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Abstract

In this thesis, I explore the Private Information Retrieval (PIR) problem. I describe situations
in which this problem arises and the incentives for its solution. I then present several methods
for retrieving online resources privately (i.e. while concealing which resource is being accessed)
and discuss real world use-cases for these methods.

To verify my claims about the feasibility of such use cases, I also present the design of several
benchmarks to measure the performance impact of choosing specific methods, using queries over
an SQL database as an example of a resource to retrieve. Finally, I describe my implementation
of these benchmarks using the Percy++ library and discuss their results.

Keywords private information retrieval, PIR, evaluation, benchmark, SQL

Abstrakt

V této práci se věnuji problému Private Information Retrieval (PIR). Popisuji situace, ve kterých
tento problém vzniká a motivace k jeho řešeńı. Následně představuji několik metod źıskáváńı
online zdroj̊u soukromě (tedy zp̊usobem, který skrývá, ke kterému zdroji je přistupováno) a
diskutuji reálné př́ıpady použit́ı těchto metod.

Abych ověřil má tvrzeńı o uskutečnitelnosti těchto př́ıpad̊u použit́ı, prezentuji návrh několika
sad test̊u měř́ıćıch dopad specifických metod na výkon. V těchto testech použ́ıvám dotazy nad
SQL databáźı jako př́ıklad zdroje, který lze źıskat. Závěrem popisuji mou implementaci těchto
test̊u za použit́ı knihovny Percy++ a diskutuji jejich výsledky.

Kĺıčová slova private information retrieval, PIR, evaluace, výkonostńı testováńı, SQL
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Introduction

Preserving the anonymity of users online has always been a challenging task. While several
technologies for concealing the users’ identity have been developed and are commonly used
(privacy networks, anonymizers), there are cases in which this is simply not sufficient.

One can, for example, imagine a situation in which their car breaks down while traveling
abroad. One might need to find someone who can repair the car, speaks the same language
language and preferably can get to one’s location shortly. In this situation, a search engine or
perhaps a dedicated database might be used to find such a person. While there are several ways
to conceal one’s IP address and other identifying information, some of it (such as one’s location,
the make of one’s car or the language that one speaks) will have to be present in one’s query.
Should one wish to conceal this information, finding someone who can help them is going to
become much more difficult.

We can see that there could be a desire by the user to retrieve the information without
revealing some sensitive parts of the query. Does the server maintainer have an incentive to
allow them to do this? Indeed, collecting user information can be a powerful source of revenue
for the maintainer, either through the direct sale of said information, or indirectly through
(micro-) targeted advertisement. However, a maintainer wishing to respect the privacy of the
user does have some alternative sources of income. First, instead of making their business model
reliant on income from advertisers, they could shift towards a subscription based platform, where
the main source of the income is the user. A privacy conscious user would definitely be willing to
pay a premium for this service. Second, advertising on such a platform might be interesting for
companies looking to reach privacy conscious customers. While this targeted advertising would
be less specific and therefore less profitable for the maintainer, it could supplement the income
from the users’ subscriptions.

Having established motivations of both the server maintainer and the user, we can now explore
technical solutions to this problem. Trivially, the server could transfer the entire database to the
client and let the client perform the query themself. However, this approach has some limitations.
Namely, the database might be too large for the transfer or even for the client’s device’s memory.
Therefore, an approach that minimizes the amount of data transferred is necessary.

This problem is known in the literature as Private Information Retrieval (PIR). In this
thesis, I first describe the solutions to this problem that have been implemented in the Percy++
library. After a brief formal introduction to the problem and the library itself, I compare the
computational and transfer costs of each one of these solutions and analyze their respective
strengths and weaknesses.

Further on, I describe various deployment scenarios, such as the one of a privacy conscious
database operator described earlier, or a quasi anonymizer. I give relevant real-world examples
where appropriate. For each of those scenarios, I choose a PIR method that would be the most
appropriate for it, and explain why.

1



2 Introduction

Finally, I verify my claims by performing several benchmarks. The benchmarks are performed
using a model SQL database and with the aim of obscuring sensitive parts of SQL queries made
against it. The aim of the benchmarks is to conclusively state whether or not the performance
of my proposed scheme is sufficient and whether or not the client can obtain better performance
by revealing some information about their private constant. I discuss the results and suggest
further research.



Chapter 1

Private Information Retrieval

In this chapter, I describe the problem of Private Information Retrieval and some of its
solutions. Without further ado, let us formally define this problem, using the definition from [1]:

▶ Definition 1.1. Given k databases each holding x ∈ {0, 1}n and a user holding i ∈ {1, . . . , n},
a solution to the Private Information Retrieval problem is a protocol that allows the user to
retrieve the value at i without leaking any information about i to the database.

While this is the most general and well known definition, it isn’t really practical for our use-
case. Instead of retrieving a single bit from the database, we will want to extract a block of l bits,
using the extension of classic PIR proposed by [2]. While this could be accomplished by simply
invoking one bit retrieval l times, we can reduce the overhead of this operation significantly.

Directly derived from this definition is the main security issue that all schemes must address,
the distinguishability attack. A scheme must guarantee, aside from general structural security,
that two queries for different items cannot be distinguished from one another.

Let us now take a look at the three families of PIR that are implemented in Percy++: com-
putational PIR, information-theoretic PIR, and hybrid PIR.

1.1 Computational PIR

Computational PIR (CPIR) schemes offer the user a lower level of protection while also making
the fewest assumptions about the servers. In this family of schemes, there is only one server
(k = 1) and it is computationally bounded. It is not impossible for the server to learn the
client’s secret, it is only computationally infeasible.

1.1.1 Aguilar-Melchor and Gaborit 2007
In 2007, Sion and Carbunar [3] concluded that CPIR schemes were computationally impractical
(i.e. are orders of magnitude slower than the trivial transfer of the entrire database). However,
the very same year, Aguilar-Melchor and Gaborit [4] introduced a scheme that, while having
a slightly higher communication cost than the previous CPIR schemes, drastically reduced the
computational complexity of server reply generation. The scheme’s performance has been fur-
ther improved [5] by running using a GPU resulting in a total of three orders of magnitude
speedup over previous schemes. These results have been empirically validated in [6]. While the
Percy++ implementation does not use the GPU, it still performs better than the trivial transfer
in situations where network speed is limited.

3



4 Private Information Retrieval

1.1.1.1 Algorithm
I will now describe the algorithm from [4]. The algorithm has three user-chosen integer param-
eters: N is the size of matrices used by the algorithm, wAG is the size of a single word the
algorithm operates on and should be equal to ⌈log(n× N)⌉ + 1, and p is a prime that defines
the field in which the arithmetic operations of the algorithm will take place (Zp). It needs to be
larger than 23wAG .

Aguilar-Melchor and Gaborit [4] suggest the following values for these parameters: N = 50,
wAG = 20, p = 260 + 325. This means that n can be at best just below 21000. To overcome
this limitation, we can increase the value of wAG or use recursion. The use of recursion in the
context of this algorithm will be discussed later. We also note q = 2wAG .

The general idea of the algorithm is to generate a set of n matrices containing noise (disturbed
matrices), one of which contains a much stronger noise than the others. The index of the matrix
shall be the index of the record the client is seeking. This set shall then be sent to the server,
where each matrix is multiplied by a record in the database and the results added together into
a single vector. This vector is then sent back to the client, who filters out the soft noise and
retrieves their desired record. I will now describe the algorithm in greater detail:

First, the client generates a query.

input : index i0 of the record client wishes to retrieve
output: query in the form of ordered list of matrices to be sent to the server

1 A← random invertible matrix of size N ×N over Zp;
2 B ← random matrix of size N ×N over Zp;
3 M ← [A|B];
4 for i ∈ {1, . . . , n} do
5 Pi ← random invertible matrix;
6 Mi

′′ = [Ai|Bi]← Pi ·M ;
7 end
8 ∆← random N ×N diagonal matrix over Zp ; // scrambling matrix
9 for i ∈ {1, . . . , n} \i0 do

10 Di ← N ×N random matrix over −1, 1; // soft noise matrix
11 Mi

′ ← [Ai|Bi + Di∆]; // soft disturbed matrix
12 end

// generate hard noise matrix
13 Di0 ← soft noise matrix with each diagonal term replaced by q;

// compute hard disturbed matrix
14 M ′

i0
← [Ai0 |Bi0 + Di0∆];

15 P ← random permutation of columns;
16 for i ∈ {1, . . . , n} do
17 Mi ← P(Mi

′);
18 end
19 return ordered set {M1, . . . , Mn}

Algorithm 1: The algorithm for client query generation

The previously mentioned noise is introduced into the matrices by the addition of noise
matrices (D1, . . . , Dn) on lines 11 and 14. However, the noise is also scaled by the scrambling
matrix ∆ to obscure the hard noise. In order to later filter out the noise, the client will need
to save the scrambling matrix. Similarly, permutation of columns is intended to make the
identification of the hard disturbed matrix harder. The permutation must also be saved by
the client, as does M .

