BAKALÁŘSKÁ PRÁCE
TRIGONO – TANEČNÍ CENTRUM

Vypracovala: Tereza Pojerová
Vedoucí práce: prof. Akad. arch. Vladimír Soukenka
Ústav: 15115 Ústav interiéru
Semestr: letní 2022/23
D.3.1.15 Rozsah a způsob rozmístění výtahových a bezpečnostních zařízení a tabulek
D.3.1.16 Závěr
D.3.1.17 Seznam použitých podkladů pro zpracování

D.3.2 Výkresová dokumentace
D.3.2.1 PEČís. - Koordinační situace
D.3.2.2 PEČís. - Půdorys 1 PP
D.3.2.3 PEČís. - Půdorys 1 NP

D.4 Technické zařízení budov
D.4.1 Technická zpráva
D.4.1.1 Popis objektu
D.4.1.2 Přípojky
D.4.1.3 Větrání a vzduchotechnika
D.4.1.4 Vytápění
D.4.1.5 Ochlazení
D.4.1.6 Vodovod
D.4.1.7 Kanalizace
D.4.1.8 Elektrické instalace
D.4.1.9 Seznam použitých podkladů pro zpracování

D.4.2 Výkresová dokumentace
D.4.2.1 Koordinační situace
D.4.2.2 Půdorys 1 PP
D.4.2.3 Půdorys 1 NP

D.5 Realizace staveb
D.5.1 Technická zpráva
D.5.1.1 Popis objektu a stavěniště
D.5.1.2 Konstrukčně výrobní systém
D.5.1.3 Návrh zdivovacích prostředků, výrobnických, montážních a skladovacích ploch
D.5.1.4 Návrh trvalých záborů vjezdu a výjezdu ze stavěniště
D.5.1.5 Ochrana životního prostředí během výstavby
D.5.1.6 Bezpečnost a ochrana zdraví na stavěniště
D.5.1.7 Seznam použitých podkladů pro zpracování

D.5.2 Výkresová dokumentace
D.5.2.1 Koordinační situace
D.5.2.2 Stavební jáma
D.5.2.3 Zařízení stavěniště

D.6 Interiér
D.6.1 Technická zpráva
D.6.1.1 Povrchy a materiály
D.6.1.2 Výbavení a konstrukce
D.6.1.3 Seznam použitých podkladů pro zpracování

D.6.2 Technická zpráva
D.6.2.1 Půdorys foyer a bar
A PRŮVODNÍ TECHNICKÁ ZPRÁVA

TRIGONO – TANEČNÍ CENTRUM

Vypracovala: Tereza Poyerová
Vedoucí práce: prof. Akad. arch. Vladimír Soukenka
Ústav: 15115 Ústav interiéru
Semestr: letní 2022/23
A.1 Údaje o stavbě

Název stavby: TRIGONO – taneční centrum
Lokalita stavby: Praha 7 – Holešovice, parcel. č. 2378/1
Předmět dokumentace: taneční centrum, novostavba
Stupeň dokumentace: dokumentace ke stavebnímu povolení
Datum zpracování: letní semestr 2022/2023
Účel projektu: Bakalářská práce
Vypracoval(a): Tereza Pojerová
Ateliér: Soukenka

Konzultanti:

Vedoucí projektu prof. Akad. arch. Vladimír Soukenka
Architektonicky stavební řešení Ing. arch. Aleš Mikule, Ph.D.
Stavebně konstrukční řešení prof. Dr. Ing. Martin Pospíšil, Ph.D.
Požárně bezpečnostní řešení stavby Ing. Stanislava Neubergová, Ph.D.
Technická zařízení budov Ing. Dagmar Richtrová
Realizace staveb Ing. Miliada Votrubová, CSc.
Interiér prof. Akad. arch. Vladimír Soukenka

A.2 Vstupní podklady

Primárním podkladem k projektu BP byla studie k bakalářské práci vypracovaná v ateliéru Soukenka na FA ČVUT v zimním semestru 2022/2023. Využity byly inženýrsko-geologické výkony pro zjištění skladby půdy, větší podmínky a sněhové oblast ve zpracovávané lokalitě. Další bylo využito katastrální mapa, orto-foto a mapa inženýrských sítí pro přesné zakreslení situačních výkresů.

