics to define the severity. The CVSS score is computed using
a formula that incorporates the above metrics. The final score ranges from 0
to 10, with higher scores indicating more severe vulnerabilities.

The score is represented both numerically and qualitatively:

• 0.0: None

• 0.1-3.9: Low

• 4.0-6.9: Medium

• 7.0-8.9: High

• 9.0-10.0: Critical

7.2 Summary

7.2.1 Weak Credential Policy - Password Strength
Description: Allow users to assign weak passwords to their accounts, which
can later be easily found by an attacker through brute-force or dictionary at-
tacks [9].

Vector String :
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N

Base Score: 5.3

Base Severity: Medium

The assigned base score of 5.3 and a severity rating of Medium reflect the
potential impact of this vulnerability. While it does not directly compromise
system confidentiality or availability, it can undermine the integrity of the
system by allowing unauthorized access. This vulnerability notably enhances
the risk of successful brute-force attacks, as discussed in Section 6.2.2. It is
crucial for systems to enforce strong password policies to mitigate such risks
effectively.

66

7.2. Summary

7.2.2 Password Brute-Force Attack

Description: This vulnerability was identified and exploited through a success-
ful brute-force attack on a password using HTTP requests. The attacker was
able to crack the password, demonstrating a significant security weakness in the
system’s authentication mechanism. The lack of adequate protection against
brute-force attacks, such as account lockout policies or rate limiting, allowed for
repeated and unchecked password-guessing attempts, leading to unauthorized
access.

Vector String :
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Base Score: 7.5

Base Severity: High

The calculated base score of 7.5 with a severity rating of High underscores
the critical nature of this vulnerability. The high impact on confidentiality
(C:H) indicates that successful exploitation of this vulnerability could lead to
significant unauthorized disclosure of information. However, the integrity (I:N)
and availability (A:N) of the system remain unaffected. This vulnerability
highlights the importance of implementing robust security measures against
brute-force attacks, such as strong password policies, rate limiting, and account
lockout mechanisms, to prevent unauthorized access to sensitive information.

7.2.3 User Enumeration

Description: This vulnerability is identified in the signup process of an ap-
plication, where it explicitly indicates if an email address is already in use.
This behavior can be exploited to compile a list of valid email addresses regis-
tered with the application. When combined with the previously noted ease of
performing a brute-force password attack, this issue poses a significant risk. At-
tackers can use this information to target specific accounts for further attacks,
including brute-force attempts to crack passwords.

Vector String :
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N/

Base Score: 5.3

Base Severity: Medium

The base score of 5.3 and a severity rating of Medium reflect the poten-
tial risk posed by this vulnerability. The primary impact is on confidentiality
(C:L), as it allows attackers to confirm the existence of specific user accounts.
However, the integrity (I:N) and availability (A:N) of the system are not di-
rectly compromised by this vulnerability. This vulnerability underscores the
need for careful consideration of information disclosure in application design,
particularly during processes like user registration, to prevent aiding potential
attackers in their efforts.

67

7. Evaluate

7.2.4 Email Verification Denial of Service
This vulnerability occurs in the application’s signup process. An attacker can
exploit this by creating a large number of unverified accounts using legitimate
email addresses. Since there is no deadline for email verification, these accounts
remain unverified indefinitely, leading to the exhaustion of system resources.
Additionally, this can prevent real users from registering with their own email
addresses, as their emails are already tied to these unverified accounts. This
attack can effectively deny service to legitimate users trying to sign up.

Vector String :
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

Base Score: 7.5

Base Severity: High

With a base score of 7.5 and a severity rating of High, this vulnerability
is significant due to its impact on the availability of the service. The high
availability impact (A:H) reflects the potential for the system to be rendered
unusable for legitimate users attempting to register. This underscores the
importance of implementing effective controls in the signup process, such as
setting a verification deadline or limiting the number of accounts that can be
created from a single IP address, to prevent such denial-of-service scenarios.

7.2.5 Broken Access Control
In Chapter 6.2.7, I identified 13 discrepancies between API access and the
graphical user interface (GUI) in the Data Stewardship Wizard. However, due
to my limited knowledge of the intended access requirements, it’s challenging
to definitively classify these discrepancies as vulnerabilities or as intentional
design choices. Consequently, assessing the severity of these potential issues is
not feasible within the scope of my analysis.