Next, a PIR server computes its reply. We assume each record is wAG ×N bits long. If they
are not, the records are split and/or padded to fit.
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input : ordered set of n matrices from the client
output: vector V of size 2N over Zp

1 for mi ∈ database records do
2 split mi into N wAG-bit integers {mi1, . . . , min};
3 end
4 for i ∈ {1, . . . , N} do
5 vi ←

∑N
j=1 mijMij ;

// Mij denotes the j-th row of Mi

6 end
7 return

∑n
j=1 vi

Algorithm 2: The algorithm for server reply generation

The reply generation is very straightforward, the properly transposed matrix is multiplied
by the appropriate record which is treated as a vector. The resulting vectors are then summed
together and sent to the client.

Finally, the client decodes the response.

input : vector V of size 2N over Zp

output: record i0
1 V ′ ←= P−1(V );
2 VD

′ ← disturbed half of V ′;
3 VU

′ ← undisturbed half of V ′;
4 E ← VD

′ − VU
′A−1B ; // scrambled noise

5 E′ ← E∆−1; // unscrambled noise
6 for ej

′ ∈ E′ do
7 if ej

′ mod q < q/2 then
8 ϵ← ej

′ mod q;
9 else

10 ϵ← (ej
′ mod q)− q;

11 end
12 e′′

j ← e′
j − ϵ;

13 end
14 for j ∈ {1, . . . , n} do
15 mj ← e′′

j q−1;
16 end
17 return {m1, . . . , mn}

Algorithm 3: The algorithm for server reply decoding

The decoding is performed by first reversing the operations the client has performed and
extracting the noise (lines 1–5). Next, the soft noise is filtered out by detecting whether the sum
of soft noise was negative (line 7) and appropriately modifying the noise.

As an example, I now present a possible run of the algorithms. All the figures in this example
are taken from [4].

The client wishes to retrieve the second record of a database containing two six-bit records.
They begin by generating random matrices as per lines 1–8, 10, and 13 of algorithm 1. Next,
they generate the disturbed matrices (lines 5, 11, and 14), and finally permute the columns of
the matrices as per lines 16–18. The result is sent to the server.
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Figure 1.1 Diagram showing an example run of algorithm 1. Source: [4]

Upon receiving the reply, the server generates its reply following algorithm 2 and sends it to
the client.

Figure 1.2 Diagram showing an example run of algorithm 2. Source: [4]

Finally, the client decodes the data according to algorithm 3. The following diagram shows
the decoding process. Lines relevant to each panel are noted in the top right corner of the panel.

Figure 1.3 Diagram showing an example run of algorithm 3. Source: [4], relevant line numbers added
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1.1.1.2 Recursion
An important observation can be made about the properties of the above algorithm. The param-
eter wAG limits the number of accessible records of the database. Indeed, we could just increase
this parameter arbitrarily, but this is inefficient. Instead, Aguilar-Melchor and Gaborit propose
a recursive approach [4]. First, choose d to be the depth of recursion. Next, at each level, split
the database into d

√
n virtual records, each containing n/ ( d

√
n)d actual records. Let the user

calculate which virtual record contains their desired record and also let them query for it. Do
not send the reply to that query to the client, instead hold on to it and treat it as the database
in the next step, unless the maximum depth has been reached, in which case send the result to
the client and let them calculate the result.

A diagram for d = 3 can be seen in figure 1.4. First, the client calculates the records location
at each level of recursion. Next, the client sends the server a sequence of 3 queries, Q1, Q2, Q3,
one for each level of recursion, and stores their respective invert transforms. For each query
except the final one, the server holds on to the result and applies the next query to it instead of
the entire database. After applying the final query, the server sends the result back to the client.
The client then performs the inverse operations for the queries in the reverse order to retrieve
their desired record.

1.1.1.3 Security
The scheme relies on the Hidden Lattice Problem (HLP) and the Differential Hidden Lattice
Problem (DHLP) to defend against structural and distinguishability attacks respectively. These
problems were not very well researched at the time of publication. While Aguilar-Melchor and
Gaborit [4] relate HLP to a known NP-complete problem in coding theory [7], they only note
that lattice based attacks against DHLP are very unlikely. This hints at a potential vulnerability
in the system, and in recent works, Aguilar-Melchor has abandoned this approach in favor of
more standard problems (namely RLWE) [8].

Indeed, such a vulnerability has been found. In 2016, Liu and Bi [9] showed that there is a
”hidden linear relationship between the public matrices and noisy matrices” and that the server
can learn which record the client requested as long as the number of records in the database is
small. This means the scheme is effectively broken. This also impacts the security of the hybrid
protocol, but that shall be discussed furher on.

1.2 Information theoretic PIR
It has been proven [2] that single server (k = 1) PIR scheme in which it is impossible for the server
to learn anything about the client’s query would require Ω(n) bits of communication, therefore
making it worse than a trivial transfer of the entire database. Because of this, all information
theoretic PIR schemes assume k > 1. They can also assume that some of the servers might not
be responding incorrectly or not responding at all. Another assumption that can be made is
that each of the servers only holds a part of the database, and that only a coalition of server can
learn its full content. However, these assumptions are beyond the scope of this thesis. Instead,
let us only assume t-privacy:

▶ Definition 1.2 (t-privacy). A PIR scheme is t-private iff of the k servers, up to t can collude
and still learn nothing about the contents of the query.

1.2.1 General idea: Vector multiplication of a matrix
In general, both ITPIR schemes follow the same simple idea. We take the database as an n × l
matrix, with each element of the database being w bits long. To retrieve the record at index i0,
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R121
R122
R123
R124
R125

V25,5

V15

D0

R076
R077
R078
R079
R080

V11

R081
R082
R083
R084
R085

V12

R086
R087
R088
R089
R090

V13

R091
R092
R093
R094
R095

V14

R096
R097
R098
R099
R100

V15

D1

R091
R092
R093
R094
R095

D2

Server

R094’

Q−1
3

Q−1
2

Q−1
1

R094

Client

Q1

Q2

Q3

Figure 1.4 Example of recursive retrieval of a single record for d = 3
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the database needs to be multiplied by a row vector consisting of only zeroes except for a single
one in the i0-th position. If the server was to perform this operation, the client’s privacy would
be compromised, as the server would know which index the client wished to retrieve.

[
0 0 . . . 1 . . . 0

]


w11 w12 . . . w1l

w21 w22 . . . w2l

...
...

...
wn1 wn2 . . . wnl

 =
[
wi01 wi02 . . . wi0l

]

Therefore, we need to distribute the query in a way that achieves t-privacy.

1.2.2 Chor 1995
Chor et al. [2] propose a simple algorithm. We take w = 1, i.e. each element of the database
matrix is one bit long. We also assume that each of the k ≥ 2 servers hold a full copy of the
database.

We begin by generating the queries.

input : vector v0 of length n containing only zeroes and a single one at i0, the index of
the record the client wishes to retrieve

output: a set of k vectors of length n to be sent to servers
1 for i ∈ {1, . . . , k − 1} do
2 vi ← uniformly random n-length vector over GF (2) ;
3 end
4 vk ← v0 ⊕ v1 ⊕ · · · ⊕ vk−1;
5 return {v1, v2, . . . , vk}

The client then sends one query to each server. The server then multiplies their database
by the vector they received and sends the result back to the client. This result is essentially a
XOR of the records whose index happened to hold a one in the query. Once the client has all
the responses, they can easily calculate the final result by XORing them together.

We can see that this protocol is k−1-private, i.e. all the servers would have to collude to learn
anything about the client’s query. This is the strongest protection against collusion an ITPIR
protocol can provide. In terms of communication and computation costs, it also far outperforms
the other protocols implemented in Percy++. However, the protocol is not robust, meaning that
if even just one server fails to respond or responds incorrectly, the client will fail to retrieve the
record.

1.2.3 Goldberg 2007
To address the robustness limitations of [2], Goldberg [10] proposed his own algorithm which I
will now describe.

1.2.3.1 Building blocks
Before describing Goldberg’s algorithm itself, let us define some necessary prerequisites.

1.2.3.1.1 Shamir’s secret sharing Shamir’s secret sharing (SSS(k, t)) is a scheme that
allows data D0 to be shared among k participants in such a way that no coalition of up to
t of them can assemble D0 and any coalition of at least t + 1 can assemble D0. It works in
the following way: To obtain D0, participants need to evaluate f(0). To do this, they need to
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input : data D0 as element of finite field F
output: set of tuples to be distributed among participants

1 for i ∈ {1, . . . , k} do
2 αi ← random non-zero index from F;
3 end
4 {a1, . . . , at} ← uniformly random elements of F;
5 f(x)← polynomial in the form D0 + a1x + a2x2 + · · ·+ atx

t;
6 return {(α1, f(α1)), . . . , (αk, f(αk))}

reconstruct the polynomial using Lagrange interpolation, which is only possible if at least t + 1
of them share their tuples. Otherwise, they cannot learn anything about D0. We can, however,
see that should some of the participants provide an incorrect tuples, reconstruction will fail. To
correct for this, error correcting codes are used.

