
Dissertation Thesis

Towards a Normalized Systems
Gateway Ontology for
Conceptual Models

by

Marek Suchánek

Supervised by Robert Pergl and Herwig Mannaert

Thesis submitted to the Faculty of Information Tech-
nology, CTU in Prague, in partial fulfilment of the
requirements for the degree of Doctor.

Doctoral study programme: Informatics

Department of Software Engineering
Faculty of Information Technology
Czech Technical University in Prague

Prague, May 2023

Thesis submitted for the degree of Doctor of Applied
Economics at the University of Antwerp to be de-
fended by Marek Suchánek.

Doctoral study programme: Applied Economics

Department of Management Information Systems
Faculty of Business and Economics
University of Antwerp

Antwerp, May 2023





Supervisor (Czech Technical University in Prague):
doc. Robert Pergl, Ph.D.
Department of Software Engineering
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Supervisor (University of Antwerp):
prof. Herwig Mannaert
Department of Management Information Systems
Faculty of Business and Economics
University of Antwerp
Prinsstraat 13
2000 Antwerp
Belgium

Copyright © 2023 Marek Suchánek

iii





Abstract

In software engineering, conceptual modelling is a technique for describing a problem do-
main related to a software system. Although its primary purpose is to promote human
understanding and communication, conceptual models can be (re)used to generate the
desired software systems or their fragments. Normalized Systems (NS) describe how to
create enterprise software systems by utilising code generation for evolvability and sustain-
ability. It uses modelling of the so-called Elements – building blocks ensuring evolvability.
This dissertation thesis designs a solution to transform conceptual models into Normalized
Systems (and vice versa) while maintaining mutual consistency. The Gateway Ontology
designed on the basis of RDF technologies provides means to define the mappings between
arbitrary conceptual modelling languages and Normalized Systems. It supports different
types of modelling and enables semantic integration between various models. The thesis
also covers the design and implementation of transformation execution that allows one to
transform models of selected modelling languages. The overall solution considers evolv-
ability on multiple levels – adopting changes in tools, models, metamodels, and mappings.
According to the Design Science Research methodology, the research artefacts were refined
and evaluated in design cycle iterations while confronted with the knowledge base and the
NS environment. As part of the evaluation, we demonstrate several use cases with different
conceptual models, their integration, and transformation into NS.

In particular, the main contributions of the dissertation thesis are as follows:

(i) the design of model-to-model transformation based on RDF/OWL,

(ii) the evolvable transformation between NS elements and RDF/OWL,

(iii) ontologies for conceptual modelling using RDF,

(iv) the SPARQL query generation method for RDF transformations,

(v) the framework for transformations between NS and conceptual models.

Keywords: Normalized Systems • Ontology Engineering • Model-Driven Development •
Semantic Integration • Model Transformation • Metamodelling

v





Abstrakt

Konceptuálńı modelováńı slouž́ı v oblasti softwarového inženýrstv́ı k popisu problémové
domény souvisej́ıćı s softwarovým systémem. Ačkoliv primárńım účelem je zlepšeńı lidského
porozumněńı a komunikace, konceptuálńı modely mohou být (znovu)použity pro gen-
erováńı softwarových systémů nebo jejich část́ı. Normalizované systémy (NS) popisuj́ı
jak vytvářet podnikové informačńı systémy pomoćı generováńı kódu za účelem evolv-
ability a udržitelnosti. NS použ́ıvá modelováńı takzvaných Element̊u – stavebńıch blok̊u
zajǐsťuj́ıćıch evolvabilitu.Tato dizertačńı navrhuje řešeńı pro transformaci konceptuálńıch
model̊u na Normalizovanými systémy (zpět) s zachováńım vzájemné konzistence. Bránová
ontologie založená na RDF technologíıch umožňuje definovat mapováńı mezi libovolnými
konceptuálńımi modelovaćımi jazyky a Normalizovanými systémy. Tento návrh podporuje
r̊uzné typy modelováńı a umožňuje sémantickou integraci mezi modely. Celkové řešeńı
zohledňuje evolvabilitu na v́ıce úrovńıch – změny v nástroj́ıch, modelech, metamodelech
i mapováńıch. V souladu s metologíı Design Science Research byly navržené artefakty
postupně vylepšovány a vyhodnocovány v návrhových cykles a současně konfrontovány s
znalostńı báźı i prostřed́ım NS. V rámci vyhodonoceńı, demonstrujeme několik př́ıpad̊u
užit́ı s r̊uznými konceptuálńımi modely, jejich integraci a transformaci do NS.

Hlavńımi př́ınosy této dizertačńı práce jsou zejména:

(i) návrh transformaćı model-model založená na RDF/OWL,

(ii) evolvabilńı transformace mezi NS Elementy a RDF/OWL,

(iii) ontologie pro konceptuálńı modelováńı v RDF,

(iv) metoda generováńı SPARQL dotaz̊u pro RDF transformace,

(v) framework pro transformace mezi NS a konceptuálńımi modely.

Kĺıčová slova: Normalized Systems • Inženýrstv́ı ontologíı • Modelem ř́ızený vývoj •
Sémantická integrace • Transformace model̊u • Metamodelováńı

vii





Abstract

In het kader van software engineering is conceptuele modellering een techniek om een
bepaald domein te beschrijven vanuit het standpunt van een informatiesysteem. Hoewel
het primaire doel ervan is het bevorderen van menselijk begrip en communicatie, kun-
nen dergelijke conceptuele modellen worden gebruikt om de gewenste informatiesystemen
geheel of gedeeltelijk te genereren. Normalized Systems (NS) beschrijft hoe informatiesys-
temen automatisch kunnen worden gecreëerd door gebruik te maken van codegeneratie
vertrekkende van de modellering van zogenaamde Elementen – bouwstenen die garanties
bieden op het vlak van evolueerbaarheid. Dit proefschrift ontwerpt een oplossing om con-
ceptuele modellen om te zetten in genormaliseerde systemen (en vice versa) met behoud van
onderlinge consistentie. De ontworpen Gateway Ontologie is gebaseerd op RDF technologie
en biedt voorzieningen om koppelingen te definiëren tussen diverse talen voor conceptuele
modellering enerzijds, en genormaliseerde systemen anderzijds. Het ondersteunt verschil-
lende soorten modellering en maakt semantische integratie tussen verschillende modellen
mogelijk. Het proefschrift behandelt ook het ontwerp en de implementatie van de transfor-
matie van modellen voor een aantal geselecteerde modelleringstalen. De algemene oplossing
houdt rekening met evolueerbaarheid op meerdere niveaus, namelijk het aannemen van ve-
randeringen in tools, modellen, metamodellen en mappings. Volgens de Design Science
Research methodologie werden de onderzoeksartifacten verfijnd en geëvalueerd in ontwer-
pcyclus iteraties terwijl ze werden geconfronteerd met de kennisbasis en de NS omgeving.
Als onderdeel van de evaluatie worden verscheidene use cases gedemonstreerd voor de
integratie met en transformatie naar NS van conceptuele modellen.

In het bijzonder zijn de belangrijkste bijdragen van het proefschrift als volgt:

(i) het ontwerp van model-naar-model transformatie op basis van RDF/OWL,

(ii) een evolueerbare transformatie tussen NS-elementen en RDF/OWL,

(iii) de uitwerking van ontologieën voor conceptuele modellering met RDF,

(iv) creatie van een SPARQL-query-generatiemethode voor RDF-transformaties,

(v) een raamwerk voor transformaties tussen NS en conceptuele modellen.

Trefwoorden: Normalized Systems • Ontologie Engineering •Modelgestuurde Ontwikke-
ling • Semantische Integratie • Modeltransformatie • Metamodellering

ix





Acknowledgements

I would like to begin by expressing my appreciation to my dedicated supervisors, Robert
Pergl and Herwig Mannaert. Their support, vast expertise, and insightful suggestions were
instrumental in guiding me through every stage of this research journey. Their supervision
helped me overcome any obstacles that came my way and reach the successful completion
of my work.

I extend my sincere gratitude to NSX bvba and its employees for their technical consul-
tations and welcoming approach during my visits. I also wish to thank Prof. Jan Verelst
for his role in organising the Normalized Systems Summer Schools and facilitating the
joint double-degree PhD agreement between CTU and UAntwerpen. I would like to ex-
press my huge appreciation also to Lenka Fryčová for the invaluable assistance with the
administrative tasks related to the double-degree program and PhD study.

I would like to give special thanks to the staff at the Department of Software Engineering
(FIT CTU in Prague), particularly the department secretary, Adéla Sv́ıtková, the head of
the department, Michal Valenta, as well as the former secretary, Alena Libánská. Their
friendly and flexible approach created a pleasant atmosphere for my research. I would also
like to thank my colleagues from the Centre for Conceptual Modelling and Implementation
(CCMi) research group, namely Jan Slifka, Vojtěch Knaisl, and David Šenkýř, for their
constructive feedback, stimulating discussions, and research collaboration. I am grateful
for the support of the people around me who kept me focused on my research and allowed
me to push my work forward.

I am also grateful for the practical experience gained through my involvement in
projects such as Data Stewardship Wizard (Horizon 2020 grant No. 871075, MEYS grants
No. LM2018131 and No. LM2023055) and Smart City Compass (TACR No. TJ02000344).
My research has also been partially supported by the Grant Agency of the Czech Tech-
nical University in Prague, specifically through grants “Advanced Research in Software
Engineering” (No. SGS17/211/OHK3/3T/18 and No. SGS20/209/OHK3/3T/18).

Last but not least, I want to express my deepest gratitude to my family for their
unwavering love and support. They have provided me with the best environment to pursue
my studies, and I am incredibly grateful for their presence in my life.

xi





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Related Work & Previous Results . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Contributions of the Dissertation Thesis . . . . . . . . . . . . . . . . . . . 10
1.6 Structure of the Dissertation Thesis . . . . . . . . . . . . . . . . . . . . . . 11

2 Background and State-of-the-Art 13
2.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Conceptual Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Formal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.4 Model-Driven Engineering . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.5 Model-to-Model Transformations . . . . . . . . . . . . . . . . . . . 28

2.2 Previous Results and Related Work . . . . . . . . . . . . . . . . . . . . . . 31
2.2.1 Model Driven Architecture . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Model as a Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.3 OO-Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.4 Scaffolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.5 Eclipse Modeling Framework and Ecore . . . . . . . . . . . . . . . . 34
2.2.6 Conceptual Model Transformations and Ontologies . . . . . . . . . 35
2.2.7 Ontology Mapping and RDF Transformations . . . . . . . . . . . . 35
2.2.8 Ontology-Based Software . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Normalized Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Normalized Systems Theory . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Metamodel and Meta-Circularity . . . . . . . . . . . . . . . . . . . 37
2.3.3 Expansion and Craftings . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.4 Prime Radiant and NS Modeller . . . . . . . . . . . . . . . . . . . . 40
2.3.5 Normalized Systems in Other Domains . . . . . . . . . . . . . . . . 41

3 Overview of Our Approach 43
3.1 Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Feature-Level Requirements . . . . . . . . . . . . . . . . . . . . . . 45

xiii



Contents

3.1.2 Theory-Based and Contextual Requirements . . . . . . . . . . . . . 46
3.1.3 Adapted Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.4 Verification and Evaluation . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Framework Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.1 Design Modularisation . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Grounding of our Design . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 Logical View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.4 Technical View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.5 NS Gateway Ontology for Conceptual Models . . . . . . . . . . . . 60

3.3 Formal Specification of Transformations . . . . . . . . . . . . . . . . . . . 61
3.3.1 Conceptual Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 NS Models and Expansion . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.3 RDF and OWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.4 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Evolution in Design Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.1 Initial Prototype OntoUML-NS . . . . . . . . . . . . . . . . . . . . 64
3.4.2 Ecore-NS Transformation . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.3 Adding Intermediary Plane . . . . . . . . . . . . . . . . . . . . . . 65
3.4.4 NS-OWL Tool Development . . . . . . . . . . . . . . . . . . . . . . 66
3.4.5 Conceptual Models in RDF and OWL . . . . . . . . . . . . . . . . 66
3.4.6 Generalising the Workflow . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.7 Enhancing Layers in Gateway Ontology . . . . . . . . . . . . . . . . 67
3.4.8 Future of Design Cycle . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Aspects and Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5.1 Future of Design Cycle . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5.2 Models Integration Support . . . . . . . . . . . . . . . . . . . . . . 68
3.5.3 Existing Tooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5.4 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5.5 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5.6 Evolvability and Maintainability . . . . . . . . . . . . . . . . . . . . 70

3.6 Alternative Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6.1 Per-Language Transformations . . . . . . . . . . . . . . . . . . . . . 70
3.6.2 XSLT Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.6.3 QVT Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.4 ATL Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Transformation between NS Elements and RDF/OWL 75
4.1 Design of Bi-directional Transformation . . . . . . . . . . . . . . . . . . . . 76

4.1.1 Motivation for NS in RDF/OWL . . . . . . . . . . . . . . . . . . . 77
4.1.2 Mapping NS to OWL . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.3 Mapping NS to RDF . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1.4 Recovering NS from RDF . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.5 Instance-Level Mapping . . . . . . . . . . . . . . . . . . . . . . . . 80

xiv



Contents

4.2 NS Elements Models Representation . . . . . . . . . . . . . . . . . . . . . 81
4.2.1 NS Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.2 NS XML Representation . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.3 RDF-Triples Representation . . . . . . . . . . . . . . . . . . . . . . 84
4.2.4 OWL-Triples Representation . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Transformation Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.1 Building URIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.2 NS to RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.3 NS to OWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.4 RDF to NS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.5 OWL to NS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Transformation Tool Implementation . . . . . . . . . . . . . . . . . . . . . 93
4.4.1 Traditional Prototype . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.2 Expanded Transformation Tool . . . . . . . . . . . . . . . . . . . . 94
4.4.3 Transformation Verification Procedure . . . . . . . . . . . . . . . . 97

4.5 Design Cycle of NS-RDF/OWL Transformation . . . . . . . . . . . . . . . 98
4.6 Summary of NS-RDF/OWL Transformation . . . . . . . . . . . . . . . . . 98

5 Using RDF/OWL to Represent and Integrate Conceptual Models 101
5.1 Dealing with Heterogeneity in Conceptual Modelling with RDF/OWL . . . 102

5.1.1 Syntactic Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . 102
5.1.2 Semantic Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.3 Modelling Language Specifications . . . . . . . . . . . . . . . . . . 103
5.1.4 Absence of Meta-Circularity . . . . . . . . . . . . . . . . . . . . . . 104
5.1.5 Conceptual Model as Semantic Web and Linked Data . . . . . . . . 104

5.2 Conceptual Modelling Ontologies for NS Gateway . . . . . . . . . . . . . . 105
5.3 UML Models in RDF/OWL . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.1 Motivation for UML in RDF/OWL . . . . . . . . . . . . . . . . . . 105
5.3.2 UML Ontology for Transformation Design . . . . . . . . . . . . . . 106
5.3.3 UML Class Diagram Ontology . . . . . . . . . . . . . . . . . . . . . 106
5.3.4 UML State Machine Ontology . . . . . . . . . . . . . . . . . . . . . 107
5.3.5 UML Activity Diagram Ontology . . . . . . . . . . . . . . . . . . . 108
5.3.6 UML in RDF Example . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.7 Ecore as UML Subset . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 OntoUML Models in RDF/OWL . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.1 OntoUML as UML Profile in RDF . . . . . . . . . . . . . . . . . . 111
5.4.2 OntoUML in RDF using gUFO . . . . . . . . . . . . . . . . . . . . 112
5.4.3 Integrating OntoUML in RDF . . . . . . . . . . . . . . . . . . . . . 112

5.5 BPMN Models in RDF/OWL . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.5.1 Conceptual Part of BPMN . . . . . . . . . . . . . . . . . . . . . . . 114
5.5.2 BPMN Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.5.3 BPMN Models in RDF . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5.4 Relating to BPMN 2.0 Ontology . . . . . . . . . . . . . . . . . . . . 115

xv



Contents

5.6 BORM Models in RDF/OWL . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.6.1 OntoBORM – Ontology for BORM . . . . . . . . . . . . . . . . . . 116
5.6.2 Representing BORM BA in RDF . . . . . . . . . . . . . . . . . . . 117
5.6.3 Representing BORM OR in RDF . . . . . . . . . . . . . . . . . . . 119
5.6.4 BORM Designed for Semantic Integration . . . . . . . . . . . . . . 121
5.6.5 Using SPARQL and SHACL for BORM . . . . . . . . . . . . . . . 122

5.7 ORM Models in RDF/OWL . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.7.1 ORM2 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.7.2 ORM2 in RDF Example . . . . . . . . . . . . . . . . . . . . . . . . 125

5.8 Integrating Knowledge from Conceptual Models using RDF . . . . . . . . . 126
5.9 Modularity and Evolvability of Conceptual Models in RDF/OWL . . . . . 127
5.10 Design Cycle of Representing Conceptual Models in RDF/OWL . . . . . . 128
5.11 Summary of Representing Conceptual Models in RDF/OWL . . . . . . . . 128

6 Transforming between Models using Gateway Ontology 131
6.1 Relating NS Elements and Conceptual Models . . . . . . . . . . . . . . . . 132

6.1.1 UML Class Diagram Mapping . . . . . . . . . . . . . . . . . . . . . 132
6.1.2 UML Activity Diagram Mapping . . . . . . . . . . . . . . . . . . . 134
6.1.3 UML State Machine Diagram Mapping . . . . . . . . . . . . . . . . 135
6.1.4 OntoUML Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.1.5 BPMN Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.1.6 BORM Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.1.7 ORM Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.1.8 Unmatched Constructs and Consistency . . . . . . . . . . . . . . . 141
6.1.9 Design and Features . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2 Gateway Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.2.1 Core Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.2.2 Extensions Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.2.3 Transformations Layer . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2.4 Conceptual Modelling Language Mappers . . . . . . . . . . . . . . 147

6.3 Building Gateway Ontology Bottom-Up . . . . . . . . . . . . . . . . . . . . 148
6.3.1 Structural-Based Gateway Ontology Abstractions . . . . . . . . . . 149
6.3.2 Behavioural-Based Gateway Ontology Abstractions . . . . . . . . . 149
6.3.3 General Gateway Ontology Abstractions . . . . . . . . . . . . . . . 150
6.3.4 DSR-Based Extensibility . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4 Performing Transformation with Mapping . . . . . . . . . . . . . . . . . . 150
6.4.1 Pattern-Based SPARQL Queries . . . . . . . . . . . . . . . . . . . . 151
6.4.2 Mapping Specification in RDF . . . . . . . . . . . . . . . . . . . . . 151
6.4.3 Transformation Execution . . . . . . . . . . . . . . . . . . . . . . . 153
6.4.4 Bi-directionality and Consistency . . . . . . . . . . . . . . . . . . . 154

6.5 Design Cycle of Gateway Ontology Development . . . . . . . . . . . . . . . 154
6.6 Summary of Gateway Ontology . . . . . . . . . . . . . . . . . . . . . . . . 155

xvi



Contents

7 Demonstration Use Cases 157
7.1 Using NS Gateway Ontology for Conceptual Models . . . . . . . . . . . . . 158
7.2 Conceptual Models for e-Commerce System . . . . . . . . . . . . . . . . . 160

7.2.1 UML Diagrams: Online Shopping . . . . . . . . . . . . . . . . . . . 161
7.2.2 Craft.CASE e-Shop Example . . . . . . . . . . . . . . . . . . . . . 161
7.2.3 Modelio’s Shopping Cart . . . . . . . . . . . . . . . . . . . . . . . . 162
7.2.4 Litium Connector Models . . . . . . . . . . . . . . . . . . . . . . . 164
7.2.5 Lucient’s ORM Model for Sales Application . . . . . . . . . . . . . 164

7.3 From Conceptual Models to Normalized System . . . . . . . . . . . . . . . 165
7.3.1 UML Diagram Examples to NS . . . . . . . . . . . . . . . . . . . . 166
7.3.2 Modelio: Shopping Cart Model to NS . . . . . . . . . . . . . . . . . 168
7.3.3 Lucient: Sales App to NS . . . . . . . . . . . . . . . . . . . . . . . 169
7.3.4 Craft.CASE: e-Shop to NS . . . . . . . . . . . . . . . . . . . . . . . 170
7.3.5 Litium ERP Connector to NS . . . . . . . . . . . . . . . . . . . . . 170
7.3.6 Results and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 172

7.4 Semantic Integration with BORM Model . . . . . . . . . . . . . . . . . . . 173
7.4.1 Integrated Input Conceptual Models . . . . . . . . . . . . . . . . . 174
7.4.2 Mapping and Transforming Integrated Models . . . . . . . . . . . . 175
7.4.3 NS from Integrated Models . . . . . . . . . . . . . . . . . . . . . . 175

7.5 Evolvability and Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.5.1 Adopt Changes in Conceptual Model . . . . . . . . . . . . . . . . . 177
7.5.2 Adopt Changes in a Modelling Language . . . . . . . . . . . . . . . 178
7.5.3 Adopt Changes in a Mapping . . . . . . . . . . . . . . . . . . . . . 179
7.5.4 Adopt Changes in the NS Metamodel . . . . . . . . . . . . . . . . . 180

7.6 Reverse Engineering Normalized System . . . . . . . . . . . . . . . . . . . 181
7.6.1 Normalized e-Commerce System . . . . . . . . . . . . . . . . . . . . 181
7.6.2 Reverse Transformation to UML via RDF . . . . . . . . . . . . . . 182
7.6.3 Resulting UML Model from NS . . . . . . . . . . . . . . . . . . . . 183
7.6.4 Consistency for Reversed Transformation . . . . . . . . . . . . . . . 184

7.7 Demonstration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8 Main Results 187
8.1 Applied Design Science Research . . . . . . . . . . . . . . . . . . . . . . . 188
8.2 NS-RDF/OWL Transformation . . . . . . . . . . . . . . . . . . . . . . . . 190
8.3 OWL Ontologies for Conceptual Modelling . . . . . . . . . . . . . . . . . . 191
8.4 SPARQL-Based Mappings in RDF for Versatile RDF Transformations . . . 192
8.5 CM-NS Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.6 RDF/OWL-Based MDD Framework . . . . . . . . . . . . . . . . . . . . . 193

9 Conclusions 195
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
9.2 Contributions of the Dissertation Thesis . . . . . . . . . . . . . . . . . . . 197
9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

xvii



Contents

Bibliography 201

Reviewed Relevant Publications of the Author 219

Reviewed Publications of the Author Relevant to the Thesis 219

Remaining Relevant Publications of the Author 224

Remaining Publications of the Author Relevant to the Thesis 225

Remaining Publications of the Author 227

Selected Relevant Supervised Theses 229

A Electronic Resources 231

xviii



List of Figures

1.1 Overview of the gateway and our research objectives . . . . . . . . . . . . . . 4
1.2 The Design Science Research Process Model (according to Peffers et al.) . . . 8
1.3 The Three Cycle View of Design Science Research (according to Hevner) . . . 9

2.1 Example of Enhanced Entity-Relationship model . . . . . . . . . . . . . . . . 15
2.2 Capabilities of UML class diagrams . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Example of a simple OntoUML model . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Elements of OCD and PSD diagrams . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 ORM relation of Person winning a prize in competition . . . . . . . . . . . . . 19
2.6 The 4+1 architectural view model (according to Kruchten) . . . . . . . . . . . 28
2.7 Relationships between QVT metamodels (according to OMG) . . . . . . . . . 29
2.8 Example of structural and behavioural model in Normalized Systems . . . . . 38
2.9 Fragment of NS Elements metamodel . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Excerpt of Requirements-Driven DSR (according to Braun et al.) . . . . . . . 44
3.2 Gateway ontology analogy with network gateway . . . . . . . . . . . . . . . . 51
3.3 Gateway ontology analogy with lingua franca . . . . . . . . . . . . . . . . . . 52
3.4 Gateway ontology analogy with vector spaces and transformation . . . . . . . 53
3.5 Logical view on the NS Gateway for Conceptual Models . . . . . . . . . . . . 55
3.6 Conceptual models plane with various metamodels and models . . . . . . . . . 56
3.7 Conceptual models plane with semantic integration . . . . . . . . . . . . . . . 56
3.8 Gateway plane with gateways and links to modelling languages . . . . . . . . 57
3.9 Normalized Systems plane with models and artefacts . . . . . . . . . . . . . . 57
3.10 Technical view on the Gateway plane . . . . . . . . . . . . . . . . . . . . . . . 58
3.11 Transformation for semantically integrated models . . . . . . . . . . . . . . . . 59
3.12 Reversed transformation for maintaining consistency . . . . . . . . . . . . . . 59

4.1 Design of NS-OWL/RDF transformation architecture . . . . . . . . . . . . . . 76
4.2 Excerpt of NS Elements tree projections class diagram . . . . . . . . . . . . . 82
4.3 Example of RDF graph for NS model . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Example of OWL graph for NS model . . . . . . . . . . . . . . . . . . . . . . 86
4.5 URI scheme for NS-RDF transformation . . . . . . . . . . . . . . . . . . . . . 87
4.6 Fragment of NS-RDF prototype design . . . . . . . . . . . . . . . . . . . . . . 94
4.7 Simplified diagram of classes in expanded NS-RDF tool . . . . . . . . . . . . . 96
4.8 Verification of NS-RDF/OWL bi-directional transformation . . . . . . . . . . 97

xix



List of Figures

5.1 Using RDF/OWL to deal with metamodel heterogeneity . . . . . . . . . . . . 104
5.2 Visualisation of OntoBORM (using WebVOWL) . . . . . . . . . . . . . . . . . 118
5.3 Cinema and e-Shop models example integration architecture . . . . . . . . . . 126
5.4 Evolution example for UML models . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1 Design of the Gateway Ontology layers and transformation . . . . . . . . . . . 143
6.2 Design of SPARQL-based transformation from RDF mapping . . . . . . . . . 152

7.1 The Gateway Ontology and its various use cases . . . . . . . . . . . . . . . . . 159
7.2 Transformation of conceptual models to RDF . . . . . . . . . . . . . . . . . . 160
7.3 UML class diagram of the Online Shopping case . . . . . . . . . . . . . . . . . 162
7.4 e-Shop Business Architecture in BORM example of Craft.CASE . . . . . . . . 163
7.5 UML class diagram of OnlineStore package . . . . . . . . . . . . . . . . . . . . 163
7.6 UML state machine diagram of Account . . . . . . . . . . . . . . . . . . . . . 164
7.7 ORM model for Sales Application . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.8 Conceptual models to RDF transformation . . . . . . . . . . . . . . . . . . . . 166
7.9 UML Online Shopping example in NS . . . . . . . . . . . . . . . . . . . . . . 167
7.10 Component onlineStore for the Modelio case in NS . . . . . . . . . . . . . . 168
7.11 Resulting data elements for the Lucient case in NS . . . . . . . . . . . . . . . 169
7.12 Part of the Craft.CASE e-Shop from BORM in NS . . . . . . . . . . . . . . . 171
7.13 Simple ERPConnectorApplication flow transformed from BPMN to NS . . . 172
7.14 Conceptual models semantic integration and transformation . . . . . . . . . . 173
7.15 Visualisation of integrated concepts from three different conceptual models . . 174
7.16 Data elements transformed from integrated conceptual models . . . . . . . . . 176
7.17 Change drivers and evolution within transformations . . . . . . . . . . . . . . 177
7.18 Data elements transformed for evolved Online Shopping UML class diagram . 178
7.19 Reverse transformation from NS to conceptual models . . . . . . . . . . . . . 181
7.20 Orders component of eCommerce NS Application . . . . . . . . . . . . . . . . 182
7.21 Products component of eCommerce NS Application . . . . . . . . . . . . . . . 183
7.22 Resulting UML class diagram from Products component . . . . . . . . . . . . 184

8.1 Designed artefacts and their dependencies . . . . . . . . . . . . . . . . . . . . 190

A.1 Contents of the electronic attachment . . . . . . . . . . . . . . . . . . . . . . . 231

xx



List of Listings

4.1 Data element XML projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Data element RDF projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Value field RDF projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4 Example of data element to ontology model transformation . . . . . . . . . . . 95

5.1 UML example in RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Ecore example with UML in RDF . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Example of OntoUML as UML profile in RDF . . . . . . . . . . . . . . . . . . 111
5.4 Example of OntoUML in RDF using gUFO . . . . . . . . . . . . . . . . . . . 112
5.5 OntoUML in RDF as UML profile combined with gUFO . . . . . . . . . . . . 113
5.6 BPMN model fragment in RDF . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.7 Example of mapping to BPMN 2.0 Ontology . . . . . . . . . . . . . . . . . . . 117
5.8 BORM BA example in RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.9 BORM OR example in RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.10 Linked BORM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.11 SPARQL query to count activities for each participant . . . . . . . . . . . . . 123
5.12 SPARQL query checking communication from p1 towards p2 . . . . . . . . . . 123
5.13 ORM2 example model in RDF . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1 Mapping example for UML classes . . . . . . . . . . . . . . . . . . . . . . . . 147

xxi





List of Algorithms

4.1 NS-RDF transformation traversal . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 NS-RDF additional OWL steps for data element . . . . . . . . . . . . . . . 90
4.3 NS-RDF additional OWL steps for value field . . . . . . . . . . . . . . . . 91
4.4 RDF-NS backwards transformation traversal . . . . . . . . . . . . . . . . . 92

xxiii





List of Tables

4.1 Concept transformation from NS to OWL . . . . . . . . . . . . . . . . . . . . 78
4.2 Mapping between value field and XSD types . . . . . . . . . . . . . . . . . . . 79

6.1 Mapping between UML Class Diagram and NS . . . . . . . . . . . . . . . . . 133
6.2 Mapping between UML Activity Diagram and NS . . . . . . . . . . . . . . . . 135
6.3 Mapping between UML State Machine Diagram and NS . . . . . . . . . . . . 136
6.4 Mapping between UML Class Diagram and NS . . . . . . . . . . . . . . . . . 137
6.5 Mapping between BPMN and NS . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.6 Mapping between BORM and NS . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.7 Mapping between ORM and NS . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xxv





List of Acronyms

A | B | C | D | E | F | G | I | J | M | N | O | P | Q | R | S | T | U | V | W | X

A

AI artificial intelligence

ALF Action Language for Foundational UML

API Application Programming Interface

ATL ATL Transformation Language

B

BA Business Architecture

BCD Bank Contents Table

BORM Business Object Relationship Modelling

BPDM Business Process Definition Metamodel

BPEL Business Process Execution Language

BPMN Business Process Model and Notation

C

CABE computer-aided business engineering

CASE computer-aided software engineering

CASL Common Algebraic Specification Language

CbyC Correctness by Construction

CIM Computation-independent model

CMP Conceptual Model Programming

xxvii



List of Tables

CRUD Create, Read, Update, Delete

D

DEMO Design & Engineering Methodology for Organizations

DL description logic

DOAP Description of a Project

DOGMA Developing Ontology-Grounded Methods and Applications

DRY Don’t Repeat Yourself

DSR Design Science Research

E

EER Enhanced Entity–Relationship

EMF Eclipse Modeling Framework

ER Entity-Relationship

F

FAIR findable, accessible, interoperable, and re-usable

FOAF Friend of a Friend

fUML Foundational UML

G

GCL Guarded Command Language

I

IDE Integrated Development Environment

IFML Interaction Flow Modeling Language

IRI Internationalized Resource Identifier

J

JPEG Joint Photographic Experts Group

JSON JavaScript Object Notation

xxviii



List of Tables

JSON-LD JSON for Linking Data

JVM Java Virtual Machine

M

MDA Model Driven Architecture

MDD Model-Driven Development

MDE Model-Driven Engineering

MDT Model Development Tools

MOF Meta-Object Facility

MOFM2T MOF Model to Text Transformation Language

MVC Model-View-Controller

MVP Model-View-Presenter

N

NEMO Ontology & Conceptual Modeling Research Group

NLP natural language processing

NS Normalized Systems

NST Normalized Systems Theory

O

OASIS Open and Active Specification of Information Systems

OCD Organisation Construction Diagram

OCL Object Constraint Language

OCMI Ontology for Conceptual Models Integration

OCML Operational Conceptual Modelling Language

OCR Optical Character Recognition

OMG Object Management Group

OR Objects Relations

xxix



List of Tables

ORM Object-Role Modeling

OWL Web Ontology Language

P

PDF Portable Document Format

PIM Platform-independent model

PNG Portable Network Graphics

POJO Plain Old Java Object

PSD Process Structure Diagram

PSM Platform-specific model

Q

QVT Query/View/Transformation

R

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RML RDF Mapping Language

S

SBMO SPARQL-Based Mapping Ontology (SBMO)

SHACL Shapes Constraint Language

ShEx Shape Expressions

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

SVG Scalable Vector Graphics

T

TEMOS Textual Modelling System

TPT Transaction Product Table

xxx



List of Tables

U

UFO Unified Foundational Ontology

UI User Interface

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

UUID Universally Unique Identifier

UWE UML-based Web Engineering

V

VCS Version Control System

VDM Vienna Development Method

W

W3C World Wide Web Consortium

WIDOCO WIzard for DOCumenting Ontologies

X

XMI XML Metadata Interchange

XML Extensible Markup Language

XSD XML Schema Definition

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformations

xtUML Executable Translatable UML

xxxi





Chapter 1

Introduction

“The precise statement of any problem is
the most important step in its solution.”

Edwin Bliss

The introductory chapter describes an overview of motivations, enumerates the associ-
ated problems, and outlines the goals of this dissertation thesis. It sets the research problem
together with our research hypothesis and related research objectives. We conduct the re-
search using the Design Science Research (DSR) methodology that is also briefly explained
in this chapter. A brief summary of the related work and previous results are further
discussed in Chapter 2. Finally, the main contributions and structure of this dissertation
thesis are presented as well.

1



1. Introduction

1.1 Motivation

Conceptual modelling is an activity of describing a particular world using concepts, i.e.
abstractions that allow omitting details unnecessary for the model. It has solid roots in
philosophy and cognitive sciences. As such, conceptual models are being used in vari-
ous forms since time immemorial. One can even see cave paintings as conceptual models
of how people can hunt mammoths (or other animals based on the level of abstraction).
Using abstract thinking and building worlds of concepts is something natural for human
beings. Therefore, conceptual modelling promotes understanding and communication be-
tween people, i.e. capturing and sharing knowledge about something.

In software engineering, conceptual modelling is a significant part of the analysis that
is essential to build information systems that serve its purpose well. To support an or-
ganisation with a software system, one must understand its needs, processes, structure,
rules, and other aspects. It is only possible to design the system to meet expectations and
support the organisation efficiently. There are many methodologies and modelling lan-
guages for capturing those various aspects. Some try to cover everything from a high-level
perspective, others are oriented on a specific aspect (e.g. processes), but in detail, then
there are some oriented on ontological meanings, and others on a technical solution. The
software analyst must be skilled and experienced to pick the suitable “tools” for a given
case and use them well.

Conceptual models in the software development process serve as a source of knowledge
in the analysis phase. However, the models can be then used for proceeding to implementa-
tion efficiently. Yet again, there are many methods, tools, and frameworks for generating
software source code from models. Some can produce skeletons for a whole simple ap-
plication; some generate only the data layer entities, and so on. As it helps with the
development at the beginning, it still has issues maintainability and hence sustainability.
It is caused by the fact that the generated software from models usually needs adjustments
in additional source code written by programmers. It results in breaking the consistency
with the conceptual model and additional complexity.

Every software information system needs to be updated over time as the organisation
needs are changing and technologies move forward. The more complex the system, the
more resources are necessary for each next change to be added. According to best practises
and internal conventions, maintaining the system sustainable, with good documentation,
and still supporting the organisation is a challenge. The system often reaches the level of
complexity when it is more efficient (in terms of resources) to implement the system again
from scratch. Those problems are addressed by Normalized Systems Theory (NST) [1].

Normalized Systems (NS) describe how to build (software) systems that are evolvable,
i.e. changes can be easily adapted without adverse effects on the whole system. It does
so by using various principles, creating a fine-grained modular structure, and generating
the system using templates called Expanders from models of Elements. In a sense, those
models are also conceptual models as a software analyst tries to describe the domain
(e.g. an organisation or its part) using the elements. Still, it requires additional and
precise knowledge related only to the NS as the modelling approach is significantly different

2



1.2. Problem Statement

from the ontological view. In addition, models contain technical details that are usually
irrelevant during analysis. Finally, some common construct from conceptual modelling
that is natural for people (e.g. inheritance or meronymy relations) are not present in NS
for evolvability reasons.

In this dissertation thesis, we are dealing with connecting the world of conceptual mod-
elling with its many modelling languages and methodologies with the world of evolvable
software build using Normalized Systems. Rather than covering a subset of the modelling
languages, we design a framework that supports transformation between NS models and
various other conceptual models based on ontological descriptions of those transformations.
There are several partial issues addressed in our work related to transformation descrip-
tions, diversity of conceptual modelling languages, knowledge integration, and maintaining
consistency between models. The core of our solution, as well as this thesis, is called Nor-
malized Systems Gateway Ontology for Conceptual Models because it is an ontology opening
the doors to conceptual models into the world of NS while maintaining the consistency with
the original, i.e. there is also a way back possible.

1.2 Problem Statement

The problem addressed by this thesis is overcoming the barrier between conceptual mod-
elling and Normalized Systems as a way of model-driven development targeting evolvable
information systems. Figure 1.1 shows the barrier together with its related issues that are
our research objectives RO1–RO4. First, at the conceptual model level, many modelling
languages can be used to describe a problem domain. Different modelling languages are
suitable for different cases, and usually, even a combination of multiple is desired. Any
information from conceptual models should not be lost during the transformation to NS
models. Although expressiveness may differ in various models, the models on both sides
of the abyss should remain consistent. Finally, as the transformation is tied to Normalized
Systems that stress the evolution of systems, the transformation needs to be also evolvable,
designed as a fine-grained modular structure, and easily adapt to changes.

RH: Research Hypothesis Normalized Systems models capture domain-related knowl-
edge that can also be represented in various conceptual models using well-established mod-
elling languages such as Unified Modeling Language (UML), Business Process Model and
Notation (BPMN), Object-Role Modeling (ORM), or Business Object Relationship Mod-
elling (BORM). Therefore, it is possible to design evolvable and configurable transforma-
tions between conceptual and NS models.

The transformation would benefit from the expressiveness, tooling, and community
support around those well-established modelling languages on the one side, and evolvable
information systems generation on the other side. For our contribution, we set the following
research questions and related objectives coupled with the hypothesis: RO1 – Semantic
Integration, RO2 – Transformation, RO3 – Evolvability, and RO4 – Consistency.

3



1. Introduction

Figure 1.1: Overview of the gateway and our research objectives

RO1: Research Objective 1 – Semantic Integration How can we interconnect
various conceptual models that focus different aspects, e.g. processes, structure, or facts,
in order to enable holistic view over specific problem domain?

The modelling in Normalized Systems covers various aspects of a problem domain.
However, many conceptual modelling languages and frameworks are focused on a particular
aspect in greater detail. For example, OntoUML considers only the structure of a domain,
ORM works only with facts, and BPMN is focused on processes. Therefore, we first need to
allow the semantic integration of the knowledge captured in different conceptual models.
With the holistic view – in the ideal case – on the domain can be used to produce a
matching NS model and information system.

RO2: Research Objective 2 – Transformation How can be conceptual models cap-
turing various aspects transformed into NS models (and vice versa) with minimal informa-
tion loss?

Research is mainly focused on the transformation of conceptual models through NS
models into evolvable information systems. A set of semantically integrated conceptual
models is the input and the corresponding NS model is the direct output that allows the
generation of a software system. The transformation must minimise information loss as
much as possible using the current version of the NS metamodel. If information loss is

4



1.3. Related Work & Previous Results

prevented, then it should be possible to use the reverse direction of the transformation
to create a conceptual model from an NS model. The problem related to this question
is about allowing input models in different conceptual modelling languages and possibly
additional integration information according to RO1.

RO3: Research Objective 3 – Evolvability Is it possible to achieve evolvability,
i.e. reduce the negative impact of future changes, of the transformation with respect to the
metamodels and their independent changes?

The transformation between various conceptual models and Normalized Systems will
be dependent on the metamodels (e.g. definition of Class in UML or DataElement in the
NS metamodel). The metamodels can change over time, and the transformation should
ensure that the change in one of the metamodels will not affect the whole transformation
framework. For example, when UML updates its specification, the changes should affect
first only the UML-related part or module of the transformation, whereas all others are
unchanged. Similarly, for the change in the NS metamodel. Last but not least, changes in
some of the metamodels can open a possibility to enhance the transformation elsewhere.
In the case of enhancement of the NS metamodel, new constructs may be available, and
transformations from some conceptual modelling languages may take advantage of it.

RO4: Research Objective 4 – Consistency Can we design the transformation in
a way that allows maintaining or at least check consistency between conceptual and NS
models?

Not only can the metamodel change over time, but also can the underlying models.
When there are models of the same domain at the conceptual level and the NS level, it is
essential to consider their consistency. If something in the domain changes, the conceptual
models are adjusted and the transformation should project it into the NS model. Vice
versa, if the NS model needs to be adjusted, it should be possible to project the changes
to a conceptual model or indicate where inconsistency occurs. Without such a mechanism,
the relation between conceptual models and NS models would be broken after the first
change.

1.3 Related Work & Previous Results

The topic of transformations between conceptual models and Normalized Systems is novel;
therefore, there is no directly related work that presents such automatised transformation
with Normalized Systems. The leading cause is that NS can still be considered as a novel
approach in software engineering. The only work done (except our contributions) in terms
of relating NS with conceptual modelling is related to Design & Engineering Methodology
for Organizations (DEMO) [2, 3]. It focuses on linking DEMO and NS on a theoretical
level using practical use cases to achieve enterprise agility.

However, if we broaden the scope, there are already previous results for transfor-
mations between conceptual modelling languages (modelling in NS can also be consid-

5



1. Introduction

ered conceptual modelling). Naturally, more work has already been done on commonly
used languages. For UML Class Diagram, transformations to Web Ontology Language
(OWL) [4–8], Ecore [9], or Alloy [10–12] are already designed. Similarly, from BPMN to
UML (and vice versa) [13,14], or from OntoUML to Alloy [15] and OWL [16]. Comparison
between UML and ORM has been done in the past by Halpin [17–19] and can also serve
as a mapping definition. The related work can help us design the transformation using the
same source or destination modelling language as we need.

Model transformations are an essential aspect of model-driven engineering, enabling the
automated manipulation of models to achieve desired outcomes. Several transformation
techniques and tools have emerged to support this process. One popular approach is the
use of the Query/View/Transformation (QVT) standard [20], which provides a language
for specifying transformations between different models. Another widely used approach
in model transformations is ATL Transformation Language (ATL) that operates on mod-
els represented in various formats such as Eclipse Modeling Framework (EMF) models,
UML diagrams, and Extensible Markup Language (XML) documents [21]. Model Driven
Architecture (MDA) approach is related also to MOFLON [22] and MOF Model to Text
Transformation Language (MOFM2T) [23] approaches. Also, XML transformations, e.g.,
using Extensible Stylesheet Language Transformations (XSLT) play a crucial role in ma-
nipulating and converting XML documents which are often used for models representation
or serialisation [24].

When we consider Normalized Systems as a technique for Model-Driven Development
(MDD), previous work has also been done. The well-known MDA [25] defines steps for
transforming conceptual model (computation-independent) to platform-independent and
then to platform-specific models that can be used directly for code generation. There are
many alternative and complementary approaches to MDA. The ”model as a code” approach
described in [26] proposes the use of a holistic model of a system that directly describes all
aspects of a software application and is used instead of a high-level programming language,
e.g. Java. Another important work by Rybola has been done on transformations from On-
toUML to relational databases [27]. Various other methods, such as OO-Method [28] and
scaffolding (e.g. in Ruby on Rails [29]) are further discussed in Chapter 2. Neverthe-
less, Normalized Systems are the only method so far that considers the evolvability and
sustainability as a primary objective.

In terms of NS, we can consider as related work the NST [1] itself together with a
number of articles related to modelling and metamodelling with NS as well as existing
practical documentation and tooling [30]. NST provides us with essential principles and
approach to evolvability that we want to adopt in our work as well. Moreover, NS is the
target environment of the designed artefacts and as such the compliance with theoretical
as well as technical foundations must be taken into considerations and the design itself.

Finally, our goal is to present a solution in the form of an ontology. Ontologies in com-
puter science and software engineering are unquestionably related to Resource Description
Framework (RDF) and OWL technologies. As these technologies are widespread, the need
for ontology matching, mapping, and RDF transformations is already addressed in various
related works [31–36].

6



1.4. Methodology

1.4 Methodology

In the discipline of information technology and especially software engineering, the design
science methodology provides a structured approach for conducting research and ensuring
the quality of software solutions. Unlike other methodologies such as empirical research, ac-
tion research, or explanatory science research commonly used in various scientific domains
(e.g., life sciences, physics, or social sciences), the design science methodology is specifi-
cally tailored to the unique challenges of designing and building software solutions. Design
Science Research (DSR), also known as constructive research, emphasizes the development
and evaluation of human-made artefacts in the context of information technology. This
methodology is particularly applicable to categories of artefacts such as algorithms, inter-
faces, languages, software applications, systems, and models, including ontologies. [37,38]

The methodology promotes a systematic and rigorous approach to problem-solving and
solution development. It encourages the formulation of clear objectives, the identification
of design principles, and the iterative refinement of artefacts based on feedback and evalua-
tion. One of the key advantages of DSR is its emphasis on practical relevance. By focusing
on the creation of usable artefacts, the methodology ensures that the research outcomes
have direct applicability in real-world scenarios. This aspect is crucial in software engi-
neering, where the ultimate goal is to produce effective and efficient solutions to address
specific needs or problems. [37–39]

Furthermore, the design science methodology facilitates knowledge creation and accu-
mulation within the field of software engineering. By providing a framework for document-
ing and sharing design theories, the methodology contributes to the collective understand-
ing of effective software design practices. This shared knowledge can serve as a foundation
for future research and development efforts, fostering continuous improvement in the field.

Peffers et al. [40] presents and demonstrates the use of DSR as a methodology for
information systems research. Although we do not strive to design an information sys-
tem but a transformation framework, their process model is well applicable, as shown in
Figure 1.2. The problem and motivation have been set in this chapter. We also defined
the objectives of a solution, i.e. our research objectives. The design and development of
artefacts is the integral part, where results fulfilling the objectives are constructed to be
then demonstrated and evaluated. Concerning the connection between research objectives,
design, and evaluation, Braun et al. [41] propose Requirements-Driven DSR where various
types of requirements are captured from problem analysis.

Moreover, the DSR process includes a crucial feedback loop that enables the refine-
ment of objectives and artefacts based on evaluation. This iterative nature ensures that
the transformation outcomes align with the desired goals. Additionally, as a part of ef-
fective communication and dissemination of results, this dissertation thesis incorporates
publications that serve as references. While previous publications refer to specific partial
topics or intermediate stages of our work, this thesis provides a comprehensive summary
of the final results obtained through iterations of the feedback loop. It presents the state
where both objectives and artefacts have been refined, highlighting significant improve-
ments achieved over time in dedicated parts of the thesis.

7



1. Introduction

Figure 1.2: The DSR Process Model (according to Peffers et al. [40])

The operation in DSR with relation to external environment and previous work can be
described using three related cycles of activities as depicted in Figure 1.3 [42]:

◦ The relevance cycle links research with the environment and its requirements as
inputs. Hand-in-hand with the requirements, it defines the acceptance criteria for
the evaluation of the research results. This cycle ensures the overall fulfilment of the
requirements identified in the environment.

◦ The rigour cycle provides access to the existing knowledge base and thus ensures
innovation. It serves to guarantee the quality of the research and prevent doing a
routine design with well-known processes.

◦ The design cycle iterates between two core activities – building artefacts and their
evaluation. It guides to iteratively build the ultimate research results from parts that
are evaluated and potentially improved over several iterations.

The environment for our research is the domain of Normalized Systems development
where there is the need for (re-)using conceptual models. The requirements are specified
through the set in Section 1.2 in the form of research questions. Furthermore, the relevant
aspects of the domain are described in Section 2.3. Evaluation of the research results, i.e.
“field testing”, is executed according to the needs and in collaboration with NSX bvba, a
spin-off company developing Normalized Systems.

8



1.4. Methodology

Figure 1.3: The Three Cycle View of DSR (according to Hevner [42])

The knowledge base that serves as the foundation for our research is described in Chap-
ter 2. It encompasses a diverse range of disciplines, including conceptual modelling, model-
driven development, formal specification, ontology engineering, Normalized Systems, and
(bi-directional) transformations of knowledge representations. These components collec-
tively contribute to the breadth and depth of our understanding. Furthermore, as our
research progresses, there is potential for new additions to the knowledge base. This can
occur when we introduce innovative design or gain unique insights. By continually expand-
ing the knowledge base, we strive to contribute to the evolving landscape.

Finally, the artefacts we design, build, evaluate, and iteratively enhance throughout the
design cycle are categorized into three primary components. First, we create an RDF/OWL
representation for Normalized Systems, ensuring a comprehensive understanding of their
structure and behaviour. Second, we develop a gateway ontology that serves as an en-
capsulation of NS, facilitating seamless integration with other systems and domains. Our
approach aligns with the principles advocated by the NST, emphasizing the importance of
a fine-grained modular structure that promotes evolvability. By incorporating this mod-
ular approach, we strive to enhance the efficacy and longevity of the artefacts we create,
supporting the ongoing evolution of our research.

This section provides a brief overview of the methodology used in this thesis. The par-
ticular steps are explained in chapters corresponding to the developed artefacts. Chapter 3
describes the requirements, overall architecture, and decomposition to partial artefacts
that are then presented in Chapter 4, Chapter 5, and Chapter 6. The demonstration as
part of the “field-testing” is in Chapter 7. The summary of artefacts and other results is
provided in Chapter 8.

9



1. Introduction

1.5 Contributions of the Dissertation Thesis

The main contributions of this thesis can be summarised as follows:

1. Design of model-to-model transformations based on RDF/OWL – a design intro-
ducing gateway ontology and modular mappings and utilising RDF technologies as
the medium that allows transferring knowledge between models based on different
metamodels. Despite our focus on transformations between traditional conceptual
modelling languages and NS, the design and related insights can also be re-used for
other model-to-model transformations.

2. Evolvable transformation between NS elements and RDF/OWL – a method and re-
lated tool implementation for bi-directional transformation between models of NS
elements and RDF/OWL. The evolvability lies in the design based on NS principles
as well as using NS expanders for developing the tool. In our work, the transforma-
tion is used to have the NS metamodel in RDF/OWL and to be able to transform
the underlying models in both directions.

3. Ontologies for conceptual modelling using RDF – a set of OWL ontologies with exam-
ples and other documentation for representing various conceptual models in RDF.
For our transformation, we need to have the conceptual models encoded in RDF;
therefore, we had to re-use or create new ontologies to support it. These ontologies
can also be used for other use cases outside of our scope related to transformations
with NS as keys to interoperability for conceptual modelling.

4. SPARQL-based mappings for RDF transformations – a method and implementation
to encode mappings between two (or more) ontologies using RDF and then execute a
transformation based on that by translating it into SPARQL CONSTRUCT queries. It
allows metadata specification about mapping and creates links between them, thus
enabling modularity and promoting evolvability.

5. Transformations between NS and conceptual models – a transformation framework
based on our model-to-model transformation design that enhances possibilities of
mapping different conceptual modelling languages that have metamodels captures as
OWL (or RDFS) ontologies. Its modular design using layers and mappers for specific
modelling languages follows the separation of concerns principle for evolvability and
extensibility reasons. It utilises the contributions listed above to streamline (possibly
bi-directional) transformations between NS and conceptual models.

This dissertation thesis covers both designs of artefacts but also its reference imple-
mentation that we needed for evaluation and demonstration following DSR. It also helps
verify the relevance of the environment using field tests (as DSR suggests). The reference
implementation of partial artefacts is ready to be used separately or together as a pipeline
for transformations between conceptual models and NS. Furthermore, due to the focus on
evolvability and extensibility, it is ready for future evolution.

10



1.6. Structure of the Dissertation Thesis

1.6 Structure of the Dissertation Thesis

The thesis is organized into nine chapters as follows:

1. Introduction describes the motivation behind our efforts together with our goals. It
briefly presents related work and the methodology used for conducting this research
work. Finally, it summarises the main contributions of the thesis and outlines its
structure.

2. Background and State-of-the-Art introduces the reader to the necessary theoretical
background and surveys the current state-of-the-art relevant to our topic as the
knowledge base for our DSR-based research. It summarises and explains the variety
of possibilities in terms of conceptual modelling and the flexibility of ontologies.
Finally, it provides an overview of related work in the areas of semantic integration,
ontology transformations, model-driven development, and NS.

3. Overview of Our Approach explains the overall design of the Normalized Systems
Gateway Ontology for Conceptual Models, its modules, and critical properties.

4. Transformation between NS Elements and RDF/OWL describes the transformation
of NS Elements models into RDF representation and vice versa. It also explains
additional steps for producing OWL from NS models, which is vital for the Gateway
Ontology. The implementation of a prototype and expanded tool for transformation
is also presented in this chapter.

5. Using RDF/OWL to Represent and Integrate Conceptual Models explains how we
utilise RDF and OWL to represent conceptual models made in several well-known
and widely-used modelling languages (namely: UML, OntoUML, BPMN, ORM, and
BORM). The reasons for doing so are discussed. We use such representations both
for semantic integration and for transformations with the Gateway Ontology.

6. Transforming between NS Elements and Conceptual Models using Gateway Ontology
describes the Gateway Ontology architecture in greater detail, including its three
layers. It further explains how transformation of a conceptual modelling language to
(and from) NS can be defined and executed.

7. Demonstration Use Cases shows how Gateway Ontology can be used in several prac-
tical use cases and how it handles changes in both the Normalized Systems metamodel
and the conceptual modelling language specification.

8. Main Results recapitulates the contributions of the dissertation thesis, their design,
relations, and possible use. It also clarifies the use of DSR to develop them together
with a related retrospection.

9. Conclusions summarises the results of our research, suggests possible topics for fur-
ther research, and concludes the thesis.

11





Chapter 2

Background and State-of-the-Art

“Today knowledge has power. It controls
access to opportunity and advancement.”

Peter Drucker

This chapter aims to cover the necessary knowledge required for understanding and
following research of our topic. Because the domains of model-driven development and
conceptual modelling are vast, for the sake of brevity, we focus on the core of theoreti-
cal background and the main approaches. Next, we mention previous results done in the
area of our research. As there is no previous research directly on transformations between
Normalized Systems (NS) and conceptual models, we investigate NS-related work that is
related to conceptual modelling or business analysis in other ways. Moreover, transforma-
tions between conceptual models, in general, using various technologies, such as Extensible
Stylesheet Language Transformations (XSLT) or Query/View/Transformation (QVT), are
also part of our review. The last part of the chapter is then dedicated to Normalized
Systems that are the key to our solution proposed later on in this dissertation thesis.

This chapter describes the knowledge base and existing solutions used for our research
through the rigour cycle in terms of the Design Science Research (DSR) methodology.
The chapter primarily provides the grounding to our research. Then, our additions to the
knowledge bases regarding references to our contributions are also part of the chapter, for
example, our review of UML-to-OWL transformations [A.8], mapping of UFO-B to process
modelling languages [A.6], or transformation of textual requirements to NS [A.14].

13



2. Background and State-of-the-Art

2.1 Theoretical Background

In this section, we clarify the terms and methodologies of conceptual modelling, formal
specifications, and ontologies that we then use in our research and corresponding parts of
this dissertation thesis. We also briefly summarise the theory behind various approaches
to implementation models and their transformations into the software.

2.1.1 Conceptual Modelling

The primary purpose of conceptual modelling is to formally describe some aspects of the
physical and social world in order to improve understanding and communication between
people [43]. As a conceptual model is a formal description of a problem domain, it is
possible to use it for other purposes as well. One of such challenging purposes is a transfor-
mation into implementation in software. The main motivation is the efficiency of software
development and thus swiftness in adapting to changes in the domain and its needs. As
information systems as software applications are complex systems capturing many aspects
of the problem domain and other technical details, the used conceptual models need to
describe those aspects in a precise, complete, and unambiguous way.

Conceptual models are used to describe various aspects of the problem domain. Several
modelling categories include structural, process, fact modelling, or even business rules def-
initions as parts of conceptual modelling. Various modelling languages and methodologies
can be used for creating a conceptual model. Each of such a language has its advantages
and disadvantages related to target use cases. In some cases, a simple modelling language
for the description of domain structure is better to use than a complex one. In other cases,
one needs to model different aspects of the domain, such as communication or process
flows. When picking a suitable modelling language for our case, we should consider the
following properties of the language:

◦ language expressiveness,

◦ tooling support,

◦ community and popularity,

◦ scalability and customizability.

Another essential property of a conceptual model is its quality. There is already work
that clarifies aspects of quality in conceptual models [44] and others that discuss the issues
of its evaluation and future steps [45]. Quality of models has more dimensions, including
modularity, cognitive clarity, or correctness with respect to the modelled domain [46]. The
evaluation of the quality can be then partially subjective, which causes evident problems.

In the subsequent subsections, we briefly introduce the well-known languages used for
conceptual modelling that will be further observed and their transformation into implemen-
tation researched during our research. The languages are selected intentionally to capture

14



2.1. Theoretical Background

various aspects of the problem domain and to be overlapping in some parts but focus on
different properties or scope.

2.1.1.1 Entity-Relationship

The Entity-Relationship (ER) modelling language is one of the first developed for structural
conceptual modelling in the software engineering domain; it was published in 1976 by Peter
Pin-Shan Chen in The Entity-Relationship Model: Toward a Unified View of Data [47].
ER models are similar to simpler semantic nets, and they describe entities together with
relations between them and attributes that characterise them. The primary use case of
ER is to model a part of the real world that is necessary to capture some (business) case
needs [48].

ER captures attributes that can be key, multivalued, composite, or derived. Key at-
tributes serve as an identifier of an entity instance, for example, a primary key in the case
of databases. Naturally, the entity can be free of key attributes; in such case, we call it a
weak entity [47]. ER allows relations of generally any arity and are captured as “hub” con-
nected to all participating entities; each connection is described by a maximal number of
entity instances that can participate in single relation. Even relations can have attributes
that can be used for identification. [47]

Person

Employee

Customer

Product

sells

buys

name

birthdate

U

U

1..*

1..*

1..*

1..*

Figure 2.1: Example of Enhanced Entity-Relationship model

Since the publication of the ER, several alternative conventions of modelling with ER
has been introduced to capture some aspect more straightforwardly, e.g. relations [49].
By adding new constructs, mainly notable is-a relation to incorporate generalisations and
specialisations of entities, or enhancing relations, as shown in Figure 2.1, the Enhanced
Entity–Relationship (EER), also known as E2R, has been developed later on. Although ER
modelling is here since the 70s, it is still widespread, for example, for a design of relational
database schema [48]. These days, even solutions for big data are being connected to ER
modelling as discussed and described in [50].

15



2. Background and State-of-the-Art

2.1.1.2 UML

Unified Modeling Language (UML) is a widely-used complex modelling language developed
and standardised by Object Management Group (OMG) to visualise, specification, con-
struct, and document software applications (mainly object-oriented). As the name states,
it was developed as a unification of many different modelling languages in the 1990s [48].
As a result, UML provides a standardised and well-known way of modelling through the
software development cycle from an analysis (e.g. domain model, use cases, requirements,
activity) via design (e.g. components, package, class, state machine) to development and
deployment (e.g. database, deployment, timing) [48]. The latest version of UML specifi-
cation is 2.5.1, but ISO recognises older version 2.4.1 as standard ISO/IEC 19505 [51].

RelatedClass

Whole

AbstractSuperClass

#protectedAttribute: String

«Stereotype»
Package::ExampleClass

{metaproperties}

-id: Long
-ClassAttribute: Long

#Operation(i: int): int
+AbstractOperation()

Responsibilities
-- Resp1
-- Resp2

object: Class

id: Long="36548"
[waiting for message]

is related with 
0..* 1

10..1

«instanceOf»

Figure 2.2: Capabilities of UML class diagrams

An important aspect is that UML is only a language, and it does not state how it should
be used or how to do the analysis of a system; it is not a methodology. Nevertheless, it
is suitable for the object-oriented approach to analyse, design, and implement software
systems [48]. As being said, UML can be used during the whole software development
cycle, but since it is more implementation-specific, for purposes of conceptual modelling
are the domain mains ontologically too vague. Similarly, it is not suitable for other areas
of analysis and design. Fortunately, UML profiles enable extending the language, and
there are profiles like OntoUML for conceptual modelling or SysML for general systems
engineering. [52]

UML [52] divides diagrams into categories: structural, behavioural, and interaction
(part of behavioural). Thus, two essential aspects – structure and processes – are covered.
Probably the most used and known way of modelling with UML is the class diagram that
has a lot of features possible (see Figure 2.2). It is clearly visible that it has a lot in
common with ER models, and it is also the reason for using it in conceptual modelling.
In terms of processes, the most universal and suitable for domain-oriented models is the

16



2.1. Theoretical Background

activity diagram that represents traditional flow charts [48]. All types of diagrams and
their constructs are described in UML metamodel (can be extended with UML profiles).
The metametamodel is called Meta-Object Facility (MOF) [53] that defines an M3-model,
which conforms to itself [52].

