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Abstract

This work focuses on the solution of the speed profile optimization
utilizing time-spatial domain transformation. The work is motivated
by practical requirements and comprehensively solves the problem of
speed profile optimization, from the problem formulation to the algo-
rithm for the optimization tasks. In the proposed solution, simplicity
and reliability are emphasized to facilitate transfer for potential use in
the automotive industry.

Practical requirements covered in this work are simplicity, reliability
(solution is available at a desired time), the computational efficiency
of speed profile optimization with arbitrary (e.g., zero) initial and fi-
nal speed, and fixed travel time. Further, speed limits, road grades,
and an adequately complex vehicle model are assumed. Optimiza-
tion is robust to the speed limit violation. Moreover, passage through
intersections with traffic lights with known passage intervals is also
optimized.

Key words: Speed profile optimization, time-spatial domain trans-
formation, quadratic programming solution
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Abstrakt

V této práci se zabývám řešením optimalizace rychlostního profilu s vy-
užitím transformace mezi časovou a prostorovou doménou. Práce vy-
chází z praktických požadavků a problém optimalizace rychlostního
profilu řeší komplexně. To znamená od formulace optimalizační úlohu
až po samotný optimalizační algoritmus. Přitom důraz je kladen na
jednoduchost a spolehlivost celkového řešení, aby se usnadnilo poten-
ciální užití v automobilovém průmyslu.

Praktické požadavky zahrnuté v této práci jsou jednoduchost, spolehli-
vost (dostupnost řešení v předem stanovený čas) a efektivita výpočtu
rychlostního profilu s libovolnou (např. nulovou) počáteční a koncovou
rychlostí a pevně danou dobou jízdy. Řešení dále uvažuje rychlostní
omezení, sklon vozovky a přiměřeně složitý model vozidla. Optimal-
izace je robustní vůči překročení rychlostního limitu. Dále je řešeno
plánování průjezdu křižovatkami se světelnou signalizací, jejíchž prů-
jezdové intervaly jsou předem známy.

Klíčová slova: Optimalizace rychlostního profilu, transformace mezi
časovou a prostorovou doménou, řešení kvadratického programování
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1 Introduction

Due to the legislator’s push for emission reduction, the whole auto-
motive industry is looking for new ways of achieving more efficient,
greener solutions for powertrain units to drive cars. One of the promis-
ing directions is performing a complete system optimization to achieve
even more robust efficiency improvements in combustion, hybrid, or
electric vehicles.

Vehicle equipment such as Speed Advisory Systems (SAS) can im-
prove fuel consumption, ride comfort, or reduce idle time on red traffic
lights [Wan et al., 2016]. Connected vehicles can also utilize traffic sig-
nal information predictively to manage their speed in advance to lower
fuel consumption and reduce idling [Mandava et al., 2009] or trip time
[Asadi and Vahidi, 2011]. Signal Phase and Timing (SPaT) informa-
tion of signalized intersections is provided to the vehicle to encourage
economical driving while passing through the intersections. In vehi-
cle systems, calculate, based on SPaT, and provide speed advice to the
driver, allowing the driver to adapt the vehicle’s speed to pass through
the upcoming signal on green [Xia et al., 2012].

Another direction of development is on the side of infrastructure,
which is outside the scope of this work. The idea is that each inter-
section has a management system planning the passage of semi or
fully autonomous vehicles through the intersection [Au et al., 2015].

Technological enablers are vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communication that brings information valuable
for planning and optimization to the vehicle. Then, efficient optimiza-
tion and planning can be performed on board while preserving a high
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Chapter 1. Introduction

level of vehicle autonomy, which is essential from the safety opera-
tion perspective. Current vehicle control units (VCU) are powerful,
and multicore processors are being used these days. However, speed
profile optimization of relevant routes is still complex. Speed profile op-
timization can be defined as a problem of minimizing fuel consumption
subject to speed and acceleration limits and time constraints. Alter-
natively, a comfort or another safety constraint can also be formulated.
The problem is (in principle) even more complex when the traffic light
passage comes into place.

In this work, algorithmic aspects of speed profile optimization are
explored, and a smart solution is proposed. The proposed solution
introduces innovative problem formulation, on the one hand, and a
sophisticated algorithm for its solution, on the other hand.

Vehicle Dynamics

A longitudinal vehicle dynamic

ds(t)

dt
= v(t), s(t0) = x0,

dv(t)

dt
= a(t), v(t0) = v0. (1.1)

is considered. The double integrator is the minimalistic model con-
taining the essence the proposed approach requires. However, the
approach can handle more than a simple model, and common ex-
tensions (aerodynamic drag, tire resistance, brakes, gravity) can be
covered straightforwardly.

Objective Function

Treating the trade-off between time and economy is essential in these
tasks - one can imagine an aggressive or passive control strategy. The
aggressive strategy minimizes time while it is not economical. The
passive one minimizes the economic cost while resulting in long travel
time. In this work, the economic cost is minimized subject to the
fixed time. The economic cost is represented via positive acceleration
(generated by the engine). Acceleration can be seen as a normalized
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force. Therefore, the stage cost

l(ak) = v̄k∆tk
max{0, ak}

η(max{0, ak}, vk)
, (1.2)

represents unit mass work, which unit is m2/s2, and where v̄k is the
average speed over the time increment ∆tk = tk+1 − tk. Note that in
this work, the forward differentiation convention is used. Engine effi-
ciency map η(max{0, ak}, vk) parametrized by acceleration produced by
the engine and the current speed of the vehicle.

Optimal Control Problem

Basic speed profile optimization problem can be formulated as

min
1

m

N−1∑
k=0

l(ak), (1.3a)

s.t. tk+1 = tk +∆tk, t0 = tinit, (1.3b)
vk+1 = vk + ak∆tk, v0 = vinit, (1.3c)
Φ(tk, vk) ≤ vk ≤ Φ(tk, vk), k = 1, . . . , N (1.3d)
ak ≤ ak ≤ ak, k = 0, . . . , N − 1 (1.3e)
N∑
k=1

∆tk = tf . (1.3f )

with travel optimization horizon N and time increment ∆tk = tk+1 −
tk. The optimization problem minimizes the engine’s work in the cost
function subject to the dynamics, speed and acceleration limits, and
fixed final time. It is assumed that vehicle mass m is constant. Hence,
it is omitted further in this work.

Challenges of the optimization problem that make the problem dif-
ficult to compute in embedded devices are

Challenge 1 Long optimization horizon

Challenge 2 Affine constraints

Challenge 3 Constraints are function of state variable
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Chapter 1. Introduction

Time-to-spatial Domain Transformation

A solution based on a straightforward transformation of longitudi-
nal dynamics parametrized in time to the spatial parametrization was
evaluated in [1]. The transformation simplifies the state constraint to
simple bounds. On the other hand, it makes the model

dt̃(x)

dx
=

1

ṽ(x)
, t̃(x0) = t0,

dṽ(x)

dx
= ã(x)

1

ṽ(x)
, ṽ(x0) = ṽ0 (1.4)

nonlinear. The nonlinearity is stronger as the speed approaches zero
- the singularity. The transformed variables are time t̃(x) = s−1(x) = t,
speed ṽ(x) = v(t̃(x)), and acceleration ã(x) = a(t̃(x)) at a particular
position x ∈

[
x0, xf

]
originates from Sampei and Furuta [1986].

Since the optimization shall be running not in time but in space
instead, the cost function needs to be updated accordingly

l(ãk) = ∆sk
max{0, ãk}

η(max{0, ãk}, ṽk)
, (1.5)

where ∆sk ≈ ṽk∆tk, to minimize fuel efficiency parametrized in space.

The optimal control problem in spatial domain can be summarized
as

min
N−1∑
k=0

l(ãk), (1.6a)

s.t. t̃k+1 = t̃k +
1

ṽk
∆sk, t̃0 = t̃init, (1.6b)

ṽk+1 = ṽk + ãk
1

ṽk
∆sk, ṽ0 = ṽinit, (1.6c)

ṽk ≤ ṽk ≤ ṽk, k = 1, . . . , N (1.6d)
ãk ≤ ãk ≤ ãk, k = 0, . . . , N − 1 (1.6e)
N∑
k=1

1

ṽk
∆sk = tf . (1.6f )

In problem (1.6a), Challenge 3 is overcome by the transition to the
spatial domain. On the other hand, it brings two additional difficulties
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1.1 Goal of This Work

into the play – singularity for zero speed and a nonlinear dynamical
model.

1.1 Goal of This Work

In this thesis, all the challenges, namely

Challenge 1 Long optimization horizon

Challenge 2 Affine constraints

Challenge 3 Constraints are function of state variable

Challenge 4 Singularity for zero speed

Challenge 5 Nonlinear dynamical model

that comes with longitudinal dynamic optimization are addressed, and
a suitable solution of optimal control problem (1.3a) is proposed.
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2 Multiple-Domain Optimal
Control

A novel approach to efficient speed profile optimization over the finite
horizon is presented. The approach uses exact model discretization,
transition into the spatial domain, and exact linearization of the dy-
namical model in the spatial domain is presented in this section.

2.1 Longitudinal Vehicle Dynamics

The zero order hold of ak is used to exact linearization of (1.1)

sk+1 = sk + vk∆tk +
1

2
ak∆

2tk, (2.1)

vk+1 = vk + ak∆tk. (2.2)

The relation between time and spatial increment given by (2.1)

∆sk = vk∆tk +
1

2
ak∆

2tk,

∆sk
∆tk

=
2vk + ak∆tk

2
,

implies the relation for the time increase

∆tk =
1

v̄k
∆sk, ∆sk = sk+1 − sk, (2.3)

where v̄k =
vk+vk+1

2 is the average speed. This is important for the
practical requirement that speed can be zero at the beginning and the
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Chapter 2. Multiple-Domain Optimal Control

end of the travel horizon. It is strictly positive otherwise, i.e.

v0, vN ≥ 0,

v1,...,N−1 > 0,
=⇒ v̄0,...,N−1 > 0. (2.4)

The resulting dynamics obtained by substituting (2.3) to (2.2) trans-
formed into the spatial domain is then

vk+1 = vk + ak
1

v̄k
∆sk. (2.5)

Linear dynamical model transformed into spatial domain became non-
linear in speed. By manipulation, we can simplify the transformed
dynamics as

vk+1 − vk = ak
2

vk + vk+1
∆sk

(vk + vk+1)(vk+1 − vk) = 2ak∆sk

v2k+1 − v2k = 2ak∆sk.

The dynamical model becomes linear once a quadratic speed qk = v2k
is substituted as

qk+1 = qk + 2ak∆sk, (2.6)

and due to the non-negativity of speed, also vk =
√
qk holds. Since

the dynamic is linear in quadratic speed, a suitable model inspired
by A. Vahidi and Peng [2005] is being used in this work. The model,
however generic enough to cover also rail vehicles [Davis and Niehaus,
1926] used up to these days, is

ak =

thrust︷︸︸︷
a+ +

brake︷︸︸︷
a− +

roll. + air res.︷ ︸︸ ︷
α+ γv2k +

gravity︷ ︸︸ ︷
g sin(πφk

180 ) = a+ + a− + aq + a#, (2.7)

where aq = γqk, a# = α+ g sin(πφk
180 ) and with calibration parameters α,

γ, gravitational acceleration g, and road grade φk [deg].

2.2 Speed Profile Optimization (in Space)

In this section, a (linear) mathematical program is described to explain
the key ideas. Rather, simple models and cost functions are described
to show the naked principles rather than complex ones. However,
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2.2 Speed Profile Optimization (in Space)

we will see that the class of problems that can be solved using the
proposed approach is rich.