A.3 Členění stavby na stavební objekty

<table>
<thead>
<tr>
<th>SO 01</th>
<th>Hrubé terénní úpravy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO 02</td>
<td>Taneční centrum</td>
</tr>
<tr>
<td>SO 03</td>
<td>Přípojka vodovodu</td>
</tr>
<tr>
<td>SO 04</td>
<td>Přípojka elektřiny</td>
</tr>
<tr>
<td>SO 05</td>
<td>Přípojka kanalizace</td>
</tr>
<tr>
<td>SO 06</td>
<td>Vozovka</td>
</tr>
<tr>
<td>SO 07</td>
<td>Komunikace</td>
</tr>
<tr>
<td>SO 08</td>
<td>Čisté terénní úpravy</td>
</tr>
</tbody>
</table>
B SOUHRNNÁ TECHNICKÁ ZPRÁVA
TRIGONO – TANEČNÍ CENTRUM

Konzultant: Ing. Dagmar Richtrová
Vypracovala: Tereza Pojerová
Vedoucí práce: prof. Akad. arch. Vladimír Soukenka
Ústav: 15115 Ústav interiéru
Semestr: letní 2022/23
B.1 Popis území stavby
 B.1.1 Charakteristika území a stavebního pozemku
 B.1.2 Výčet a závěry provedených průzkumů a rozborů
 B.1.3 Požadavky na asanace, demolice, kácení dřevin
 B.1.4 Územně technické podmínky
 B.1.5 Seznam zasažených pozemků

B.2 Celkový popis stavby
 B.2.1 Základní charakteristika stavby
 B.2.2 Celkové urbanistické a architektonické řešení
 B.2.3 Celkové provozní řešení
 B.2.4 Bezbariérové užívání stavby
 B.2.5 Bezpečnost při užívání stavby
 B.2.6 Zásady požární bezpečnostního řešení
 B.2.7 Úspora energie a tepelná ochrana
 B.2.8 Vliv stavby na okolí
 B.2.9 Ochrana stavby před negativními účinky vnějšího prostředí

B.3 Připojení na technickou infrastrukturu

B.4 Dopravní řešení

B.5 Vegetace a terénní úpravy

B.6 Ekologie

B.7 Zásady organizace výstavby

B.8 Výpis použitých norem a předpisů
B.1 Popis území stavby

B.1.1 Charakteristika území a stavebního pozemku

Území se nachází na parcelách 2378/8, 2378/7, 2297/13 a 2378/1. Na parcelách 2378/8, 2378/7, 2297/13 jsou komunikace a vozovka. Hlavní objekt projektu stojí celý na parcele 2378/1.

Poznámka: nepravidelné tvaru je situován v Praze 7 – Hostěradice na levém břehu řeky Vltavy v záplavovém území. Navržený objekt je zasunut do svahu s převýšením 4,49 m na 2 m. V současné době svahy jsou zarostlé stromy a keří.

B.1.2 Výčet a závěry provedených průzkumů a rozborů

B.1.3 Požadavky na asanace, demolice, kácení dřevin
Část stromů a růst na pozemku bude prosakána kvůli novému objektu. Následně, během částí terénních úprav, budou vysazené nový strom, vyvolávající alej podél silnice.

B.1.4 Územní technické podmínky
Veľkéře inženýrské sítě jsou k objektu připojeny ze severní strany objektu

B.1.5 Seznam zasažených pozemků
- 2378/6
- 2378/7
- 2297/13
- 2378/1

B.2 Celkový popis stavby

B.2.1 Základní charakteristika stavby
Nový objekt bude sloužit jako taneční centrum. Zastavěná plocha je 1117,605 m². Budova je dvoupodlažní a celková výška budovy je 11,5 m (s atikou). Předpokládaný maximální počet osob je 225 osob. Stavba je navržena jako kombinace želizobetonu a ocelové konstrukce. Srovnávací rovina a 0,000 je rovna 187,23 m. n. m. (BpV).