1.2.3.1.2 Reed-Solomon codes To recover from missing or incorrect responses from the
servers, Goldberg’s protocol treats the responses from servers as a list of strings to be decoded
using Reed-Solomon decoding. For a set of R1, . . . , Rk responses from servers and their respective
indices α1, . . . , αk, this problem turns into finding a polynomial that passes through at least t
pairs of αi and Ri. There are several efficient algorithms that solve this problem, either finding
a unique solution [11], or a list of possible solutions [12].

The original paper uses the algorithm from [12]. In 2012, Devet et al [13] improved the
scheme to also include the algorithm from [11] and their own algorithm utilizing simultaneous
decoding of multiple polynomials at the same time. A brute-force algorithm was also included,
as well as an algorithm to select the most efficient of those to apply to a given set of responses.

1.2.3.2 Algorithm
Having defined the necessary prerequisites, let us now look at the algorithm itself. Once again,
the idea is to allow the server to multiply the database by a vector, and we also assume each
of the k ≥ 2 servers hold the full copy of the database. However, unlike in Chor’s case where
the field of operation was GF (2), we will now be working in a larger field F. Percy++ allows the
field to be one of GF

(
28)

, GF
(
216)

, or Zp. Also, the elements of the database matrix shall be
larger, w = log |F|. Each row of the matrix will therefore contain s = l/w elements.

The client begins by generating s random Shamir polynomials. The data to be shared via
these polynomials (i.e. the constant term) shall be 0 for the indices the client is not interested in,
and 1 for the one they are. The client also generates k Shamir indices α1, . . . , αn and evaluates
the polynomials at them yielding a set of s values to be sent to each server. These are then sent
to them.

Each server, receiving a set of n values from the client ({δ1, . . . , δn}), evaluates the following
for each column of the database. dij denotes the jth item of the ith row.

Rj =
n∑

i=1
δjdij

The resulting set {R1, . . . , Rs} is sent back to the client.
Finally, the client has to decode the responses. The following properties hold for any two

Shamir polynomials f, g and any constant c ∈ F:

f(0) = a, g(0) = b =⇒ (f + g)(0) = a + b

f(0) = a =⇒ (c · f)(0) = c · a
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For each column of the database, the client receives from each server a point on a curve of a
polynomial that is defined as a sum of n−1 polynomials whose constant term is 0 and one whose
constant term is the desired value for a given column. Therefore, client has to simply reconstruct
the polynomial, using Lagrange interpolation if there are no misbehaving servers, or resorting to
some form of error correction if there are, and evaluate it at zero. Once the client repeats this
process for each column of the database, they will recover the full result of their query.

This scheme relies on Shamir’s secret sharing for a guarantee of privacy and robustness against
non-responding servers. The client only needs t Shamir responses to reconstruct the result to
their query. However, the servers also only need t shares to learn the contents of the client’s
query. The client can, however, choose t to be equal to k, thus making the protocol k−1-private.
This makes the protocol reach the same level of privacy as that of Chor’s algorithm described in
section 1.2.2, but eliminates the robustness property.

In terms of communication costs, this scheme performs slightly worse than Chor’s, as it needs
to send an element of F instead of a single bit per record in the database in the client’s query.
The response is the same length unless the record needs to be padded to a multiple of w.

Performance is also slightly worse, as the operations performed in F are more computationally
expensive than a simple XOR.

1.3 Hybrid PIR

We have observed that both CPIR and ITPIR their issues. While CPIR only requires a single
server, it does not offer perfect privacy in the information theoretic sense. It is also generally
slower. On the other hand, ITPIR schemes fail as soon as more than t servers collude. There is
also no way for recursion to be applied.

Realizing these shortcomings of these approaches, one might wish to somehow mitigate them
by combining both into a hybrid scheme. While [10] already proposed such a scheme, its perfor-
mance was 3-4 orders of magnitude lower than that of plain ITPIR. The scheme relied on Pailler
cryptosystem. At the time, this was a reasonable choice, because the scheme did require the
CPIR component to be additively homomorphic and thus enable the use of recursion. However,
the computational cost of the Pailler cryptosystem made this scheme unlikely to be useful.

1.3.1 Devet & Goldberg 2014
In 2014, Devet and Goldberg [14] proposed an improved hybrid scheme. It is very similar to the
previous scheme by Goldberg in its structure, but instead of using the Pailler cryptosystem, it
relies on Aguilar-Melchor and Gaborit’s [4] scheme. However, it does not require it specifically,
any recursive CPIR scheme will suffice. Similarly, while it does use the ITPIR scheme of [10], it
does not require this scheme specifically, and any other multi-server ITPIR scheme would suffice.

1.3.1.1 Algorithm
Let us now denote Ψ the ITPIR component of the hybrid protocol and Φ the CPIR component.

The hybrid scheme works in the following way: First, similarly to 1.1.1.2, a recursion depth
d is chosen in a way that guarantees communication cost at worst equal to that of Ψ1 and the
database is split into virtual blocks. The client calculates the first level virtual block that holds
their desired record and queries the servers for it using Ψ. The servers do not send the reply
and instead hold on to it. Next, the client recursively queries each of the servers using Φ, until
the maximum recursion depth is reached. At this point, the servers send back their replies. The

1The worst case is reached if there is no communication cost benefit to using recursion and CPIR. If this is the
case, the hybrid scheme devolves into Ψ.
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client then applies the decoding algorithm of Φ to each of the replies and finally, using Ψ, recovers
the desired record from the decrypted replies.

1.3.1.2 Security
Due to its highly modular design, the hybrid scheme’s security relies on the security of underlying
protocols. Let us now explore some possible failure states for this scheme.

1.3.1.2.1 CPIR broken This is the state that the Percy++ implementation is in due to the
fact that Aguilar-Melchor and Gaborit’s [4] scheme has been broken by [9]. This means that
each server can, with relative ease, learn the position of the record the client was interested in
withing the first level virtual block. This impacts the client’s privacy severely, as instead of
knowing nothing about the client’s query, each server can now determine that it was for one of
d
√

n records. However, some level of privacy is still retained due to the non-collusion assumption.

1.3.1.2.2 Server collusion If at least t + 1 servers collude, but the computational hardness
of the CPIR protocol still holds, the servers can learn which first level virtual block the client
wanted to retrieve. This has an equal or lower impact on client’s privacy than CPIR compromise,
as it only reduces the number of possible records the client might have been interested in to
( d
√

n)d−1. However, this attack by the servers might be more likely, due to the fact that it
requires no protocol breakage and instead only needs cooperation from the servers.

1.3.1.2.3 Full compromise If both CPIR breakage and server collusion co-occur, client’s
private query is revealed. We can see that the hybrid protocol’s defence in depth approach yields
additional security for the client compared with situations where only one of the protocols is
used at an insignificant computational cost.

1.4 Performance analysis
Having established the major families of PIR protocols and some members of these families, let
us now analyze their performance. Our investigations will lead two along axes: communication
and computation.

1.4.1 Communication costs
The cost of communication of a PIR protocol is made up of two components: the cost of the
query and the cost of the reply. The costs of retrieving a single record for all the previously
established protocols are given in a table below. I assume Goldberg’s scheme is being used as Ψ
and Aguilar-Melchor and Gaborit’ recursive scheme as Φ for the hybrid protocol.

Chor 1995 Goldberg 2007 Devet & Goldberg 2014 A&G 2007 A&G 2007 rec
Query kn knw kd

(
6N2wAG

) d−1
d d
√

w d
√

n
(
6N2wAG

)
n d

(
6N2wAG

)
d
√

n
Reply kl kl k6d−1l 6l 6dl

Table 1.1 Communication costs of different protocols

As we can see, all the replies are linear in l and k (A&G can only use one server), meaning
that as the number of servers and the length of the records increases, so does the cost of the
reply. We can also observe that the cost of the query is linear in n for all protocols that do
not use recursion and linear in k for all servers (again, k = 1 for A&G). We also note that the
protocols that do use recursion will perform better on databases that contain a large number
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of small records. The depth of the recursion is algorithmically chosen to be optimal, i.e. to
minimize communication.

1.4.2 Computational cost
The cost of computation for a single query is hard to estimate, but we can generally estimate that
ITPIR protocols will be faster than CPIR, as the ITPIR’s server side computation only involves a
single multiplication of a matrix by a vector whereas CPIR needs to perform n such multiplications
(albeit on smaller matrices). The hybrid protocol will likely perform better than its components,
but will perhaps underperform when recursion is not used due to the overhead of estimating the
optimal depth.
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Chapter 2

Use cases

Having described the different types of PIR available in Percy++, I will now present some general
use cases for PIR. For the rest of the chapter, I will use O0 to denote the original source of data.
Its copies will likewise be labeled as such in diagrams, and its partial copies shall be labeled as
Oi PIR servers shall be denoted by Si, and PIR traffic will be marked by dashed arrows. Any
other traffic will be shown with solid line arrows. Clients will be denoted by Ci.