The UML specification [52] is rather complex, and tools usually support only part of it.
Some even try to simplify the metamodel and use their own XML Metadata Interchange
(XMI) profiles for serialisation, which then causes inconsistencies and is a blocker for inter-
operability. Ecore is a metamodel defined in terms of itself as part of the Eclipse Modeling
Framework (EMF) [54]. It is often understood as a UML subset focused on structural
modelling to use model-driven development techniques or create a domain-specific lan-
guage. Having a MOF-compliant modelling language useful for transformations between
modelling languages, typically using of QVT [55].

2.1.1.3 OntoUML

OntoUML is a UML profile for ontology-driven conceptual modelling based on the struc-
tural aspects from the Unified Foundational Ontology (UFO) introduced by Giancarlo
Guizzardi in his dissertation [56]. The language and support in the form of tools are
mainly done by research groups NEMO and Menthor; however, standard UML modelling
tools can be used as well. New features and changes are introduced usually using scientific
articles done by members of these groups. For example, in [57] transformation to Alloy is
described, and in [58] many internal OntoUML proposals has been polished and merged
into “OntoUML 2.0”. Important mathematical foundations of OntoUML lie in modal logic
that is used for rules and laws of UFO terms and their relationships [56].

«Relator»
Enrollement

«Kind»
University

{disjoint,
complete}

«Subkind»
Woman

«Subkind»
Man

«Role»
Student

«Quality»
Age

«Kind»
Person

«mediation»
0..* 1

«mediation»
1 1..*

«material»
/is enrolled at 

0..* 1..*

«characterization»
1 1

Figure 2.3: Example of a simple OntoUML model

As UML profile, OntoUML uses so-called stereotypes demonstrated in Figure 2.3. There
are certain stereotypes for classes (such as kind, role, mixin, or relator), other for asso-
ciations (for instance mediation, formal, or material) and special for part-whole relations

17



2. Background and State-of-the-Art

(memberOf, componentOf, subCollectionOf, etc.) that are often denoted just by one let-
ter inside or nearby the diamond symbol. Each stereotype – or term from UFO – carries
specific constraints and ontological meaning based on cognitive and philosophical science.
Class stereotypes are grouped according to the relationship to an identity principle to sor-
tals and non-sortals and then by the ability to change: rigid, semi-rigid, and anti-rigid.
Some types of entities are so-called identity providers, and each object (entity instance)
must have exactly one identity of one identity principle. [56]

The empirical study [59] shows that ontology-driven conceptual modelling with On-
toUML is higher-quality in many aspects when compared to traditional conceptual mod-
elling, for example, with UML or ER. Although OntoUML is more discussed and used
in the academic environment rather than in the enterprise, more and more fields identify
the need of having solid-based and ontologically well-founded conceptual model for their
efficient work [60,61].

2.1.1.4 DEMO

Design & Engineering Methodology for Organizations (DEMO) is an enterprise modelling
methodology developed since the 1980s by Jan Dietz and his research team. It consists of
various theories named after Greek letters (ALPHA, TAO, DELTA, PSI, and others). It is
highly affected by philosophy and the language/action perspective. DEMO uses as the core
construct of a transaction and describes it as a connection of coordination and production
between initiator and executor. The whole process for each transaction, called a complete
transaction pattern, describes the typical flow between acts (activities) and facts (states)
with possible loops and revokes. [62]

DEMO is focused on separating the modelled organisation and transactions into three
levels: ontological, infological, and datalogical; where the ontological is describing the true
essence of the organisation and the other two are implementation details. The organisation
can be described in DEMO by multiple models that are again split into three levels (some-
times called the hamburger model). The highest level is for construction models that are
Transaction Product Table (TPT), Organisation Construction Diagram (OCD), and Bank
Contents Table (BCD). Then in the middle are process model, such as Process Structure
Diagram (PSD), and fact models similar to other process models and structural models.
Furthermore, in the lowest level, action models are used to describe conditions and the
flow using structured scenarios with decisions and claims. [62]

A significant advantage of the DEMO is that it provides mathematically-based axioms
and interconnected models to create an organisation’s complete view. It describes the
structure of an organisation and its products, the process that flows inside and between
transactions, and facts and business action rules. Enterprise Institute also provides pro-
fessional certification in this methodology, and tooling support is good because it is rather
academic-based work. Research on relating DEMO to other modelling languages has been
already done, for example, its combination with Normalized Systems [63] or its conversion
to BPMN [64].

18



2.1. Theoretical Background

T1
initiator AR

executor AR

rq rq

Scope of Interest

rq

0..1 0..1

rqCA1

composite 
actor role

A1
actor role

T1

transaction
kind response

link
wait
link

AT1

facts
A2

actor role

T2 transaction kind

Figure 2.4: Elements of OCD and PSD diagrams

2.1.1.5 ORM

Object-Role Modeling (ORM) [65] is similarly to DEMO designed for conceptual modelling
with domain facts. In contrast to ER and UML, ORM treats all elementary facts as
relationships and then groups facts into structures. It results in improved semantic stability
and even simplifies model verbalization into natural language. Still, a considerable visual
concordance with ER/EER models is observable. Relations in ORM are modelled as
predicates of any arity which is shown in Figure 2.5. Facts are captured by entities and
their participations in various relations. We refer to ORM 2 released in 2005 which added
several new features and simplified the diagrams [66].

Person
(.id)

Prize
(.name)

Competition
(.name)

 ... won in ... what ...
Figure 2.5: ORM relation of Person winning a prize in competition

The most significant difference and advantage of ORM, when compared to UML or
EER, is the ability to specify a wide variety of constraints defined by the language. Never-
theless, the language is very easy to read and use. It allows to simply express uniqueness,
mandatory relationship, multiplicity, combinations of relations with operators (such as ex-
clusive or), relational properties, enumerations, and many others [65]. Automated formal
reasoning on ORM conceptual schemes is possible thanks to its well-formalised semantics
based on first order predicate logic and set theory [67].

19



2. Background and State-of-the-Art

2.1.1.6 BPMN

Business Process Model and Notation (BPMN) is a set of principles and rules, including
graphical language, to express business processes. Due to the OMG standardisation, exist-
ing tooling, and ability to orchestrate processes via Business Process Execution Language
(BPEL), it is widely used [68]. It can be seen as a more complex flow chart diagram. Aside
from swimlanes and activities with transitions, it also has several types that can form a
subprocess (modularity of process). There are also multiple types of events and gateways.
In BPMN, it is possible to capture conditional events, timed events, errors, and signals.
For gateways, instead of traditional decision branching and parallel fork, there are parallel,
inclusive, exclusive, complex gateways and then also event-based gateways (incorporating
an event in the process). [69]

Associations and message flow further increase the expressiveness of this notation (as a
complement to sequence flow) and three types of artefacts: data objects, groups, and anno-
tations. Still, one of the issues with BPMN is the mix of domain-specific and orchestration-
related information in a model without a clear separation that is provided, for example, in
DEMO. BPMN 2.0 uses solid Business Process Definition Metamodel (BPDM) to create
a single consistent language, and there are Extensible Markup Language (XML) schemas
available to transform BPMN models to support decision processes and applications within
organisations [69]. From the ontological point of view, there is vagueness similarly to UML
and in [70] are proposed improvements for so-called “Onto-BPMN” as a counterpart to
OntoUML.

2.1.1.7 BORM

Business Object Relationship Modelling (BORM) is a method designed for conceptual
modelling of process-intensive organisations. It provides an effortless but conceptually
sufficient way how to describe processes in a system. As all process models in graphical
notation, even BORM has some similarities to flowcharts in its Objects Relations (OR)
diagrams. Instead of swimlanes, participant blocks are used with a distinction between
a person, organisation, and technology, e.g. software. Each participant has their own
process where are states and between two states as a transition is always activity. A
state can contain another process. There can be communication with data flows between
participants, more specifically, between their activities. Branching is done simply from a
state. [71]

Besides, Business Architecture (BA) diagrams are covered in BORM as well. They
serve to capture the functional blocks in a system and its scenarios to which are related
OR diagrams linked. Scenarios can be connected with uses and extends relations [71].
Model Driven Architecture (MDA) is well supported in BORM, and it uses strong formal
background – communicating finite state machines. Other interesting aspects of BORM
are its modularity possibilities discussed in [72] and straightforward interconnection with
object-oriented software. We investigated the relations between process modelling with
UML Activity Diagram, BPMN, BORM, and UFO-B [A.6].

20



2.1. Theoretical Background

2.1.2 Formal Specifications

Conceptual modelling languages are designed to promote communication and understand-
ing between people, but logical or mathematical reasoning becomes desirable when it comes
to validating a model. Conceptual models often tightly coupled with a graphical represen-
tation (but some also use textual, e.g. actions in DEMO). Although some conceptual mod-
elling languages provide reasoning by leveraging their mathematical foundations, formal
specifications are specifically designed for verification, reasoning, and easy transformations
into the software [73].

Some conceptual modelling languages allow transformation to so-called formal speci-
fications, e.g. mentioned OntoUML to Alloy [57]. There are many languages for a de-
scription of a system that can be then used for simulations and validation. Such methods
are often based on set theory and algebra. Historically, many development methods of
mission-critical systems were tied with formal specifications and mathematical proofs of
correctness [73]. This section only refers to the recently used and the most interesting for
our future research and focuses on generic approaches.

2.1.2.1 OCL

The Object Constraint Language (OCL) is a declarative language for capturing constraints
and rules to connected UML model(s), but it can be used with any MOF-compliant
model [74]. Thus, for example, OntoUML can be further described by OCL as well. It is
very close to simpler object-oriented programming languages. A description is split into
packages, and then rules (sets of declarations) are tied to a certain context that can be
a class, a method, or an attribute. Many standard types, collections, and operations (in-
cluding operators) are available [75]; still, more can be defined manually or imported from
additional prepared packages. The rules are of multiple types:

◦ inv = invariant, a condition that must always hold,

◦ pre = pre-condition, a condition that should be true before calling a method,

◦ post = post-condition, a condition that should be true after calling a method,

◦ init = assertion for initial values of attributes,

◦ body = assertion for an expected result of the associated operation at a certain point
in time,

◦ derive = declaration of a expected property which is derived (for example, age from
birthdate).

OCL has excellent tooling support thanks to its relation to UML and the OMG spec-
ification. It provides a robust means to validate instances of a model. Using OCL can
significantly help with resulting software quality as shown in [76].

21



2. Background and State-of-the-Art

2.1.2.2 Alloy

Alloy [77] is (similarly to OCL) a declarative language for formal specification of structures
based on first-order logic. It is developed together with the related tool Alloy Analyzer
on the Massachusetts Institute of Technology. The language is profoundly affected by
Z notation, a mathematical encoding of a system, but the syntax is closer to OCL. A
model in Alloy is a description of structures grouped into modules. Although the syntax is
simple and there is a minimal number of constructs, it allows expressing everything needed.
Thanks to the declarative nature of the language, same as in OCL, the order of statements
does not matter.

An Alloy model consists of:

◦ signatures of defined sets,

◦ facts representing permanent constraints,

◦ predicates that can be understood as parametric facts,

◦ functions that return a value for some parameters,

◦ boolean statements about the model.

The Alloy Analyzer can generate for such specification instances and try to find a coun-
terexample that violates a specific statement, i.e. a problem in the model definition [77].
In this case, it is again similar to UML with OCL, and [78] shows how translation between
UML with OCL and Alloy is possible.

2.1.2.3 OASIS

Open and Active Specification of Information Systems (OASIS) is a formal specification
language using an object-oriented paradigm and first-order logic [79]. It has been devel-
oped in the 1990s and further updated with new versions [80, 81]. The importance lies in
use within OO-Method [28] that we describe briefly in Section 2.2. It provides the abil-
ity to formally describe all functionality, including UI using four views: static, dynamic,
functional, and presentation [79].

Thanks to formalisms behind OASIS, specification of classes, behaviour, object con-
straints, extra functionality and presentation of object-oriented systems, it allows extensive
verifications, reasoning, and transformations [28]. Unfortunately, there is no recent work
on OASIS and resources are not easily accessible, which is an evident obstacle in language
adoption and broader use.

2.1.2.4 Correctness by Construction

Correctness by Construction (CbyC) is a way of using formal specification rather than
a particular language for building the specifications. The core idea lies in using formal

22



2.1. Theoretical Background

specification during the construction of software using annotations or as transformed frag-
ments in the code so that correctness according to the formally proven specification is in-
evitable. In the book “The Correctness-by-Construction Approach to Programming” [82],
the Guarded Command Language (GCL) is used to specify invariants, preconditions, and
postconditions.

A similar approach uses the TestEra tool for Java [83]. It also allows to specify invari-
ants, preconditions, and postconditions in annotations of methods and classes but with the
Alloy specification language. Such a direct connection to implementation leads to several
advantages when compared to separated formal specifications. It can validate the imple-
mentation, but it also is easier to read when only fragments are connected to a place where
they belong. On the other hand, if someone wants a complete formal specification, parsing
of source codes must be done and for another way, know what declaration belongs where
is essential. Finally, it is more efficient to track changes and search for violation causes in
the source code.

2.1.2.5 Algebraic Specifications

An algebraic specification is a technique used in software engineering to specify the be-
haviour and structure of a system using formalism from the areas of mathematics called
algebra. An algebra consists of axioms and groups of object sets and related operations
in this set with their functionality for formal specifications. Vital aspects of using al-
gebraic specifications in addition to automated reasoning and proving correctness are an
abstraction from implementation details and distinctions between data element constructor
function and additional functions, i.e. operations. [84]

There are many languages for writing algebraic specifications with various advantages
and disadvantages. Like Maude or Z notation, some are not very used these days regard-
ing research and usage in practice. Nevertheless, there are others like Common Algebraic
Specification Language (CASL), Vienna Development Method (VDM), B-method, Onion,
or PRISM that are used [85]. Lastly, Onion and PRISM are examples of languages (and
tools) for process algebra that focus on flow specifications using mathematical constructs
such as communicating finite automata, Markov chains, and others. Algebraic specifica-
tions are relevant and valuable; however, not very widely used in practice recently [86].
The specifications are replaced by various tests frameworks that specify the rules and
in both human-readable and programmer-convenient ways. Still, it can be used for the
specification of missing critical software or its most essential parts.

2.1.3 Ontologies

Ontology, which means (from Greek) study of being or science of being, is a philosophical
discipline that studies concepts of existence, being, becoming, and reality. In computer
science, software engineering, and data science, the ontologies and conceptual models are
very close and have common goals. Both are used to capture some knowledge, to describe
a part of reality. Ontologies (and ontology-driven conceptual models) usually focus more

23



2. Background and State-of-the-Art

on the philosophical essence of things and relations, whereas conceptual models might be
more implementation-oriented [59]. The divergence is related to the difference of open-
world assumptions related to ontologies, i.e. what is not captured in the ontology may
still exist. On the other hand, conceptual models and traditional formal specifications use
closed-world assumptions.

Ontologies can be used for storing any kind of knowledge, including integrations of
knowledge from various ontologies [87]. There are also many upper ontologies defined
with higher-level terms that can be reused or also integrated to connect some external
knowledge [88]. Another group of ontologies are used to describe metadata about other
projects and ontologies, such as Dublin Core ontology [89]. Finally, there are also defined
ontologies for conceptual and business modelling, for example, REA (Resources, Events,
Agents) ontology [90]. Formal specifications are used to represent knowledge in a well-
defined syntax and semantics. Another way how to address this with a common goal
is called description logic (DL). Problem domains can be described using DL languages,
which can use various description logics: general, spatial, temporal, spatiotemporal, and
fuzzy [91].

An ontology in computer science is a representation, formal naming and specification
of the categories, together with their properties and relations between the concepts. On-
tologies are being intensively used in the fields of artificial intelligence (AI), conceptual
modelling, semantic web, and to promote data interoperability in general. Several lan-
guages and methods can be used in conceptual modelling, e.g. DOGMA, F-Logic, OCML,
or KL-ONE. However, the most widely used due to its good tooling support and ver-
satility is the Resource Description Framework (RDF) and the Web Ontology Language
(OWL). [92]

2.1.3.1 RDF and OWL

The core idea of RDF lies in the simplicity and versatility of triples: subject, predicate, ob-
ject. Each of these three components can be an entity identified by Uniform Resource Iden-
tifier (URI) or even its internationalized generalisation Internationalized Resource Identifier
(IRI). Objects can also be literals such as strings, numbers, dates, and others. A set of such
triples can be formed to describe practically anything, i.e. capture any knowledge. That is
similar to natural language but with improved machine readability and understandability.
To actually give meaning to the triples and bring structure into otherwise unstructured
triples, an ontology or a schema can be created or (re)used. The giving meaning to con-
cepts (referred by URIs) is done again by adding triples. For example, if we want to state
that a person has a name, the predicate hasName should be defined with relation to a
class Person and expectation to have a string literal as an object. [88,93]

Resource Description Framework Schema (RDFS) is a set of classes with specific prop-
erties that can be used to describe ontologies. RDFS defines, for instance, what is a class,
datatype, literal, label, sub-class, or domain and range of a property. It is sufficient for
basic vocabularies and simple ontologies where particular constraints and metamodelling

24



2.1. Theoretical Background

are not necessary. For example, the well-known Friend of a Friend (FOAF) or Description
of a Project (DOAP) ontologies are defined using RDFS. [88,92]

When the expressiveness of RDFS is not sufficient, the Web Ontology Language (OWL)
comes to the rescue. It enhances some of the concepts from RDFS and adds new such as
constraints, special relations between classes, or means for metamodelling, e.g. punning.
OWL is actually a family of knowledge representation languages for creating ontologies.
There are three sublanguages:

◦ OWL Lite – a bare minimum of additional constructs to support easier adoption
within tools,

◦ OWL DL – maximum expressiveness possible while keeping computational complete-
ness and decidability,

◦ OWL Full – uses different semantics than the two above, allows metamodelling but
is undecidable [88].

In OWL2 [94], the separations into sublanguages are done slightly differently – to
overlapping profiles. The essential property is that OWL (and OWL2) are RDF-based, i.e.
use triples to define ontologies and compatible with RDFS. It is, therefore, possible to start
creating an ontology with RDFS and, when needed, start using OWL without the need to
rework everything from scratch. Finally, it is even possible to keep track of changes with
triples and refer to older versions efficiently [92].

2.1.3.2 RDF Formats and Tooling

RDF itself does not specify a format for representation; the formats are independent of the
core ideas in the framework. There are multiple formats focused on different use-cases. For
example, for interoperability and the use of standard parsing tools, RDF/XML is suitable.
For human readability and compactness, there are formats such as Turtle, TRiG, or N-
Triples. Finally, to support linked data and semantic web, RDFa (RDF in attributes) and
JSON for Linking Data (JSON-LD) formats can be used. Usually, each of the formats has
its own specification and is evolved independently of others. [92,93]

Hand in hand with the wide use in the world of semantic web and linked data, the
tooling support of RDF and OWL, is rather good. Most modern text editors and Integrated
Development Environments (IDEs) support composing RDFs by syntax highlighting, prefix
resolution, or autocompletion. Then, there are specialised tools for composing ontologies
such as Protégé [95], virtualising them (e.g. WebVOWL [96]), or documenting them (e.g.
WIDOCO [97]). Libraries for development with RDF in main programming languages are
also available. It is always essential to pick the tool or library that is maintained and stable,
which is not always the case as many of the RDF-related tools are developed in academics
and can be identified as professor-ware, proof-of-concept, or just a prototype. [93]

The RDF triples can be stored in text files, but graph databases (e.g. Neo4J) or
triple stores (e.g. GraphDB or AllegroGraph) can be used. Triple stores often provide

25



2. Background and State-of-the-Art

additional features when compared to graph databases such as SPARQL Protocol and
RDF Query Language (SPARQL) endpoints or inference mechanisms. On the other hand,
graph databases are usually faster and optimised for big data. SPARQL is yet another
technology in the Semantic Web stack that serves to query, change, or transform RDF
data. It can be seen as an RDF counterpart to Structured Query Language (SQL) from
the world of relational databases. [98]

2.1.3.3 Ontology Mapping

With the development of both upper and domain ontologies, overlaps are naturally emerg-
ing. For example, many ontologies describe the concept of a Person. If the relations
between the concepts of multiple ontologies are found and described, it allows the seman-
tic integration of the underlying data. For example, we can relate multiple statements
about the same person created using different ontologies. Ontology alignment (sometimes
also called ontology matching) is the process of determining correspondences between con-
cepts in different ontologies. A set of such correspondences is also called an alignment. A
broader term ontology mapping encompasses the process to define similarities among the
concepts belonging to separate source ontologies (not limited to correspondences). [99,100]

There are various ways how to find and define the relations between ontologies. The
most basic way is provided directly in OWL through predicates sameAs, equivalentClass,
or equivalentProperty [94]. Nevertheless, there are also specialised mapping languages and
vocabularies. For automation of the matching, AI and natural language processing (NLP)
techniques are being used, which is vital for large ontologies [100]. Mapping the ontologies
further promotes the key ideas of linked data as it helps to link different datasets directly.
We proposed a high-level ontology that generalizes the terms used by various conceptual
modelling languages to support their semantic integration [A.5].

2.1.4 Model-Driven Engineering

Model-Driven Engineering (MDE) is a software development methodology that leverages
the use of conceptual domain models to increase productivity. There are various branched
of MDE targetting difference use-cases where the productivity can be increased using the
conceptual models:

◦ maximization of compatibility between systems by adopting standard or reference
models,

◦ optimization of a system through its model representation (e.g. process re-engineering),

◦ simplifying the process of design by using standardized patterns,

◦ promoting communication between people by using standardized terminology and
best practices,

26



2.1. Theoretical Background

◦ simplifying the process of development (and maintenance) of software systems [101,
102].

The lastly listed is often being called Model-Driven Development (MDD). MDD uses
conceptual models to produce software systems or its parts. Such a use can be realised
by transforming the model(s) into source code. There are, again, many techniques and
methods for MDD. In the following subsection, we mention key aspects related to MDD
and then, in Section 2.2 we describe the most widely used approaches.

2.1.4.1 Multi-View Models

In this dissertation thesis, we use the term holistic model or holistic view of a system to
describe a model that describes a system completely in all aspects needed. With the use
of MDD, it is the ideal case to have complete knowledge of a domain in the model, so
the generated software system is also complete, i.e. without any need of custom program-
ming [103, 104]. Here we mention and refer to already existing effective approaches that
use multiple views on a system and integrate them to create a complete description.

We already mentioned UML and DEMO in Section 2.1.1, and both of them use different
models to capture various aspects of a system. In both cases, the models are integrated.
For UML [52], a class from a class diagram can be used in a sequence diagram or for creating
objects in an object diagram, and it can have its own state machine diagram. As is already
said, other languages than UML can be more suitable for conceptual modelling [59]. In
DEMO [62], again, all models are integrated via a transaction that is the crucial concept
in this methodology. On the other hand, views only in transactions, facts, rules, and their
relations, can be too simplistic in specific cases [105].

Multiple views are also used on a higher level of abstraction when describing the overall
architecture of a software or system in general [103]. One of the approaches is called 4+1
architectural view model [106]. As shown in Figure 2.6, there are four views: logical,
development, process, and physical, and then the one stands for scenarios. Although this
architecture design is interesting, it is intended mainly for software and not conceptual-
level. Also, the integrations of views and scenarios are not completely clear, and from
Figure 2.6 is visible that connection is not bidirectional, which can cause consistency issues.

2.1.4.2 Implementation Models and Reverse Engineering

In model-driven development, the software is developed using models from the concep-
tual level to programming code. The conceptual model is turned into some intermediary
implementation models that contain details related to computational model, software ar-
chitecture, and platform or programming language capabilities. As an unwanted effect,
degradation of the conceptual model in terms of losing important details due to lower
expressiveness and so-called construct overloading is often tied to these transformations.
Due to that, backward consistency is hard to maintain. For such implementation models,
the widely used language is UML or customised EER-like models that restrain modelling

27



2. Background and State-of-the-Art

Figure 2.6: The 4+1 architectural view model (according to Kruchten [106])

enough and are close to the software way of working. The main approaches of this topic
are further explained in Section 2.2. [107–109]

For the other side, i.e. a backward transformation from implementation into a model,
the method is called reverse engineering. Usually, some details from programming lan-
guages might be lost if the model is not expressive enough. There are again various
solutions for different modelling and programming languages, such as CPP2UML for C++
into UML in the XMI format [110] or from a database into ER diagrams [111]. Both
code generation and reverse engineering are also well-supported in commercial solutions,
for example, Enterprise Architect [112].

2.1.5 Model-to-Model Transformations

MDD is utilizing various kinds of transformations at multiple stages. Some of the methods
use several levels of models for gradual change of input domain knowledge into source code.
It omits domain details and adds technical information on each level. Code generation from
domain knowledge itself can be seen as a kind of transformation (usually encoded using
mapping and code templates). Finally, transformations can also help exchange domain
knowledge between different modelling languages. For example, one might need to trans-
form a BPMN model into UML Activity Diagram to relate it to the corresponding Class
Diagram easily. [101,107]

The approaches for such transformations vary, but there are two main aspects that
should be taken into consideration. First, there is the directionality of the transformation.
Bi-directional transformations (sometimes denoted as bx ) can help maintain consistency
by allowing transformations back and forth. Still, the transformations are usually not
lossless. Second, some of the transformations are designed purely on the level of serialised
information (syntax). Model serialisations are widely done through XML, and for that

28



2.1. Theoretical Background

XSLT transformations are usable. On the other hand, context-aware or semantic-level
transformation can provide better results by utilising metamodel knowledge. An example
is the QVT designed for transformation between MOF-compliant metamodels.

2.1.5.1 Query, View, Transformation (QVT)

Query/View/Transformation (QVT) is defined by OMG as a standard set of languages for
model transformation [20]. As such, it is tied to other OMG specifications, such as MOF
or OCL. The standard defines three languages for model transformation, and all of them
work with models conforming to MOF. The OCL is integrated and extended to support
the transformation through imperative features (on top of existing declarative). The three
languages of QVT as shown in Figure 2.7 are:

◦ QVTr (relations language) enables declarative specification of relationships between
MOF models using complex object pattern matching, trace classes and instances.
It has both a textual and a graphical concrete syntax. Consistency can be checked
during transformation execution.

◦ QVTc (core language) is a simple and small declarative language. It serves as a target
for relations-to-core transformation that does not preserve all semantics as QVTc is
not as expressive as QVTr. The specification [20] uses analogy to JVM where QVTr
is like Java and QVTc is Java Byte Code.

◦ QVTo (operational mapping language) is an imperative language for writing uni-
directional transformations. It provides OCL extensions to support the procedural
programming style. The mappings can be used to implement relations from specifica-
tion done using QVTr as it may be difficult or impossible to do so only in declarative
style.

Relations

B
la

ck
 B

ox

O
pe

ra
tio

na
l

M
ap

pi
ng

s

Core

Relations-to-Core

Figure 2.7: Relationships between QVT metamodels (according to [20])

As also captured in Figure 2.7, there are so-called Black-Box implementations that
encompass various plugins and extensions. Again, the analogy with Java Virtual Machine
(JVM) describes this part as a counterpart to an external component called the Java Native
Interface. Although, with this approach any additional functionality or transformation

29



2. Background and State-of-the-Art

details can be captured, it is also marked as dangerous as there is no control what the
black-box can perform.

There are various implementations of QVT languages that follow the standard to a
certain level (supporting a subset of it). Moreover, several transformation languages, such
as ATL Transformation Language (ATL), are highly inspired by QVT and even some-
times called QVT-Like. The limitation of requiring MOF-compliant models is solved
by additional and custom tools that allow, for example, MOF-to-Text transformations
(MOFM2T).

2.1.5.2 ATLAS Transformation Language

ATL [21] is a model transformation language and toolkit, part of the Eclipse MMT (Model-
to-Model Transformation) project that also supports QVT. It allows for the production of
a set of target models from a set of source models. The language to create transformation
specifications (sometimes called the ATL programme) is basically a set of helpers and
rules to execute. The rules have input and output patterns, and helpers serve to prepare
input data from a source model (for instance, using if-conditions or aggregations). The
requirement is the common metametamodel (M3) which is in the Eclipse environment
usually Ecore.

The advantage of ATL is the tooling support, the documentation with examples, and
the connection with EMF. Also, unlike others, this language is still being maintained and
updated together with the tooling. However, complex ATL transformations are more sim-
ilar to regular programming in a new language (similar to OCL) rather than just mapping
specification.

2.1.5.3 XML Transformations

XML transformation languages such as XSLT, XQuery, XProc, or XQuery are programming-
like languages designed specifically to transform an input XML document into an output
XML (or other) document [24]. Therefore, we can distinguish XML-to-XML and XML-to-
Data transformation where the second one can target in the most generic case to a byte
stream. XML-to-XML transformations can be seen as Model-to-Model transformations
because XML structure is specified by a schema (i.e. definition of tags, their attributes,
and parent-child relations). The schemas can be models or metamodels; for example, in the
case of XMI that captures the UML model, the schema for UML serves as a metamodel,
and the actual XMI file contains an UML model.

2.1.5.4 MOF Model to Text Transformation Language

MOF Model to Text Transformation Language (MOFM2T) [23] is another OMG-specified
transformation language. More specifically, it can be used to define transformations that
transform a MOF-compliant model into text. The target text is usually meant as documen-
tation or source code, but practically it can also be other model representation than the
supported XMI. For example, one can use MOF Model to Text Transformation Language

30



2.2. Previous Results and Related Work

(MOFM2T) to transform a MOF-compliant model into RDF in Turtle format. Acceleo1

is an implementation of the standard within Eclipse toolset.

2.1.5.5 MOFLON

MOFLON [22] is a “standard-compliant metamodeling framework with graph transforma-
tions” that implements MDA, and uses MOF together with OCL. The graph transforma-
tions are handled using the Fujaba tool. As a result, a Java representation is generated
from XSLT transformations, OCL constraints, and graph transformations. The resulting
application (interfaces and implementation) can be used for model analysis, integration,
and transformation execution. This extra step of generating an application/classes for
transformation has interesting aspects in terms of potential extensions and re-use.

2.1.5.6 Bi-Directional Object-Oriented Transformation Language

The Bi-Directional Object-Oriented Transformation language (BOTL) [113] provides in-
teresting insights and concepts despite it being not widely adopted and used. As the name
suggests, it focuses on object-oriented models (with a focus on UML) and their trans-
formations. It is defined on the basis of set theory and provides formal definitions and
proofs for both transformation rules and verification mechanisms of BOTL specifications.
Then, the transformations can be captured using a comprehensible graphical notation.
Finally, the specifications are designed to support bijection (and thus bi-directionality of
transformations).

2.2 Previous Results and Related Work

This section describes the previous research and practical work related to our topic and
which we use as references for our approach. Unlike the broader and generic previous
section, we briefly introduce specific solutions, proofs of concepts, propositions, and other
exciting research from which we can benefit while designing the Normalized Systems Gate-
way Ontology for Conceptual Models. Each of the presented works is commented in the
context of this dissertation thesis topic.

2.2.1 Model Driven Architecture

Model Driven Architecture (MDA) is an application of MDD by OMG in the ecosystem of
model-based engineering [107]. It applies various standards and other work of OMG, for
instance, UML, MOF, or QVT. MDA was firstly published in 2001 and then revisited with
newer versions of related standards and other updates in the domain [26]. The core idea is
to allow transformation between models from more domain-oriented into implementation-
oriented. There are three levels of models (listed in order from the conceptual level to
implementation specification):

1https://www.eclipse.org/acceleo/

31



2. Background and State-of-the-Art

1. Computation-independent model (CIM),

2. Platform-independent model (PIM),

3. Platform-specific model (PSM) [108].

The three levels of models allow adjusting a domain model for the technical realisation
gradually. However, the model may also gradually degrade in terms of losing domain-
relevant information. It becomes challenging to maintain consistency between the related
models, resulting in immediate issues when re-generation is needed (e.g. after a change
in the domain model). The problem is amplified by additional custom source code in
the generated application. As a result, the approach may be useful for initial software
development but then turns into traditional maintenance and sustainability issues. [114]

Model Driven Architecture (MDA) is well supported by commercial tools such as En-
terprise Architect, which supports all types of UML diagrams and several UML profiles.
Moreover, it provides a mechanism of extensions so more UML profiles or other modelling
languages and code templates can be added [112]. One of the other approaches to MDA is
a method and also language called Executable Translatable UML (xtUML) that contains
a subset of UML extended by execution semantics and rules. Models done in xtUML can
be executed, tested and complied with lower-level programming languages. This language
is supported by commercial and even non-commercial tools [115].

A similar approach is observable in Foundational UML (fUML) and Action Language
for Foundational UML (ALF) that are defined and standardised directly by the OMG.
The language fUML is again a subset of UML and is used to model the structure and
behaviour of a system. ALF serves to behaviour specification via programming-like syntax.
An advantage aside from OMG support is the close relation of fUML, ALF, and UML [116].
Another example of using MDA levels of models is the transformation of OntoUML models
(CIM) into relational databases (PSM) via UML (PIM) [27].

Another aspect that is observable empirically in the use of MDA in practice is the re-
usability and streamlining of software production. For cheaper and more quickly delivered
software, not just code generation is needed. However, reuse of existing components also
because human beings still do their design, verification, improvements, and other mainte-
nance tasks. There are, for example, attempts of reusing PIM models using ideas from the
already mentioned 4+1 model [117].

2.2.2 Model as a Code

The article Conceptual Model Programming: A Manifesto [118] describes a way of program-
ming using models instead of traditional writing source code. This idea is very ambitious,
but a significant requirement is not fulfilled. A holistic conceptual model that would cover
structure, processes, but also security, user interface, connections of external resources (e.g.
web Application Programming Interfaces (APIs), sensors, or webhooks) is vital. Moreover,

32



2.2. Previous Results and Related Work

a serious question remains – Is such an approach even appropriate? In conceptual mod-
els, we want to export and capture the essence of the problem domain and abstract from
implementation details such as UI or communication protocols.

According to the manifest, (holistic) conceptual model replaces completely source code
of software application and is itself and alone used to produce the application. It removes all
the problems with inconsistency between model and implementation. Another advantage
of a runnable conceptual model is the evolvability of the resulting system that is ensured
on the conceptual level and intricate source code patterns, or other low-level improvements
are not needed anymore.

Conceptual Model Programming (CMP) is in its principle similar to MDA without
seeing any source code and ability to edit it [108]. Nevertheless, oppositely to MDA, CMP
is still further theoretical and necessary tooling, and modelling languages are missing.
Nevertheless, ideas of CMP are not only for the academic field and are in some way imple-
mented in the commercial area. Various “compilers” of conceptual models are developed,
for example, IBM Rational Rhapsody or WebRatio [118].

2.2.3 OO-Method

The OO-Method is an implementation of the Automated Programming Paradigm that
started in 1992, and the following work was published up to 2007. Sadly, most of the work
is more academic-oriented and tooling for applying the method in practice is not openly
available. The core ideas are powerful and inspirational – it covers software production
processes and the environment by combining conventional and formal methods leading into
object-oriented implementation interconnected with models. [28,119,120]

When compared to MDA, it covers modelling on the PIM level. For the CIM level,
communication analysis to describe requirements and processes in the domain is based
on the research of other main modelling languages. The core is built on a formal object-
oriented model called OASIS. It combines multiple types of models (functional, interaction,
state transition, object, and others), where some are textual, and some are graphical. As
a result, it together composes a complete specification to create the implementation. [119]

A recent work by Martins [121] proposes an ontology-driven approach for evolving
OO-Method into the so-called OntoOO-Method. It explains how the works related to
OntoUML, “Model as a Code” and model-driven development represented by OO-Method
can be harmonically integrated to support ontology-driven software development. An issue
with respect to code generation from the conceptual model is the specification of non-
functional software requirements. For example, MDA partially deals with that by levels of
models and selection of code template. A relation between such requirements specification
thought i* framework and OO-Method is analysed in [122]. It follows the older work [123]
that deals with relation to requirements engineering in a broader scope. It explains that
all of the requirements are not usually part of the domain models; therefore, they must be
incorporated in another way.

33



2. Background and State-of-the-Art

2.2.4 Scaffolding

With the growing popularity of web frameworks, specific frequently repeated patterns and
architectures are identified and well-described. As for the architecture of web applications,
multi-tier (usually three-tier) architecture combined with Model-View-Controller (MVC)
or Model-View-Presenter (MVP) is commonly used. In each layer, a developer does many
repeated steps related to the data and flow models that come from a conceptual model
describing a problem domain that the application is supposed to support: data entity
for a database, form to create or edit instances of the entity, frontend and backend data
validation, controller to process-related user interaction, a template to display detail of an
instance, and so on.

Many web frameworks of various programming languages (such as Symfony, Nette,
Ruby on Rails, Django, Spring, Node.js, and many others) as well as external tools pro-
vide significant helper in this task called scaffolding [29, 124]. This approach is purely
practical than academic as the three previously described but still crucial for our research.
A developer provides a description of some entity, and all necessary source code is generated
using templates. The entered information is sufficient to produce a very simple working
Create, Read, Update, Delete (CRUD) web application that can be then easily enhanced.
Provided information typically covers just the name, attributes, and relationships of data
classes. Additionally, constraints about attributes and relationships can be supplied to
guard the integrity and validate user forms.

2.2.5 Eclipse Modeling Framework and Ecore

The EMF is a platform for (meta)modelling and model-driven development that enables
to build applications and tools on top of structured data models. EMF is Java-based and
tightly bound to the Eclipse development environment. The core of EMF consists of:

◦ Ecore – metamodel for describing (meta)models together with runtime support such
as XMI serialization and API for efficient manipulation with EMF objects,

◦ EMF.Edit – framework for building editors of EMF models,

◦ EMF.Codegen – code generation facility for generating editors for an EMFmodel. [125]

In summary, it allows to design of a custom modelling language in Ecore, create an
editor for it, and streamline code generation. Moreover, it is possible to (re-)use parts
of EMF for other purposes, e.g. to load Ecore models from XMI and work with them in
custom Java applications. There are multiple related projects to the core EMF, such as
EMF.cloud [126] that supports web-based modelling tools or EMFStore [127] for collabora-
tion and versioning. The robustness of the whole EMF is also a source of over-complexity
that complicates its use in a non-standard way.

The related Eclipse Model Development Tools (MDT) support other well-known mod-
elling languages aside from Ecore. Eclipse UML2 is an implementation of the UML 2.x

34



2.2. Previous Results and Related Work

OMG metamodel based on EMF for use within the Eclipse platform. The implementation
is supported by a tool called Papyrus [128]. It can be easily used with EMF and provide en-
hanced expressiveness compared to Ecore (e.g. by allowing to model behaviour). Similarly,
there is an implementation of OCL to specify constraints for EMF-based models. [125]

The Ecore metamodel instance of itself, i.e. Ecore is defined in terms of Ecore. The
striking resemblance with the well-known UML Class Diagram is not accidental. As (com-
plete) UML is defined in terms of OMG’s Complete MOF (CMOF), Ecore is, according to
Ed Merks [129], a de-facto reference implementation of Essential MOF. It also works with
concepts of classes, attributes, references (relationships), operations, or packages. Ecore
is well-known as a subset of UML with good tooling support even beyond EMF. More-
over, it is also possible to use other Eclipse metamodels such as UML2 (implementation
of OMG’s UML 2.x metamodel) or OCL metamodel. Finally, Ecore as a whole EMF is
well-documented [125, 130] which is also one of the conditions for its wide adoption and
growing community around it.

2.2.6 Conceptual Model Transformations and Ontologies

As explained, various modelling languages have different advantages in specific use cases
(e.g. level of detail, granularity, focused aspects, or tooling support). It may be desired
to have a model in multiple languages and keep them consistent to grasp the advantages
of multiple modelling languages. There are many transformations proposed, defined, and
prototyped to support these needs. Work by Cibrán [14] allows to translate of BPMN mod-
els into UML Activity diagrams with the use of ATL. Khlif, Ayed, and Ben-Abdallah [13]
propose a set of transformation rules from BPMN to various UML diagrams.

We already reviewed in detail several UML-to-OWL (and vice versa) transformations
and presented our case-study-based review [A.8]. A proposed QVT transformation has
been evaluated as the best among the selection. The XSLT transformations lost many
details and did not support the direction from OWL back to UML. There is also described
one transformation from UML to OWL described using a custom algorithm working with
tabular serialization of a UML model. Other modelling languages are also being investi-
gated in terms of transformation or relating with OWL ontologies, for example, BPMN-
to-OWL [131] or ORM-to-OWL [132]. For OntoUML, there is the so-called gUFO [133], a
lightweight implementation of the UFO in OWL that allows direct encoding of OntoUML
models in RDF.

2.2.7 Ontology Mapping and RDF Transformations

As we are about to design a gateway ontology, ontology mapping and RDF/OWL trans-
formations are essential topics. There are many tools for ontology mapping; an overview is
provided in [134]. An approach based on stable matching is proposed in [135] which seems
to result in more efficient (both in quality and speed) ontology matching. A bit older work
by Euzenat and Valtchev [136] uses similarity to match terms from ontologies. However,
the method is limited only to the OWL Lite sublanguage.

35



2. Background and State-of-the-Art

It is better to use only RDF transformations directly without a specification of the align-
ment between ontologies for some use cases. Again, there are multiple options. STTL [35]
utilizes SPARQL with a new extension for templating that allows turning queried triples
into any textural fragment (which can be again RDF). RDF Mapping Language (RML) [33]
works in the opposite direction than STTL. It allows specifying a mapping from textual
formats (e.g. JSON or XML) to RDF. As RDF can be represented as XML, it can serve as
RDF transformation language. Finally, TRIPLE [36] is a language for specifying rewrite
rules in RDF. The TRIPLE is a bit older work, and most of its functionality can be done
simply by creating SPARQL CONSTRUCT queries. The approach of using SPARQL is also
suggested in our work where we compose the queries from pattern-based mappings [A.11].

2.2.8 Ontology-Based Software

From the perspective of using OWL ontologies in software development, i.e. to create
ontology-based software, there are also several interesting works on transformations to
various programming languages. For instance, [137] describes a generation of data mod-
els in Go from OWL ontology (oriented on structural aspects), or [138] focuses property
axioms and their representation in Groovy (oriented on rules of relationships). Ontologies
can be used even further in the software development process as a basis for testing [139].
Next, there are mapping frameworks for aligning object-oriented programming with ontolo-
gies [140]. For example, JOPA [141] enables efficient ontology-based information system
design in Java (and compatible JVM languages, e.g. Kotlin).

2.3 Normalized Systems

Normalized Systems (NS) [1], a theory developed and used in practice at the University of
Antwerp and its NSX spin-off company, deals with the evolvability of systems in general
by the application of elementary principles ensuring fine-grained modularity. The primary
purpose and application in practice are to develop evolvable enterprise information systems
in the form of web applications. By evolvable, it is meant without combinatorial effects
that are obstacles to change.

Software systems need to be changed over time, and their complexity grows. If there
are ripple or combinatorial effects, each change takes more and more effort to increase the
system’s complexity. It is more efficient to develop an entirely new system and abandon
the old over-complex one at some point in the system’s lifetime. Normalized Systems are
evolvable and do not suffer these effects, allowing them to be changed over time easily.

2.3.1 Normalized Systems Theory

The Normalized Systems Theory (NST) [1] clarifies how it should be system structured to
achieve evolvable modularity, i.e. have a fine-grained modular structure with combinatorial

36



2.3. Normalized Systems

effects eliminated or encapsulated and “under control”. It does so by using principles from
system design, software engineering, but also thermodynamics. The core principles are:

◦ Separation of Concerns – It is a well-known design principle for separating a com-
puter program into distinct sections, such that each section addresses a separate
concern. Every part of the application should be focused on its single purpose and
goal. Nothing should do multiple, even slightly different, things.

◦ Data Version Transparency – Data entities used as input or output in actions must
be updated without impact (combinatorial effect) on actions.

◦ Action Version Transparency – Actions that are called by other actions must be able
to be updated without impact (combinatorial effect) on the calling actions.

◦ Separation of States – The calling of an action by another action must have state
separated (no combinatorial effects of the specific call to the actions).

In contrast to other software development methodologies that target modularity, NST
proves that applying the principles avoids combinatorial effects. Therefore, there is no
vagueness or ambiguity as in traditional methodologies that propose several patterns but
do not precisely specify how to use them or maintain the resulting system. It also explains
how to design and develop such software systems. The key to evolvability is, next to
the fine-grained modular structure, also a code generation technique. Although primarily
intended and applied in software engineering, the theory is applicable in any domain where
systems are being designed. [1, 142]

2.3.2 Metamodel and Meta-Circularity

Normalized Systems in software use the core principles to create modular applications
with so-called Elements. They represent different aspects of the problem domain to be
implemented in the NS application with evolvable modularity. The problem domain and
requirements are captured using a model of these elements. For example, Figure 2.8 shows
how structural and behavioural aspects are modelled in an application for booking flights.
The implementation modelling method can be considered a precise technical specification
since the implementation is created from such model and supplied technical details (e.g.
what framework should be used for data persistence). The Elements metamodel is improved
over time to cover more cases and avoid more custom code in the applications. There are
five types of elements:

◦ Data Element – Description of data structures or classes including its attributes as
data or link fields, connected data children, finders, and various metadata as options.
There are specific data elements to express their usage, e.g. primary, taxonomy, or
history.

37



2. Background and State-of-the-Art

◦ Task Element – A task models an execution of some actions on a data element. The
result of such execution can be success or failure. Although tasks are used within
workflows, NS needs to keep them independent.

◦ Flow Element – Connection of tasks into a process is expressed via a flow element
containing information about a workflow for a single data element.

◦ Connector – Allows interaction with external systems and users in a stateful way.

◦ Trigger – Serves for scheduling or other planning procedures of (semi-)automatic
workflows [1].

Figure 2.8: Example of structural and behavioural model in Normalized Systems

A model of Elements forms a Component that is re-usable in many applications. For
example, a flight booking application may use the same components for user authentication
as an application for solar panels management. The generic components that are widely
used (e.g. for user management, workflow scheduling, or assets) are called base components.
The NS Elements metamodel is an instance of itself, e.g. Data Element and Task Element
are modelled in the metamodel as data elements as shown in Figure 2.9. It enables the
Meta-Circle, which helps the NS metamodel and tooling also evolve easily. [30, 143]

The modelling with NS metamodel is oriented on evolvable implementation. Therefore,
it avoids constructs that cause ripple effects. For example, there is no specific construct
for enumerations as is known in both conceptual modelling languages and object-oriented
programming languages. It must be modelled as a data element with a set of pre-defined
instances. Similarly, there is no inheritance, i.e. generalisation-specialisation relation.
It can be simulated only using link fields that represent associations. We proposed and
investigated several patterns on how to transform inheritance [A.3,A.9].

38



2.3. Normalized Systems

Figure 2.9: Fragment of NS Elements metamodel [30]

2.3.3 Expansion and Craftings

The code templates, together with mapping from NS models, are called Expanders. From
a technical perspective, those are Java String Templates and XML mappings. It allows the
generation of any textual files from NS models. There is no limitation in terms of output
from the expansion; it can be any textual file (e.g. Java source code, XML configuration,
documentation or SVG file). The expanded code base is expected to be enhanced by adding
custom code fragments to implement functionality that cannot capture using elements. For
example, a field of a data element can be modelled as calculated, but the calculation must
be implemented as a Java code fragment. [30]

In traditional MDD methods, such enhancements in the code would become a source of
inconsistency and blocker of future re-generations. However, NS provides ways of handling
custom code. There are two types of such craftings:

◦ Insertions – The generated files contain anchors between which a custom code frag-
ment can be inserted. The anchors are specified directly by the used expanders (code
templates). The generated files are typically part of gen directory.

◦ Extensions – Custom source code files or whole packages created in ext directory.
For example, a package implementing an API client of an external system would be
an extension. Then, it can be used in the application via insertions, e.g. call external
API when a task is executed.

39



2. Background and State-of-the-Art

To avoid overwriting the craftings upon re-generation (or so-called rejuvenation) of a
system, they should be harvested. The harvesting procedure basically goes through the
code base and stores both insertions and extensions in the designed location. Then, when
a system is rejuvenated, it takes the selected expanders, NS model of Elements, technical
details and harvested craftings to generate the codebase. There might be several reasons
for re-generation: a change in the model, updated expanders, or a different underlying
framework (cross-cutting concern). [1, 30,142]

Finally, the expanders can also be variable using features. It aims to include pieces
of code to multiple expanders. Then, a feature can be enabled by an option from the
NS model (e.g. by specifying a particular data option for a data element) or another
condition. It typically adds some logic to multiple artefacts at once to extract cross-
cutting concerns from the expanders (decoupling). As expanders are very variable and
can become complex, there is also a prepared way to test them easily. Testing is done by
specifying a fragment of input model using onion specs and then matching the generated
result with expectation. [30]

2.3.4 Prime Radiant and NS Modeller

Appropriate tooling support is needed to work with NS models and expanders effectively
and to create and run the resulting enterprise application. In the past, expanders were
started by command line scripts together with a basic XML description of the model with
elements. As this was hard to do for non-technical people, a tool called Prime Radiant [30]
(the name comes from Isaac Asimov’s Foundation series) provides a user interface in a web
application with various views and forms. It is simple to use, and it is itself an evolvable
NS application. Prime Radiant covers the whole process from designing NS elements,
through specifying flows and runtime details, up to deployment technologies and running
the instances of applications.

The Prime Radiant [30] helps with design, but it is still a text entered with some non-
trivial forms and displayed in tables. That is not easy to grasp by stakeholders from a
business who are used to the graphical representation in diagrams. For that purpose, the
NS Modeller has been developed based on the OpenPonk modelling platform. It easily
allows creating a visually close model to ER or UML for data elements with flows and
to specify many details like finders or data children. Furthermore, model validations are
possible, which is a totally new feature that is missing in Prime Radiant and can lead
to build errors of the NS application. Later during our work, the Prime Radiant become
superseded by Micro Radiant (µRadiant) [144].

Moreover, another tooling for NS is also generated from the NS metamodel. For exam-
ple, the Java library for importing and exporting NS models through their XML serializa-
tion. It uses so-called Tree projections to store elements in Java and to allow manipulation
of them. Similarly, there are Composite projections that have resolved relations (forming
a graph instead of a tree). Due to the meta-circularity, it is possible to simply re-generate
such libraries whenever the metamodel is updated. Other tools and libraries that enable

40



2.3. Normalized Systems

work with NS can also take such an advantage if they are implemented (at least partially)
using expanders. [1, 30]

2.3.5 Normalized Systems in Other Domains

Although NST is currently intensively used in the domain of software engineering, it is
applicable to other domains, and we say that to any domain of human activities. When-
ever some structured system is designed (including buildings, organisations, documents,
software and hardware), principles of NST can be used to create a fine-grained modular
structure and enable evolvability. For example, having modular evolvable highways made
of connected building blocks (with all pipelines, lights, signalisation wiring, and so on)
would allow faster road repairs as discussed in [1].

There is extensive research of using it for working with study plans and documents at
the university [145], [146], and [147]. We also contributed to this work with our expertise
in conceptual modelling [A.1] and in the extended version, we created a prototype of a
documentation system for OntoUML [A.2]. The modularisation of documents with the use
of ontologies is also further proposed in [148]. A promising work described in [149] applies
NS in the field of user interface design. We also applied NS principles for message format-
ting in service-oriented architecture [A.4]. Finally, we also pursued a way of generating
NS models directly from textual specification in natural language (English) using the tool
Textual Modelling System (TEMOS) [A.14]. These contributions to the NS knowledge
base are crucial for grasping the true power of evolvability and the possibility to apply it
in various use cases.

41





Chapter 3

Overview of Our Approach

“It is not the strongest of the species that
survives, nor the most intelligent; it is
the one most adaptable to change.”

Charles Darwin

This chapter describes the overall architecture of our work that we developed while
following the Design Science Research (DSR) methodology. As such, we also explain how
it was improved over time during the design cycles. First, we summarise the functional
and non-functional requirements together with the means of verification according to the
relevance cycle of the DSR. Then, we describe the architecture, i.e. types of our designed
artefacts and how they together compose the whole supporting transformations between
Normalized Systems and conceptual models. We aim to theoretically describe the inte-
grations and transformations and provide a practical means for realising these theoretical
research results in the form of a software tool.

With the architecture described, we can discuss its essential aspects and properties
that are crucial for fulfilling the requirements and the operations in practical use cases
or future development. The discussion is also related to both the evaluation of artefacts
in the design cycle and confronting them to the requirements. Finally, we provide a brief
overview of alternative approaches that were not used but provided essential lessons learnt.
The chapter is based on our previous architecture description [A.18], but it was further
refined during other works [A.10,A.11,A.12] according to the DSR design cycle into the
current state that we present here.

43



3. Overview of Our Approach

3.1 Design Requirements

The relevance cycle of DSR describes the requirements that come from the environment
(our target domain) – the needs of Normalized Systems (NS) developers and in the domain
of software engineering in general. The high-level objectives are clarified in Section 1.2;
however, to design the architecture and partial artefacts, more granular requirements are
needed. Although the ultimate goal is to design a Normalized Systems Gateway Ontology
for Conceptual Models, the requirements are also defined with respect to the components
around the gateway ontology that form a whole framework for transformations between
conceptual models and NS. We can further refer to these requirements, as various parts of
the work contribute to their successful fulfilment.

To formulate the requirements, we follow the Requirements-Driven DSR proposed by
Braun et al. [41] which clearly explains the need for a more detailed requirements specifica-
tion in DSR. The problem analysis and statement sets the research problem and objectives
with respect to a certain context (domains) with stakeholders. From these various types
of requirements emerge, as shown in Figure 3.1, for example, context causes contextual
requirements (i.e. constraints), the research problem has problem features that cause
feature-related and functional requirements, as well as theory-based requirements.

Figure 3.1: Excerpt of Requirements-Driven DSR (according to Braun et al. [41])

Formulating these requirements is crucial as it sets what must the design support and
what will be evaluated – requirements serve as evaluation criteria. Moreover, we want
to demonstrate the proposed design on a practical level (not just theoretical) and create
“executable artefacts”, so the DSR requirements specified in this section are also the basis
for the software requirements used to create prototype or reference implementation of the
designed artefacts.

44



3.1. Design Requirements

3.1.1 Feature-Level Requirements

Based on the research problem and its objectives stated in Section 1.2, we specify the
following requirements classified as feature-level. We intentionally do not specify the details
(atomic functional requirements [41]) at this point; these are further discussed in the
corresponding chapter where the partial design artefact for the specific features is described.

FR1 Transform a structural conceptual model to an NS Elements model.
The framework must allow the transformation of structural information about a do-
main from a conceptual model into NS Elements. It will be demonstrated using
Unified Modeling Language (UML) Class Diagram as the widely used mean of struc-
tural modelling. To also show it can handle conceptually richer models, OntoUML
models encoded with the gUFO will be supported as well.

FR2 Transform a behavioural conceptual model to an NS Elements model.
The framework must allow the transformation of behavioural information about a
domain from a conceptual model into NS Elements. It will be demonstrated on UML
Activity Diagram, Business Process Model and Notation (BPMN), and Business
Object Relationship Modelling (BORM) models.

FR3 Transform a fact-based conceptual model to an NS Elements model.
The framework must allow the transformation of behavioural information about a
domain from a conceptual model into NS Elements. It will be demonstrated on
Object-Role Modeling (ORM) models.

FR4 Enable semantic integration of models prior to transformation.
The framework must enable to integrate various information from different concep-
tual models. It will provide a complex domain description which is the input for
transformation to NS. This feature must not lay any obstacles in the combination
of conceptual modelling languages. For example, UML Class Diagram models must
be possible to integrate with BORM models in the same way as for ORM or UML
Activity Diagram models.

FR5 Allow to change the specification of transformations.
The framework must not be limited to initially supported conceptual modelling lan-
guages, and it must allow to change them out-of-the-box, i.e. without (re-)program-
ming the framework. First, it must allow to further extension or adjust the mapping
and transformations as metamodels of both conceptual modelling languages, and NS
Elements may change over time. Second, new conceptual modelling languages may
need to be supported. Finally, alternative transformations of the same language may
also be needed for specific use cases.

FR6 Maintaining consistency through back-transformation and checks.
The framework must allow transforming from the NS Elements model back to con-
ceptual models for keeping or checking consistency. It gives meaning to the word
“gateway” in its name as it should also provide a way back.

45



3. Overview of Our Approach

The first three requirements (FR1, FR2, and FR3) are related to the second research
question RO2 as they target to transform different kinds of conceptual models to NS
models. In all cases, the target is to avoid or minimize information loss. The mentioned
kinds of conceptual models were presented in Section 2.1.1. The requirement FR4 is defined
to realise RO1. FR5 is a predisposition for dealing with evolvability issues stated in RO3.
Finally, FR6 supports RO4.

3.1.2 Theory-Based and Contextual Requirements

Aside from fulfilling the feature-level requirements in terms of models integration and
transformations with keeping consistency described in Section 1.2, there are theory-based
and contextual requirements on our solution that are desirable for successful contribution
applicable in practice and extensible for the future. Concerning the Requirements-Driven
DSR [41] where theory-based requirements are also called non-functional and contextual
requirements are constraints, we also include the user-level requirements as part of contex-
tual, i.e. as constraints coming from the domain. Each of the following criteria must be
taken into account when developing the framework.

NR1 Evolvability – Our solution must be well designed according to the core principles
of Normalized Systems theory [1]. A fine-grained modular structure will allow good
maintainability and easier development in the future, i.e. sustainability. It is directly
related to RO3.

NR2 Extensibility – Extensibility together with versatility are highly related to evolv-
ability. It should be possible to easily extend the framework with a new modelling
language or notation, update the existing one, and introduce new transformations
without any negative effects on the existing functionality and usability.

NR3 FAIRness – The four basic principles of making (scientific) data findable, accessible,
interoperable, and re-usable (FAIR) were described in [150]; nevertheless, it is usable
loosely on any project. Being FAIR leads to successful and easy-to-use data, software,
or any research results.

NR3-F Findability – Having a useful solution without anybody knows is losing its
sense. Publishing it in visible places and using registers where the target audi-
ence is focused is necessary.

NR3-A Accessibility – Our solution should be published in standard way for its specific
parts. For example, the framework as software could be published via standard
channels and package index for the selected language. Also, a clear and standard
license must be used to define who and under what terms can use, distribute,
and edit the work.

NR3-I Interoperability – Standard or widely used technologies, procedures, and con-
ventions should be used. First, it helps with the design of the solution since those

46



3.1. Design Requirements

are well documented and supported. Secondly, it assures that the solution is
easy to adopt and used together with others.

NR3-R Re-usability – The partial building blocks in the overall solution should be
possible to share internally and, if applicable, even used externally. It allows
to minimize repetitions and “reinventing the wheel”. For example, others may
take advantage of the existing parts of our framework and build their own for a
different use case.

NR4 DRYness – By having architecture based on a fine-grained modular structure, we
should also comply with the well-known “Do not repeat yourself” principle. The
repeated things should be a source of re-use. That can be done by using generalisa-
tions, compositions, or code generation. The generated parts will, of course, manifest
into repeating patterns. There should always be only one way of accomplishing a
particular goal.

NR5 Development Stack – To ease up the adoption and allow future development to-
gether with other NS tooling, it should comply with the development stack used (Java
programming language, Groovy for scripting, Git Version Control System (VCS), and
others). The parts of the framework directly related to NS models need to be created
through expansion, i.e. custom expanders must be designed to generate code directly
related to the NS (meta)model, which will also help in accomplishing NR1. It will
also enable the use of other existing artefacts in the code base of NS tools.

NR6 Documentation – All parts and procedures must be well documented to enhance
its adoption. Although the use of the framework (running transformations, checking
consistency, and more) should be intuitive and straightforward for the users, the
documentation should cover all functionality of the framework. Moreover, the ways
of extending the framework, e.g. by supporting a new modelling language, must be
documented as well. The documentation is expected to significantly overlap with the
following chapters of this dissertation thesis.

NR7 Multi-Platform Solution – The framework must be possible to use on any standard
computer platform supported by other NS tools (Windows, Linux, macOS).

3.1.3 Adapted Requirements

Finally, the Requirements-Driven DSR [41] specifies adapted requirements caused by State-
of-the-Art, i.e. originated from existing solutions and knowledge base. It encompasses any
requirements adapted or reused from previous comparable and reliable works. We already
presented our knowledge base and related work in Chapter 2 where such requirements are
also outlined. In our case, these requirements directly influence the formulation of our
feature-level and theory-based requirements – Figure 3.1 as well as the DSR three cycle
view explains that the research problem is connected to State-of-the-Art.

47



3. Overview of Our Approach

To summarise the adapted requirement, we use the following list. However, we do not
further refer to these requirements as those are covered in the other requirements as further
described for each individually:

AR1 Conceptual Heterogeneity – There is a vast number of modelling languages fo-
cusing on different aspects for a good reason; there are various aspects in the reality
that may be significant for the domain, use case, or software system, i.e. the reason of
modelling. The mentioned MDD method use a specific language, subset of languages,
or devise its own modelling language. This requirement states that the conceptual
heterogeneity in modelling must not be limited. The design must not lay any obsta-
cles in incorporating any existing (and future) conceptual modelling language. For
example, MDA is using UML (or other MOF-compliant languages) or EMF allows to
use Ecore-compliant languages and models. Our design should provide a more flexi-
ble way than transforming a modelling language for custom metamodel compliance.
This requirement is directly related to NR2 and NR3i. Moreover, it is manifested in
FR1, FR2, and FR3 where different aspects are to be supported and demonstrated.