B.2.2 Celkové urbanistické a architektonické řešení
Půdorys tanečního centra je trojúhelníkový se zaoblenými rohy. Tvar byl inspirován nedalekou trojúhelníkovou křížovatkou. Důraz byl kladen na vytvoření iluzivního pohybu, který byl vytvořen, jak na fasádě, kdy se střídají volné plochy s hliníkovými kříd kroužky, tak i v půdorysu, kdy se podle sřední natačí několik trojúhelníků různými směry. Budova je část zasažena do sálu.
Nosné konstrukce objektu jsou ze železobetonu a jsou spojené s ocelovou příhradovou konstrukcí. Podlaha je tvořena dřítkobetonovou deskou. Vnější fasádní plášť tvoří dlaždice z pohledového betonu a hliníkového kladu.

B.2.3 Celkové provozní řešení
Stavba slouží pro kulturní akce.

B.2.4 Bezbariérové užívání stavby
Pro osobu se sníženou schopností orientace a pohybu je dostupný pouze přístupní podlahu. V objektu není navržen žádný výtah v návštěvnické části. Toto opatření je zamýšleno pro jednodušší úniku při požáru.

B.2.5 Bezpečnost při užívání stavby
Před zahájením užívání stavby bude navržen provozní řád, který bude spojit bezpečnostní požadavky, které jsou určeny normou stanovující bezpečnost užívání stavby dle jejího využití.

B.2.6 Zásady požárně bezpečnostního řešení
Viz. část D.3 Požárně bezpečnostní řešení stavby.

B.2.7 Úspora energie a tepelná ochrana
Konstrukce budovy je navržena v souladu s ČSN 73 0540 „Tepelná ochrana budov“.

B.2.8 Vliv stavby na okoli
Stavba je navržena tak aby spolupracovala požadavky na ochranu proti hluku a vibrací dle § 14 vyhlášky č. 288/2009 Sb. o technických požadavcích na stavby, a dle nařízení vlády č. 148/2006 Sb., o ochraně zdraví před nepříznivým účinkem hluku a vibrací.

B.2.9 Ochrana stavby před negativními účinky vnějšího prostředí
V okolí stavby se nenachází žádné negativní účinky.

B.3 připojení na technickou infrastrukturu
Objekt je napojen na stávající infrastrukturu elektřiny, vodovodu a kanalizace pomocí jednotlivých připojek.

B.4 Dopravní řešení
Budova je dostupný z ulice Jankovce, jak pro cyklisty, chodce, hasiči vozy a zásobování baru nebo vozy s kulíšky.
B.5 Vegetace a terénní úpravy

Na řešeným pozemku je travnatá plocha. Před výstavbou bude odstraněna náletová zeleň. Přístupová cesta k objektu bude zpevněna.

B.6 Ekologie

Navrhovaná stavba nebude mít, vzhledem ke svému typu a rozsahu, zásadní vliv na zhoršení ovzduší. S pevným palivem se pro vytápění neuvádí, vnější prostory objektu jsou většinou pouze nuceně. Vzhled odváděný vzduchotechnickým zařízením do exteriéru neobsahuje žádná látky.

Užívání nového objektu může způsobit mírné navýšení stávající tlakové úrovně. Jako například VZT jednotka nebo samotný vnější provoz.

Na parcele budou odstraněny stromy na základě platných povolení. Památné stromy, ochrana rostlin a živočichů není v rámci řešeného prostoru vyžadována.

B.7 Zásady organizace výstavby

Viz. část D.5 Realizace stavby.

B.8 Výpis použitých norem a předpisů

[2] ČSN 73 0010 Požární bezpečnost staveb – Společná ustanovení (7/2016), Opera Prima 1 (3/2020);

[3] ČSN 73 0082 ed.2 Požární bezpečnost staveb – Nevýrobní objekty (10/2020);

[5] ČSN 73 0821 ed.2 Požární bezpečnost staveb – Požární odolnost stavebních konstrukcí (5/2007);

[6] ČSN 73 0831 ed.2 Požární bezpečnost staveb – Shromažďovací prostory (10/2020);

[7] ČSN 73 0872 Požární bezpečnost staveb – Ochrana staveb proti šíření požáru vzduchotechnickým zařízením (1/1996);