2.1 Privacy conscious database operator
This use case is similar to the one I presented in the introduction. It only has a single source of
data O0 and a single PIR server S1, possibly running on the same machine. There can be multiple
clients accessing S1. As per the business model discussed in the introduction, the operator would
cover the extra costs arising from using PIR by charging the clients for using the service, and
possibly further supplement this by advertising.

As there is only one server in this case, CPIR would need to be used. This might incur
heavy computational costs for S1 as the number of queries grows. To mitigate this, S1 could
aggressively rate limit the clients. An alternative solution would be to distribute the database
across multiple servers. This will be discussed in a following section.

This setup assumes it is the client’s responsibility to take appropriate measures to protect
their query en route to the server. Indeed, end-to-end encryption will be supported by the server,
but a user wishing to also conceal the ends of the communication from a curious network operator
will have to take additional measures such as using an onion network.

O0

S1

C1 C2 Cn...

Figure 2.1 Diagram of a single server scheme described above
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A real-world example of this setup could be a private DNS iterative resolution where we
view each iteration as a resource retrieval that can be made private with PIR. While even today
solutions for private transport of a DNS query exist that do not severely impact performance (e.g.
DNS-over-HTTPS) [15], the privacy of the contents of the query is rarely considered. Indeed,
the current infrastructure of DNS servers does not lend itself too well to trivial transfer of the
entire DNS database, because it is large, decentralized and quite volatile. However, by allowing
the client to perform each iterative step of the retrieval using PIR with keyword search based on
[1], we can achieve data transfer costs lower than that of trivial transfer.

Indeed, in this case, changes to how a DNS query is handled would need to be made, both
on the server and the client side, slowing the entire process down and making it more expensive.
Recursive resolvers that stand between the client and the domain name servers would need to
be dropped, along with their ability to cache results for multiple clients, slowing the operation
down further1. However, benefits for the client would be tremendous, essentially going from
possibly being tracked online all the time to tracking being impossible. Whether the costs would
be acceptable to the client and the server remains to be seen.

C1

S1 = a.root-servers.net O1

S2 = ns.cvut.cz O2

S3 = ns.fit.cvut.cz O3

Figure 2.2 Diagram of client iteratively retrieving the IP address for progtest.fit.cvut.cz (not all
servers contacted shown)

2.1.1 Variant: Untrusted cloud
A variation on this scheme is the situation where the entity controlling O0, S1 and clients is
the same and the hardware that O0 and S1 are running on is not directly controlled by this
entity or is in general not trusted. The entity wishes to hide the data in O0 from the hardware
operator. This is achieved by encrypting the data at rest and only decrypting it once it reaches
the client. The entity also wishes to conceal the access patterns, e.g. to make it harder for the
hardware operator to extract important data by focusing their attack on blocks of data that are
accessed more often. To do this, the entity employs a PIR scheme, essentially masking out any
meaningful information that could be extracted by the hardware operator, except for the time
of access and the identity of the client (unless the identity is also masked, in which case only the
time of retrieval is learned).

1For an approach utilizing multi-server recursive DNS resolution see section 2.3.1
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A real-world example of this use case could be a company handling large amounts of extremely
sensitive data (e.g. medical or banking records) lacking on-premise computatons power or per-
haps needing extra computation power to handle all the data. In these cases, cloud computing
would have to be used. As long as the access to the data is not critically time-sensitive and does
not happen often, using PIR and encryption at rest would be a viable option for concealing the
data and the access patterns (as I will show in the following chapter).

Like the previous use case, this one has only a single server and therefore needs to use CPIR.
While there could be multiple servers set up for ITPIR or hybrid scheme, it is unlikely that the
additional privacy gained would in fact outweigh the cost. A case could be made for a distributed
scheme if performance was critical, as an ITPIR or hybrid scheme would be faster and use less
bandwidth.

O0

S1

C1 C2 Cn...

Untrusted
hardware

Figure 2.3 Diagram of single server scheme with untrusted hardware

2.1.2 Variant: Law enforcement
Another variation one might consider is a situation in which a database operator stores personal
information on subjects in the database. We could, for example, imagine that the database
contains records of people accommodated in a certain hotel. It is clear that such information
might be valuable to law enforcement if they were looking for a suspect who might have stayed
in that hotel. Indeed, law enforcement could simply copy the entire database and then search
it themselves, but the database might be large or contain records for whose retrieval the law
enforcement agency has no right. We can see that even a trivial transfer in this case might be
problematic.

Why not let law enforcement query the database directly then? This would eliminate the
need for ad-hoc solutions via trivial transfer. However, it would also disclose very sensitive
information to the database operator. In our example, the database operator would learn that the
law enforcement agency is looking for the suspect. This might thwart the agency’s investigation,
as well as infringe upon the privacy of the suspect. This means that allowing the agency to
directly query the database will also not work.

A PIR enabled database partially solves this issue. PIR guarantees that the operator learns
nothing about the contents of the query, and therefore ensures that law enforcement can privately
retrieve the data they desire. However, conventional PIR protocols do not guarantee that the
client will not learn anything besides what they asked for. This could lead to the law enforcement
agency learning some information it was not authorized to learn.
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To adress this issue, several Symetrical PIR (SPIR) protocols have been developed [16, 17].
These protocols, besides having the guarantees of standard PIR protocols, also guarantee that
the client learns nothing about the database except for the record they are retrieving. They do,
however, incur computational and communication costs.

2.2 Distributed PIR network

In the previous example, we have seen that the operator of O0 can have a legitimate interest
in allowing the client to perform their query privately. However, the computational costs of
running a single server CPIR could deter the operator. Simply putting up multiple servers is
also not enough as it completely removes the privacy guarantees of ITPIR (the operator would
definitely collude with themself). Therefore, it is necessary to involve parties other then the
clients.

Let us imagine a situation where we have n independent PIR servers labeled S1, . . . , Sn, each
operated by a different and independent entity. These servers need access to the data at O0.
They will first need to perform a trivial transfer of the entire database when first joining the
network, and then be updated when the data changes. This update can be initiated by O0
simply telling the servers there has been a change, the server itself periodically checking if the
database has changed, or even the client detecting outdated response from the server thanks
to the properties of robust ITPIR (although this approach could introduce some data staleness
issues if a majority of servers has outdated data).

This setup introduces benefits for the operator of O0 in the form of reduced traffic (assuming
new servers join infrequently and updates to the database are not both large and frequent) and
computational cost (simply serving the data without running PIR on them is surely cheaper than
doing both). Clients also benefit, gaining reduced latency and access to the benefits of ITPIR.
Additionally, it gives them the option of using whichever PIR protocol they happen to like the
best, as long as the servers support it. PIR server operators can monetize their service and thus
cover their costs and potentially turn a profit.

O0

S1

C1 C2 Cn...

O0

S2

...

O0

Figure 2.4 Diagram of distributed PIR network
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2.2.1 Variant: Partially distributed database
The database from O0 does not need to be fully replicated at each of the n servers. Servers can
choose to only copy the part of it which they are interested in. While this may impact the users’
ability to retrieve some records conveniently, it reduces the storage requirements for the servers.

Furthermore, the properties of some ITPIR protocols allow for the database to be distributed
in such a way that no coalition of servers (up to a certain size) can learn the full contents of the
database. While this would incur some overhead on O0 and limit the clients’ choice to ITPIR or
hybrid schemes, it guarantees at least some privacy to O0.

O1

S1

C1 C2 Cn...

O2

S2

...

O0

Figure 2.5 Diagram of distributed PIR network with partially distributed database

2.3 Adversarial database access, quasi-anonymizers

In the previous examples, we have assumed that O0 is cooperative and willing to provide the entire
database in any form. In the real world scenarios, this is rarely the case, as most operators choose
to build their business models around free access with tracking and targeted advertisement.
Users wishing to avoid tracking and profiling will often have to use an anonymizer of sorts. By
anonymizer, I mean a service that takes a user’s query and relays it to O0, removing or replacing
any sensitive parts (i.e. the IP address) and then relaying O0’s response back to the client.

An anonymizer achieves improved privacy for the user as long as two assumptions hold.
Firstly, the anonymizer must be more trustworthy than O0 itself. Were this not the case, the
clients would still be subject to tracking, just by someone else. Secondly, there needs to be
enough clients using the anonymizer. For example, if there was just a single client accessing O0
through the anonymizer, O0 could easily identify and track this user, even though their traffic
would be coming from a different IP address. The anonymizer would be acting as a simple proxy
in this case. Let now k denote the number of clients using the anonymizer. As k gets higher, it
becomes harder and harder for O0 to distinguish between the k users. Some information leakage
is still present, namely the time of the access and the resource accessed. These will, however,
always be present, as we have established O0 as averse to allowing the users to access its resources
privately. Therefore, using a trustworthy anonymizer, k users can become indistinguishable in
the eyes of O0, that is achieve what is in the literature known as k-anonymity [18].