AR2 Multiple Views on Domain – In Chapter 2, we described several modelling lan-
guages and methods that allow us to combine models of different aspects to create a
more detailed view on a domain. For example, UML allows combining class, activity,
or state machine diagrams to describe both structural and behavioural aspects. Sim-
ilarly, the OO-Method or Model-as-a-Code use different types of models combined to
create software systems. In the ideal case, it would create a holistic view encompass-
ing every information about the domain, and a complete system could be generated
from it. Our design must support a combination of different models concerning AR1.
It is reflected in FR4 that requires semantic integration of knowledge across models
prior to transformation to NS.

AR3 Transformations with Semantics – There are existing ways of model transforma-
tions, e.g. Extensible Stylesheet Language Transformations (XSLT) or Query/View/-
Transformation (QVT). Our design must enable performing based on semantics con-
tained in models and not the syntax used to represent it. For example, XSLT is
basically transformation of XML nodes that can represent the model according to its
metamodel, but not necessarily. QVT provides semantic querying; however, is again
limited to MOF-compliant languages. The requirement is loosely related to FR1–FR5
as semantics-based transformations are key for supporting conceptual heterogeneity
as well as semantic integration and straightforward transformation specifications.

AR4 Consistency between Transformed Models – A known issue of the current
model transformation and the MDD methods in general is keeping consistency across
models on various levels. For example, MDA uses transformations from CIM to PIM
and from PIM to Platform-specific model (PSM), but does not solve how concur-
rent changes in these models (or the generated implementation) should be handled
for keeping everything consistent. NS uses the concept of craftings (insertions and

48



3.2. Framework Architecture

extensions) that can be harvested and injected after rejuvenation. Our design must
provide a way of consistency which is also required in FR6.

3.1.4 Verification and Evaluation

All requirements must be possible to evaluate during the design cycle of DSR and possible
to verify within the target environment (field testing). It is essential to evaluate the
framework artefacts in the design cycle iterations to ensure the quality and benefits of
the results. For the functional requirements, FR1, FR2, and FR3 will be evaluated by
performing transformation of various input conceptual models and checking the output
NS models for correspondence, completeness, and information loss. Similarly, FR4 will
be tested using multiple integrated input models and observing the results. FR5 will
be evaluated together with NR1 and NR2 by creating actual mappings for conceptual
modelling languages in several stages and improving them in design cycle iterations. The
consistency mechanism of FR6 can be evaluated on the models used to test the first four
functional requirements by checking consistency.

Some of the non-functional requirements can be implemented by design or by selecting
underlying technologies. Then, the verification will be straightforward to state that the
realisation (still) fulfils these requirements. For example, NR5 and NR7 will be taken into
account when selecting the technologies and implementing the framework. The technologies
will also highly affect NR3 as it requires standard and widely used technologies, procedures,
and conventions. NR4 can be evaluated together with NR6 if there is always one way of
doing things and no unnecessary duplication is present. The documentation will be verified
with the collaboration of potential future users.

3.2 Framework Architecture

After setting the requirements, an overall architecture of the framework for transformations
between conceptual models and Normalized Systems can be designed. It specifies the
partial artefacts that can be developed according to DSR. The architecture itself is also an
artefact in terms of DSR. In this section, we present the final architecture; however, the
process of evolution due to design cycle is described in the next chapter.

3.2.1 Design Modularisation

The design of transformation between conceptual models and Normalized Systems through
the gateway ontology is split into loosely coupled modules according to the separations of
concerns principle. The concerns that are separated were identified upon design cycle
iterations (listed in the direction from conceptual models to NS):

◦ representation of conceptual models,

◦ mapping of a conceptual modelling language using our gateway ontology,

49



3. Overview of Our Approach

◦ definition of NS Gateway Ontology for Conceptual Models,

◦ transformation of conceptual models according to the mapping,

◦ transformation between NS and mapped conceptual models.

By incorporating this fine-grained modularisation into our design, we promote both
extensibility and evolvability. It is more efficient to extend the transformation by changing
or creating new small modules. It also removes the burden of maintaining the product of
all version variants (e.g. different conceptual modelling languages and their versions). For
example, if we have n conceptual modelling languages mappings and support m versions of
NS metamodel, it is required to maintain only n+m artefacts instead of n ·m. It becomes
even more significant when we consider versions of the gateway ontology, transformation
tools, and others.

To describe the modularisation, we first split the logical and technical view where each
approaches the modules in different ways:

◦ Logical View – explains the structure of the whole framework around Normalized
Systems Gateway Ontology for Conceptual Models, what artefacts are there, and
how are they interconnected. It is further separated into three planes: conceptual
modelling, gateway, Normalized Systems (as described further in the subsequent
subsections).

◦ Technical View – outlines the implementation and workflow of transformations
between conceptual models and Normalized Systems. It is a high-level blueprint for
the technical realisation of the proposed framework.

For the common representation of conceptual models, the mappings, and the gateway
ontology, we use Resource Description Framework (RDF) and Web Ontology Language
(OWL). It has been identified as the most suitable technology based on the set require-
ments, mainly for its versatility and wide use. However, we also considered other technolo-
gies as described in Section 3.6.

3.2.2 Grounding of our Design

The design is highly affected by previous knowledge, experience, and identified similarities
that provide a touch-base with existing artefacts in the real world. Such analogies play
a significant role in problem-solving and science. First, analogies are helpful for design
– reusing a specific aspect or aspects of an existing and verified occurrence. Such things
that we use for inspiration can be even from a different domain, often from nature or
life sciences. Then, it also helps us to easily grasp new ideas and communicate complex
solutions by relating them to something widely used and known. It has been argued that
analogy is “the core of cognition”. [151,152]

50



3.2. Framework Architecture

“Science is nothing but the finding of analogy, identity, in the most remote parts.”

Ralph Waldo Emerson

In this subsection, we briefly provide analogies to our gateway ontology design that
helped us devise and name the solution. The grounding using analogies provides intuitive
but yet solid reasoning for certain design ideas and decisions. It should also help the reader
to understand the various aspects properly and design decisions that we took, e.g. why we
have layers and planes, or what the role of RDF is in our work.

3.2.2.1 Gateway Converting Information

According to Gartner1, a gateway in computer networking “gateway converts information,
data, or other communications from one protocol or format to another”. Because the
protocols for local networks and the Internet differ, a gateway often serves as a protocol
converter allowing one to send and receive communications over the Internet. Generally,
a gateway is described as “a product or feature that uses proprietary techniques to link
heterogeneous systems”. It must allow communication in both directions and maintain
the connections. A gateway can also be seen as a “supervised entry point” through which
messages (carries of information/knowledge) can enter a particular environment under
given conditions and rules applied.

Ethernet
(LAN)

PPP

PTSN

IPSec
Tunnel

N
et
w
or
k

G
at
ew
ay

NS

UML

ORM

BPMN

C
M
-N
S

G
at
ew
ay

Figure 3.2: Gateway ontology analogy with network gateway

We aim to create a gateway for conceptual models to the environment of NS as shown
in Figure 3.2. This gateway must receive compliant conceptual models of supported types
(modelling languages) and pass the knowledge while maintaining the connection with the
source. Moreover, it should also allow “communication” in the opposite direction and allow
knowledge from NS be converted to “protocols” of conceptual modelling languages. The
ontology serves as a way to specify the gateway and its operations and provides a way to
define its modules – converters for modelling languages, i.e. mappings for transformations.

1https://www.gartner.com/en/information-technology/glossary/gateway

51



3. Overview of Our Approach

3.2.2.2 Lingua Franca for Knowledge Representation

Lingua Franca is “a language adopted as a common language between speakers whose
native languages are different” [153]. In research on the international level, we can say that
English is used as a lingua franca. For example, international conferences and journals use
English, and similarly, this dissertation thesis is written in English, not Czech nor Dutch.
When the Czech and Dutch natives meet, they are not going to learn one language from
each other; they will most likely speak English. The reason is obvious; people would need
to know all languages in the worst case. In this sense, English as a lingua franca has been
a “medium” for transferring knowledge in a real-world scenario for many decades.

We have different conceptual modelling languages and the NS modelling language (de-
fined by its metamodel). Our goal is to transfer knowledge between these languages.
First, we will not create a particular translator between each modelling language and NS
separately (for a person who knows all languages). Second, we will not invent another
Esperanto for knowledge representation; however, re-use of existing is desired, and there
are two possible options – RDF and XML Metadata Interchange (XMI).

English

English

(Dutch / Czech)

(French / Czech)

(UML-XMI / NS-XML)

(BPMN-XMI / NS-XML)

(O
RM / 

NS-X
ML)

Dutch-native
speaker

Spanish-native
speaker

Czech-native
speaker

English-native
speaker

En
gli

sh

(F
re

nc
h /

 C
ze

ch
)

RDF

RDF

BPMN model

UML model

NS model

ORM model

RDF

Figure 3.3: Gateway ontology analogy with lingua franca

In this work, RDF is used as a lingua franca for all representations of knowledge (both
models and mappings) as depicted in Figure 3.3. However, it is not just representation,
but a key to transformation due to its “grammar” and solid foundations in first-order logic.
RDF is versatile, flexible, well-maintained, widely used, and mature related technologies are
used mainly in Semantic Web and Linked Data domains. It enables machine-actionability
and rich semantics through vocabularies and ontologies, e.g. in RDFS or OWL. In this

52



3.2. Framework Architecture

sense, we see XMI as Communicationssprache (international auxiliary languages based on
French) – it is closely related to modelling, and related technologies such as QVT are
not used, so widely and cross-domain as RDF. Moreover, XMI has certain limitations, for
instance, it is coupled with Extensible Markup Language (XML) whereas RDF has no such
issues.

3.2.2.3 Vector Space, Dimensions, and Linear Transformation

A vector (or linear) space is characterised by its dimension, which basically specifies the
number of independent directions in the space. A vector space is a set of vectors, and a
subset of it is called a basis if its elements are linearly independent and span the vector
space. Every vector space always has at least one such basis. For example, for a vector
space R3 (3-space, a set of all triples made up of real numbers), the standard basis is a
set {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Any other vector of the vector space can be expressed as a
linear combination of these vectors of basis (sometimes called base factors). Then, a linear
transformation (or linear mapping) is a mapping between two vector spaces that preserves
the operations of vector addition and scalar multiplication.

Figure 3.4: Gateway ontology analogy with vector spaces and transformation

Figure 3.4 shows a linear transformation T of a vector x⃗ from n-dimensional vector
space V to m-dimensional vector space W . To express T as a matrix TM , we need to
choose bases B (in space V ) and C (in space W ). As T is a transformation from Rn to Rm,
the transformation matrix TM ∈ Rm×n. TM captures the relation between V and W using
the bases B and C respectively.

For our problem of transformation between conceptual models and NS, we can see
multiple dimensions as in vector spaces and we need to specify bases and base factors to
be able to unify different vectors and capture their relations (i.e. specify transformation).
Various modelling languages (metamodels) can be likened to vector spaces, with dimensions
related to properties of those languages, e.g. aspects that they are focusing on and can

53



3. Overview of Our Approach

express. A “standard basis” is needed in order to be able to specify the transformations, in
terms of this analogy – to create transformation matrices, for transforming the underlying
models (aka vectors). In our case, yet again, it is RDF, that is well-grounded, based on
first-order logic.

3.2.3 Logical View

The logical view, as captured in Figure 3.5, captures the separation of different represen-
tations of models and their corresponding metamodels. According to our transformation
needs, there are three planes. Two are related to the inputs and outputs of the trans-
formation: Conceptual Models plane and Normalized Systems plane. Instead of directly
designing transformations between models (and metamodels) on these planes, an interme-
diary Gateway plane is added. Its goal is to de-couple, allow re-use, and enable semantic
integration of conceptual models prior to the transformation.

Each plane contains a set of artefacts and related concerns that may be further divided
into sub-modules. Then, artefacts may be transformed between the planes – from concep-
tual models via the gateway to NS and vice versa. There may also be a specific transfor-
mation for metamodels between the planes, e.g. of NS metamodel to gateway plane. Such
transformations support the primary transformation between conceptual models and NS.
The logical view corresponds to our problem statement and objectives (from Section 1.2)
where we visualised the gateway in Figure 1.1. The transformation (RO2) and consistency
(RO4) research objectives are directly captured in the figure, while semantic integration
(RO1) is related to the conceptual models plane and evolvability (RO3) will be described
for each plane separately.

The goal is to transform conceptual models (level M1) that are expressed through
specific modelling languages (i.e. its metamodel, level M2) – dashed arrows depict instance-
of relationships. Of course, a model may have instances (if possible, level M0) and a
metamodel should be formally expressed through metametamodel, which is not always the
case. To allow the transformation to NS, we first need to shift the models (and metamodels)
from a language/tool-specific format to our “lingua franca” and “common denominator”
– RDF. There a well-defined metametamodel is guaranteed as well as the possibility to
create instances. The Normalized Systems plane almost mirrors the Conceptual Models
plane, just the metamodel is meta-circular; thus, serves also as the metametamodel. The
gateway then contains the gateway ontology as an extension to NS metamodel turned to an
ontology that allows and supports the creation of mappings between a specific conceptual
modelling language (its metamodel) and NS metamodel as depicted by dotted arrows. The
mapping then enables both transformation and consistency checks for the models.

3.2.3.1 Conceptual Models Plane

The conceptual models plane encompasses all the conceptual models, modelling languages,
and their metamodels. It is very heterogeneous as each language focuses specific aspects
and is related to different formats for representing the models. Moreover, even a single

54



3.2. Framework Architecture

Conceptual Models
(Domain Description)

Software Systems
(Domain Support)

M
od

el
-S

ys
te

m
 B

ar
ri
er

Transformation

◀
 G

at
ew

ay
 ▶

 

◀
 G

at
ew

ay
 ▶

 

Conceptual M
odels plane

Gateway plane

Norm
alized Systems plane

Meta-level

M0

Specific

XML

RDF/OWL

Generic (R
DF)

M1M2M3

Interoperability
 / f

orm
at

Gateway Ontology

Mapping CM-NS

reference

instantiation

transformation

Consistency

? ?

Figure 3.5: Logical view on the NS Gateway for Conceptual Models

conceptual model captures using a language of a certain specification version (e.g. UML
2.5.1) can be represented using several formats based on a modelling tool. The plane
encapsulates for each language and format the concern of representation and the actual
modelling of a domain using the language. Each single language specification as well as
each single format for model representation. Although it separates the conceptual models
representations in fine-grained modules, it also allows re-use if necessary. For example, a
format used by various versions of a modelling language can be re-used (for instance, XMI
for both UML 2.4 and UML 2.5).

Figure 3.6 shows that the plane covers different modelling languages and underlying
models (depicted by different colours). We do not distinguish various language/tool-specific
formats as our approach treats them in the same way and requires the transformation to
a common language and format – RDF. On the side of specific formats, there could be for
some languages even the metametamodel (M3), e.g. Meta-Object Facility (MOF). How-
ever, that would not be the metametamodel for all metamodels. When metamodels (M2)
are transformed to Resource Description Framework Schema (RDFS)/OWL ontologies, it
allows creation of instances (models, M1) as well as provides well-defined and common
metametamodel. The models (M1) can be also transformed in RDFS/OWL to further
allow instances (M0).

The use of conceptual models (and metamodels) transformed to RDF allows seman-
tic integration as shown in Figure 3.7. The figure shows an integration of two models

55



3. Overview of Our Approach

Conceptual M
odels plane

Meta-level

Specific

Generic (R
DF)

M1M2M3

Interoperability
 / f

orm
at

Figure 3.6: Conceptual models plane with various metamodels and models

created using two different modelling languages (metamodels). The metamodel for the
semantically integrated model is a combination of the two original models with the pos-
sibility to specify additional constructs for binding them together. Then the rest of our
architecture works in the same way as if the integrated models and metamodel were any
other model and metamodel – specified mapping (created by re-using those from separate
original metamodels) and transformation to/from NS.

Conceptual M
odels plane

Meta-level

Specific

Generic (R
DF)

M1M2M3

Interoperability
 / f

orm
at

Figure 3.7: Conceptual models plane with semantic integration

3.2.3.2 Gateway Plane

The central gateway plane supports the transformation by providing means for its spec-
ification. As shown in Figure 3.8, the mappings on this plane represent the relationship
between a conceptual modelling language (its metamodel) and the NS metamodel via the
gateway ontology. The mappings are prescriptions for executing transformations between
conceptual models and NS models and can be specified so it is possible to check consistency
and/or transform in both directions.

The core part is the gateway ontology which creates the link between conceptual models
and NS as well as the metamodels. It provides constructs for specifying the conceptual

56



3.2. Framework Architecture

Conceptual M
odels plane

Gateway plane

Gateway Ontology

UML-NS

BPMN-NS

ORM-NS

Mapping CM-NS

Figure 3.8: Gateway plane with gateways and links to modelling languages

modelling language mappings to NS. For example, how UML Class Diagram is related to NS
Elements defines the relation between UML Class and NS Data Element. This knowledge
can be then used to transform conceptual models to NS and vice versa. As the gateway
ontology covers several key concerns (NS metamodel in RDF, re-usable extensions, and
transformation specifications), it has been further divided into submodules called layers.

3.2.3.3 Normalized Systems Plane

The Normalized Systems plane represents the modelling part of NS using its tooling and
specific formats as captured in Figure 3.9. The models from this plane can be expanded
into artefacts (e.g. source codes of information systems) or further enhanced by technical
details. In terms of modelling, it may be seen as a specialisation of a conceptual modelling
plane with just a single metamodel and a particular purpose – expanding evolvable systems.

Norm
alized Systems plane

Expanded Artefacts

Expansion

Figure 3.9: Normalized Systems plane with models and artefacts

57



3. Overview of Our Approach

We separate this plane as it has a different concern than the conceptual models plane.
In terms of the primary purpose (FR1–FR3), the conceptual models plane contains inputs
that are through the gateway plane transformed towards the NS plane. Then, it can be
even reversed for checking the consistency (FR6).

3.2.4 Technical View

In the technical view, the artefacts introduced in the logical view are related to a transfor-
mation tool(s) for actually transforming conceptual models (as instances of the conceptual
modelling language metamodels) to NS models. It describes the pipeline through which an
input conceptual model is turned into an NS model (and then into an enterprise informa-
tion system). It also considers the opposite direction of the transformation with respect to
the consistency requirement.

Figure 3.10 illustrates the transformation pipeline based on the gateway ontology. First,
the input conceptual model in a tool-specific file format is transformed into RDF based
on the OWL ontology for the metamodel of the modelling language. The metamodel
represented as OWL is mapped to NS using the constructs of the gateway ontology. The
mapping together with the conceptual model in RDF are inputs for the transformation.
It transforms the model based on the mappings and according to the rules of the gateway
ontology and produces NS model representation in RDF. The final step is to transform
the NS model from RDF to XML serialisation, which can be imported and used in NS
tooling to further process or expand the information system. The transformation tool does
not lie any obstacles in terms of the type of language or the use of the gateway ontology
(FR1–FR3).

Figure 3.10: Technical view on the Gateway plane

The transformation procedure can easily handle semantic integration FR4 of input
conceptual models. As shown in Figure 3.11, there may be more input (integrated) con-
ceptual models. In that case, the transformation uses multiple corresponding metamodel
mappings. The output NS model in RDF is then produced for the combined input. The

58



3.2. Framework Architecture

semantic integration can be done traditionally in input RDFs, e.g. using owl:sameAs or
simply by using the corresponding identifiers across models. The input models can be all
together with the semantic integration specification defined in a single RDF file or multiple
files – it is an insignificant implementation detail, the tool should support both ways.

Figure 3.11: Transformation for semantically integrated models

The transformation can be reversed to verify consistency and transform the NS mod-
els into conceptual models with mapped metamodels. Figure 3.12 shows that the reverse
transformation takes as input an NS model and conceptual modelling language mapping(s).
First, the models are transformed into RDF representation. Then inverse transformation
rules from the gateway ontology are used based on the mapping to produce conceptual
models in RDF. To overcome the loss of information due to metamodels differences, ad-
ditional information for backward re-construction of conceptual models must be encoded
into so-called Options of NS Elements.

Figure 3.12: Reversed transformation for maintaining consistency

59



3. Overview of Our Approach

3.2.5 NS Gateway Ontology for Conceptual Models

The gateway ontology is the key part of our transformation between conceptual models and
Normalized Systems. Its design is affected by related work (e.g. Model Driven Architecture
(MDA) or OO-Method) and the requirements for extensibility (FR5, NR2) and evolvability
(NR1). As explained, the gateway ontology covers several concerns; therefore, it is split
into modules called layers. The primary purpose of the gateway ontology is to capture and
provide knowledge for efficient transformation using RDF and OWL.

3.2.5.1 Core Layer

The core layer encapsulates the relationship with the NS metamodel. It consists only of
the RDF/OWL representation of the NS metamodel. The version of this layer is affected
only by the metamodel version, as well as the transformation procedure between NS and
RDF/OWL. The constructs contained in the core always have a direct counterpart and
can be transformed to NS XML representation. For example, for the Data Element there
is nsgo4cmCore:DataElement for which the transformation is straightforward.

3.2.5.2 Extensions Layer

The extension layer provides additional constructs related to the NS metamodel. The
primary objective is to avoid duplications NR4 of complex transformation patterns for
constructs that appear often in conceptual modelling but are not supported by NS. An
example of this may be inheritance, where the extension layer can define a new relation
between data elements nsgo4cmExt:specializes. Then, for the transformation, this well-
defined additional relation represents a certain pattern in terms of core layer constructs.
Similarly, it would work also for the mentioned enumerations that can be realised using a
taxonomy data element with name field.

It allows to propose constructs and patterns to make NS modelling “closer” to specific
conceptual modelling languages for easier transformation without changes in the NS meta-
model. However, after refinements and justification of the benefits, such constructs can
be proposed for inclusion in the metamodel. When this occurs and a new version of the
metamodel is released, it will become part of the core layer, and it can be linked directly
from the extension layer.

3.2.5.3 Transformations Layer

Finally, the transformations layer defines the means for actual transformation specification,
i.e. mapping of a conceptual modelling language metamodel to the NS metamodel (or
constructs from the extensions layer). A mapping uses these definitions to describe the
relations. For example, a mapping for UML Class Diagram could state that uml:Class

is mapped to nsgo4cmCore:DataElement, a class name becomes a data element name,
attributes of a class become fields of a data element, and so on.

60



3.3. Formal Specification of Transformations

All the knowledge about relations between metamodels must be captured using the
vocabulary given by this layer, and as targets for the mapping are used the two underlying
layers. Then, a transformation tool must be able to read and act according to it, for
example, transform each class to a corresponding data element with its name and fields.

3.3 Formal Specification of Transformations

We use mathematical notation combining first-order logic, set theory, and algebra to for-
mally describe our architecture, its components, transformations, inputs, outputs, and
others. It provides essential formal grounding to our work and precisely expresses the
design. We also considered other formal specification approaches mentioned in Chapter 2;
however, those are software-oriented and unnecessarily complex for our case. This section
defines our overall design using mathematical equations and serves as a foundation for the
subsequent chapters, where introduced concepts and definitions are further elaborated.

3.3.1 Conceptual Models

The goal is to support any kind of (formal) conceptual models with a specified metamodel.
Therefore, we must not make any assumptions about the constructs in such (meta)models.
A conceptual model is a set of concepts M . The form of concept, i.e. its representation,
is based on the metamodel. For example, if the metamodel is UML, then the concept
ci can be represented as a class with its properties and relations. However, with other
metamodels, the representation of concepts may be completely different. Thus, a concept
ci is for us a tuple further described by the metamodel M ′. A model (or metamodel) M
describes a set of conforming instances. In case of a metamodel, the instances are models;
for a metametamodel, those are metamodels, and so on.

M = {ci} ∈ inst (M ′) (3.1)

A concept ci in a model M is expressed using a subset of concepts its metamodel
M ′. For instance, a concept can be expressed as a UML class with name, stereotype, and
attributes.

ci ∈ inst (C ′i ⊂M ′) (3.2)

Then, we use the term semantic integration with conceptual models to define relations
between concepts of two (or more models). It can be understood as a union of the integrated
models (conforming to union of metamodels):

MA ∪MB ∈ inst (M ′
A ∪M ′

B) (3.3)

61



3. Overview of Our Approach

3.3.2 NS Models and Expansion

The notation used for expressing NS metamodel, models, elements, or expansion comes
primarily from the Normalized Systems Theory (NST) [1] but also the fact that we can
consider NS models as conceptual models.

MNS = {ci} ∈ inst (M ′
NS) (3.4)

The NS metamodel is a an instance of a metametamodel; however, as already described,
metametamodel in NS is in fact a subset of the metamodel (meta-circularity). Therefore,
if we support an function, or more specifically a transformation, supporting NS models, it
will support also the NS metamodel (and metametamodel).

M ′
NS ∈ inst (M ′′

NS ∈M ′
NS) (3.5)

The expansion notation described in the NST [1] does not directly use NS Elements,
but the requirements formulated through them. The NS model captures functional data
requirements D (e.g. data elements, their fields, data projections, or states) and functional
processing requirements P (e.g. task and flow elements, transitions, or triggers). There
are also additional non-functional requirements captured technology settings T . Then, the
expansion produces data classes S and action classes F based on the requirements:

I(Dm, Tα) = {Sm,k}k=1,...,K ∪ {Fm,l}l=1,...,L (3.6)

I(Pn, Tα) = {Sn,k}k=1,...,K ∪ {Fn,l}l=1,...,L (3.7)

We also do not want to make assumptions about specific constructs defined in the
NS metamodel (M ′

NS), such as data element and task elements. There are two reasons;
first, the metamodel may evolve and the constructs may change which could require us to
update our artefacts; second, new and alternative NS metamodels with different constructs
can appear in the future. Furthermore, we can generalise the statements above related to
the expansion process. D can be understood as structural specifications, P behavioural
specification, and the resulting S and F can be unified as artefacts (without limitation to
source code or classes).

I(Dm ∪ Pn, Tα) = {Ak}k=1,...,m+n (3.8)

3.3.3 RDF and OWL

RDF is based on triples t that consists of a subject s, predicate p, and object o. Eventually,
quads q may be used when additional context c is necessary. When we talk about a dataset
or graph, we mean a set of triples D (often called RDF dataset). A set of resources R
encompasses all resources with URIs RU but also anonymous, i.e. blank nodes RB. Then,
we use P to capture a set of predicates and L a set of literals. To denote literals of a special
type, e.g. Lstring ⊂ L.

62



3.3. Formal Specification of Transformations

t = (s, p, o) ∈ D ⊆ R× P× (R ∪ L) (3.9)

q = (s, p, o, c) ∈ D′ ⊆ R× P× (R ∪ L)× C (3.10)

A directed graph GD can be constructed vertices VD and edges ED based on the set of
triples (or quads) D as follows:

GD = (VD, ED) (3.11)

∀(si, pi, oi) ∈ T : si ∈ VD ∧ oi ∈ VD ∧ (si, oi) ∈ ED

Although OWL ontology is captures also using a set of triples, it provides the concept
of instantiation as conceptual models. Basically, it limits the allowed predicates p and
objects o for individual s that is of type r. For example, it states that p cannot be used
with s or that p may use only a certain subset of L as o. To express precisely OWL, it is
essential to use the well-known functional syntax [154].

Both RDFS and OWL allow us to specify models and metamodels. Then, we may use
the same notation as we did for conceptual and NS models. For example, an ontology for
UML is de-facto a metamodel M ′

UML−OWL that allows to create instances – capture UML
models MUML−OWL in RDF. OWL serves in this case as a metametamodel M ′′

OWL.

MUML−OWL = {ci} ∈ inst
(
M ′

UML−OWL

)
(3.12)

M ′
UML−OWL ∈ inst (M ′′

OWL) (3.13)

3.3.4 Transformations

A transformation in our scope is a mapping TI→O between a representation of input knowl-
edge using the metamodelM ′

I and a presentation of output knowledge using the metamodel
M ′

O. For example, we use TNS→OWL to denote a transformation mapping from the NS
model to the OWL ontology.

TI→O (MI ∈ inst (M ′
I)) = MO ∈ inst (M ′

O) (3.14)

A mapping specifies how concepts (more precisely instances of a construct from a meta-
model) from an input model can be translated into concepts of an output model. For such
a mapping, we expect that for a single input model it returns a single output model (and
always the same one). Therefore, TI→O is more specifically a function with domain M ′

I

and codomain M ′
O. This expectation does not interfere with the possibility of transform

a single concept cI,i ∈ MI into multiple concepts cO,j ∈ MO, as TI→O is the mapping of
models, not its partial concepts. Due to possible information loss (caused by different
levels of expressiveness or focus on different aspects), TI→O may not be bijective. If TI→O

is bijective, we can find the inverse function T−1I→O = TI←O that allows bidirectional trans-
formation without information loss. In other cases, we can define the opposite mapping
TO→I based on TI→O to support bi-directionality but with information loss.

63



3. Overview of Our Approach

We can also observe a mapping of the underlying concepts of the metamodels. For
example, that UML class is mapped to a NS data element. As a single concept cI,i ∈ M ′

I

from an input metamodel may be assigned to multiple concepts cO,j ∈ M ′
O in an output

metamodel, it cannot form a function. Nevertheless, we can define a function T ′I→O that
does not map single concepts but sets of concepts (practically patterns of concepts). Such
a function can be even bijective and can be used for avoiding information loss, e.g., by
using a metamodel-specific concept to denote how it was formed from the input (in NS we
can use the so-called options).

3.4 Evolution in Design Cycle

The architecture explained in the previous section results from several iterations of the
DSR’s design cycle. We used the bottom-up approach, where we first prototyped direct
transformations as a proof-of-concept. Then, we focus on generalising and connecting
the partial solutions. During prototyping, we identified and dealt with several obstacles
related to the set requirements. This section briefly describes the key milestones or partial
artefacts that contributed to the final architecture during the design cycles.

3.4.1 Initial Prototype OntoUML-NS

The very first work done was a prototype to transform OntoUML models directly to NS
Elements. It revealed several issues, mainly with the loading and manipulating of concep-
tual models and related tooling. As the input for the transformation has been selected
XMI from the Menthor Editor. Although XMI should promote interoperability, due to the
custom and undocumented serialisation profile used by Menthor, it was interpreted as any
other XML without any efficient querying over XMI. It was implemented in Python using
standard libraries.

Another issue was to capture and serialise the export NS models from the tool. Custom
data classes to represent entities of the NS metamodel, e.g. data element or field, were
implemented together with XML serialisation. The transformation itself was part of the
Python code. For example, all OntoUML classes were converted into NS data elements
with stereotypes captured using options and attributes with relations as fields. Some of the
constraints of OntoUML were lost during the transformation and the ontological meaning
of the stereotypes. The most challenging was the transformation of inheritance, which is
very common in OntoUML models and is based on a principle of identity.

There were several main lessons learnt from this prototype. First, it is necessary to
have a common language for conceptual models to allow efficient extraction and semantic
integration of knowledge. Second, instead of re-implementing utilities related to the NS
metamodel, it can be re-used if the Java language is selected (it resulted in NR5). Then,
the transformation cannot be captured directly in the source code but must be defined as
input for the transformation. Finally, there may be several ways of transformation, and it

64



3.4. Evolution in Design Cycle

may not be possible to decide which is the best one automatically. We identified this issue
with inheritance and addressed it further in related work [A.3].

3.4.2 Ecore-NS Transformation

The problems encountered in the OntoUML-NS transformation led to another stand-alone
transformation tool prototype – from Ecore (as UML subset) to NS [A.12]. We used
Java which allowed to re-use existing libraries for working with NS models and XML
(de-)serialising them efficiently directly in the code. For Ecore, we used Eclipse Modelling
Framework also for model manipulation and XMI (de-)serialisation. It allowed us to purely
focus on the implementation of the transformation without the need to bother with formats
and model querying. That verified the advantages of using the same technologies as are
using in NS tooling (NR5).

The transformation between Ecore and NS is more straightforward when compared to
the previous one with OntoUML. Ecore metamodel is closer to NS because it is more low-
level oriented and does not emphasise ontological clarity of concepts. Moreover, some of the
rules are similar to or the same as in the OntoUML-NS transformation. For example, there
is the same issue with inheritance and classes with attributes are also being transformed
to data elements with fields.

However, there were some differences, for instance, enumerations or annotations. Enu-
merations are not (just as inheritance) allowed directly in NS as they are obstacles to
evolvability. It has to be transformed into a taxonomy-type data element and a list of
its instances. Annotations, on the other hand, can be seen as a direct counterpart to op-
tions – they are used to further describe an entity of the model in a generic way. We also
experimented with backward transformation in order to check consistency.

Together with the OntoUML-NS, the Ecore-NS prototype showed that the re-use of
transformation rules even between different conceptual modelling languages is desired.
Then, there may be cases where transformation of a single construct may turn into a whole
pattern, which contains also instance-level entities. Finally, the options in NS models can
be used both as a direct counterpart to constructs from conceptual modelling languages
and as a versatile way to keep additional information for consistency checking.

3.4.3 Adding Intermediary Plane

After the experience with the OntoUML-NS and Ecore-NS transformations, we started the
modularisation of the transformation architecture by adding an intermediary plane. The
primary motivation was to move the definition of transformation rules from a source code
to a more flexible format, i.e. different execution and specification of a transformation.
First, the separation is a step forward to achieve FR5. Then, the need for re-usability and
DRYness (NR4) is also more straightforward within a transformation-oriented specification
rather than in source code.

The architecture design has been split into several components or modules in a divide-
and-conquer way. This intermediary plane with transformation definitions works with both

65



3. Overview of Our Approach

conceptual and NS models using the exact mechanism and the same format – “common
language”. Then there is separated concern for bi-directional transformation between the
intermediary representation and NS models in its original representation (XML). Further-
more, the same principle is used for all conceptual modelling languages or events, a variant
or format of a language; each has its module for transformation to the “common language”.

Then, we investigated what could be the “common language”. It must be flexible and
versatile enough to cover any knowledge, have good support (especially in Java), and allow
evolvability for future development. We tried several promising approaches that focus on
model transformations; however, we evaluated RDF/OWL as the best way to move forward.
The essential part of the intermediary plane started to be called a gateway ontology as it
practically lets conceptual models enter the world of Normalized Systems but also knows
the way back (FR6). The alternative approaches are described in Section 3.6.

3.4.4 NS-OWL Tool Development

With RDF/OWL decided as the core technology for the gateway ontology, the first key
artefact to be built based on the bottom-up approach was the NS-OWL transformation.
Initially, we designed it as a tool in Java that composes an OWL ontology from an NS
(meta)model [A.7]. However, more information needed to be encoded for the backward
transformation rather than just classes and properties (from fields). The first extension of
the tool within its own design cycle was to utilise RDF to capture everything from an NS
model based on the NS metamodel.

The second enhancement was to expand the transformation tool as NS application
itself [A.10]. This promoted the evolvability of the solution, as it can be simply re-generated
with any change in the NS metamodel. In our architecture, it is used to manage the core
layer of the gateway ontology. However, the tool itself can be used to transform any NS
model to RDF/OWL and vice versa. It has the potential to be used as an alternative way
of serialisation in the future next to XML.

3.4.5 Conceptual Models in RDF and OWL

From the opposite direction, the first step was to convert conceptual models to the “com-
mon language” of the intermediate plane. Due to the wide use of RDF and OWL, there are
several tools, proposed mappings, or algorithms to transform various conceptual models
into RDF and OWL. Some of the approaches have already been mentioned in Chapter 2.
We first focus on the transformations for UML and review them [A.8]. Unfortunately,
the subset of usable solutions focused only on UML Class Diagrams; therefore, we had to
design UML-in-RDF independently. The review provided a valuable knowledge base.

Supporting both UML Class Diagrams and UML Activity Diagrams contributed to
FR1 and FR2. For OntoUML (also related to FR1), it can be captured in RDF using
our solution for UML as well as using the gUFO. Moreover, both can be combined in
a single RDF representing the conceptual model. That is an example of the versatility

66



3.4. Evolution in Design Cycle

in which a single conceptual model can be represented in different ways as input for the
transformation to NS.

As separate artefacts but designed and developed similarly are targetting BPMN and
BORM (FR2), and ORM (FR3). Again, we took advantage of existing proposals for
BPMN-to-OWL mappings. In the case of BORM, no previous solution was possible to
use and the ontology for representing BORM models in RDF had to be developed without
relying on any previous work [A.13]. ORM also had previous mappings that were re-used.

3.4.6 Generalising the Workflow

During the design and development of the individual artefacts (mainly the mappings of
conceptual modelling languages and metamodels for transformation to and from NS) the
documentation and generalisation of the workflow have been done. To support FR5 and
fulfil NR6, the documentation of how to define the transformation rules using our gateway
ontology is crucial. It was not done directly during the initial steps while designing the
base mappings for the selected languages.

Instead, first, we developed the mappings into a state where it was sufficient to eval-
uate against requirements based on DSR. Then, we described the procedures taken in a
generalised way, i.e. not oriented to a specific part of conceptual modelling (e.g. structural
modelling). We created a new artefact that was then evaluated as a recipe for creating
another mapping.

3.4.7 Enhancing Layers in Gateway Ontology

With all partial artefacts done in an integrable state, the improvements by design cycle
iterations were made on the gateway ontology layers and conceptual modelling language
mappings. For each conceptual modelling language, we minimised information loss (for
FR6) by adding new constructs to the extension and transformation layers. Moreover,
if we identified similar patterns in the mappings, we adjusted the transformation layer
accordingly to eliminate complex duplications.

The evaluation of the design cycle at this stage showed how the output NS model from
various conceptual models improved (lowering information loss) and how the mapping
was simplified (complexity and size of the mapping). In the later phase, we also focused
on semantic integration (FR4) – integrated conceptual models and again added suitable
new constructs to the extension and transformation layers with the same motivation and
evaluation as for individual languages.

3.4.8 Future of Design Cycle

The design cycle of artefacts that we created during this research may be iterated in the
future. It is designed to evolve over time. Whenever there is a need to change the map-
ping or transformation of a particular conceptual modelling language, the corresponding
artefact may iterate again, be improved, evaluated, and used in practice. The same goes

67



3. Overview of Our Approach

for other artefacts – NS-OWL transformation, the gateway ontology and its layers, and
the transformation tool.

The need for change may come from changes in a modelling language specification, NS
metamodel specification, or the adoption of new modelling languages. We also expect en-
hancements based on long-term use in practice. As already mentioned, the transformation
rules may differ based on a use case and the input models. The DSR allowed even further
work to be done efficiently.

3.5 Aspects and Benefits

In this section, we undertake a concise overview and evaluation of the fundamental aspects
encompassing the proposed design. By providing a summary, we aim to capture the key
elements of our design. This allows for a comprehensive understanding of the design’s core
features and how they align with the identified requirements.

3.5.1 Future of Design Cycle

The architecture, as designed, demonstrates the application of Design Science Research
methodology in addressing several of the requirements that were initially set. This achieve-
ment is attributed to the iterative nature of the design cycle, as previously explained. By
incorporating feedback and insights gained from each iteration, the architecture has been
refined to meet the evolving requirements. Additionally, the selection of appropriate tech-
nologies and the incorporation of nuanced improvements have contributed to the proposed
architecture’s ability to maximise the fulfilment of design-level requirements.

Future iterations of DSR hold great potential for advancing further the design in case
new requirements or possibilities occur. As technology continues to evolve at a rapid pace,
researchers and developers will have access to an expanding range of tools and techniques.
These future iterations of DSR will may embrace emerging technologies such as artificial
intelligence or machine learning. These technologies have the potential to transform the
way artefacts are designed, developed, and evaluated, opening up new possibilities for
problem-solving and creating innovative solutions. By continually refining and expanding
its scope, future iterations of DSR have the potential to push the boundaries of our design
to be up-to-date with the evolving target environment.

3.5.2 Models Integration Support

Due to having input conceptual models in RDF, the semantic integration of various con-
ceptual models (FR4) is enabled in a standard way. RDF datasets representing multiple
conceptual models (e.g. using UML Class Diagram and BORM) can be simply merged
into a single dataset. Then, it allows to use standard means of semantic integration men-
tioned in Chapter 2, for example, predicates owl:sameAs or owl:equivalentProperty.

68



3.5. Aspects and Benefits

Preferably, integrated models should use common identifiers of individuals; for example, a
single entity model:Person can be uml:Class and borm:Participant.

To fully satisfy FR4, the semantically integrated input models must be supported dur-
ing the transformation process. For example, the transformation should treat equally
the case with model:Person and m1:Person owl:sameAs m2:Person where m1:Person is
uml:Class and m2:Person is borm:Participant. Similarly, for other mapping properties
and other constructs. The means for semantic integration defined in OWL specification
must be supported and documented.

3.5.3 Existing Tooling

Using the widely used technologies of RDF and OWL, the development, documentation,
quality control, and adoption are significantly improved. RDF and OWL specifications
provide solid grounding and interoperability with tools and existing works. The tooling
support is essential, especially in terms of ontology development and RDF processing on
a technical level. In terms of NR5 and NR7, there are enterprise-ready RDF frameworks
in Java – Apache Jena and Eclipse RDF4J (formerly OpenRDF Sesame). There are also
tools supporting NR6, i.e. for documenting ontologies.

Moreover, the tooling support will help us to evaluate the integral artefacts. First, there
are best practices for ontology design and FAIRness with RDF. Second, there are also tools
for verifying syntactical correctness and evaluating the quality of OWL ontologies. Both
are crucial aspects related to the development of artefacts according to DSR.

3.5.4 Interoperability

RDF and OWL undoubtedly promote interoperability (NR3-I) and re-usability (NR3-R)
of the artefacts. The gateway ontology, conceptual modelling language mappings, and
conceptual (meta)models are being captured in an interoperable and standardised format.
It allows one to take advantage of existing tooling and other previous work, as explained in
the previous part; furthermore, it allows others to use the artefacts for different purposes.

Due to the modularity, it further simplified the re-use. For example, one may want to
use only the core of the gateway ontology to perform an analysis on the NS metamodel.
Similarly, one may re-use the definition of transformation rules for a different technical im-
plementation. The other two FAIR requirements (NR3-F and NR3-A) cannot be directly
addressed in the design but in the realisation and publishing phases – by providing meta-
data and licence, using persistent identifiers, and publishing. Finally, for interoperability
(NR3-I), the standard conventions must be applied.

3.5.5 Extensibility

RDF and OWL are designed to promote extensibility as part of the Semantic Web frame-
work and key technologies for Linked Data. It enabled the extensibility NR2 of both con-
ceptual modelling language mappings and the gateway ontology. The version management

69



3. Overview of Our Approach

is supported well in RDF and OWL too. Semantic versioning, changelogs, deprecations,
and other standard means to keep track of changes and transparently explain compatibility
can be used.

The implementation to execute the transformation must also support the extensions
added to the mappings and the gateway ontology. As the transformation tools are designed
to be (in accordance with NR5) itself an expanded NS application, it supports the exten-
sions through craftings (custom code fragments). Alternatively, the expanders themselves
can be extended using features or directly if necessary.

3.5.6 Evolvability and Maintainability

Having all the content kept in RDF and having the fine-grained modular structure as ex-
plained above can be considered evolvable. It contains loosely coupled stand-alone artefacts
that can evolve independently. The number of variations to maintain is the sum and not
the product. For the technical part, the evolvability in terms of NR2 is also considered in
the design. The tool for NS-RDF/OWL transformation, which is mainly used to generate
the core of the gateway ontology, is designed as an expanded NS application. Similarly,
the tool to execute the transformation of conceptual models and NS models is also itself
an NS application.

Hand-in-hand with evolvability goes maintainability. Not only that the burden of main-
taining the product of all artefact versions is eliminated, but the RDF format significantly
simplifies its handling. Standard tools for VCS (NR5) can be used together with CI
pipelines that run various tools to check and enforce the quality and correctness of arte-
facts according to their specification. The same applies to custom expanders and related
NS applications.

3.6 Alternative Approaches

During the design and implementation of the integral artefacts, we also pursued several
alternative approaches. These approaches did not lead to the fulfilment of our goals or
were simply superseded by a more suitable solution. However, they provide important
experience and justification for our final design. In this section, we briefly explain the
main alternative approaches that we pursued according to DSR. It is also clarified which
requirements cause issues with a specific alternative approach.

3.6.1 Per-Language Transformations

One of the options for transforming conceptual models to (and from) Normalized Systems
is approaching each modelling language individually. It is also the approach used for pro-
totyping transformations with the bottom-up approach as explained concerning the DSR
design cycle. The individual approach without any generalisations needed allows covering

70



3.6. Alternative Approaches

all nuances of the conceptual modelling language. This helps to promote consistency and
avoid information loss during the transformation (FR6).

The evolvability NR1 and extensibility NR2 would be possible to achieve in the same
way as it is for the NS-RDF/OWL transformation tool – implementing it as an NS appli-
cation. However, to support n conceptual modelling languages of various kinds as desired
by FR1–FR3, n tools (or components) would need to be implemented. That would create
significant development and maintenance overhead, resulting in the need for generalisa-
tions.

Furthermore, the possibility of changing the transformation that would be encoded
in the source codes and expanders cannot be considered as FAIR NR3 nor fulfilling the
requirement FR5. Finally, for semantic integration of input models FR4, would not be
possible to directly integrate the semantics of the input models, and mapping in some
suitable language would need to be provided for transformation.

To overcome the disadvantages of this approach, the implemented components would
need to be generalised, found a versatile and FAIR way of encoding the transformation
rules, and the input models would need a representation that allows semantic integration.
It manifested in our final architecture, where the generalisation is the transformation engine
and RDF/OWL is selected for representing both transformations and models.

3.6.2 XSLT Transformations

The XSLT is often used for model transformations, as XML serialisation is widely used
in conceptual modelling and computer-aided software engineering (CASE) tools. We in-
vestigated XSLT for our purpose and also during the review of UML-to-OWL transforma-
tions [A.8]. The output XML file is created by using the Extensible Stylesheet Language
(XSL) template and filling it with matching data queries from the input XML file. It
would be possible to use XSLT as the NS models are XML-serialisable. However, a di-
rect transformation would have the same pitfalls as explained in the previous alternative
solutions.

Furthermore, XSLT has its own limitations, and expressiveness is limited when com-
pared to RDF-based solutions. XSLT has limited error handling capabilities, which makes
troubleshooting and debugging challenging. Compared to other programming languages
or technologies, the tooling ecosystem for XSLT is relatively limited. Moreover, it oper-
ates within its own ecosystem and requires a clear understanding of how it fits into the
overall architecture. Integrating XSLT with other technologies or frameworks may require
additional effort and potentially introduce compatibility issues.

In summary, a generic transformation between conceptual models would quickly be-
come very complex in terms of template size. Such transformations would also result in
evolvability issues (NR1) as it mixes syntactic representation and semantics. The re-use of
transformations parts is also not possible in an efficient way which results in violation of
NR4 or the need for additional mechanisms for composing XSLT programmatically. Our
review [A.8] also shows the practical advantages of QVT over XSLT.

71



3. Overview of Our Approach

3.6.3 QVT Transformations

Query/View/Transformation (QVT) is one of the leading technologies for model transfor-
mations related to MOF and MDA. QVT requires the input and output models to conform
to some MOF 2.0 metamodel. First, we would need to make NS metamodel compliant with
MOF. Then, it would be possible to transform between NS and existing MOF compliant
modelling languages (e.g. UML). That is a very limited subset compared to our require-
ments FR1–FR3. For other modelling languages, again, metamodels would need to be
modelled in terms of MOF. Moreover, QVT does not directly address semantic integration
(FR4) and consistency (FR6) and additional work would need to be done on building QVT
queries or back-transformations.

While creating metamodels with MOF for various conceptual modelling languages and
Normalized Systems Elements is feasible, it results in more limitations than with RDF and
OWL. The essential advantage of using MOF would be the existing tooling to execute the
transformations and support in some of the modelling languages (MOF compatibility and
XMI serialisations). However, we identified the issues with versatility and maintainability
(NR1 and NR4) of the transformations as too significant and chose RDF/OWL instead.

Although MOF is an industry-standard for modelling, there can still be variations
and inconsistencies in its implementation across different tools and platforms. This lack
of standardisation can lead to compatibility issues, making it challenging to seamlessly
exchange models between different tools or environments. Similarly, QVT has a standard-
ised syntax and semantics, which can limit its flexibility in certain scenarios. However, the
transformation capabilities and expressiveness may not cover all possible transformation
requirements or complex transformation patterns. This limitation would lead to custom
workarounds increasing complexity and reducing interoperability between different QVT
implementations.

An important aspect is that OWL itself is in agreement with MOF. Therefore, our
solution can be used in the future together with QVT transformations. For example, QVT
can be used to transform suitable conceptual models to RDF/OWL representation expected
by our mappers and vice versa. Similarly, future work can investigate the possibilities
of QVT transformations from NS models in OWL and the relations of MOF to the NS
metamodel.

3.6.4 ATL Transformations

Another possible approach is to use ATL Transformation Language (ATL) in a similar way
to QVT transformations. The ATL is related to Eclipse Modeling Framework (EMF) and
Ecore. First, we would need to make NS metamodel compliant, e.g. define NS metamodel
in terms of Ecore. Then, for all modelling languages that we would need to support,
its metamodel needs to be specified through supported means (EMOF, Ecore, or KM3).
In addition, transformation rules would need to be specified through ATL rules. The
advantage would be a large library of existing transformations. Finally, the input model(s)

72



3.6. Alternative Approaches

could then be transformed from XMI to target XMI. Therefore, the requirements FR1–FR3
could be done; however, RDF turned to fulfil them in better quality.

The pitfalls of this approach are naturally similar to the issues with QVT, as ATL is
highly affected by QVT. Although existing transformations are prepared and it is possible
to define its own re-usable transformations, the language itself is not as versatile as our
solution with RDF. For example, semantic integration of multiple models (FR4) can be
done only at the level of transformation rules. Otherwise, it would need to be done using
a new metamodel and then a single input XMI with an integrated model would be used.

Creating a bi-directional transformation for FR6 would be the same as doing two uni-
directional transformations between XMIs. FR5 would be fulfilled as ATL allows us to
maintain and enhance the transformation rules in a programming-like manner. More se-
vere issues were identified concerning the non-functional requirements (especially with
interoperability and evolvability). Another concern is the support for ATL as it does not
seem to be widely used, the tools are not actively developed, and the documentation with
examples is outdated.

73





Chapter 4

Transformation between NS
Elements and RDF/OWL

“An algorithm must be seen to be
believed.”

Donald E. Knuth

The transformation between Normalized Systems and the intermediary Gateway plane
representation is a crucial part of our solution. First, it is used to generate the core of
the gateway ontology, which is the central part and the target of all other transformations
from conceptual models. Then, it allows transformed conceptual models into Normalized
Systems (NS) on the intermediary plane to be made compatible with other NS tooling,
for example, NS Expanders or NS Modeler, by transformation to the NS plane. Although
the transformation is related directly to the Research Objective 1, the design must address
RO3 and RO4 as well.

This chapter describes the transformation and its realisation together with the necessary
background explained (for instance, the representation of NS models on the NS plane). It
captures progress and improvements made during design cycles according to Design Science
Research (DSR). The initial transformation design has already been published [A.7] and
further improved as a selected paper for extended version [A.10]. The final artefact designed
also benefits from our work on NS-Ecore transformation [A.12] and design of inheritance
patterns [A.9].

75



4. Transformation between NS Elements and RDF/OWL

4.1 Design of Bi-directional Transformation

The final design of our bi-directional transformation between Normalized Systems models
and RDF/OWL is shown in Figure 4.1. It shows that this designed artefact consists of
several sub-modules as it has to handle various concerns. First, it needs to work with
source and target representations of models, that is, read and write NS models as well as
Resource Description Framework (RDF) knowledge graphs. Then, there must be a well-
designed mapping that defines the rules for transformation to minimise information loss
and enable bi-directionality. Finally, we also identified the need to transform instances of
a model.

The design of this artefact must allow its evolvable implementation. As explained, the
goal is to provide a working example of the designed artefacts realisation. It must prove
that the design is usable in practice and help evaluate it and enhance it during the design
cycles.

Figure 4.1: Design of NS-RDF/OWL transformation architecture

Using our formal notation (described in Chapter 3), this transformation is defined via
the mapping function TNS→NS/RDF and its inverse function T−1NS→NS/RDF = TNS←NS/RDF .

As we show later, RDF with NS ontology describing the NS metamodel (all constructs)
allows us to capture all possible constructs in NS models in RDF. And vice versa, as we
have all possible constructs captured in RDF (based on the NS metamodel ontology), we
ensure that TNS→NS/RDF is bijective. However, for TNS→OWL it is not the case. Web
Ontology Language (OWL) itself does not allow us to capture all constructs from NS. This
is the reason why the NS metamodel ontology is needed. Still, adding triples using this
to-OWL transformation is easily possible (and inverse mapping can be created as well)
despite the significant information loss.

76



4.1. Design of Bi-directional Transformation

4.1.1 Motivation for NS in RDF/OWL

As explained in the previous chapter, RDF has been selected as the common language
of the Gateway plane of our transformation design. The RDF is expected to be flexible
and versatile, allowing the encoding of all the necessary information from the NS models,
including the NS metamodel. Basically, RDF could be used just as a different serialisation
of NS models, e.g. next to existing direct Extensible Markup Language (XML) serialisation.

NS (meta)models form a certain ontology that captures various concepts, properties,
and relations. However, the way in which it captures the concepts is technology- or
implementation-oriented. Rather than dealing with ontological aspects (such as identity,
rigidity, or mereology), it focuses on constructs needed for implementation pragmatically
(such as data entities and projections, validation of fields, or if a field should be visible in
a list view).

However, some constructs could be captured using OWL or Resource Description
Framework Schema (RDFS) to support relating RDF data to the ontology of the NS
metamodel. With both RDF and OWL for NS (meta)models and the ability to transform
models in both directions, the NS and the Gateway plane transformation can be solved.
Based on our goals, the solution should be evolvable by design – quickly adapt to the NS
(meta)model changes.

Normalised Systems also support custom metamodels due to the meta-circularity. One
can easily define the own metamodel, generate tools and write own NS Expanders for the
new metamodel. The design should not be limited to just the main NS metamodel, but
should also support custom metamodels. That may also provide RDF support for other
use cases in NS and promote the re-usability of our solution.

The metametamodel in NS is not explicitly stated, but is currently rather implicit. It
is the meta-circular core of the NS Elements metamodel that allows also specifying other
metamodels. For example, metamodels are defined using data elements and their fields, but
not using task or flow elements. The subset of constructs from the NS Elements metamodel
that can be used to define other metamodels can be called implicit NS metametamodel. On
this level of abstraction, the implementation details are also omitted. Thus, it is potentially
straightforward for transformation and mapping using ontologies.

4.1.2 Mapping NS to OWL

Before mapping NS models to RDF data sets, we need to design the ontology according to
which the RDF data will be formed (i.e. defined classes and properties). The first step is
to find the mapping between the NS metamodel and the OWL metamodel. It is impossible
to use only RDFS as we strive for metamodelling techniques (such as punning) to capture
even the homoiconicity of the NS metamodel. That will allow custom NS metamodels to
be supported as long as they use the NS Elements model as the implicit metametamodel.

The equivalent concepts for the mapping of NS Elements and OWL metamodels can be
found in Table 4.1. As a Component forms an Ontology, the fields of a Component, such as
a name, description, or version, should become annotations of the transformed Ontology.

77



4. Transformation between NS Elements and RDF/OWL

Table 4.1: Concept transformation from NS to OWL

NS Meta-model OWL Ontology (Functional Syntax)

Component Ontology(...)

Component metadata Ontology( Annotation(...) )

Component Dependency Import(...)

Data Element Declaration( Class(...) )

Value Field Declaration( DataProperty(...) )

Calculated Field Declaration( DataProperty(...) )

Link Field Declaration( ObjectProperty(...) )

Link Field (back) ObjectInverseOf(...)

Value Field Type (instance) Declaration( Datatype(...) )

This level of transformation allows instantiation of the model and interrelating with other
ontologies by imports or using ontology matching techniques. The Data Element construct
can be seen as a counterpart to Class, consequently for Value Field with Data Property
and Link Field with Object Property.

For fields (data and object properties), other aspects can be captured. Inversed naviga-
tion could be modelled in NS using the opposite link field. For example, Customer has a link
field orders to Order, and Order has the opposite link field customer back to Customer. In
that case, it must not be mapped to two declarations of object properties, but just one and
one inversion. For all fields, cardinality should be captured (e.g. ObjectMaxCardinality
or DataExactCardinality) based on the type of link field or value field type – if its a list
and if it is required). Finally, the range and domain of properties is used to capture source
and target data element, or target value field type (for data properties).

When mapping value (and calculated) fields to DataProperty, the range must corre-
spond to the related value field type. The Value Field Type is defined as a data element
in the NS Elements metamodel and there are several pre-defined instance, for example,
String, Long, or Iban. These instances can be mapped to datatype declarations in the re-
sulting ontology (as described in instance-level mapping). However, to promote modelling
as well as readability of the ontology and underlying RDF data, our design suggests using
a basic mapping between pre-defined value field types and basic XML Schema Definition
(XSD) data types (such as xsd:string) as shown in Table 4.2. Still, the exact value field
type information remains captured in the RDF as the object property of the field.

Our design for mapping NS to OWL allows us to maintain the metamodeling and ho-
moiconicity of the NS metamodel. When transforming a data element called Data Element
from the NS Element metamodel, it is of its own type: ClassAssertion( ns:DataElement

ns:DataElement ), i.e. the data element is an data element (and also an OWL Class).
When creating individuals in RDF, they can be directly of type ns:DataElement as it is
a special type of owl:Class (the punning technique is applied).

78



4.1. Design of Bi-directional Transformation

Table 4.2: Mapping between value field and XSD types

NS ValueFieldType XSD DataType

Boolean xsd:boolean

Date xsd:date

DateLong xsd:dateTime

DateTime xsd:dateTime

Double xsd:double

IntSpinner xsd:integer

Integer xsd:integer

LongSpinner xsd:long

Long xsd:long

Short xsd:short

Time xsd:time

byte[] xsd:base64Binary

storage type = string xsd:string

other xsd:base64Binary

4.1.3 Mapping NS to RDF

Our designed mapping of NS to OWL can be directly used for a transformation of NS
(meta)models to OWL ontologies and vice versa. However, there are many unmapped
constructs of NS (and OWL), such as Task Element, Data Option, or Data Projection.
That would cause a significant loss of information. To capture all parts of NS (meta)models
our design uses RDF instead of limiting to OWL constructs. By every part, we mean each
instance for which there exists a class in the OWL of NS metamodel as already explained.
The mapping is related to the NS-OWL mapping and can be summarised in three steps:

◦ Instances of Data Element (in the NS Elements metamodel) become individuals with
appropriate type. For example:

– ClassAssertion( ns:DataElement model:Customer ),

– ClassAssertion( ns:TaskElement model:FinalizeOrderTask ),

– ClassAssertion( ns:ValueField model:Customer-firstName ).

◦ For instances of Data Element (in the NS Elements metamodel), all value field values
are mapped using data property. For example, the name of value field of Customer:

– DataPropertyAssertion( ns:ValueField-name model:Customer-firstName

"firstName" ).

◦ For instances of Data Element (in the NS Elements metamodel), all link field values
are mapped using object property. For example, the link between Customer and its

79



4. Transformation between NS Elements and RDF/OWL

value field:
ObjectPropertyAssertion( ns:DataElement-field model:Customer

model:Customer-firstName ).

With this approach, it ultimately allows us to encode any NS model (including the
NS Elements metamodel). Although it is based on the NS-OWL mapping (Table 4.1)
that considers only the key structural constructs and does not map others, for exam-
ple, TaskElement, everything can be captured in the underlying RDF data due to the
homoiconicity of the NS Elements metamodel. For example, TaskElement is in the meta-
model represented as DataElement, therefore it is possible to capture it in RDF together
with all its properties (fields from NS metamodel).

4.1.4 Recovering NS from RDF

To support bi-directionality of the transformation, it is also required to map RDF back
to NS models. The only consideration is to read RDF using the same (or compatible)
metamodel as it was initially transformed or created. Here we use the term NS ontology
for the NS Elements metamodel captured in OWL using our mapping. Then, the mapping
is a direct inversion of the three steps described in the previous section:

◦ Each resource of type from the NS ontology in the RDF graph is the corresponding
instance of the NS metamodel in an NS model. For example, Customer becomes an
instance of DataElement.

◦ All data properties from the NS ontology related to the resource are used to retrieve
field values of the corresponding instance in an NS model. For example, the value field
name of firstName related to the data element Customer is retrieved as "firstName"
(string value from an RDF literal).

◦ All object properties from the NS ontology related to the resource are used to retrieve
links between instances in an NS model. For example, for the data element Customer
its field firstName is retrieved and linked.