Recommendation for the DSW Team:
It is imperative for the DSW team to carefully review the list of identified

discrepancies. This review is crucial to ascertain whether these discrepancies
align with the intended functionality of the application or if they represent
significant security concerns. Given the other vulnerabilities discovered during
the testing process, any unintended discrepancies could pose serious risks to
the application’s security. If these issues are indeed vulnerabilities, they could
be exploited in conjunction with other identified weaknesses, potentially lead-
ing to more severe security breaches. Therefore, a thorough examination and
validation of these discrepancies are essential to ensure the overall security and
integrity of the DSW application.

7.2.6 Access Tokens in URL
This vulnerability involves the exposure of a user’s JWT (JSON Web Token)
in the URL of a web request. The token was found to be transmitted in plain
text, without any form of protection or encryption. This insecure practice can
lead to several security risks, such as unauthorized access and data exposure.

68

7.3. Prioritized List of Recommendations for DSW

Tokens in URLs can be easily intercepted, logged in server logs, or stored
in browser histories, making them vulnerable to being captured by malicious
actors. This vulnerability is particularly concerning as JWTs are often used for
authentication and can grant access to sensitive user data and functionalities.

Vector String :
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:L

Base Score: 5.3

Base Severity: Medium

The calculated base score of 5.3 and a severity rating of Medium reflect the
potential risks associated with this vulnerability. The impacts on confidential-
ity (C:L) and availability (A:L) are rated as low, indicating that while there
is a risk of unauthorized data access and potential data manipulation, it may
not lead to severe consequences. However, the integrity (I:N) is not directly
impacted by this vulnerability. This issue highlights the importance of secure
transmission practices for sensitive tokens, such as using HTTP headers for
JWTs instead of URL parameters and ensuring encryption through HTTPS to
protect data in transit.

7.2.7 Server-Side Template Injection
This vulnerability is a case of Server-Side Template Injection (SSTI) where
an attacker successfully executed arbitrary Python code on the server using
the Jinja2 template engine. By exploiting this vulnerability, the attacker was
able to print out system information, demonstrating the ability to execute
unauthorized commands on the server. SSTI vulnerabilities like this can lead
to various malicious activities, including data theft, website defacement, and
in more severe cases, complete server takeover. The ability to execute code on
the server poses a significant security risk, as it could potentially allow access
to sensitive data and system resources.

Vector String :
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:L

Base Score: 6.3

Base Severity: Medium

The base score of 7.1 with a severity rating of High reflects the serious
impact of this vulnerability. The high impact on confidentiality (C:H) indicates
that successful exploitation could lead to significant unauthorized disclosure of
sensitive data. However, to perform the attack, the user has to have permissions
to be able to import the template.

7.3 Prioritized List of Recommendations for DSW

Based on the vulnerabilities identified in the Data Stewardship Wizard, I have
compiled a prioritized list of recommendations. These suggestions are organized
according to the severity ratings determined using the Common Vulnerability
Scoring System.

69

7. Evaluate

7.3.1 High Severity Vulnerabilities

• Password Brute-Force Attack (CVSS Score: 7.5)

– Implement account lockout policies or rate limiting.
– Introduce CAPTCHA mechanisms.

• Email Verification Denial of Service (CVSS Score: 7.5)

– Set a deadline for email verification.
– Limit account creation from a single IP address.

7.3.2 Medium Severity Vulnerabilities

• Server-Side Template Injection (CVSS Score: 6.3)

– Sanitize and validate inputs to the Jinja2 template engine.
– Restrict template engine permissions.

• Weak Credential Policy - Password Strength (CVSS Score: 5.3)

– Enforce strong password policies.

• User Enumeration (CVSS Score: 5.3)

– Use generic error messages for account processes.

• Access Tokens in URL (CVSS Score: 5.3)

– Transmit JWTs in HTTP headers.
– Ensure encryption of sensitive data in transit.

7.3.3 Other Considerations

• Broken Access Control

– Review and strengthen access control policies.

• Potential False Positives

– Verify findings with the development team.

• Comprehensive Security Review

– Address all identified issues.

• Continuous Monitoring and Testing

– Regularly update security measures.
– Conduct periodic vulnerability assessments.

70

7.3. Prioritized List of Recommendations for DSW

Additional Considerations: Some flagged requests might be intention-
ally designed features of the application. It is essential to confirm these findings
with the development team to discern if they represent actual vulnerabilities
or deliberate functionalities.

While CVSS scores are useful for prioritizing vulnerabilities, it is vital to
address all identified issues to improve DSW’s overall security. Also, it is
very important to keep in mind, that regular updates to security protocols
and periodic vulnerability assessments are crucial to keep pace with emerging
threats and maintain a strong security stance.