[8] ČSN 73 0873 Požární bezpečnost staveb – Zásobování požární vodou (6/2003);

[9] ČSN 73 4201 ed.2 Komíny a kouřovody – Navrhování, provádění a připojování spotřebičů paliv (12/2016);

[10] ČSN 01 3495 Výkresy ve stavebnictví – Výkresy požární bezpečnosti staveb (8/1998);

[16] Vyhláška č. 246/2001 Sb., o stanovení podmínek požární bezpečnosti a výkonu státního požárního dozor (vyhláška o požární prevenci);

[17] Vyhláška MV č. 202/1999 Sb., kterou se stanoví technické podmínky požárních dveří, kouřotlavných dveří a kouřotlavných požárních dveří;

[18] Nařízení vlády č. 163/2002 Sb., kterým se stanoví technické požádavky na vybrané stavební výrobky;

[19] Nařízení vlády č. 375/2017 Sb., o vzhledu, umístění a provedení bezpečnostních značek a značení a zavedení signalů;

[20] Zákon č. 22/1997 Sb., o technických požádavcích na výrobky a o změně a doplnění některých zákonů;

[21] Zákon ČNR č. 133/1985 Sb., o požární ochraně;

[22] ČSN EN 1993-1-1 Navrhování ocelových konstrukcí – Část 1.1: Obecná pravidla a pravidla pro pozemní stavby

České Vysoké Učení Technické v Praze
Fakulta architektury

C SITUAČNÍ VÝKRESY
TRIGONO – TANEČNÍ CENTRUM

Konzultant: Ing. arch. Aleš Mikule, Ph.D.
Vypracovala: Tereza Pojérová
Vedoucí práce: prof. Akad. arch. Vladimír Soukenka
Ústav: 15115 Ústav interiéru
Semestr: letní 2022/23
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1 Zákres do katastrální mapy</td>
<td>M 1:1000</td>
</tr>
<tr>
<td>C.2 Koordinační situace</td>
<td>M 1:250</td>
</tr>
</tbody>
</table>
České Vysoké Učení Technické v Praze
Fakulta architektury

D DOKUMENTACE STAVEBNÍHO OBJEKTU
TRIGONO – TANEČNÍ CENTRUM

Vypracovala: Tereza Pojerová
Vedoucí práce: prof. Akad. arch. Vladimír Soukenka
Ústav: 15115 Ústav interiér
Semestr: letní 2022/23
D.1 Architektonicko-stavební řešení
D.2 Stavebně konstrukční řešení
D.3 Požárně bezpečnostní řešení stavby
D.4 Technické zařízení budov
D.5 Realizace staveb
D.6 Interiér
D.1 ARCHITEKTONICKO-STAVEBNÍ ŘEŠENÍ

TRIGONO – TANEČNÍ CENTRUM

Konzultant: Ing. arch. Aleš Mikule, Ph.D.
Vypracovala: Tereza Pojérová
Vedoucí práce: prof. Akad. arch. Vladimír Soukenka
Ústav: 15115 Ústav interiéru
Semestr: letní 2022/23
D.1.1 Technická zpráva
 D.1.1.1 Architektonické a materiálové řešení
 D.1.1.2 Konstrukční a stavebně technické řešení
 D.1.1.3 Stavební fyzika

D.1.2 Výkresová dokumentace
 D.1.2.1 Půdorysy
 D.1.2.1.1 Půdorys 1.PP M 1:70
 D.1.2.1.2 Půdorys 1.NP M 1:70
 D.1.2.1.3 Půdorys střechy M 1:70
 D.1.2.2 Řezy
 D.1.2.2.1 Řez AA' M 1:100
 D.1.2.3 Pohledy
 D.1.2.3.1 Pohled severní M 1:100
 D.1.2.3.2 Pohled jižní M 1:100
 D.1.2.3.3 Pohled východní M 1:100
 D.1.2.3.4 Pohled západní M 1:100
 D.1.2.4 Detaily
 D.1.2.4.1 Detail spoj dveře obvod. stěna M 1:10
 D.1.2.4.2 Detail skladba stropní desky M 1:10
 D.1.2.4.3 Detail atika M 1:10
 D.1.2.5 Výkazy
 D.1.2.5.1 Skladby svislých konstrukcí
 D.1.2.5.2 Skladba vodorovných konstrukcí
 D.1.2.5.3 Tabulka dveří
 D.1.2.5.4 Tabulka oken
 D.1.2.5.5 Tabulka klempířských prvků
 D.1.2.5.6 Tabulka zámečnických prvků
D.1.1.1 Architektonické a materiálové řešení