The RDF graph can contain additional data (resources and properties) as we describe
the mapping from those related to the NS ontology. Such additional assertions can be
skipped as there is no added value in keeping them as part of an NS model. For future
use, we designed an optional mapping of additional assertions using the so-called Options
in NS models. For example, if there is another assertion related to a data element, it can
be stored in the data option.

4.1.5 Instance-Level Mapping

The modelling in NS does not allow the enumeration construct for evolvability reasons.
On the other hand, there are taxonomy-typed data elements that usually have two fields

80



4.2. NS Elements Models Representation

– name and value. Together with its instances, it can be seen as an evolvable enumeration
(one can add new fields, relate them with other elements, and so on). The instances are de-
facto also part of a model. For example, if one has a taxonomy type Gender, its instances
with names Male and Female should always be present. Similarly, the metamodel has data
element types – Primary, Taxonomy, History, and others.

The instances must also be assigned to RDF/OWL to allow them to be relating with
other constructs:

◦ Each instance related to the model (especially instances of taxonomy data elements)
must be turned into individual with corresponding properties:
ClassAssertion( model:Gender model:female )

DataPropertyAssertion( model:female model:Gender-name "female" )

A special case appears for the taxonomy data element Value Field Type of the NS
metamodel. It has its own instances that should follow the above mapping rule and the
one from NS-OWL mapping. The instances created by the rule above are used to match the
exact type in NS where it degrades during the NS-OWL mapping for a range of data prop-
erties. For example, String, MultilineString, and Iban are mapped to xsd:string but
by relating the field to the specific value field type, it is possible to recover the information
when transforming from RDF to NS.

4.2 NS Elements Models Representation

After designing the mapping for the NS-RDF/OWL transformation, the inputs and out-
puts must be handled. We need to deal with multiple representations of NS Elements
models: XML serialisation, objects and classes, RDF triples, and OWL triples. This
section describes the vital aspects of each representation and the related NS concept of
projections.

4.2.1 NS Projections

Normalized Systems use the concept of so-called Projections. An NS Element is al-
ways expanded into several projections. For example, for a data element Person, there
is no direct class Person. However, there are several projections such as PersonTree,
PersonComposite, PersonBean, and others. Each projection targets a different concern
and provides its own functionality (has its purpose). For example, objects of Tree pro-
jections form a tree (as visualised in Figure 4.2, children objects are linked, but links to
parent are just to a so-called DataRef instead of the object), but Composite projections
have all the links in all directions resolved.

Such projections are also expanded from the NS metamodel. Some of them form
re-usable Java libraries and provide additional functionality. One of the key libraries is
elements-ioxml. It has utilities for XML import and export of NS models via the Tree
projection. In terms of NS, both XML and Tree representations are data projections, i.e.

81



4. Transformation between NS Elements and RDF/OWL

different views on an NS model. Tree projections are designed to be Plain Old Java Objects
(POJOs) – therefore, it does not bound any special restrictions.

The transformation between NS and OWL is designed as a transformation between Tree
and RDF data projections. The RDF data projection can capture all the information from
Tree projection according to our mapping. The unique property of the RDF projections
is its interoperability. Moreover, it allows re-using the existing library for working with
XML-serialized NS models.

back reference
using DataRef

back reference
using DataRef

+mFields

+mDataElements

«Interface»
Serializable

«Interface»
TreeProjection

getDataRef(): DataRef

FieldTree

mId: Long
mName: String
mFieldType: String
mDescription: String
mDisabled: String
mIsInfoField: Boolean
mIsListField: Boolean
mListValues: String
mDataElement: DataRef
mType: String

(basic getters and setters)

DataElementTree

mId: Long
mName: String
mPackageName: String
mDescription: String
mDisabled: String
mComponent: DataRef
mType: DataRef

(basic getters and setters)

ComponentTree

mId: Long
mName: String
mFullName: String
mVersion: String
mDescription: String
mDisabled: String
mVersion: String
mModelRepository: DataRef
mApplication: Vector<DataRef>
(other technical details)

(basic getters and setters)

1

0..*

1

0..*

Figure 4.2: Excerpt of NS Elements tree projections class diagram

4.2.2 NS XML Representation

Normalized Systems use XML serialisation of the models and various configurations. The
schemas used for serialisation reflect directly the NS metamodel. For example, there is a
<dataElement> tag for a data element as shown in Listing 4.1. As such, the XML repre-
sentation of the NS metamodel is possible to read and write using standard XML libraries.
However, for Java, there is the mentioned elements-ioxml library which is already evolv-

82



4.2. NS Elements Models Representation

able and guarantees compatibility with the specific version of the NS metamodel (through
Tree projections).

Listing 4.1: Data element XML projection

<dataElement name="Person">

<packageName>org.normalizedsystems.example</packageName>

<description/>

<dataElementType name="Primary"/>

<fields>

<field name="firstName">

<fieldType>VALUE_FIELD</fieldType>

<description/>

<isInfoField value="true"/>

<isListField value="false"/>

<valueField name="ValueField:Person_firstName">

<valueFieldType component="" name="String"/>

</valueField>

<fieldOptions/>

</field>

<!-- ... other fields -->

<field name="gender">

<fieldType>LINK_FIELD</fieldType>

<description/>

<isInfoField value="false"/>

<isListField value="false"/>

<linkField name="LinkField:Person_gender">

<linkFieldType name="Ln01"/>

<targetPackage>org.normalizedsystems.example</targetPackage>

<targetClass>Gender</targetClass>

</linkField>

<fieldOptions/>

</field>

</fields>

<!-- ... finders, dataCommands, dataProjections, dataOptions etc. -->

</dataElement>

Although for our artefact, the essential part is the transformation between the RDF
and Tree projections, the XML projections are suitable for testing and as input or output.
For the NS-to-RDF transformation, the input can be both Tree projections of an NS model
(using the API) or XML projections of the same model loaded from the file system. Vice
versa for the NS-to-RDF transformation, Tree and XML projections are the output.

The example in Listing 4.1 shows a serialisation of a single data element in XML. It
contains all the information related to the data element, from basic attributes, such as
name, description, or type, to contained children of different types. For example, fields of
a data element are also part of its XML serialisation. Each data element subtree is stored

83



4. Transformation between NS Elements and RDF/OWL

in its own XML node/file. A component serialised into a folder then consists of a single
XML file containing information about the component, and then in subfolders are different
types of elements (data, task, flow, etc.).

4.2.3 RDF-Triples Representation

The RDF projection uses triples to capture all information from Tree projections, i.e.
serialisation of an entire NS model. Content-wise, these two projections are equal. It is
essential for the bi-directionality of the transformation without information loss. Although
the Tree projections form a tree, RDF projections may form a graph. There is no need
to avoid using backlinks in RDF when using Uniform Resource Identifiers (URIs). The
resource can be resolved using its identifier only when necessary.

There is an issue related to the RDF representation for the NS metamodel. To create
triples for the NS metamodel, it must refer to the OWL triples of itself (e.g. a data element
individual, which is also a class, is an instance of class Data Element). Therefore, it is
required to have a vocabulary of the NS metamodel elements as URI before the generation
of triples. Then, RDF provides several formats to serialise triples into a text.

Figure 4.3 shows a part of RDF graph with a data element Person that has a value
field lastName. The example prefix (or namespace) contains the NS model, while the ns

prefix is used for the NS metamodel. A more complete example in RDF Turtle format is
shown in Listing 4.2 which corresponds to the previously presented Listing 4.1. Similarly,
Listing 4.3 shows RDF for the value field lastName.

Figure 4.3: Example of RDF graph for NS model

The result of using TNS→NS/RDF for an input NS model is an RDF dataset, a set of
triples, where each (atomic) input concept is represented by a single triple. From the
example Listing 4.2, a data element is represented by the triple introducing the resource
with a type, all the other properties of that resource are understood as related atomic
concepts, e.g. that it has some name, fields, or data options (fields and data options are

84



4.2. NS Elements Models Representation

Listing 4.2: Data element RDF projection

@prefix example: <https://purl.org/nsgo4cm/example#> .

@prefix ns: <https://owl.stars-end.org/test/elements#> .

@prefix nsx: <https://owl.stars-end.org/test/nsx#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

example:Person

a ns:DataElement , owl:Class ;

rdfs:subClassOf owl:Thing ;

ns:DataElement-component example:example ;

ns:DataElement-name "Person" ;

ns:DataElement-packageName "org.normalizedsystems.example" ;

ns:DataElement-type ns:Primary ;

ns:DataElement-dataOptions example:Person-hasDisplayName ;

ns:DataElement-fields

example:Person-firstName ,

example:Person-gender ,

example:Person-dateOfBirth ,

example:Person-lastName ;

ns:DataElement-finders

example:Person-findAllPersons ,

example:Person-findByNameEq ,

example:Person-findByGenderEq ;

nsx:dataRef "example::Person" .

themselves concepts represented by resources with own properties). When a complete NS
metamodel ontology supports all the constructs, the transformation maps every concept
from an NS model to RDF triples based on the NS metamodel ontology:

∀cNS,i ∈MNS

(
∃cNS/RDF,j

(
cNS/RDF,j ∈MNS/RDF = TNS→NS/RDF (cNS,i)

))
(4.1)

As already stated before, this enables bijection and thus bi-directionality:

∀cNS,i ∈MNS

(
cNS,i = TNS←NS/RDF

(
TNS→NS/RDF (cNS,i)

))
(4.2)

4.2.4 OWL-Triples Representation

In addition to RDF triples, we also add OWL triples (as a particular type of RDF triples).
As explained, using only OWL for the transformation would suffer enormous information
loss if used without additional RDF triples. According to the mapping, these triples use
a predicate or object a construct from OWL or RDFS, or additional metadata about the
construct. The ontology part of the RDF projection has its own purpose, serving as a

85



4. Transformation between NS Elements and RDF/OWL

description for its individuals. When using the NS metamodel, it creates the NS Elements
ontology for the underlying RDF triples.

Figure 4.4 shows the corresponding parts of RDF representation like Figure 4.3; how-
ever, it captures how the same constructs (data element Person and value field lastName)
are related to OWL. The mapping can also be observed in examples Listing 4.2 and List-
ing 4.3. In this case, the use of xsd:string as rdfs:range for the value field is decided
based on the mapping in Table 4.2.

Figure 4.4: Example of OWL graph for NS model

4.3 Transformation Execution

With the defined mapping for the bi-directional transformation between NS and RDF,
and handled input and output representation, the central part that actually executes the
transformation rules based on the mapping remains. It defines how to turn an input model
(RDF or NS) to a corresponding output model (RDF or NS) using the mapping. The
described execution may have various practical implementations, as discussed in the next
sections.

4.3.1 Building URIs

When creating RDF graphs (and OWL), the nodes that are resources need to have URI
assigned. That is, of course, different from the models in NS where there are other means
for the identification of the elements and their parts. As visible from Listing 4.1, there is
no direct unique identifier of every construct in a component. The constructs are identified
by their names, which are unique in a specific scope inside a component. For example,
there cannot be two data elements of the same name within a single component or two

86



4.3. Transformation Execution

Listing 4.3: Value field RDF projection

@prefix example: <https://purl.org/nsgo4cm/example#> .

@prefix ns: <https://owl.stars-end.org/nsgo4cm/elements#> .

@prefix nsx: <https://owl.stars-end.org/nsgo4cm/nsx#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

ns-example:Person-lastName

a ns:Field , ns:ValueField , owl:DatatypeProperty ;

rdfs:domain example:Person ;

rdfs:range xsd:string ;

ns:Field-dataElement example:Person ;

ns:Field-fieldType "VALUE_FIELD" ;

ns:Field-isInfoField true ;

ns:Field-isListField false ;

ns:Field-name "lastName" ;

ns:Field-valueField example:Person-lastName ;

nsx:dataRef "example::Person::lastName" .

fields with the same name in a single data element. The use of blank nodes would prevent
us from uniform processing of constructs and cross-referencing. Therefore, URI must be
composed using the names and context.

The schema for building URIs is explained in Figure 4.5. First, URI of a construct
starts with a prefix that can be specified using the component options or entered as a
transformation parameter. Then the name of the component is appended, which is itself
always URI-safe string (cannot contain illegal characters). We designed the component
name to be part of the URL path instead of the fragment because we form a single ontology
per component and then it may use its own RDF prefix. Finally, the fragment (after the #
symbol) contains the context and name of the construct composed by using the so-called
DataRef (as shown also in Listing 4.3).

Figure 4.5: URI scheme for NS-RDF transformation

The composition of the construct URIs is only important for the NS to RDF/OWL
part of the transformation. For the opposite direction, URIs are just used from the input
RDF data to query the graph and compose the corresponding NS model – the schema of

87



4. Transformation between NS Elements and RDF/OWL

URIs is irrelevant for this part. The use of names and context turned out to be the best
possible solution with the current NS metamodel during our design cycle when we tried
several other approaches, for instance, generating random identifiers or storing identifiers
in component, data, field, and other options.

In an ideal case, URIs should use arbitrary identifiers for the NS constructs (such as
UUIDs) that every construct in NS has assigned. The use of names and contexts in URIs
causes issues when a construct is being renamed. For example, if we rename Customer to
Client and the semantics of the construct stays the same, its URI should preferably also
remain unchanged. That is not currently achievable unless we limit the transformation
to enhanced models with pre-generated identifiers, which is too limiting concerning our
requirements and objectives. Therefore, we propose such an extension to the NS metamodel
as a potential future enhancement.

4.3.2 NS to RDF

With the ability to create a URI for every construct in the NS models, the next step is
to provide knowledge about every such resource in the form of constructing triples. As
shown in Figure 4.3, the types (e.g. ns:DataElement) and corresponding predicates (e.g.
ns:DataElement-name) used to capture information about a resource are based on the
NS metamodel. Thus, in order to transform an NS model to RDF, all its parts must be
traversed and, depending on the type, triples must be added. For each type of constructs
(represented as a data element in the NS metamodel), the predicates will differ depending
on the value and the link fields in the NS metamodel.

The traversal must “visit” each construct in the input NS model exactly once; however,
the order is irrelevant (by the nature of RDF triples). The procedure of a single visit
is described by Algorithm 4.1. Despite the possibility of arbitrary order, we present the
construction in logical order – first introduce a resource with a type and then provide
additional statements based on value and link fields (respectively, datatype and object
properties). Finally, child entities are traversed recursively. The algorithm should start at
the level of a single component. Then, it will traverse different types of elements; for data
elements, it will traverse all fields, and so on (as a flooding algorithm).

Algorithm 4.1 is finite as there cannot appear a loop in constructs provided by the
getChildren function (which would cause infinite recursion over the visit procedure) and
since all functions and procedures called are finite. Both the memory and time complexity
are bound to the size of the input model. Because each construct will be visited exactly
once (ensured by the getChildren function based on the NS metamodel), the complexity
is O(N) where N is the size of the input model (counting all constructs defined using the
NS metamodel). There is no ambiguity, and the algorithm is deterministic.

The function buildURI is described in the previous subsection; for a given instance of an
NS metamodel construct, it returns a corresponding URI. The insert procedure adds a new
triple (in square brackets) to a given RDF model. Finally, we use several “get” predicates
that are trivial (usually extraction of attributes and potentially a simple transformation).
As the described algorithm is generic (i.e. for any type of construct based on the NS

88



4.3. Transformation Execution

Algorithm 4.1 NS-RDF transformation traversal

1: procedure visit⟨T ⟩(RDF model M , construct c)
2: r ← buildURI(c)
3: t ← buildURI(T )
4: insert(M , [r, rdf:type, t])
5: for f ∈ getV alueF ields(T ) do
6: p ← buildURI(f)
7: insert(M , [r, p, getLiteral(c, f)])
8: end for
9: for f ∈ getLinkF ields(T ) do
10: t ← buildURI(getTargetType(f))
11: p ← buildURI(f)
12: if isCollection(f) then
13: for e ∈ getItems(c, f) do
14: o ← buildURI(e)
15: insert(M , [r, p, o])
16: end for
17: else
18: e ← getItem(c, f)
19: o ← buildURI(e)
20: insert(M , [r, p, o])
21: end if
22: end for
23: appendix⟨T ⟩(M , c) ▷ additional steps (e.g. OWL)
24: for x ∈ getChildren(c) do
25: visit(M , x)
26: end for
27: end procedure

metamodel), it is expected that implementation of this algorithm will use polymorphism,
and the visit procedure will be adjusted to a specific type (e.g. for data elements, for
value fields, and others).

By applying the visit procedure on a whole component, all information will be trans-
formed into RDF – making it a serialisation equivalent to the XML serialisation in terms
of stored data. It is ensured by traversing according to the already mentioned (implicit)
NS metametamodel. Naturally, the procedure can also be used on the NS metamodel itself
(metacircularity).

4.3.3 NS to OWL

In addition to the previously described NS-to-RDF transformation, the mappings with
OWL described in Table 4.1 (together with the value types in Table 4.2) should be used

89



4. Transformation between NS Elements and RDF/OWL

for the transformation. We design this as an optional extra step where for some constructs
of the NS (meta)metamodel OWL triples are added to the resulting RDF model (or graph).

Algorithm 4.2 shows the additional “visit” step for a data element. First, it states that
the resource (identified by URI of the data element) is OWL class with a standard label.
Then, based on its value, calculated, and link fields are created corresponding properties
related to the class. In all of these properties, as the domain is used again, the URI of the
data element.

Algorithm 4.2 NS-RDF additional OWL steps for data element

1: procedure createClassDE(RDF model M , Data Element de)
2: r ← buildURI(de)
3: insert(M , [r, rdf:type, owl:Class])
4: insert(M , [r, rdfs:label, getNameLiteral(de)])
5: for f ∈ getV alueF ields(de) do
6: createPropertyVF(M , de, f) ▷ described below
7: end for
8: for f ∈ getCalculatedF ields(de) do
9: createPropertyCF(M , de, f) ▷ similar to VF
10: end for
11: for f ∈ getLinkF ields(de) do
12: createPropertyLF(M , de, f) ▷ similar to VF
13: end for
14: end procedure

Algorithm 4.2 is finite and deterministic as there is always a finite number of all types
of fields and as all called functions and procedures are finite. Furthermore, the total
complexity is O(n) where n is the number of fields of the data element. Procedures created
for other constructs have the same properties except complexity, for example Algorithm 4.3
has complexity O(1) (all called procedures and functions also have O(1)).

As an example, we provide Algorithm 4.3 that shows how straightforward it is to trans-
form fields into the OWL representation. For the value and calculated fields, the first
step is to recognise the corresponding type based on Table 4.2. Then, a datatype prop-
erty is created with label, domain, and range. Additional statements can be added in
the same way, for instance, to support multiplicity or other details related to properties.
For link fields, the target data element URI must be built instead of resolving value type.
Moreover, for link fields, the algorithm also tries to look up the opposite link field (form-
ing a bi-directional relationship between two data elements) in order to capture it using
owl:inverseOf.

A similar algorithm (in principle) is used for the components. However, there it is sig-
nificantly more straightforward as it implements only the first three rows of the mapping
in Table 4.1 (ontology definition, metadata, and imports). The essential part of that map-
ping is the identification of the component version that becomes a version of the ontology.

90



4.3. Transformation Execution

Algorithm 4.3 NS-RDF additional OWL steps for value field

1: procedure createPropertyVF(RDF model M , Data Element de, Value Field f)
2: d ← buildURI(de)
3: r ← buildURI(f)
4: t ← valueType(getV alueF ieldType(f)) ▷ type mapping
5: insert(M , [r, rdf:type, owl:DatatypeProperty])
6: insert(M , [r, rdfs:label, getNameLiteral(f)])
7: insert(M , [r, rdfs:domain, d])
8: insert(M , [r, rdfs:range, t])
9: end procedure

That can be further used to maintain consistency between different representations of the
(semantically) same models.

The separation from NS-to-RDF further supports evolvability as it is a manifestation
of the separations of concerns principle. Whenever the mapping to OWL constructs is
extended (e.g. due to new version of OWL or changes in the NS metamodel), the change
impact is limited to the concern and construct-related procedure. Moreover, the procedure
can be used independently on the NS-to-RDF transformation if only OWL is the desired
output (and not a full RDF representation of an NS model).

4.3.4 RDF to NS

The reverse transformation queries the input RDF model and constructs components with
their parts from the retrieved data. It still traverses the component tree recursively. The
only difference is that it must use URIs of the constructs and query the details of the
provided RDF model instead of direct extraction from the NS model with known and
stable structure. The structure in the RDF model is given only by the NS metamodel
ontology; however, that is not enforced. By default, the algorithm tries to extract as much
as possible based on the ontology. Then, an optional validation step may check whether
some information is missing.

Algorithm 4.4 shows the steps in which a construct i of type T is queried and constructed
using URI r. Instead of a procedure, we use a function in this case as it must return the
newly (re-)constructed construct to be added in its parent. First, it initialises the construct
instance (in object-oriented programming, create an object). Then, it sets attribute values
from extracted value field literals (e.g. that a data element has name Person). Then,
relations to other constructs are queried and added to the construct instance. Here, the
recursion occurs to traverse and prepare the child constructs.

The complexity of Algorithm 4.4 depends highly on the query function (used from the
RDF library) which is expected to be O(logN). Then, it works recursively in a similar
way to Algorithm 4.1 – if there are no loops, the algorithm is finite and the complexity is
O(N logN).

91



4. Transformation between NS Elements and RDF/OWL

Algorithm 4.4 RDF-NS backwards transformation traversal

1: function visit⟨T ⟩(RDF model M , URI r)
2: i ← createNew(T )
3: for f ∈ getV alueF ields(T ) do
4: p ← buildURI(f)
5: v ← query(M , [r, p, ])
6: setV alue(i, f, v)
7: end for
8: for f ∈ getLinkF ields(T ) do
9: p ← buildURI(f)
10: if isCollection(f) then
11: objects ← query(M , [r, p, ])
12: for o ∈ objects do
13: c = visit(M , o)
14: addRelated(i, f, c)
15: end for
16: else
17: o ← query(M , [r, p, ])
18: c ← visit(M , o)
19: setRelated(i, f, c)
20: end if
21: end for
22: validate(i) ▷ optional validation procedure
23: return i
24: end function

To initiate the algorithm, all component URIs must be first queried from the input RDF
model and then the visit function is called on each of them. The complete component
tree is then returned as a result. The optional validation procedure is expected to report
potential errors or warnings in any way (based on implementation, e.g. log messages or
raising exceptions). The final component tree can be then serialised to XML when needed.

4.3.5 OWL to NS

The transformation from OWL to NS is not covered by-design by this partial artefact.
Still, it is crucial to mention here that such a transformation is by-design supported by the
overall solution. As explained above, the RDF to NS only queries the individuals based
on the NS metamodel OWL ontology. Thus, it ignores the additional OWL triples added
during the NS to OWL procedure.

Indeed, some knowledge could also be extracted from that, and at least partial NS
model could be composed (e.g. using classes, datatype, and object properties). Although
that is not within the scope of our designed NS-RDF/OWL bi-directional transformation,

92



4.4. Transformation Tool Implementation

it is within the scope of the overall gateway ontology solution. It will be possible to define
a mapping between OWL and NS where OWL will be used just as a metamodel of a
modelling language. Then, the underlying OWL ontology can be transformed just like any
other conceptual model.

This relation also shows the closeness of ontologies and conceptual models as already
mentioned in Chapter 2 (our knowledge base). Moreover, since OWL offers only very
generic constructs for expressing ontologies (or models), it is just as well possible to use
any upper ontology in addition, for instance, the already presented gUFO [133]. Again, a
mapping between gUFO and NS would be needed; then the transformation on RDF level
would be executed and the NS model would be produced (and vice versa).

4.4 Transformation Tool Implementation

The transformation design, together with its mapping, is applicable for manual transfor-
mation, i.e. writing RDF while reading the NS model. However, with the size of the NS
models and the expected frequency of transformation execution, a tool to implement the
transformation is crucial. It also eliminates potential human-made errors and inconsisten-
cies.

The implementation also evolves over time, since it was first developed as a proof of
concept [A.7]. Then, we make the tool evolve by incorporating the NS expansion [A.10].
However, the design cycle for this artefact further iterated to improve its features in relation
to the requirements (Section 3.1).

4.4.1 Traditional Prototype

The initial proof of concept, or prototype, of the transformation tool, has been implemented
in Java (with respect to NR5 and NR7). This enables the use of the existing libraries for
NS models (de-)serialisation and manipulation. On the other hand, to work with RDF and
OWL in Java code, Apache Jena [155] has been selected for its broad applicability and
features, including ontology modelling support.

It uses the well-known visitor pattern – for each NS metamodel element (as shown in
Figure 4.6). Two types of visitors were created, one for each direction. The first type of
visitor realises the mapping from NS to RDF with possible additional OWL statements
based on Algorithm 4.1. The other one queries RDF to add a specific NS construct in
the NS model based on Algorithm 4.4. In both cases, it traversed the whole model; for
example, visiting a data element, it subsequently visited all its fields.

The main issue with the prototype turned out to be the evolvability (NR1). Although
the designed RDF representation of NS models is direct and only the additional construct
(e.g. from OWL) cannot be directly derived from an NS model, it was hard-coded directly
in the visitors, as shown in Listing 4.4 (despite the use of inheritance and generics). A
change in the NS metamodel would result in updating the used NS libraries. Then, all

93



4. Transformation between NS Elements and RDF/OWL

TransformationRunner

ns2rdf(InputDir, OutputFile)
rdf2ns(InputFile, OutputDir)

DataElementTree

mId: Long
mName: String
...

T

...

TreeToRdfVisitor<T>

constructor(OntModel, UriBuilder)
project(T, URI)
+generic helpers

DataElementTreeToRdf

constructor(OntModel, UriBuilder)
project(DataElementTree, URI)
+specific helpers

ComponentTreeToRdf

constructor(OntModel, UriBuilder)
project(ComponentTree, URI)
+specific helpers

«use» «use»

«accept»

«accept»

Figure 4.6: Fragment of NS-RDF prototype design

changes would need to be resolved manually in the code of visitors (e.g. a new link between
elements or removed deprecated attribute).

Still, the prototype provided the necessary experience with NS to RDF/OWL transfor-
mation used for improved implementation. It also allowed creating RDF/OWL represen-
tation of the NS metamodel to work on the design of the gateway ontology.

4.4.2 Expanded Transformation Tool

After proving that the design is implementable and leads to the desired bi-directional
transformation, we focused on the evolvability of the realisation. In the next design cycle
iteration, the tool was re-designed to expand as an NS application. All the parts related
to an NS (meta)model can be directly expanded. The NS-RDF mapping is designed as 1:1
with rules to compose identifiers and navigate a model.

We designed three expanders (code templates and mappings) that are used to generate
metamodel-related classes for TNS→RDF :

◦ VocabularyExpander = An expander for a vocabulary class per each component.
A vocabulary class contains static constants for all URI of data elements (OWL
classes) and fields (OWL properties). It separated the concern of building URIs, and
all other parts of the tool use it as a single source of truth when a URI is needed.
For example, instead of synthesising a string https://.../elements#DataElement

it uses a reference Elements.DataElement.

◦ TreeToRdfExpander = An expander for classes that accepts a tree projection, adds
new statements according to the mapping to the RDF graph and handles the propa-
gation to related tree projections as described by Algorithm 4.1. For example, for a

94



4.4. Transformation Tool Implementation

Listing 4.4: Example of data element to ontology model transformation

public class DataElementTreeToRdf implements TreeToRdfVisitor<DataElementTree> {

public DataElementTreeToRdf(OntModel model, UriResolver uriResolver) {

// ...

}

@Override

public Individual project(DataElementTree dataElementTree, URI parentURI) {

URI dataElementURI = uriResolver.uriFor(parentURI, dataElementTree.getName());

// Individual

Individual individual = model.createIndividual(dataElementURI, NS.DataElement);

individual.addProperty(NS.DataElement_name, dataElementTree.getName());

// ... other properties

// DataElement-dataOptions link field

DataOptionTreeToOwl dataOptionTreeToOwl = new DataOptionTreeToOwl(model,

uriResolver);↪→
ArrayList<RDFNode> dataOptionNodes = new ArrayList<>();

for (DataOptionTree dataOption : dataElementTree.getDataOptions()) {

dataOptionNodes.add(dataOptionTreeToOwl.transform(dataOption, dataElementURI));

}

individual.addProperty(NS.DataElement_dataOptions,

model.createList(dataOptionNodes));↪→
// ... other relations

// NS-OWL

OwlClass owlClass = model.createClass(dataElementURI);

owlClass.setSuperClass(OWL2.Thing);

owlClass.addProperty(RDF.type, NS.DataElement);

owlClass.addProperty(RDFS.label, dataElementTree.getName());

// ... fields as properties

return individual;

}

}

data element, it can accept an instance of DataElementTree, add it together with all
of its properties to the RDF graph, and propagate the visit to fields, data projections,
and others of the data element.

◦ RdfToTreeExpander = An expander for classes that accept a graph and a resource
of the entity for which it was expanded. Based on Algorithm 4.4, it queries the
RDF graph and extracts all the information to create a tree projection for the entity.

95



4. Transformation between NS Elements and RDF/OWL

Then it again handles the propagation to related entities (using object relations).
For example, for a data element, it can accept a resource that is RDF representation
of a data element, queries the given RDF graph for all information, builds a tree
projection, and propagates the visiting to fields, data projections, and other resources
related to the data element.

BaseRdfToTree

constructor(ProjectionContext)

+ helper methods

BaseTreeToRdf

constructor(ProjectionContext)

+ helper methods

UriBuilder

buildUri(Construct): URI

«Insertions»
ApplicationInstanceTreeToRdf

«Insertions»
ComponentTreeToRdf

«Insertions»
DataElementTreeToRdf

ComponentTreeBuilder

build(Ontology): ComponentTree

TransformationRunner

ns2rdf(InputDir, OutputFile)
rdf2ns(InputFile, OutputDir)

ProjectionContext

rdfModel: OntModel
config: ConfigurationOptions

ComponentOntologyBuilder

build(ComponentTree): Ontology

«Expanded»
[Component]Vocabulary

«Expanded»
[Construct]RdfToTree

constructor(ProjectionContext)
project(Resource): Construct

«Expanded»
[Construct]TreeToRdf

constructor(ProjectionContext)
project(Construct): Resource

«extends»

«use»«use»

11 1

«use»«use»

1 1

Figure 4.7: Simplified diagram of classes in expanded NS-RDF tool

Several classes must be maintained separately in the expanded application as there is no
reason to expand them (they are not coupled with the metamodel), as shown in Figure 4.7.
These are mainly utility classes that handle: (de)serialisation of RDF and Tree projections,
hold RDF projection context that is passed upon visiting resources, or constants such as
the URI prefix. The function and the design of these classes remained almost the same as
in the traditional prototype; the only difference is the access to the generated classes.

The OWL mapping and TNS→OWL is not part of the expanded code, but it is designed
as a harvested additional code. That promotes the evolvability of the solution as creating
OWL is desired for the NS Elements metamodel, but for other custom NS metamodels, this
might not be the case. Moreover, in expanders, it would need some additional conditions
or change the NS Elements metamodel to capture this particular behaviour using options
(e.g. data option for the data element, that it should be turned into OWL class). The
OWL mapping can be managed in the expanded application and harvested using standard
NS development workflow and tooling.

For both the expanders and the expanded application, we also designed and imple-
mented a set of tests. The expander test consists of input NS models and desired results
(classes). Tests for the expanded application use a similar idea of integration testing. There
are prepared input NS models and RDF/OWL and expected outputs. The test cases are
always focused on a specific construct, for example, that a data element is transformed

96



4.4. Transformation Tool Implementation

into an OWL class or that a resource of the value field is transformed into a tree projection
of the value field related to the correct data element.

4.4.3 Transformation Verification Procedure

As we designed the transformation as bi-directional and implemented a tool for execut-
ing the transformation on input NS models or OWL ontologies (based on the direction),
the verification and testing information loss can be done using a cycle as shown in Fig-
ure 4.8. The verification approach is similar to the work done by Zedlitz for UML-OWL
transformation [156].

As input, we have an NS model mA confirming to NS Elements metamodel. By
transforming it, we get a RDF data set rA with OWL ontology oA, that is, (rA, oA) =
TNS→RDF/OWL(mA). By using rA as an input to reverse the direction of transformation,
we get mB = TRDF→NS(rA). We need to evaluate the equivalence of mA and mB. The
exact same principle can be applied for the opposite direction with an input RDF dataset
rA being first transformed to mA and then to rB.

mA
?≡ TRDF→NS

(
r
(
TNS→RDF/OWL(mA)

))
(4.3)

The semantic equivalence of two NS models (and two RDF datasets) means that
they describe the same (static) semantics – carry the same information but the structure
may differ (e.g. names of fields). However, our transformation is designed to follow the
structure and even the naming. The models should be equivalent in a way that their seri-
alisation (if formatted and ordered consistently) should be equal on the level of characters:

xml(mA)
?
= xml

(
TRDF→NS

(
r
(
TNS→RDF/OWL(mA)

)))
(4.4)

Figure 4.8: Verification of NS-RDF/OWL bi-directional transformation

97



4. Transformation between NS Elements and RDF/OWL

4.5 Design Cycle of NS-RDF/OWL Transformation

Initially, we designed to capture NS models only as OWL ontologies, i.e. as hierarchies
of classes with data and object properties. However, the loss of information was too
significant and NS models that would be created purely according to the mapping from
OWL ontologies would require additional manual adjustments in NS tooling to expand
software systems. In the next iteration, we used the OWL and added the RDF encoding of
all information related to the OWL of the metamodel. That design improvement eliminated
information loss and also added versatility in terms of custom metamodels.

To verify the mapping with practical use cases in NS (meta)models, we implemented
a transformation tool – first as a traditional prototype and then as a semi-expanded NS
application. The design of the expanded tool has proven its advantages in terms of evolv-
ability. Still, the bottom-up approach turned also shown its value as the Visitor pattern
and general algorithm for traversal and model building used in the traditional prototype
has remained unchanged (just mostly moved into expanders).

We also considered designing a direct expansion of RDF/OWL from NS models by
having code templates that follow our mappings NS-RDF and NS-OWL. That design
would allow only one-way transformation, and we would still need to expand a tool for the
other direction. Having a single tool for both directions of the transformation promotes
consistency (e.g. the tool is ensured to be expanded using one NS metamodel).

As a final step, we used the bi-directionality of the transformation together with the
expanded tool to test and verify the mapping and its implementation. For all tested NS
models, the transformation has been lossless. Nevertheless, the expanders and the tool are
prepared for future metamodel changes and further improvements when needed.

4.6 Summary of NS-RDF/OWL Transformation

This chapter describes the mapping between Normalized Systems models (including its
metamodel) and semantic triples using RDF and OWL. It is used as the essential part of
the NS-RDF/OWL bi-directional transformation design (lays foundation for FR1–FR4).
We also had to deal with the input and output model representations to design a fully
executable transformation. The input model is read recursively during the transformation,
and the output model is built based on the mapping according to the algorithms presented.

We verified and evaluated the design of the transformation using implementation. First,
we implemented a prototype using the visitor pattern to realise the algorithm in object-
oriented programming. Then, we switched the implementation to a partially expanded NS
application, where all metamodel-related components are expanded. It directly promotes
the evolvability of the transformation tool (FR5, NR1, and NR2). The tool is included
in Appendix A. Finally, the verification procedure for bi-directionality of the transforma-
tion has been proposed and used. The solution is compliant with the development stack
requirement (NR5), is documented (NR6), and multi-platform NR7.

98



4.6. Summary of NS-RDF/OWL Transformation

In our overall design, the bi-directional transformation is used to relate the intermediary
plane with the NS plane in both directions. It allows us to easily shift the NS metamodel
to RDF/OWL for mapping other conceptual modelling languages. The conceptual models
are then mapped to RDF/OWL using the NS metamodel OWL constructs. This allows
using the transformation in the reversed direction – to transform NS models from RDF
to NS compatible format. The bi-directionality of the transformation is essential to check
and ensure consistency between models (FR6).

99





Chapter 5

Using RDF/OWL to Represent and
Integrate Conceptual Models

“The purpose of information is not
knowledge. It is being able to take the
right action.”

Peter Drucker

The previous chapter described the design for the transformation between the Gateway
plane and the Normalized Systems (NS) plane. This chapter approaches the Gateway
plane from the opposite direction and explains the transformations between conceptual
modelling languages and RDF/OWL. The goal is to shift various conceptual models into
a common and machine-understandable language for mapping and transformation to NS
(and vice versa).

We describe the design of capture models made in different conceptual modelling lan-
guages (as well as their metamodels) in Resource Description Framework (RDF) and Web
Ontology Language (OWL) with a focus on the key aspects and more complex constructs.
We also clarify the possibilities allowed in terms of semantic integration (RO1), as well as
modularity and evolvability (RO3).

The chapter is based on our previous design of Ontology for Conceptual Model Integra-
tion [A.5], mapping of UFO-B to process modelling languages [A.6], review of UML-OWL
transformation [A.8], design of OntoBORM [A.13], and other existing work summarised as
our knowledge base in Chapter 2.

101



5. Using RDF/OWL to Represent and Integrate Conceptual Models

5.1 Dealing with Heterogeneity in Conceptual

Modelling with RDF/OWL

In Chapter 2, we briefly described several conceptual modelling languages of three main
kinds: process, structural, and fact. Even methodologies and languages support combi-
nations of those kinds; for example, DEMO combines process and fact modelling. The
heterogeneity is a necessity, as it is required to take different aspects into account and
capture them in a different level of detail for various purposes.

On the other hand, this heterogeneity raises questions related to knowledge integration
between different types of models. For example, how can an ORM fact Customer be related
to an UML class Customer and to a BORM participant Customer? One of our objectives
(namely RO1) is to allow semantic integration by capturing the relations between modelling
languages in a machine-understandable way for automated processing.

The issue of heterogeneity goes beyond the semantics of modelling languages. Despite
attempts to unify modelling (UML, UML Profiles, MOF) and formats for their serialisation
(XMI), many modelling languages use their own (meta)metamodels and formats. That
blocks interoperability and simple processing. By encoding the knowledge of conceptual
models using the same mechanism, the interoperability issues caused by the heterogeneity
in conceptual modelling can be mitigated.

5.1.1 Syntactic Heterogeneity

Conceptual modelling languages (as other languages) define their syntax and semantics.
For example, UML uses a specific rectangular shape for a class in a class diagram with a
specific meaning. Naturally, different languages use different symbols to represent concepts,
possibly applying cognitive sciences or simply stressing differences or similarities between
concepts. The first issue with syntactic heterogeneity appears with the need to integrate
models that use different languages, but have the same (or similar) symbols representing
different concepts, or vice versa (different shapes for the same concepts).

Another issue is related to a model serialisation, i.e. how a model is stored (using
symbols to represent a model). Again, for various purposes, different forms are suitable,
e.g. for humans, a diagram, tables, or structured text with highlighting is suitable, whereas,
for computer processing, a text or binary file is necessary (when not considering techniques
such as OCR). Typically, the form of a model for humans can be created from a file using a
CASE tool. However, not all languages have such tooling support. In addition, languages
do not have a suitable file format defined as part of the language specification (as a syntax
for computer processing).

The absence of a serialisation format for computer use motivates potential language
adopters (in terms of tooling) to devise their own serialisation based on a specific need,
such as processing efficiency, library support for parsing, or re-use of existing formats.
Thus, the tools use different formats to represent the same models, as interoperability is
not considered. Even with XMI, tools may use different XMI profile based on their internal

102



5.1. Dealing with Heterogeneity in Conceptual Modelling with RDF/OWL

needs. Those who then need to process such models need to treat each format (and the
internal profile or schema) differently. For example, a thesis on searching in (ontological)
Unified Modeling Language (UML) conceptual models [157] clearly demonstrates these
issues, as different parsing and processing must be implemented for formats coming from
various CASE tools.

5.1.2 Semantic Heterogeneity

The semantic heterogeneity of conceptual modelling languages allows one to focus on dif-
ferent aspects and at a different level of detail. Although it is also related to syntactic
heterogeneity, the differences on the semantic level make the languages unique and usable
for specific use cases. However, it leads to the need for semantic integration (e.g. our
previous example with the concept of Customer in different models, thus with different
semantics).

Having multiple conceptual models that describe different aspects (through their se-
mantics) gives an opportunity to capture the knowledge more precisely and create a more
complete view. The semantic integration is done using the overlaps between the semantics
of different modelling languages and capturing the same concept using them. In this sense,
semantic heterogeneity is a good feature. On the other hand, it creates a place for the ex-
plained syntactic heterogeneity, which prevents capturing and representing the “merged”
knowledge efficiently, i.e. relating or merging the symbols of modelling languages.

5.1.3 Modelling Language Specifications

The syntax and semantics of a formal modelling language are defined in its specification.
It creates (intentionally or incidentally) a metamodel for the conceptual models. Tradi-
tionally, the specification is in the form of a human-readable document, e.g. specification
of UML [52] or Business Process Model and Notation (BPMN) [158]. However, some are
mainly described in a set of scientific articles, for instance, in the case of Business Object
Relationship Modelling (BORM) or OntoUML, which makes it harder to use and refer
to a specific language version. In the case of OntoUML, we also contributed to a unified
and evolvable specification in the form of web-based documentation driven by machine-
actionable descriptors [A.2].

The human-readable specification is important for people (e.g. business or software an-
alysts) to understand the syntax and semantics and use it properly. But for automated pro-
cessing, such as transformations and mapping specifications. Both the mentioned UML [52]
and BPMN [158] are accompanied by a set of machine-readable attachments that contain
parts of the specifications in formats such as XMI, XSD, or XSLT. Unfortunately, those are
intended for particular use cases and do not encompass the entire specification available in
human-readable form.

103



5. Using RDF/OWL to Represent and Integrate Conceptual Models

5.1.4 Absence of Meta-Circularity

A solid metametamodel is needed to support language specification as a language to spec-
ify the metamodel. Without such a metametamodel, the specification is not formally
supported. The same principle is applicable to the metametamodel, and so on. Thus, meta-
circularity is essential to solve this issue. This is the case for NS [143] and also exhibits
in Meta-Object Facility (MOF) [53]. Again, both human-readable and machine-actionable
forms of the specification are essential to cover both uses by humans and automation using
machines.

5.1.5 Conceptual Model as Semantic Web and Linked Data

To comply with our research objectives and architecture set in Chapter 3, we pursue the
representation of conceptual models (and their metamodels in RDF/OWL as shown in Fig-
ure 5.1). It provides machine-actionability, improves evolvability (by enabling modularity,
versioning, and referencing), and allows semantic integration. These properties come from
the original intentions of RDF/OWL. As described in Chapter 2, the Semantic Web focuses
on a representation of knowledge in a machine-actionable way. The formation of relations
between knowledge and creating references across concepts is the domain of Linked Data.

Figure 5.1: Using RDF/OWL to deal with metamodel heterogeneity

The idea of creating OWL ontologies for conceptual modelling languages and repre-
senting models in RDF for interoperability and analysis or inference exists as long as OWL
itself. There is a variety of existing work for the main conceptual modelling languages.

104



5.2. Conceptual Modelling Ontologies for NS Gateway

Our contribution is to revisit the existing work, adjust and update it for our use case,
and create the ways of RDF/OWL representation for other modelling languages where no
previous work is done.

5.2 Conceptual Modelling Ontologies for NS

Gateway

In the following sections of this chapter, we present the ontologies of the selected con-
ceptual modelling language to support RDF/OWL representation of conceptual models.
The selected languages reflect our research goals, which are to cover modelling, structural
modelling, and fact modelling representatives. I The complete ontologies, including its doc-
umentation, are part of Appendix A. To support the explanations, we also provide brief
examples. Again, complete examples are included as part of the ontologies documentation.

In the scope of this thesis, manual transformation from various conceptual model rep-
resentations to RDF/OWL is intended. However, it does not place any obstacles to the
implementation of automatic transformation. The main challenge would be to cover differ-
ent formats of different languages and computer-aided software engineering (CASE) tools
as the heterogeneity is significant. We do not expect any new research questions emerging
from the implementation of such transformation mechanisms between formats that repre-
sent the same knowledge. Moreover, our ontologies are designed based on the language
specifications or its defined subsets, so the mappings for transformation will be straight-
forward – one-to-one mapping. It may even be a bijective mapping, unless the tool adds
custom concepts not included in the specification.

5.3 UML Models in RDF/OWL

UML is a widely used and well-known modelling language; there are already existing
methods and captured ideas on transforming UML models to OWL ontologies (and back).
These methods focus mainly on UML Class Diagrams. We review the main approaches
to UML-OWL transformation [A.8]. We identified the QVT-based method by Zedlitz et
al. [156] as the most complete and elaborated, including the bi-directionality. Other of the
reviewed methods also had exciting ideas, such as using XSLT or mathematically defined
transformations. However, none of the methods is ready for use to transform Class (and
Activity) Diagrams to RDF/OWL with their metamodels captured in OWL.

5.3.1 Motivation for UML in RDF/OWL

Our need is to be able to capture a UML model as RDF with additional OWL triples in
a similar way as we have for NS-OWL described in the previous chapter. For example,
a UML class Customer should be captured in RDF as an individual of type uml:Class

(including its required properties, such as name), and in the additional OWL, it should

105



5. Using RDF/OWL to Represent and Integrate Conceptual Models

state that it is also of type owl:Class. As a suitable UML ontology that would allow
capturing at least UML Class and Activity Diagrams to RDF/OWL does not yet exist, we
need to design and create it.

Our goal is not to cover the entire UML metamodel but to allow for the capture of
conceptual models made in UML Class and Activity Diagrams (as the principal diagrams
used in conceptual modelling) in RDF/OWL for their transformation to and from NS
models. UML State Machine Diagram is also widely used as a child diagram for classes
from a Class Diagram. Therefore, our ontology of the UML 2.5 metamodel is focused only
on the constructs relevant to conceptual modelling. However, the ontology can be extended
in the future or even replaced by a complete UML metamodel ontology that will also serve
other purposes. During our work, the review [A.8] of existing UML-OWL transformation
is a valuable source of information for mappings.

5.3.2 UML Ontology for Transformation Design

To allow UML models to be captured in interoperable RDF, we first design the ontology.
As explained, we need to support three types of diagrams from UML that are essential for
conceptual modelling. UML is about the notation, i.e. graphical representation, whereas
in RDF, only the semantics matter. These two facts are the cornerstones for our UML
ontology design. It can be split into three interconnected parts related to Class, State Ma-
chine, and Activity Diagrams. It contains only crucial constructs to capture the semantics
of conceptual models made in these types of diagrams; other properties related to their
representation, implementation, or connection to other UML diagrams are intentionally
omitted.

For the ontology, we use UML specification version 2.5.1 (the current version). Having
a single ontology for multiple UML diagrams eliminates the need to maintain its metadata
and compatibility with versions. It also allows for the integration of the models while
encoding them in RDF directly. For example, it is expected that a class will have states
defined for its state machine and may participate in some process.

5.3.3 UML Class Diagram Ontology

To capture in OWL the essential parts of the UML metamodel related to the UML Class
Diagram, we applied the knowledge from the reviewed existing transformations [A.8], var-
ious conceptual models in UML, and also the Ecore metamodel. Class diagrams typically
represent a single package with its classes. The associations can be done even between
classes of different packages. Instead of creating a top-level class for a diagram, our design
uses uml:Package directly.

A package may contain instances of uml:Classifier which is either uml:Class or
uml:DataType. For a class, it is possible to specify associations and attributes. We in-
tentionally do not include operations at this point, as it is not essential for conceptual
modelling, where it is often substituted using derived attributes. A class can be marked
as abstract and may have a specified stereotype.

106



5.3. UML Models in RDF/OWL

For an instance of uml:Attribute it is possible to state the classifier used as a type,
lower and upper bound, default value, and a set of constraints. uml:Association is
more complex, as UML supports N-ary relations, as well as special binary relations, i.e.
uml:BinaryAssociation, uml:Composition, or uml:Aggregation. An association always
has its name. It may also link an association class using uml:hasAssociationClass. An
N-ary association must have more than two association ends; binary has always two.

The design of UML ontology defines uml:AssociationEnd that captures lower and
upper bound together with role name. Moreover, we distinguish navigability by us-
ing sub-classes uml:NavigableAssociationEnd and uml:NotNavigableAssociationEnd

which are disjoint. However, their union does not cover uml:AssociationEnd as UML
allows for unspecified navigability.

The property of relating an end-to-end association to an association is in the most
generic form uml:hasAssociationEnd. Nevertheless, there is the uml:hasOwnedEnd sub-
property that may appear just once of an association. For aggregation (shared aggre-
gation) and composition (composite aggregation), there is always a role related using
uml:hasAggregateEnd.

The uml:Enumeration class represents a special kind of uml:DataType that contains
a set of values represented using uml:EnumLiteral. Each literal has just its name and
optionally also a description. For data types, we include a set of pre-defined individuals.
For example, umlType:String for representing string value and listing compatible XSD
types.

A generalisation between two classes (also known as inheritance or generalisation-
specialisation relation) is in our ontology also represented as a class – uml:Generalisation.
At always has its uml:hasSuperClass and uml:hasSubClass. The reason to require indi-
viduals to represent inheritance in UML models is the possibility of including them in a
generalisation set. The uml:GeneralisationSet allows one to group and name a set of
generalisations and specify constraints such as complete and disjoint.

To abstract the common properties, we use, according to the UML and Ecore meta-
models, the uml:ModelElement and uml:NamedElement superclasses. All of our defined
classes are always subtype of uml:ModelElement and those with uml:hasName use as its
type the uml:NamedElement class.

UML uses class and association stereotypes. Similarly, there are constraints for asso-
ciations, association ends, generalisation sets, and attributes. Those create a hierarchy
so, for example, only uml:ClassStereotype can be assigned to a class and not to an
association. Finally, we pre-define individuals for well-known stereotypes and constraints
such as umlStereotype:Interface or umlConstraint:Ordered. UML profiles that use
stereotypes can define individuals in the same way (as will be shown for OntoUML).

5.3.4 UML State Machine Ontology

State Machine Diagrams are typically related to a certain class to express its states and
possible transitions between them. However, UML also allows the creation of a stand-alone
State Machine Diagram. Therefore, our ontology captures a uml:StateMachine that may

107



5. Using RDF/OWL to Represent and Integrate Conceptual Models

be related to a uml:Class. Then, it is possible to have uml:State with special subclasses
for different types of states: Initial, Final, History, Synchronisation, Exit, and Entry. Then,
there is uml:Transition for the process flow.

As State Machine Diagrams also allow branching and parallel flows, the ontology con-
tains uml:Choice and uml:ForkJoin. Together with uml:State they are subclasses of
uml:TransitableElement – elements that can be a source or target of a transition. Fi-
nally, a state machine can be used again in another state machine for modularity. It is
directly possible as an inner state machine must again have initial and final states, typically
entry and exit states.

5.3.5 UML Activity Diagram Ontology

There are various behavioural modelling diagrams in UML, but as we explained, the Ac-
tivity Diagram is the most commonly used and suitable for conceptual modelling. In
our design, a single diagram represents an instance of uml:Process that contains its
uml:ProcessElement instances. A process may use several partitions representing different
participants using uml:Partition. Again, a partition may contain uml:ProcessElement

instances, here is the object property uml:hasProcessElement instances transitive.

An instance of uml:Activity allows us to contain actions, objects, and control nodes.
Moreover, activity may have certain parameters with name and type, similar to the pre-
viously explained uml:Attribute. For actions, there are various types of actions captures
using subclasses of uml:Action, e.g. uml:TimeAction, that may be used to specify period
or wait time. If an activity is uml:StructuredActivity, it may again contain elements
using the transitive property uml:hasProcessElement.

There are also distinguished different types of control nodes: initial, final, decision,
merge, and fork-join. Between activities, actions, and control nodes can be established an
instance of uml:ControlFlow using object properties uml:flowStartsIn for the source
node and uml:flowEndsIn for the target node. It is possible to give a name to a flow and
a state condition.

UML Activity Diagram allows uml:SendEvent and uml:Receive events to be used in a
control flow but also using the special uml:InterruptFlow. Finally, the designed ontology
also supports the use of uml:Object in the flow by relating it to uml:objectFlow. An
object flow must always have an object as a source or target. The object is naturally
related to a class and optionally to its state.

5.3.6 UML in RDF Example

The ontology that covers the UML Class, State Machine, and Activity Diagrams enables
us to encode the models as individuals in RDF. However, it is expected that at the model
level, the individuals will additionally be owl:Class. For example, uml:Customer will be
an instance of uml:Class and of owl:Class. We present a brief example of individuals
linked across the three types of diagrams in Listing 5.3.

108



5.3. UML Models in RDF/OWL

Listing 5.1: UML example in RDF

@prefix uml: <https://purl.org/nsgo4cm/cm-ontology/uml#> .

@prefix umlConstraint: <https://purl.org/nsgo4cm/cm-ontology/uml/constraints#> .

@prefix umlType: <https://purl.org/nsgo4cm/cm-ontology/uml/types#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix : <http://example.com/model/uml#> .

:Customer a uml:Class, owl:Class ;

rdfs:label "Customer" ;

uml:hasAttribute [

a uml:Attribute ;

rdfs:label "name" ;

uml:dataType umlType:String ;

uml:lowerBound 1 ;

uml:upperBound 1 ;

] , [

a uml:Attribute ;

rdfs:label "e-mail address" ;

uml:dataType umlType:String ;

uml:lowerBound 1 ;

uml:upperBound 1 ;

uml:hasConstraint umlConstraint:unique;

] ;

uml:hasStateMachine :CustomerSTM ;

uml:participatesIn :CustomerPartition .

:CustomerSTM a uml:StateMachine . # (...states and transitions)

:CustomerPartition a uml:Partition . # (...activities and flow)

5.3.7 Ecore as UML Subset

Ecore metamodel is de-facto subset of UML [129]. In addition, we have already been work-
ing on the mapping between Ecore and NS directly [A.12]. We can define the Ecore ontology
as a subset of our UML ontology with different handling of associations. In Ecore ontol-
ogy, we first map directly matching classes and properties using owl:equivalentClass

and owl:equivalentProperty. For example, there is a statement for ecore:Classifier
to express its relationship to uml:Classifier. It captures the relation between the UML
and Ecore ontologies, but does not limit them to having different features.

The main difference is in associations. Ecore deals with them using reference fields.
Therefore, instead of having corresponding classes for the uml:Association hierarchy,
there is ecore:EReference that is closer to an end of association but in the other direction.
It still points to the target classifier with name, lower, and upper bound, but the opposite
direction is just optionally captured using ecore:inverseReferenceOf. Ecore also does

109



5. Using RDF/OWL to Represent and Integrate Conceptual Models

not have the concepts of stereotypes, constraints, and generalisation sets. Instead, it has
the concept of annotations that allow providing additional information to model elements.

By having both ontologies for UML and Ecore, it is possible to create models that
combine the two metamodels, as shown in Listing 5.2. This also allows one to start
with a simpler Ecore model and transform it to UML later. The only issue that needs a
transformation procedure is related to the associations (and references) and annotations.

Listing 5.2: Ecore example with UML in RDF

@prefix ecore: <https://purl.org/nsgo4cm/cm-ontology/ecore#> .

@prefix uml: <https://purl.org/nsgo4cm/cm-ontology/uml#> .

@prefix umlConstraint: <https://purl.org/nsgo4cm/cm-ontology/uml/constraints#> .

@prefix umlType: <https://purl.org/nsgo4cm/cm-ontology/uml/types#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix : <http://example.com/model/uml#> .

:Customer a ecore:Class, uml:Class, owl:Class ;

rdfs:label "Customer" ;

ecore:hasAttribute [ # Ecore attribute with annotations

a ecore:Attribute ;

rdfs:label "name" ;

ecore:dataType xsd:string ;

ecore:lowerBound 1 ;

ecore:upperBound 1 ;

ecore:hasAnnotation [

a ecore:Annotation ;

ecore:annotationSource "Example" ;

ecore:annotationDetail [

ecore:annotationKey "hint" ;

ecore:annotationValue "Enter first and last name" ;

] ;

] ;

] ;

uml:hasAttribute [ # UML attribute with constraint

a uml:Attribute ;

rdfs:label "e-mail address" ;

uml:dataType umlType:String ;

uml:lowerBound 1 ;

uml:upperBound 1 ;

uml:hasConstraint umlConstraint:unique;

] .

110



5.4. OntoUML Models in RDF/OWL

5.4 OntoUML Models in RDF/OWL

OntoUML as a UML profile that extends the UML Class Diagram with various stereo-
types from the Unified Foundational Ontology (UFO) can be captured using our ontology
described in the previous section. It can be done using custom stereotypes for classes (e.g.
Kind, Relator, or Phase) and associations (e.g. material, mediation, or memberOf). How-
ever, to support it directly, we define the UML profile for OntoUML at the OWL level by
creating special named individuals from the uml:Stereotype subclasses. This approach
applies the same principles as the OntoUML UML profile only defines UML stereotypes
with corresponding names to UFO.

5.4.1 OntoUML as UML Profile in RDF

As shown in Listing 5.3, UML models based on class diagrams enhanced with OntoUML
stereotypes. The actual semantics of the stereotypes are captured only as a description
of the individuals defined in our ontouml: ontology. Therefore, there are no restrictions
directly for the RDF data; for example, a class with the Category (non-sortal) stereotype
can be captured as a subtype of a class with the Kind (sortal) stereotype, which is against
the rules of UFO. However, the RDF/OWL representation of OntoUML as a UML profile
enables one to define such constraints using Shapes Constraint Language (SHACL) shapes
or validate through SPARQL Protocol and RDF Query Language (SPARQL) queries.

Listing 5.3: Example of OntoUML as UML profile in RDF

@prefix uml: <https://purl.org/nsgo4cm/cm-ontology/uml#> .

@prefix ontouml: <https://purl.org/nsgo4cm/cm-ontology/uml/ontouml#> .

@prefix umlType: <https://purl.org/nsgo4cm/cm-ontology/uml/types#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix : <http://example.com/model/ontouml#> .

:Customer a uml:Class, owl:Class ;

rdfs:label "Customer" ;

uml:hasAttribute :hasCustomerName ;

uml:hasClassStereotype ontouml:KindStereotype .

:hasCustomerName a uml:Attribute, owl:DatatypeProperty ;

rdfs:label "name" ;

rdfs:domain :Customer ; # can be derived from uml:hasAttribute

uml:dataType umlType:String ;

rdfs:range xsd:string ; # can be derived from uml:dataType

uml:lowerBound 1 ;

uml:upperBound 1 .

111



5. Using RDF/OWL to Represent and Integrate Conceptual Models

The advantage of this OntoUML RDF representation is its simplicity and the direct
use of UML constructs. It allows straightforward semantic integration with State Machine
Diagrams and Activity Diagrams captured using our OWL ontology for UML. Moreover, it
can further be used as a serialisation format with better interoperability than a customised
XMI as some tools (e.g. Menthor Editor).

5.4.2 OntoUML in RDF using gUFO

The other option to capture OntoUML models in RDF is the use of the existing OWL
ontology called gUFO [133]. In Listing 5.4, the same example is shown as for the previous
method. Instead of creating individuals based on the UML ontology and assigning the
defined stereotypes, individuals use UFO entity types directly. For example, to create
an entity of type Kind, instead of using uml:Class with the stereotype ontouml:Kind,
gufo:Kind is used.

Listing 5.4: Example of OntoUML in RDF using gUFO

@prefix gufo: <http://purl.org/nemo/gufo#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix : <http://example.com/model/ontouml-gufo#> .

:Customer a owl:Class, gufo:Kind ;

rdfs:subClassOf gufo:Object ;

rdfs:label "Customer" .

:hasCustomerName a owl:DatatypeProperty ;

rdfs:domain :Customer ;

rdfs:range xsd:string .

The gUFO ontology is maintained by the Nemo research group that is behind the
development of UFO and OntoUML. Thus, the main advantage of this approach when
compared to the previous one is the sustainability and re-use of existing ontology. The
ontology also deals with the hierarchy of entity types of UFO, such as sortality and rigidity.
Finally, as it is a “lightweight implementation of UFO suitable for Semantic Web OWL 2
DL applications”, it also includes additional types from UFO-B and UFO-C. We further
investigated the practical possibilities of OntoUML in RDF with gUFO in [A.44].

5.4.3 Integrating OntoUML in RDF

The two approaches presented to capture OntoUML models are not mutually exclusive.
In use cases where both advantages of the approaches are required, RDF for an OntoUML

112



5.5. BPMN Models in RDF/OWL

model can combine them. An example of such a combination is shown in Listing 5.5.
Whereas the gUFO is minimalistic and based on existing OWL constructs, our UML on-
tology allows capturing various (Onto)UML-specific. A single UML class can be directly
associated with entity type from the gUFO. In our example, the Customer class is simulta-
neously a UML class (with Kind stereotype) and Kind (from gUFO). Similarly, it would be
done for other constructs captured in both ontologies, for example, associations. However,
attributes are not subjected to the gUFO; those are captured as in Listing 5.3.

Listing 5.5: OntoUML in RDF as UML profile combined with gUFO

@prefix gufo: <http://purl.org/nemo/gufo#> .

@prefix uml: <https://purl.org/nsgo4cm/cm-ontology/uml#> .

@prefix ontouml: <https://purl.org/nsgo4cm/cm-ontology/uml/ontouml#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix : <http://example.com/model/ontouml-combined#> .