To avoid non-smooth nature of max function in (1.5), auxiliary vari-
ables for positive (a+) and negative (a−) accelerations are used such
that

ak = a+k − a−k + aq + a#, 0 ≤ a+k , 0 ≤ a−k , (2.8)

then the stage cost (1.5) becomes smooth as follows

ls(qk, ϵk, a
+
k ) = Ak(qk, a

+
k ) +

1

2
ϵ2k (2.9)

≈ ∆sk

1

2

[
qk
a+k

]T [
Ak,qkqk Ak,qka

+
k

Ak,a+k qk
Ak,a+k a+k

][
qk
a+k

]
+

[
qk
a+k

]T [
Ak,qk

Ak,a+k

]+
1

2
ϵ2k,

where Ak(qk, a
+
k ) = ∆sk

a+k
η(qk,a

+
k )

and ϵk is a slack variable that will be

used to penalize speed limit violations. The term Ak(qk, a
+
k ) is approxi-

mated around nominal (quadratic) speed and nominal acceleration by
second-order Taylor expansion with first and second derivatives de-
noted as

Ak,x = ∆sk
∂

∂x
Ak(x, y)|xnom,ynom ,

Ak,xy = ∆sk
∂

∂x∂y
Ak(x, y)|xnom,ynom ,

evaluated in nominal points xnom, ynom at stage k.

The resulting optimization problem over the travel optimization hori-
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Chapter 2. Multiple-Domain Optimal Control

zon N is

min

N−1∑
k=0

ls(qk, ϵk, a
+
k ), (2.10a)

s.t. qk+1 = qk + 2∆skak, (2.10b)
0 < q

k
≤ qk + ϵk ≤ qk, (2.10c)

0 ≤ q
N

≤ qN + ϵN ≤ qN , (2.10d)

ak = a+k − a−k + aq + a#, (2.10e)
ak ≤ ak ≤ ak, (2.10f )
0 ≤ a+k ≤ ∞, (2.10g)
0 ≤ a−k ≤ ∞, k = 0, . . . , N − 1, (2.10h)
q0 = v20, (2.10i)
qN = v2f , (2.10j)

1

N + 1

N∑
k=1

qk = cf , (2.10k)

parametrized by initial speed v0, terminal speed vf , and average quadratic
speed cf .

Recall several important differences in problem (2.10a) compared to
(1.6a). First, slack variables were added to overcome infeasibility when
speed limits are violated. Second, linear longitudinal vehicle dynamics
in quadratic speed are involved. Third, a terminal speed constraint is
added. Fourth, the equality constraint that average quadratic speed is
equal to parameter cf is used to make the problem solvable instead of
nonlinear constraint (1.6f). Parameter cf is unknown to be optimized
in superordinate optimization later.

In the following, the optimization problem is transformed into the
standard form of a mathematical program. Concatenation of the op-
timization variables

q =


q0
q1
...
qN

 , ϵ =


ϵ0
ϵ1
...
ϵN

 ∈ RN+1, a =


a0
...

aN−1

 , a− =


a−0
...

a−N−1

 , a+ =


a+0
...

a+N−1

 ∈ RN ,
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2.2 Speed Profile Optimization (in Space)

leads to a compactified notaion of the linear program

min
1

2
q̃TP q̃ + q̃TSã+ +

1

2
ã+T

Rã+ + q̃T p̃+ ã+T
r̃ +

1

2
ϵ̃T ϵ̃, (2.11a)

s.t. Aq̃ = Bã, (2.11b)
q̃ ≤ q̃ + ϵ̃ ≤ q̃, (2.11c)

ã = ã+ − ã− +Cq̃ + ã#, (2.11d)
ã ≤ ã ≤ ã, (2.11e)
0 ≤ ã+ ≤ ∞, (2.11f )
0 ≤ ã− ≤ ∞, (2.11g)
eT0 q̃ = v20, (2.11h)
eTN q̃ = v2f , (2.11i)

1T q̃ = (N + 1)cf , (2.11j)

with cost vectors and matrices

P =


A0,qkqk

A1,qkqk
. . .

AN,qkqk

 ∈ RN+1×N+1, p =


A0,qk

A1,qk
...

AN,qk

 ∈ RN+1,

S =


A0,a+k qk

A1,a+k qk
. . .

AN,a+k qk
0

 ∈ RN×N+1,

R =


A0,a+k a+k

A1,a+k a+k
. . .

AN−1,a+k a+k

 ∈ RN×N , r =


A0,a+k
A1,a+k...
AN,a+k

 ∈ RN ,
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Chapter 2. Multiple-Domain Optimal Control

and with constraint vectors and matrices defined as

A =


−1 1

−1 1
. . . . . .

−1 1

 , C =


γ 0

γ 0
. . . . . .

γ 0

 ∈ RN×N+1,

B =


2∆s0

2∆s1
. . .

2∆sN−1

 ∈ RN×N , 1 =


1
1
...
1

 ∈ RN+1,

a =


a0
...

aN−1

 , a =


a0
...

aN−1

 ∈ RN , q =


q
0
q
1...

q
N

 , q =


q0
q1
...
qN

 ∈ RN+1,

e0 =


1
0
...
0

 , eN =


0
0
...
1

 ∈ RN+1.

For a stacked vector of optimization variables

z =
[
q̃T , ϵ̃T , ãT , ã+T

, ã−T
]T

∈ R5N+2

the resulting mathematical program with affine equality constraint is

min
1

2
z̃T H̃z̃+ fTz, (2.12a)

s.t. b ≤Az ≤ b, (2.12b)
z ≤ z ≤ z, (2.12c)

which is a common form of generic quadratic program where
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2.3 Speed Profile Optimization (in Acceleration)

H =


P 0 0 ST 0
0 I 0 0 0
0 0 0 0 0
S 0 0 R 0
0 0 0 0 0

 ∈ R(5N+2)×(5N+2), f =


p
0
0
r
0

 , z =


−∞
−∞
ã
0
0

 , z =


∞
∞
ã
∞
∞

 ,

A =



A 0 −B 0 0
I I 0 0 0

−C 0 I −I I
oT
0 0T 0T 0T 0T

oT
N 0T 0T 0T 0T

eT 0T 0T 0T 0T


∈ R(3N+4)×(5N+2), b =



0
q̃

a#

v20
v2f
Ncf


, b =



0

q̃
a#

v20
v2f
Ncf


.

The second part of this thesis is dedicated to the solution of problem
(2.12).

An example of the optimization (2.12) result is shown in Figure 2.1.

Figure 2.1: Speed and acceleration profiles in the spatial and time
domain sampled equidistantly in space.

2.3 Speed Profile Optimization (in Acceleration)

The optimization problem (2.12) size can be dramatically high for long
routes, prohibiting optimization on an embedded device. The issue is

13



Chapter 2. Multiple-Domain Optimal Control

that the equidistant sampling period has to be small enough to capture
the rapid changes in some problematic parts of the route. On the other
hand, such a period leads to an oversampling on the parts where road
conditions are unchanged for a long distance.

Move blocking [Raphael et al., 2007] is a common approach to re-
ducing degrees of freedom in optimization from the control application.
The approach fixes inputs for several consecutive periods. In our prob-
lem, there is no reasonable way to choose a period count for which the
acceleration should be fixed on a single value. However, when analyz-
ing a solution (Figure 2.1), one shall notice that optimal strategy be-
haves bang-bang-like. The solution contains intervals where the full
acceleration is applied, then some intervals with constant speed, and
some with full deceleration. One additional situation is typical when
driving a car – no throttle nor brakes, the vehicle is only decelerating
by the cause of resistances.

l̃s(∆s̃l, q̃l, ϵ̃l) = Bl(ql,0, ∆s̃l,0) + Bl(ql,1, ∆s̃l,1) +
1

2

m−1∑
j=0

ϵ̃2l,j

≈ 1

2
ql,0Bl,q(ql,0, ∆s̃l,0)∆s̃l,0 +

1

2
ql,1Bl,q(ql,1, ∆s̃l,1)∆s̃l,1 +

1

2

m−1∑
j=0

ϵ̃2l,j ,

(2.13)

where Bl(ql,j , ∆s̃l,j) = ∆s̃l,j
a+l,j

η(ql,j ,a
+
l,j)

. For this parametrization to remain
in the class of quadratic programming, only first-order terms in Taylor
expansion Bl,q(ql,j , ∆s̃l,j) = ∆s̃l,j

∂
∂ql,j

Bl(ql,j)|qnom can be used. Hence, ad-
equate nonlinearity approximation of efficiency function η is assumed
here.

14



2.3 Speed Profile Optimization (in Acceleration)

min

M∑
l=1

l̃s(∆s̃l, q̃l, ϵ̃l) +
1

2
ϵ̃2M,0, (2.14a)

s.t. q̃l−1,1 = q̃l−1,0 + 2ã0∆s̃l−1,0, (Acceleration mode ã0 = a)
q̃l−1,2 = q̃l−1,1 + 2ã1∆s̃l−1,1, (Constant speed mode ã1 = 0)
q̃l−1,3 = q̃l−1,2 + 2ã2∆s̃l−1,2, (Zero thrust mode ã2 = −(aq + a#))
q̃l,0 = q̃l−1,3 + 2ã3∆s̃l−1,3, (Breaking mode ã3 = a) (2.14b)
0 < q̃

l−1,j
≤ q̃l−1,j + ϵ̃l−1,j ≤ q̃l−1,j , (2.14c)

0 < q̃
M,0

≤ q̃M,0 + ϵ̃M,0 ≤ q̃M,0, (2.14d)
m−1∑
j=0

s̃l,j = ∆Sl, l = 1 . . . ,M, j = 0, . . . , 3,

q̃0,0 = v20, (2.14e)
q̃M,0 = v2f , (2.14f )

1

mM + 1

 M∑
l=1

m−1∑
j=0

q̃l−1,j + q̃M,0

 = c̃f . (2.14g)

Since ã1 = 0, the optimization problem (2.14) can be reduced by
eliminating constant speed mode from the optimization.

q̃

0 s

ã

vl,0 vl,1 vl,2 vl,3 vl+1,0

a0

a1 a2 a3

q0

Figure 2.2: Four consecutive modes at each stage element l: 1) Accel-
eration; 2) Constant speed; 3) Zeros thrust; 4) Breaking.

The road must be separated into stage elements, over which road
grade and speed limits are constant values. A stage element l can be
defined as illustrated in Figure 2.2, each containing four consecutive

15



Chapter 2. Multiple-Domain Optimal Control

driving modes (2.14b) - acceleration, constant speed, zero thrust, and
breaking. The stage is defined by the following vectors and matrices

q̃l =


q̃l−1,1

q̃l−1,2

q̃l−1,3

q̃l,0

 , ϵ̃l =


ϵ̃l−1,1

ϵ̃l−1,2

ϵ̃l−1,3

ϵ̃l,0

 , ∆s̃l =


∆s̃l−1,0

∆s̃l−1,1

∆s̃l−1,2

∆s̃l−1,3

 , 1̃l =


1
1
1
1

 ∈ Rm,

Ãl =


1
−1 1

−1 1
−1 1

 , C̃l =


0 0 0 −1

0 0 0
0 0

0

 ∈ Rm×m,

B̃l =


2ã0

2ã1
2ã2

2ã3

 , S̃l =


Bl, q(ql,0, ∆s̃l,0)

Bl, q(ql,0, ∆s̃l,1)
0

0

 ∈ Rm×m,

and for the overall optimization problem is

min
1

2
q̃T S̃T∆s̃+

1

2
∆s̃T S̃q̃ +

1

2
ϵ̃T ϵ̃, (2.15a)

s.t. Ãq̃ = B̃∆s̃, (2.15b)
Ẽ∆s̃ = h̃, (2.15c)
q̃ ≤ q̃ + ϵ̃ ≤ q̃ (2.15d)

ẽT0 q̃ = ṽ20, (2.15e)
ẽTmM+1q̃ = ṽ2f , (2.15f )

1̃T q̃ = (mM + 1)c̃f , (2.15g)

where the related stacked vectors and matrices composed of stage vec-
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tors and matrices are

q̃ =


q̃0
q̃1
...

q̃M

 , ϵ̃ =


ϵ̃0
ϵ̃1
...

ϵ̃M

 , 1̃ =


1

1̃1
...