Improvements to privacy are not the only reason for using an anonymizer. Assuming clients
mostly retrieve similar resources, the anonymizer can use caching to improve latency. It can also
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further enhance the user experience of the clients by only serving the content they are interested,
e.g. serving a user who wishes to watch a video just the video file instead of a website laden with
tracking scripts etc. This also decreases the amount of information O0 has access to, since not
all queries actually reach it.

Implementing a fully PIR-enabled solution for the anonymizer is very hard, probably impos-
sible. Scraping the entire database will not be possible due to rate limiting (and the sheer size
of it), fetching only the records clients request will also not work as that would require revealing
the query to the server, preemptively caching some of the content would essentially be guesswork
and likely in vain. Let us instead investigate a partially PIR enabled anonymizer.

As long as many clients do indeed wish to retrieve the same resources, the amount of informa-
tion an anonymizer learns can be minimized with usage of PIR and caching. A client can learn
whether a given resource is in the anonymizer’s cache privately, using either trivial or non-trivial
PIR. If it is, they can also retrieve it privately. If it is not, they have a choice of either not
retriving the resource or revealing which resource they wanted to access so that the anonymizer
can access it for them and cache it. Any subsequent queries for the resource will be private. This
can be seen in figure 2.6, where C1 retrieves an item without concealing which item it retrieved,
and subsequent retrievals of the same item by other clients are private.

This approach minimizes the need to trust the anonymizer while also maintaining k-anonymity
for the users.

O1

S1

C1 C2 Cn...

Anonymizer

O0

Figure 2.6 Diagram of partially PIR enabled anonymizer

It is unclear whether this scheme can be used in practice. Anonymizers typically do not
generate any revenue from serving ads or collecting personal information, and are instead main-
tained by volunteers supported by donations. Multiple instances of anonymizers for popular
social media are hosted publicly [19, 20, 21], which means that the general idea of an anonymizer
as a service has some economic merit to it. Whether it would be economically possible even with
the added costs of using PIR remains to be seen.

Likewise, it is uncertain whether a multi-server version of the partially PIR-enabled anonymizer
would be feasible. Indeed, in order for a multi-server retrieval to succeed, a sufficient number of
servers would need to have cached the content the client is requesting. If this is not the case,
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the client will have to reveal their query to at least one of the servers and retrieve the resource
trivially. The server must then inform the other servers, so that they can cache the resource.
This way, cache size grows on all the servers.

2.3.1 Range based approaches to anonymizers
Much like the anonymizer which masks user’s queries by mixing them with those of other users, a
user can mask their own query by also querying for records they are not interested in. While this
does reveal some information to whoever the client is querying, it can quite naturally extend the
previously presented singler-server partially PIR-enabled anonymizer. By having the client query
for multiple records, of which only some are of interest to them, privacy of the whole system
is improved in two ways: the client making the queries is better protected against tracking by
the anonymizer, and all other clients benefit from the increased entropy of queries made by the
anonymizer against O0. It should be noted that this is going to result in larger cache size for the
anonymizer.

The idea of querying for resources the client is not interested in has an even bigger impact
in a multi-server setup. For example, Zhao’s [22] two-server scheme for private DNS queries 2

is quite interesting in this regard. It is similar to Chor’s scheme described in section 1.2.2 in
that it utilizes the properties of the XOR function. In this scheme, assuming the client wishes to
retrieve an A record for a given domain name, the client first generates a set of random domain
names. They send this set to one of the servers, and to the other, they send the same set with
the domain name they are interested in appended. Each of the servers then resolves each of
the domain names they received, and XORs the resulting IP addresses together. Thus obtained
results are then sent back to the client. The client once again XORs the two results together to
obtain the final result.

Unless the two servers collude, they each only learn that with a 50 % certainty, the requested
domain name is one of the ones they received. This is of course far from the perfect privacy
guaranteed by ITPIR, but it might be enough for some clients. The scheme is also very fast,
given that only a handful of XORs are needed at each of the servers and the client, and, with
some slight modifications, might even be suitable for privately retrieving multimedia. It is,
however, susceptible to correlation attacks by O0. It is also not robust against misbehaving
servers. Whether this could be improved by employing an approach similar to Goldberg’s [10] is
a question for further research.

2Contrast with single server iterative solution suggested in section 2.1
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Chapter 3

Benchmarks

In this chapter, I will describe the design and results of benchmarks I performed against Percy++.
I will also describe the dataset I chose to perform these benchmarks against. For convenience, I
will refer to different protocols implemented in Percy++ as modes from now on. To further save
space, I will assign each mode an abbreviation, which is also used internally in Percy++:

AG and R AG for Aguilar-Melchor’s algorithm described in section 1.1.1 and its recursive
variant respectively,

GF28, GF216, ZZ P for variations of Goldberg’s scheme in section 1.2.3,

CHOR for Chor’s scheme described in section 1.2.2,

HYB for Devet & Goldberg’s hybrid scheme which I describe in section 1.3.1.

3.1 Benchmark design
Taking inspiration from [23], I have decided to design a suite of tests where an application built
with Percy++ is acting as a proxy between a client and an SQL database. This is similar to the
use-cases described in sections 2.2, with the caveat that the machines running the PIR servers
don’t actually contain the full database, but instead pass queries to a central SQL database
server. This prevents a failure state where the copies of the database on the PIR server machines
are inconsistent with one another. In many ways, this is also similar to the scenario described
in section 2.3, but we assume the database to be either cooperating or under the application’s
direct control.

3.1.1 Dataset
I chose Czech State Institute for Drug Control’s Database of Medical Products [24] as a basis
for the SQL database over which the queries shall be performed. I believe there is value to
examining the possibilities of private information retrieval against it, because I consider personal
medical information to be especially sensitive and potentially extremely harmful to the individual
if seized by an adversary. Information about medication an individual is using is definitely such
information. Should an individual wish to learn something about a medication they are taking,
e.g. the active ingredients, they would need to consult a database similar to the one made
available at [24]. Without using PIR, they will inevitably reveal some information about the
medication to the database operator.

23
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Another reason for using this database was the need to mimic a real world scenario. While
generating a database full of random data is certainly an option, it does not convey the expres-
siveness of private SQL queries very well.

However, there are some downsides to using this dataset. The most obvious one is the uneven
distribution of lengths of data in some fields. For example, as one can see in figure 3.1, the column
nazev containing the name of the medical product includes items that are mostly shorter than
25 characters, with a few outliers going as high as 70 characters. This is unfortunate because all
the shorter values will need to be padded to the length of the longest one and as a result a large
part of the transported data will be padding. To mitigate this, the client can employ methods
similar to those described in section 3.3.3.3.

Figure 3.1 Histogram of lengths of the nazev field

The schema for this database can be retrieved at the Institute’s website1. I will be using it
in query examples in the following sections.

3.1.2 Hiding private constants
The proxying application is going to be masking out sensitive constants in an SQL query. As an
example, suppose we want to perform the following query

SELECT kod_sukl , nazev , sila , forma
FROM dlp_lecivepripravky
WHERE nazev='ATORIS ' AND (sila = '40MG' OR sila = '20MG ');

Code listing 3.1 Original query containing the private constant in the nazev column

but hide the value of the nazev column (revealing the information about the sila column is
not of any concern to us). Trivially, we can see that we could modify this query to

SELECT kod_sukl , nazev , sila , forma
FROM dlp_lecivepripravky

1https://opendata.sukl.cz/?q=katalog/databaze-lecivych-pripravku-dlp

https://opendata.sukl.cz/?q=katalog/databaze-lecivych-pripravku-dlp
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WHERE sila = '40MG' OR sila = '20MG ';

Code listing 3.2 Modified query with the private constant in the nazev column removed

and then perform the search for rows with correct values ourselves. This is what we could
consider a trivial PIR. However, the result of this query might be too large to transfer over the
network or for our device to handle. Therefore we need to deploy a more sophisticated PIR
protocol.

We will utilize the results of the modified query from 3.2. However, instead of sending it
to the client directly, we will treat it as a database to run a PIR server against, with each row
of the result acting as one record in this database. Merely running a PIRserver will not be
enough, because the client does not know what the result contains and therefore also does not
know the index of the record they want to retrieve. Furthermore, the client does not know how
many records match their private constraints (e.g. there can be more than one row matching
the WHERE nazev = 'ATORIS' constraint). Let us now explore some ways of dealing with these
issues.