71

Chapter 8
Conclusion

As this thesis comes to a close, reflecting on the in-depth security analysis of the
Data Stewardship Wizard brings a sense of accomplishment and a deeper un-
derstanding of the nuances of cybersecurity. This journey has shed light on the
intricate and vital role of cybersecurity in data stewardship and management.

My analysis revealed a spectrum of vulnerabilities in DSW, from weaknesses
in password policies to more complex risks like server-side template injection.
Evaluating these vulnerabilities through the Common Vulnerability Scoring
System has not only identified key security gaps but also helped prioritize
them for effective remediation. This process has set the stage for enhancing
DSW’s defence mechanisms.

The recommendations proposed in this thesis, while addressing specific vul-
nerabilities in DSW, also serve as guidelines for broader security enhancements.
These include strengthening password protocols, improving user input security,
and enforcing rigorous access controls. As the field of cybersecurity is dynamic,
ongoing vigilance and adaptation to new threats are essential.

This project has reignited my passion for cybersecurity. Far from being a
dry, technical exercise, it has been an engaging and thought-provoking experi-
ence. Navigating through the complexities of digital security has renewed my
interest in the field, highlighting its ever-changing and challenging nature. It’s
been a reminder that cybersecurity isn’t just about technical skills but also
involves creativity and continuous learning.

In sum, this thesis underscores the critical importance of cybersecurity in
today’s digital landscape. It emphasizes that security is not a one-off task but
an ongoing process of learning, adapting, and enhancing. Through this work,
I aim not only to bolster the security of DSW but also to encourage a broader
appreciation of cybersecurity as an exciting and essential field, full of challenges
and opportunities for innovation. This exploration into DSW’s security has
been more than an academic endeavour; it’s been a journey of rediscovery and
a reaffirmation of the excitement inherent in the world of cybersecurity.

73

Bibliography

[1] Amazon. What is SQL? https://aws.amazon.com/what- is/sql/. Ac-
cessed: 2023-12-02.

[2] Anshita Bhasin. Most commonly used API tokens: Detailed Guide. https:
//medium.com/@anshita.bhasin/most-commonly-used-tokens-detailed-
guide-51133cec1e49. Accessed: 2024-01-01.

[3] Baeldung. The DTO Pattern. https ://www.baeldung.com/java- dto-
pattern. Accessed: 2024-01-01.

[4] Barker, M., Chue Hong, N.P., Katz, D.S. Introducing the FAIR Principles
for research software. https ://doi .org/10.1038/s41597- 022- 01710- x.
Accessed: 2024-01-01.

[5] National Cyber Security Centre. Understanding vulnerabilities. https://
www.ncsc.gov.uk/information/understanding-vulnerabilities. Accessed:
2024-01-01.

[6] CLOUDFLARE. What is HTTPS. https://www.cloudflare.com/learning/
ssl/what-is-https. Accessed: 2024-01-01.

[7] CLOUDFLARE. What is rate limiting. https://www.cloudflare.com/
learning/bots/what-is-rate-limiting. Accessed: 2023-11-05.

[8] DSW. FAIR. https://ds-wizard.org/fair. Accessed: 2024-01-01.
[9] fluidattacks. Weak credential policy - Password strength. https://docs.

fluidattacks.com/criteria/vulnerabilities/363/. Accessed: 2023-12-29.
[10] Gartner. GUI (Graphical User Interface). https://www.gartner.com/en/

information-technology/glossary/gui-graphical-user-interface. Accessed:
2023-12-26.

[11] imperva. Cross site request forgery (CSRF) attack. https://www.imperva.
com/learn/application- security/csrf - cross - site - request - forgery/. Ac-
cessed: 2024-01-01.

[12] Michael Jones, John Bradley, and Nat Sakimura. JSON Web Token (JWT).
https://datatracker.ietf.org/doc/html/rfc7519. Accessed: 2023-11-05.
2015.

[13] LinkedIn. How do you deal with OAuth token leakage or theft on your
resource server? https://www.linkedin.com/advice/0/how-do-you-deal-
oauth-token-leakage-theft-your-resource-server. Accessed: 2023-12-02.