:Customer a uml:Class, gufo:Kind, owl:Class ;

rdfs:subClassOf gufo:Object ;

rdfs:label "Customer" ;

uml:hasAttribute :hasCustomerName ;

uml:hasClassStereotype ontouml:KindStereotype .

5.5 BPMN Models in RDF/OWL

BPMN is widely used to model processes in the enterprise environment. The notation is
highly affected by business analysis and also the orchestration aspects. Regarding the three
levels of modelling in BPMN, conceptual modelling focuses on the first two (descriptive
and analytical). The third (executable) level is related to transformation to BPEL and
orchestration, e.g. tool-specific gateways. Our ontology needs to focus on the essential con-
structs of conceptual modelling and selected universal constructs to describe the concepts
for execution.

As BPMN is well-known and widely used with good tooling support, we used pre-
vious works as a knowledge base for our design. Similarly to the reviewed methods for
UML-to-OWL, there is a method by Kchaou et al. [131] that proposes BPMN-to-OWL
transformation. Sanfilippo, Borgo, and Masolo [159] provide an ontological analysis of
BPMN in which the semantics of events and activities are clarified.

Finally, Natschläger [160] proposes OWL ontology for the full BPMN 2.0 with 260
classes, 178 object properties, and 59 data properties. Unfortunately, some of the con-
structions from that ontology were too complex for our use cases. Nevertheless, it is still
possible to use this ontology and even create a mapping with the one designed by us. We
present an example of such mapping together with the primary differences.

113



5. Using RDF/OWL to Represent and Integrate Conceptual Models

5.5.1 Conceptual Part of BPMN

Our BPMN ontology focuses only on the Collaboration Diagram of BPMN, as it is the main
diagram used for process description. Both Conversation and Choreography Diagrams
represent interactions between participants and pools. We also do not include transactions
and call activities, as those are related to the technical realisation. The reusability of call
activity can be achieved quickly without having a particular type for it.

We need to support all types of tasks, markers, events, flows, and gateways from the
notation constructs for the Collaboration Diagram. Moreover, we also need data elements
that represent the crucial concept of data objects passed during the flow. Groups and text
annotations are omitted from our ontology, as such documentation-related constructs are
handled differently in RDF.

5.5.2 BPMN Ontology

The top-level class in our BPMN ontology is the bpmn:Collaboration with name, de-
scription, and pools. There is a difference between bpmn:WhiteBoxPool that must have
swimlanes and bpmn:BlackBoxPool that must not have swimlanes but allows message ex-
change directly. Each bpmn:Swimlane then contains model elements that are activities,
events, gateways, data elements, and flows. The principle of transitivity for subprocesses
is identical to the one explained for the UML Activity Diagram.

All activities (instances of bpmn:Activity) may have associated some of the predefined
bpmn:Marker individuals. The use of a subprocess marker requires one to attach a process
flow. Our ontology uses only one type of activity, which is bpmn:Task. However, for
each type of task, there is a subclass, for instance bpmn:SendTask or bpmn:ServiceTask.
Similarly, subclasses are used to distinguish different types of bpmn:Gateway.

A more complex hierarchy is designed for bpmn:Event where there are three orthogonal
trees of subclasses. The first is to deal with specialised types, for example bpmn:ErrorEvent
or bpmn:MessageEvent. The second is about its use, for example bpmn:StartEvent. The
third is to express the behaviour, for example bpmn:NonInteruptingEvent. An event
instance may then use a combination of these subclasses. The minimal one uses just
bpmn:StartEvent, bpmn:IntermediateEvent, or bpmn:EndEvent. In that case, it is an
untyped event with standard behaviour – in the BPMN diagram expressed as an empty
circle.

For data elements, we use bpmn:DataObject with subclasses bpmn:DataCollection,
bpmn:DataInput, and bpmn:DataOutput. Then, there is also bpmn:DataStore. The in-
stances of these classes can be associated with activities and processes via an instance of
bpmn:DataAssociation. Similarly, bpmn:MessageFlow is also designed as a class in our
ontology and related flow with message events, message tasks, or black box pools used as
sources and targ. A black box pool that can be used for both.

The last thing to define is bpmn:SequenceFlow, again captured as a class. BPMN allows
default and conditional flows, but these are related to gateways. For example, an exclusive
gateway may use an outgoing sequence flow by default by using the specialised property

114



5.6. BORM Models in RDF/OWL

bpmn:hasDefaultOutgoingFlow instead of the generic property bpmn:hasOutgoingFlow.
However, a condition must be attached to a bpmn:SequenceFlow directly for conditional
flows.

5.5.3 BPMN Models in RDF

With our BPMN, we can encode collaboration diagrams from the BPMN models in RDF.
Listing 5.6 shows a part of such a model. As our ontology is limited to the essential
conceptual constructs, additional information from BPMN is omitted. Compared to the use
of the complete BPMN 2.0 Ontology [160], the RDF representation is more straightforward
and shorter.

Listing 5.6 shows a simple example of part of a BPMN model captured in RDF. There
is a single collaboration where a customer places an order validated and then approved
or denied by the system. It shows how pools and swimlanes are encoded, how events and
activities are related to a swimlane, and how sequence and message flows are used. When
the gateway and subprocesses are incorporated into a model, the use of flows is identical
(bpmn:elementNonInteruptingEventOf does not bind elements to a swimlane but to an
activity, and flows are from or to gateways).

5.5.4 Relating to BPMN 2.0 Ontology

In Listing 5.7, we demonstrate how our ontology is assigned to the complete BPMN 2.0
ontology presented by Natschläger [160]. Mappings that use marking-equivalent classes
and properties are added directly to our BPMN ontology. As such, it allows for the
extension and simple shifting of data (BPMN models) from one ontology to another or for
the definition using both ontologies simultaneously.

5.6 BORM Models in RDF/OWL

Unlike the previously mentioned languages in the previous three sections, there was no
previous related work for the BORM – process modelling method. Although the BORM
method is not widely used, it has its advantages (as described in Section 2.1.1.7), and we
observed several similarities with modelling using flow and task elements in Normalized
Systems.

Another motivation to work on the BORM method is the absence of a unified model
serialisation format. The tools for BORM modelling (Craft.CASE, OpenPonk, and legacy
OpenCABE) use their own formats for storing whole projects. The only way how to
switch between tools is to model everything again. Custom analytics over models (e.g.
evaluating the difficulty of a process for a particular participant) are also hindered by
non-understandable and un-documented formats.

The goal was to design and demonstrate the ontology for BORM to represent the
Business Architecture (BA) and Objects Relations (OR) models in RDF. The work also

115



5. Using RDF/OWL to Represent and Integrate Conceptual Models

Listing 5.6: BPMN model fragment in RDF

@prefix bpmn: <https://purl.org/nsgo4cm/cm-ontology/bpmn#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix : <http://example.com/model/bpmn#> .

:c1 a bpmn:Collaboration ;

rdfs:label "Customer places order" .

:Customer a bpmn:Participant, owl:Class ;

rdfs:label "Customer" .

:CustomerLane a bpmn:BlackBoxPool ;

bpmn:participant :Customer .

:EShop a bpmn:WhiteBoxPool ;

rdfs:label "E-shop system" .

:Website a bpmn:Swimlane ;

rdfs:label "E-shop website" ;

:orderStart a bpmn:StartEvent, bpmn:MessageEvent ;

bpmn:elementOf :Website .

:flowReceiveOrder a bpmn:MessageFlow ;

bpmn:flowSource :Customer ;

bpmn:flowTarget :orderStart .

:validateOrder a bpmn:Activity ;

rdfs:label "Validate order" ;

bpmn:elementOf :Website;

:flowStart a bpmn:SequenceFlow ;

bpmn:flowSource :orderStart ;

bpmn:flowTarget :validateOrder .

includes examples for semantic integration as well as for using other technologies related
to RDF such as SPARQL or SHACL. [A.13]

5.6.1 OntoBORM – Ontology for BORM

The BORM Ontology is designed based on BORM metamodel for the OR and BA dia-
grams. It is a single ontology (as shown in Figure 5.2) that describes both metamodels for
OR and BA diagrams, as those are closely related and represent the core part of modelling
in BORM. It cannot use only Resource Description Framework Schema (RDFS) as OWL

116



5.6. BORM Models in RDF/OWL

Listing 5.7: Example of mapping to BPMN 2.0 Ontology

@prefix bpmn: <https://purl.org/nsgo4cm/cm-ontology/bpmn#> .

@prefix bpmn20base: <https://www.scch.at/ontologies/bpmn20base.owl#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

bpmn20base:Activity owl:equivalentClass bpmn:Activity .

bpmn20base:SignalEventNonInterrupting owl:equivalentClass [ owl:unionOf

bpmn:IntermediateEvent,

bpmn:SignalEvent,

bpmn:NonInteruptingEvent

] .

is used for metamodelling support. The suggested prefix for BORM ontology is borm:.
The naming is taken directly from BORM metamodel; changes and additional elements
are explicitly mentioned further.

The ontology is annotated with its own metadata for usability and documentation
purposes. Aside from the basic OWL metadata (owl:versionInfo, dct:contributor, or
dct:modified), all of the classes and properties specified by the ontology have its own
rdfs:label, rdfs:comment, and skos:definition. These textual literal are currently in
English; however, more languages can be added at any time. The metadata are aligned for
the tool WIDOCO [97].

Some of the classes are designed to be instantiated by domain-specific entities. For ex-
ample, it allows org:SalesPerson to be of type borm:Person. Then, an instance of a sales-
person can be a particular human being, for example, John to be of type org:SalesPerson
(which is also owl:Class). The same principles may be applied to all of our classes. There
are three abstraction levels:

1. Metamodel level = BORM ontology in OWL that defines how to define processes.

2. Model level = BORM model in RDF+OWL that defines processes in an organisation
in accordance with BORM ontology.

3. Instance level = BORM model in RDF that captures instances of processes (e.g. who
and when participated in the process).

Our target in this work is the first two levels. However, the third level is fully supported
and can help organisations track processes, simulate, and verify them.

5.6.2 Representing BORM BA in RDF

The business architecture part of the ontology contains four core classes:

117



5. Using RDF/OWL to Represent and Integrate Conceptual Models

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass ofSubclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

ofCommunication

ofRole

hasElement

extendsScenario

sourceState
functional

transitsTo

isFollowedBySc...

followsScenario

hasResult

ofParticipant

endsWith

usesScenario

ofProcess

targetActivity
functional

hasState

ofTransition

targetState
functional

transitsFrom

sourceActivity
functional

hasAction

hasScenario

ofFunction

hasInitiation

startsWith

ofBusiness

hasFunction

(disjoint)

hasActivity

(disjoint)

(disjoint)

transits

transitsThrough
functional

hasProcess

ofScenario

hasDataFlow

hasOutputFlow
hasInputFlow

Function

Communication

System

Action

Entity

DataFlow

Role
Business

Result

External Function

Transition

Constraint

Initiation

RoleElement

RoleMixin

Activity

Process

Internal Function

Scenario

Participant

State

Person

Organization

Figure 5.2: Visualisation of OntoBORM (using WebVOWL)

◦ borm:Business is not directly defined in the BORM method. However, we need a
single top-level entity that bounds others. It represents a modelled business organi-
sation.

◦ borm:Function represents a business function. It has two subclasses based on classifi-
cation of functions in BORM: borm:InternalFunction and borm:ExternalFunction
(disjoint, union).

◦ borm:Scenario supports a certain function a business and serves as a container for
related processes.

◦ borm:Process represents a single object-relation diagram, i.e. description of a busi-
ness process that is part of a certain scenario.

All of these classes require standard rdfs:label for a human-readable name. Use of
rdfs:comment is recommended for a brief explanation. There are three object properties
for relating entities borm:hasFunction, borm:hasScenario, and borm:hasProcess (in the
ontology with the corresponding domain and range). As inverse relations, borm:ofBusiness,
borm:ofFunction, and borm:ofScenario are defined. The semantics of the properties of

118



5.6. BORM Models in RDF/OWL

BORM are different from generic part-of taxonomies, which is the reason for not using
existing as it is done for labels. For expressing the relations between scenarios, the cor-
responding object properties are included: borm:usesScenario, borm:extendsScenario,
and borm:followsScenario.

We demonstrate the use of OntoBORM and model serialisation using the example E-
Shop case from the Craft.CASE tool [161]. Listing 5.8 shows a fragment of RDF for the
BA model.

Listing 5.8: BORM BA example in RDF

@prefix borm: <https://purl.org/nsgo4cm/cm-ontology/borm#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix : <http://example.com/model/borm#> .

:myEShop a borm:Business ;

rdfs:label "My E-Shop Example" ;

borm:hasFunction :f1, :f2, :f3, :f4 ;

:f1 a borm:InternalFunction ;

rdfs:label "Sell Food" ;

rdfs:comment "..." .

:sce2 a borm:Scenario ;

borm:usesScenario :sce1 ;

borm:followedByScenario :sce3 ;

borm:ofFunction :fun1 ;

borm:hasIntitiation :init21 ;

rdfs:label "schedule delivery" ;

rdfs:comment "..." .

5.6.3 Representing BORM OR in RDF

The OR part of the ontology is more complex than the business architecture. First, there
are five classes to express participants in processes and their roles (flows):

◦ borm:Participant represents a type of stakeholder that may participate in pro-
cesses. There are three subclasses (disjoint, non-union) inspired by OpenPonk and
OpenCABE: borm:Person, borm:System, borm:Organization.

◦ borm:Role is used to relate a participant with a process, i.e. a participant has a role
in a process. This could be seen as an object property; however, we need to specify
additional details and have a reference to distinguish the different roles of the same
participant in multiple processes.

119



5. Using RDF/OWL to Represent and Integrate Conceptual Models

◦ borm:State represents a state within a role. There are two special subclasses for the
start and end state.

◦ borm:Activity represents an activity within a role that serves for the transition
between two different states (which are within the same role).

◦ borm:Transition is used to express the transition between two states via activity.
It is not done through an object relation for the same reasons as role – there is
additional information required for its instances.

Again, well-known rdfs:label is required and rdfs:comment are recommended for
human-readability. The union of classes borm:State and borm:Activity forms the class
borm:RoleElement which has the property borm:ofRole. A role uses object properties
borm:startsWith and borm:endsWith with an corresponding state subclass instances. A
transition can be related to states using borm:sourceState and borm:targetState, and
with an activity by borm:transitsThrough. Then, a participant is related to its role by
borm:hasRole, and to its role in the process by borm:ofProcess. The last part is to
capture relations between roles and related constraints:

◦ borm:Communication represents a links between activities of different roles within
the same process. It has two subclasses (union and disjoint) for synchronous and
asynchronous communication.

◦ borm:DataFlow can be attached to a communication. It is intended to be used by
domain-specific class; e.g. Order can be borm:DataFlow.

◦ borm:Constraint can be used for both communication and transition and specifies
a condition as in BORM that results in two subclasses (disjoint, union). It should
be described by text, but it can be related to domain-specific entity similarly to data
flow.

A communication is related to activities by object properties borm:sourceActivity

and borm:targetActivity. To distinguish the directionality of data flows, there are two
sub-properties of borm:hasDataFlow – borm:hasInputFlow and borm:hasOutputFlow.
The object property borm:ofCommunication forms a link between a communication con-
straint and a communication, and correspondingly for transitions (borm:ofTransition).
To support sub-process (more specifically a process flow within a state), a borm:State is
a subclass of that abstracts the common properties, i.e. the ability to contain a process
flow (having role elements, starting and ending states).

Again, we demonstrate the use of OntoBORM and model serialisation using a selected
OR from the example E-Shop case from the Craft.CASE; fragment of the example is shown
in Listing 5.8 shows a fragment of RDF for the BA model.

120



5.6. BORM Models in RDF/OWL

Listing 5.9: BORM OR example in RDF

@prefix borm: <https://purl.org/nsgo4cm/cm-ontology/borm#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix : <http://example.com/model/borm#> .

:ro1 a borm:Role ;

borm:startsWith :st1 ;

borm:endsWith :st4 .

:st1 a borm:StartState ;

borm:ofRole :ro1 .

:act1 a borm:Activity ;

borm:ofRole :ro1 ;

rdfs:label "opens website" .

:tr1 a borm:Transition ;

borm:sourceState :st1 ;

borm:targetState :st2 ;

borm:transitsThrough :act1 .

:df1 a borm:DataFlow ;

rdfs:label "Login data" .

:co1 a borm:SynchronousCommunication ;

borm:sourceActivity :act1 ;

borm:targetActivity :act4 ;

borm:hasInputFlow :df1 .

5.6.4 BORM Designed for Semantic Integration

We tried to transform a UML Class Diagram to OWL according to [6] and link it with
an overlapping BORM model in RDF/OWL. An example of this approach is shown in
Listing 5.10. Then, we also experimented with additional ontologies. In the integration,
some of the classes from UML were identical to the participants and entities in the data flow
in BORM. This mapping could be done even semi-automatically with the use of natural
language processing (NLP) methods.

The ultimate goal of promoting interoperability for BORM models has been achieved
and demonstrated in the previous section. All entities in the RDF representation of a
BORM model may have identifiers through which can be referenced. These references are
internal; for instance, a participant in multiple processes can be identified as one entity.
However, it can also be external; one may add more statements about an entity, as shown
for participants and particular people. Finally, having BORM in RDF allows various
tooling designs for RDF and OWL.

The semantic interoperability allows creating a complete description of a domain (e.g.

121



5. Using RDF/OWL to Represent and Integrate Conceptual Models

Listing 5.10: Linked BORM model

@prefix borm: <https://purl.org/nsgo4cm/cm-ontology/borm#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix m2: <http://example.com/model/uml#> .

@prefix : <http://example.com/model/borm#> .

:SalesPerson a borm:Person, owl:Class .

<https://orcid.org/0000-0001-7525-9218> a borm:Person, m2:Human, foaf:Person ;

rdfs:label "John Walker" ;

foaf:name "John Walker" ;

m2:firstName "John" ;

m2:lastName "John" ;

borm:hasRole :role01 .

a business organisation) by integrating knowledge captured using different methods and
focusing on various aspects. In this sense, the BORM models can be integrated with struc-
tural information about business and business rules. With the integrated knowledge, the
analysis and optimisation will be more efficient when compared to separated and inconsis-
tent models that need to be managed in different tools.

5.6.5 Using SPARQL and SHACL for BORM

Our contribution in the form of OntoBORM allows to use various of RDF technologies for
BORM models such as SPARQL or SHACL constraints. SPARQL as part of the Semantic
Web stack [162] can be used to efficiently query information from a BORM model in RDF.
A business analyst can have several queries prepared and execute them with different
models. Helpful queries might be queries that count certain elements or patterns in the
model, for example, the number of activities for each participant in all processes, as shown
in Listing 5.11. Also interesting are ASK queries that yield true or false results, for instance,
the number of communications between two participants, as shown in Listing 5.12. It can
be even used to validate the model; a more complex query can ask if it is valid (does not
violate any of the five constraints stated in this paper). DESCRIBE can help to find out
more information about a particular entity in a model, especially if it is linked with other
RDF data. Finally, it can be used for CONSTRUCT new statements from a model.

5.7 ORM Models in RDF/OWL

Object-Role Modeling (ORM), more specifically ORM2, is a representative of fact-based
modelling. It focuses on semantics and treats implementation concerns as irrelevant. All
elementary facts (facts that cannot be further simplified) are captured using relationships,

122



5.7. ORM Models in RDF/OWL

Listing 5.11: SPARQL query to count activities for each participant

# ... PREFIXes

SELECT ?p, ?p_label, (count(distinct ?a) as ?cnt)

WHERE {

?a rdf:type borm:Activity .

?a borm:ofRole ?r .

?r borm:ofParticipant ?p .

?p rdfs:label ?p_label .

} ORDER BY DESC(?cnt)

Listing 5.12: SPARQL query checking communication from p1 towards p2

# ... PREFIXes

ASK {

:p1 borm:hasRole ?r1 .

?r1 borm:hasElement ?e1 .

:p2 borm:hasRole ?r2 .

?r2 borm:hasElement ?e2 .

?c a borm:Communication .

?c borm:sourceActivity ?e1 .

?c borm:targetActivity ?e2 .

}

including relations to attributes. For example, “Customer has name” is a fact modelled
using entities related by a binary predicate. In this sense, the ORM is already close to
RDF.

Although ORM is not as widespread as BPMN or UML, previous works relate ORM
with OWL. Hodrob and Jarrar [132] mapped and designed the transformation of ORM
models into OWL 2 ontologies. They cover 22 out of 29 ORM constructs using SHOIN
description logic and the DogmaModeler tool. The mapping focuses only on transformation
from ORM to OWL, e.g. entities to classes or predicates to properties. It does not maintain
any upper ORM-specific ontology that would be used to describe the ORM model in
RDF/OWL.

Another work by Franconi, Mosca, and Solomakhin [163] also does not propose ORM2
metamodel ontology and deals with mapping on the level of description logic, in this case,
ALCQI description logic. The main goal seems to be the ability to use OWL2 reasoners
(such as HermiT and FaCT++) for ORM2 models. Both works are essential fragments
in our knowledge base; however, we need to design an ORM2 ontology for our use case
similarly to UML, BPMN, and BORM.

123



5. Using RDF/OWL to Represent and Integrate Conceptual Models

5.7.1 ORM2 Ontology

Due to the similarities between OWL2 and RDF, the ontology for our purpose can be very
straightforward. The only complexity can be seen with relation to dealing with predicate
arity and related constraints:

◦ orm2:EntityType represents an entity with a name and optional code. We model
it directly as a subclass of owl:Class. Similarly, the subtype object property
orm2:subtypeOf is a subproperty of rdfs:subClassOf.

◦ orm2:ValueType represents a named value; in other modelling languages, it would
be similar to attributes. In our design, we added an optional relation to a data type.

◦ orm2:ObjectType is a union for entity and value types. It abstracts the common
properties (e.g. name) and also allows us to capture the independence, i.e. that
instances of the type may exist, without being used any roles.

◦ orm2:Predicate represents a relationship between entities and value types with its
name. It contains roles based on the arity; we do not distinguish arity by specific
subtypes, as it can be derived from a number of attached roles. Finally, a set of
constraints may be related to a predicate.

◦ orm2:Role is (optionally named and ordered) a role of an entity or value type in a
predicate. It may also be a subject of a constraint. There is a orm2:MandatoryRole

to specify a simple mandatory role.

◦ orm2:Constraint represents generic constraints and is further specialised in the hi-
erarchy since there are various kinds of constraints in ORM2. For example, some
constraints are related only to a predicate as a whole, others to some of the roles for
a single predicate, and constraints across more predicates. Moreover, there are even
constraints for entity and value types (e.g. to specify enumeration).

An simple example of a particular constraint is orm2:ValueConstraint that can be
used to specify an enumeration of values (e.g. {’Male’,’Female’}) or ranges of values
(e.g. {0..10}), there are two subclasses – orm2:ObjectTypeValueConstraint for entity
and value types, and orm2:RoleValueConstraint for roles. Other constraints related to
a single role, predicate, value type, or entity type, such as object cardinality, internal
frequency, ring and deontic constraints, or internal uniqueness, are solved identically. An-
other category of constraints are those related to multiple predicates, roles, or subtyping
relationships. For instance, there is orm2:JoinSubsetConstraint that relates multiple
roles of different predicates to another predicate.

The last construct to be covered from ORM 2 is the so-called objectification. Our
design allows us to solve this in RDF by having a single resource, that is, orm2:Predicate
and orm2:EntityType at the same time. That exactly matches what objectification from
ORM2 means: “The predicate (fact type) is objectified as an entity type whose instances

124



5.7. ORM Models in RDF/OWL

can play a role.”. With that, all the constructs of ORM2 are successfully captured in our
OWL ontology for ORM models.

5.7.2 ORM2 in RDF Example

Listing 5.13 shows the use of our ORM2 ontology in practice to represent a simple ORM
model in RDF. Customer subtypes an independent entity type Person. Then, we have a
simple value type for e-mail addresses. Finally, a binary predicate relates customer and
e-mail address types. An e-mail must be associated with a customer in this model. Also,
the internal uniqueness constraint is used to form a one-to-many pattern so that a single
customer may have multiple (unique) e-email addresses.

Listing 5.13: ORM2 example model in RDF

@prefix orm2: <https://purl.org/nsgo4cm/cm-ontology/orm2#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix : <http://example.com/model/orm#> .

:Person a orm2:EntityType ;

rdfs:label "Person" ;

orm2:isIndependent true .

:Customer a orm2:EntityType ;

rdfs:label "Customer" ;

orm2:subtypeOf :Person .

:Email a orm2:ValueType ;

rdfs:label "E-mail address" .

:customerEmail a orm2:Predicate ;

rdfs:label "has" .

orm2:hasRoles [

a orm2:Role ;

orm2:roleTarget :Customer ;

] , [

a orm2:MandatoryRole ;

orm2:roleTarget :Email ;

orm2:roleConstraint [

a orm2:InternalUniquenessConstraint;

] ;

] .

125



5. Using RDF/OWL to Represent and Integrate Conceptual Models

5.8 Integrating Knowledge from Conceptual Models

using RDF

Having conceptual models represented in RDF by using well-defined OWL ontologies such
as those proposed by us (but also other existing, e.g. full BPMN 2.0 ontology [160])
enables semantic integration. There are multiple ways to integrate the information from
different conceptual models at the RDF level. Some of them we have already tackled in our
examples in the previous sections. One option is to have a mapping done on the level of
metamodels and upper ontologies; for example, relations (such as equivalence) are defined
between UML and ORM ontology. The mapping between modelling languages is itself
a challenging task. We worked on a mapping between behavioural modelling languages
(namely UML Activity Diagram, BPMN, and BORM) using upper ontology UFO-B [A.6].

To efficiently create a mapping between languages, using an upper ontology as the
“glue” is another option. Based on various conceptual modelling languages, we proposed
a minimal ontology with the essential constructs used in conceptual models [A.5]. The
Ontology for Conceptual Models Integration (OCMI) is an upper ontology focused on the
integration of various conceptual modelling languages, i.e. their metamodels represented
as OWL or RDFS ontologies. It allows them to refer to more generic terms from OCMI
rather than more specific concepts from language metamodels.

Figure 5.3: Cinema and e-Shop models example integration architecture

The other option is to relate various conceptual modelling languages within individuals
representing the combined models. For instance, a customer as an individual in RDF can
be of type uml:Class, orm:EntityType, and bpmn:Pool. It does not require defining any
additional constructs or incorporating an upper ontology designed for integration. As a
result, multiple models may be integrated on some individuals linking the different models,
while still keeping knowledge related to a certain modelling language. For example, the

126



5.9. Modularity and Evolvability of Conceptual Models in RDF/OWL

customer will have some attributes described using the UML ontology, but this information
is not related to the BPMN model. In this way, a representation RDF of integrated models
of the same domain may provide a more complete view that is useful also for model-driven
development purposes. The example in Figure 5.3 shows the concept of integrating models
made using different modelling languages (i.e. ontologies) together with a combination of
concepts to create richer models.

5.9 Modularity and Evolvability of Conceptual

Models in RDF/OWL

In addition to the semantic integration of models captured using different modelling lan-
guages, another advantage is the modularity and evolvability of models in RDF/OWL.
A single domain model can be split into multiple files and namespaces, just as various
modelling languages allow diagrams and packages to be used. It gives absolute freedom
in structuring the model – from having all knowledge about a complex domain in a single
namespace to having a namespace for each fragment composed from just a few entities
linked using imports. Such an approach is also shown in Figure 5.3 where two models are
integrated and combined together to form a new extended model.

The evolvability of conceptual models is also promoted as not all CASE/CABE tools
support model versioning and versioning of underlying project serialisation (XML with
model data, metadata, data about graphical representation, and others) is not suitable
for version control. With RDF/OWL and a well-structured project, versioning is directly
supported and verified by practice. When a model is divided into modules by concerns,
those can be versioned separately. As a result, similarly to Normalized Systems, instead
of maintaining a product of all module versions, it is required to maintain only a sum of
versions of the modules.

Figure 5.4: Evolution example for UML models

The ontologies for conceptual modelling languages may evolve over time, just as the
specifications of their metamodels. To avoid unexpected breaking changes, the models

127



5. Using RDF/OWL to Represent and Integrate Conceptual Models

encoded in RDF should use a version-specific prefix instead of redirecting to the latest
version. Then, the ontologies for conceptual modelling should use the well-known semantic
versioning, deprecations, and changelogs, to promote simple adoption of updates. Such an
update of a model to a newer version of conceptual modelling ontology (e.g. a newer
language metamodel) means changing the prefixed Uniform Resource Identifier (URI) for
the ontology and making the necessary changes. With this approach, it is also possible
to have a single RDF with a conceptual model that complies with multiple versions of
the ontology. The example in Figure 5.4 shows the concept of evolvability of models and
metamodels captured in RDF/OWL, its versioning, and branching.

5.10 Design Cycle of Representing Conceptual

Models in RDF/OWL

In this chapter, we describe several ontologies that we designed and created. Each is itself
a designed artefact according to Design Science Research (DSR) and has been done using
design cycle iterations. For evaluation purposes, we used existing models and encoded
them in RDF using ontologies. Then, we minimised the loss of conceptually necessary
knowledge from the models. It would not be possible to assess appropriately without
actually creating the OWL ontologies based on design and having models RDF. Again,
the design implementation (in this case, RDF/OWL files – part of the Appendix) turned
out to be valuable for applying DSR. During the cycles, we greatly benefited from the
evolvability aspects mentioned in the previous section.

When the design cycle for individual ontologies stopped, we started to evaluate them
together as an artefact collection to design enhancements for the semantic integration.
Due to the properties of the RDF and OWL technologies for linked data and semantic
integration, we practically just verified that our ontologies allow integration in a straight-
forward and standard way. Moreover, we also worked on mapping of behavioural modelling
languages [A.6] and integration using a more generic ontology for conceptual modelling lan-
guages [A.5].

5.11 Summary of Representing Conceptual Models

in RDF/OWL

In this chapter, we presented how to capture conceptual models in RDF and OWL to
promote their interoperability and transform them using our NS Gateway Ontology for
Conceptual Models. Although we had to develop new custom ontologies for most of the
modelling languages, some were designed according to related work (e.g. UML and BPMN).
We also demonstrated how to incorporate well-maintained ontologies representing meta-
models for our purpose, such as gUFO. Based on our research goals, we prepared the

128



5.11. Summary of Representing Conceptual Models in RDF/OWL

ontology and way of models capturing in RDF for the following types of conceptual mod-
elling and languages:

◦ structural modelling – UML (Class Diagram), OntoUML/gUFO (UFO-A);

◦ behavioural modelling – UML (Activity Diagram, State Machine Diagram), BPMN,
BORM, gUFO (UFO-B);

◦ fact modelling – ORM.

With various conceptual models captured in RDF, we could also explain how to in-
tegrate them semantically. That fulfils FR4 of our design and thus also the objective
RO1. The possibility of having different types of modelling “shifted” to RDF/OWL (as
listed above) contributes to FR1, FR2, and FR3. We presented our OCMI that defines
very generic concepts shared across different modelling languages in terms of semantic
integration. Finally, we described the modularity and evolvability of the conceptual mod-
els captured in RDF. The designed artefacts are ready for use according to our general
architecture described in Chapter 3.

129





Chapter 6

Transforming between Models using
Gateway Ontology

“The art of programming is the art of
organizing complexity.”

Edsger W. Dijkstra

After introducing the transformation between Normalized Systems (NS) and RDF/OWL
and explaining how to encode conceptual models from various modelling languages in
RDF/OWL, the final part, according to our designed architecture, is the transformation
in the Gateway plane. This chapter first clarifies the general principles and describes the
internal layers of the Gateway Ontology design. Then, it explains the adapters for specific
modelling languages by providing examples concerning the previous chapter.

Finally, it describes the transformation procedures based on the ontological specifica-
tion. We created an implementation for verification purposes of our algorithms, which
is also briefly introduced in this chapter. As several of our designed artefacts have been
again described, their evolution during the design cycles (according to the DSR) is briefly
summarised. The transformation using SPARQL Protocol and RDF Query Language
(SPARQL) is based on our previous work on pattern-based SPARQL transformations [A.11]
and SPARQL mappings in Resource Description Framework (RDF) [A.15].

131



6. Transforming between Models using Gateway Ontology

6.1 Relating NS Elements and Conceptual Models

With the NS-RDF/OWL transformation presented in Chapter 4 and describing how to
represent conceptual models using RDF in Chapter 5, both NS models and conceptual
models can “speak” the same language – RDF. With that, we can proceed to the speci-
fication of mapping to transform knowledge between conceptual models and NS without
dealing with incompatible formats or other syntax-related issues.

A conceptual modelling language is a broad term, and as explained in Chapter 2 and
Chapter 3 modelling in NS can be itself considered as conceptual modelling. The mapping
will state how the constructs of two modelling language metamodels M ′

X are related, while
we take the NS metamodel M ′

NS as one of the mapped. The expected key difference is the
focus on implementation in NS and a variety of aspects close to the real-world in other
conceptual models. We relate the metamodels M ′

X and M ′
NS through a mapping TX→NS

that allows us then to transform or translate the underlying models MX ∈ instM ′
X to the

corresponding NS models MNS ∈ instM ′
NS. Due to the use of RDF for representations

on MX , M
′
X , MNS, and M ′

NS (thus also M ′′
NS), it does not need to deal with a syntactic

transformation, but rather purely semantic. As explained in Chapter 3, there can be T−1X→NS

defined to enable bi-directional transformation (from MNS ∈ instM ′
NS to MX ∈ instM ′

X).
Our way of defining the mappings, i.e. the “glue” between different metamodels and

their compliant models, must be itself evolvable, FAIR, and mainly very flexible. It must
allow specifying simple mappings such as a class in UML corresponds to a data element
in NS, as well as complex mappings of nested patterns and relations. In this section, we
briefly overview how the selected conceptual modelling languages are related to the NS
metamodel – yet on the theoretical level without encoding in our solution. We focus on
the key constructs in the description; complete mappings can be found in Appendix A. It
will serve as a reference for specification in our framework using the Gateway Ontology.
In addition, it provides essential knowledge of the types of mappings needed using the
bottom-up approach.

6.1.1 UML Class Diagram Mapping

As a Unified Modeling Language (UML) class diagram is suitable and widely used for
structural conceptual modelling, the mapping is expected to cover the branch of the NS
metamodel related to data elements. The mapping will also be very similar to our previous
work on mapping and transformations between NS and Ecore [A.12] because the Ecore is
a de-facto UML subset related to the class diagram constructs.

Table 6.1 presents the core of the mapping. The main and most straightforward match
is identified with UML Package and NS Component and UML Class and NS Data Element
(including its basic properties, such as name or description). Despite the fact that UML
uses stereotypes for classes that cannot be directly mapped to data element types. There
are two pre-defined stereotypes, namely enumeration and datatype, that create exceptions
in the mapping of classes. The Enumeration construct is mapped to the Taxonomy Data
Element with name and value fields, as is common in NS models. The Datatype construct

132



6.1. Relating NS Elements and Conceptual Models

Table 6.1: Mapping between UML Class Diagram and NS

UML (Class Diagram) NS Elements

Package Component
Class Data Element
Enumeration (Class) Taxonomy Data Element + Value Fields4

Datatype (Class)1 Value Field Type6

Attribute Value Field
Derived Attribute Calculated Field
Operation1 Calculated Field
Association Link Field(s)2

Aggregation Link Field(s)2 + Data Child
Composition Link Field(s)2 + Data Child
Generalisation Link Fields5

Dependency1 Link Field
Implementation1 Link Field
Association Class Data Element + Link Field(s)3

N-ary Association Data Element + Link Field(s)3

* (all used constructs) Component, Data, or Field Options

1 rare in conceptual models
2 using multiplicity, direction, and role names

3 with every participating data element, “star topology”
4 traditional name and value fields

5 always bi-directional, link field type based on abstract superclass
6 with mapping to common types in NS

is a counterpart to Value Field Type, and we create an extra mapping for a common
datatype with a fallback to string.

For a class, attributes are assigned to value fields, and associations are assigned to link
fields. If an attribute is derived, then it is actually a calculated field. A calculated field is
also used to represent operations; however, the use of operations in UML conceptual models
is relatively rare. The multiplicities of both attributes and associations affect the type of
the mapped field (e.g. if the link field will be many-to-many). For association, direction
and role names also affect if the link field will be on both sides of the relationship and the
field name. The particular types of associations – aggregations and compositions – use the
exact mapping as associations; moreover, data child is added to represent the part-whole
relationship. Similarly, other special relationships, such as generalisation, dependency, or
implementation, are mapped as associations, but with additional field options to keep the
semantics. Suppose that there are more complex associations, e.g. n-ary or association
class. In that case, the association is itself a data element forming a “star topology” since
there are only binary relations in NS.

133



6. Transforming between Models using Gateway Ontology

Finally, the mapping shows the use of a component, a field, and data options to capture
additional semantics that currently do not have a direct counterpart in NS. Due to the
use of keeping consistency through RDF, we could omit that, but the options can be
used for the expansions of NS. For example, with a field option that states that a link
field realises a generalisation relation, an expander can be prototyped to generate the link
differently, according to our inheritance implementation patterns [A.3]. This way enables
such prototyping and eventual adoption of certain constructs from conceptual modelling
languages in NS. Options capture origin of all of the mapped constructs even with a direct
match, e.g. a data element will have a data option that it was originally a UML class. The
same principle is also applied to the other mappings described in this chapter.

The mapping with the UML class diagram allows the transformation of most of the
commonly used constructs in conceptual modelling. For classes and inheritance, we also
considered mapping to a single data element for a hierarchy with data projections per each
class in the hierarchy; however, that would not be desirable in all cases. The user could then
decide on the transformation (if such a user-intervention mechanism is implemented). The
only construct that is often used in conceptual modelling but is not covered are constraints
in general. UML allows to specify constraints (and stereotypes) almost for all constructs
and it can be in form of Object Constraint Language (OCL) expression but also natural
text. The only way to map the constraints to NS is again via options to the affected mapped
construct, e.g. keep a class stereotype as a data option related to the corresponding data
element.

6.1.2 UML Activity Diagram Mapping

UML activity diagrams contain knowledge about processes in a certain domain. When
compared to the possibilities of capturing behaviour in NS, NS is simpler and focuses on
flows of a single data element (with a possible reference to remote tasks). The identification
of relations between process flows in UML and flow elements related to data elements in
NS is essential.

As captured in Table 6.2, each identified process flow (usually an activity diagram
has one flow) is mapped to a flow element; alternatively, multiple flow elements per each
participating entity that is mapped to a data element. The relation to an entity is derived
from swim-lanes (or so-called partitions) and attached objects, possibly with specified
states, using an object flow. Then, all the constructs connectable using the control flow
are mapped to related tasks and states of NS as parts of the corresponding flow element.

Because UML activity diagrams do not have a direct concept of a state that is, on the
other hand, necessary in NS, both a control flow construct is always mapped to both task
and state after execution of the task. The only differences are start/end events and the
decision and fork constructs that are mapped to branching tasks, possibly branching to
more states. However, the actual branching mechanism is performed in implementation
and is not further specified in NS models. Therefore, again the options are used to capture
such additional semantics usable by expanders and implementation (source code) of the
resulting software system.

134



6.1. Relating NS Elements and Conceptual Models

Table 6.2: Mapping between UML Activity Diagram and NS

UML (Activity Diagram) NS Elements

Partition / Swimline Flow Element1

Start Event State
End Event State
Activity / Action Task + State2

Send Task + State2

Receive Task + State2

Decision Branching Task + State(s)
Merge Task + State2

Fork Branching Task + State(s)
Join Task + State2

Object (with State) Flow Element1

Structured Activity / Subprocess decompose
Control Flow Transition
Object Flow -1

Interrupt Flow Failed Transition
* (all used constructs) Options

1 process flow split to NS flows based on the participating entity (data element)
2 subsequent state after executing the task (including intermediary and fail state if

necessary)

The control flow itself is mapped to transitions between task-state patterns in NS.
For interrupt flow, we identified a direct NS counterpart – failed transition that branches
from a failed task to another state than on success. Finally, UML activity diagrams allow
composition (sub-processes) using structured activities. Such composition is not possible
within NS; therefore, such nested processes must be decomposed into the top-level flow
prior to transformation.

6.1.3 UML State Machine Diagram Mapping

When compared to the previous UML activity diagram mapping, the match between the
state machine diagram constructs and NS is significantly better. Just as NS uses flow for
a data element, there might be a state machine for a certain class in UML, i.e. the flow is
bound to its entity exclusively and entirely. That avoids the complexity of transformation
related to checking of to flow (and data element) is a process construct related. Further-
more, even the flow constructs are semantically closer to NS than we have seen in the case
of the activity diagram.

Table 6.3 clearly shows that the mapping is rather straightforward. Each state machine
becomes a flow element. Then every state of a state machine diagram is mapped to a state

135



6. Transforming between Models using Gateway Ontology

Table 6.3: Mapping between UML State Machine Diagram and NS

UML (State Machine) NS Elements

State Machine Flow Element
State State
State Composition decompose
Initial (pseudostate) State
Final (pseudostate) State1

Terminate (pseudostate) Task + State
Fork (pseudostate) Task + State
Choice (pseudostate) Task + State
Join (pseudostate) Task + State
Entry Point (pseudostate) decompose
Exit Point (pseudostate) decompose
Junction (pseudostate) Task + State
History (pseudostate) Task + State + History Data Element2

Transition Task
* (all used constructs) Options

1 implicit if follows directly other pseudostate
2 additional history data element and relate using a link field

of the corresponding flow. The transitions between states are mapped to tasks (as that is
the only way to relate two states in NS flows). As with activity diagrams, any potential
composition done using the state composition and pseudostates “extry point” and “exit
point” must be decomposed into the top-level flow. Then, there are more pseudostates
that are similarly mapped again as for the activity diagram – fork, choice, and join – that
are related to branching tasks. Similarly, as pseudostate “terminate” and “junction” are
expected to have additional implementation (execute some action), those are mapped to
task with state. Finally, the pseudostate “history” is also mapped to task with state, but
also creates a history data element attached to the primary data element of the flow. That
history data element is the container for storing the captured information or snapshot when
the primary data element is in the pseudostate (implemented in the mapped task).

As the mapping for state machine diagram has better coverage than for activity diagram
(due to UML-NS alignment), we can recommend to prefer this type of diagram (if choice
is possible). On the other hand, the alignment is caused by the fact that the state machine
diagram is closer to implementation than the activity diagram in general terms. It is
often used to design a software system, whereas activity diagram is traditionally used for
domain analysis. However, state machine diagram is also an important source of domain
knowledge, e.g. state of order in an e-Commerce domain.

136



6.1. Relating NS Elements and Conceptual Models

Table 6.4: Mapping between UML Class Diagram and NS

OntoUML (UML Profile) NS Elements

Class: Powertype / HOU Taxonomy Data Element
Phase Partition Data State(s) + Value Field
Class: Mode History Data Element + Link Field
Class: Quality Value Field
Association: Formal (nothing)1

Association: Material (nothing)1

Generalization Data Element + Data Projections2

* (UML Class diagram mapping) *

1 derived associations should not form link fields
2 merge hierarchy “up” to identity provider and add data projections for all sortals

6.1.4 OntoUML Mapping

We map OntoUML as a UML profile (not a fragment of the domain ontology specified using
Unified Foundational Ontology (UFO)). The main reason is that our goal is conceptual
modelling languages. Furthermore, this allows us to show reusability across mappings that
is natural for such cases as are UML profiles. Still, it can further serve as a foundation
to define the mapping between UFO and NS. The OntoUML mapping itself is then just a
simple extension to the one we presented for UML class diagram.

The additional mapping and differences (or “overrides”) are captured in Table 6.4). Be-
sides keeping stereotypes of classes and associations encoded in the data and field options,
we adjust the mapping based on these stereotypes from the OntoUML model. For exam-
ple, a power-type or “HOU” (higher-order universal) is mapped to a taxonomy-typed data
element, or phase partitions are mapped to data states. The special constraints defined
by OntoUML, such as essential and inseparable part-whole relationships, are captured
through field options.

Finally, the different notion of generalisation relations in OntoUML is captured by the
use of data projections. Generalisations with non-sortals are just as for UML; however,
we merge a hierarchy of sortals to the single data element (corresponding to the identity
provider class of the sortals hierarchy; there is always exactly one). Then, each subclass has
a corresponding data projection with its fields (through reference fields). The separation
of sortals and non-sortals together with the identity provider enables to use this way of
mapping inheritance that is not possible for plain UML class diagrams.

As explained, the OntoUML mapping provides additional improvements to UML class
diagram mapping. However, most of the stereotypes and constraints given by OntoUML
constructs are mapped to options – would need extensions to expanders for automated
implementation in the corresponding software system. Eventually, when the NS metamodel
is extended to increase the adaptability of such constraints, the mapping could be extended

137



6. Transforming between Models using Gateway Ontology

based on the previous work of Rybola [27]. Alternatively, it can serve as a basis for the
work on expanders, i.e. generating code based on stereotypes and their mapping to source
code.

6.1.5 BPMN Mapping

The mapping of Business Process Model and Notation (BPMN) is again related to tasks
and flows in NS as it is a process modelling language. We can observe certain similarities
with the UML activity diagram mapping as we focus here on the BPMN collaboration
diagram that captures the process flows of potentially multiple participants with possible
branching, related to data objects, or nested process flows. Although conversation and
choreography diagrams may provide additional domain knowledge, we do not cover them
in the mapping, as they are not in our BPMN ontology nor have direct counterparts in the
NS metamodel.

In a collaboration diagram, one or more flow elements may be found based on related
entities (that are mapped to data elements). The relation to an entity is done using white-
box pools and its lanes. Black-box pools, similar to data objects and data stores, are
mapped to just related entities; therefore, a link field should be linked with the corre-
sponding data element(s). As described in Table 6.5, tasks, transactions, and activities
are (as in UML activity diagram) mapped to task and subsequent state. BPMN allows
specifying a type or marker for activities and tasks, e.g. manual task, which is kept as
option for consistency as well as manual task type in NS.

Events (e.g. start timer event or intermediary message event) are also mapped to task
and state; however, the mapping is affected by the event types. For example, a “plain”
event is mapped just to a state, but any message event is mapped to a task (sending or
receiving the message) and subsequent state. If it is also a start message event, then the
mapping also adds the state before the task (as the flow must start with the state in NS).
Gateways, as in UML mapping, are branching tasks with subsequent states. That also
covers the mapping of default and conditional flows related to branching. Both types of
gateways and events are captured as options for possible customisation in code expanders.

The transitions are mapped from normal sequence flows. The subprocesses must be
again decomposed into the top-level flow. If the subprocess is allowed to be executed
multiple times (sequentially or in parallel), a branching pattern with a possible loop must
be added. Finally, the message flow represents communication between tasks of different
data elements (implementation in the code of the affected tasks). Similarly, the sequence
flow crossing boundary of lanes is mapped as communication because each lane is mapped
to a separate data element.

6.1.6 BORM Mapping

Business Object Relationship Modelling (BORM) just as the previous BPMN is a repre-
sentative of behavioural or process modelling and as such we can observe certain similar-
ities between these two. However, the modelling approach is a bit different and, because

138



6.1. Relating NS Elements and Conceptual Models

Table 6.5: Mapping between BPMN and NS

BPMN (Collaboration Diagram) NS Elements

Pool (Black Box) -
Pool (White Box) Flow Element(s)1

Lane Flow Element(s)1

Task / Transaction / Activity Task + State
Task Type / Activity Marker Task Type
Gateway Branching Task + State(s)
Event (Task +) state(s)
Sequence Flow3 Transition
Message Flow Link Field4

Data Store / Object / Association -1

Subprocess (decompose)
* (all used constructs) Options

1 each data element per lane in pool with corresponding flow element
2 based on event type

3 including conditional and default flows
4 ensuring relation for communication

BORM is based on the communicating state machine, it also shares some concepts with
UML state machine diagram with respect to mapping towards NS. Aside from previously
explained Business Architecture (BA) and Objects Relations (OR) models, we included
an extension to BORM that some computer-aided software engineering (CASE) tools (e.g.
Craft.CASE) provide – modelling of classes and attributes. Again, some concepts are
matching with UML class diagrams; however, the BORM extension provides significantly
simplified structural modelling.

The core of the BORM-NS mapping in Table 6.6 shows that just as in the BPMN and
UML activity diagram participants (roles) within a process are mapped to data elements
to which the flow is attached. However, in the case of BORM, there might be system-like
roles that only provide or expose certain functionality as activities without flows. The
data element or the flow element should not be created for that case. The states from
BORM are mapped directly to the states in NS, including the starting and ending states.
Activities between states are called tasks in NS while transitions are also identical. The
exception transition from BORM is mapped to the failed transition. The nested flow that
may be “inside” a state must be decomposed again into the top-level flow.

In BORM, the branching may appear after a state; therefore, it must be mapped to a
branching task with states (again, notice the similarity with previous mappings of process
modelling languages). The actual communication must be solved in the implementation,
as there is no corresponding construct in NS. Still, a relation between data elements rep-
resenting communicating participants must be established. A potential data flow attached

139



6. Transforming between Models using Gateway Ontology

Table 6.6: Mapping between BORM and NS

BORM NS Elements

Participant (Role) Flow Element1

Activity Task
State State
Subprocess (in State) (decompose)
State (with branching) Branching Task + State(s)2

Transition Start Transition
Transition End Transition
Exception Failed Transition
Communication Link Field3

Data Flow Data Element4

Class Data Element4

Variable (in Class) Value/Link Field
* (all used constructs) Options

1 flow element related to corresponding data element, not for system-like participants
2 unlike BORM, NS allows branching from tasks (activities), not from states

3 ensuring relation for communication
4 ensuring existence of container for data passed in communications

to communication also results in a data element. Finally, the appendix contains classes
(data elements) with variables (value and link fields).

After designing this mapping, we can state that BORM is the closest conceptual-
oriented process modelling language to flows and tasks in NS. The main difference lies
in the possibility of communication between roles through their activities (tasks). Also,
the mapping of classes and their variables is more straightforward than UML due to its
simplicity.

6.1.7 ORM Mapping

Object-Role Modeling (ORM) represents fact-based conceptual modelling in our mapping
scenario. Despite the conceptually significant differences between facts and structural
concepts such as classes, we found out that for mapping with NS these notions disappear,
and the mapping is relatively close to mapping with the UML class diagram. If we would
select Entity-Relationship (ER) or Enhanced Entity–Relationship (EER), the mapping
would be identical in the main concepts, which is also given by the close relation of ORM
and ER. Thus, the ORM constructs are mapped to the data element part of the NS
metamodel as shown in Table 6.7.

The entity types of ORM are mapped to the data elements, which is the highest level
of mapped constructs; therefore, a single component must be created for a whole ORM

140



6.1. Relating NS Elements and Conceptual Models

Table 6.7: Mapping between ORM and NS

ORM NS Elements

Entity Type Data Element
Value Type Value Field Type1

Reference Mode (of Entity Type) Value Field
Independent Object Type Data Option
External Object Type Data Option
Unary Fact Type Value Field (boolean flag)
Binary Fact Type (to Value Type) Value Field
Binary Fact Type (to Entity Type) Link Field
N-ary Fact Type (N ¿ 2) Data Element + Link/Value Fields2

Objectification Data Element + Value Field3

Internal Frequency Constraint Link Field Type (of Link Field)
Subtyping Link Field
Subtyping Constraints Link Field Type + Data/Field Options
* (all used constructs) Options

1 with mapping to common types in NS
2 using the same rules as binary fact types for each link in “star topology” (similar to the

UML mapping) 3 source fact must be data element even if binary or unary

model (there are no packages or modules). Then, value types are mapped to value field
types similarly to datatypes in UML – we also provide a mapping of commonly used types.
Although ORM allows distinguishing independent and external types, it is just informative
in the scope of NS and captures in data options.

The core of ORM are fact types. Unary fact types and binary fact types to a value
type are mapped to value fields where unary facts form a boolean flag. Then, binary fact
types to another entity type are link fields where internal frequency constraint affects its
type (e.g. one-to-many or many-to-many). For other n-ary fact types, a data element with
link fields to all joined types is necessary – forming a “star topology” similarly to n-ary
associations in UML. Whenever a fact type is used with objectification, it must be turned
into a data element as well, even if it is just a binary or unary fact type. The subtyping
relation between types is just as a generalisation in UML mapped to the link field with
type and additional options based on related ORM constraints. The complex constraints
of ORM (except multiplicity and uniqueness) do not have direct counterparts among the
NS constructs and are captured using the corresponding data and field options.

6.1.8 Unmatched Constructs and Consistency

As explained for each language mapping, there are certain gaps for both sides, i.e. there
is no direct counterpart in the output metamodel that would allow capturing of specific

141



6. Transforming between Models using Gateway Ontology

knowledge from the input. We used options for the directions towards NS where possible;
however, it is not complete and does not work for the other direction. For example, if
we have a complex NS model with constructs such as data children, trigger or connector
elements, or UI-related attributes of a value field.

The question remains how to capture these unmatched constructs to maintain consis-
tency. On the general level of mapping, we could specify an appendix to the output model
that would encode all the additional knowledge linked to the construct. When using NS,
it is a trivial task since the input model, the output model, and the potential appendix
may be considered as a single set of triples {ti}.

TX→NS ({tX,i}) = {tX,i} ∪ {tNS,j} (6.1)

The set of triples can be extended according to the mappings above for an input model.
All input triples {tX,i} will remain the same; thus, {tNS,j} serves as the complete appendix
to maintain consistency. For example, if a dataset contains UML and transformed NS
models, the NS part can be turned in NS-in-XML, edited, and then plugged back next to
the related UML. To allow full linkage even to the XML representation of an NS model,
the resource URI must be attached to the NS constructs as its option. Then it can be used
to update or check the consistency between the original input model and the NS model
(and vice versa).

T−1X→NS ({tNS,i}) ⊆ {tX,i} (6.2)

{tX,i} ∪ T−1X→NS ({tNS,i}) = {tX,i} ∪ TX←NS ({tNS,i})
?
= TX→NS ({tX,i}) (6.3)

To promote transparency of the operations over triples, a context may be provided
by turning them into quads (named subgraphs). The metadata about a subgraph may
then capture what triples were generated, when, by whom, or with what version of a
transformation tool. As will be explained in more detail and shown with the design of
actual transformation execution, the use of RDF allows maintaining consistency while
allowing evolvability.

The primary part of this dissertation thesis is the design of the Gateway Ontology for
transformations between NS and conceptual models. As outlined in Chapter 3, the term
“Gateway Ontology” indicates that it is a set of concepts to define how conceptual models
can be transformed into NS while keeping track of a possible way back. This section
describes the design of the Gateway Ontology and related features. The actual concepts of
the ontology are further described concerning the transformation execution and mapping
of conceptual languages.

6.1.9 Design and Features

The Gateway Ontology that we design as part of our solution according to the decisions
clarified in Chapter 3 using RDF and Web Ontology Language (OWL). However, the

142



6.1. Relating NS Elements and Conceptual Models

design is not technology-specific and could be implemented with other technologies that
would also allow the representation of NS and various conceptual models. However, the
use of RDF and OWL is sufficient for fulfilling the requirement NR7. The ontology itself
encompasses several concerns:

1. manage interface to the NS modelling via its metamodel,

2. allow to extend the metamodel with concepts from modelling languages to promote
DRYness (NR2 and NR4),

3. provide vocabulary for mapping conceptual modelling languages (and their meta-
models) to the interfaced NS metamodel,

4. enable realisation of mappings based on Section 6.1 without any restriction to mod-
elling type and integration of models (FR1–FR4).

Therefore, we divide these into layers while following the NS design principles to achieve
evolvability (FR5 and NR1). The layered approach for the Gateway Ontology is depicted
in Figure 6.1. Each layer is described in more detail in the subsequent parts of this section.

Figure 6.1: Design of the Gateway Ontology layers and transformation

The essential aspect of the layered Gateway Ontology is the strict separation of layers
and relating them using the exposed “interface”. In terms of RDF, each layer forms its own
dataset with a namespace and is able to version independently of the others. Then, a layer

143



6. Transforming between Models using Gateway Ontology

may import the inner layer(s) to use the provided constructs for defining new. Finally, the
most outer layer where separate mappings of conceptual modelling languages reside uses
the constructs to encode the mapping (e.g. as presented in Section 6.1).

Similarly to splitting the solution into more parts, we applied modularisation yet again.
Just as software systems can be composed of components and then modules and submod-
ules, our framework has module gateway ontology layers. With that, we again achieve the
advantage of sum vs product – each layer is maintained and versioned independently, and
a composition is formed by imports (dependencies). A layer can specify which versions of
the used layers are compatible if needed.

6.2 Gateway Ontology

The entire Gateway Ontology (all its layers) is designed by applying best practices from
ontology engineering, especially with a focus on FAIRness (NR3). Appropriate metadata
are always present in RDF directly, and the design allows the use of persistent unique
identifiers such as pURL or W3ID. The documentation (NR6) can be generated as follows
best practices, new concepts are described directly in RDF in a standard way, e.g. with
rdfs:label or rdfs:comment.

6.2.1 Core Layer

The core layer of the Gateway Ontology is nothing else than RDF/OWL representation of
the NS Elements metamodel created using our NS-RDF/OWL tool introduced in Chap-
ter 4. It provides reference to all the constructs in the NS metamodel both for models
construction (e.g. that construct Person is of type DataElement) and for specification of
mapping with other metamodels (e.g. that Class from UML is mapped to DataElement).
This is the only concern of the core layer; it does not add any additional constructs or
other content to the RDF data.

The version of this layer is always identical to the version of the NS metamodel, i.e.
version of the Elements component. As its name suggests, the core layer does not have any
dependencies or other relations with different layers and parts of the Gateway Ontology.
The only references are well-known vocabularies and ontologies, such as RDF, RDFS,
XSD, or OWL – used via imports in the RDF representation. These are considered static;
however, they can be updated in this layer if necessary without causing any combinational
effect.

Whenever a new version of the NS metamodel, i.e. the Elements component, it released,
a corresponding version of the Gateway Ontology core layer can be directly generated by
the NS-RDF/OWL tool. The version of a component is directly transformed into the
version of the projected ontology and is also used as a version indicator of the core layer.
The ontology must not be changed once generated to maintain consistency. If changes are
needed, those must be done either directly in the Elements component resulting in a new

144



6.2. Gateway Ontology

version (of both the component and the core layer) or in the extensions layer (where it
would also cause a new version).

The core layer does not raise any obstacles in the transformation of different types of
conceptual models or their integration (FR1–FR4). As explained, the extensibility (NR2)
of this layer cannot be done directly, as it must remain a projection of the NS metamodel.
Nevertheless, there is a next layer designed for this very purpose.

6.2.2 Extensions Layer

The extensions layer serves for the definition of additional constructs to the core layer
to reduce the gap between the modelling in NS and the traditional conceptual modelling
languages. With the bottom-up approach, repetitive patterns used in mappings of concep-
tual modelling languages will result in the addition of the corresponding abstraction to the
extensions layer.

For example, a concept of inheritance (generalisation or specialisation relation) is
widespread in structural modelling languages, but also in some other modelling languages.
There is no direct construct for inheritance in NS due to its evolvability issues. The map-
ping of each modelling language that supports inheritance would need to specify how it
should be represented in NS – most typically by composition. However, if we define the
concept of inheritance as a part of the extensions layer, the mappings of such languages can
be simplified. Moreover, we can specify more ways in which inheritance can be represented,
e.g. by following our previous work on inheritance patterns [A.3]. Another candidate for
inclusion in the extensions layer is the list of enumerations that are expected to be mapped
regularly to taxonomy-type data elements.

To be able to relate the additional construct definitions to the NS metamodel, the core
layer must be imported, i.e. used as a dependency, and declare the compatibility. The
transformation layer cannot be imported as that would cause a dependency loop or so-
called circular imports. The problem is then how to specify the mapping of newly defined
constructs to NS. As a solution, our design iterated to the state of equilibrium where the
transformation engine directly supports the constructs in a specific version of the extensions
layer.

We can specify to what constructs it is mapped without the transformations layer but
we can not state how. That is a concern of the tool that executed the transformations. The
same concept is applied to the transformations layer itself. It can define different means
to capture mapping between conceptual modelling languages and NS, but that is just a
description of the execution of the transformation. Moreover, the tool (not necessarily our
reference implementation) can specify which subset of extensions and transformations it
supports. The details of the operations are explained further in the corresponding sections.

As the extensions layer may define new constructs in addition to the imported core layer,
each change in the extensions layer, as well as update of import causing incompatibility,
requires a new version to be created. With that mechanism, evolvability is kept just as
in software systems. The constructs should not be removed, but marked as deprecated
to avoid breaking changes. Similarly, significant changes of existing constructs should

145



6. Transforming between Models using Gateway Ontology

be reconsidered as new constructs. Those are just requirements, as there is no usable
mechanism to enforce it by design in RDF. Finally, the design allows modularising the
layer further if needed. When clusters start appearing in the layer, they may be extracted
and form sublayers that can be used separately and evolve independently. For example, a
subset of constructs is often used for structural modelling languages, but not for others.

The main goal of the extensions layer is to promote DRYness (NR4) and re-usability
(NR3-R) for mappings of conceptual modelling language by enabling extensibility (NR2)
to the core layer. However, the mappings do not have to use any constructs from this layer;
therefore, it also does not limit the types or aspects captured in the conceptual models
(concerning FR1–FR4). It can be changed (FR5) over time without causing combinatorial
effects in the Gateway Ontology.