3.1.2.1 Point queries
Let us first examine the case where the concatenation of columns containing the private constants
is unique for each query. In our example, this would mean that there is exactly one row that
contains ATORIS in its nazev column. To allow the client to translate their private constant
to a record number to be retrieved via PIR, the server could send the client an ordered set
of concatenations of columns containing the private constants and allow the client to find the
number of the record they are interested in themselves. However, this set could be quite large,
and its transfer problematic. Because of this, we will employ a Minimal Perfect Hash Function.

Minimal Perfect Hash Function (mPHF) is defined in [25] as:

▶ Definition 3.1 (mPHF). Given a set n distinct elements of set X = {x1, . . . , xn}, a function
f is a Minimal Perfect Hash Function iff

∀i ∈ {1, . . . , n} : f(xi) ∈ {1, . . . , n} and

∀a, b ∈ {1, . . . , n} : f(xa) = f(xb)⇔ xa = xb.

Because mPHF uniquely maps each element of X onto a set of n consecutive integers, it is
very well suited for our needs. The server needs only to find such a function, sort the result of
the modified query according to its evaluation and send its parameters to the client who then
evaluates it on their private constant. This yields the index of record for the client to retrieve
via PIR. This evaluation can be performed multiple times, allowing the client to retrieve multiple
records without the need to wait for a newly generated mPHF each time.

One might wonder if the mPHF parameter could exceed the size of the set of private constant
containing columns. The emphf library based on [25]

guarantees the size of parameters will not exceed 2.61 · n bits in all but the smallest of cases.
This is definitely smaller than what the size of the data would have been by itself and therefore
using mPHF will be preferred in all cases.

It should also be noted that the client will need to verify they received the correct data.
Indeed, even if the record the client is seeking is not be present in the result of the modified
query 3.2, the mPHF constructed over this result will still return a record index. Upon querying
for this index, the client might find out that they have received data different from the data they
were originally looking for.

3.1.2.2 Generic queries
It is not always the case that the columns containing the private constants will concatenate
to unique fields. In such a case, a mPHF cannot be used. As was established previously,
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sending the columns in their entirety will also not be possible due to communication cost or
computational limits. Therefore, to successfully retrieve a record, the server will need to construct
some sort of structure over the database and allow the client to privately query over it. The
most straightforward way to achieve this is simply ordering the database and letting the client
perform binary search on it.

While this increases the communication cost of retrieval of a single record from a single query
to log n queries, it also allows us to perform much more expressive queries. For example, suppose
the client wants to perform the following query while hiding the date range they are interested
in:

SELECT kod_sukl , nazev , v_platdo
FROM dlp_lecivepripravky
WHERE v_platdo >= '2030 -01 -01 ' AND v_platdo < '2031 -01 -01 '

Code listing 3.3 Date range query

Clearly, if the server simply retrieves the necessary columns from the database and orders the
result by v_platdo, the client can then very easily retrieve the desired records utilizing binary
search. Note that similar approach can be applied to LIKE clause operating on strings. Similarly,
we can also address private constants in multiple columns by performing the search operation
against the concatenation of them.

It should be noted that the communication cost of this method will be higher in all cases where
the following holds (assuming n as the lower bound for communication per query): n log(n) >
3.61 · n, i.e. where n > 13. We can safely assume that in the cases where this would come
into play (cases with unique keys for at most twelve records) will be sufficiently small and the
difference unimportant.

3.1.2.3 Complex queries, joins
While it is true that the majority of query types used by the average user can be reduced to
a SELECT statement with a single WHERE or HAVING clause, this is not always desirable. For
example, a user trying to find out whether or not a given chemical is present in a medical drug
they are taking from the database described in section 3.1.1, they would need to perform a query
that would look something like this

SELECT *
FROM dlp_lecivepripravky AS p
NATURAL JOIN dlp_slozeni AS sl

JOIN dlp_synonyma AS sy ON sl. kod_latky = sy. kod_latky
WHERE sy.nazev = 'BENZOPEROXIDUM ' AND p.nazev = 'ALGIFEN '

Code listing 3.4 Multijoin query

While there is technically nothing wrong with this query, once the WHERE clause containing
the private constants is removed, the result of the query is over 20 gigabytes.

SELECT *
FROM dlp_lecivepripravky AS p
NATURAL JOIN dlp_slozeni AS sl

JOIN dlp_synonyma AS sy on sl. kod_latky = sy. kod_latky ;

Code listing 3.5 Multijoin query with private constants removed

This is certainly too large for a simple transfer, but it is also too large to run PIR upon.
Therefore, the client must perform each of the two subqueries from the original query themself
and then join the results accordingly.
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SELECT *
FROM dlp_lecivepripravky AS p
NATURAL JOIN dlp_slozeni AS sl;
% privately retrieve records where p.nazev = 'ALGIFEN '

SELECT *
FROM dlp_synonyma AS sy;
% privately retrieve records where sy.nazev = 'BENZOPEROXIDUM '

% join the results

Code listing 3.6 Split multijoin query with private constants removed

While this requires certain computational capabilities from the client, it allows for a richer
set of possible queries.

3.2 Implementation
I implemented the application described above in Python 3.10. The application has a client side
and a server side. The protocol between the two sides is the following:

The client sends their requested PIR mode, the value t for their desired t-privacy, their SQL
query with the private constants removed and the index of the column that contains the
private constant to the server.

The server performs the sanitized SQL query. It then examines the column the client chose
as the one that will contain the private constant. It informs the client that the column either
does or does not contain only unique data. It also informs the client about the maximum
length in each column and the total length of the original data.

Based on this information, the client then calculates the total transfer cost of the PIR oper-
ation, taking into account the padding necessary and the either the cost of transferring the
mPHF parameters or performing log n queries instead of just one. If the client concludes
that the trivial transfer would be less costly, they perform it. Otherwise, they carry on with
regular PIR.

At this stage, the server either performs the trivial transfer and terminates, or, if the client
requested it, continues with the PIR portion of the protocol. If the data in client’s chosen
column is unique, it generates an mPHF2 for the values in the column and sorts the result
according to this mPHF. Otherwise, it simply orders the result according to the client’s
chosen column. Finally, it pads the the ordered result so that the records are uniform and
then writes them into a file.

The server then runs a number of instances of appropriate Percy++ PIR server binaries that
will allow the client to privately retrieve information contained in the file, passing the neces-
sary options selected by the client to them. It then sends the parameters of the PIR servers
and, if it was generated, the parameters of the mPHFto the client.

The client then invokes their own external Percy++ binary and begins to retrieve the records
they are interested in using PIR. If they have received the mPHF parameters, they need only
to evaluate it against their private constants and retrieve the resulting indices as described in
section 3.1.2.1. Otherwise, they perform binary search for their desired records, as described
in section 3.1.2.2.

2The mPHF does not need to be generated every time, but can instead be cached. This reduces the overall
time in a situation where multiple queries are made, either by the same client, or different clients.
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After the client finishes the retrieval of their desired records, they inform the server. The
server shuts down the instances of PIR server it has started and deletes the files it has created.

The implementation aims to mimic the options available to the client in a distributed envi-
ronment described in 2.2, as it allows for the testing of CPIR, ITPIR and hybrid protocols. While
in a true multi-server environment where each server has their own copy of the database, the
client would need to operate with a different set of parameters for each server as each server
would also need to generate their own mPHF, I chose not to feature this in my experiments.
Instead, I chose to present a setup that minimizes transfers between PIR servers and clients as
it would likely be costly (e.g. routed through an onion network) by generating the mPHF only
once at the database server and then distributing it to the PIR servers. This is simulated in
my application by first performing the preprocessing centrally and then invoking the Percy++
binaries.

Another difference between my tests and a potential real world scenario is that instead of
deleting the files it has produced, the server would instead keep them, effectively caching them
to be later used for other clients. To simulate this, I used larger amounts of requests from the
client than they would normally need. This serves to amortize the time cost of mPHF generation
or sorting and file system access.

3.3 Methodology

In this section I will describe the methods with which I acquired my data.

3.3.1 Hardware
I ran my benchmarks on an HP laptop equipped with an Intel Core i7-8750H CPU running Arch
Linux kernel version 6.2.10. I used MariaDB 10.11.2 for my DBMS.

3.3.2 Evaluation factors
I chose three main factors to evaluate across various scenarios:

communication cost

computational cost

information revealed to the server

I anticipated them all to be linked in a way where a decrease in one would lead to an increase
in the others. I theorized that the relationship between them would heavily depend on the
chosen type of PIR (CPIR, ITPIR or hybrid) and also on the chosen algorithm. I also expected
communication and computation costs to be dependent upon the size of the database against
which PIR is run.

3.3.3 Scenarios
To obtain representative data, I designed several scenarios similar to the ones a typical user of a
public database might go through. I used a single server setup for CPIR and a two server setup
for ITPIR and hybrid modes.
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3.3.3.1 Point queries
The first few scenarios concern themselves with measuring performance when using the mPHF
approach described in 3.1.2.1. I performed measurements using an increasing number of queries
per mPHF generated. The main point of these scenarios was to measure at which point a
trivial transfer would become preferable, and also how much information could be retrieved in a
reasonable time, as well as to compare the performance of different protocols.