75

https://aws.amazon.com/what-is/sql/
https://medium.com/@anshita.bhasin/most-commonly-used-tokens-detailed-guide-51133cec1e49
https://medium.com/@anshita.bhasin/most-commonly-used-tokens-detailed-guide-51133cec1e49
https://medium.com/@anshita.bhasin/most-commonly-used-tokens-detailed-guide-51133cec1e49
https://www.baeldung.com/java-dto-pattern
https://www.baeldung.com/java-dto-pattern
https://doi.org/10.1038/s41597-022-01710-x
https://www.ncsc.gov.uk/information/understanding-vulnerabilities
https://www.ncsc.gov.uk/information/understanding-vulnerabilities
https://www.cloudflare.com/learning/ssl/what-is-https
https://www.cloudflare.com/learning/ssl/what-is-https
https://www.cloudflare.com/learning/bots/what-is-rate-limiting
https://www.cloudflare.com/learning/bots/what-is-rate-limiting
https://ds-wizard.org/fair
https://docs.fluidattacks.com/criteria/vulnerabilities/363/
https://docs.fluidattacks.com/criteria/vulnerabilities/363/
https://www.gartner.com/en/information-technology/glossary/gui-graphical-user-interface
https://www.gartner.com/en/information-technology/glossary/gui-graphical-user-interface
https://www.imperva.com/learn/application-security/csrf-cross-site-request-forgery/
https://www.imperva.com/learn/application-security/csrf-cross-site-request-forgery/
https://datatracker.ietf.org/doc/html/rfc7519
https://www.linkedin.com/advice/0/how-do-you-deal-oauth-token-leakage-theft-your-resource-server
https://www.linkedin.com/advice/0/how-do-you-deal-oauth-token-leakage-theft-your-resource-server

Bibliography

[14] malwarebytes. What is Exploit Protection. https://support.malwarebytes.
com/hc/en-us/articles/360038523394-What-is-Exploit-Protection. Ac-
cessed: 2024-01-01.

[15] okta. What is MD5? Understanding Message-Digest Algorithms. https:
//www.okta.com/identity-101/md5/. Accessed: 2023-11-05. 2022.

[16] OWASP. https://en.wikipedia.org/wiki/OWASP. Accessed: 2024-01-01.
[17] OWASP. C9: Implement Security Logging and Monitoring. https : / /

owasp.org/www-project-proactive-controls/v3/en/c9-security-logging.
Accessed: 2023-11-05. 2018.

[18] OWASP. Cross Site Scriptiong (XSS). https://owasp.org/www-community/
attacks/xss/. Accessed: 2023-12-02. 2022.

[19] OWASP. Input Validation Cheat Sheet. https://cheatsheetseries.owasp.
org/cheatsheets/Input Validation Cheat Sheet.html. Accessed: 2023-11-
04.

[20] OWASP. OA01:2021 – Broken Access Control. https : / / owasp . org /
Top10/A01 2021-Broken Access Control/. Accessed: 2023-12-02. 2021.

[21] OWASP. OWASP Top 10 API Security Risks – 2023. https://owasp.
org/API-Security/editions/2023/en/0x11-t10/. Accessed: 2023-12-27.

[22] OWASP. OWASP Top Ten 2017. https://owasp.org/www-project-top-
ten/2017/A2 2017-Broken Authentication. Accessed: 2023-12-02. 2017.

[23] OWASP. Testing for Local File Inclusion. https : / / owasp . org / www -
project- web- security- testing- guide/v42/4- Web Application Security
Testing/07-Input Validation Testing/11.1-Testing for Local File Inclusion.
Accessed: 2023-12-02.

[24] PwnFunction. Server-Side Template Injections Explained. https://youtu.
be/SN6EVIG4c-0?si=pANYhLToSUb9O4dh.

[25] Robert Pergl, Robert Pergl, Rob Hooft, Marek Suchánek, Vojtěch Knaisl,
Jan Slifka. “Data Stewardship Wizard”: A Tool Bringing Together Re-
searchers, Data Stewards, and Data Experts around Data Management
Planning. https://datascience.codata.org/articles/10.5334/dsj-2019-059.
Accessed: 2023-09-29.

[26] sentry. Get Started with Sentry. https://docs.sentry.io/product/sentry-
basics. Accessed: 2023-11-05.

[27] Sqlmap. Introduction. https://sqlmap.org/. Accessed: 2023-12-27.
[28] Data Stewardship Wizard. Data Stewardship Wizard. https://ds-wizard.

org/data-stewardship. Accessed: 2023-10-29.

76

https://support.malwarebytes.com/hc/en-us/articles/360038523394-What-is-Exploit-Protection
https://support.malwarebytes.com/hc/en-us/articles/360038523394-What-is-Exploit-Protection
https://www.okta.com/identity-101/md5/
https://www.okta.com/identity-101/md5/
https://en.wikipedia.org/wiki/OWASP
https://owasp.org/www-project-proactive-controls/v3/en/c9-security-logging
https://owasp.org/www-project-proactive-controls/v3/en/c9-security-logging
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/www-project-top-ten/2017/A2_2017-Broken_Authentication
https://owasp.org/www-project-top-ten/2017/A2_2017-Broken_Authentication
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://youtu.be/SN6EVIG4c-0?si=pANYhLToSUb9O4dh
https://youtu.be/SN6EVIG4c-0?si=pANYhLToSUb9O4dh
https://datascience.codata.org/articles/10.5334/dsj-2019-059
https://docs.sentry.io/product/sentry-basics
https://docs.sentry.io/product/sentry-basics
https://sqlmap.org/
https://ds-wizard.org/data-stewardship
https://ds-wizard.org/data-stewardship

Appendix A
Acronyms

2FA Two-Factor Authentication.