Architektonické řešení

Vznikající stavba bude sloužit jako taneční centrum. Jeho půdorysný tvar je trojúhelník se zaoblenými vrcholy. Je to dvoupodlažní budova, která má jedno podzemní a jedno nadzemní patro. Celková jeho výška je 11,5 m. Budova je částečně do světu s převyšením 4,49 m na 2 m. Přístupný je z ulice Jankovcova, kde se nacházejí čtyři vstupy. Tři vstupy na východě pro návštěvníky a jeden vstup, s možností částečného zajetí nákladního vozu, pro zaměstnance ze západní strany. Početek ± 0,000 je 187, 23 m. n. (BpV). Bezbariérově přístupné je pouze přízemní patro, alespoň z hlediska návštěvníků. V zaměstnancové části se nachází nákladní výtah s hlavním účelem manipulace jevištních rekvizit atp.

Materiálové řešení

Nosné konstrukce objektu jsou ze železobetonu a jsou spojeny s ocelovou příhradovou konstrukcí. Příhradová konstrukce v některých prostorách je zakryta podhledem. V objektu jsou tři druhy obkladů podhledu a tři šádrokarton (hygienické místnosti), ocelová mřížková deska a plexisklo. Podlahy je tvořena betonovou deskou nebo je obložený keramickými dlaždicemi.

D.1.1.2 Konstrukčně a stavebně technické řešení

Základové podmínky

Svislé nosné konstrukce

Obvodové nosné stěny a vnější nosné stěny se skládají ze železobetonu. Vnitřní příčky jsou z trámce Ytong. Nosné železobetonové stěny jsou navrženy v tloušťce 300 a 250 mm. Beton je použit C 20/25 a ocel S 235. Kromě stěnového systému, v budově jsou tři Ž8 sloupy. Dva o průměru 600 mm a jeden o průměru 800 mm z důvodů vnitřní dutiny pro kanalizační potrubí.

Vodorovné nosné konstrukce

Stropní konstrukce v úrovni – 0,200 tvoří trapézový plech, tl. 80 mm, který jsou posazen na prostorovou příhradovou konstrukci a je zajištěn betonovou vratovou s vyzuženou stří. Beton je použit C 20/25 a ocel S 235. Ve všech částech je prostorový příhradový vznak podepřen stěnovým a sloupovým systémem.

Prostorová tuhost konstrukce

Prostorovou tuhost konstrukce zajistují více směrně umístěné železobetonové nosné stěny, ocelová prostorová příhradová konstrukce zajistí tuhost ve vodorovných rovinách.

Schodiště

Všechna schodišťová ramena budou z prefabrikovaného železobetonu, uložena na železobetonových monolitických podestátech a mezipodestátech na ozub. Krytí výstupu je na minimálně 20 mm.

Střešní konstrukce

Objekt má nepočetné střechy. Nosná konstrukce střechy je tvořena trapézovým plechem, tl. 80 mm, který je posazen na prostorovou příhradovou konstrukci a je zajištěn betonovou vratovou s vyzuženou stří. Beton je použit C 20/25 a ocel S 235. Ve všech částech je prostorový příhradový vznak podepřen stěnovým a sloupovým systémem.

D.1.1.3 Stavební fyzika

Prostup tepla vícevratovou konstrukcí
Podle účelu navrženého objektu není potřeba dodržovat požadavky na osulení a osvětlení prostoru.