1̃M

 , q̃ =


q̃
0

q̃
1...

q̃
M

 , q̃ =


q̃0
q̃1
...

q̃M

 ∈ RmM+1,

Ã =


−ẽ0 Ã1

C̃2 Ã2

. . . . . .
C̃M ÃM

 , S̃ =


S̃1

S̃2

. . .
S̃M 0

 ∈ RmM×(mM+1),

B̃ =


B̃1

B̃2

. . .
B̃M

 ∈ RmM×mM , ∆s̃ =


∆s̃1

...
∆s̃M

 ∈ RmM ,

Ẽ =


1̃T1

. . .
1̃TM

 ∈ RM×mM , h̃ =


∆S̃1

...
∆S̃M

 ∈ RM .

2.4 Condensed Sparse Problem Formulation

Following the idea in Mancuso and Kerrigan [2011], one can eliminate
out input variables (∆s̃) to condense the optimization. Only state vari-
ables (q̃, ϵ̃) remains. To eliminate the input variables, we use (2.15b),
from which we can write

∆s̃ = P̃ q̃, P̃ = B̃−1Ã.

Use of this approach is rare since it requires an inverse of B̃. When
we first eliminate the constant speed mode from the optimization (due
to ã1 = 0), the inversion exists, and condensing can proceed. Further,
since in our case B̃ is diagonal, then the inverse is a diagonal matrix as
well, and P̃ is sparse (bi-diagonal). Hence, variable elimination does
not ruin the resulting optimization problem sparsity, yet the number
of variables decreases significantly.

The resulting optimization problem, with a stacked vector of opti-
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mization variables
z̃ =

[
q̃T , ϵ̃T

]T
∈ R2(mM+1)

is the standard mathematical program with affine equality constraint
as follows

min
1

2
z̃T H̃z̃+ f̃

T
z̃, (2.16a)

s.t. b̃ ≤ Ãz̃ ≤ b̃, (2.16b)
z̃ ≤ z̃ ≤ z̃, (2.16c)

where

H̃ =

[
(S̃T P̃+P̃ T S̃)

2
I

]
∈ R2(mM+1)×2(mM+1),

f̃ =

[
0
0

]
, z̃ =

[
−∞
−∞

]
, z̃ =

[
∞
∞

]
∈ R2(mM+1),

Ã =



P̃ 0
I I

ẼP̃ 0
ẽT0 0T

ẽTnM+1 0T

1̃T 0T


∈ R(3mM+4)×2(mM+1),

b̃ =



0
q̃

h̃
ṽ20
ṽ2f

(mM + 1)c̃f


, b̃ =



∞
q̃

h̃
ṽ20
ṽ2f

(mM + 1)c̃f


∈ R3mM+4.

The first affine constraint comes from the originally simple constraint
∆s̃ ≥ 0. If positive definiteness of the H̃ in (2.16) is required, a common
regularization technique, adding a small positive diagonal matrix, can
be used. However, problem (2.16) is well-defined and has a unique
solution. Therefore, no regularization is typically needed.

Example of the optimization result is shown in Figure 2.3.
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2.5 Finding cf Using Bisection Method

Figure 2.3: Speed and acceleration profiles in the spatial and time
domain sampled in acceleration.

2.5 Finding cf Using Bisection Method

The following idea will be proved: If we choose some final time tf > 0
and find an optimal speed profile, there is a unique cf > 0 correspond-
ing to that speed profile. If we increase tf , the corresponding cf is
lower and vice versa. Moreover, if we increase tf , the speed at every
moment will be the same or decrease compared to the previous opti-
mal speed profile. If this is true, one can formulate the optimization
problem using cf , which results in a less complex problem. Yet, due to
the correspondence between cf and tf , one can find such a cf , which
results in a speed profile with desired tf .

Let us start with the idea described in the lemma below.

Lemma 2.1. (Increase of cf in standalone equation)
Increase of cf in equation 1

N+1

∑
k qk = cf , where qk = v2k leads to a

change ∆vk, k = 0, . . . , N for which holds
∑N

k=0∆vk > 0. The change mag-
nitude is assumed to be constrained as |∆vk| < 2ṽk, ∆vk, k = 0, . . . , N .
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Proof.

1

N

N∑
k=0

v2k <
1

N

N∑
k=0

(vk +∆vk)
2

1

N

N∑
k=0

v2k <
1

N

N∑
k=0

v2k + 2ṽk∆vk +∆v2k

0 <
1

N

N∑
k=0

∆vk(2ṽk +∆vk)

0 <

N∑
k=0

∆vk

The condition coming from Lemma 2.1 needs to be revised to estab-
lish a tight mapping between parameters tf and cf in time and spatial
domain, respectively. An optimization context is essential to establish
a tight connection between the two. The following lemma has more
restriction on the change ∆vk.

Lemma 2.2. (Increase of cf in optimization context)
For increased cf in optimization (2.16) there is an optimal solution ob-
tained by change ∆vk ≥ 0, k = 0, . . . , N .

Proof. (see Figure 2.4)
Assume the optimal solution of (2.16) for given c⋆f is known. Also,
assume another optimal solution of (2.16) for given c+f such that c+f >
c⋆f is known and in this solution there is at least one instance of k such
that ∆vk < 0. Then, a location se exists on the road, where speeds v+e
and v⋆e are equal. Now, one can switch the control policy and apply v∗

instead of v+ since v∗ is an optimal strategy from se to sf . It is valid due
to the invariance in c. Therefore, we can move an optimal solution up
and down in Figure 2.4. Also, due to convexity, there must be optimal
trajectories within the red area finishing within the range [c+f , c

⋆
f ]. Due

to the invariance in c, we can move the area up, enhancing the blue
trajectory, where ∆vk are nonnegative. Hence, we can argue that an
optimal trajectory exists to c+f without the need for ∆vk < 0 for any
k.
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s

s0

c

c+f

c⋆f

sfse

c+⋆
f

v+e

v⋆e

∆vk < 0

Figure 2.4: Sketch of the proof for Lemma 2.2. Blue bold curve is an
optimal trajectory of c⋆ for given c⋆f . The red bold curve is an optimal
trajectory of c+ for given c+f with some k for which ∆vk < 0. Due to
invariance in c, we can construct another optimal trajectory c+⋆ ending
in c+⋆f , and we know it must be optimal too. Due to convexity, the red
transparent area must contain optimal trajectories ending in the range
of final values. We can translate the red area into the blue area - optimal
solutions starting in se from the c⋆. Since the c+f is within the blue area,
an optimal trajectory must exist without using negative speed at the
beginning.
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Theorem 2.3. Given a final time tf > 0 a positive sequence of v0, v1, . . . , vN
exists such that

∑N
k=0

1
vk
∆sk = tf . Moreover, there exists a cf such that

1
N

∑N
k=0 v

2
k = cf holds in the optimization framework. Increase of cf im-

plies decrease of tf and vice versa.

Proof. Increase of cf means there is a sequence of ∆vk ≥ 0, k = 0, . . . , N
(see Lemma 2.2) such that

v̄k +∆v̄k ≥ v̄k

v̄k +∆v̄k
v̄k(v̄k +∆v̄k)

≥ v̄k
v̄k(v̄k +∆v̄k)

1

v̄k
≥ 1

v̄k +∆v̄k
, k = 0, . . . , N

N∑
k=0

1

v̄k
>

N∑
k=0

1

v̄k +∆v̄k
,

which implies decrease of tf and vice versa.

The exact value of cf for given tf is unknown analytically and needs
to be computed numerically. However, due to Theorem 2.3, we know
that increasing cf decreases tf and vice versa. Therefore, a bisection
algorithm is used to solve

Ψ(cf ) = tf , (2.17)

where the lower and upper bounds of cf can be estimated for a known
value of average speed vavg = sf/tf . The lower estimate

cf =
1

N + 1

N∑
k=1

qk = v2avg

is acheived when we set qk = v2avg to be a constant for all k. The compli-
cating case is when the upper (or lower) speed limit crosses the average
value. In that case, we need to adjust to

cf = min v2avg,min vmax.
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On the other hand, an upper estimate

cf =
1

N + 1

N∑
k=1

qk =
(
2vavg

)2
is achieved when qk is oscillating around the average value vavg (and
above zero value) as much as possible. Since we assume soft con-
straints on the speed limit, in theory, the maximum oscillations’ peak-
to-peak magnitude is 2vavg.

In other words, the lower estimate cf is given by the square of the
average value (imagine constant function). In contrast, the upper esti-
mate of cf is given by the average square values (imagine the function
oscillating between the two values).

The two approaches from the previous sections, namely, optimiza-
tion sampled in space and acceleration, are shown in Figure 2.5 and
Figure 2.6, respectively, together with the intermediate iterates of the
bisection methods.

Figure 2.5: Speed and acceleration profiles (left) in the spatial and
time domain sampled in space. Spatial-time transformations (right)
for intermediate (blue) and resulting (red) values of cf .
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Figure 2.6: Speed and acceleration profiles (left) in the spatial and
time domain sampled in acceleration. Spatial-time transformations
(right) for intermediate (blue) and resulting (red) values of cf .

Convergence of the bisection method is similar for both cases, and
convergence in detail for the example is shown in Figure 2.7.
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Figure 2.7: Convergence of the bisection method finding cf towards
given tf on top. The absolute error of the estimated time from the tf
on the bottom.

In this chapter, Challenge 3, Challenge 4, and Challenge 5 have been
succesfuly addressed. Therefore, the control problem can be solved via
well-defined QP instead of NLP, which iteration can be infeasible due
to the undefined value of the objective function when crossing zero
speed.

2.6 Distributed Speed Profile Optimization

This section will describe the distributed optimization of multiple con-
secutive profiles using a decomposition method. A distributed ap-
proach benefits long horizons, which can be split into multiple smaller
optimizations. It becomes beneficial for traffic light optimization in the
next section.

Due to its potential application in automotive, primal decomposi-
tion is preferred, i.e., the primal variable is the complicating variable
common for two neighbouring sub-problems. The main reason is fea-
sibility preservation, such that after every single iteration, the solution
is feasible and can be (potentially) applied, even though not optimal.
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The first attempt to coordinate the speed profiles was made with the
subgradient method, which convergence can be seen in Figure 2.8.
This approach is robust and straightforward (see, Nedic and Ozdaglar
[2009]). However, it requires too many (moderately expansive) itera-
tions. Hence, we are looking for a more efficient coordinator. The coor-
dinator proposed further is motivated by the convergence figures of the
subgradient methods. We can see the subgradient converge in a piece-
wise linear manner. Activating a new constraint causes each break-
point in the piecewise linear lines. Therefore, our efficient coordinator
utilizes those breakpoints to accelerate the convergence. These can be
analyzed from the optimality condition, and the following approach is
related to the Optimality Condition Decomposition (OCD) known from
distributed model predictive control (e.g., Segovia et al. [2021]).

Figure 2.8: Convergence of primal decomposition with the subgradient
coordination method from initial conditions v1,2 = 1 and v2,3 = 1.