More specifically, I ran 2500 random unique queries over the dlp_synonyma table. I chose
this table to demonstrate the unfortunate consequence of the design of the application, namely
that the majority of data transferred was padding. Indeed, without padding, the table is
not much larger than the dlp_lecivepripravky table (both roughly 10 MB). However, when
both are padded for PIR, the size of dlp_synonyma increases to more than five times that of
dlp_lecivepripravky (260 and 46 MB respectively). While this might be concerning to the
user (only less than four percent of the data they are retrieving is useful to them!), it is the price
they have to pay for perfect privacy. Why the user might not always want that shall be further
discussed in section 3.3.3.3.

The query that was performed is the following:

SELECT concat (kod_latky , "-", sq), nazev
FROM dlp_synonyma
WHERE concat (kod_latky , "-", sq) = $PRIVATE CONSTANT$

Code listing 3.7 Unmodified point query

The private constant is the concatenation of the two parts of the key. I performed the retrievals
with each of CHOR, GF28, GF216, and HYB modes. My preliminary testing showed that the
only other multi-server mode, ZZ P, performs roughly two orders of magnitude worse than the
remaining modes and so I chose not to include it in the test. I also ran a smaller batch of 25
retrievals with R AG, to compare the performance of a single-server mode against multi-server
ones. Again, I chose not to include AG in the test, because it was performing orders of magnitude
worse compared to the other modes.3

3.3.3.2 General queries
Next, my aim was to measure how impactful using general binary search queries would be
compared with using mPHF, and to measure how effective the retrieval of non-unique indexes
would be while maintaining maximum privacy.

In contrast to the previously mentioned point queries, a smaller table was chosen for general
queries. I chose the dlp_lecivepripravky table for its prominence in the database and its
convenient size. Even though the table is smaller, the number of retrievals still had to be
decreased to achieve reasonable times, and so only 250 retrieval were performed for multi-server
modes and 10 were performed for R AG. The query was constructed like this:

SELECT *
FROM dlp_lecivepripravky
WHERE nazev = $PRIVATE CONSTANT$

Code listing 3.8 Unmodified generic query

3.3.3.3 Revealing private constants
The previous two sets of scenarios were designed to test the computational and communication
costs of various modes of operation while revealing as little information to the server as possible.

3A comparison of the performance of all modes in a test described in section 3.3.3.3 can be found in file
privacy results.txt.
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This scenario is aimed at showing that these costs can be drastically decreased if the client is
willing to reveal some part of their private constants to the server.

The scenario is designed in such a way that the client reveals a suffix 4 of the key they are
interested in and thus reduces the total size of the database over which PIR is run. Thus, the
total time of retrieval is reduced.

As an example, let us look at the following query:

SELECT kod_sukl , nazev , sila , forma
FROM dlp_lecivepripravky
WHERE nazev='RITALIN ';

Code listing 3.9 Query containing a full private constant

Following the procedure described in 3.1, the query could be transformed into:

SELECT kod_sukl , nazev , sila , forma
FROM dlp_lecivepripravky ;

Code listing 3.10 Query with priate constant entirely removed

This query yields the selected columns from the entire table. This could be a problem, since
the time required for successful retrieval increases with the size of the database. The only way
for the client to reduce the size of the database is to reveal a part of their private constant,
transforming the original query into:

SELECT kod_sukl , nazev , sila , forma
FROM dlp_lecivepripravky
WHERE nazev LIKE '%IN';

Code listing 3.11 Query revealing the final two characters of the private constant

This way, obtaining the result will be much faster, but the server will learn some information
about the client’s query. This can be problematic, as the client has no effective control over how
much information is actually revealed to the server. For example, if there was only a single record
that ended with this suffix, the client would effectively reveal their entire secret constant to the
server. One way to prevent this could be for the server to send the client the list of unique values
that are present in the concerned columns. However, for a larger database, this will become
impractical, as the client might not be able to process the list effectively, or its transfer might
be too slow. Therefore, I will assume some intuitive knowledge on the part of the client about
the distribution of the data in the table.

Another way to prevent revealing too much could be to reveal some information about the
constant instead of revealing parts of it. One such information to be revealed could be the length
of the constant. This neatly deals with the issues outlined in section 3.1.1, reducing the total
amount of padding and the overall database size. An example query could look like this:

SELECT kod_sukl , nazev , sila , forma
FROM dlp_lecivepripravky
WHERE LENGTH (nazev) < 20 AND LENGTH (nazev) > 10;

Code listing 3.12 Modified query revealing that the constant has a certain length

Depending on the extent of the intuition attributed to the client and their desired privacy,
the range for the length could be broadened or narrowed. Indeed, both this approach and the
approach of revealing parts of the constant could be combined and expanded in a myriad of ways
(e.g. ranges and divisibility for numeric constants), but as general examples I believe these will
suffice.

4While I use a suffix in my examples, any other LIKE clause would work just as well.
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It should be noted that throughout this section, I assumed that the client has an intuitive
knowledge of the distribution of the data in the database. If such intuitive knowledge is not
available to the client or easily obtainable by them, or if the known distribution is not favourable
to the client’s query (e.g. they wish to retrieve a record whose key does not share many char-
acteristics with the rest of the set), the client can attempt to smooth out the distribution by
querying for the hash of the key instead of the key directly. Similar techniques can be used by
the client to reveal only parts of the hash, some of its divisors etc.

I ran tests for both the revealing of parts of the secret constant and ranges for its length. I
arbitrarily chose a record in the dlp_lecivepripravky with the most common length (7) of the
nazev field. I then performed a series of queries revealing its suffix starting at no suffix revealed
and ending when the effective reveal of the private constant was achieved (at 5 out of 7 characters
revealed). Similarly, I performed a series of queries revealing the range of the constant’s length.
I started with the range [0, 2× length($SECRET CONSTANT$)] and in each step narrowed
the range by one at each end, ultimately reaching a range only containing results of the same
length as the private constant.

I performed these queries for all of the available modes with the exception of the combination
of AG and no suffix reveal, because this test could not be performed on my machine due to
insufficient memory.

3.4 Results

In this section, I will present and discuss the results of my measurements.

3.4.1 Performance

The main determining factor for the performance of my PIR based retrieval seems to be the
uniqueness of the key. The worst case network transfer cost of performing log n queries per
record vastly overshadows that of having to transfer the parameters of mPHF. As far as time is
concerned, the time needed for sorting of the result set or mPHF generation will not play a role,
as both the sorting order and the mPHF parameters can be efficiently cached. It will naturally
take longer to perform log n queries than to perform a single one.

Having established that queries for unique and non-unique keys are indeed not comparable
in any meaningful sense, let us now look at each one separately. Full results for all modes can
be found in file performance results.txt in the attached archive. Detailed measurements are
included in the file performance measurements.csv.

3.4.1.1 Communication costs for unique keys

The communication costs for all multi-server modes and trivial transfer can be seen in the
following graph:
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Figure 3.2 Data transferred per protocol for unique keys

We can see that CHOR is clearly the most communication efficient of all the modes. Of note is
also the fact that HYB is distinctly more communication efficient than GF28, which is the mode
used as the ITPIR part of HYB. GF216’s cost is almost exactly double the cost of GF28, which is
to be expected, as the query contains the same number of elements for both of these modes, but
the elements of GF216 are twice as big.

Next, let us observe a section of the graph featuring all the previous modes, as well as R AG:
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Figure 3.3 Data transferred per protocol for unique keys, including R AG

We can see that R AG’s scaling is much worse, yet for a single query it does perform better
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than trivial transfer. This is no surprise, as the protocol was designed with much larger records
in mind.

3.4.1.2 Communication costs for non-unique keys

The following graph shows the costs of communication for all the multi-server modes and trivial
transfer for small number of non-unique queries:
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Figure 3.4 Data transferred per protocol for non-unique keys

We can see that even in this case, CHOR vastly outperforms all the other modes, as well as
the trivial transfer. GF28 and HYB have exactly the same performance in this case. This is due
to the fact that HYB would not lower its transfer cost by using recursion, and effectively becomes
GF28. Once again, GF216’s cost is double the cost of GF28.

Finally, let us also take a look at R AG’s performance compared to the other modes.
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Figure 3.5 Data transferred per protocol for non-unique keys, including R AG
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We can see that the cost of using R AG is much higher than that of a trivial transfer.