D.1.1.4 Seznam podkladů

PROSTOROVÝ PŘÍHRADOVÝ VAZNÍK, SPODNÍ PÁS, jakl aa 100 mm
PROSTOROVÝ PŘÍHRADOVÝ VAZNÍK, DIAGONÁLA, jakl aB 120 mm
PROSTOROVÝ PŘÍHRADOVÝ VAZNÍK, HORNÍ PÁS, jakl aa 100 mm
TRAPÉZOVÝ PLECH, Č. TYP. 12 103, NOSNÁ KONSTRUKCE
BETONOVÁ MAZANINA S VÝZTUŽNÍ SÍTÍ, tl. 80 mm
HYDROIZOLACE
TEPELNÁ IZOLACE ISOVER XPS, tl. 60 mm
HYDROIZOLACE
BROUŠENÝ BETON S VÝZTUŽÍ A 142
2x DESKA Z MINERÁLNÍ VLNY, tl. 60 mm
2x DESKA PROMATECT®-H, 1250 x 2500 x 15 mm
RÁDLOVACÍ DRÁT, POZINKOVANÝ, ZDVOJENÝ, Ø 2 mm
NOSNÝ T-PROFIL 60 x 49,5 x 0.7 mm
RÁDLOVACÍ DRÁT, POZINKOVANÝ, ZDVOJENÝ, Ø 2 mm
OCELOVÁ SVORKA 28 x 10.7 x 1.2 mm

± 0.000 = 187.23 m. n. m. (BpV)
1 : 10

TRIGONO - TANEČNÍ CENTRUM
DETAIL SKLADBY STROPNÍ DESKA
OBVODOVÁ NOSNÁ STĚNA PODZEMNÍ
- NOSNÁ STĚNA, ŽB, tl. 250 mm
- ZA-HYDROIZOLACE, ASPHALTOVÉ PÁSY
- MELANDÍK STĚNA

S01

OBVODOVÁ NOSNÁ STĚNA
- HLINÍKOVÝ KEDR SLOUPEK, 300x450 mm
- OCELOVÝ PROFIL I 300
- CEMENTOTŘÍSKOVÁ DESKA CEMTRIS BASIC, 10 mm
- ZÁVĚSNÝ ELEMENT CEMENTOTŘÍSKOVÉ DESKY, HLÍNÍK
- HORIZONTÁLNÍ MONT. PROFIL, 40x60 mm
- FASÁDNÍ MONTOVANÝ PROFIL, 60x45 mm
- HLINÍKOVÁ KOTVA
- DIFUTNÍ FOLIE
- TEPELNÁ IZOLACE XPS, tl. 210 mm
- IZOLAČNÍ PODLOŽKA
- NOSNÁ KONSTRUKCE, ŽB, tl. 250 mm

S02

MILÁNSKÁ STĚNA
- NOSNÁ STĚNA
- OCELOVÝ PROFIL I 300
- CEMENTOTŘÍSKOVÁ DESKA CEMTRIS BASIC, 10 mm
- ZÁVĚSNÝ ELEMENT CEMENTOTŘÍSKOVÉ DESKY, HLÍNÍK
- HORIZONTÁLNÍ MONT. PROFIL, 40x60 mm
- FASÁDNÍ MONTOVANÝ PROFIL, 60x45 mm
- HLINÍKOVÁ KOTVA
- DIFUTNÍ FOLIE
- TEPELNÁ IZOLACE XPS, tl. 210 mm
- IZOLAČNÍ PODLOŽKA
- NOSNÁ KONSTRUKCE, ŽB, tl. 250 mm

S03

S04

PŘÍČKA
- YTONG, tl. 100 mm, 200mm
- BETONOVÁ STĚRKA, tl. 2 mm
- BETONOVÁ STĚRKA, tl. 2 mm