Assume n consequtive optimization problems, where kth optimiza-
tion problem in form (2.16) can be rewritten as

min
1

2

[
z̃′

p̃

]T [
H̃k,z′z′ H̃k,z′p

H̃k,pz′ H̃k,pp

][
z̃′

p̃

]
+

[
z̃′

p̃

]T [
f̃k,z′

f̃k,p

]
, (2.18a)

s.t. b̃k ≤ Ãk,z′z̃
′ + Ãk,pp̃ ≤ b̃k, (2.18b)
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where p̃ stands for parameters. For simplicity, the affine constraints
also cover the simple bounds that are not written explicitly. The coor-
dinator needs to collect information from the kth sub-problem about
the parameter sensitivity and range the parameter can change. Know-
ing the optimal solutions

z̃⋆k =

[
q̃⋆k
ϵ̃⋆k

]
,

of the kth sub-problems, where

q̃⋆k =

q̃k,0q̃′k
q̃k,f

 , p̃k =

[
q̃k,0
q̃k,f

]
, z̃′k =

[
q̃′k
ϵ̃⋆k

]
,

and where problem (2.18) can be written as a program

min
1

2
p̃T Ĥk,ppp̃+ p̃T f̂k,p, (2.19a)

s.t. b̂k ≤ Âk,pp̃ ≤ b̂k, (2.19b)
p̂

k
≤ p̃k ≤ p̂k, (2.19c)

which give the coordinator the information how the parameters of one
sub-problem can be tuned. We can analyze the affine constraints in
the solution to get two equations and inequality

Ã
+
k,z′z̃

′ + Ã
+
k,pp̃ = b̃

+

k , µ̃+ > 0, (2.20a)

b̃
=
k ≤ Ã=

k,z′z̃
′ + Ã

=
k,pp̃ ≤ b̃

=

k , µ̃= = 0, (2.20b)

Ã
−
k,z′z̃

′ + Ã
−
k,pp̃ = b̃

−
k , µ̃− < 0, (2.20c)

where µ̃ are Lagrange multipliers related to the affine constraints (2.18b).
From equations (2.20a) and (2.20c) we can express

z̃′ = r−Qp̃, where Q =

[
Ã

+
k,z′

Ã
−
k,z′

]−1 [
Ã

+
k,p

Ã
−
k,p

]
, and r =

[
Ã

+
k,z′

Ã
−
k,z′

]−1
b̃+

k

b̃
−
k

 .

(2.21)

Since the solution of the linear program has activated as many con-
straints as the number of optimization variables, inversion inside Q
exists. Further, substituting z̃′ in inequality (2.20b) and cost (2.18a),
we can define sub-problem data from (2.19) to be communicated to
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the coordinator as

Ĥk,pp = H̃k,pp −QT H̃k,z′p − Ĥk,pz′Q−QT Ĥk,z′z′Q, (2.22a)

f̂k,p = f̃k,p −QT f̃k,z′ − Ĥk,pz′r−QT Ĥk,z′z′r, (2.22b)

Âk,p = Ã
=
k,p − Ã

=
k,zQ, (2.22c)

b̂k = b̃
=
k − Ã=

k,zr, (2.22d)

b̂k = b̃
=

k − Ã=
k,zr. (2.22e)

Coordinator collect all sub-problems (2.19) and connects them by set
of equalities qk,f = qk+1,0, k = 0, . . . , n − 1. This coordination scheme
follows the approach proposed in Beno et al. [2017] proposed for dis-
tributed parameter calibration.

Convergence of the method (Figure 2.9) can be compared with the
convergence of the subgradient method (Figure 2.8). For both, the
resulting profiles are presented in Figure 2.10.

Figure 2.9: Convergence of primal decomposition with the OCD coor-
dination method from initial conditions v1,2 = 1 and v2,3 = 1.
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Figure 2.10: Three speed and acceleration profiles in the spatial (bot-
tom axis) and time (top axis) domain of the optimization sampled in ac-
celeration. The profiles are coordinated such that the terminal speed
of the previous is identical to the initial speed of the following speed
profile.

The overview of the algorithms involved in distributed speed profiles
optimization for the example is sketched in Figure 2.11.
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Figure 2.11: Computational methods hierarchy in multiple coordi-
nated speed profiles optimization. From the top, the OCD coordina-
tor is described in this section, the bisection method is described in
Sec. 2.5, and the NPPro solver shall be described in Chapter 3.

2.7 Traffic Lights Passage Optimization

An additional practical consideration is traffic lights. The traffic lights
are assumed to publish time intervals when our vehicle can pass.
There can be multiple traffic lights on the way. There is no assumption
on the time intervals of the traffic lights, except that the intervals are
(reasonably) finite.

The proposed algorithm is first described using the following exam-
ple. More formally, an algorithm to solve the traffic light passage is
given in Alg. 1. It is composed of three steps that are described further.

Note that adding a constraint on traffic light passage time in the
global optimization directly would make the problem difficult as it
would require multivariable bisection methods - there will be multiple
constraints on time. Alg. 1 exploits distributed speed profile optimiza-
tion from the previous section such that multiple coordinated speed
profiles are optimized instead.
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Algorithm 1 Traffic Light Passege Active Set (TLPAS) Method
Require: Given route with traffic light positions and time intervals in

which passage through the traffic lights is allowed
Set initial route considering no traffic lights
for i from 1 to niters do

Adding conflicting traffic light passages to the working set
if Checking that no traffic light passage in the candidate is im-
proper then

return Candidate is the optimal solution
else

Removing preventing traffic light passages from the working set
end if

end for

Adding the conflicting traffic light passages to the working
set

First, an optimization with only fixed terminal time is performed, ig-
noring all traffic lights. If there is no conflict between the solution and
the given traffic light intervals, then we are done. The solution is the
unconstrained (in the sense of the traffic lights) minimizer. This is not
the case in our example Figure 2.12, where we have conflicts with the
first and the third traffic lights. We pick one of them (e.g., the first)
and resolve this conflict. The resolution is twofold – either our vehicle
should speed up to catch the green light below the red crossed inter-
val or slow down and go through once there is green above the crossed
red interval – as shown in Figure 2.12. To be at the traffic light at a
specific moment is an additional constraint in the two further opti-
mization problems, whose solutions are shown in the Figure 2.13 and
Figure 2.16. Therefore, each conflict resolution produces two children
in a binary tree, where we look for the solution. Simultaneously, we
have split the optimization horizon into two stages - 1) from the start
to the first traffic light and 2) from the traffic light to the end. Since
a depth first search algorithm is used, sub-problem p1 (Figure 2.13)
is resolved into p2 (Figure 2.14) and p3 (Figure 2.15). Finally, p4 Fig-
ure 2.16 is optimized, and since the cost function of p4 is the cheapest
leaf, it is the optimal solution. The related tree is sketched in Fig-
ure 2.17.
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Figure 2.12: Solution of sub-problem p0. Traffic lights are not consid-
ered in the optimization.

Figure 2.13: Solution of sub-problem p1. Passage time for the first
traffic light was considered in the optimization to pass before the red
light.
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2.7 Traffic Lights Passage Optimization

Figure 2.14: Solution of sub-problem p2. Passage time for the first and
second traffic lights was considered in the optimization to pass before
and before the red light, respectively.

Figure 2.15: Solution of sub-problem p2. Passage time for the first and
second traffic lights was considered in the optimization to pass before
and after the red light, respectively.
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Figure 2.16: Solution of sub-problem p4. Passage time for the first
traffic light was considered in the optimization to pass before the red
light.

p0

p1

p2 p3

p4

Figure 2.17: A tree represents the traffic lights passage problem. The
solution is in the circle.
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Figure 2.18: The speed and acceleration profiles in the spatial (bot-
tom axis) and time (top axis) domain of the optimization sampled in
acceleration for resulting sub-problem p4.

Candidates with no conflicts (feasible trajectories) are computed,
and (tree leaves) are compared. Eventually, a candidate with mini-
mum cost is found. Further, once a cost function of a leaf is obtained,
it can be used as an upper-cost estimate, and the remaining tree can
be pruned to avoid unneeded computations.

Checking for the Optimality

Adding traffic lights can be seen as activating constraints within the
active-set algorithm. The optimality must be checked once the best
candidate for the active set is found. Why? A traffic light added to the
working set may be no longer needed. It was initially added because
it was hitting the red interval. However, due to another traffic light,
the trajectory might shift enough that some traffic light is no longer
needed. It prevents the minimizer from passing the green interval’s
interior. Therefore, the optimality requires checking that no blocking
traffic lights are present in the optimum. Otherwise, the result is not
optimal.
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Hence, the stopping criteria verify the Lagrange multipliers λt,k and
λt,k+1 for equality constraint in the form (2.17) for the interval before
and after kth traffic light. Since from the optimization, the available
information is related to the average quadratic speed (see, (2.14g)) in
λc,k and λc,k+1, the conversion can be established as

λt,k =
∂Ψk(cf,k)

∂cf,k
λc,k (2.23)

Then the multiplier κt,k for the kth traffic light saying if it is beneficial
to arrive rather sooner or later can be established as follows. Assume
two consecutive intervals over which the cost function is a simple sum

J+
k = Jk(tk) + Jk+1(tk+1)

then, the perturbation of the traffic light in the time domain leads to

J+
k +∆J+

k = Jk(tk + ϵ) + Jk+1(tk+1 − ϵ)

and by differentiation and further manipulation, we obtain

∆J+
k =

∂Jk(tk)

∂tk
ϵ− ∂Jk+1(tk+1)

∂tk+1
ϵ

κt,k = λt,k − λt,k+1

=
∂Ψ(cf,k)

∂cf,k
λc,k −

∂Ψ(cf,k+1)

∂cf,k+1
λc,k+1,

where λt,k = ∂Jk(tk)
∂tk

and λt,k+1 =
∂Jk+1(tk+1)

∂tk+1
, and the final line was

achieved using (2.23). Sign of the multiplier κt,k express the intention
to arrive at the traffic light sooner or later. The solution is optimal if
the multiplier suggests the time should be increased (or decreased),
and a red interval prevents this change. If, on the other hand, the mul-
tipliers suggest the duration time should be increased (or decreased),
and a green interval allows the change to be done, the solution can-
not be optimal. The latter case means the traffic light is preventing
constraints and needs to be removed, as described next.

Removing the preventing traffic light passages from the work-
ing set

Since the candidate is not optimal, there are constraints (at least one)
preventing reaching the optimum. A multiplier κt,k related to the kth
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traffic light may suggest that releasing the constraint may improve
cost. All constraints with such multipliers are, therefore, released at
once.
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3 Solution of QP with Affine
Constraints

In this chapter, a solution for the core optimization problems presented
in the previous chapter, namely, quadratic programming (QP), shall be
presented to tackle some of the challenges that come with speed profile
optimization problems.

The first attempt to deal with long horizons (Challenge 1) was pub-
lished in [4], where the penalty method was applied to system dynam-
ics to obtain sparse optimization problems suitable for long horizon
control applications. Although the formulation is attractive for a rela-
tively small number of optimization variables and a nice sparsity pat-
tern, there are drawbacks. Since the formulation approximates the
original problem, it is desired to approximate it by a high penalty pa-
rameter. High penalty parameters can cause numerical issues, how-
ever. In [2], we address Challenge 1 by an algorithm tailored for control
problems with long horizons using sparse linear algebra.

In [3], an algorithm for the solution of Quadratic Programming (QP)
with equality constraints is introduced as a predecessor. Finally, in
this chapter, Challenge 2 has been resolved successfully by proposing
an algorithm for QP with affine (inequality) constraints. Mainly con-
sidering [2] and [3] together, a solver aims to control problems with
long horizons involving affine constraints.

We are concerned with the QP optimization problem of the following
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form

min
x

1

2
xTHx+ xTf , (3.1a)

s. t. x ≤ x ≤ x, (3.1b)
y ≤ Ax ≤ y, (3.1c)

with a cost function given by positive definite Hessian matrix H ∈
Rn×n, linear term f ∈ Rn, a box constraints given by x ∈ Rn, x ∈ Rn,
an affine constraints given by A ∈ Rm×n, y ∈ Rm, and y ∈ Rm.

There is an increasing use of optimization based on QP in the au-
tomotive community. The application includes Model Predictive Con-
trol (MPC), data fitting, autonomous driving, Support Vector Machine
(SVM), contact problem, etc.

The most iconic is a repetitive solution of QP providing real-time
control action, known as MPC. MPC is a control strategy that uses a
mathematical model of a system to predict its future behaviour and
optimize control actions. MPC has been widely applied in various ap-
plications, including thermal management [Karnik et al., 2016], en-
ergy management of power split [Sotoudeh and Homchaudhuri, 2020],
predictive cruise control [D’Amato et al., 2016], and airpath control
[Sankar et al., 2019]. It has been shown to improve system perfor-
mance, increase flexibility, and handle uncertainty and disturbances.
However, implementing MPC can be complex, with extensive memory
and computational requirements. Despite these challenges, MPC has
demonstrated promising results in applications and is expected to be-
come the dominating control strategy [Bemporad et al., 2018], [Dahl
et al., 2018].