6.2.3 Transformations Layer

The transformations layer provides a vocabulary for capturing the mappings of conceptual
modelling languages to NS in RDF. It has its foundations in the SPARQL-Based Mapping
Ontology (SBMO) presented in our related work [A.15]. It provides extended expressiveness
compared to predicated mappings of OWL such as owl:sameAs or owl:equivalentClass.
It is also designed for execution that utilises SPARQL by composing CONSTRUCT queries
from the mapping and input data captured in RDF. The constructs in the layer can be
extended again using the bottom-up approach. We expect that to fulfil requirements FR1–
FR4, it will also become sufficient for other modelling languages. Still, it is ready to evolve
over time as all part of our solution.

Despite the focus on composing SPARQL queries to execute the transformation, the
overall design can also support other ways of transforming the models. If someone devises
a different method, the transformations layer can be either extended with required con-
structs specific to the method, or an alternative transformations layer can be introduced.
Nevertheless, the preferred way would be to create an alternative transformation layer (or
sublayer) that contains such method-specific constructs.

This layer is dependent on both extensions and core layers, as it may refer to constructs
defined there for direct mapping to them. It can be seen as a facade to NS exposed to
mappings. Although it has two dependencies that can evolve, the version used on the
extensions layer (eventually its sublayers in the future) limits the versions of the core layer
that can be supported.

The constructs that are defined in the transformations layer may evolve very similarly
to those in the extensions layer. The only difference is the purpose of the content in the
respective layer. Therefore, the same principles for versioning, deprecations, and even sub-
layering apply in this layer too. The version is again crucial for reference (by conceptual
modelling mappers), as well as the tool implementing the transformation based on the
mapping specification in RDF.

The requirements FR1–FR4 are directly addressed by this layer – it enabled one to cap-
ture the mapping for executing the transformation. Furthermore, the constructs should
allow bi-directional transformation for maintaining the consistency (FR5). As the exten-

146



6.2. Gateway Ontology

sions layer, it is expected to be changed over time (FR5 and NR2) and evolvability (NR1)
is still assured by following the NS principles.

6.2.4 Conceptual Modelling Language Mappers

The Gateway Ontology, with its three layers presented above, serves as a vocabulary for
defining a mapping between any metamodel captured as RDFS or OWL ontology (more
generally, it allows us to define a mapping for any patterns in RDF) and the NS metamodel,
i.e. the core layer. We call such a mapping specification defined in terms of the Gateway
Ontology a mapper. When mapping a metamodel of a conceptual modelling language, it
is a conceptual modelling language mapper. In terms of RDF, mapper is a set of quads
(triples with context) that use resources (as subjects, predicates, or objects) from the
Gateway Ontology.

Listing 6.1: Mapping example for a UML classes

@prefix rdfs: <https://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <https://www.w3.org/2002/07/owl#> .

@prefix ns: <https://purl.org/nsgo4cm/gateway-ontology/core#> .

@prefix nsgo-e: <https://purl.org/nsgo4cm/gateway-ontology/extensions#> .

@prefix nsgo-t: <https://purl.org/nsgo4cm/gateway-ontology/transformations#> .

@prefix uml: <https://example.com/uml> .

@prefix m0: <https://example.com/ns-mapping/owl/m-class-basic> .

@prefix : <https://example.com/ns-mapping/owl/m-class-basic> .

{

:mapping a nsgo-t:Mapping .

:mapping rdfs:label "Basic UML Class mapping to Data Element" .

:mapping nsgo-t:hasGraphPattern :input .

:mapping nsgo-t:hasConstructTemplate :output .

:mapping nsgo-t:isPartOf m0:mapping .

:cls a nsgo-t:Variable .

:cls nsgo-t:preferredName "cls" .

# ... other variables and mapper metadata

}

:input {

:cls a uml:Class .

:cls uml:Class-name :cls-name .

:input nsgo-t:hasFilter "STRLEN(?cls-name) > 0" .

}

:output {

:cls a ns:DataElement .

:cls ns:DataElement-name :cls-name .

}

147



6. Transforming between Models using Gateway Ontology

As the transformations layer is based on our SPARQL-Based Mapping Ontology [A.15],
the mappers follow the same principles as shown in Listing 6.1. A mapper is composed
of multiple mapping definitions that may be related to each other (dependency, part-
whole). The modularity promotes evolvability as the mappings can be versioned and
changed independently, separating concerns of potentially complex mappings into smaller
and easily manageable modules as is the one in the example. Moreover, each of these
mappings should have its own identifier and metadata; thus, promoting FAIRness.

Except the metadata, each mapping consists of SPARQL CONSTRUCT fragments – vari-
ables, (input) graph pattern, and (output) construct template. The graph pattern is used
to search the input data, binding the specified variables in the pattern (e.g. class resource
as URI and class name in Listing 6.1). Then the bound variables are used in the construct
template that specifies the output triples. Based on the used constructs in the patterns,
the mapping can be made bi-directional directly or by specifying the inversion explicitly.

Listing 6.1 refers directly to the core layer constructs (data element and its name)
through generic SBMO terms. Nevertheless, it is intended to use terms from the extensions
and transformations layer that provide common patterns for the mapping specification for
complex mappings. As explained more in the following section, these layers are designed
to be continually enriched bottom-up. Still, it is always possible to specify the mapping
without these two additional layers.

The dependency between mappings may occur if one mapping relies on the triples
resulting in another mapping. This relation may cause a combinatorial effect; thus, it
should always refer to an immutable version of the other mapping. On the other hand,
the part-whole relation enabling the tree-like composition of mappings does not cause such
issues as it does not specify the order of mappings. For both types of relations, it must
be checked that there is no loop formed, i.e. both compositions and dependencies form
acyclic graphs.

6.3 Building Gateway Ontology Bottom-Up

As already explained, the extensions and transformations layers are designed to be contin-
ually enriched with reuseable constructs. Although it is possible to avoid the use of these
two layers and specify the mappings directly with the NS Elements ontology (the Gateway
Ontology core), the expectation is to encounter several repeated patterns in the mappings
of various conceptual modelling languages. The reason for this assumption is the same
target of the mapping and observed similarities of the mappings specified at the beginning
of this chapter.

The Gateway Ontology enrichment process is based on Design Science Research (DSR)
and mapper refinements. We consider each mapper as a designed artefact and it can be
refined within the design cycle. The other mappers and the Gateway Ontology provide
the grounding (as a knowledge base). The environment requires mapping for a specific
conceptual modelling language, e.g. UML; thus, it defines the scope and requirements
together with evaluation criteria, for instance, in the form of a set of models to transform

148



6.3. Building Gateway Ontology Bottom-Up

and expected results. As the mapper is being designed, evaluated, and refined, a repeated
pattern may occur, as well as similarity with other mappers in the knowledge base. Then,
the corresponding abstraction is created, e.g. a new construct as an extension to the NS
metamodel with pre-defined mapping to the core layer. All affected mappers can be refined
if desired with a new construct in the extensions layer (alternatively, the transformations
layer).

The bottom-up approach avoids the definition of redundant, ill-designed, or unused
constructs in the extensions and transformations layers. With a top-down approach, the
knowledge base would be overwhelmed with abstractions from conceptual modelling lan-
guages, causing mappers to inconsistently use these abstractions or intentionally avoid
them for their complexity. That is not the case for bottom-up, as only the abstractions
needed are added, eventually enhanced, replaced, or removed according to the cycles of
DSR.

6.3.1 Structural-Based Gateway Ontology Abstractions

Most of the abstractions included in the extensions layer are related to structural con-
structs. One of the most common patterns is a primary data element with a name and an
optional description. Another complexity that was common in different structural map-
pings is related to the value field types. The common pattern is matching a string literal
describing the type to existing value field type in NS with a fallback to the string type.

Then, there is another specific group of structural abstractions – constructs that are
common in various modelling languages; however, not supported in NS. Such an example is
an enumeration with literals which can be expressed in NS using a type data element with
a name or value field. Then, instances can be generated for each enumeration literal, e.g.
to be imported in the expanded application. Another example is the inheritance relation
between two entities which can be transformed to link fields with a special field option.

6.3.2 Behavioural-Based Gateway Ontology Abstractions

Similarly to the structural one, there are also several behavioural abstractions that are
developed using the bottom-up approach. We designed simplified workflow modelling con-
structs in the extensions layer that avoid the use of some NS-specific aspects and complex
nested structures or duplications. Instead of creating tasks and data flow tasks, it is enough
to specify a task for a data element. Then, it is mapped to both, and additionally it may
produce names for all states required if not stated explicitly. For example, if the task is
named CommitBooking, then the related failed state would be CommitBookingFailed.

In this way, we were able to reduce the complexity and repetition in mappings for
BPMN, BORM, and UML activity diagram. All these languages share common constructs,
such as states, activities (or tasks and events), or branching. With our extensions that are
closer to the constructs in those languages, the mapping is more straightforward, and thus
is also maintainable.

149



6. Transforming between Models using Gateway Ontology

6.3.3 General Gateway Ontology Abstractions

In addition to the previously mentioned groups of abstractions in the gateway ontology,
there are also abstraction components that are not tied exclusively to a specific type of
conceptual modelling language. These components serve to simplify the mapping process
for any conceptual modelling language, without making assumptions related to covered
aspects. A notable example of such an abstraction is the specification of a more complex
component required to create a valid NS model.

By incorporating these versatile abstraction components into the gateway ontology,
we provide a more inclusive and adaptable framework for mapping various conceptual
modelling languages. This flexibility enables researchers, analysts, and practitioners to
leverage the ontology in a broader range of contexts, accommodating different modelling
requirements and capturing essential details of the original conceptual models. Through
these diverse abstraction components, we enhance the ontology’s effectiveness in supporting
mapping and translation processes, fostering interoperability and facilitating the integra-
tion of different modelling perspectives.

6.3.4 DSR-Based Extensibility

The layered approach of our design offers both a bottom-up enrichment of layers through
repeated patterns and specific use cases, as well as the flexibility to add new layers or
replace existing ones as needed. This design principle ensures the extensibility of our
artefact. For instance, suppose there is a requirement for compliance and integration
with another model-transformation framework. In that case, we can develop an additional
transformations layer that facilitates more specific model manipulation, further enhancing
the core ontology. Similarly, the extensions layer can be subdivided into multiple parts
based on different types of conceptual modelling. By allowing such modifications, our
design accommodates diverse needs and promotes scalability and adaptability.

These possibilities align perfectly with the iterative nature of DSR and can be viewed
as subsequent iterations within the design cycle. As new circumstances and requirements
arise, these further iterations enable our design to evolve and improve continuously. By
embracing this iterative approach, we ensure that our design remains flexible, responsive,
and capable of incorporating advancements and enhancements in the future. The design
science research methodology serves as the guiding framework for these iterations, facilitat-
ing the integration of new knowledge and insights into the design process, and ultimately
leading to a more robust and adaptable artefact.

6.4 Performing Transformation with Mapping

By encoding the mappings between conceptual modelling languages and the NS metamodel
from Section 6.1 as mappers in RDF as shown in Section 6.2.4, we enabled machine-
actionable and thus possibility to perform the transformation for underlying models based
on the mapping. While having the mapping specification in tables is suitable for human

150



6.4. Performing Transformation with Mapping

readers and for the initial design of the mapping, it is not directly executable. Even if
such a table is in a machine-readable format, a tool to execute the transformation would
not understand the content (e.g. how should be the link fields created for associations
according to Table 6.1). In this sense, the initial mappings presented in Section 6.1 are
not machine-actionable; however, they are suitable for capturing the general matching of
constructs between the metamodels.

Turning the mappings into RDF mappers allows us to precisely specify the relations
between the metamodels as recipes for performing the transformation. It links directly to a
conceptual modelling language metamodel (as ontology) on one side and the Gateway On-
tology constructs (consequently NS metamodel as ontology) on the other. Furthermore, it
enables modularisation of the mappings and creation of re-usable abstractions to make the
mappers maintainable by applying linked data and semantic web techniques consistently
to what we are using in the other artefacts design in this dissertation thesis.

6.4.1 Pattern-Based SPARQL Queries

Mappers composed of partial (potentially interconnected) mapping modules specify frag-
ments of SPARQL CONSTRUCT queries, as shown in Figure 6.2. The mappings can be in-
terlinked by dependency and composition, and possibly specified as bi-directional. Then,
those mappings (e.g. a set of mappings for a single conceptual modelling language) are
input for executing the transformation, more specifically generating the corresponding
SPARQL queries.

With SPARQL queries prepared based on the mappings, the transformation of input
RDF dataset with a conceptual model can be executed. New triples created by SPARQL
queries are added to the dataset and may be used by subsequent queries. As part of the
finalisation phase, the dataset can be cleaned up, i.e. unnecessary triples can be removed.
If there are bi-directional mappings, it is also possible to execute the transformation in
opposite direction for which different SPARQL queries are generated from the mappings.

6.4.2 Mapping Specification in RDF

The mappings in RDF serve as a description for creation of SPARQL CONSTRUCT queries;
thus, must enable encoding of the patterns according to the World Wide Web Consortium
(W3C) specification [164] for such queries. A SPARQL CONSTRUCT query has two main
parts. The first is a construct template that contains a set of triples. The second part,
which can be more complex, is a WHERE clause that contains group graph pattern. The
triple patterns may contain variables in both parts, the pattern in WHERE clause is “filled”
with matching data and values are bound to variables filling the construct template.

Except variables and triples (subject, predicate, object), a group graph pattern may
contain additional constructs: subgroups, OPTIONAL, FILTER, UNION, MINUS, sub-SELECT, or
other less-commonly used constructs and functions. We created SPARQL-Based Mapping
Ontology (SBMO) (SBMO) to define the constructs for expressing the mapping in RDF;

151



6. Transforming between Models using Gateway Ontology

Figure 6.2: Design of SPARQL-based transformation from RDF mapping

moreover, it is designed for further enhancements and extensions in the same way as other
designed artefacts if this dissertation thesis.

To specify the mapping in RDF, our design uses named graphs and recommends using
the TRiG format to keep separate mappings (as modules) as already presented in List-
ing 6.1. The default graph of the mapping in RDF contains its metadata such as name, the
definition of used variables, or relation to graph pattern and construct template—these two
form separate graphs where are the input and output triples. The input pattern may con-
tain the additional constructs; the example shows the use of a basic filter – the constraint
is defined as a string value for higher flexibility.

The mappings can be defined without any notion of NS or the Gateway Ontology. Nev-
ertheless, the composability of the mappings enabled by our design allows us to introduce
prepared fragments, re-usable helpers, or basically any additional constructs to simplify
other mappings. That is the content of our extensions and transformations layers to re-
duce the complexity of mappings between conceptual modelling languages and NS. For
each of these constructs, a mapping must be supplied or handled differently during the
transformation.

For example, suppose we have mappings of two constructs A and B from different con-
ceptual modelling languages towards the same NS construct C. The mappings are sets of
triples with measurable complexity (e.g. the number of statements). Both mappings have
certain similarities in the patterns that can be abstracted. Thus, we introduce extension
E mapping to C to represent the repeated non-trivial pattern. Then, A and B can be
mapped to E instead of C, which reduces the complexity of the two mappings. Finally, for
transformation from A to C, the two mappings must be executed (A to E and E to C).

152



6.4. Performing Transformation with Mapping

6.4.3 Transformation Execution

With the SPARQL-based transformation design and mappings defined in RDF, we can pro-
ceed to address the actual execution of transformation based on a mapping. The execution
algorithm can be split into two stages. The first stage prepares the transformation based
on mappings, i.e. creates SPARQL queries from the input RDF mappings. It consists of
the following steps:

A1. Load mappings (starting with input top-level mapping, recursively follow composition
links).

A2. For loaded mappings, find order of mappings conform to dependency links (if such
order does not exist, algorithm fails).

A3. Check name clashes for variables and resolve them (using numbering to ensure unique-
ness) if necessary.

A4. Rewrite each mapping to its SPARQL CONSTRUCT equivalent (according to definitions
in SBMO).

Practically, step A1 is expected to be implemented to load multiple RDF TRiG files
together and extract mappings from them after providing the URI of the top-level one.
The result is a list of SPARQL queries that can be eventually exposed but is not intended
for external use or manual edits (as it should remain consistent with the mapping). Then,
when the SPARQL queries are prepared, the actual transformation of the RDF dataset
according to the mapping can take place using the following steps:

B1. Load input RDF dataset D and create its immutable copy D′.

B2. Execute each SPARQL query over D in the list (in the order). For each, insert the
constructed triples by SPARQL query add D (one-by-one, if not already in D).

B3. (Optional cleaning step) Remove all statements in D that are in D′.

B4. Save D in desired format.

The steps B1–B4 are simply executing the SPARQL queries and adding the constructed
triples to the result dataset. We propose to add the triples to the input dataset for two
reasons. First, the dependent mappings may already use triples generated according to the
previous mappings and avoid duplication. For example, again, it is necessary to check if a
class forms a data element when dealing with object properties to link fields mapping. The
second reason is that the desired output in most cases is an enriched RDF dataset rather
than a dataset with only the new triples; however, that is possible with optional step B3.
Another essential aspect is that after the successful first stage (steps A1–A4), the second
stage may be repeated for various inputs until the mapping changes.

153



6. Transforming between Models using Gateway Ontology

Both stages are finite as there the size of inputs (mapping files, statements in mappings,
and statements in input dataset) is also finite. It may fail only if invalid mapping is
provided, for example there is a linked mapping is missing or invalid triple is included.
The overall complexity highly depends on execution of the underlying engine executing
the generated SPARQL queries (typically polynomial complexity [165]).

6.4.4 Bi-directionality and Consistency

The last goal (G3) requires a definition of a procedure to verify (or maintain) consistency.
Our framework and way of mapping specification using SBMO allows bi-directional trans-
formation. The identifiers (Uniform Resource Identifiers (URIs)) are always kept based
on the mapping, there is no non-determinism, and RDF is declarative. Therefore, it is
possible to keep the RDF datasets consistent using the reverse direction of transformation
and a simple merging of changes. The recommended way is to keep the data in a single
RDF dataset that is continuously updated rather than keep two separately.

The opposite direction for the transformation can be issued simply by switching the
input and output patterns. The only issue is with additional constructs of the WHERE

clause. There are two possibilities with SBMO. First, both input and output patterns can
contain such constructs, and only one is used, based on the direction of the transformation.
Another possibility is to use directionality of mapping and create an inverse one using
sbmo:inverseMapping.

6.5 Design Cycle of Gateway Ontology Development

As for the previously presented designed artefacts, DSR guided the construction of the
Gateway Ontology design and even its materialisation in the RDF/OWL form. We fur-
ther separated the design into partial sub-artefacts – layers and mappers according to the
separation of concerns principle. Then, we also designed the actual transformation based
on mappings captured using the ontology. The existing work and common approaches
from the knowledge base, as well as the NS context (environment), also provided solid
foundation for our design.

The Gateway Ontology, its layers, and transformation procedures were iteratively vali-
dated and refined based on the design cycle. The straightforward incorporation of needed
enhancements was accomplished by design that enables evolution and bottom-up exten-
sions. The core layer served as the basis for the work. Then, we designed the transforma-
tions layer using the SPARQL-based mappings [A.15]. While mapping each of the selected
conceptual modelling languages (both defining the mapping and encoding it as mappers),
we enriched the transformation layer when necessary. We designed the extensions layer
based on common patterns in different mappers to avoid complex repetitions.

The design cycle for the transformation procedure iteratively increased coverage of the
definitions in mappers to full coverage, i.e. everything that can be specified will be trans-
formed. The validation and evaluation have been done by executing the transformation for

154



6.6. Summary of Gateway Ontology

a set of different conceptual models prepared in the mapped languages. Whenever the re-
sult did not correspond to the mapping, its RDF form was updated or the transformation
extended. Finally, the same procedure was used for semantically integrated conceptual
models and reverse transformation. A part of the evaluation is presented in Chapter 7.

The final artefact presented in this thesis is ready to be (re-)used and further extended
according to DSR. Although we provide a reference implementation for the transformation
procedure using the Gateway Ontology, the design allows alternative implementations as
well as an exchange of underlying technologies. For example, it is possible to use a differ-
ent transformation mechanism than SPARQL by adjusting the transformations layer and
mappers.

6.6 Summary of Gateway Ontology

This chapter captures our design of the Gateway Ontology with its layers, mapping of
different conceptual modelling languages, and the transformation execution using RDF
technologies. It is the final piece (partial artefact) of our architecture presented in Chap-
ter 3. However, it is, as the name indicates, the key that addresses the actual transforma-
tion between conceptual models and NS, i.e. requirements FR1–FR4. The other artefacts
supported the use of the ontology by allowing knowledge representation from conceptual
models and NS in RDF.

Both evolvability (FR5 and NR1) and extensibility (NR2) are enabled by-design and
helped to refine the artefact according to DSR as discussed in the previous section. The
design enables bi-directional transformations to maintain consistency (FR6). Also, the
used RDF contributes to this requirement fulfilment as there are existing techniques and
tools for comparing, merging, or other manipulation of RDF datasets.

The transformation design utilises SPARQL but does not provide any other limitations
with respect to the technologies or platform (NR5 and NR7). The provided reference
implementation as a materialisation of our designed artefact was used for evaluation. Nev-
ertheless, it can be used for real-world transformation scenarios between conceptual models
and NS. All of the presented designed artefacts can be directly used, further extended, or
taken as a blueprint for the specification of mapping and transformation between different
kinds of knowledge representations.

155





Chapter 7

Demonstration Use Cases

“No research without action,
no action without research”

Kurt Lewin

After presenting all designed partial artefacts in the previous chapters, we can use them
together based on our overall architecture as explained in Chapter 3. We created reference
realisations and prototypes based on our design to evaluate, verify, and subsequently refine
the design. Due to the presence of these realisations of the artefacts, we can use them all
together to evaluate the overall architecture design.

This chapter demonstrates the practical application of our Normalized Systems Gate-
way Ontology for Conceptual Models design with presented partial realisations, namely
developed tools and created ontologies and mappings. We composed a set of inter-related
conceptual models for an e-commerce system based on literature and technical solutions
review. Then, several use cases are presented – starting with a simple one-way transfor-
mation from a single conceptual model, followed by semantic integration and dealing with
changes on various levels, to reverse-engineering, where a conceptual model is created from
an Normalized Systems (NS) application. As we include only relevant fragments in the
text, the complete demonstration case is included in Appendix A.

157



7. Demonstration Use Cases

7.1 Using NS Gateway Ontology for Conceptual

Models

The architecture proposed in Chapter 3 and related designed artefacts together allow trans-
formation between conceptual models and NS. According to our research objectives for-
mulated in Section 1.2, there are different ways in which it can be used and what are the
related requirements or prerequisites, inputs, and resulting outputs. Although our solution
is quite flexible, in this dissertation thesis we focus on our research objectives and work
with the following use cases (which may be potentially combined):

1. The semantic integration of various conceptual models (RO1) can be done when the
models are in an interoperable format – in our case in Resource Description Frame-
work (RDF), preferably structured according to a well-defined ontology using Re-
source Description Framework Schema (RDFS) or Web Ontology Language (OWL).
The transformation from original “source” to RDF is not within the scope of this
thesis, as there are limitless ways to capture a conceptual model. RDF technologies
directly provide ways of combining multiple knowledge graphs, conceptual models,
relating concepts, and providing a more detailed view on a problem domain by com-
bining different aspects or viewpoints. The main goals of this step or use case is to
prepare an input for the transformation and by having such a more detailed view, we
will get potentially more precise corresponding software system (also based on the
used mapping). The semantic integration and related mapping needs affect also the
Gateway Ontology as commonly used constructs can be abstracted to the extensions
and transformations layers for reuse (and thus Don’t Repeat Yourself (DRY)ness of
mappings).

2. Transformation of a conceptual model to NS (RO2), or alternatively of semantically
integrated conceptual models to NS, can be done directly using our designed artefacts.
As a prerequisite, in addition to the input conceptual model in RDF, a mapping must
be provided for the conceptual modelling language(s) used. Then, the input model is
transformed using the SPARQL-based mapping defined using the Gateway Ontology.
The resulting RDF represents an NS model; thus, the next step is to use the NS-
RDF/OWL transformation that creates corresponding NS components usable with
other NS tooling, e.g. for further editing or expanding a software system. The
transformation also allows the opposite direction, i.e. creating RDF representation
of NS models and also their transformation to conceptual models (in RDF).

3. Adapting to various changes (RO3) is also significantly simplified using RDF to
represent all (meta)models, the Gateway Ontology as well as mappings defined in
terms of the Gateway Ontology. The most direct case that may occur is a change in
the input conceptual model (that was previously used in the transformation); then,
the changed model can be transformed again and the result must be compared and
merged with the previous result (in case there were changes made using the NS

158



7.1. Using NS Gateway Ontology for Conceptual Models

tooling). As long as the mapping is the same, the unchanged parts of the model will
result in the same NS counterparts. Another change may occur in the mapping used
for transformation (e.g. some coverage improvement), in that the same procedure
must be used including the merging. Finally, the most difficult changes in terms
of their adoption are related to metamodels of modelling languages. When a new
version of conceptual modelling language specification occurs, the ontology for that
new version must be created, the input model must be adapted to that new version,
and thus also the mapping. If a change occurs in the NS metamodel, the procedure
is similar; however, newer versions of the NS metamodel are typically backward
compatible.

4. The consistency between the input and output models (RO4) is done by keeping
links between concepts using the identifiers from RDF – Uniform Resource Identifiers
(URIs). With that, it is possible to track which part of input resulted in what output
without investigating the mapping. Therefore, it also allows to simplify check for
differences. We also propose using a single RDF dataset for both input and output
models together. The transformation just “enrich” the dataset by missing constructs,
keeping all the information together.

CM-Model NS-RDF
Mapping

NS-Spec
NS-GO4CM

CM-OWLCM-Spec

CM-RDF NS-XML

TCM-RDF TCM-NS TRDF-NS

Figure 7.1: The Gateway Ontology and its various use cases

These use cases and their relations are also visualised in Figure 7.1. As a first step, we
need to transform given conceptual models (defined using a specific conceptual modelling
language, that is, metamodels) into RDF representation (Section 7.2). There, the models
can be semantically integrated where necessary (RO1, Section 7.4). However, the primary
purpose is a transformation of a conceptual model to NS even without such integration.
The transformation can be performed for the modelling languages supported by mapping
defined using the Gateway Ontology, then the two-step transformation with intermediary
NS model in RDF is possible (RO2, Section 7.3). With transformed models, there are

159



7. Demonstration Use Cases

various change-drivers as different artefacts and models can evolve and the transforma-
tions support the propagation of the change (RO3 and RO4, Section 7.5). Finally, the
transformation is possible in the reverse direction, that is, from NS to conceptual models,
if a mapping supports it (RO1 and RO4, Section 7.6).

7.2 Conceptual Models for e-Commerce System

To evaluate the design of partial artefacts, various models were used – both created directly
for testing (e.g. to cover specific constructs) or from existing work (e.g. domain or software
documentation, or relevant supervised bachelor and master theses). However, to provide a
homogeneous but complex demonstration, we selected the e-Commerce domain for which
we searched for existing suitable conceptual models. The models described in this section
serve as input for our further demonstration of various use cases of what can be done with
the solution based on the Gateway Ontology.

Craft.CASE
e-ShopBORM

Lucient
Sales ApplicationORM

UML Example
Online ShoppingUML

Modelio
Shopping CartUML

Litium
ERP Connector

UML
BPMN

CM-RDF

Figures (web)

PDF document

Figures (web)

Figure (JPG)

Tool-specific format

Figure 7.2: Transformation of conceptual models to RDF

Although the selected models for the demonstration are related to a single domain and
capture overlapping concepts, they have certain differences. The disparity of models in
size, original purpose, modelling language used, and captured form represents the real-
world encounter of conceptual models. The selection has been made on the basis of these
different properties of the models to present the versatility of our artefacts.

Figure 7.2 (as similar figures for the following parts of this demonstration) visualise the
inputs and desired outputs described in this section. We selected five input models from
various setups: first two are Unified Modeling Language (UML) models where one is pre-
sented on a website and the other one as Portable Document Format (PDF) documentation

160



7.2. Conceptual Models for e-Commerce System

for software development, next one is an Object-Role Modeling (ORM) model captured
just as a single diagram in Joint Photographic Experts Group (JPEG) file, the penulti-
mate model is in Business Object Relationship Modelling (BORM) in a tool-specific format
(Craft.CASE project), and the last one is combining two modelling languages – UML for
capturing structure and Business Process Model and Notation (BPMN) for behaviour. As
none of them are in suitable and interoperable format, we manually transform them to
RDF using the ontologies described in Chapter 5.

7.2.1 UML Diagrams: Online Shopping

UML-diagrams.org is a comprehensive guide to UML including its various versions and all
diagrams. It also contains several examples, one of which is “Online Shopping” [166]. The
example consists of different related diagrams. We use its class, activity, and state machine
diagrams for this demonstration.

The diagrams are accompanied by textual descriptions and clarification of used con-
structs. Other advantages of this example are that it provides multiple interconnected
diagrams, uses different and even rare constructs, and is still concise, so we can focus on
details when examining the transformations. Finally, there are some possible improve-
ments, so it is also suitable to demonstrate the evolution of the conceptual model and its
impact.

The class diagram (as shown in Figure 7.3) captures 8 classes and 2 enumerations with
different types of relations, constraints, and attributes. The class account is related to the
state machine diagram that captures its 4 states (New, Active, Suspended, and Closed)
and transitions between them. The activity diagram describes the process of shopping:
managing items in the shopping cart, checking the cart, and checkout.

All the diagrams are available only as figures in PNG format. Thus, we manually encode
the information from the diagrams to RDF using our ontology presented in Chapter 5. It
is often the case that conceptual models are kept only as figures, possibly as part of more
extensive documentation. That is not interoperable, and information must be extracted
manually or semi-automatically for further processing.

7.2.2 Craft.CASE e-Shop Example

To represent BORM models in the demonstration, we use the “e-Shop” example from tool
Craft.CASE that is already encoded in RDF as part of our work on OntoBORM [A.13].
As BORM is not widely used and models in BORM are rarely published, it is not surpris-
ing that no other e-Commerce related models were found on public websites or scientific
articles, except for a single smaller Objects Relations (OR) model (as figure) [167].

The advantage of the “e-Shop” example from Craft.CASE [161] is that it covers the
entire modelling process according to BORM where Business Architecture (BA) and OR
are just partial results. As noted in Chapter 5, it also contains a description of classes
and their attributes that are not captured in the two main diagrams of BORM (more
specifically 1 BA shown in Figure 7.4, and related 4 OR).

161



7. Demonstration Use Cases

Figure 7.3: UML class diagram of the Online Shopping case [166]

The original model is part of the Craft.CASE tool installation, i.e. it is a reference
project in tool-specific format distributed together with the tool. There was no way to
get or refer to the model. Moreover, while working on this demonstration part of the
dissertation thesis, the tool and its website changed owners and it is no longer possible
to download the tool directly. That shows another common issue with current models –
persistency and accessibility.

7.2.3 Modelio’s Shopping Cart

Modelio1 is a company with over 30 years of object-modelling experience that provides
training, consultancy, and modelling platform. It also publishes various examples of mod-
els, including real-world example documentation of complex systems analysis and design.
One of such examples is the “Shopping Cart” case [168]. In its 47 pages, the document
describes various use cases and packages related to an e-commerce software system.

1https://www.modeliosoft.com/en/

162



7.2. Conceptual Models for e-Commerce System

Figure 7.4: e-Shop BA in BORM example of Craft.CASE [161]

Figure 7.5: UML class diagram of OnlineStore package [168]

The essential part of conceptual modelling is “domain” packages: online store (in Fig-
ure 7.5), bank, client, products, and types. Except for the bank package (with single
class Payment), all have UML class diagrams. Moreover, classes Order and Account (in
Figure 7.6) have their own state machine diagrams. All classes are also described in the
text, including tables with attributes and operations as usual in such documentation. The
remaining part of the documentation contains a software system design that is not relevant

163



7. Demonstration Use Cases

for our demonstration.

Figure 7.6: UML state machine diagram of Account [168]

Although it could be possible to extract the information from PDF file and figures
using text mining and the OCR technique, we again encode it to RDF manually due
to efficiency reasons. It furthermore shows the lack of interoperability in the world of
conceptual modelling.

7.2.4 Litium Connector Models

Litium2 is a scalable e-commerce platform that unlike others publishes its documentation
including conceptual models [169]. The models are part of the Litium Connect component
that supports integrations with third-party systems. The documentation is in the form of
a website with models captured in text and figures. As in other cases, it is necessary to
encode the information into RDF manually.

There are two domain class models. The Prices model is simple, with just two classes.
However, the Orders model has 15 classes and 7 enumerations. There are also many
various attributes as the model is related to technical implementation (importing and
storing relevant data). We also use the related BPMN model of the checkout flow.

7.2.5 Lucient’s ORM Model for Sales Application

Global data consulting firm Lucient3 publishes various experiences and examples on its
blog. One of the older posts by consultant Dejan Sarka presents an ORM model to support
an imaginary Sales application [170] as shown in Figure 7.7. Again, the model is not in
interoperable format (which is not even specified for ORM) – this time in JPEG format
which is not suitable for diagrams.

The model is relatively simple in terms of ORM constraint capabilities, but it also
uses rare constructs such as objectification. On the other hand, there are only binary
predicates. The potential issue may arise from nine value types that are very domain-
related and vague; e.g., for a discount, it is not clear if it is a percentage of the price, fixed

2https://www.litium.com
3https://lucient.com

164



7.3. From Conceptual Models to Normalized System

Figure 7.7: ORM model for Sales Application [170]

amount, or possibly a combination. Thus, the model may also be used to demonstrate the
evolution – improvements in the conceptual model and reflecting it in NS.

7.3 From Conceptual Models to Normalized System

This first scenario demonstrates the primary use of our transformation framework – one-
way transformation from an existing conceptual model to the corresponding NS model. It
tests our mappings and transformation procedures in the direction toward NS. We use all
previously introduced input conceptual models, more specifically their interoperable RDF
representation. The process is explained thoroughly for the Modelio case, and then for
others, we highlight differences and specifics to the input modelling languages and models.

With respect to RO2, we demonstrate the transformation of conceptual models that
capture various aspects (structural, behavioural, and facts) into NS models. The minimal
loss of information is related purely to the mappings; only the things omitted in the
mapping are lost. Thus, the framework itself does not directly limit any information
transfer.

With the conceptual models captured in RDF using the ontologies of Chapter 5, we
can proceed with the two-step transformation to NS using the Gateway Ontology and
related tooling (designed artefacts) as shown in Figure 7.8. For each of the models, we
proceed individually. First, we execute the transformation using our mappings (described
in Chapter 6) and NS-RDF/OWL transformation (described in Chapter 4). Then, we
observe the results, confront them with original models, and identify information loss.
The outputs for the scenario are the resulting NS models in Extensible Markup Language

165



7. Demonstration Use Cases

Craft.CASE
e-ShopBORM

Lucient
Sales ApplicationORM

UML Example
Online ShoppingUML

Modelio
Shopping CartUML

Litium
ERP Connector

UML
BPMN

NS-RDFCM-RDF NS-XML

Figure 7.8: Conceptual models to RDF transformation

(XML) (which can be used in existing NS tooling, e.g. to expand applications), as well as
the intermediary NS/RDF representation.

7.3.1 UML Diagram Examples to NS

When transforming the class diagram of the UML Examples Online Shopping case, all
eight classes and two enumerations are turned into data elements as shown in Figure 7.9.
More specifically, the OrderStatus and UserState enumerations become taxonomy data
elements. For attributes (mapped to value fields), we had to improve the RDF-NS trans-
formation to deal with non-compliant naming – in this case, snake case in attribute names,
whereas camel case is allowed. The id constraint is captured using the field option. Some
attributes use a data type Address that is not defined; thus, it uses the default mapping to
String, which we found acceptable for this case. The link fields are based on associations
and aggregations in the class diagram – link field types mapped based on cardinality and
constraints again kept as field options. As a refinement, we added data children to express
composition, e.g. Order is a data child of Account. Here, we identified an issue with the
input model and its LineItem class that should be linked via composition and not to both
Order and ShoppingCart at the same time (preferably to a superclass of these two classes).

The state machine diagram is clearly linked to the user account (after our fix of the
inconsistency – UserAccount and Account). The four states (New, Active, Suspended,
and Closed) were transformed into data states of the Account data element. Moreover, the
Initial state was created as there is a named transition between Initial and New states in
the diagram. On the other hand, the Closed account is just marked as final (the transition
is not named) – this was part of our refinements as we initially had an unnamed transition

166



7.3. From Conceptual Models to Normalized System

Figure 7.9: UML Online Shopping example in NS

between Closed and Final states. The transitions are mapped to task elements. As the
names of transitions are not unique, we had to refine the mapping to comprise the name
together with the name of the data element and source/target states. Still, there were
duplicities, e.g. AccountNewSuspendSuspendedTask; however, this was solved by merging
the overlapping transitions together (it can be one with logical OR applied constraints).
Finally, data flow tasks are created with failed and interim states named according to the
task element. The constraints are not mapped and are captured as task options.

The activity diagram did not provide any useful result when transformed to NS. The
leading cause is that it does not capture any relation to class nor state machine diagrams
of the Online Shopping example. It would need to enrich the diagram with semantic links,
e.g., a “View Item” activity is somehow related to the “LineItem” class. Again, there was
an issue with branching for the state machine. Another problem was creating a flow element
according to the mapping, since the diagram is not related to a single data element or class.
In summary, the activity diagram, in this case, is not suitable for software generation; it
can be helpful for people only to “read” how online shopping roughly works. The result
cannot be improved just by refining the mapping and tools; it would require incorporating
some AI-related features that can result in non-deterministic transformation and are out
of our scope.

167



7. Demonstration Use Cases

7.3.2 Modelio: Shopping Cart Model to NS

Unlike the previous Online Shopping example, the Modelio case is structured into multiple
packages. In addition, various constructs (packages, classes, and attributes) are provided
with textual descriptions. In total, there are five components: bank, client, onlineStore,
products, and types. Both the components bank and types are quite trivial, contain three
data elements with only value fields (Payment, Address, CreditCard). The Address data
element is, for example, then used from the component client as the link field of the
data element Client (mapped from the attribute with a custom datatype). The client

component also contains linked ApplicationForm and its data child ApplicationField

data elements.
The component products contains four data elements transformed from simple UML

classes with its attributes (value fields), associations (link fields, including many-to-many),
and a composition between Order and OrderLineItem. The operation modifyDetails of
Product was mapped to a data option, as there is no other suitable counterpart in NS.
In the same way, operations of the onlineStore package are just data options. The only
important thing in this package and transformed component are the link fields to other
components (relations to Product and Client) as visible in Figure 7.10. To add more
complexity, we improved the input model by making totalCost a derived attribute that
resulted according to expectations in a calculated field (the calculation based on the price
and quantity of the product needs to be part of the custom code).

Figure 7.10: Component onlineStore for the Modelio case in NS

Two state machines, for Account and Order, are transformed into corresponding flow
elements. None of the flows had any new mapping-related issues compared to the previous
UML Online Shopping Example. States are transformed into data states, transitions into

168



7.3. From Conceptual Models to Normalized System

task elements with appropriate interim and failed states, and finally, data flow tasks are
created to link them together. We had to improve the naming-fixing feature of RDF-NS
transformation as the transition is named with inconsistent capitalisation and while using
spaces and colons. The resulting OrderFlow is quite complex, with 38 data states and 14
tasks (and data flow tasks).

7.3.3 Lucient: Sales App to NS

The transformed NS model from the input conceptual model for Sales Application in ORM
by Lucient is quite simple but shows how the fact modelling is handled. For entity types,
Customers, Orders, Products, and for objectification OrderDetails, a corresponding
data element is created. We had to handle the pluralised form in the name, as in NS the
names should be in the singular form. Also, value fields for identifiers as part of entity
type definitions are included. We enhanced the initial mapping based on this model to use
names of value types as the name for generated value fields instead of predicate naming.
Then, all the value fields used fallback String value field type. Therefore, an optional
name-based value field type resolution has been added to the mapping for ORM resulting
in types assigned as in Figure 7.11; for example, value fields that have a name ending with
Date result in having Date type, or names such as Quantity or Count will be related with
type Integer.

Figure 7.11: Resulting data elements for the Lucient case in NS

According to the mapping, binary facts between entity types (and objectification) were
transformed into link fields (in both directions of the fact). There are no other types
of facts (e.g. ternary that would result in an additional data element). Again, instead of
using a predicate name that forms a simple sentence, the name of an opposite entity is used
as common for NS modelling. For instance, the Customer data element has the orders

link field and not send. The constraints of predicates resulted in a type of link field (e.g.

169



7. Demonstration Use Cases

many-to-many) and field options, e.g. whether it is a required field. Despite the relatively
small size, the core constructs of ORM were covered and successfully transformed into NS.

7.3.4 Craft.CASE: e-Shop to NS

The Craft.CASE example with the e-Shop resulted in a relatively complex NS component.
It contains 10 data elements transformed from class information (non-diagram modelling
in Craft.CASE) and OR diagrams. The structural part is naturally less rich, as BORM
is focused on business process modelling. Thus, the behavioural part captured in NS is
more interesting in this sense. There are 13 flow elements, one for each role in every
OR diagram. The name is composed using the role name and the OR process name, e.g.
CustomerPlaceOrder. Similarly, status fields are named according to the process name
since one data element may have multiple flows, for instance Customer has three such
value fields: statusPlaceOrder, statusUpdateDelivery, and statusWriteDelivery (as
also shown in Figure 7.12). Consequently, an instance of such a data element cannot
simultaneously participate in multiple flow instances of the same flow element.

Figure 7.12 also clearly shows that the input model has several flaws in its structural
part. Although BORM in Craft.CASE provides a limited class modelling (e.g. both rela-
tions and attributes are captured as “variables”), and some information is plainly missing in
the input model. Mainly, there are no relations between Customer, VanDriver, Supplier
and the rest of the classes. Then, WebsiteOfFD, FDDatabase, and LogisticsManager

do not even have class specified, and the data elements are created just through roles in
processes (capture in OR).

Another naming-related issue arises with task elements and data states. First, some
of the names are very long, for instance, 61 characters for a task resulting from Update
Delivery OR. Second, the names of states and activities are not unique in different OR (and,
in fact, do not have to be unique even in a single OR). For instance, the activity is started

and the state started are in both update delivery and write delivery ORs. To overcome this
issue, we further refined the naming fixing procedure in RDF-NS transformation ensuring
uniqueness where necessary by adding a numeric suffix to the transformed name fragment
(before adding other suffixes, e.g. Task). This results in (based on the configuration)
WebsiteOfFDIsStarting01Task. Still, the original name is kept in options, e.g. in this
case, as a task option.

7.3.5 Litium ERP Connector to NS

The Litium case has two UML class diagrams, one related to pricing is trivial, whereas
the other one is relatively complex and covers structured around orders. As mentioned in
the case description, the models are pretty technical and oriented toward data integration,
still with some missing details; thus, it provided a slightly different use case than for UML
Examples or Modelio cases. The Pricing Entity Model has just two classes (transformed
to data elements) related via aggregation (link fields and data child). The Order Entity
Model resulted in a component with 22 data elements where 7 are taxonomy data types

170



7.3. From Conceptual Models to Normalized System

Figure 7.12: Part of the Craft.CASE e-Shop from BORM in NS

representing enumerations. Most of the relations are compositions that, as in other cases,
were transformed into link fields and data child. The resulting components can be used
for data integration purposes, as is also the intention of the models.

We encountered several issues related to the input model. Some of the data types use
collections such as List or Dictionary (almost every class has an attribute AdditionalInfo
of type dictionary, where the key is a string and the value is an arbitrary object). For
these types, the fallback to string type is acceptable as the collections may be serialised
into a string for data integration purposes. We also had to extend the types to support
the question mark for an optional attribute (non-standard). There are non-standard links
between some entities, probably relating using an attribute that stores the ID of the other
entity; however, it is not modelled as an association. The transformation omitted these
links. Finally, there is a note attached to ShippingInfo class describing what can appear
in the aforementioned AdditionalInfo attribute; we refined the mapping to include class-
related notes as data options.

As the BPMN model is not clearly linked to the UML class diagrams, it rather cre-
ated another component with its data elements, but mainly flow and task elements. More
specifically, there are three data elements that represent the pools with related flow ele-
ments: Buyer, Litium, and ERPConnectorApplication. According to the mapping, tasks,
gateways, and events are task elements. The naming is based on the task name, e.g.
SendOrderConfirmationEmailTask; here, we had to improve the name refining step again
to convert it properly to PascalCase. The communication and other behaviour of created
task elements (for instance, sending/receiving a message, parallel branching, or waiting)

171



7. Demonstration Use Cases

must be implemented in custom code. The name of states is based on the names of the
related tasks by adding the appropriate suffix Done, Failed, and Working as shown in
Figure 7.13.

Figure 7.13: Simple ERPConnectorApplication flow transformed from BPMN to NS

7.3.6 Results and Limitations

This section briefly discusses the transformation of the selected input models to NS with a
focus on the identified challenges, issues, and refinements performed throughout the design
cycle. When using structural input models (e.g. UML class diagrams), the data elements
with related value fields, calculated fields, and link fields were created by transformation
up to the expectations. For aggregation, the use of data children resulted in an excellent
part-whole result in generated systems (e.g. waterfall screens in User Interface (UI)). The
mapping of data types to value field types was refined on the selected models and can be
refined in the same way in the future if needed; fallback to the String value field type
is identified as suitable. Additional information for constructs without directly mapped
counterparts in NS is captured through options; thus, it may be used in expanders. For
example, to generate specific source code fragments implementing constructs not directly
supported in the NS modelling (yet).

The results with fact modelling in ORM are very similar to structural modelling. Limi-
tations are related mainly to complex constraints that are captured as options. Behavioural
models (in our case UML activity diagram, BORM and BPMN models) resulted in flow
and task elements, and associated data states and data flow tasks. One issue is that the
input behavioural models must be clearly related to (and consistent with) the associated
structural model; otherwise, the flow elements are attached to the data elements without
any other than status fields. The actual behaviour of tasks must be implemented as
custom code, including waiting, communication, or branching – that may be a potential
future work on working with options and expanders as mentioned above. It is related to
currently limited flow modelling in NS, where it is not possible to express a connection of
different flows (e.g. passing data between them or synchronising).

The limitations caused by the naming restrictions and conventions in NS that are
not enforced in conceptual models (e.g. PascalCase for naming elements or uniqueness
requirements in certain contexts) were solved by adding a step (and in the design cycle
refining) to rectify names during RDF-NS transformation. As the RDF-NS transformation
creates components, those can be added directly to the NS applications, potentially refined
and expanded. As expected, we expanded the applications for our demonstration examples,
resulting in typical Create, Read, Update, Delete (CRUD)/workflow applications.

172



7.4. Semantic Integration with BORM Model

One of the essential properties for this use case is the absence of input size limitations,
i.e. the transformation works with any number of constructs (for instance, hundreds of
classes in UML and thousands of attributes) without any changes needed in the mapping
or tools. However, it is typical that such huge models are modularised into parts, e.g.
packages, resulting in multiple smaller components in NS, which promotes reusability.
The size does not matter, but compliance with the modelling language specification (i.e.
metamodel) does. If the model contains such constructs, they will naturally be omitted,
as they are not described in the ontology based on the metamodel; therefore, they are
not assigned to NS. A similar issue is with the unexpected types such as we had in the
Litium example (e.g. List<String> instead of String with cardinality); the use of well-
known types is needed. Alternatively, the mapping of types must be enriched before the
transformation, and that requires investigating the input model, e.g. manually or via
SPARQL Protocol and RDF Query Language (SPARQL) when the model is in RDF.

7.4 Semantic Integration with BORM Model

The second scenario still focuses on the transformation from conceptual models to NS but
together with the semantic integration of the input models. We have different models
related to the same domain (e-Commerce); thus, by relating the models, a more detailed
description of the problem domain can be used to create a software system. We first show
how the integration of models in RDF is carried out together with its implications for
mappings. Then, we do the transformation and evaluate the resulting model in NS.

The semantic integration of models prior to their transformation to NS is related to
our objective RO1. Using RDF as lingua franca to capture knowledge from conceptual
models allows the integration of concepts, e.g. relating them or specifying matches. Then,
it is possible to use the Gateway Ontology with adequate mappings to transform this (in
an ideal case) holistic view to NS.

Craft.CASE
e-Shop

UML Example
Online Shopping

Lucient
Sales Application

Semantic
integration
(via RDF)BORM

ORM

UML

NS-RDF NS-XML

Figure 7.14: Conceptual models semantic integration and transformation

In terms of inputs and outputs, we take three different models and first semantically
integrate them on the RDF level; then we proceed as in the previous scenario and as
shown in Figure 7.14. The selected input models use different modelling languages, but

173



7. Demonstration Use Cases

have overlapping concepts. In addition to the NS model in XML and the intermediary
NS /RDF, the RDF data set containing the integrated input model is also output for this
scenario.

7.4.1 Integrated Input Conceptual Models

To demonstrate integration, we selected the Craft.CASE e-Shop in BORM (rich behavioural
model) to integrate with UML class diagram based on UML-Examples and classes from
the Craft.CASE e-Shop. To further enrich the model, we also integrated the ORM model
for the Sales Application. These modelling languages do not use common metamodel or
compatible formats; thus, integration is not possible in their original form. Here, we take
advantage of our design and integrate the models in RDF, which is suitable for such use
cases (that are common in area of linked data).

Discount

*

*

*

*

1
*

1..*
*

1

0..1

1
1

0..1

1

1

1

*

*

*

1

*

1

*

1

Supplier

Supplier

Supplier

Product

Order

OrderItem

OrderDetail

Food

Load

Customer

Order

Route

Customer

Product

ShoppingCart

LineItem

Payment Order

Account

Customer

WebUser

Delivery

Product

Order

Customer

Figure 7.15: Visualisation of integrated concepts from three different conceptual models

We used manual semantic integration, where we identified the relations between con-
cepts originating from different models. For example, Customers from the ORM model
represents the same concept as Customer from the UML model and Customer from the
BORM model. The identified related concepts that become part of the new integrated
model are visualised in Figure 7.15. For this relatively small case, manual integration is
feasible and ensures well-defined relations between models. Another possibility is to use
(semi)automatic integration that utilises natural language processing (NLP) techniques
such as searching for synonyms or guessing relations using corpus or thesaurus. However,
since our goal here is to have well-integrated models rather than to evaluate the possibilities
of semantic integration itself, we had to do this manually.

174



7.5. Evolvability and Consistency

7.4.2 Mapping and Transforming Integrated Models

For the first transformation, we simply used all three mappings together. There was no
need to specify any additional mappings, as semantic integration did not introduce any
“new” constructs or properties that would unite the concepts. We produced both an
enriched RDF dataset that contains input triples and output/NS triples and an NS-only
output dataset.

The second transformation was used in the same way as for the first scenario (with
non-integrated input models). That again shows the separation of concerns and reasons
for separating the two transformations (and their implementations). As expected, the
resulting NS models for both types of input (outputs of the first transformation) were
identical to the NS triple in the matching of the data sets.

7.4.3 NS from Integrated Models

The resulting NS model in XML from the two sets of transformations described above
is a match to a union of the three models transformed separately in the first scenario
(Section 7.3). It is because we used the merged mappings and semantically integrated
the input models without adding new constructs. The issue is with the different naming
of concepts resulting, for instance, in a data element name or a field name. However,
this information (or rather preference) is captured by the order of the mappings merged
together; for example, that class name from UML has a higher priority than the fact name
from ORM. In this way, all overlapping properties are resolved.

The result shown in Figure 7.16 met the expectations. It covers the integrated concepts
based on Figure 7.15 and adds the extra concepts from the original models. Although
integration can combine different concepts together into a single application, it can provide
a way to easily combine behavioural and structural modelling, as visible from this case –
BORM provided processes (flows and tasks) and UML together with ORM contributed to
the structural description. In conclusion, an analyst is needed to either properly define
the semantic integration while omitting unwanted but related concepts from the original
models or manually adjust the resulting model based on final needs.

7.5 Evolvability and Consistency

The third scenario demonstrates how the solution provides support to adopt different
changes, i.e. cope with various change drivers. When we specify the transformation be-
tween a conceptual modelling language (and its metamodel) and NS (and its metamodel),
the mapping is inevitably dependent on the metamodels. Moreover, it also depends on
the mapping specification, in our case, on the Gateway Ontology. We first deal with a
more natural evolution of the input conceptual model; we have the conceptual model and
transform it into NS, but then we need to make changes in the conceptual model again.
Then we show the ability to adopt changes in mappings and metamodels.

175



7. Demonstration Use Cases

Figure 7.16: Data elements transformed from integrated conceptual models

This scenario explains how our solution addresses RO3 and RO4. The mitigation of
change impact and actual adaptability to different types of changes allows evolvability
as described in RO3. Closely related to evolvability is the ability to maintain or verify
consistency according to RO4. We show how the links between models can be kept and
used to check and maintain consistency.

In this scenario, we use the outputs of the first scenario as inputs and trigger various
change drivers as depicted in Figure 7.17. For example, we have an already transformed
conceptual model to NS in XML (with intermediary NS NS in RDF) and we make an
additional change in the original conceptual model – then, we observe how the change
affects the other parts and how it can be propagated and reflected in the resulting NS
model in XML. The output of this scenario is the resulting state of all transformed models
after accommodating the changes.

176



7.5. Evolvability and Consistency

CM-Model NS-RDF

Mapping

NS-Spec
NS-GO4CM

CM-OWLCM-Spec

CM-RDF NS-XML

change

change

change

change

change

Figure 7.17: Change drivers and evolution within transformations

7.5.1 Adopt Changes in Conceptual Model

The most direct change that may occur is an update in a conceptual model that was used
as input for the transformation. A real-world domain evolves, or the model becomes more
precise, resulting in such changes. The new model can be used to re-generate the NS
counterpart; possibly, a merge will be needed with existing changes made on the NS side
(e.g. technical details or custom code craftings).

We demonstrate this type of change using the previous UML class diagram example
for Online Shopping domain (Figure 7.3). We first transformed the model to NS and made
a few changes there: added craftings, application, and component technical information,
and manually added a simple flow to the Payment data element, including a status field.
There are several things to improve the model:

◦ added super class ItemSelection abstracting the common relation to LineItem and
turning it into composition,

◦ added unit price to Product,

◦ added new class Supplier (related to Product),

◦ added custom datatype Address,

◦ changed total of Order, price of LineItem, and is closed of Account to be a
calculated field,

◦ removed phone attribute of Customer.

These changes represent various typical evolutions that may occur: simple additions,
complex refactoring using abstraction, changes in types, or removal of some concepts. After

177



7. Demonstration Use Cases

incorporating the changes in the input model, more specifically its RDF representation, we
transformed it to NS in the same way as in the first scenario. We used two possibilities to
merge the changes with the previously transformed model. First, we merged the models
using well-known VCS Git – created a branch at the point of the previous transformed
version and added the new one as changes, then merged with the parallel changes made
by other NS tooling (technical details and harvested custom code). Second, we use the
reverse transformation from NS to RDF and then enrich it with the new input model.
The first way was, in our case, without issue; in the second, we identified a problem with
removing information from the resulting RDF (e.g. phone field) remained. We improved
the NS-RDF transformation to detect such changes using the stored options in the previous
transformations. For both ways, we achieved a component as shown in Figure 7.18.

Figure 7.18: Data elements transformed for evolved Online Shopping UML class diagram

There was no issue with harvested custom code craftings, as we did not change (remove
or rename) the related elements nor change package configuration. In cases where a change
that affects craftings naming or location occurs, manual intervention is required – moving
and renaming the file accordingly. The reason is that the craftings are not coupled with
the model in the RDF representation, which would automatically allow such rectification.

7.5.2 Adopt Changes in a Modelling Language

A modelling language specification may evolve over time. Some languages use versioning of
their specifications (and metamodels), e.g. UML or BPMN; however, some do not version

178



7.5. Evolvability and Consistency

explicitly. If a change in a specification occurs, it may trigger a change in our mappings
(if the construct is used). Preferably, it should result in a new OWL ontology, and thus
a new mapping as a released language specification (version) should be immutable. Still,
the previous version of both ontology and mapping can be re-used. It consequently results
in an easier “upgrade” of the underlying conceptual models.

To demonstrate how our solution can adopt this type of change, we use BPMN versions
1.2 [171] and 2.0 [158]. It allows us to demonstrate additions, deletions, and edits in the
specification. More specifically, we will focus on the following changes between the BPMN
versions:

◦ added non-interrupting events for a process and event sub-processes for a process,

◦ removed reference tasks with suggested replacement by using a (newly added) call
activity and a global task.

To support BPMN 2.0 while already having BPMN 1.2 supported, the first step is to
create a new OWL ontology for the new version. As the previous version is “frozen”, it can
be copied and adjusted as the new version, i.e. with its new base URI (changed version
fragment) and its own ontology metadata. Then, in the new (not-yet-released) ontology,
the changes of the new specification can be mirrored. In our case, we add the new types
of events, event sub-process class, and remove the reference task construct together with
its properties. When everything is updated, the ontology can be released and “frozen”.

In our case, we also wanted to update the mapping and a simple BPMN model. The
procedures were identical to the updates in the ontology, creating new RDF datasets based
on the previous and changing the used BPMN ontology. This demonstration use case
helped us refine the versioning of the ontologies for conceptual modelling languages. The
ontology must have its own version and be related to a version of the language specification
rather than having just one version of the specification. For example, when we released
and adopted the ontology for BPMN 2.0, then identified an error (such as typing error
or incorrectly captured construct), we need to update the ontology while still referring to
BPMN 2.0. Then, the mapping must be tied to the version of a mapping that supports a
particular language version and not directly to the language version.

7.5.3 Adopt Changes in a Mapping

As mentioned in the previous case for ontologies of the conceptual modelling language,
a mapping also has its own versioning independent of the versioning of both supported
modelling language(s) and the Gateway Ontology (refer to them instead). There may
be external and internal reasons to introduce changes to a mapping that result in its
new version. For external, a change in an ontology for conceptual modelling language or
in the Gateway Ontology may occur and require adoption in mappings; for example, the
extensions layer is enriched with additional constructs to promote DRYness or a new version
of UML specification is available as the OWL ontology. On the other hand, an internal

179



7. Demonstration Use Cases

change is related to improving how the mapping is captured, e.g., increasing coverage
of input/output constructs while keeping the same version of both conceptual modelling
ontology and Gateway Ontology.

This type of change frequently occurred during our design cycle iterations. For the
demonstration, we selected the improvement of our UML class diagram mapping, where
we added the aforementioned aggregation relation with the data child construct of NS.
The mapping has been extended by adding a sub-mapping that creates a data child for
each aggregation (and composition) on the side of a whole. There was no change impact
on existing parts of the UML-NS mapping. After creating this new version of a mapping
that includes the new feature, the input UML models were transformed (again), and the
result was observed. If a change also impacts other existing parts of the mapping, the
appropriate change would also be needed there. However, mapping modularisation helps
to reduce such a negative impact.

7.5.4 Adopt Changes in the NS Metamodel

Whenever a change occurs in the NS metamodel and its new version is released, the change
affects the Gateway Ontology directly and via that also the mappings. To simulate this,
we created an adjusted metamodel with removed data child construct, added a flag to the
link field to indicate aggregation, and changed link field types. If the new version is to be
adopted by our solution; the steps were used as follows:

1. The NS-RDF/OWL tool was rejuvenated with the new NS metamodel, which resulted
in its new version.

2. The new NS-RDF/OWL tool was used to create RDF/OWL representation of the
new NS metamodel (as the core layer of the Gateway Ontology).

3. With the updated core layer, both extensions and transformations layers were also
updated, resulting in a new version of the Gateway Ontology as a whole.

4. After having the new version of the Gateway Ontology, it was possible to update the
mappings in the same way as when a conceptual modelling language is updated.

As a result, we were able to propagate the change from NS metamodel to mappings
and transform the input models into NS using this new version. Due to the modularisation
on all levels and mainly in mappings, the changes were atomic. For instance, in mapping,
we just changed the sub-mapping related to the data child construct and to the link fields.
The changes we used in the demonstration are relatively radical in the sense that NS
metamodel is not expected to remove existing constructs as we did simply. Nevertheless,
it clearly shows the impact on our solution.

180



7.6. Reverse Engineering Normalized System

7.6 Reverse Engineering Normalized System

The fourth and final scenario shows the opposite direction of transformation, i.e. how a
model in NS (e.g., an existing information system) can be transformed into a conceptual
model. We use UML as the target modelling language and the custom e-Commerce Nor-
malized Systems component to demonstrate this feature. After transforming the model via
reverse mapping, we discuss the resulting UML models. Also, we show how consistency is
maintained with respect to the previous scenario.

We address again RO1 in this scenario, more specifically its “and vice versa” part.
Furthermore, we can also check the consistency of this reverse transformation, as we have
already shown with respect to RO4.