S05

SKLENĚNÁ PŘÍČKA
- OCELOVÝ RÁM, 40 x 40 mm
- BEZPEČNOSTNÍ TROJSKLO

S06

NOSNÝ SLOUP
- NOSNÁ SLOUP, ŽB, ø 600 mm, 800 mm
<table>
<thead>
<tr>
<th>ČÍSLO</th>
<th>SCHEMA</th>
<th>ROZMĚR</th>
<th>KS</th>
<th>POPIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D01</td>
<td>3000 1600 3</td>
<td>EXTERIÉROVÉ DVEŘE DVOUKŘÍDLÉ</td>
<td>MATERIÁL: HLINÍK MATNĚ ČERNÝ NEREZOVÁ KLIKA, ZÁMEK</td>
<td></td>
</tr>
<tr>
<td>D02</td>
<td>3000 8000 1</td>
<td>EXTERIÉROVÉ DVEŘE ROLOVACÍ VRATA S DVEŘÍM MATERIÁL: OCELOVÝ KLECH LAKOVANÝ MATNĚ ČERNÝ NEREZOVÁ KLIKA, ZÁMEK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D03</td>
<td>3000 1600 2</td>
<td>INTERIÉROVÉ DVEŘE DVOUKŘÍDLÉ</td>
<td>MATERIÁL: HLINÍK MATNĚ ČERNÝ NEREZOVÁ KLIKA</td>
<td></td>
</tr>
<tr>
<td>D04</td>
<td>3000 1600 3</td>
<td>INTERIÉROVÉ DVEŘE DVOUKŘÍDLÉ</td>
<td>MATERIÁL: HLINÍK MATNĚ ČERNÝ S PROSKLENÍM NEREZOVÁ KLIKA, ZÁMEK</td>
<td></td>
</tr>
<tr>
<td>D05</td>
<td>3000 1400 6</td>
<td>INTERIÉROVÉ DVEŘE DVOUKŘÍDLÉ</td>
<td>MATERIÁL: HLINÍK MATNĚ ČERNÝ NEREZOVÁ KLIKA</td>
<td></td>
</tr>
<tr>
<td>D06</td>
<td>3000 1400 1</td>
<td>INTERIÉROVÉ DVEŘE DVOUKŘÍDLÉ</td>
<td>MATERIÁL: HLINÍK MATNĚ ČERNÝ S PROSKLENÍM NEREZOVÁ KLIKA, ZÁMEK</td>
<td></td>
</tr>
<tr>
<td>D07</td>
<td>3000 900 1</td>
<td>INTERIÉROVÉ DVEŘE JEDNOKŘÍDLÉ</td>
<td>MATERIÁL: HLINÍK MATNĚ ČERNÝ NEREZOVÁ KLIKA</td>
<td></td>
</tr>
<tr>
<td>D08</td>
<td>3000 900 4</td>
<td>INTERIÉROVÉ DVEŘE JEDNOKŘÍDLÉ</td>
<td>MATERIÁL: HLINÍK MATNĚ ČERNÝ NEREZOVÁ KLIKA</td>
<td></td>
</tr>
<tr>
<td>D09</td>
<td>2800 1600 8</td>
<td>INTERIÉROVÉ DVEŘE JEDNOKŘÍDLÉ</td>
<td>MATERIÁL: HLINÍK MATNĚ ČERNÝ NEREZOVÁ KLIKA</td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>2000 900 20</td>
<td>INTERIÉROVÉ DVEŘE JEDNOKŘÍDLÉ</td>
<td>MATERIÁL: HLINÍK MATNĚ ČERNÝ NEREZOVÁ KLIKA</td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>2000 800 10</td>
<td>INTERIÉROVÉ DVEŘE JEDNOKŘÍDLÉ</td>
<td>MATERIÁL: HLINÍK MATNĚ ČERNÝ NEREZOVÁ KLIKA</td>
<td></td>
</tr>
<tr>
<td>D12</td>
<td>2000 700 14</td>
<td>INTERIÉROVÉ DVEŘE JEDNOKŘÍDLÉ</td>
<td>MATERIÁL: HLINÍK MATNĚ ČERNÝ NEREZOVÁ KLIKA</td>
<td></td>
</tr>
</tbody>
</table>

± 0.000 = 187.23 m, n. m. (Bp/V)