A challenge regarding the solution to QP problems is conditioning
the problem Hessian matrix. That could arise from the presence of
nonlinearities in the system. To address the ill-conditioning of QP
problems in the automotive domain, it is essential to carefully design
the MPC system and choose an appropriate QP solver that can handle
the specific characteristics of the problem. In addition, it may be nec-
essary to use regularization or other techniques to improve the stabil-
ity and convergence of the QP solver. Another challenge is the presence
of constraints, which can limit the feasible region of the problem and
make it more difficult to find the optimal solution. Especially when
the active set changes rapidly, convergence may become an issue.
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In this work, we present a QP solver developed with a focus on em-
bedded applications. Our primary goal is to address difficulties aris-
ing in automotive in particular. We are motivated by applications of
MPC with output limits that lead to QP with affine constraints. The
workaround is to use the penalty method to eliminate the constraints.
The drawback of this approximating approach is that the more precise
the approximation is, the more ill-conditioned the Hessian matrix is.
We are interested in solving the exact problem directly. Our priorities
are reliability, memory resources, and speed in terms of the maximum
number of executed iterations, which determines the solution time of
the QP solver, which is crucial for the overall performance of the MPC
on the embedded system. The resulting solver implements a method
called Newton, Projection, and Proportioning (NPPro), whose name
emphasizes it is the continuator of the Newton Projection with Pro-
portioning (NPP) method [Šantin, 2016] extended for QP with generic
constraints. Although the solver is compared with other solvers in
double precision, it is primarily capable of running in single precision.

Related Work

There exist many state-of-the-art QP solvers in the literature. They
differ in solution methods and are implemented with different pur-
poses in mind. There are active-set (qpOASES Ferreau et al. [2014],
quadprog Goldfarb and Idnani [1983]), interior-point (CVXOPT An-
dersen et al. [2013], ECOS Domahidi et al. [2013], qpSWIFT Pan-
dala et al. [2019]), augmented-Lagrangian (OSQP Stellato et al. [2020],
ProxQP), gradient (FGP Richter et al. [2012]) based methods. Some pri-
marily used for desktop/cloud computation are MOSEK, Gurobi, and
CVXOPT. Some embedded solvers are qpOASES, OSQP, ODYS [Cimini
et al., 2017].

The development of our method originates in the idea of Newton Pro-
jection (NP) algorithm [Bertsekas, 1982] for box-constrained QP, de-
veloped by Dimitri Bertsekas. The NP algorithm uses a Newton-like
iteration with projection with Armijo rule onto the box constraints to
get the solution to the QP problem, using information about the gra-
dient to identify the non-optimal elements of the active set.

The Combined Gradient and Newton Projection (CGNP) algorithm
[Šantin and Havlena, 2011] is a variant of the NP algorithm that com-
bines the gradient projection and Newton methods to decrease the
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computation burden. While NP iterations are a sequence of Newton
steps computation, CGNP [Šantin and Havlena, 2011] uses computa-
tionally cheap trial gradient projection step with a fixed step-size to
trigger either gradient step (trial step leads to active set change) or
Newton step projection with exact line search [Nocedal and Wright,
2006] (no active set change detected). This leads to a reduction of the
required computation of Newton’s steps.

The CGNP algorithm was later evolved to NPP algorithm [Šantin,
2016], which replaced the gradient step with the proportionality test
introduced originally in Dostál [1997]. The proportionality test is used
to "look ahead" to reduce the number of unwanted changes in the
active set, hence decreasing the computational complexity of the factor
update scheme used to solve the auxiliary face problem.

There has been published an NPPsparse algorithm [2] based on NPP
adding the utilization of fixed sparsity structure of QP problems aris-
ing in the sparse formulation of the MPC with long prediction hori-
zon. It utilizes sparse linear algebra and the iterative solution of lin-
ear systems. Compared to the previous method, it can handle equality
constraints with a specific sparsity pattern. It was shown in [2] that
the algorithm outperforms the others for longer horizons as the com-
putational complexity grows only linearly with the prediction horizon
length.

Content of This Chapter

This chapter is organized as follows. In Sec. 3.1, high-level architec-
ture of the solver is presented. In Sec. 3.2, the main algorithm is
described in detail. Numerical results for the proposed solver are pre-
sented in Sec. 4.

3.1 Architecture

Compared to box-constrained QP, the presence of affine constraints
brings in the need to deal with additional challenges in designing a
numerically stable and efficient QP solver. The difficulties are that
affine constraints can be linearly dependent and that finding a feasible
initial guess is generally challenging.

We design NPPro as a two-phase active-set method with an initial
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preprocessing stage. Preprocessing the input data leads to a more
numerically stable and efficient algorithm. Phase I of the NPPro algo-
rithm computes (if it exists) a feasible initial guess, which serves as a
starting point for iterations of Phase II. In contrast to box-constrained
QP, obtaining such a feasible initial guess for (3.1) leads, in general,
to the necessity of solving linear programming (LP) problems. With an
initial feasible approximation, the algorithm enters Phase II, searching
for the optimal solution of (3.1). The overall architecture of the NPPro
algorithm is summarized in Figure 3.1.

Given QP (3.1),
simplify it to Q̃P

Given Q̃P and x̃0,
find feasible x̃f

Given Q̃P and x̃f ,
find optimal x̃opt

Find xopt op-
timal for QP

Preprocessing Phase I Phase II Postprocessing

Figure 3.1: Architecture of the NPPro solver

Preprocessing

The purpose of preprocessing is to simplify the problem to make the
solution less computationally demanding. The preprocessing has to
be as cheap as possible to bring the benefit. Numerous standard ways
exist to preprocess the general input data, such as removing redun-
dant constraints, problem scaling, and feasibility checks. See Gould
and Toint [2004], Mészáros and Suhl [2003] for an overview. The NPPro
employs several of those techniques as follows.

Bounds compatibility
Given a box constraint xi ≤ xi ≤ xi, it is checked that lower and upper
bounds define a non-empty set, i.e., xi ≤ xi, i = 1, . . . , n. Similarly,
given an affine constraint y

i
≤ yi ≤ yi, it is checked that y

i
≤ yi, i =

1, . . . ,m.

Empty row in A
If there is an empty i-th row in A, the constraint can be read as y

i
≤

0 ≤ yi. If the constraint is fulfilled, the row will be removed as it does
not affect the problem solution. Otherwise, the problem is infeasible.
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Singleton row in A
If there is an i-th row in A with only one non-zero element at j-th
position, the constraint y

i
≤ aijxj ≤ yi can be converted into a box

constraint

y
i
/aij ≤ xj ≤ yi/aij , aij > 0 or yi/aij ≤ xj ≤ y

i
/aij , aij < 0.

Row normalization in A
If the number of non-zero elements in i-th row of A is greater than one,
the constraint y

i
≤ Aix ≤ yi is normalized as y

i
/∥Ai∥ ≤

(
Ai/∥Ai∥

)
x ≤

yi/∥Ai∥, where ∥.∥ is the vector 2-norm if not specified further.

Bound tightening
If the i-th affine constraint in (3.1c) has finite bounds y

i
and yi, it is

possible to imply bound for xk for which corresponding aik is non-zero.
We can write

aikxk +
n∑

j ̸=k, aij>0,

j=1

aijxj +
n∑

aij<0,

j=1

aijxj ≤
n∑

j=1

aijxj ≤ yi, aik > 0 (3.2a)

aikxk +

n∑
aij>0,

j=1

aijxj +

n∑
j ̸=k, aij<0,

j=1

aijxj ≤
n∑

j=1

aijxj ≤ yi, aik < 0 (3.2b)

for affine upper bound and similarly

y
i
≤

n∑
j=1

aijxj ≤ aikxk +
n∑

j ̸=k, aij>0,

j=1

aijxj +
n∑

aij<0,

j=1

aijxj , aik > 0 (3.3a)

y
i
≤

n∑
j=1

aijxj ≤ aikxk +

n∑
aij>0,

j=1

aijxj +

n∑
j ̸=k, aij<0,

j=1

aijxj , aik < 0 (3.3b)
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for affine lower bound. For given xk and xk we can rearrange the rela-
tions above to obtain

xk ≤ min

xk,
1

aik

yi −
n∑

j ̸=k, aij>0,

j=1

aijxj −
n∑

aij<0,

j=1

aijxj


 , aik > 0

(3.4a)

xk ≤ min

xk,
1

aik

y
i
−

n∑
aij>0,

j=1

aijxj −
n∑

j ̸=k, aij<0,

j=1

aijxj


 , aik < 0

(3.4b)

for upper bound tightening and similarly

xk ≥ max

xk,
1

aik

y
i
−

n∑
j ̸=k, aij>0,

j=1

aijxj −
n∑

aij<0,

j=1

aijxj


 , aik > 0

(3.5a)

xk ≥ max

xk,
1

aik

yi −
n∑

aij>0,

j=1

aijxj −
n∑

j ̸=k, aij<0,

j=1

aijxj


 , aik < 0

(3.5b)

for lower bound tightening. This technique is helpful, especially when
variable xk was originally unbounded, to reduce search space or iden-
tify infeasibility.

Phase I

The purpose of the Phase I of the NPPro algorithm is to find the initial
feasible guess xf ∈ Rn as close as possible to the initial guess x0 ∈ Rn.
Supplying x0 enables utilization of prior information about a feasible
starting point available in some applications or warm-start (starting
from the previous solution expecting the current solution should be
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sufficiently close when solving a series of problems). In Phase I, the
goal is to find projection of x0 to the constraints, formally, xf is a
solution of the following optimization problem

min
xf

∥xf − x0∥,

s. t. x ≤ xf ≤ x,

y ≤ Axf ≤ y.

(3.6)

The cost function minimizes a distance from x0. Note that the distance
is treated in a general sense to seek the most computationally efficient
solution. There are four cases the solver currently distinguishes based
on the provided data:

No constraints

No computation is required, any x0 is feasible, therefore, xf = x0.

Box constraints

If the problem (3.1) does not contain any finite affine constraints, i.e.,
if only constraints on individual components of x are present, the sit-
uation is simple. Given (possibly infeasible) x0, the projection onto box
constraints is given by

xf = min(max(x, x0), x).

In terms of complexity, only simple element-wise computation of xf is
required.

Linearly independent constraints

Feasible guess xf can be found via a solution of a linear system with
an indefinite matrix, in the case when the total set of finite constraints
(box and affine together) form a linearly independent set. Denoting as
Px a submatrix of the identity matrix, with columns corresponding to
the box-constrained components, the feasible guess xf is a solution
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of the following linear system


I

[
Px AT

][
P T
x

A

]
0


[
xf

λf

]
=


x0[

P T
x xc

yc

] , (3.7)

with clamped xc and yc defined as

xc = min(max(x, x0), x),

yc = min(max(y, Ax0), y).

Due to the (assumed) linear independence of the constraints, the ma-
trix [Px AT ] has a full column rank, and thus the whole system is
regular and solvable for any initial x0. In terms of complexity, a linear
system (3.7) has to be solved to get xf .

Generic Constraints

When the set of all finite constraints is linearly dependent, it is nec-
essary to find xf via the solution of an augmented LP problem. Com-
pared to the problem formulation proposed in Nocedal and Wright
[2006], where a vector of slack variables (one slack for each constraint)
was added, it is introduced only a scalar slack variable common for all
constraints for memory saving. Having any initial x0, we first compute

xc = min(max(x, x0), x)

and the projection onto the feasible set is consequently formulated as
the following Linear Programming (LP).

min
xf ,κ

κ

s.t. x ≤ xf ≤ x

y ≤ Axf + rκ ≤ y

0 ≤ κ, (3.8)

where
r = min(max(y − yc,0),y − yc), where yc = Axc.
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The initial guess feasible for this LP problem is naturally the extended
vector [xT

c , 1]
T . Feasibility of the initial guess can be verified by putting

xf = xc and κ = 1 in (3.8).

This is the most expansive option in terms of complexity as an LP
has to be solved before the QP.