BORM

ORM

UML

e-Commerce
Normalized
System

NS-RDF

CM-RDF

NS-XML

Figure 7.19: Reverse transformation from NS to conceptual models

An input in this scenario is an NS model in XML (created using NS modelling tools).
Then the transformation is reversed compared to the first two scenarios. NS-RDF/NS
transformation is used to obtain NS in RDF. It is then used for transformation to various
conceptual models (in different modelling languages). The second transformation utilises
inverted mappings. Both the intermediary NS in RDF and the conceptual models in RDF
are outputs of the scenario.

7.6.1 Normalized e-Commerce System

Based on the experience with the input conceptual models in the previous parts, we created
an NS application for e-Commerce solution. It covers the key concepts of the conceptual
models together with their properties and relations. However, we designed it in a way
suitable for NS as if we want to expand it and use the enterprise information system.
There are three components: orders (Figure 7.20), products (Figure 7.21), and shared.

The component orders covers user accounts, payments, ordering, and delivery. It
uses products and shared as component dependencies to enable reference to Address and
Product data elements. Similarly, the products component depends on shared. It cov-

181



7. Demonstration Use Cases

ers products, their categorisation, parameters, brands, and suppliers. Finally, the shared
component contains only a definition of the Address data element.

Figure 7.20: Orders component of eCommerce NS Application

There are also various constructs used that are not visible from the provided visuali-
sation; however, they are taken into account in mappings and thus transformations. For
example, Order has data child OrderItem. Another important construct is the field option
isRequired used for both the value and link fields. Last but not least, there are also flows
and tasks related to status fields of various data elements.

7.6.2 Reverse Transformation to UML via RDF

The first step of transformation from NS to UML is to use the NS-RDF/OWL tool. The
resulting RDF dataset contains the model of e-Commerce solutions (all its components)
encoded using the NS metamodel ontology, i.e. core of the Gateway Ontology. To quickly
verify how many constructs (e.g. data, task, and flow elements) were transformed, we used

182



7.6. Reverse Engineering Normalized System

Figure 7.21: Products component of eCommerce NS Application

a simple SPARQL query. It also demonstrates the basics of possibilities to analyse NS
models transformed to RDF in terms of reverse engineering.

To allow for the reversed transformation from NS-in-RDF to UML-in-RDF, we had
to improve the mapping to support bi-directionality. Instead of creating a totally new
mapping, which would be possible but more laborious, we added its inverted variant for each
of the sub-mappings. Then, we were able to use the mapping and execute transformation
resulting in UML. We tried both pure UML-in-RDF and enriching mode that adds UML-
in-RDF to the input NS-in-RDF.

7.6.3 Resulting UML Model from NS

The target was set to have the class and state machine diagrams in UML separated into
packages according to the input components. To finalise the transformation from NS to
UML, we transformed UML-in-RDF to UML class diagrams and state machine diagrams
using computer-aided software engineering (CASE) tool Enterprise Architect. This trans-
formation has been done manually similarly to what we transformed selected e-Commerce
UML diagrams, e.g. for the Litium case, to RDF. Although it carries the same information
as is encoded in RDF, visualisations are essential in reverse engineering.

183



7. Demonstration Use Cases

Parameter

- description: String
- name: String
- unit: String

ParameterValue

- value: String

Brand

- name: String

«datatype»
Address

- city: String
- country: String
- street: String
- streetNumber: String
- zipCode: String

Supplier

- address: Address
- name: String

ParameterType

- name: String

SupplierType

- name: String

Product

- description: String
- name: String

Category

- description: String
- name: String

b r a n d  

1

0..*

supplierType 

1

0..*

 suppliers
0..*1..*

 product
1 0..*

parameter 
1

0..*

parameterType 
1

0..*

categories 

1..*

0..*

parentCategory 

0..1

0..*

Figure 7.22: Resulting UML class diagram from Products component

7.6.4 Consistency for Reversed Transformation

While working on this case, we iteratively improved the URI composition while trans-
forming from NS to RDF. The main cause is that while transforming an NS model, there
are constructs that are not used in the NS metamodel itself, for example, the data child
construct. The URIs identifying constructs in RDF are based on context and naming. A
potential future improvement would be the identification via Universally Unique Identifier
(UUID) that is part of NS model directly.

The consistency can be maintained as long as the URI remains persistent for the con-
struct/concept it identifies. For example, a data element Order has its URI which is used
in both NS-in-RDF and UML-in-RDF. Then, when we update the counterpart UML or
NS, the construct in RDF can be updated via URI.

7.7 Demonstration Summary

In this chapter, we demonstrate how all the designed artefacts could be used with respect
to our research objectives formulated in Section 1.2. As shown, the proposed NS Gateway
Ontology for Conceptual Models allows transforming between conceptual models and NS
models while maintaining consistency and enabling evolution at different levels. The com-
plete input, results, and documentation in Appendix A serve as an example of operations
for artefacts and proofs of its capabilities in different use cases.

184



7.7. Demonstration Summary

Concerning Design Science Research (DSR), this part of our work is also essential.
First, it helped to evaluate and refine the artefacts during their development (in the design
cycle according to Figure 1.3). Second, since it describes real-world scenarios related to
our target environment, it also serves as a field testing of the relevance cycle. Finally,
documented use cases contribute to the knowledge base via the rigour cycle.

185





Chapter 8

Main Results

“Accomplishment will prove to be a
journey, not a destination.”

Dwight D. Eisenhower

This chapter provides a concise discussion of the main results and how they were
achieved in terms of Design Science Research (DSR). In the previous chapters, we presented
the designed artefacts that together form our solution for the transformation between con-
ceptual models and Normalized Systems (NS). Here, we discuss these by-design reusable
artefacts, their usability in our as well as other use cases together with other consequences
of their (re-)use in practice and future research.

187



8. Main Results

8.1 Applied Design Science Research

When summarising our results, it is important to retrospectively evaluate how the results
were actually achieved by applying to the DSR methodology. It guided our research from
the problem statement to the demonstrated and evaluated that meet the research objec-
tives. We followed the process of DSR captured in Figure 1.2 according to Peffers et al. [40]
with the problem-centred initiation. The research objectives did not have to be adjusted
during the work, although the process allows that. The main reason is that the topic of
the dissertation thesis and its ensuing goals was fixed after the initial study based that
helped to consolidate the objectives.

In Chapter 1, we formulated the problem statement as well as outlined the research
objectives. The design and development of artefacts is the “centre of gravity” of this
dissertation thesis. First, Chapter 3 covers the overall design and its decomposition into
partial artefacts that together fulfil the research objectives. Then, Chapter 4, Chapter 5,
and Chapter 6 describe the design and development of these partial artefacts together with
its evaluation and discussion on process iteration related to design refinements. Finally,
Chapter 7 demonstrates the use of partial, as well as whole, solution and aggregate eval-
uation. The last step of the process, the communication, is this dissertation thesis itself
and the partial publication that are used as references.

Chapter 3 also specified the requirements according to Figure 3.1 based on the work
of Braun et al. [41]. Despite the fact that the requirements may sound tightly related
to software engineering and not as part of rigour research, their use significantly helped
to modularise the research objectives, evaluate and refine the design artefacts. A vital
aspect of the requirements is their relation to the existing knowledge base and target
environment (i.e. domain and stakeholders) in the form of theory-based, contextual, and
adapted categories of requirements.

In terms of functional requirements, we fulfilled and demonstrated all of them in Chap-
ter 7. The theory-based and context-based requirements affected the design and realisation
of the designed artefacts to follow the best practices and provide relevant results for the
target environment. Finally, the adapted requirements (which were already mapped to
our other requirements) connected our work with the previous solutions and conclusions of
similar approaches. When we look back at the particular requirements, we can summarise
their fulfilment as follows:

◦ FR1, FR2, and FR3 are accomplished as we do not place any limitations on the use
of the conceptual modelling language use and our solution provides a versatile way
of mapping and transformation execution for any knowledge represented in Resource
Description Framework (RDF). Still, to proof the possibility for the required branches
of conceptual modelling we covered structural (UML and OntoUML), behavioural
(UML, BORM, and BPMN), and fact-based (ORM) modelling.

◦ The versatility and use of RDF also enables semantic integration (FR4), we presented
an example where the knowledge from the conceptual model is integrated and then
transformed to NS.

188



8.1. Applied Design Science Research

◦ All our artefacts are designed following the DSR methodology, and thus their design
cycle may re-initiate (FR5) when new requirements emerge.

◦ The mapping specification, according to our design, efficiently supports bi-directionality
(FR6). The consistency is also managed via our transformation design that enriches
the input instead of providing detached output.

◦ NR1 and NR2 were addressed already in terms of FR5 and was achieved by following
DSR.

◦ The design of our artefacts is based on standard technologies that are well-documented
and thus suitable for re-use (NR3). With the publishing of the dissertation thesis the
artefacts will be made accessible and findable together with the specific realisations
of the design, e.g. OntoBORM ontology or tool for transformation.

◦ NR4 is addressed by the relevant artefacts. For instance, the NS-RDF/Web Ontol-
ogy Language (OWL) tool is expanded not only for the evolvability reasons but to
promote DRYness. Other examples are the extensions and transformations layers
of the Gateway Ontology that encapsulate repeated patterns in the mappings and
provide additional re-usable constructs.

◦ NR5 as well as NR7 were fulfilled by not relying on any particular technologies in the
designs except semantic web technologies. Furthermore, the realisation of designed
artefacts is also compliant with the requirements.

◦ The documentation (NR6) is this dissertation thesis itself together with its appendices
as it describes completely the overall design and the design of the partial artefacts.
The realisations are documented typically for their type (e.g. metadata and generated
documentation for ontology or documentation comments in source codes).

As an important insight, it would be better to specify the requirements with measurable
“hard” metrics for evaluation purposes. However, that was not achievable for our research
objectives and ultimate goals. We could measure, for instance, the execution time needed
for the transformation with different sizes of models. Nevertheless, such metrics would
be artificial and not actually relevant to our goals. Therefore, our requirements served as
something that must be fulfilled in the best possible way. In the minimum of cases where
there are certain limitations, we always provide the necessary explanation. As a follow-up
to this insight, we plan to work on a proposal of an evaluation framework related to the
DSR methodology.

The procedures based on the three-cycle view already shown in Figure 1.3 also positively
affected our work. We continually enriched (according to the rigour cycle) the relevant
knowledge base represented by Chapter 2 as well as made partial contributions to it through
publications of our works [A.1]–[A.18]. We also made other contributions [A.19]–[A.27]
that does not directly relate to this dissertation thesis but undoubtedly provided helpful

189



8. Main Results

experience. The same applies to supervised theses of bachelor and master students [A.29]–
[A.44] that were related to information system development, use or review of Model-Driven
Development (MDD) methods, or complex software design. The relevance cycle was used
to confront our artefacts with the NS environment, existing applications, models, libraries,
and stakeholders. Finally, as discussed for each artefact, the design cycle helped to refine
the artefacts, try different approaches, and let the artefacts mature into the final form as
shown in Figure 8.1.

Figure 8.1: Designed artefacts and their dependencies

The guidance provided by the DSR methodology through our entire work on the dis-
sertation thesis significantly contributed to the quality and relevance of the final results
further presented in this chapter. Moreover, it helped to learn from existing previous work
and let us contribute to the knowledge base for others. In this way, our results are also
by-design re-usable for future work.

8.2 NS-RDF/OWL Transformation

The designed partial artefact of our framework that solves the transformation between NS
and RDF as described in Chapter 4 is a treasure of this dissertation thesis on its own. It
clearly demonstrates the power of NS theory, as well as its implementation in software. The
design takes advantage of the provided NS infrastructure (which is itself expanded from
the NS metamodel) and the meta-circularity. We generically specified the design with
descriptions of algorithms used so it can also be used with other metamodels compliant to
the NS metametamodel.

190



8.3. OWL Ontologies for Conceptual Modelling

After the experience gained with the traditionally implemented tool, we shifted to incor-
porating the expanders to generate source code that actually performs the transformation.
The manifestation of meta-circularity in the design is showing how NS enables evolvabil-
ity. The NS metamodel is used to generate the transformation classes, but can also be
used as an input to the tool that is generated from it. Moreover, it is feasible to develop
other metamodels based on NS metametamodel and do the same for those. The expanders
themselves are not even complex in the number of source code lines.

The design following the set requirements allows extensions and simplifies potential
future development. The expanders can use so-called features, and in the tool, custom
code craftings can be added to extend the base functionality. We also took advantage of
this technique, and the OWL part is implemented using such craftings. That results in a
clear separation of concerns and thus in evolvability of the solution.

The design of the transformation tool and its reference implementation utilising ex-
panders can be used outside our framework and concerns related to conceptual modelling.
It can plainly serve to provide RDF serialisation (or projection) of NS models for other
purposes such as analysis, semantic integration, or data transfer. The tool with its design
can also serve as an example for other similar projects, where a different type of NS model
manipulation is desired.

8.3 OWL Ontologies for Conceptual Modelling

As part of this dissertation thesis, we developed several OWL ontologies based on concep-
tual modelling language specifications and metamodels. It was a reaction to the lack of
interoperability in conceptual modelling. The practical side of this issue is emphasised also
in our demonstration where most of the models are distributed as figures of diagrams, in
a better case using a tool-specific format. Although we reviewed existing methods and re-
lated work, we identified only BPMN 2.0 Ontology [160] as usable with respect to our goals.
In the end, we designed and created ontologies for well-known conceptual languages: UML
(supporting Class Diagram, Activity Diagram, and State Machine Diagram) with profiles
support, OntoUML, BPMN (Collaboration Diagram), BORM, and ORM. The detailed
description is provided in Chapter 5. The ontologies are designed with respect to our
requirements as well as current best practices. Moreover, all the ontologies are provided
with documentation and examples.

The ontologies can be easily reused in other scenarios due to following the requirements
related to FAIRness. The ontologies have open licenses and are prepared for further de-
velopment and community contributions when needed. That said, the clear versions and
transparent track of changes allow referring to versions related to this dissertation thesis.
Also, with proper versioning, the ontologies may evolve independently on our gateway on-
tology and mappers. The mappers may be updated when necessary to another specific
version of the ontology describing the language metamodel. This approach does not limit
future use or further development in any way.

191



8. Main Results

In the scope of the dissertation thesis, we designed the ontologies as a way to have well-
defined conceptual models in RDF. We do not provide any universal tool that automates
the transformation of conceptual models from various standard or non-standard (i.e. tool-
specific or language-specific) formats to RDF. Nevertheless, for other use cases, it may
be necessary to support such a transformation in addition to our contributions. Another
aspect of why we did not tackle these transformations is that (in contrast to NS-RDF/OWL
transformations), the work on translating formats with both specified syntax and semantics
is not research-related but falls into straightforward software development. Still, with the
number of formats in the current world of conceptual modelling, it can be long-term work.
Therefore, we foresee implementing such a transformation on a “when-needed” basis.

8.4 SPARQL-Based Mappings in RDF for Versatile

RDF Transformations

The key partial contribution of the dissertation thesis is the method for defining the map-
pings between different RDF datasets directly in RDF. It does so by providing an OWL on-
tology with constructs usable in SPARQL Protocol and RDF Query Language (SPARQL)
CONSTRUCT query, e.g. use of a variable in input/output triple patterns. Moreover, by ap-
plying NS principles, the method allows modularity of the mappings that leads to improved
evolvability and potential re-use of mapping modules. The execution of the transforma-
tion then involves translating the mappings in RDF according to the attached metadata to
SPARQL CONSTRUCT queries that are then sequentially applied to transform RDF dataset.

Both the method and the created transformation tool can be used for any scenario
where RDF dataset need to be enriched or transformed using defined mapping patterns
using any OWL or Resource Description Framework Schema (RDFS) ontologies. We used
the method for transformation between our ontologies for the conceptual model and NS
metamodel as an ontology in OWL. Furthermore, we created the Gateway Ontology to
simplify the specification of the mapping when relating different ontologies to the NS
ontology. Our extensions and transformations layers provide additional constructs that
can be reused and seen as shortcuts when using the SPARQL-based mappings together
with NS-in-RDF/OWL.

The way we used the SPARQL-based mappings, the transformation tool, and created
the Gateway Ontology, as well as the mappings for conceptual modelling languages, are
themselves a contribution that can serve as an inspiration for related further research and
work on the mappings. By having the mappings in RDF, metacircularity is enabled, and,
potentially, a mapping that creates other mappings can be introduced.

8.5 CM-NS Transformations

The primary goal set by the research hypothesis (and subsequent objectives) is achieved
successfully by completing all the partial artefacts that make up the framework of trans-

192



8.6. RDF/OWL-Based MDD Framework

formation between the conceptual models and NS. The requirements set according to the
DSR methodology in Chapter 3 were fulfilled and the partial artefacts, as well as the overall
solution, have been described and demonstrated.

Regarding the demonstration of the use of our transformation framework, since we
did not create just a theoretical design, but materialised it for evaluation purposes, we
explained and showed several use cases in Chapter 7 that clearly reveal the capabilities of
our work. The reference implementation served for evaluation and continuous improvement
according to the design cycle. It also proves the possibility of transformations between
various conceptual models (eventually semantically integrated) to NS and vice versa.

Despite the readiness of the reference implementation to be directly used for such
transformations, it is also prepared for future evolution as external dependencies are also
expected to evolve. The evolvability lies in the architecture and application of NS principles
as well as other contextual and theory-based requirements. The essence of evolvability lies
in the independent evolvability of the partial artefacts.

8.6 RDF/OWL-Based MDD Framework

The overall generic design of ontology-based model-to-model transformation utilising RDF
technologies and NS principles is itself a re-usable artefact. For different types of input
and output models, one can follow our steps and the architecture presented with a gateway
ontology as the central part. The framework is conceptually capable of supporting not only
new conceptual models, but also other implementation ontologies that might follow NS.
Therefore, it can be considered as a kind of bus-like hinge between conceptual models
and implementation ontologies. In this way, the architecture can be applied for a different
implementation-oriented language, e.g. mentioned Executable Translatable UML (xtUML)
or Foundational UML (fUML) with Action Language for Foundational UML (ALF). To
support that, a transformation with the corresponding tool would have to be created (e.g.
xtUML-RDF/OWL tool). Then the gateway ontology layers would need to be adjusted to
the new core layer. Still, our work on the side of conceptual models could be re-used.

On the other hand, the architecture can be altered not to relate with conceptual models
in general but with another kind of input, for example, using formal specification meth-
ods or reference ontologies (in various ontology languages). This would require creating
RDF/OWL representations of those, corresponding mappers for the gateway ontology,
and adjustments in the transformations and extensions layers based on the supported in-
put constructs. However, the ability to cope with changes in all planes would be retained.
In the end, formal specifications or various ontologies could be transformed into NS.

With both of the cases described, the whole stack could be changed and support totally
different inputs and outputs for transformations than we do, for instance, formal specifica-
tions in combination with xtUML – xtUML Gateway Ontology for Formal Specifications.
Our design is based on specific requirements for conceptual modelling and NS; therefore,
minor adjustments and extensions may be needed. Still, the flexible design enables such
changes in partial artefacts (or modules).

193





Chapter 9

Conclusions

“Work. Finish. Publish.”

— Michael Faraday

In this chapter, we conclude the dissertation thesis by summarising the results achieved
based on research objectives for the dissertation thesis. Then, we briefly recapitulate the
main contributions. Finally, we also present our prospects for further research directions
in the scope of potential future work.

195



9. Conclusions

9.1 Summary

In this dissertation thesis, we present the Normalized Systems Gateway Ontology for Con-
ceptual Models as a framework for transformation between various conceptual modelling
languages and Normalized Systems (NS) while addressing semantic integration and model
consistency issues. Due to the following the Design Science Research (DSR) methodology,
we designed the overall solution from partial artefacts that are fulfilling the set research
objective and the environmental requirements. Following the requirements and the analysis
performed, we based our work on Resource Description Framework (RDF) and Web On-
tology Language (OWL). The framework consists of several transformation mechanisms
developed as separate artefacts. First, we worked on transformations between NS and
RDF/OWL where we incorporated the NS expanders. Then, we focused on the side of
conceptual models and proposed their representation using RDF. With both conceptual
models and NS models, we designed the gateway ontology with its layered architecture as
the central part for transformations.

The core layer of the gateway ontology is formed by the NS metamodel generated using
our NS-RDF/OWL transformation. The extensions and transformations layers provide
additional constructs for mapping conceptual modelling languages to the NS metamodel.
Finally, each modelling language has its own mapper module that describes how the con-
structs of the modelling language relate to the NS constructs. With all the semantics
needed for the transformation captured, we were able to design the SPARQL-based ex-
ecution of the transformation. The framework was also successfully demonstrated with
models based on real-world e-commerce systems.

Concerning the research hypothesis, we confirmed by the reference implementation of
the gateway ontology framework that it is possible to design transformations between
conceptual and NS models. The evolvability and configurability is the essence of our
solution, as it is based on the versatile and interoperable technologies of RDF and OWL.
Furthermore, it utilises the NS principles on the design level together with the NS expanders
on the implementation level. The modular architecture and design of the partial artefacts
enable extensions, especially in form, adopting additional modelling languages in the future.

The first research objective (RO1) is achieved by basing the design on the technologies
of the semantic web and linked data. As shown in Chapter 5, the knowledge in various
models can be integrated in a way that is straightforward and verified by practice. It allows
one to combine knowledge about a problem domain of different aspects and provide a com-
prehensive domain description that can be used for Model-Driven Development (MDD).
The advantage is apparent – more information in the machine-readable format results in
more complete generated software, and thus less custom code needed.

We split the second research objective (RO2) based on DSR into three requirements
for our design – to support structural, behavioural, and fact conceptual modelling as the
most significant types of modelling used in software engineering. Our design itself does not
make any assumptions about the aspects of the model, and theoretically, any formalised
modelling language can be used (as described in Chapter 6). We demonstrated the use
of our framework for these three different types to show this feature in Chapter 7. The

196



9.2. Contributions of the Dissertation Thesis

information loss is mitigated by storing additional constructs that are not covered directly
in NS within so-called options (e.g. data options). That allows their retrieval for analysis
and to keep models consistent.

As explained, the third research objective (RO3) related to the evolvability is addressed
by the selected technologies and use of NS theory. The modularisation in the overall de-
sign (as presented in Chapter 3) follows the NS principles. The separation of concerns into
layers and encapsulation within layers to modules limits the change impact. For exam-
ple, changes in modelling language specification are encapsulated within its own mapper
module. Similarly, a change in the NS metamodel is projected in the core layers of the
gateway ontology using expanded NS-RDF/OWL transformation (described in Chapter 4).
All parts can be versioned and evolved independently by simply ensuring the conformance
of the interfaces between versions – just as in NS software applications.

Finally, the fourth research objective (RO4) on consistency is achieved by avoiding
information loss and allowing bi-directional transformation. Both RDF and NS have con-
structs for keeping additional knowledge that cannot be captured directly using defined
constructs from metamodels or ontologies. In RDF, we attach the additional data from
the NS models using the constructs specified in the gateway ontology. On the other hand,
additional data from conceptual models are stored using options of constructs NS models,
as already mentioned. The gateway ontology presented in Chapter 6 enables bi-directional
transformation as a mapping specification for a conceptual modelling language is reversible.
With that and the elimination of information loss, the transformation can be executed in
both directions. Thus, one can bring changes made in a conceptual model can be brought
back to the NS model and vice versa.

All research objectives are successfully accomplished, and the resulting artefacts are
presented. The designed framework is completed with its reference implementation that
served for demonstration and evaluation according to DSR. However, it can be used directly
to transform models in real-world scenarios and further evolve with newly emerging needs.
The design itself, as well as the partial artefacts, can also be re-used for different use cases
in the area of software engineering and MDD as our contribution to the current knowledge
base.

9.2 Contributions of the Dissertation Thesis

The main contributions of the dissertation thesis are:

◦ the design of model-to-model transformation based on RDF/OWL,

◦ the evolvable transformation between NS elements and RDF/OWL,

◦ OWL ontologies for conceptual modelling using RDF,

◦ the SPARQL generation method for RDF transformations,

◦ the framework for transformations between NS and conceptual models.

197



9. Conclusions

Moreover, as discussed in Chapter 8, our architecture as well as its partial artefacts can
be re-used to create transformations with different modelling languages and other MDD
techniques than NS. These contributions are our extension of the knowledge base according
to DSR and its rigour cycle.

9.3 Future Work

Whilst designing the transformation between NS and conceptual models, we identified
several related research topics that are beyond our scope. However, it might be beneficial
to explore them in the future as a result of subsequent research. Some of these topics
are (re-)using our work (the new contributions to the knowledge base) for different or
extended use cases, whereas others were identified as gaps in the existing knowledge base.
We suggest exploring the following research topics:

◦ Extending modelling languages support – One of the by-design intended future steps
is to support another conceptual modelling language needed for specific use cases.
We support the most widely used structural, behavioural, and fact modelling rep-
resentatives. However, for some non-traditional enterprise systems, it might also be
needed to support other languages. For example, a legacy system described in Vi-
enna Development Method (VDM) or Z-Notation, or a low-level system (e.g. for
Internet of Things) modelled in SysML. The research work would need to investigate
the metamodel of the specific language, specify OWL ontology, and create the cor-
responding mapping. The recommended way is to follow the same steps as we used
the DSR methodology. The field testing with existing models and their analysis can
be expected as an evaluation.

◦ Using conceptual models in RDF/OWL – The interoperability issues in conceptual
modelling as one way to abstract and capture domain knowledge need to be addressed
and the appropriate solution adopted by the broad community. As is clearly shown in
this dissertation thesis, interoperable conceptual models open many new possibilities.
RDF together with OWL and related technologies turned out to provide a “lingua
franca” and a good environment for working with interoperable conceptual models.
As we tackled SPARQL and SHACL, there are other possibilities to be explored to
promote the interoperability of conceptual models, but also to enable new ways of
using them. For example, SHACL and ShEx could be used to specify and validate
constraints on models similarly to OCL or RML to obtain semantic RDF data from
other formats of conceptual models such as XMI. The use of inference engines and
mechanisms for RDF could also show its value for conceptual modelling. Finally,
conceptual models are often tied to their graphical representation; being able to
capture it as an appendix to the semantics of the language metamodel would help
address this issue of keeping conceptual models in RDF. A crucial part of this research
journey should also be a thorough comparison with other techniques, for instance,
Meta-Object Facility (MOF)-based Query/View/Transformation (QVT).

198



9.3. Future Work

◦ Incorporating UI modelling languages – The conceptual modelling of a problem do-
main is not the only modelling of software engineering. Promising work is being
done in the field of User Interface (UI) modelling. It can be seen as a natural
complement to domain conceptual models that can be used by an MDD technique
to generate software. Nevertheless, such a system must use a generic UI. For ex-
ample, NS have its forms, tables, waterfall views, or component-based menus. By
supporting languages and methods of the so-called Model-Driven UI Development
such as Interaction Flow Modeling Language (IFML) or UML-based Web Engineer-
ing (UWE), more information for generating the software system (now including its
UI aspect) would be reachable. Our framework provides a good foundation for this
effort. The future work could extend UI modelling in NS (through its metamodel
and expanders), then update the core of the gateway ontology seamlessly, and finally
provide a way for mapping language such as IFML by enhancing the extensions layer
of the gateway ontology and creating a corresponding mapper. As an evaluation,
the improvement in limiting UI-related custom code craftings could be measured on
existing NS applications.

◦ Comparing methods for systems generation – The ability of transformation between
conceptual models and NS can be used as a part of a “testbed” to compare different
MDD methods. For example, we proposed a solution for expanding NS directly from
textual requirements using the Textual Modelling System (TEMOS) tool [A.14]. The
tool also supports the creation of UML models from the text while dealing with
issues of ambiguity, incompleteness, and inconsistency [172]. It could be interesting
to observe the results for text-to-NS and text-to-UML-to-NS. A similar approach
could be applied even to other tools and methods. With adding support to generate
another type of implementation-related models than NS it could even be possible
to compare the ability of such MDD methods to adopt constructs from different
conceptual modelling languages.

◦ Generating craftings from conceptual models – The scope of our work was focused
on the transformation between conceptual models and NS models; however, a helpful
addition would be a support of transforming not just to NS elements but also code
fragments. The additional information from conceptual models is currently encoded
using options constructs, e.g., data options or field options. Future work could use
this “dangling” information to generate code fragments and limit the number of
manually-maintained craftings. Several approaches might be explored to achieve
this goal, e.g., generating additional harvest files or designing the so-called expander
features. A profound impact analysis would be necessary to evaluate if maintaining
such mappings and generation is not causing higher overhead than maintenance of
the manually-coded craftings that the technique can generate.

◦ Refining models and mappings with AI methods – The techniques and methods of
artificial intelligence (AI) as well as natural language processing (NLP) are often used
with RDF datasets. With our solution, the conceptual models, the gateway ontology,

199



9. Conclusions

mappers for modelling languages, and NS are in RDF. Therefore, such methods could
be used to analyse the models and find potential refinements. For instance, similar
patterns might be found across different language mappers to propose some new
abstractions to be incorporated into the extensions layer of the gateway ontology.
With such an approach, mapper maintenance could become more efficient. Such
further research work could also result in the proposal of such bottom-up emerged
extensions to become a part of the NS metamodel.

◦ Analysing existing systems and their evolution – Our work (as a side effect) allows
us to transform existing NS models into RDF. This feature can be used to analyse
existing systems, find similarities, and uncover essential facts that would be difficult
to discover at the NS level. Such analysis can utilise the entire arsenal of RDF-
compatible techniques including inference, NLP or AI methods. There are existing
works on the NS level, e.g. counting and comparing the custom code craftings across
different NS applications. A potential first step could be to rework them with the
use of RDF, enhance them, and compare them with the previous solution.

200



Bibliography

[1] Mannaert, H.; Verelst, J.; et al. Normalized Systems Theory: From Foundations for
Evolvable Software Toward a General Theory for Evolvable Design. Kermt, Belgium:
Koppa, 2016, ISBN 978-90-77160-091.

[2] Krouwel, M. Towards the Agile Enterprise: A Method to Come from a DEMO
Model to a Normalized System, Applied to Government Subsidy Schemes. Mas-
ter’s thesis, TU Delft, 2010. Available from: http://resolver.tudelft.nl/uuid:
a170e23f-9fee-45fd-b99b-3a85e4d551cf

[3] Krouwel, M. R.; Land, M. O. Combining DEMO and Normalized Systems for De-
veloping Agile Enterprise Information Systems. In Advances in Enterprise Engineer-
ing V – First Enterprise Engineering Working Conference, EEWC 2011, Antwerp,
Belgium, May 16-17, 2011. Proceedings, Lecture Notes in Business Information Pro-
cessing, volume 79, edited by A. Albani; J. L. G. Dietz; J. Verelst, Springer, 2011,
pp. 31–45, doi:10.1007/978-3-642-21058-7 3.

[4] Vo, H. L. M.; Hoang, Q. Transformation of UML Class Diagram into OWL Ontology.
Journal of Information and Telecommunication, volume 4, no. 1, 2019: pp. 1–16, doi:
10.1080/24751839.2019.1686681.

[5] Sadowska, M.; Huzar, Z. Representation of UML Class Diagrams in OWL 2 on the
Background of Domain Ontologies. Software Engineering Journal, volume 13, no. 1,
2019: pp. 63–103, doi:10.5277/e-Inf190103.

[6] Zedlitz, J.; Jörke, J.; et al. From UML to OWL 2. In Knowledge Technology –
Third Knowledge Technology Week, KTW 2011, Kajang, Malaysia, July 18-22, 2011.
Revised Selected Papers, Communications in Computer and Information Science,
volume 295, edited by D. Lukose; A. R. Ahmad; A. Suliman, Springer, 2011, pp.
154–163, doi:10.1007/978-3-642-32826-8 16.

[7] Belghiat, A.; Bourahla, M. From UML Class Diagrams to OWL Ontologies: A Graph
Transformation Based Approach. In Proceedings of the 4th International conference
on Web and Information Technologies, ICWIT 2012, Sidi Bel Abbes, Algeria, April
29-30, 2012, CEUR Workshop Proceedings, volume 867, edited by M. Malki; S. Ben-
bernou; S. M. Benslimane; A. Lehireche, CEUR-WS.org, 2012, pp. 330–335. Avail-
able from: http://ceur-ws.org/Vol-867/Paper38.pdf

201

http://resolver.tudelft.nl/uuid:a170e23f-9fee-45fd-b99b-3a85e4d551cf
http://resolver.tudelft.nl/uuid:a170e23f-9fee-45fd-b99b-3a85e4d551cf
http://ceur-ws.org/Vol-867/Paper38.pdf


Bibliography

[8] Gasevic, D.; Djuric, D.; et al. Converting UML to OWL Ontologies. In Proceedings
of the 13th international conference on World Wide Web – Alternate Track Papers
& Posters, WWW 2004, New York, NY, USA, May 17-20, 2004, edited by S. I.
Feldman; M. Uretsky; M. Najork; C. E. Wills, ACM, 2004, pp. 488–489, doi:10.1145/
1013367.1013539.

[9] Memon, M. A.; Hassan, Z.; et al. Aspect Oriented UML to ECORE Model Transfor-
mation. ISC International Journal of Information Security, volume 11, no. 3, 2019:
pp. 97–103, doi:10.22042/isecure.2019.11.0.13.

[10] Cunha, A.; Garis, A. G.; et al. Translating between Alloy Specifications and UML
Class Diagrams Annotated with OCL. Software and Systems Modeling, volume 14,
no. 1, 2015: pp. 5–25, doi:10.1007/s10270-013-0353-5.

[11] Shah, S. M. A.; Anastasakis, K.; et al. From UML to Alloy and Back Again. In Mod-
els in Software Engineering, Workshops and Symposia at MODELS 2009, Denver,
CO, USA, October 4-9, 2009, Reports and Revised Selected Papers, Lecture Notes in
Computer Science, volume 6002, edited by S. Ghosh, Springer, 2009, pp. 158–171,
doi:10.1007/978-3-642-12261-3 16.

[12] Anastasakis, K.; Bordbar, B.; et al. On Challenges of Model Transformation from
UML to Alloy. Software and Systems Modeling, volume 9, no. 1, 2010: pp. 69–86,
doi:10.1007/s10270-008-0110-3.

[13] Khlif, W.; Ayed, N. E. B.; et al. From a BPMN Model to an Aligned UML Analysis
Model. In Proceedings of the 13th International Conference on Software Technologies,
ICSOFT 2018, Porto, Portugal, July 26-28, 2018, edited by L. A. Maciaszek; M. van
Sinderen, SciTePress, 2018, pp. 657–665, doi:10.5220/0006866606570665.

[14] Cibrán, M. A. Translating BPMN Models into UML Activities. In Business Pro-
cess Management Workshops, BPM 2008 International Workshops, Milano, Italy,
September 1-4, 2008. Revised Papers, Lecture Notes in Business Information Pro-
cessing, volume 17, edited by D. Ardagna; M. Mecella; J. Yang, Springer, 2008, pp.
236–247, doi:10.1007/978-3-642-00328-8 23.

[15] Braga, B. F. B.; Almeida, J. P. A.; et al. Transforming OntoUML into Alloy: Towards
Conceptual Model Validation using a Lightweight Formal Method. Innovations in
Systems and Software Engineering, volume 6, no. 1-2, 2010: pp. 55–63, doi:10.1007/
s11334-009-0120-5.

[16] Barcelos, P. P. F.; dos Santos, V. A.; et al. An Automated Transformation from
OntoUML to OWL and SWRL. In Proceedings of the 6th Seminar on Ontology
Research in Brazil, Belo Horizonte, Brazil, September 23, 2013, CEUR Workshop
Proceedings, volume 1041, edited by M. P. Bax; M. B. Almeida; R. Wassermann,
CEUR-WS.org, 2013, pp. 130–141. Available from: http://ceur-ws.org/Vol-1041/
ontobras-2013 paper44.pdf

202

http://ceur-ws.org/Vol-1041/ontobras-2013_paper44.pdf
http://ceur-ws.org/Vol-1041/ontobras-2013_paper44.pdf


Bibliography

[17] Halpin, T. A. Information Analysis in UML and ORM: A Comparison. In Advanced
Topics in Database Research, volume 1, edited by K. Siau, IGI Global, 2002, pp.
307–323, doi:10.4018/978-1-930708-41-9.ch016.

[18] Halpin, T. A. Comparing Metamodels for ER, ORM and UML Data Models. In
Advanced Topics in Database Research, volume 3, edited by K. Siau, IGI Global,
2004, pp. 23–44, doi:10.4018/978-1-59140-255-8.ch002.

[19] Halpin, T. A. Information Modeling in UML and ORM. In Encyclopedia of Informa-
tion Science and Technology, edited by M. Khosrow-Pour, IGI Global, first edition,
2005, pp. 1471–1475, doi:10.4018/978-1-59140-553-5.ch258.

[20] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation Specification. Technical report, Object Management Group (OMG), June
2016, [Accessed 24 May 2022]. Available from: https://www.omg.org/spec/QVT/
1.3/PDF

[21] Eclipse Foundation, Inc. ATL Transformation Language. [online], 2022, [Accessed
22 March 2022]. Available from: https://www.eclipse.org/atl/

[22] Amelunxen, C.; Königs, A.; et al. MOFLON: A Standard-Compliant Metamodeling
Framework with Graph Transformations. In Model Driven Architecture – Founda-
tions and Applications, 2nd European Conference, ECMDA-FA 2006, Bilbao, Spain,
July 10-13, 2006, Proceedings, Lecture Notes in Computer Science, volume 4066,
edited by A. Rensink; J. Warmer, Springer, 2006, pp. 361–375.

[23] Object Management Group. MOF Model to Text Transformation Language, v1.0.
Technical report, Object Management Group (OMG), January 2008, [Accessed
9 June 2022]. Available from: https://www.omg.org/spec/MOFM2T/1.0/PDF

[24] Williams, I. Beginning XSLT and XPath: Transforming XML Documents and Data.
Wrox beginning guides, Wiley, 2009, ISBN 978-0-470-56746-3.

[25] Soley, R.; et al. Model Driven Architecture. OMG White Paper, 2000, [Accessed
3 March 2022]. Available from: https://www.omg.org/~soley/mda.html

[26] Liddle, S. W. Model-Driven Software Development. In Handbook of Conceptual Mod-
eling: Theory, Practice, and Research Challenges, Berlin: Springer, 2011, ISBN
978-3-642-15865-0, pp. 17–56, doi:10.1007/978-3-642-15865-0 2.

[27] Rybola, Z. Towards OntoUML for Software Engineering: Transformation of On-
toUML into Relational Databases. Ph.D. thesis, Czech Technical University in
Prague, Prague, Czech Republic, August 2017, [Accessed 1 April 2019]. Available
from: https://www.fit.cvut.cz/sites/default/files/PhDThesis-Rybola.pdf

203

https://www.omg.org/spec/QVT/1.3/PDF
https://www.omg.org/spec/QVT/1.3/PDF
https://www.eclipse.org/atl/
https://www.omg.org/spec/MOFM2T/1.0/PDF
https://www.omg.org/~soley/mda.html
https://www.fit.cvut.cz/sites/default/files/PhDThesis-Rybola.pdf


Bibliography

[28] Pastor, O.; Insfrán, E.; et al. OO-METHOD: An OO Software Production Envi-
ronment Combining Conventional and Formal Methods. In Advanced Information
Systems Engineering, 9th International Conference CAiSE’97, Barcelona, Catalo-
nia, Spain, June 16-20, 1997, Proceedings, Lecture Notes in Computer Science,
volume 1250, edited by A. Olivé; J. A. Pastor, Springer, 1997, pp. 145–158, doi:
10.1007/3-540-63107-0 11.

[29] Hartl, M. Ruby on Rails Tutorial: Learn Web Development with Rails. Addison-
Wesley Professional, third edition, 2015, ISBN 978-0-13-407770-3.

[30] NSX. Prime Radiant Online. [online], 2022, [Accessed 14 November 2022]. Available
from: http://primeradiant.stars-end.net/foundation/

[31] Shvaiko, P.; Euzenat, J. Ontology Matching: State of the Art and Future Challenges.
IEEE Transactions on Knowledge and Data Engineering, volume 25, no. 1, 2013: pp.
158–176, doi:10.1109/TKDE.2011.253.

[32] Choi, N.; Song, I.; et al. A Survey on Ontology Mapping. SIGMOD Record, vol-
ume 35, no. 3, 2006: pp. 34–41, doi:10.1145/1168092.1168097.

[33] Dimou, A.; Sande, M. V.; et al. RML: A Generic Language for Integrated RDF
Mappings of Heterogeneous Data. In Proceedings of the Workshop on Linked Data on
the Web co-located with the 23rd International World Wide Web Conference (WWW
2014), Seoul, Korea, April 8, 2014, CEUR Workshop Proceedings, volume 1184,
edited by C. Bizer; T. Heath; S. Auer; T. Berners-Lee, CEUR-WS.org, 2014, p. 1.
Available from: http://ceur-ws.org/Vol-1184/ldow2014 paper 01.pdf

[34] Heyvaert, P.; Dimou, A.; et al. Towards Approaches for Generating RDF Mapping
Definitions. In Proceedings of the ISWC 2015 Posters & Demonstrations Track co-
located with the 14th International Semantic Web Conference (ISWC-2015), Bethle-
hem, PA, USA, October 11, 2015, CEUR Workshop Proceedings, volume 1486, edited
by S. Villata; J. Z. Pan; M. Dragoni, CEUR-WS.org, 2015, p. 70. Available from:
http://ceur-ws.org/Vol-1486/paper 70.pdf

[35] Corby, O.; Faron-Zucker, C. STTL – a SPARQL-based Transformation Language for
RDF. In WEBIST 2015 – Proceedings of the 11th International Conference on Web
Information Systems and Technologies, Lisbon, Portugal, 20-22 May, 2015, edited by
V. Monfort; K. Krempels; T. A. Majchrzak; Z. Turk, SciTePress, 2015, pp. 466–476,
doi:10.5220/0005450604660476.

[36] Decker, S.; Sintek, M.; et al. TRIPLE – an RDF Rule Language with Context and Use
Cases. In W3C Workshop on Rule Languages for Interoperability, 27-28 April 2005,
Washington, DC, USA, W3C, 2005, p. 98. Available from: http://www.w3.org/
2004/12/rules-ws/paper/98

204

http://primeradiant.stars-end.net/foundation/
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
http://ceur-ws.org/Vol-1486/paper_70.pdf
http://www.w3.org/2004/12/rules-ws/paper/98
http://www.w3.org/2004/12/rules-ws/paper/98


Bibliography

[37] Hevner, A. R.; March, S. T.; et al. Design Science in Information Systems Research.
MIS Q., volume 28, no. 1, 2004: pp. 75–105. Available from: http://misq.org/
design-science-in-information-systems-research.html

[38] Hevner, A. R. Design Science Research. In Computing Handbook: Information Sys-
tems and Information Technology, volume 22, edited by H. Topi; A. Tucker, CRC
Press, third edition, 2014, pp. 1–23.

[39] Kuechler Jr., W. L.; Vaishnavi, V. K. On Theory Development in Design Science
Research: Anatomy of a Research Project. European Journal of Information Systems,
volume 17, no. 5, 2008: pp. 489–504, doi:10.1057/ejis.2008.40.

[40] Peffers, K.; Tuunanen, T.; et al. A Design Science Research Methodology for In-
formation Systems Research. Journal of Management Information Systems, vol-
ume 24, no. 3, 2007: pp. 45–78, doi:10.2753/MIS0742-1222240302. Available from:
http://www.jmis-web.org/articles/765

[41] Braun, R.; Benedict, M.; et al. Proposal for Requirements Driven Design Science
Research. In New Horizons in Design Science: Broadening the Research Agenda –
10th International Conference, DESRIST 2015, Dublin, Ireland, May 20-22, 2015,
Proceedings, Lecture Notes in Computer Science, volume 9073, edited by B. Donnel-
lan; M. Helfert; J. Kenneally; D. E. VanderMeer; M. A. Rothenberger; R. Winter,
Springer, 2015, pp. 135–151, doi:10.1007/978-3-319-18714-3 9.

[42] Hevner, A. R. The Three Cycle View of Design Science. Scandinavian Jour-
nal of Information Systems, volume 19, no. 2, 2007. Available from: http://

aisel.aisnet.org/sjis/vol19/iss2/4

[43] Mylopoulos, J. Conceptual Modelling and Telos. Conceptual Modelling Databases
and CASE: An Integrated View of Information Systems Development, 1992: pp. 49–
68, University of Toronto. Available from: http://www.cs.toronto.edu/~jm/2507S/
Readings/CM+Telos.pdf

[44] Lindland, O. I.; Sindre, G.; et al. Understanding Quality in Conceptual Modeling.
IEEE Software, volume 11, no. 2, 1994: pp. 42–49, doi:10.1109/52.268955.

[45] Moody, D. L. Theoretical and Practical Issues in Evaluating the Quality of Con-
ceptual Models: Current State and Future Directions. Data Knowledge Engineer-
ing, volume 55, no. 3, Dec. 2005: pp. 243–276, ISSN 0169-023X, doi:10.1016/
j.datak.2004.12.005.

[46] Miao, H.; Sun, J.; et al. A Literature Review on Conceptual Model Quality of Iin-
formation Systems. International Journal of Digital Content Technology and its Ap-
plications, volume 7, no. 5, 2013: p. 574.

205

http://misq.org/design-science-in-information-systems-research.html
http://misq.org/design-science-in-information-systems-research.html
http://www.jmis-web.org/articles/765
http://aisel.aisnet.org/sjis/vol19/iss2/4
http://aisel.aisnet.org/sjis/vol19/iss2/4
http://www.cs.toronto.edu/~jm/2507S/Readings/CM+Telos.pdf
http://www.cs.toronto.edu/~jm/2507S/Readings/CM+Telos.pdf


Bibliography

[47] Chen, P. P.-S. The Entity-Relationship Model: Toward a Unified View of Data. ACM
Transactions on Database Systems (TODS), volume 1, no. 1, Mar. 1976: pp. 9–36,
ISSN 0362-5915, doi:10.1145/320434.320440.

[48] Elmasri, R.; Navathe, S. B. Fundamentals of Database Systems. Pearson, 7th edition,
2015, ISBN 978-0-13-397077-7.

[49] Mylopoulos, J. Information Modeling in the Time of the Revolution. Information
Systems, volume 23, 1998: pp. 127–155, ISSN 0306-4379.

[50] Villari, M.; Celesti, A.; et al. Enriched ER Model to Design Hybrid Database for Big
Data Solutions. In Computers and Communication (ISCC), 2016 IEEE Symposium
on, IEEE, 2016, pp. 163–166.

[51] Object Management Group. Information Technology – Object Management Group
Unified Modeling Language (OMG UML), Infrastructure, v. 2.4.1. Technical report,
Object Management Group (OMG), April 2012, [Accessed 2 March 2022]. Available
from: http://www.omg.org/spec/UML/ISO/19505-1/PDF

[52] Object Management Group. OMG Unified Modeling Language, v. 2.5. Technical
report, Object Management Group (OMG), March 2015, [Accessed 10 March 2022].
Available from: http://www.omg.org/spec/UML/2.5/PDF

[53] Object Management Group. OMG Meta Object Facility (MOF) Core Specifica-
tion. Technical report, Object Management Group (OMG), October 2019, [Accessed
5 March 2022]. Available from: https://www.omg.org/spec/MOF/2.5.1/PDF

[54] Steinberg, D.; Budinsky, F.; et al. EMF: Eclipse Modeling Framework. Addison-
Wesley Professional, 2008, ISBN 978-0-32-133188-5.

[55] Kurtev, I. State of the Art of QVT: A Model Transformation Language Stan-
dard. In Applications of Graph Transformations with Industrial Relevance, Third
International Symposium, AGTIVE 2007, Kassel, Germany, October 10-12, 2007,
Revised Selected and Invited Papers, Lecture Notes in Computer Science, volume
5088, edited by A. Schürr; M. Nagl; A. Zündorf, Springer, 2007, pp. 377–393, doi:
10.1007/978-3-540-89020-1 26.

[56] Guizzardi, G. Ontological Foundations for Structural Conceptual Models. Enschede
(The Netherlands): Centre for Telematics and Information Technology, Telemat-
ica Instituut, University of Twente, 2005, ISBN 978-9-07517-681-0. Available from:
http://doc.utwente.nl/50826/1/thesis Guizzardi.pdf

[57] Braga, B. F.; Almeida, J. P. A.; et al. Transforming OntoUML into Alloy: Towards
Conceptual Model Validation Using a Lightweight Formal Method. Innovations in
Systems and Software Engineering, volume 6, no. 1-2, 2010: pp. 55–63, doi:10.1007/
s11334-009-0120-5.

206

http://www.omg.org/spec/UML/ISO/19505-1/PDF
http://www.omg.org/spec/UML/2.5/PDF
https://www.omg.org/spec/MOF/2.5.1/PDF
http://doc.utwente.nl/50826/1/thesis_Guizzardi.pdf


Bibliography

[58] Guizzardi, G.; Fonseca, C. M.; et al. Endurant Types in Ontology-Driven Con-
ceptual Modeling: Towards OntoUML 2.0. In Conceptual Modeling – 37th Inter-
national Conference, ER 2018, Xi’an, China, October 22-25, 2018, Proceedings,
Lecture Notes in Computer Science, volume 11157, edited by J. Trujillo; K. C.
Davis; X. Du; Z. Li; T. W. Ling; G. Li; M. Lee, Springer, 2018, pp. 136–150, doi:
10.1007/978-3-030-00847-5 12.

[59] Verdonck, M.; Gailly, F.; et al. Comparing Traditional Conceptual Modeling with
Ontology-Driven Conceptual Modeling: An Empirical Study. Information Systems,
2018, ISSN 0306-4379, doi:10.1016/j.is.2018.11.009.

[60] Sales, T. P.; Guarino, N.; et al. An Ontological Analysis of Value Propositions.
In 21st IEEE International Enterprise Distributed Object Computing Conference,
EDOC 2017, Quebec City, QC, Canada, October 10-13, 2017, edited by S. Hallé;
R. Villemaire; R. Lagerström, IEEE Computer Society, 2017, pp. 184–193, doi:
10.1109/EDOC.2017.32.

[61] Ferreira, M. I. G. B.; Moreira, J. L. R.; et al. OntoEmergePlan: Variability of Emer-
gency Plans Supported by a Domain Ontology. In 12th Proceedings of the Inter-
national Conference on Information Systems for Crisis Response and Management,
Krystiansand, Norway, May 24-27, 2015, edited by L. Palen; M. Büscher; T. Comes;
A. L. Hughes, ISCRAM Association, 2015. Available from: http://idl.iscram.org/
files/mariaigbferreira/2015/1184 MariaI.G.B.Ferreira etal2015.pdf

[62] Dietz, J. L. Towards a Discipline of Organisation Engineering. European Journal
of Operational Research, volume 128, no. 2, 2001: pp. 351–363, doi:10.1016/S0377-
2217(00)00077-1.

[63] Krouwel, M. R.; Land, M. O. Combining DEMO and Normalized Systems for De-
veloping Agile Enterprise Information Systems. In Advances in Enterprise Engineer-
ing V – First Enterprise Engineering Working Conference, EEWC 2011, Antwerp,
Belgium, May 16-17, 2011. Proceedings, Lecture Notes in Business Information Pro-
cessing, volume 79, edited by A. Albani; J. L. G. Dietz; J. Verelst, Springer, 2011,
pp. 31–45, doi:10.1007/978-3-642-21058-7 3.

[64] Mráz, O.; Náplava, P.; et al. Converting DEMO PSI Transaction Pattern into BPMN:
A Complete Method. In Advances in Enterprise Engineering XI – 7th Enterprise
Engineering Working Conference, EEWC 2017, Antwerp, Belgium, May 8-12, 2017,
Proceedings, Lecture Notes in Business Information Processing, volume 284, edited
by D. Aveiro; R. Pergl; G. Guizzardi; J. P. A. Almeida; R. Magalhães; H. Lekkerkerk,
Springer, 2017, pp. 85–98, doi:10.1007/978-3-319-57955-9 7.

[65] Halpin, T. Object-Role Modeling Fundamentals: A Practical Guide to Data Modeling
with ORM. Basking Ridge, NJ, USA: Technics Publications, LLC, 2015, ISBN 978-
1-63462-074-1.

207

http://idl.iscram.org/files/mariaigbferreira/2015/1184_MariaI.G.B.Ferreira_etal2015.pdf
http://idl.iscram.org/files/mariaigbferreira/2015/1184_MariaI.G.B.Ferreira_etal2015.pdf


Bibliography

[66] Halpin, T. ORM 2. In OTM Confederated International Conferences” On the Move
to Meaningful Internet Systems”, Springer, 2005, pp. 676–687, doi:10.1007/11575863
87.

[67] Jarrar, M. Towards Automated Reasoning on ORM Schemes. In Conceptual Model-
ing – ER 2007, 26th International Conference on Conceptual Modeling, Auckland,
New Zealand, November 5-9, 2007, Proceedings, Lecture Notes in Computer Science,
volume 4801, edited by C. Parent; K. Schewe; V. C. Storey; B. Thalheim, Springer,
2007, pp. 181–197, doi:10.1007/978-3-540-75563-0 14.

[68] Völzer, H. An Overview of BPMN 2.0 and Its Potential Use. In Business Process Mod-
eling Notation – Second International Workshop, BPMN 2010, Potsdam, Germany,
October 13-14, 2010. Proceedings, Lecture Notes in Business Information Processing,
volume 67, edited by J. Mendling; M. Weidlich; M. Weske, Springer, 2010, pp. 14–15,
doi:10.1007/978-3-642-16298-5 3.

[69] Allweyer, T. BPMN 2.0: Introduction to the Standard for Business Process Modeling.
Books on Demand, 2016, ISBN 978-3-83-709331-5.

[70] Guizzardi, G.; Wagner, G. Conceptual Simulation Modeling with OntoUML. In Pro-
ceedings of the Winter Simulation Conference, WSC ’12, Winter Simulation Confer-
ence, 2012, pp. 5:1–5:15.

[71] Knott, R. P.; Merunka, V.; et al. The BORM Methodology: A Third-Generation
Fully Object-Oriented Methodology. Knowledge-Based Systems, volume 16, no. 2,
2003: pp. 77–89, doi:10.1016/S0950-7051(02)00075-8.

[72] Podloucký, M.; Pergl, R.; et al. Revisiting the BORM OR Diagram Composition
Pattern. In Enterprise and Organizational Modeling and Simulation, Lecture Notes
in Business Information Processing, volume 231, Stockholm: Springer, 2015, pp.
102–113, doi:10.1007/2F978-3-319-24626-0 8.

[73] van Lamsweerde, A. Formal Specification: A Roadmap. In 22nd International Con-
ference on on Software Engineering, Future of Software Engineering Track, ICSE
2000, Limerick Ireland, June 4-11, 2000, edited by A. Finkelstein, ACM, 2000, pp.
147–159, doi:10.1145/336512.336546.

[74] Object Management Group. Object Constraint Language, v. 2.4. Technical report,
Object Management Group (OMG), February 2014, [Accessed 23 March 2022]. Avail-
able from: http://www.omg.org/spec/OCL/2.4/PDF

[75] Gogolla, M. UML and OCL in Conceptual Modeling. In Handbook of Conceptual
Modeling: Theory, Practice, and Research Challenges, Berlin: Springer, 2011, ISBN
978-3-642-15865-0, pp. 85–122, doi:10.1007/978-3-642-15865-0 4.

208

http://www.omg.org/spec/OCL/2.4/PDF


Bibliography

[76] Gogolla, M.; Doan, K. Quality Improvement of Conceptual UML and OCL Schemata
Through Model Validation and Verification. In Conceptual Modeling Perspectives,
edited by J. Cabot; C. Gómez; O. Pastor; M. Sancho; E. Teniente, Springer, 2017,
pp. 155–168, doi:10.1007/978-3-319-67271-7 11.

[77] Jackson, D. Software Abstractions: Logic, Language, and Analysis. Cambridge, MA,
USA: MIT Press, 2006, ISBN 978-0-262-10114-1.

[78] Cunha, A.; Garis, A. G.; et al. Translating Between Alloy Specifications and UML
Class Diagrams Annotated with OCL. Software & Systems Modeling, volume 14,
no. 1, 2015: pp. 5–25, doi:10.1007/s10270-013-0353-5.

[79] Pastor, O.; Hayes, F.; et al. OASIS: An Object-Oriented Specification Language. In
Advanced Information Systems Engineering, CAiSE’92, Manchester, UK, May 12-
15, 1992, Proceedings, Lecture Notes in Computer Science, volume 593, edited by
P. Loucopoulos, Springer, 1992, pp. 348–363, doi:10.1007/BFb0035141.

[80] Pastor, O.; Ramos, I. OASIS 2.1: A Class-Definition Language to Model Informa-
tion Systems Using an Object-Oriented Approach. Servicio de Publicaciones Univ.
Politécnica de Valencia,, 1995.

[81] Letelier Torres, P.; Sánchez Palma, P.; et al. OASIS Versión 3.0: Un Enfoque For-
mal Para el Modelado Conceptual Orientado a Objeto. Technical report, Univer-
sidad Politécnica de Valencia. Servicio de Publicaciones, 1998, [Accessed 5 March
2022]. Available from: https://repositorio.upct.es/bitstream/handle/10317/
733/oef.pdf

[82] Kourie, D. G.; Watson, B. W. The Correctness-by-Construction Approach to Pro-
gramming. Springer, 2012, ISBN 978-3-642-27918-8, doi:10.1007/978-3-642-27919-5.

[83] Khalek, S. A.; Yang, G.; et al. TestEra: A Tool for Testing Java Pro-
grams using Alloy Specifications. In 26th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2011), Lawrence, KS, USA,
November 6-10, 2011, edited by P. Alexander; C. S. Pasareanu; J. G.
Hosking, IEEE Computer Society, 2011, ISBN 978-1-4577-1638-6, pp. 608–
611, doi:10.1109/ASE.2011.6100137. Available from: http://mir.cs.illinois.edu/
marinov/publications/KhalekETAL11TestEraDemo.pdf

[84] Ehrig, H.; Mahr, B. Fundamentals of Algebraic Specification 1: Equations and Ini-
tial Semantics, EATCS Monographs on Theoretical Computer Science, volume 6.
Springer, 1985, ISBN 3-540-13718-1, doi:10.1007/978-3-642-69962-7.

[85] Wirsing, M. Algebraic Specification Languages: An Overview. In Recent Trends in
Data Type Specification, 10th Workshop on Specification of Abstract Data Types Joint
with the 5th COMPASS Workshop, S. Margherita, Italy, May 30 – June 3, 1994,
Selected Papers, Lecture Notes in Computer Science, volume 906, edited by E. Aste-
siano; G. Reggio; A. Tarlecki, Springer, 1994, pp. 81–115, doi:10.1007/BFb0014423.

209

https://repositorio.upct.es/bitstream/handle/10317/733/oef.pdf
https://repositorio.upct.es/bitstream/handle/10317/733/oef.pdf
http://mir.cs.illinois.edu/marinov/publications/KhalekETAL11TestEraDemo.pdf
http://mir.cs.illinois.edu/marinov/publications/KhalekETAL11TestEraDemo.pdf


Bibliography

[86] James, P.; Roggenbach, M. Recent Trends in Algebraic Development Techniques.
Springer, 2017, ISBN 978-3-31-972043-2.

[87] Haase, P.; Motik, B. A Mapping System for the Integration of OWL-DL Ontologies.
In Proceedings of the first international ACM workshop on Interoperability of Het-
erogeneous Information Systems (IHIS’05), CIKM Conference, Bremen, Germany,
November 4, 2005, edited by A. Hahn; S. Abels; L. Haak, ACM, 2005, pp. 9–16,
doi:10.1145/1096967.1096970.

[88] McGuinness, D. L.; Van Harmelen, F.; et al. OWL Web Ontology Language
Overview. W3C Recommendation, volume 10, no. 10, 2004, [Accessed 5 April 2022].
Available from: https://www.w3.org/TR/owl-features/

[89] Coyle, K.; Baker, T.; et al. Guidelines for Dublin Core Application Profiles. [online],
2009, [Accessed 14 July 2022]. Available from: http://dublincore.org/documents/
profile-guidelines/

[90] Gailly, F.; Poels, G. Ontology-Driven Business Modelling: Improving the Concep-
tual Representation of the REA Ontology. In Conceptual Modeling – ER 2007, 26th
International Conference on Conceptual Modeling, Auckland, New Zealand, Novem-
ber 5-9, 2007, Proceedings, Lecture Notes in Computer Science, volume 4801, edited
by C. Parent; K. Schewe; V. C. Storey; B. Thalheim, Springer, 2007, pp. 407–422,
doi:10.1007/978-3-540-75563-0 28.

[91] Baader, F.; Horrocks, I.; et al. An Introduction to Description Logic. Cambridge
University Press, 2017, ISBN 978-0-521-69542-8.

[92] Rudolph, K. The Use of Ontologies in Practice. GRIN Verlag, 2015, ISBN 978-3-65-
697610-3.

[93] Powers, S. Practical RDF. O’Reilly Media, 2003, ISBN 978-0-59-651561-4.

[94] OWL Working Group. OWL 2 Web Ontology Language Document Overview. [on-
line], 2012, second edition, [Accessed 9 April 2022]. Available from: https://

www.w3.org/TR/owl2-overview/

[95] Musen, M. A. The Protégé Project: A Look Back and a Look Forward. AI Matters,
volume 1, no. 4, 2015: pp. 4–12, doi:10.1145/2757001.2757003.