AES Advanced Encryption Standard.

API Application Programming Interface.

BAC Broken Access Control.

CAPTCHA Completely Automated Public Turing test to tell Computers and
Humans Apart.

CRUD Create, Read, Update, Delete.

CSRF Cross-Site Request Forgery.

CTR Counter.

CVSS Common Vulnerability Scoring System.

DB Database.

DDoS Distributed Denial of Service.

DM Document Model.

DMP Data Management Plan.

DoS Denial of Service.

DOM Document Object Model.

DTO Data Transfer Object.

DSW Data Stewardship Wizard.

FAIR Findable, Accessible, Interoperable, and Reusable.

GUI Graphical User Interface.

HTTPS Hypertext Transfer Protocol Secure.

HTTP Hypertext Transfer Protocol.

77

A. Acronyms

ID Identifier.

IO Input/Output.

IT Information Technology.

JWT JSON Web Token.

KM Knowledge Model.

LFI Local File Inclusion.

MD5 Message-Digest Algorithm 5.

MFA Multi-Factor Authentication.

NIST National Institute of Standards and Technology.

OOB Out-of-Band.

OWASP Open Web Application Security Project.

RFI Remote File Inclusion.

SQL Structured Query Language.

SSTI Server-Side Template Injection.

SSL Secure Sockets Layer.

TSL Transport Layer Security.

TDK Template Development Kit.

URL Uniform Resource Locator.

UUID Universally Unique Identifier.

VNC Virtual Network Computing.

VPN Virtual Private Network.

XSS Cross-Site Scripting.

78

Appendix B
Contents of Electronic Attachment

README.md.................................file with contents description
thesis.pdf thesis text in PDF format
src/.......................directory of LaTeX source codes of the thesis
dsw-v3.28/.............used DSW Docker deployment and configuration
results/.........directory with other results related to security analysis

results.pdf.......file with found vulnerabilities and their evaluation
http requests.pdf.....file with all executed HTTP requests for BAC

79

	Introduction
	Local Deployment for Analysis and Penetration Testing
	DSW Analysis
	General Ideas and Aims
	FAIR Principles
	Findable
	Accessible
	Interoperable
	Reusable

	Overall Properties, Ideas, What It Does and How It Is Done
	Core Objectives and Features

	Main Features for Different Roles
	Anonymous
	Researchers
	Data Stewards
	Administrators

	Architecture

	Relevant Vulnerabilities and Attacks
	Terminology
	SQL Injection
	Brute-Force Attack
	Cross-Site Scripting
	Cross-Site Request Forgery
	Broken Authentication
	Broken Access Control
	Token Leakage
	File Inclusion Vulnerabilities
	Server-Side Template Injection
	Vulnerabilities Introduced in Programming Languages and Libraries
	Conclusion

	Current security measures
	Authentication
	Create a New User
	Login

	Authorization
	Data Validation
	File Upload Validation
	Client-Side Validation
	Server-Side Validation

	Error Handling
	Encryption
	Hashing
	Session Management
	Logging and Monitoring
	Security Checks

	Technology recommendations
	Login Process
	Cryptography
	Authorization and Logging

	Vulnerabilities analysis
	Penetration Testing Setup
	Penetration Testing
	Disclamer for Penetration Testing Report
	Brute-force Attack
	SQL Injection
	Cross-Site Scripting
	Cross-Site Request Forgery
	Broken Authentication
	Broken Access Control
	Token Leakage
	Server-Side Template Injection
	File Inclusion

	Evaluate
	The Common Vulnerability Scoring System (CVSS)
	Summary
	Weak Credential Policy - Password Strength
	Password Brute-Force Attack
	User Enumeration
	Email Verification Denial of Service
	Broken Access Control
	Access Tokens in URL
	Server-Side Template Injection

	Prioritized List of Recommendations for DSW
	High Severity Vulnerabilities
	Medium Severity Vulnerabilities
	Other Considerations

	Conclusion
	Bibliography
	Acronyms
	Contents of Electronic Attachment