3.4.1.3 Time
Let us now compare the times it took to retrieve the records for each of the modes and the
scenarios designed. I will consider time to be a good enough measurement of computational
complexity, I will not be comparing the times to trivial transfer, as the time needed for that would
heavily depend on network speed as well as client’s capabilities, both of which will inevitably vary
wildly between deployment situations. The time presented will be total time of the operation.
However, the vast majority of this time was spent performing PIR processing. Time in seconds
can be seen in the following table:

# records retrieved R AG GF216 GF28 HYB CHOR
Unique 2500 - 400.3681 415.2385 299.4892 225.7498

Non-unique 250 - 98.8406 314.1123 312.7850 34.6995
Unique 25 362.1292 - - - -

Non-unique 3 153.9076 - - - -
Table 3.1 Timing for queries in different modes

The following conclusions can be drawn from the data:

CHOR, aside from being the most communication efficient, is also the fastest mode.

R AG is orders of magnitude slower than the other modes due to its computational nature.

If recursion is used, HYB is faster than the GF2N modes. If it is not, it performs the same as
GF28.

Unlike the communication cost, the processing time for GF216 is lower than for GF28.

However, we can observe that, as we established earlier, the size of the database also influences
the performance, not just the chosen mode. To quantify this, I ran a smaller benchmark to see
how the different modes would perform on a database of changing size. I only changed the
number of records in the database, since the client will never be retrieving any columns it does
not need, and therefore in a database with ideally spaced records, the size of each record will
be predetermined. I performed 20 unique queries for each of GF216, GF28, HYB, and CHOR for
database sizes ranging between 2500 and 200000 records of uniform sizes. The results of the
measurements can be seen in figure 3.6.

We can see that the growths are linear with some unpredictable spikes for GF28 and GF216.
HYB mostly follows GF28, but at 150,000 records drops down and continues from there. This is
the point at which HYB switches to using R AG as well as GF28. Also of note is the performance
of CHOR, which seems to be the fastest of all the protocols. The full results can be found in file
db results.txt.

In conclusion, all the protocols become slower with higher database sizes. I will discuss the
utility of this in section 3.4.2.

3.4.1.4 Protocol choice
Which protocol should the client choose then? In the case that multiple servers can be operational
and robustness is not required, CHOR seems to be the only reasonable choice.

If robustness is required, the client should choose HYB, and depending on whether they wish
to optimize for time of bandwidth, choose either GF216 or GF28 as the ITPIR component respec-
tively. It should be noted, however, that R AG, operating as the CPIR component of HYB, is not
secure. Until a suitable replacement is implemented in Percy++, the client should use the ITPIR
component on its own for complete privacy.
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Figure 3.6 Time in seconds per mode for database size

R AG and AG are both not secure, and therefore Percy++ offers no single-server solution.
Should such a solution be desired, it must be sought elsewhere, e.g. [8]. Even if that weren’t the
case, their performance is not good enough for real world deployment.

3.4.2 Privacy

Let us now take a look at how clients can influence the performance of their queries by revealing
information about their secret constants. As I have demonstrated earlier, the size of the database
determines the per query speed of retrieval. If a non-unique key is used, the total performance
is further influenced by the need to perform multiple queries. Therefore, limiting the size of the
database is a good way to improve performance, both in terms of computation and communi-
cation. As was mentioned earlier, limiting the size of the padded records is not an option, and
thus only the number of records can be meaningfully influenced.

I will demonstrate this on the results of the benchmark of revealing suffix and length range of
the private constant for ZZ P. The full results for all modes can be found in privacy results.txt
file in the attached archive.
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bench time/s total comm data size pir db size % useful saved/s worst
suf-0 120.86 4.04 MB 9.79 MB 45.93 MB 21.32 16
suf-1 7.23 465.70 KB 1.42 MB 4.66 MB 30.43 113.63 14
suf-2 1.06 99.70 KB 235.55 KB 690.95 KB 34.09 6.17 11
suf-3 0.04 7.30 KB 11.97 KB 22.70 KB 52.71 1.02 7
suf-4 0.02 4.09 KB 2.05 KB 3.33 KB 61.68 0.02 4
suf-5 0.01 1.44 KB 0.26 KB 0.28 KB 93.62 0.01 1
len-0 38.91 1.79 MB 5.39 MB 24.80 MB 21.73 16
len-1 47.25 2.23 MB 5.01 MB 23.09 MB 21.70 -8.34 16
len-2 44.39 2.13 MB 4.76 MB 22.00 MB 21.64 2.86 15
len-3 24.34 1.16 MB 4.59 MB 21.23 MB 21.63 20.05 15
len-4 33.42 1.62 MB 4.44 MB 20.54 MB 21.61 -9.08 15
len-5 27.61 1.84 MB 4.09 MB 13.76 MB 29.74 5.81 15
len-6 20.08 1.40 MB 3.30 MB 11.03 MB 29.95 7.53 15
len-7 8.67 583.64 KB 1.33 MB 4.43 MB 30.04 11.41 14

Table 3.2 Effects of revealing information about secret constant for ZZ P

The bench column displays the name of the benchmark. The number indicates how long the
revealed suffix is for suffix reveal and how much the range has shrunk for length range. The
total amount of communication between the server and the client can be seen in the total comm
column. Columns data size and pir db size contain the sizes of the query result and the result
padded for PIR respectively. The percentage of useful data in the padded result is expressed in
the % useful column. Time saved over the previous row can be seen in the save/s column, and
the final column contains the number of queries necessary to retrieve a record in the worst case
scenario.

We can clearly see that revealing information about the secret constant does in fact improve
performance by virtue of lowering the database size. While the trend isn’t uniform (sometimes,
the record will end up at a worse position in terms of binary search), it is clearly present. The
performance improvement is much steadier for the length reveal, and the overall performance
remains lower than when a suffix is revealed. However, the secret constant is never revealed, un-
like suf-5, in which the only remaining records in the database match the client’s secret constant.
Also, in all cases except for suf-4 and suf-5, trivial transfer is, communication-wise, worse than
the PIR transaction performed.

benchmark record size num records
suf-0 736 62,400
suf-1 507 9,189
suf-2 418 1,653
suf-3 264 86
suf-4 222 15
suf-5 141 2
len-0 679 36,520
len-1 677 34,107
len-2 676 32,546
len-3 675 31,457
len-4 674 30,481
len-5 488 28,191
len-6 483 22,838
len-7 479 9,243

Table 3.3 Effects of revealing information about secret constant for ZZ P on the number of records
and their size
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In table 3.3, we can see that the effect of revealing information to the server is quite unpre-
dictable. For example, we see a large jump in record size between len-4 and len-5, which also
corresponds to a large increase in percentage of effective data in the database which we see in the
corresponding rows of table 3.2. Indeed, it means that a record that was much larger than the
rest had been dropped, but the client had no way of predicting that this was going to happen.
While they could have, in theory, gained some knowledge about the distribution of the data in
the table by performing a trivial transfer of certain columns in advance, the generality of this
approach is dubious and also runs the risk of disclosing sensitive information to the server.

In conclusion, paired with clever trivial transfers, the client can craft a query that does
reduces the client’s privacy but increases the performance. This might be a worthwhile trade-off,
but generalizing this approach might not be easy. Further research is needed in this area.
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Chapter 4

Conclusion

I have successfully completed the goals of this thesis. I have described all solutions to the PIR
problem available in the Percy++ library. I have analyzed their properties, described the security
guarantees they present, compared their respective strengths and weaknesses.

Building on the insight I have gained researching this topic, I have designed several generic
deployment scenarios. I have analyzed their specifics and given concrete real world examples
of situations in which these generic scenarios might might find use. While I did not give it
much attention in the later parts of my thesis, I find the topic of PIR enabled anonymizers very
interesting. I would like to continue my research by enhancing existing anonymizers with PIR,
utilizing what I have learned over the course of writing this thesis.

I have also built a testing suite designed to mimic some of the designs proposed in the previous
parts. On a suitable dataset, I have performed tests to verify my earlier claims. I have performed
performance analysis of the different protocols. While my approach turned out to be efficient
enough in a multi-server environment, its performance in a single-server setting was not sufficient
to outperform trivial transfer except for very small cases. In further research, I would like to
focus on integrating other existing CPIR protocols into the framework of Percy++.

In the framework of my SQL mock-up framework, I have devised a way for the client to
gain some performance by sacrificing parts of their privacy. While it did turn out that the gain
in performance is substantial, I also noticed that the amount of lost privacy cannot be easily
controlled by the client. This is due to the fact that the client has only limited knowledge of the
database and few ways to obtain more information about it. I would like to further improve the
ways in which the client might choose to limit their privacy for a gain in performance.

Overall, I have shown that PIR is a useful piece of technology. I have shown that it can be
easily integrated into existing infrastructures utilizing public facing SQL databases and provide
improved experience for the clients. I have shown that for very small cases, single-server solution
can be employed. If a client needs to perform more than a few queries, a multi-server solution is
necessary. Unless robustness against misbehaving servers is necessary, Chor’s algorithm performs
the best on all metrics. If robustness is necessary, then Goldberg and Devet’s hybrid algorithm
should be chosen.
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