[96] Lohmann, S.; Link, V.; et al. WebVOWL: Web-based Visualization of Ontologies. In
Knowledge Engineering and Knowledge Management – EKAW 2014 Satellite Events,
VISUAL, EKM1, and ARCOE-Logic, Linköping, Sweden, November 24-28, 2014.
Revised Selected Papers, Lecture Notes in Computer Science, volume 8982, edited
by P. Lambrix; E. Hyvönen; E. Blomqvist; V. Presutti; G. Qi; U. Sattler; Y. Ding;
C. Ghidini, Springer, 2014, pp. 154–158, doi:10.1007/978-3-319-17966-7 21.

210

https://www.w3.org/TR/owl-features/
http://dublincore.org/documents/profile-guidelines/
http://dublincore.org/documents/profile-guidelines/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/


Bibliography

[97] Garijo, D. WIDOCO: A Wizard for Documenting Ontologies. In International Se-
mantic Web Conference, Springer, Cham, 2017, pp. 94–102, doi:10.1007/978-3-319-
68204-4 9. Available from: http://dgarijo.com/papers/widoco-iswc2017.pdf

[98] Robinson, I.; Webber, J.; et al. Graph Databases: New Opportunities for Connected
Data. O’Reilly Media, 2015, ISBN 978-1-49-193084-7.

[99] Ehrig, M. Ontology Alignment: Bridging the Semantic Gap. Semantic Web and Be-
yond, Springer, 2006, ISBN 978-0-38-736501-5.

[100] Euzenat, J.; Shvaiko, P. Ontology Matching. Springer Berlin Heidelberg, 2013, ISBN
978-3-64-238721-0.

[101] Brambilla, M.; Cabot, J.; et al. Model-Driven Software Engineering in Practice.
Synthesis Lectures on Software Engineering, Morgan & Claypool Publishers, second
edition, 2017, ISBN 978-1-62-705695-3.

[102] Gaševic, D.; Selic, B.; et al. Model Driven Engineering and Ontology Development.
Springer, 2009, ISBN 978-3-64-200282-3.

[103] Hilliard, R. Views and Viewpoints in Software Systems Architecture. In First Work-
ing IFIP Conference on Software Architecture, San Antonio, 1999.

[104] Baldonado, M. Q. W.; Woodruff, A.; et al. Guidelines for Using Multiple Views
in Information Visualization. In Proceedings of the working conference on Advanced
visual interfaces, AVI 2000, Palermo, Italy, May 23-26, 2000, edited by V. D. Gesù;
S. Levialdi; L. Tarantino, ACM Press, 2000, pp. 110–119, doi:10.1145/345513.345271.

[105] Dumay, M. Demo or Practice: Critical Analysis of the Language/Action Perspec-
tive. CoRR, 2004, doi:10.48550/arXiv.cs/0410006, [Accessed: 8 May 2022]. Available
from: http://arxiv.org/abs/cs.OH/0410006

[106] Kruchten, P. Architectural Blueprints: The 4+1 View Model of Software Architec-
ture. IEEE Software, Vol. 12, Number 6, 1995: pp. 42–50, ISSN 1937-4194, doi:
10.1109/52.469759.

[107] Wymore, A. W. Model-Based Systems Engineering. Boca Raton, FL, USA: CRC
Press, 1993, ISBN 978-0-8493-8012-9.

[108] Truyen, F. The Fast Guide to Architecture – The Basics of Model Driven Architec-
ture. [online], 2006, [Accessed 18 April 2022]. Available from: http://www.omg.org/
mda/mda files/Cephas MDA Fast Guide.pdf

[109] Silva, A. R. D. Model-Driven Engineering: A Survey Supported by the Unified Con-
ceptual Model. Computer Languages, Systems & Structures, volume 43, 2015: pp.
139–155, doi:10.1016/j.cl.2015.06.001.

211

http://dgarijo.com/papers/widoco-iswc2017.pdf
http://arxiv.org/abs/cs.OH/0410006
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf


Bibliography

[110] Korshunova, E.; Petkovic, M.; et al. CPP2XMI: Reverse Engineering of UML Class,
Sequence, and Activity Diagrams from C++ Source Code. In 13th Working Confer-
ence on Reverse Engineering (WCRE 2006), 23-27 October 2006, Benevento, Italy,
IEEE Computer Society, 2006, pp. 297–298, doi:10.1109/WCRE.2006.21.

[111] Springsteel, F.; Kou, C. Reverse Data Engineering of ER-Designed Relational
Schemas. In PARBASE-90: International Conference on Databases, Parallel Ar-
chitectures, and Their Applications, IEEE, 1990, pp. 438–440.

[112] Sparx Systems. Enterprise Architect 15.2 User Guide. [online], 2021, [Ac-
cessed 19 February 2022]. Available from: https://sparxsystems.com/
enterprise architect user guide/15.2/index/index.html

[113] Braun, P.; Marschall, F. BOTL – The Bidirectional Object Oriented Transformation
Language. Technical report, TU München, 2003, [Accessed 8 August 2022]. Available
from: https://wwwbroy.in.tum.de/publ/papers/TUM-I0307.pdf

[114] Noureen, A.; Amjad, A.; et al. Model Driven Architecture – Issues, Challenges and
Future Directions. Journal of Software, volume 11, no. 9, 2016: pp. 924–933, doi:
10.17706/jsw.11.9.924-933.

[115] Starrett, C. xtUML: Current and Next State of a Modeling Dialect. In Proceedings of
the 2nd International Workshop on Executable Modeling co-located with ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Sys-
tems (MODELS 2016), Saint-Malo, France, October 3, 2016, CEUR Workshop Pro-
ceedings, volume 1760, edited by T. Mayerhofer; P. Langer; E. Seidewitz; J. Gray,
CEUR-WS.org, 2016, pp. 33–37. Available from: http://ceur-ws.org/Vol-1760/
paper5.pdf

[116] Guermazi, S.; Tatibouet, J.; et al. Executable Modeling with fUML and Alf in Pa-
pyrus: Tooling and Experiments. In Proceedings of the 1st International Workshop
on Executable Modeling co-located with ACM/IEEE 18th International Conference
on Model Driven Engineering Languages and Systems (MODELS 2015), Ottawa,
Canada, September 27, 2015, CEUR Workshop Proceedings, volume 1560, edited
by T. Mayerhofer; P. Langer; E. Seidewitz; J. Gray, CEUR-WS.org, 2015, pp. 3–8.
Available from: http://ceur-ws.org/Vol-1560/paper1.pdf

[117] Verdier, F.; Seriai, A.; et al. Reusing Platform-Specific Models in Model-Driven Ar-
chitecture for Software Product Lines. In Proceedings of the 6th International Con-
ference on Model-Driven Engineering and Software Development, MODELSWARD
2018, Funchal, Madeira – Portugal, January 22-24, 2018, edited by S. Hammoudi;
L. F. Pires; B. Selic, SciTePress, 2018, pp. 106–116, doi:10.5220/0006582601060116.

[118] Embley, D. W.; Liddle, S. W.; et al. Conceptual-Model Programming: A Manifesto,
chapter Programming with Conceptual Models. Berlin: Springer, 2011, ISBN 978-3-
642-15865-0, pp. 3–16, doi:10.1007/978-3-642-15865-0 1.

212

https://sparxsystems.com/enterprise_architect_user_guide/15.2/index/index.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/index/index.html
https://wwwbroy.in.tum.de/publ/papers/TUM-I0307.pdf
http://ceur-ws.org/Vol-1760/paper5.pdf
http://ceur-ws.org/Vol-1760/paper5.pdf
http://ceur-ws.org/Vol-1560/paper1.pdf


Bibliography

[119] Pastor, O.; Gómez, J.; et al. The OO-Method Approach for Information Systems
Modeling: From Object-Oriented Conceptual Modeling to Automated Programming.
Inf. Syst., volume 26, no. 7, 2001: pp. 507–534, doi:10.1016/S0306-4379(01)00035-7.

[120] Giachetti, G.; Maŕın, B.; et al. Updating OO-Method Function Points. In Qual-
ity of Information and Communications Technology, 6th International Conference
on the Quality of Information and Communications Technology, QUATIC 2007,
Lisbon, Portugal, September 12-14, 2007, Proceedings, edited by R. J. Machado;
F. B. e Abreu; P. R. da Cunha, IEEE Computer Society, 2007, pp. 55–64, doi:
10.1109/QUATIC.2007.20.

[121] Martins, B. F. The OntoOO-Method: An Ontology-Driven Conceptual Modeling Ap-
proach for Evolving the OO-Method. In Advances in Conceptual Modeling – ER 2019
Workshops FAIR, MREBA, EmpER, MoBiD, OntoCom, and ER Doctoral Sympo-
sium Papers, Salvador, Brazil, November 4-7, 2019, Proceedings, Lecture Notes in
Computer Science, volume 11787, edited by G. Guizzardi; F. Gailly; R. S. P. Maciel,
Springer, 2019, pp. 247–254, doi:10.1007/978-3-030-34146-6 23.

[122] Buarque, A.; Castro, J.; et al. The Role of NFRs When Transforming i* Require-
ments Models into OO-Method Models. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, SAC ’13, Coimbra, Portugal, March 18-22,
2013, edited by S. Y. Shin; J. C. Maldonado, ACM, 2013, pp. 1305–1306, doi:
10.1145/2480362.2480605.

[123] Alencar, F. M. R.; Maŕın, B.; et al. From i* to OO-Method: Problems and Solutions.

In Proceedings of the 4th International i* Workshop, Hammamet, Tunisia, June 07-
08, 2010, CEUR Workshop Proceedings, volume 586, edited by J. B. de Castro;
X. Franch; J. Mylopoulos; E. S. K. Yu, CEUR-WS.org, 2010, pp. 9–14. Available
from: http://ceur-ws.org/Vol-586/iStar10-paper02.pdf

[124] Zaninotto, F.; Potencier, F. The Definitive Guide to Symfony. Apress, 2007, ISBN
978-1-59-059786-6.

[125] Steinberg, D.; Budinsky, F.; et al. EMF: Eclipse Modeling Framework.
Addison-Wesley Professional., second edition, 2008, ISBN 978-0-321-33188-
5. Available from: https://www.informit.com/store/emf-eclipse-modeling-
framework-9780321331885

[126] Doschek, N. Eclipse EMF.cloud. [online], 2020, [Accessed 11 February 2022]. Avail-
able from: https://projects.eclipse.org/projects/ecd.emfcloud

[127] Koegel, M.; Helming, J. EMFStore: A Model Repository for EMF Models. In Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing – Volume 2, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, edited by
J. Kramer; J. Bishop; P. T. Devanbu; S. Uchitel, ACM, 2010, pp. 307–308, doi:
10.1145/1810295.1810364.

213

http://ceur-ws.org/Vol-586/iStar10-paper02.pdf
https://www.informit.com/store/emf-eclipse-modeling-framework-9780321331885
https://www.informit.com/store/emf-eclipse-modeling-framework-9780321331885
https://projects.eclipse.org/projects/ecd.emfcloud


Bibliography

[128] Gérard, S.; Dumoulin, C.; et al. Papyrus: A UML2 Tool for Domain-Specific Lan-
guage Modeling. In Model-Based Engineering of Embedded Real-Time Systems – In-
ternational Dagstuhl Workshop, Dagstuhl Castle, Germany, November 4-9, 2007.
Revised Selected Papers, Lecture Notes in Computer Science, volume 6100, edited
by H. Giese; G. Karsai; E. Lee; B. Rumpe; B. Schätz, Springer, 2007, pp. 361–368,
doi:10.1007/978-3-642-16277-0 19.

[129] JAXenter. Eclipse Modeling Framework – Interview with Ed Merks. [online], 2010,
[Accessed 21 February 2022]. Available from: https://jaxenter.com/eclipse-
modeling-framework-interview-with-ed-merks-100007.html

[130] Eclipse Foundation, Inc. EMF Javadoc. [online], 2020, [Accessed 12 February 2022].
Available from: https://www.eclipse.org/modeling/emf/javadoc/

[131] Kchaou, M.; Khlif, W.; et al. Transformation of BPMN Model into an OWL2 On-
tology. In Proceedings of the 16th International Conference on Evaluation of Novel
Approaches to Software Engineering, ENASE 2021, Online Streaming, April 26-27,
2021, edited by R. Ali; H. Kaindl; L. A. Maciaszek, SCITEPRESS, 2021, pp. 380–388,
doi:10.5220/0010479603800388.

[132] Hodrob, R.; Jarrar, M. Mapping ORM into OWL 2. In Proceedings of the 1st Inter-
national Conference on Intelligent Semantic Web-Services and Applications, ISWSA
2010, Amman, Jordan, June 14-16, 2010, edited by A. J. Alnsour; S. A. Aljawarneh,
ACM, 2010, p. 9, doi:10.1145/1874590.1874599.

[133] Almeida, J. P. A.; Guizzardi, G.; et al. gUFO: A Lightweight Implementation of
the Unified Foundational Ontology (UFO). [online], 2019, [Accessed 9 June 2022].
Available from: http://purl.org/nemo/doc/gufo

[134] Bergman, M. 50 Ontology Mapping and Alignment Tools. [online], 2014, [Accessed
10 July 2022]. Available from: https://www.mkbergman.com/1769/50-ontology-
mapping-and-alignment-tools/

[135] Ouali, I.; Ghozzi, F.; et al. Ontology Alignment using Stable Matching. InKnowledge-
Based and Intelligent Information & Engineering Systems: Proceedings of the 23rd
International Conference KES-2019, Budapest, Hungary, 4-6 September 2019, Pro-
cedia Computer Science, volume 159, edited by I. J. Rudas; J. Csirik; C. Toro;
J. Botzheim; R. J. Howlett; L. C. Jain, Elsevier, 2019, pp. 746–755, doi:10.1016/
j.procs.2019.09.230.

[136] Euzenat, J.; Valtchev, P. Similarity-Based Ontology Alignment in OWL-Lite. In
Proceedings of the 16th Eureopean Conference on Artificial Intelligence, ECAI’2004,
including Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain,
August 22-27, 2004, edited by R. L. de Mántaras; L. Saitta, IOS Press, 2004, pp.
333–337.

214

https://jaxenter.com/eclipse-modeling-framework-interview-with-ed-merks-100007.html
https://jaxenter.com/eclipse-modeling-framework-interview-with-ed-merks-100007.html
https://www.eclipse.org/modeling/emf/javadoc/
http://purl.org/nemo/doc/gufo
https://www.mkbergman.com/1769/50-ontology-mapping-and-alignment-tools/
https://www.mkbergman.com/1769/50-ontology-mapping-and-alignment-tools/


Bibliography

[137] Dähling, S.; Razik, L.; et al. OWL2Go: Auto-Generation of Go Data Models for
OWL Ontologies with Integrated Serialization and Deserialization Functionality.
SoftwareX, volume 12, 2020: p. 100571, doi:10.1016/j.softx.2020.100571.

[138] Hnatkowska, B.; Woroniecki, P. Transformation of OWL2 Property Axioms to
Groovy. In SOFSEM 2018: Theory and Practice of Computer Science – 44th In-
ternational Conference on Current Trends in Theory and Practice of Computer Sci-
ence, Krems, Austria, January 29 – February 2, 2018, Proceedings, Lecture Notes
in Computer Science, volume 10706, edited by A. M. Tjoa; L. Bellatreche; S. Biffl;
J. van Leeuwen; J. Wiedermann, Springer, 2018, pp. 269–282, doi:10.1007/978-3-
319-73117-9 19.

[139] Wotawa, F.; Bozic, J.; et al. Ontology-Based Testing: An Emerging Paradigm
for Modeling and Testing Systems and Software. In 13th IEEE International
Conference on Software Testing, Verification and Validation Workshops, ICSTW
2020, Porto, Portugal, October 24-28, 2020, IEEE, 2020, pp. 14–17, doi:10.1109/
ICSTW50294.2020.00020.

[140] Ledvinka, M.; Kremen, P. A Comparison of Object-Triple Mapping Libraries. Se-
mantic Web, volume 11, no. 3, 2020: pp. 483–524, doi:10.3233/SW-190345.

[141] Ledvinka, M.; Kostov, B.; et al. JOPA: Efficient Ontology-Based Information System
Design. In The Semantic Web – ESWC 2016 Satellite Events, Heraklion, Crete,
Greece, May 29 – June 2, 2016, Revised Selected Papers, Lecture Notes in Computer
Science, volume 9989, edited by H. Sack; G. Rizzo; N. Steinmetz; D. Mladenic;
S. Auer; C. Lange, 2016, pp. 156–160, doi:10.1007/978-3-319-47602-5 31.

[142] Mannaert, H.; De Bruyn, P.; et al. On the Interconnection of Cross-cutting Con-
cerns Within Hierarchical Modular Architectures. IEEE Transactions on Engineering
Management, 2020: pp. 1–16, ISSN 1558-0040, doi:10.1109/TEM.2020.3040227.

[143] Mannaert, H.; De Cock, K.; et al. On the Realization of Meta-Circular Code Gen-
eration: The Case of the Normalized Systems Expanders. ICSEA 2019, 2019: pp.
171–176, ISSN 2308-4235.

[144] NSX. µRadiant. [online], 2023, [Accessed 27 April 2023]. Available from: https:

//foundation.stars-end.net/docs/tools/micro-radiant/

[145] Oorts, G.; Mannaert, H.; et al. On the Evolvable and Traceable Design of (Un-
der)graduate Education Programs. In Advances in Enterprise Engineering X – 6th
Enterprise Engineering Working Conference, EEWC 2016, Funchal, Madeira Island,
Portugal, May 30 – June 3, 2016, Proceedings, Lecture Notes in Business Informa-
tion Processing, volume 252, edited by D. Aveiro; R. Pergl; D. Gouveia, Springer,
2016, pp. 86–100, doi:10.1007/978-3-319-39567-8 6.

215

https://foundation.stars-end.net/docs/tools/micro-radiant/
https://foundation.stars-end.net/docs/tools/micro-radiant/


Bibliography

[146] Oorts, G.; Mannaert, H.; et al. Exploring Design Aspects of Modular and Evolvable
Document Management. In Advances in Enterprise Engineering XI – 7th Enterprise
Engineering Working Conference, EEWC 2017, Antwerp, Belgium, May 8-12, 2017,
Proceedings, Lecture Notes in Business Information Processing, volume 284, edited
by D. Aveiro; R. Pergl; G. Guizzardi; J. P. A. Almeida; R. Magalhães; H. Lekkerkerk,
Springer, 2017, pp. 126–140, doi:10.1007/978-3-319-57955-9 10.

[147] Oorts, G.; Mannaert, H.; et al. Toward Evolvable Document Management for Study
Programs Based on Modular Aggregation Patterns. In PATTERNS 2017: the Ninth
International Conferences on Pervasive Patterns and Applications, February 19-23,
2017, Athens, Greece/Mannaert, Herwig [edit.]; et al., 2017, pp. 34–39.

[148] Knaisl, V.; Pergl, R. Proposing Ontology-Driven Content Modularization in Doc-
uments Based on the Normalized Systems Theory. In Trends and Innovations in
Information Systems and Technologies – Volume 1, WorldCIST 2020, Budva, Mon-
tenegro, 7-10 April 2020, Advances in Intelligent Systems and Computing, volume
1159, edited by Á. Rocha; H. Adeli; L. P. Reis; S. Costanzo; I. Orovic; F. Moreira,
Springer, 2020, pp. 45–54, doi:10.1007/978-3-030-45688-7 5.

[149] Slifka, J.; Pergl, R. Laying the Foundation for Design System Ontology. In Trends
and Innovations in Information Systems and Technologies – Volume 1, WorldCIST
2020, Budva, Montenegro, 7-10 April 2020, Advances in Intelligent Systems and
Computing, volume 1159, edited by Á. Rocha; H. Adeli; L. P. Reis; S. Costanzo;
I. Orovic; F. Moreira, Springer, 2020, pp. 778–787, doi:10.1007/978-3-030-45688-
7 76.

[150] Wilkinson, M. D.; Dumontier, M.; et al. The FAIR Guiding Principles for Scientific
Data Management and Stewardship. Scientific Data, volume 3, 2016, doi:10.1038/
sdata.2016.18.

[151] Little, J. Analogy in Science: Where do we go from here? Rhetoric Society Quarterly,
volume 30, no. 1, 2000: pp. 69–92, doi:10.1080/02773940009391170.

[152] Hofstadter, D. Analogy as the Core of Cognition. In The Analogical Mind: Perspec-
tives from Cognitive Science, edited by D. Gentner; K. J. Holyoak; B. N. Kokinov,
MIT Press, 2001, pp. 499–538.

[153] Oxford University Press. Definition of Lingua Franca. [online], 2022, [Accessed 9 July
2022]. Available from: https://www.lexico.com/definition/lingua franca

[154] OWL Working Group. OWL 2 Web Ontology Language Structural Specification
and Functional-Style Syntax. [online], 2012, second edition, [Accessed 9 April 2022].
Available from: https://www.w3.org/TR/owl2-syntax/

[155] Apache Software Foundation. Apache Jena. [online], 2022, [Accessed 9 May 2022].
Available from: https://jena.apache.org/

216

https://www.lexico.com/definition/lingua_franca
https://www.w3.org/TR/owl2-syntax/
https://jena.apache.org/


Bibliography

[156] Zedlitz, J.; Luttenberger, N. Conceptual Modelling in UML and OWL-2. Interna-
tional Journal on Advances in Software, volume 7, no. 1, 2014: pp. 182–196, ISSN
1942-2628.

[157] Husár, R. Searching Inside (Onto)UML Structural Conceptual Models. Master’s the-
sis, Czech Technical University in Prague, Czech Republic, 2021, [Accessed 9 April
2022]. Available from: https://dspace.cvut.cz/handle/10467/94498

[158] Object Management Group. Business Process Model and Notation (BPMN). Tech-
nical report, Object Management Group (OMG), January 2011, [Accessed 3 March
2022]. Available from: https://www.omg.org/spec/BPMN/2.0/PDF

[159] Sanfilippo, E. M.; Borgo, S.; et al. Towards an Ontological Analysis of BPMN. In
Proceedings of 10th Workshop on Knowledge Engineering and Software Engineer-
ing (KESE10) co-located with 21st European Conference on Artificial Intelligence
(ECAI 2014), Prague, Czech Republic, August 19 2014, CEUR Workshop Proceed-
ings, volume 1289, edited by G. J. Nalepa; J. Baumeister, CEUR-WS.org, 2014, p. 9.
Available from: http://ceur-ws.org/Vol-1289/kese10-06 submission 9.pdf

[160] Natschläger, C. Towards a BPMN 2.0 Ontology. In Business Process Model and Nota-
tion – Third International Workshop, BPMN 2011, Lucerne, Switzerland, November
21-22, 2011. Proceedings, Lecture Notes in Business Information Processing, vol-
ume 95, edited by R. M. Dijkman; J. Hofstetter; J. Koehler, Springer, 2011, pp.
1–15, doi:10.1007/978-3-642-25160-3 1.

[161] Craft.CASE Ltd. Craft.CASE: Business Process Analysis. [online], 2021, [Accessed
28 December 2021]. Available from: http://craftcase.com

[162] Breitman, K.; Casanova, M.; et al. Semantic Web: Concepts, Technologies and Appli-
cations. NASA Monographs in Systems and Software Engineering, Springer London,
2010, ISBN 978-1-84-996621-4.

[163] Franconi, E.; Mosca, A.; et al. ORM2: Formalisation and Encoding in OWL2. In
On the Move to Meaningful Internet Systems: OTM 2012 Workshops, Confederated
International Workshops: OTM Academy, Industry Case Studies Program, EI2N,
INBAST, META4eS, OnToContent, ORM, SeDeS, SINCOM, and SOMOCO 2012,
Rome, Italy, September 10-14, 2012. Proceedings, Lecture Notes in Computer Science,
volume 7567, edited by P. Herrero; H. Panetto; R. Meersman; T. S. Dillon, Springer,
2012, pp. 368–378, doi:10.1007/978-3-642-33618-8 51.

[164] World Wide Web Consortium; et al. SPARQL 1.1 Query Language: W3C Recom-
mendation 21 March 2013. [online], 2013, [Accessed 13 April 2022]. Available from:
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/

[165] Pérez, J.; Arenas, M.; et al. Semantics and Complexity of SPARQL. ACM Trans.
Database Syst., volume 34, no. 3, 2009: pp. 16:1–16:45, doi:10.1145/1567274.1567278.

217

https://dspace.cvut.cz/handle/10467/94498
https://www.omg.org/spec/BPMN/2.0/PDF
http://ceur-ws.org/Vol-1289/kese10-06_submission_9.pdf
http://craftcase.com
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/


Bibliography

[166] uml-diagrams.org. UML Diagram Examples: Online Shopping. [online], 2022, [Ac-
cessed 12 June 2022]. Available from: https://www.uml-diagrams.org/examples/
online-shopping-example.html

[167] Tuma, J.; Ṕıcka, M.; et al. Generated Report of the ORD BORM Model. Acta
Informatica Pragensia, volume 4, no. 1, 2015: pp. 30–43, doi:10.18267/j.aip.58.

[168] Smith, J. Modeliosoft: Shopping Cart, version 1.7. [online], 2013, [Ac-
cessed 15 June 2022]. Available from: https://www.modeliosoft.com/example/
AnalysisAndDesign.pdf

[169] Litium AB. Litium Docs. [online], 2022, [Accessed 19 June 2022]. Available from:
https://docs.litium.com

[170] Sarka, D. Lucient: Object-Role Modeling Part 1. [online], 2007, [Accessed 20 June
2022]. Available from: https://lucient.com/blog/object-role-modeling-part-
1/

[171] Object Management Group. Business Process Model and Notation (BPMN). Tech-
nical report, Object Management Group (OMG), January 2009, [Accessed 12 March
2022]. Available from: https://www.omg.org/spec/BPMN/1.2/PDF

[172] Šenkýř, D.; Kroha, P. Patterns in Textual Requirements Specification. In Proceedings
of the 13th International Conference on Software Technologies, ICSOFT 2018, Porto,
Portugal, July 26-28, 2018, edited by L. A. Maciaszek; M. van Sinderen, SciTePress,
2018, pp. 231–238, doi:10.5220/0006827302310238.

218

https://www.uml-diagrams.org/examples/online-shopping-example.html
https://www.uml-diagrams.org/examples/online-shopping-example.html
https://www.modeliosoft.com/example/AnalysisAndDesign.pdf
https://www.modeliosoft.com/example/AnalysisAndDesign.pdf
https://docs.litium.com
https://lucient.com/blog/object-role-modeling-part-1/
https://lucient.com/blog/object-role-modeling-part-1/
https://www.omg.org/spec/BPMN/1.2/PDF


Reviewed Publications of the Author
Relevant to the Thesis

[A.1] Suchánek, M.; Pergl, R. Evolvable Documents – an Initial Conceptualization.
PATTERNS 2018, The Tenth International Conference on Pervasive Patterns and
Applications. Wilmington: IARIA, 2018. p. 39-44. ISSN 2308-3557. ISBN 978-
1-61208-612-5. Available from: https://www.thinkmind.org/index.php?view=
article&articleid=patterns 2018 4 10 78002

The paper has been cited in:

◦ Knaisl, V. Proposing an Architecture of an Intelligent Evolvable Document
Generation System Based on the Normalized Systems Theory. In: Enterprise
and Organizational Modeling and Simulation. Springer, Cham, 2019. p. 70-
81. 1. ISSN 1865-1348. ISBN 978-3-030-35645-3. Available from: https://

link.springer.com/chapter/10.1007/978-3-030-35646-0 6

◦ Knaisl, V.; Pergl, R. Proposing Ontology-Driven Content Modularization in
Documents Based on the Normalized Systems Theory. In: Trends and In-
novations in Information Systems and Technologies. Springer, Cham, 2020.
p. 45-54. ISSN 2194-5357. ISBN 978-3-030-45687-0. Available from: https:

//link.springer.com/chapter/10.1007/978-3-030-45688-7 5

◦ Knaisl, V.; Pergl, R. Improving Document Evolvability based on Normalized
Systems Theory. In: Information Systems and Technologies. Springer, Cham,
2022. p. 131-140. ISSN 2367-3370. ISBN 978-3-031-04818-0. Available from:
https://link.springer.com/chapter/10.1007/978-3-031-04819-7 14

[A.2] Suchánek, M.; Pergl, R. Towards Evolvable Documents with a Conceptualization-
Based Case Study. In: International Journal on Advances in Intelligent Sys-
tems. Wilmington: IARIA, 2018, 11(3&4). p. 212–223. ISSN 1942-2679. Avail-
able from: https://www.thinkmind.org/index.php?view=article&articleid=
intsys v11 n34 2018 8

219

https://www.thinkmind.org/index.php?view=article&articleid=patterns_2018_4_10_78002
https://www.thinkmind.org/index.php?view=article&articleid=patterns_2018_4_10_78002
https://link.springer.com/chapter/10.1007/978-3-030-35646-0_6
https://link.springer.com/chapter/10.1007/978-3-030-35646-0_6
https://link.springer.com/chapter/10.1007/978-3-030-45688-7_5
https://link.springer.com/chapter/10.1007/978-3-030-45688-7_5
https://link.springer.com/chapter/10.1007/978-3-031-04819-7_14
https://www.thinkmind.org/index.php?view=article&articleid=intsys_v11_n34_2018_8
https://www.thinkmind.org/index.php?view=article&articleid=intsys_v11_n34_2018_8


Reviewed Publications of the Author Relevant to the Thesis

[A.3] Suchánek, M.; Pergl, R. Evolvability Evaluation of Conceptual-Level Inhe-
ritance Implementation Patterns. In: PATTERNS 2019, The Eleventh In-
ternational Conference on Pervasive Patterns and Applications. Wilming-
ton: IARIA, 2019. p. 1–6. ISSN 2308-3557. ISBN 978-1-61208-612-5. Avail-
able from: https://www.thinkmind.org/index.php?view=article&articleid=
patterns 2019 1 10 78001

The paper has been cited in:

◦ Haerens, G. Ontological Analysis of the Evolvability of the Network Fire-
wall Rule Base. In: Proceedings of the 20th CIAO! Doctoral Consortium,
and Enterprise Engineering Working Conference Forum 2020, co-located with
10th Enterprise Engineering Working Conference (EEWC 2020), Bozen /
Bolzano, Italy, September 28th, October 19th and November 9th-10th, 2020.
2020, p. 1–15. Available from: https://ceur-ws.org/Vol-2825/paper2.pdf

◦ Haerens, G. On the Evolvability of the TCP-IP Based Network Firewall Rule
Base. Dissertation Thesis. University of Antwerp, Antwerp (Belgium), 2021.
Available from: https://hdl.handle.net/10067/1834610151162165141

[A.4] Suchánek, M.; Slifka, J. Evolvable and Machine-Actionable Modular Reports for
Service-Oriented Architecture. In: Enterprise and Organizational Modeling and
Simulation. Springer: Cham, 2019. p. 43–59. 1. ISSN 1865-1348. ISBN 978-3-030-
35645-3. Available from: https://link.springer.com/chapter/10.1007/978-3-
030-35646-0 4

The paper has been cited in:

◦ Joshi, S.; Rambola, R. Context-Aware Service Oriented Architecture for
Secure Data Transmission. In: Journal of University of Shanghai for
Science and Technology. vol. 22, pp. 257 - 262, ISSN 1007-6735. 2020.
Available from: https://jusst.org/context-aware-service-oriented-
architecture-for-secure-data-transmission-2/

◦ Bastidas, V. ArchiSmartCity: Modelling the Alignment of Services and In-
formation in Smart City Architectures. Dissertation Thesis. National Univer-
sity of Ireland, Maynooth (Ireland), ProQuest Dissertations Publishing, 2021.
Available from: https://mural.maynoothuniversity.ie/14874/

[A.5] Suchánek, M. Designing an Ontology for Semantic Integration of Various Con-
ceptual Models. In: Enterprise and Organizational Modeling and Simulation.
Springer: Cham, 2019. p. 3–17. 1. ISSN 1865-1348. ISBN 978-3-030-35645-3. Avail-
able from: https://link.springer.com/chapter/10.1007/978-3-030-35646-
0 1

220

https://www.thinkmind.org/index.php?view=article&articleid=patterns_2019_1_10_78001
https://www.thinkmind.org/index.php?view=article&articleid=patterns_2019_1_10_78001
https://ceur-ws.org/Vol-2825/paper2.pdf
https://hdl.handle.net/10067/1834610151162165141
https://link.springer.com/chapter/10.1007/978-3-030-35646-0_4
https://link.springer.com/chapter/10.1007/978-3-030-35646-0_4
https://jusst.org/context-aware-service-oriented-architecture-for-secure-data-transmission-2/
https://jusst.org/context-aware-service-oriented-architecture-for-secure-data-transmission-2/
https://mural.maynoothuniversity.ie/14874/
https://link.springer.com/chapter/10.1007/978-3-030-35646-0_1
https://link.springer.com/chapter/10.1007/978-3-030-35646-0_1


Reviewed Publications of the Author Relevant to the Thesis

[A.6] Suchánek, M.; Pergl, R. Mapping UFO-B to BPMN, BORM, and UML Activity
Diagram. In: Enterprise and Organizational Modeling and Simulation. Springer:
Cham, 2019. p. 82–98. 1. ISSN 1865-1348. ISBN 978-3-030-35645-3. Available from:
https://link.springer.com/chapter/10.1007/978-3-030-35646-0 7

The paper has been cited in:

◦ Costa M.Z., Guizzardi G., Almeida J.P.A. On Capturing Legal Knowledge
in Ontology and Process Models Combined. In: Frontiers in Artificial In-
telligence and Applications, Legal Knowledge and Information Systems - JU-
RIX 2022: The Thirty-fifth Annual Conference, Saarbrücken, Germany, 14-16
December 2022. Amsterdam: IOS Press, 2022, 362. p. 267–272. ISBN 978-
1-64368-364-5. Available from: https://ebooks.iospress.nl/doi/10.3233/
FAIA220478

[A.7] Suchánek, M.; Mannaert, H.; Uhnák, P.; Pergl, R. Bi-directional Transforma-
tion between Normalized Systems Elements and Domain Ontologies in OWL.
In: 15th International Conference on Evaluation of Novel Approaches to Soft-
ware Engineering (ENASE). Porto: SciTePress – Science and Technology Publi-
cations, 2020. p. 74–85. ISSN 2184-4895. ISBN 978-989-758-421-3. Available from:
https://www.scitepress.org/Link.aspx?doi=10.5220/0009356800740085

The paper has been cited in:

◦ Mannaert, H.; De Cock, K.; Uhnák, P.; Verelst, J. On the Realization
of Meta-Circular Code Generation and Two-Sided Collaborative Metapro-
gramming. In: International Journal on Advances in Software. Wilm-
ington: IARIA, 2020, 13(3&4). p. 149–159. ISSN 1942-2628. Available
from: https://www.thinkmind.org/index.php?view=article&articleid=
soft v13 n34 2020 4

[A.8] Suchánek, M.; Pergl, R. Case-Study-Based Review of Approaches for Trans-
forming UML Class Diagrams to OWL and Vice Versa. In: IEEE 22nd Con-
ference on Business Informatics (CBI). Los Alamitos: IEEE Computer Soci-
ety, 2020. p. 270–279. vol. 1. ISBN 978-1-7281-9926-9. Available from: https:

//ieeexplore.ieee.org/document/9140231

The paper has been cited in:

◦ Chiarcos, C.; Gkirtzou, K.; Ionov, M.; Kabashi, B.; Khan, A.F.; Truica,
C.O. Modelling Collocations in OntoLex-FrAC. In: Proceedings of the 2020
Globalex Workshop on Linked Lexicography, European Language Resources
Association, pp. 10–18, 2020. Available from: https://aclanthology.org/
2022.gwll-1.3/

221

https://link.springer.com/chapter/10.1007/978-3-030-35646-0_7
https://ebooks.iospress.nl/doi/10.3233/FAIA220478
https://ebooks.iospress.nl/doi/10.3233/FAIA220478
https://www.scitepress.org/Link.aspx?doi=10.5220/0009356800740085
https://www.thinkmind.org/index.php?view=article&articleid=soft_v13_n34_2020_4
https://www.thinkmind.org/index.php?view=article&articleid=soft_v13_n34_2020_4
https://ieeexplore.ieee.org/document/9140231
https://ieeexplore.ieee.org/document/9140231
https://aclanthology.org/2022.gwll-1.3/
https://aclanthology.org/2022.gwll-1.3/


Reviewed Publications of the Author Relevant to the Thesis

◦ Huber, F.; Hagel, G. Work-In-Progress: Converting Textual Software En-
gineering Class Diagram Exercises to UML Models. In: Proceedings fo the
2022 IEEE Global Engineering Education Conference (EDUCON 2022), pp.
1–3, 2022. ISSN 2165-9567. Available from: https://ieeexplore.ieee.org/
document/9766593

[A.9] Suchánek, M.; Pergl, R. Evolvability Analysis of Multiple Inheritance and
Method Resolution Order in Python. In: PATTERNS 2020, The Twelfth
International Conference on Pervasive Patterns and Applications. Wilming-
ton: IARIA, 2020. p. 19–24. ISSN 2308-3557. ISBN 978-1-61208-783-2. Avail-
able from: http://www.thinkmind.org/index.php?view=article&articleid=
patterns 2020 2 10 79

[A.10] Suchánek, M.; Mannaert, H.; Uhnák, P.; Pergl, R. Towards Evolvable Ontology-
Driven Development with Normalized Systems. In: Evaluation of Novel Ap-
proaches to Software Engineering. Cham: Springer International Publishing, 2021.
p. 208–231. Communications in Computer and Information Science. ISSN 1865-
0929. ISBN 978-3-030-70005-8. Available from: https://link.springer.com/
chapter/10.1007/978-3-030-70006-5 9

The paper has been cited in:

◦ Slifka, J.; Pergl, R. User Interface Modelling Languages for Normalised Sys-
tems: Systematic Literature Review. In: Information Systems and Technolo-
gies. Springer, Cham, 2022. p. 349-358. ISSN 2367-3370. ISBN 978-3-031-
04828-9. Available from: https://link.springer.com/chapter/10.1007/
978-3-031-04829-6 31

[A.11] Suchánek, M.; Pergl, R. Pattern-Based Ontological Transformations for
RDF Data using SPARQL. In: PATTERNS 2021, The Thirteenth In-
ternational Conference on Pervasive Patterns and Applications. Wilming-
ton: IARIA, 2021. p. 11–16. ISSN 2308-3557. ISBN 978-1-61208-850-1. Avail-
able from: https://www.thinkmind.org/index.php?view=article&articleid=
patterns 2021 1 20 78002

[A.12] Suchánek, M.; Mannaert, H.; Uhnák, P.; Pergl, R. Building Normalized Systems
from Domain Models in Ecore. In: SOMET 2021, New Trends in Intelligent
Software Methodologies, Tools and Techniques. Amsterdam: IOS Press, 2021.
p. 169–182. Frontiers in Artificial Intelligence and Applications. vol. 337. ISBN
978-1-64368-194-8. Available from: https://ebooks.iospress.nl/doi/10.3233/
FAIA210018

222

https://ieeexplore.ieee.org/document/9766593
https://ieeexplore.ieee.org/document/9766593
http://www.thinkmind.org/index.php?view=article&articleid=patterns_2020_2_10_79
http://www.thinkmind.org/index.php?view=article&articleid=patterns_2020_2_10_79
https://link.springer.com/chapter/10.1007/978-3-030-70006-5_9
https://link.springer.com/chapter/10.1007/978-3-030-70006-5_9
https://link.springer.com/chapter/10.1007/978-3-031-04829-6_31
https://link.springer.com/chapter/10.1007/978-3-031-04829-6_31
https://www.thinkmind.org/index.php?view=article&articleid=patterns_2021_1_20_78002
https://www.thinkmind.org/index.php?view=article&articleid=patterns_2021_1_20_78002
https://ebooks.iospress.nl/doi/10.3233/FAIA210018
https://ebooks.iospress.nl/doi/10.3233/FAIA210018


Reviewed Publications of the Author Relevant to the Thesis

[A.13] Suchánek, M.; Pergl, R. Representing BORM Process Models using OWL and
RDF. In: Proceedings of the 13th International Joint Conference on Knowl-
edge Discovery, Knowledge Engineering and Knowledge Management - Volume
2: KEOD. Porto: SciTePress – Science and Technology Publications, 2021.
p. 170–177. ISBN 978-989-758-533-3, ISSN 2184-3228. Available from: https:

//www.scitepress.org/Link.aspx?doi=10.5220/0010653900003064

[A.14] Šenkýř, D.; Suchánek, M.; Kroha, P.; Mannaert, H.; Pergl, R. Expanding Nor-
malized Systems from Textual Domain Descriptions using TEMOS. In: Journal of
Intelligent Information Systems. Springer, 2022. ISSN 1573-7675. Available from:
https://link.springer.com/article/10.1007/s10844-022-00706-8

[A.15] Suchánek, M.; Mannaert, H.; Pergl, R. Towards Normalized Systems from RDF
with SPARQL. In: SOMET2022, New Trends in Intelligent Software Methodolo-
gies, Tools and Techniques. Amsterdam: IOS Press, 2022. p. 609-620. Frontiers in
Artificial Intelligence and Applications. vol. 335. ISBN 978-1-64368-316-4. Avail-
able from: https://ebooks.iospress.nl/doi/10.3233/FAIA220290

223

https://www.scitepress.org/Link.aspx?doi=10.5220/0010653900003064
https://www.scitepress.org/Link.aspx?doi=10.5220/0010653900003064
https://link.springer.com/article/10.1007/s10844-022-00706-8
https://ebooks.iospress.nl/doi/10.3233/FAIA220290




Remaining Publications of the
Author Relevant to the Thesis

[A.16] Suchánek, M. Conceptual Modelling with Respect to Precise Technical Specifica-
tion. [Technical Report] 2019. Report no. TR-FIT-19-01. Faculty of Information
Technology, CTU in Prague, Prague, Czech Republic, 2019.

[A.17] Suchánek, M. Conceptual Modelling with Respect to Precise Technical Specification.
Defense date 2019-06-24. Doctoral Minimum. Supervised by R. Pergl and P. Kroha.
Faculty of Information Technology, CTU in Prague, Prague, Czech Republic, 2019.

[A.18] Suchánek, M.; Mannaert, H.; Pergl, R. Designing an Architecture of Normalized
Systems Gateway Ontology for Conceptual Models. Doctoral Days 2019-10-21.
Supervised by R. Pergl and H. Mannaert. Faculty of Business & Economics and
Antwerp Management School, University of Antwerp, Antwerp, Belgium, 2020.

225





Remaining Publications of the
Author

[A.19] Suchánek, M.; Pergl, R. Data Stewardship Wizard for Open Science. In: Data
a znalosti & WIKT. Brno: Vysoké učeńı technické v Brně. Fakulta informačńıch
technologíı, 2018. p. 121–125. 1. ISBN 978-80-214-5679-2.

The paper has been cited in 5 publications.1

[A.20] Pergl, R.; Hooft, R.; Suchánek, M.; Knaisl, V.; Slifka J. “Data Stewardship Wiz-
ard”: A Tool Bringing Together Researchers, Data Stewards, and Data Experts
around Data Management Planning. In: Codata Science Journal. Paris: CODATA
– International Council for Science. 2019, 18(1), p. 1–8. ISSN 1683-1470. Available
from: https://datascience.codata.org/articles/10.5334/dsj-2019-059/

The paper has been cited in 31 publications.1

[A.21] Suchánek, M.; Hooft, R.; Bourhy, K. Progress on Data Stewardship Wizard during
BioHackathon Europe 2020. [Technical Report] 2020. Available from: https:

//biohackrxiv.org/9mnkb/

The paper has been cited in 1 publication.1

[A.22] Vácha, T.; Blizničenko, J.; Barič, K.; Kuzmič, M.; Suchánek, M.; Kandusová, V.;
Cabrnochová, K. SMART CITY COMPASS: Software pro podporu implemen-
tace a evaluace chytrých opatřeńı ve městech. [Research Report] Praha: CTU.
University Centre of Energy Efficient Buildings, 2020. Report no. TJ02000344-V2.

[A.23] Schultes, E.; Magagna, B.; Hettne, K. M.; Pergl, R.; Suchánek, M.; Kuhn,
T. Reusable FAIR Implementation Profiles as Accelerators of FAIR Conver-
gence. In: Advances in Conceptual Modeling - ER 2020 Workshops CMAI,
CMLS, CMOMM4FAIR, CoMoNoS, EmpER, Vienna, Austria, November 3-6,
2020, Proceedings. Wien: Springer. 2020. p. 138–147. Lecture Notes in Computer
Science. Available from: https://link.springer.com/chapter/10.1007/978-3-
030-65847-2 13

The paper has been cited in 27 publications.1

1 Number of citations based on results from Google Scholar and Semantic Scholar.

227

https://datascience.codata.org/articles/10.5334/dsj-2019-059/
https://biohackrxiv.org/9mnkb/
https://biohackrxiv.org/9mnkb/
https://link.springer.com/chapter/10.1007/978-3-030-65847-2_13
https://link.springer.com/chapter/10.1007/978-3-030-65847-2_13


Remaining Publications of the Author

[A.24] Miksa, T.; Walk, P.; Neish, P.; Oblasser, S.; Murray, H.; Renner, T.; Jacquemot-
Perbal, M.-C.; Cardoso, J. et al. Application Profile for Machine-Actionable
Data Management Plans. In: Codata Science Journal. CODATA. 2021, 20(1),
ISSN 1683-1470. Available from: https://datascience.codata.org/articles/
10.5334/dsj-2021-032/

The paper has been cited in 3 publications.1

[A.25] Suchánek, M.; Alper, P.; Slifka, J.; Děd, V.; Barry, N.D.; Lieby, P.; Vidak, M.;
Zlender, N. DS Wizard Meets DAISY: A Romance Solving Data Protection Re-
quirements in Data Management Planning. [Technical Report] 2021. Available
from: https://biohackrxiv.org/cuvqw/

[A.26] Cardoso, J.; Castro, L.J.; Ekaputra, F.J.; Jacquemot, M.C.; Suchánek, M.; Miksa,
T.; Borbinha, J. DCSO: Towards an Ontology for Machine-Actionable Data Man-
agement Plans. In: Journal of Biomedical Semantics. BioMed Central. 2022, ISSN
2041-1480. Available from: https://jbiomedsem.biomedcentral.com/articles/
10.1186/s13326-022-00274-4

The paper has been cited in 2 publications.1

[A.27] Basajja, M.; Suchánek, M.; Taye, G.T.; Amare, S.; Nambobi, M.; Folorunso, S.;
Plug, R.; Oladipo, F.O. et al. Proof of Concept and Horizons on Deployment of
FAIR Data Points in the COVID-19 Pandemic. In: Data Intelligence. MIT Press.
2022, ISSN 2641-435X. Available from: https://direct.mit.edu/dint/article/
4/4/917/112733

The paper has been cited in 1 publication.1

[A.28] Benhamed, O.M.; Burger, K.; Kaliyaperumal, R.; Bonino da Silva Santos, L.O.;
Suchánek, M.; Slifka, J.; Wilkinson, M.D. The FAIR Data Point: Interfaces and
Tooling. In: Data Intelligence. MIT Press. 2022, ISSN 2641-435X. Available from:
https://direct.mit.edu/dint/article/doi/10.1162/dint a 00161

The paper has been cited in 4 publications.1

228

https://datascience.codata.org/articles/10.5334/dsj-2021-032/
https://datascience.codata.org/articles/10.5334/dsj-2021-032/
https://biohackrxiv.org/cuvqw/
https://jbiomedsem.biomedcentral.com/articles/10.1186/s13326-022-00274-4
https://jbiomedsem.biomedcentral.com/articles/10.1186/s13326-022-00274-4
https://direct.mit.edu/dint/article/4/4/917/112733
https://direct.mit.edu/dint/article/4/4/917/112733
https://direct.mit.edu/dint/article/doi/10.1162/dint_a_00161


Selected Relevant Supervised Theses

[A.29] Rolńık, M.-D. Modular Web-based Information System for Leisure Complex. Bach-
elor Thesis. Czech Technical University in Prague, Faculty of Information Tech-
nology, Prague, Czech Republic, 2018. Available from: http://hdl.handle.net/
10467/76984

[A.30] Hamza, J. Modular Web-based Reservation System for Clinic. Bachelor Thesis.
Czech Technical University in Prague, Faculty of Information Technology, Prague,
Czech Republic, 2018. Available from: http://hdl.handle.net/10467/76980

[A.31] Junek, M. Modular Web-based Information System for Small and Medium-sized
Enterprises. Bachelor Thesis. Czech Technical University in Prague, Faculty of
Information Technology, Prague, Czech Republic, 2018. Available from: http:

//hdl.handle.net/10467/76822

[A.32] Dunaevskiy, S. Study Project Management Information System. Bachelor Thesis.
Czech Technical University in Prague, Faculty of Information Technology, Prague,
Czech Republic, 2019. Available from: http://hdl.handle.net/10467/86181

[A.33] Starý, T. System for Composing and Managing Evolvable Documents. Bachelor
Thesis. Czech Technical University in Prague, Faculty of Information Technology,
Prague, Czech Republic, 2019. Available from: http://hdl.handle.net/10467/
83133

[A.34] Jirásko, P. Academic Collaboration Information System. Master Thesis. Czech
Technical University in Prague, Faculty of Information Technology, Prague, Czech
Republic, 2019. Available from: http://hdl.handle.net/10467/82709

[A.35] Volodin, V. Personal Expense Management Web Application. Bachelor Thesis.
Czech Technical University in Prague, Faculty of Information Technology, Prague,
Czech Republic, 2020. Available from: http://hdl.handle.net/10467/88352

[A.36] Janáček, M. Lightweight Enterprise Relationship Management Information Sys-
tem. Bachelor Thesis. Czech Technical University in Prague, Faculty of In-
formation Technology, Prague, Czech Republic, 2020. Available from: http:

//hdl.handle.net/10467/88170

229

http://hdl.handle.net/10467/76984
http://hdl.handle.net/10467/76984
http://hdl.handle.net/10467/76980
http://hdl.handle.net/10467/76822
http://hdl.handle.net/10467/76822
http://hdl.handle.net/10467/86181
http://hdl.handle.net/10467/83133
http://hdl.handle.net/10467/83133
http://hdl.handle.net/10467/82709
http://hdl.handle.net/10467/88352
http://hdl.handle.net/10467/88170
http://hdl.handle.net/10467/88170


Selected Relevant Supervised Theses

[A.37] Gallas, M. Information System for Paper Document Management. Bachelor Thesis.
Czech Technical University in Prague, Faculty of Information Technology, Prague,
Czech Republic, 2020. Available from: http://hdl.handle.net/10467/88164

[A.38] Vaner, M. Web Information System for Electronic Classbook. Bachelor Thesis.
Czech Technical University in Prague, Faculty of Information Technology, Prague,
Czech Republic, 2021. Available from: http://hdl.handle.net/10467/94888

[A.39] Zotkina, O. Analysis of Model-Driven Development Methods for Generating Web-
Based Information Systems. Bachelor Thesis. Czech Technical University in
Prague, Faculty of Information Technology, Prague, Czech Republic, 2021. Avail-
able from: http://hdl.handle.net/10467/94919

[A.40] Chodounská, M. Design Patterns and Principles Analysis for Home Assistant
Application using Reverse Engineering Methods. Bachelor Thesis. Czech Technical
University in Prague, Faculty of Information Technology, Prague, Czech Republic,
2021. Available from: http://hdl.handle.net/10467/96911

[A.41] Svoboda, P. Workflow: Web Application Implementing Company Processes using
State Machines. Master Thesis. Czech Technical University in Prague, Faculty
of Information Technology, Prague, Czech Republic, 2021. Available from: http:
//hdl.handle.net/10467/94595

[A.42] Kužmová, A. Design of Task Management System for Chain Stores. Bachelor
Thesis. Czech Technical University in Prague, Faculty of Information Technology,
Prague, Czech Republic, 2021. Available from: http://hdl.handle.net/10467/
95029

[A.43] Baláž, R. Architecture Design of a Universal License Server. Master Thesis. Czech
Technical University in Prague, Faculty of Information Technology, Prague, Czech
Republic, 2022. Available from: http://hdl.handle.net/10467/102070

[A.44] Machačová, T. Streamlining the Use of Conceptual Models in OntoUML with
RDF Technologies. Master Thesis. Czech Technical University in Prague, Faculty
of Information Technology, Prague, Czech Republic, 2023. Available from: http:
//hdl.handle.net/10467/107233

230

http://hdl.handle.net/10467/88164
http://hdl.handle.net/10467/94888
http://hdl.handle.net/10467/94919
http://hdl.handle.net/10467/96911
http://hdl.handle.net/10467/94595
http://hdl.handle.net/10467/94595
http://hdl.handle.net/10467/95029
http://hdl.handle.net/10467/95029
http://hdl.handle.net/10467/102070
http://hdl.handle.net/10467/107233
http://hdl.handle.net/10467/107233


Appendix A

Electronic Resources

The electronic attachment contains all the artefacts and their implementation emerged
from this dissertation thesis. The structure is as described by Figure A.1. Parts of the
appendix are mentioned from the relevant chapters and sections of the thesis. Note that
the electronic attachment is available upon request via email or via the persistent URL∗

following permission approval.

Figure A.1: Contents of the electronic attachment

cm-ontologies.................................ontologies for conceptual modelling
demonstration...................................demonstration inputs and results

input-models ........................ input models in original and RDF formats
scenario-1 ................................. resources of the CM-to-NS scenario
scenario-2........................resources of the semantic integration scenario
scenario-3 ................................ resources of the evolvability scenario
scenario-4 ................................. resources of the NS-to-CM scenario

gateway-ontology.................................gateway ontology and mappings
layers...............................................gateway ontology (layers)
mappers.....................................mappings for conceptual modelling

borm-mapping...........................................mapping for BORM
bpmn-mapping...........................................mapping for BPMN
orm-mapping.............................................mapping for ORM
rdfs-owl-mapping.................................mapping for RDFS/OWL
uml-mapping..............................................mapping for UML

tools............................................directory of tools implementation
ns-rdf..................................................NS-RDF/OWL project
sparql-trans.................................SPARQL Transformation project

CITATION.cff.................................... citation file (referring this thesis)
README.md..............................................description of the contents

∗http://purl.org/nsgo4cm/electronic-resources

231


	Introduction
	Motivation
	Problem Statement
	Related Work & Previous Results
	Methodology
	Contributions of the Dissertation Thesis
	Structure of the Dissertation Thesis

	Background and State-of-the-Art
	Theoretical Background
	Conceptual Modelling
	Formal Specifications
	Ontologies
	Model-Driven Engineering
	Model-to-Model Transformations

	Previous Results and Related Work
	Model Driven Architecture
	Model as a Code
	OO-Method
	Scaffolding
	Eclipse Modeling Framework and Ecore
	Conceptual Model Transformations and Ontologies
	Ontology Mapping and RDF Transformations
	Ontology-Based Software

	Normalized Systems
	Normalized Systems Theory
	Metamodel and Meta-Circularity
	Expansion and Craftings
	Prime Radiant and NS Modeller
	Normalized Systems in Other Domains


	Overview of Our Approach
	Design Requirements
	Feature-Level Requirements
	Theory-Based and Contextual Requirements
	Adapted Requirements
	Verification and Evaluation

	Framework Architecture
	Design Modularisation
	Grounding of our Design
	Logical View
	Technical View
	NS Gateway Ontology for Conceptual Models

	Formal Specification of Transformations
	Conceptual Models
	NS Models and Expansion
	RDF and OWL
	Transformations

	Evolution in Design Cycle
	Initial Prototype OntoUML-NS
	Ecore-NS Transformation
	Adding Intermediary Plane
	NS-OWL Tool Development
	Conceptual Models in RDF and OWL
	Generalising the Workflow
	Enhancing Layers in Gateway Ontology
	Future of Design Cycle

	Aspects and Benefits
	Future of Design Cycle
	Models Integration Support
	Existing Tooling
	Interoperability
	Extensibility
	Evolvability and Maintainability

	Alternative Approaches
	Per-Language Transformations
	XSLT Transformations
	QVT Transformations
	ATL Transformations


	Transformation between NS Elements and RDF/OWL
	Design of Bi-directional Transformation
	Motivation for NS in RDF/OWL
	Mapping NS to OWL
	Mapping NS to RDF
	Recovering NS from RDF
	Instance-Level Mapping

	NS Elements Models Representation
	NS Projections
	NS XML Representation
	RDF-Triples Representation
	OWL-Triples Representation

	Transformation Execution
	Building URIs
	NS to RDF
	NS to OWL
	RDF to NS
	OWL to NS

	Transformation Tool Implementation
	Traditional Prototype
	Expanded Transformation Tool
	Transformation Verification Procedure

	Design Cycle of NS-RDF/OWL Transformation
	Summary of NS-RDF/OWL Transformation

	Using RDF/OWL to Represent and Integrate Conceptual Models
	Dealing with Heterogeneity in Conceptual Modelling with RDF/OWL
	Syntactic Heterogeneity
	Semantic Heterogeneity
	Modelling Language Specifications
	Absence of Meta-Circularity
	Conceptual Model as Semantic Web and Linked Data

	Conceptual Modelling Ontologies for NS Gateway
	UML Models in RDF/OWL
	Motivation for UML in RDF/OWL
	UML Ontology for Transformation Design
	UML Class Diagram Ontology
	UML State Machine Ontology
	UML Activity Diagram Ontology
	UML in RDF Example
	Ecore as UML Subset

	OntoUML Models in RDF/OWL
	OntoUML as UML Profile in RDF
	OntoUML in RDF using gUFO
	Integrating OntoUML in RDF

	BPMN Models in RDF/OWL
	Conceptual Part of BPMN
	BPMN Ontology
	BPMN Models in RDF
	Relating to BPMN 2.0 Ontology

	BORM Models in RDF/OWL
	OntoBORM – Ontology for BORM
	Representing BORM BA in RDF
	Representing BORM OR in RDF
	BORM Designed for Semantic Integration
	Using SPARQL and SHACL for BORM

	ORM Models in RDF/OWL
	ORM2 Ontology
	ORM2 in RDF Example

	Integrating Knowledge from Conceptual Models using RDF
	Modularity and Evolvability of Conceptual Models in RDF/OWL
	Design Cycle of Representing Conceptual Models in RDF/OWL
	Summary of Representing Conceptual Models in RDF/OWL

	Transforming between Models using Gateway Ontology
	Relating NS Elements and Conceptual Models
	UML Class Diagram Mapping
	UML Activity Diagram Mapping
	UML State Machine Diagram Mapping
	OntoUML Mapping
	BPMN Mapping
	BORM Mapping
	ORM Mapping
	Unmatched Constructs and Consistency
	Design and Features

	Gateway Ontology
	Core Layer
	Extensions Layer
	Transformations Layer
	Conceptual Modelling Language Mappers

	Building Gateway Ontology Bottom-Up
	Structural-Based Gateway Ontology Abstractions
	Behavioural-Based Gateway Ontology Abstractions
	General Gateway Ontology Abstractions
	DSR-Based Extensibility

	Performing Transformation with Mapping
	Pattern-Based SPARQL Queries
	Mapping Specification in RDF
	Transformation Execution
	Bi-directionality and Consistency

	Design Cycle of Gateway Ontology Development
	Summary of Gateway Ontology

	Demonstration Use Cases
	Using NS Gateway Ontology for Conceptual Models
	Conceptual Models for e-Commerce System
	UML Diagrams: Online Shopping
	Craft.CASE e-Shop Example
	Modelio's Shopping Cart
	Litium Connector Models
	Lucient's ORM Model for Sales Application

	From Conceptual Models to Normalized System
	UML Diagram Examples to NS
	Modelio: Shopping Cart Model to NS
	Lucient: Sales App to NS
	Craft.CASE: e-Shop to NS
	Litium ERP Connector to NS
	Results and Limitations

	Semantic Integration with BORM Model
	Integrated Input Conceptual Models
	Mapping and Transforming Integrated Models
	NS from Integrated Models

	Evolvability and Consistency
	Adopt Changes in Conceptual Model
	Adopt Changes in a Modelling Language
	Adopt Changes in a Mapping
	Adopt Changes in the NS Metamodel

	Reverse Engineering Normalized System
	Normalized e-Commerce System
	Reverse Transformation to UML via RDF
	Resulting UML Model from NS
	Consistency for Reversed Transformation

	Demonstration Summary

	Main Results
	Applied Design Science Research
	NS-RDF/OWL Transformation
	OWL Ontologies for Conceptual Modelling
	SPARQL-Based Mappings in RDF for Versatile RDF Transformations
	CM-NS Transformations
	RDF/OWL-Based MDD Framework

	Conclusions
	Summary
	Contributions of the Dissertation Thesis
	Future Work

	Bibliography
	Reviewed Relevant Publications of the Author
	Reviewed Publications of the Author Relevant to the Thesis
	Remaining Relevant Publications of the Author
	Remaining Publications of the Author Relevant to the Thesis
	Remaining Publications of the Author
	Selected Relevant Supervised Theses
	Electronic Resources