Phase II

We solve the QP problem in Phase II using a primal active set method.
Similarly, as with other active set methods, to do so, we solve a se-
quence of equality-constrained QP problems with changing set of ac-
tive constraints. As the computation of a new Newton step is compu-
tationally the most costly part of the algorithm (Sec. 3.2), the intention
is to decrease the number of iterations by allowing a rapid change in
the active working set imposed by a projection operation together with
look ahead feature of proportionality test to prevent from the unneces-
sary expansion of the active set to reducing the computation burden
associated with factor updates in Newton step computation.

3.2 Algorithm

This section describes the algorithm used to solve (3.1) in Phase II
given a feasible initial guess from Phase I. With subtle modifications,
the same algorithm is also used to solve the augmented LP (3.8) in
Phase I of the NPPro solver.

In the following, basic ingredients are described in detail, and the
algorithm is built at this section’s end.

Optimality Conditions

For brevity, we reformualte problem (3.1) into box constrained with
equality contraints as follows

min
x

1

2
xTHx+ xTf ,

s. t. Ax− y = 0,

x ≤ x ≤ x,

y ≤ y ≤ y,

(3.9)
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where y ∈ Rm is an auxiliary optimization variable.

We will follow [Nocedal and Wright, 2006, Chapter 12] and derive
the optimality (KKT) conditions for problem (3.9). We define the La-
grangian function L associated with (3.9) as

L(x,y,λ,µx,µx,µy,µy) =
1
2x

THx+ fTx+ λT (Ax− y)

+ µT
x(x− x)− µT

x(x− x) + µT
y (y − y)− µT

y (y − y),
(3.10)

where λ ∈ Rm is Lagrange multiplier associated with the equality con-
straint, µx,µx ∈ Rn, and µy,µy ∈ Rm are the Lagrange multipliers
associated with lower and upper bounds imposed on variables x and
y, respectively.

The optimality conditions give that for any solution x of (3.9), there
exists an auxiliary variable y and Lagrange multipliers λ, µx, µx, µy,
µy satisfying KKT conditions

Hx+ f +ATλ+ µx − µx = 0,

−λ+ µy − µy = 0,

Ax− y = 0,

x− x,x− x,y − y,y − y ≥ 0,

µx,µx,µy,µy ≥ 0,

µx
T (x− x) = µx

T (x− x) = µy
T (y − y) = µy

T (y − y) = 0.

(3.11)

Lagrange multipliers µx and µx can be stored only as one vector µx.
The reason is that only the lower or upper bound can be active. It
follows that µT

xµx = 0. Analogous remark holds for multipliers µy and
µy.

Newton Direction Computation

We search in each iteration k for an update

x = x(k) + dx,

y = y(k) + dy, (3.12)
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towards the optimal solution of the face problem 1. Substituting (3.12)
into (3.13), we can find the update as a solution of the following system


H 0 AT Px 0
0 0 −I 0 Py

A −I 0 0 0
P T
x 0 0 0 0
0 P T

y 0 0 0




dx

dy

λ
µx

µy

 =


−
(
f +Hx(k)

)
0

y(k) −Ax(k)

0
0

 . (3.13)

Given working set W(k) = (W(k)
x ,W(k)

y ), the columns of matrices Px =

{ei, i ∈ W(k)
x } and Py = {ej , j ∈ W(k)

y } are columns of identity matrix
corresponding to the elements in the working set.

We decompose dx = Pxd̃x+Zxd̄x onto d̃x, the direction coresponding
to the active box constraints, and d̄x, the direction corresponding to
the non-active box constraints. Moreover, Zx is null space of associ-
ated box constraints such that P T

x Zx = 0, specifically Zx = {ei, i /∈
W(k)

x }2. Similarly, one can decompose dy = Pyd̃y + Zyd̄y based on
activation of affine constraints. Further, Zy is designed such that
P T
y Zy = 0, specifically Zy = {ej , j /∈ W(k)

y }.

Since the equality constraint is artificial, it has a purpose only when
affine constraints are active. It is suitable to decompose λ = Pyλ̃ +
Zyλ̄ according to activation of the affine constraints. Therefore, given
working set W(k), the particular solutions d̃x, d̃y, λ̄ = 0.

Note that we assume the equality constraint hold, therefore, y(k) −
Ax(k) = 0. Then problem (3.13) can be reduced toZT

xHZx 0 ZT
xA

TPy

0 0 −ZT
yPy

P T
y AZx −P T

y Zy 0


d̄x

d̄y

λ̃

 =

−ZT
x g
0
0

 , (3.14)

with gradient g = Hx(k)+f and where complement to the last equation

1Face problem is the problem on a subspace specified by the current working set
W(k).

2The shorhand notation i /∈ W(k)
x and j /∈ W(k)

y stands for i ∈ Ix\W(k)
x and j ∈

Iy\W(k)
y , where Ix = {1, . . . , n} and Iy = {1, . . . ,m}, respectively.
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is
ZT

yAZxd̄x = ZT
yZyd̄y.

Since P T
y Zy = 0, we can further reduce (3.14) to[

H̄ ĀT
0

Ā0 0

][
d̄x

λ̃

]
=

[
d̄
0

]
, (3.15)

with
d̄y = ĀI d̄x,

where

H̄ = ZT
xHZx,

Ā0 = P T
y AZx,

ĀI = ZT
yAZx,

d̄ = −ZT
x g,

d̄x = ZT
xdx,

λ̃ = Pyλ,

(3.16)

with a general direction d̄ on the right hand side. It follows from the
definition of Zx that the Newton direction dx can be reconstructed
from d̄x by filling zeros at the entries of constraints, which are not in
the working set W(k)

x . Note that all the data, e.g., H̄, Ā0, ĀI , d̄, d̄x

since Zx, Zy are changing each iteration k, yet the superscript k was
ommited for sake of brevity here.

Note there is a corner case when rank(H̄) = rank(Ā0), the solution
of (3.15) is inevitably dx = 0, since there is no degree of freedom left.
Also, no direction towards minimizer may exist as we are already in
the minimizer of the face problem. These two cases can be detected
by orthogonality condition

0 = dx · g (3.17)

Solution Based on Schur Complement

Computation of saddle point problem (3.15) is the most computation-
aly demanding part of the algorithm. This problem, for non-singular
H̄, can be handled using Schur complement method [Wang and Boyd,
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2010] as

[
H̄ ĀT

0

Ā0 0

][
d̄x

λ̃

]
=

[
d̄
0

]
=⇒

[
H̄ ĀT

0

0 S̄

][
d̄x

λ̃

]
=

[
d̄

Ā0H̄
−1d̄

]
,

where Schur complement is given by

S̄ = Ā0H̄
−1ĀT

0 .

Then problem (3.15) can be solved by Alg. 2.

Algorithm 2 Solution of (3.15)

1: H̄ = R̄T D̄R̄
2: X̄0 = (R̄T D̄)−1ĀT

0

3: S̄ = X̄T
0 D̄X̄0 = R̄T

0 D̄0R̄0

4: λ̃ = (R̄T
0 D̄0R̄0)

−1Ā0H̄
−1d̄ = R̄−1

0 Q̄T
0 H̄

−1d̄
5: d̄x = (R̄T D̄R̄)−1(d̄− ĀT

0 λ̃)

In step 1, H̄ is decomposed with diagonal matrix D̄ and unit upper-
triangular matrix (upper-triangular matrix with unit diagonal) R̄. In
step 2, X̄0 is obtained after solution of triangle system with R̄T fol-
lowed by scaling by D̄. In step 3, the decomposition of the Schur
complement can be obtained by triangularization

∣∣D̄; X̄0

∣∣ → ∣∣D̄0; R̄0

∣∣.
In step 4, the right-hand side is computed (using H̄−1 = R̄−T D̄−1R̄−1),
then forward substitution, scaling, and backward substitutions series
is applied to obtain λ̃. The definition of Q̄T

0 comes from the decompo-
sition of Ā0 = R̄T

0 D̄0Q̄
T
0 . Similarly, in step 5, the right-hand side is

computed, then the series is applied to obtain d̄x.

Solution Based on Preconditioned MINRES

For completeness, it should be mentioned an alternative approach pro-
posed in [2]. The Newton step can be directly computed from (3.15),
or by using the Schur complement method (Sec. 3.2), or the Riccati
recursion [Axehill and Hansson, 2008].
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Recall linear system

[
H̄ ĀT

0

Ā0 0

][
d̄x

λ̃

]
=

[
d̄
0

]
⇐⇒ Gz = h

from (3.15) that is indefinite, which prohibits using a method such as
conjugate gradients. Here, an iterative method is used to exploit the
maximal sparsity of the Karush–Kuhn–Tucker (KKT) matrix G. The
linear system is solved using the preconditioned MINimum RESidual
(MINRES) method [Paige and Saunders, 1975] instead. For the sake
of simplicity, the iteration index of the NPPro algorithm is omitted in
the description of the MINRES method. The index l denotes an inner
iteration of the MINRES method here.

It is an iterative Krylov subspace method suitable for solving sym-
metric indefinite problems. The MINRES minimizes residual norm∥∥∥rl∥∥∥ =

∥∥∥h−Gzl
∥∥∥ of the Krylov subspace at each iteration l. In this

paper, a finite termination property is assumed, i.e., the exact solu-
tion to (3.15) is found in the finite steps of the MINRES method. This
assumption is based on the fact that the number of iterations of the
Krylov method is bounded by the maximal subspace dimension of the
well-defined matrix G [Liesen and Tichý, 2014].

The MINRES convergence can be speeded-up significantly when a
(sparse) suitable positive definite preconditioner is used. A survey on
preconditioners for saddle-point problems can be found in Benzi and
Wathen [2008]. An augmented Lagrangian-based preconditioner used
in this paper has already been successfully used in control [Quirynen
et al., 2018] but also in other applications [Greif and Schötzau, 2007;
Benzi and Wang, 2011]. The solution is found in very few iterations

L−1GL−T
(
LTzl

)
= −L−1h, (3.18)

where L is a sparse Cholesky decomposition of the preconditioner

P =

[
H̄ + γĀT

0 Ā0
1
γI

]
= LLT . (3.19)

The preconditionerP ≻ is decomposed by the sparse Cholesky factor-
ization every single iteration once before MINRES is called. The effect
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of the preconditioner highly depends on the preconditioning parame-
ter γ > 0. The higher the value, the faster the MINRES converges, as
the eigenvalues of L−1HL−T in (3.18) are grouped tighter. Fewer iter-
ations are needed to find the solution, as convergence of the MINRES
method depends on several distinct eigenvalues [Benzi and Wathen,
2008]. However, too high values of γ can cause numerical instabil-
ity, as the matrix L becomes ill-conditioned. The decomposition cost
can also be reduced by applying the factor-update scheme proposed
in Kirches et al. [2011].

Hessian Factor Updates

Assume the Schur complement method (Sec. 3.2) is used further. The
factor R̄ of the UDU decomposition of the reduced Hessian H̄ obtained
by selecting rows and columns corresponding to the actual working
set is needed for every iteration. Hessian decomposition computed
from scratch is computationally expensive. Therefore, Hessian factor
updates provide a significant speed-up. Constraints are classified into
three classes, depending on how the working set has been changed –
those that remain (non-)active, those that change from non-active to
active, and those that change from active to non-active.

Reduction In this case, the non-active box constraint is becoming
active, therefore, the column corresponding to the constraint has to
be removed from the factor. The removal of the constraint cause that
Hessian factor is no longer triangular matrix and thus has to be tri-
angularized by dyadic reduction [Peterka, 1986]. For example, having

∣∣d̄0; R̄0

∣∣ =
∣∣∣∣∣∣∣∣
d̄01

d̄02

d̄03

 ;
[
R̄01 R̄02 R̄03

]∣∣∣∣∣∣∣∣
one wants to remove d̄02 and column R̄02 from the original factor. In
the following sketch of UD update – reduction – non-zero elements
(denoted by +) that are zeroed by dyadic reductions are depicted by ⊖,
affected by ⊕.
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∣∣∣∣∣∣
[
d̄01

d̄03

]
;
[
R̄01 R̄03

]∣∣∣∣∣∣ ∋


1 + + + +
0 1 + + +
0 0 1 + +
0 0 0 + +
0 0 0 1 +
0 0 0 0 1


→



1 + + + +
0 1 + + +
0 0 1 + +
0 0 0 ⊖ ⊖
0 0 0 1 ⊕
0 0 0 0 1


∈
∣∣d̄1; R̄1

∣∣ ,

The resulting factor
∣∣d̄1; R̄1

∣∣ is then obtained by removing the zeroed
row.

Augmentation In this case, the active constraint is becoming non-
active. Therefore, the Hessian column corresponding to the constraints
has to be added to the factor. Adding a column as the last one of the
factor remains the triangular shape of the factor. Nevertheless, the
column has to be processed by the UDU factorization method.

[
H̄ s
sT t

]
=

[
R̄T 0
uT v

][
D̄ 0
0 k

][
R̄ u
0 v

]
(3.20)

UDU decomposition of augmented matrix is given in (3.20). The
decomposition is obtained in the following three steps:

H̄ = R̄T D̄R̄ (already available) (3.21a)
s = R̄T D̄u (solve for u) (3.21b)
t− uT D̄u = vkv (update left hand side, then decompose for v and k)

(3.21c)

Since the decomposition in (3.21a) is already known, only (3.21b) and
(3.21c) are proceed in this UD update – augmentation. Multiple columns
can be augmented at once by assuming block variant of (3.20).

Projected Line Search

The projected line search expands the working set of active constraints.
The proposed method enhances Cauchy point computation originally
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proposed for box constraints in [Nocedal and Wright, 2006, Chapter
16.7] for QP with affine constraints. Further, we differentiate (inner)
iterations t of the projected line search algorithm performed within
(outer) iteration k of the main algorithm.

Breakpoints Computation

When the Newton direction dx is applied, two scenarios may happen:
(i) full Newton direction can be applied without violation of any con-
straints, i.e., x(k) +dx is a feasible point with respect to all (affine and
box) constraints, (ii) some new constraints are activated, i.e., x(k) +dx

is not feasible and the Newton direction can be applied only with a
limited step α(t) ∈ [0, 1) such that x(t) +α(t)d

(t)
x remains feasible, where

x(0) = x(k) and d
(0)
x = d

(k)
x . This step α(t) is a minimum of breakpoints

3 α̃(t) computed at every iteration t for each currently inactive con-
straint such that this constraint become active. Having y(t) = Ax(t)

and dy = Adx, we need to ensure, that

xi ≤ (x(t) + α(t)dx)i ≤ xi, ∀i /∈ W(t)
x ,

y
j
≤ (y(t) + α(t)dy)j ≤ yj , ∀j /∈ W(t)

y .

3Breakpoint is where one or more constraints that were previously inactive become
active.
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Thus, in order to decide which situation occurs, the maximal feasible
step size is computed by

α(t) = min{1, min
i/∈W(t)

x

(αx)i, min
j /∈W(t)

y

(αy)j}, with

(αx)i =
xi − x(t)

(dx)i
, (dx)i > 0

=
x(t) − xi

(dx)i
, (dx)i < 0

= ∞, otherwise

(αy)j =
yj − y(t)

(dy)j
, (dy)j > 0

=
y(t) − y

j

(dy)j
, (dy)j < 0

= ∞, otherwise.

(3.22)

Moreover, the corresponding index is noted and prepared to be added
to the updated working set.

Exact Line Search

Given direction d
(t)
x on interval [x(t),x(t+1)], the exact line search method

finds β(t) such that

min
γ

q(x(t)) (3.23)

where

q(x(t)) =
1

2

(
x(t) + γ(t)d

(t)
x

)T
H

(
x(t) + γ(t)d

(t)
x

)
+
(
x(t) + γ(t)d

(t)
x

)T
f .

(3.24)

By differentiation of q with respect to β the condition for minimizer is

q′ = γ(t)d
(t)
x

T
Hd

(t)
x + d

(t)
x

T
Hx(t) + d

(t)
x

T
f = 0, (3.25)
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resulting in the exact step size

γ(t) =
d
(t)
x

T
Hx(t) + d

(t)
x

T
f

d
(t)
x

T
Hd

(t)
x

. (3.26)

and step size restricted to the interval

β(t) = min(max(0, γ(t)), α(t)) (3.27)

returns

0 if x(t) is the local minimizer

γ(t) if the minimizer is within the interval [x(t),x(t+1)]

α(t) if the minimizer is situated on a following interval

such that x(t) + β(t)d
(t)
x minimizes the cost function.

Projected Direction Computation

Having a computed direction step d
(0)
x = d

(k)
x , we would like to project

it, to reduce computational cost and to minimize the number of outer
iterations. However, due to the presence of affine constraints, the sit-
uation is more complex. While it is straightforward to project the di-
rection d

(t)
x such that the projected direction d

(t+1)
x satisfy (d

(t+1)
x )i = 0

for all active constraints i ∈ W(t+1)
x , we also need to guarantee that

the projected direction step d
(t+1)
x satisfy (d

(t+1)
y )j = 0 for all active con-

straints j ∈ W(t+1)
y . This leads to the least-squares problem

min
d
(t+1)
x

∥d(t+1)
x − d

(t)
x ∥2

s. t. P T
x d

(t+1)
x = 0,

P T
y Ad

(t+1)
x = 0,

(3.28)

with the associated linear system[
I ĀT

0

Ā0 0

][
d̄
(t+1)
x

λ̃(t+1)

]
=

[
d̄
(t)
x

0

]
, (3.29)
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where

Ā0 = P T
y AZx, d̄

(t)
x = ZT

xd
(t)
x , d̄

(t+1)
x = ZT

xd
(t+1)
x , λ̃(t+1) = P T

y λ(t+1).

Computation of problem (3.29) is closely related to the problem (3.15)
as a special case H̄ = I, where λ(t+1) plays the role of least-square
residual. This problem is handled directly by Schur complement method
as

[
I ĀT

0

Ā0 0

][
d̄
(t+1)
x

λ̃(t+1)

]
=

[
d̄
(t)
x

0

]
=⇒

[
I ĀT

0

0 S̄

][
d̄
(t+1)
x

λ̃(t+1)

]
=

[
d̄
(t)
x

Ā0d̄
(t)
x

]
.

The computation requires three steps summarized in Alg. 3.

Algorithm 3 Solution of (3.29)

1: S̄ = Ā0Ā
T
0 = R̄T

0 D̄0R̄0

2: λ̃(t+1) = (R̄T
0 D̄0R̄0)

−1Ā0d̄
(t)
x = R̄−1

0 Q̄T
0 d̄

(t)
x

3: d̄
(t+1)
x = d̄

(t)
x − ĀT

0 λ̃
(t+1)

Constraint Factor Updates

The factor R̄0 of the UDU decomposition of the reduced constraint ma-
trix ĀT

0 obtained by selecting rows corresponding to the actual work-
ing set Wx and columns corresponding to the actual working set Wy is
needed for every iteration. Column (augmentation/reduction) updates
were already described in Sec. 3.2. Row (update/downdate) updates
are described in the following.

Box Constraint Deactivation (Rank-One Update) We have a factor
R̄0, which rows and columns are selected according to Wx and Wy, re-
spectively. By deactivating an ith box constraint, the index is removed
from Wx and factor is updated by corresponding data zT = (ĀT )i,Wy .
The update is performed using, e.g., Dyadic reduction as follows
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∣∣∣∣∣∣
[
d0

1

]
;

[
R0

zT

]∣∣∣∣∣∣ ∋


1 + + + +
0 1 + + +
0 0 1 + +
0 0 0 1 +
0 0 0 0 1

+ + + + +


→



1 ⊕ ⊕ ⊕ ⊕
0 1 ⊕ ⊕ ⊕
0 0 1 ⊕ ⊕
0 0 0 1 ⊕
0 0 0 0 1

⊖ ⊖ ⊖ ⊖ ⊖


∈

∣∣∣∣∣∣
[
d1

v

]
;

[
R1

0

]∣∣∣∣∣∣ .

Box Constraint Activation (Rank-One Dowdate) We have a factor
R̄0, which rows and columns are selected according to Wx and Wy,
respectively. By activating an ith box constraint, the index is added
to Wx and factor is updated by corresponding data zT = (ĀT )i,Wy . The
update is performed using, e.g., Dyadic reduction as follows

∣∣∣∣∣∣
[
v
d0

]
;

[
1 0
q R0

]∣∣∣∣∣∣ ∋


1 0 0 0 0 0

+ 1 + + + +
+ 0 1 + + +
+ 0 0 1 + +
+ 0 0 0 1 +
+ 0 0 0 0 1


→



1 ⊕ ⊕ ⊕ ⊕ ⊕
⊖ 1 ⊕ ⊕ ⊕ ⊕
⊖ 0 1 ⊕ ⊕ ⊕
⊖ 0 0 1 ⊕ ⊕
⊖ 0 0 0 1 ⊕
⊖ 0 0 0 0 1


∈

∣∣∣∣∣∣
[
1
d1

]
;

[
1 zT

0 R1

]∣∣∣∣∣∣ ,

where v = 1−qTdiag(d0)q and q is the solution of equation RT
0 diag(d0)q =

z.

Hdx Updates

In each iteration t of the projection algorithm, the gradient can be
updated along the piece-wise affine path as

g(x(t+1)) = g(x(t) + d
(t)
x ) = H(x(t) + d

(t)
x ) + f = g(x(t)) +Hd

(t)
x . (3.30)

Therefore, the gradient can be computed only once at the beginning of
the optimization, and then only cheap updates, as shown below, can
be provided. Computation of Hd

(t)
x is also required by computation

described in Sec. 3.2.

One can possibly compute (Hdx)
(t) = Hd

(t)
x at every iteration t. A

significant computational reduction can be achieved when an ith box
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constraint is hit. In that case, the update to be performed is

(Hdx)
(t+1) =

(Hd
(t)
x )j , ∀j /∈ W(t)

x ,

(Hdx)
(t)
j − (Hd

(t)
x )j , ∀j ∈ W(t)

x .
(3.31)

Only elements related to the active box constraints can be updated
when a new box constraint is activated. When an affine constraint is
activated, the elements related to the non-active constraints could be
updated if Lagrange multipliers λ are maintained along the projected
path. The Lagrange multipliers are not maintained along the projected
path in the proposed algorithm.

Summary

The projection algorithm is based on the exact line search described
for the gradient method and box-constrained problem in Nocedal and
Wright [2006]. We enhanced the method for QP with affine constraints
and projecting Newton direction in general rather than gradient. We
have enhanced the original algorithm presented in Nocedal and Wright
[2006] by the ability to project also onto the affine constraints by main-
taining the affine equality constraints as indicated in Alg. 4.

Stopping Condition

Having gradient g = Hx + f , the residuals of the first two equations
in (3.13) are given by µx = g − ATλ, µy = λ. Let us define (likewise
in Dostál [2009]) free residuals φ and chopped residuals β by compo-
nents i as

(φz)i = (µz)i, for i /∈ Wz, (φz)i = 0, for i ∈ Wz, (3.32a)
(βz)i = 0, for i /∈ Wz, (βz)i = (µ#

z )i, for i ∈ Wz, (3.32b)

where

(µ#
z )i =

{
max((µz)i, 0) if i ∈ Uz,

min((µz)i, 0) if i ∈ Lz,

and subscript z ∈ {x,y} means the same holds for both variables x
and y. We need to distingues activated upper bound Ux and lower
bound Lx, such that the following holds Wx = Ux∪Lx and Ux∩Lx = ∅.
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Algorithm 4 Projected line search for QP with affine constraints.
Given H ≻ 0, A,x(k),d

(k)
x ,f and bounds x, x, y and y and the working

set W(k) = W(k)
x ∪W(k)

y , project dx starting from x(k) until cost function
stop decreasing.
1: t = 0
2: x(t) = x(k), d(t)

x = d
(k)
x , (Hdx)

(t) = Hd
(k)
x , W(t)

x = W(k)
x W(t)

y = W(k)
y

3: while true do
4: Breakpoint Computation (3.22) producing α(t)

5: Exact Line Search (3.27) producing β(t) for given α(t)

6: Update projection x(t+1) = x(t) + β(t)d
(t)
x

7: Update working set


W(t+1)

x = W(t)
x

∪ {i : box constraint activated by β(t)}
W(t+1)

y = W(t)
y

∪ {j : affine constraint activated by β(t)}

8: if β(t) < α(t) then
9: Stop with projection x(t+1)

10: end if
11: Projected Direction Computation (3.29) producing d

(t+1)
x

12: Update (Hdx)
(t+1) according to (3.31)

13: t = t+ 1
14: end while
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The same holds for affine bounds denoted by subscript y.

For the optimal solution holds that all resiaduals are equal to zero,
i.e. the stopping condition is

0 =∥φx∥+∥βx∥ =
∥∥φy

∥∥+
∥∥βy

∥∥ . (3.33)

Proportionality Test and Proportioning

In NPP Šantin [2016], it was observer that proportinality test Dostál
[1997] can server as an effective tool for decision when to release con-
straints from the working set in order to reduce the computation bur-
den of factor updates. Here we extend the idea to affine constraints
case.

In the k-th iteration, we work with the working set

W(k) = (W(k)
x ,W(k)

y ), W(k)
x ⊂ {1, . . . , n}, W(k)

y ⊂ {1, . . . ,m} (3.34)

and we assume we have a k-th iteration x(k), y(k) satisfying

(x(k))i = xi, or (x(k))i = xi, for i ∈ W(k)
x ,

(y(k))j = y
j
, or (y(k))j = yj , for j ∈ W(k)

y ,

i.e., the working set W(k) contains only active constraints.

The proportionality test compares free and chopped residual defined
in Sec. 3.2. We say the residuals are not proportional when the affect
of not optimal active constraints in the working set has larger effect
that the free components if and only if

Γx∥φx∥ <∥βx∥ , or (3.35a)
Γy

∥∥φy

∥∥ <
∥∥βy

∥∥ . (3.35b)

Hence the not optimal active constraints in the working set have a
more significant effect than the free components.

The proportioning is the process of making residual proportional
in the sense of condition by enforcing ∥βx∥ = 0, where Γz, z ∈ {x,y}
are the proportionality parameter. The smaller Γz is, the preferable
it is to release constraints from the working set. The bigger Γz > 0
is, the preferable it is not to release constraints. Please note that the
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Chapter 3. Solution of QP with Affine Constraints

algorithm allows independent control of the preference of active set re-
duction for box and affine constraints by having a separate decision of
residuals. However, we can typically choose Γx = Γy = 1. Constraints
are released from the working sets as follows

W(k+1)
x = {i ∈ W(k)

x : (βx)i = 0}, (3.36a)

W(k+1)
y = {i ∈ W(k)

y : (βy)i = 0}. (3.36b)

Summary

The NPPrimal algorithm is a primal active-set method, which (in its
outer loop) finds a step from the k-th iteration to the (k+1)−th iteration
by solving an equality-constrained QP quadratic subproblem in which
some of the inequality constraints and all the equality constraints are
imposed as equalities. These active constraints are called the working
set W(k). The solution of this subproblem gives a direction dx, such
that x(k) + dx is a minimizer of the cost function 1

2x
THx + xTf with

respect to the working set W (k).

In the inner loop, the computed direction dx is gradually projected
concerning maintaining the feasibility of the updated approximation
of the solution. Thus, in the next step, the feasibility of x(k) + dx

is checked and the largest possible α ∈ [0, 1] is computed, such that
x(k) + αdx remains feasible. The approximation is updated (ensuring
we keep decreasing the cost function), the working set is accordingly
expanded, the new projected Newton direction is computed, and the
inner loop goes to its next iteration. This approach benefits from the
fact that computing the projected Newton direction is computationally
substantially cheaper than computing the Newton direction based on
the Newton step. Thus we expand the active working set more cheaply.
However, the computation is not straightforward in contrast to the NPP
algorithm. Due to affine constraints, it requires a solution of the least
square subproblem in each inner iteration.

After the projection of the inner loop, associated Lagrange multipli-
ers λ are computed. Suppose the computed Newton direction is not
a decent direction (when rounding errors are taken into account, this
can happen even for nonzero Newton direction) or the active work-
ing set was not changed from the previous iteration. In that case,
the signs of Lagrange multipliers are examined to decide whether we
have reached the optimum or whether some constraints should be
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released from the active working set. The release of the not optimal
constraint indices from the set defining the face problem based on the
gradient entries has also been done in Bertsekas [1982]. The main
differentiator of the proposed algorithm is to use the proportionality
test (Sec. 3.2). When not proportional, all blocking constraints are
released. Otherwise, potential blocking constraints are left, and the
working set is expanded in the next iteration. This mechanism limits
unwanted changes in the active set and reduces the computational
complexity.

We enclose this overview of the NPPrimal algorithm with the pseu-
docode in Algorithm 5.

Convergence

The proof of convergence is based on the idea that the cost function
decreases at each iteration and that the number of iterations is finite.
In each iteration, the only move of the algorithm is arranged by the
projection of the direction towards the face minimizer. In the worst
case, the projected direction aims uphill. No move is allowed, and the
algorithm picks another face problem. The rigorous proof is left out
of here as it closely follows those already published in Šantin [2016]
and [2].

65



Chapter 3. Solution of QP with Affine Constraints

Algorithm 5 NPPrimal algorithm. Given H, A,x0,f , bounds x, x, y,
y, the initial working set W0, and maximal number of iterations kmax.
1: Set k = 1
2: Gradient Computation g(k) = Hx(k) + f
3: while k < kmax do
4: {Newton direction computation}
5: Newton Direction Computation Sec. 3.15 producing d

(k)
x ,λ(k)

6: if 0 = d
(k)
x · g(k) (3.17) then

7: {Newton direction projection}
8: Projected Line Search (Alg. 4)
9: Solve ZT

xA
Tλ(k+1) = −ZT

x g
(k+1) for λ(k+1)

10: else
11: λ(k+1) = λ(k)

12: end if
13: {Optimality testing}
14: if 0 =∥φx∥+∥βx∥ =

∥∥φy

∥∥+
∥∥βy

∥∥ (3.33) then
15: Stop with the solution x(k+1)

16: else
17: {Proportionality testing}
18: if Γx∥φx∥ <∥βx∥ (3.35a) then
19: W(k+1)

x = {i ∈ W(k)
x : (βx)i = 0} (3.36a) {Proportioning in x}

20: else
21: W(k+1)

x = W(k)
x

22: end if
23: if Γy

∥∥φy

∥∥ <
∥∥βy

∥∥ (3.35b) then
24: W(k+1)

y = {i ∈ W(k)
y : (βy)i = 0} (3.36b) {Proportioning in y}

25: else
26: W(k+1)

y = W(k)
y

27: end if
28: end if
29: k = k + 1
30: end while
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4 Numerical Results

The proposed solutions in Chapter 2 and Chapter 3 are modular - the
speed profile optimizer (Chapter 2) can use any suitable QP solver,
not only NPPro presented in Chapter 3. Hence, benchmark results
related to the NPPro solver and speed profile optimization can be read
independently.

The NPPro is generated by Matlab Embedded Coder® as a standalone
C-code for double and single precision with no dependencies. In-
terfaces allow you to call the solver from C++, Python, MATLAB, or
Simulink. The interface also allows providing a Hessian matrix in full
or economic (only upper triangle) data storage format, which might
be preferable due to Random Access Memory (RAM) savings. Numer-
ical results were obtained from a computer with an Intel Core(TM) i5-
12600HX processor.

An open-source benchmark environment called qpbenchmark [Caron
et al., 2023] was used. It interfaces state-of-the-art solvers to Python
and allows the use of various test sets. Since the NPPro solver is pri-
marily designed for small, dense, strictly convex problems, we restrict
the benchmark to the subset of problems with sizes n ≤ 1000 and
m ≤ 1000 and strictly positive definite Hessian.

Maros and Meszaros

Maros and Meszaros have developed a benchmark problem set for eval-
uating optimization algorithms’ performance [Maros and Mészáros,
1999]. These problems consist of a set of problems with varying sizes
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(the number of variables and constraints) and difficulty levels and are
designed to test the performance of optimization algorithms.

Figure 4.1: Subset of Maros-Meszaros problems with positive definite
Hessian and both number of variables and constraints less than or
equal a thousand.

The results in Figure 4.1 show how many problems can be solved by
a solver within a given runtime (in seconds). It can be seen in the fig-
ure the proposed NPPro solver can solve 15 of 19 benchmark problems.
NPPro finds the solution very fast compared to other solvers - deliver-
ing all 15 cases among the three fastest solvers. On the other hand,
there is still room for reliability improvements as four of the challeng-
ing problems were not solved properly. Note that quadprog refers to
Python implementation of quadratic programming [McGibbon, 2023].

MPC Benchmarks

The test set comprises QPs arising from three different MPC problem
formulations. The first is motivated by a centroidal model predictive
problems, a well-known approach in the community of legged robots
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when the mass of the legs is neglected compared to the one of the base
[Léziart, 2022]. The second is extended walking stabilization based on
linear inverted pendulum tracking by quadratic programming-based
wrench distribution and a whole-body admittance controller that ap-
plies both end-effector and CoM strategies [Caron et al., 2019]. The
third comes from MPC for balancing Upkie wheeled biped [Bambade
et al., 2023].

Figure 4.2: Set of QPs arising from MPC problems with positive definite
Hessian and both number of variables and constraints less than or
equal a thousand.

The comparison of the NPPro solver on the various MPC problems
with other state-of-the art solvers is shown in Figure 4.2. Also in this
benchmark the NPPro solver is among three fastest QP solvers with
total 58 of 64 solved problems.

Oscillating Masses

The NPPro has also been benchmarked on an embedded device with
Infineon TC387 (300 MHz). The solved QP problems arise from the
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oscillating masses benchmark based on Wang and Boyd [2010]. It
comprises six masses connected by spring dampers (see Figure 4.3).
The first and the last masses are connected to the walls. The weight
of each mass is 1 kg, and the spring constant is 1 N/m without damp-
ing. The system state x ∈ R12 represents the displacement and velocity
of an individual mass. The displacement is allowed in a [−4, 4] range.
Three control inputs, i.e., u ∈ R3, represent tensions between different
masses. We assume control limits −0.5 ≤ u ≤ 0.5, and the presence
of random bounded external disturbance v ∈ R6 with a uniform dis-
tribution on [−0.5, 0.5], which acts additionally on the displacement
state of each mass. See Wang and Boyd [2010] for more details about
the setup. The control objective is stabilising each mass’s origin using
MPC with softened output limits.

Figure 4.3: Oscillating mass model [Wang and Boyd, 2010]. Boxes
represent the masses and dark regions on each side represent walls.

To show the relation of the solver’s performance on the number of
variables, we perform 100 simulation steps of the model controlled with
the prediction horizon N ∈ {1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 25}. The experi-
ment was repeated 5 times, and minimum time was taken to elimi-
nate volatility caused by the (non-real-time) operating system. In Fig-
ure 4.4, the maximum, mean, and median solution time and number
of iterations over the simulation horizon are plotted, respectively.
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Figure 4.4: Solution times and number of iterations from Oscillat-
ing Masses benchmark running on an embedded device with Infineon
TC387 (300 MHz).
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5 Conclusion

The contribution of this work is twofold. First, it presents an innova-
tive concept for optimizing speed profiles, including traffic light pas-
sage planning. A reliable arrangement is proposed, which results, in
the end, in solving a moderate series of QP problems. Second, this
work introduces an efficient method for solving generic QP problems
with affine constraints. The usefulness and reliability of the latter are
being proved in practice. All the approaches were developed with a fo-
cus on simplicity and reliability. The motivation was to overcome the
challenges enumerated in the introduction of this text. I believe, the
quality of the speed profile optimization proposed in this work shall
also be proven by an application soon.
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