ČIN: TANEČNÍ CENTRUM
UNIVERZITY V ČECHách

TABULKA DVEŘÍ
<table>
<thead>
<tr>
<th>Číslo</th>
<th>Schéma</th>
<th>Řáme</th>
<th>KS</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td></td>
<td>9020 6869</td>
<td></td>
<td>OKNO ZÁPADNÍ FASÁDA NEOTEVŘETELNÉ HLINÍKOVÝ RÁM ZASKLENÍ OKÉN BEZPEČNOSTNÍM DVOJSKLEM SLOŽENO ZE 6 SKLENĚNÝCH TABULÍ</td>
</tr>
<tr>
<td>02</td>
<td></td>
<td>7131 9858</td>
<td></td>
<td>OKNO VÝCHODNÍ FASÁDA NEOTEVŘETELNÉ HLINÍKOVÝ RÁM ZASKLENÍ OKÉN BEZPEČNOSTNÍM DVOJSKLEM SLOŽENO ZE 6 SKLENĚNÝCH TABULÍ</td>
</tr>
<tr>
<td>03</td>
<td></td>
<td>8304 6933</td>
<td></td>
<td>OKNO SEVERNÍ FASÁDA NEOTEVŘETELNÉ HLINÍKOVÝ RÁM ZASKLENÍ OKÉN BEZPEČNOSTNÍM DVOJSKLEM SLOŽENO ZE 6 SKLENĚNÝCH TABULÍ</td>
</tr>
<tr>
<td>04</td>
<td></td>
<td>1500 1000 3</td>
<td></td>
<td>OKNO INTERIÉROVÉ VYSUVNÉ (NAHORU ČÁSTECNE) HLINÍKOVÝ RÁM ZASKLENÍ OKÉN BEZPEČNOSTNÍM DVOJSKLEM SLOŽENO ZE 2 SKLENĚNÝCH TABULÍ</td>
</tr>
<tr>
<td>05</td>
<td></td>
<td>9299 9072 1</td>
<td></td>
<td>OKNO STŘEŠNÍ NEOTEVŘETELNÉ HLINÍKOVÝ RÁM ZASKLENÍ OKÉN BEZPEČNOSTNÍM TROJSKLEM SLOŽENO ZE 11 SKLENĚNÝCH TABULÍ</td>
</tr>
</tbody>
</table>

TRIGONO - TANEČNÍ CENTRUM

TABULKA OKEN
<table>
<thead>
<tr>
<th>ČÍSLO</th>
<th>SCHEMA</th>
<th>ROZMĚRY</th>
<th>POPIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>K01</td>
<td>![Image]</td>
<td>1200 x 250 x 3 mm</td>
<td>HRANATÝ ŽLÁB TITANZINEK</td>
</tr>
<tr>
<td>K02</td>
<td>![Image]</td>
<td>35 x 42 x 3 mm</td>
<td>TAŽENÝ PLECH OKAPNÍČKA</td>
</tr>
<tr>
<td>K03</td>
<td>![Image]</td>
<td>35 x 150 x 3 mm</td>
<td>TAŽENÝ PLECH OKAPNÍČKA</td>
</tr>
<tr>
<td>K04</td>
<td>![Image]</td>
<td>DN 100</td>
<td>OKAPOVÝ SVOD POZINKOVANÝ PLECH</td>
</tr>
<tr>
<td>K05</td>
<td>![Image]</td>
<td>826 x 165 x 3 mm</td>
<td>OPLECHOVÁNÍ ATIKY VNEJŠÍ STRANY STŘECHY POZINKOVANÝ PLECH</td>
</tr>
<tr>
<td>K05</td>
<td>![Image]</td>
<td>396 x 165 x 3 mm</td>
<td>OPLECHOVÁNÍ ATIKY Vnitřní STRANY STŘECHY POZINKOVANÝ PLECH</td>
</tr>
<tr>
<td>ČÍSLO</td>
<td>SCHÉMA</td>
<td>POČET</td>
<td>POPIS</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>Z01</td>
<td></td>
<td>200</td>
<td>SLOUPEK PROFIL I 300 OCELOVÝ ROZTEČ 650 mm</td>
</tr>
<tr>
<td>Z02</td>
<td></td>
<td>200</td>
<td>SLOUPEK KEDR 300 x 450 mm HLNÍKOVÝ ROZTEČ 650 mm</td>
</tr>
</tbody>
</table>
D.2 STAVEBNĚ-KONSTRUKČNÍ ŘEŠENÍ
TRIGONO – TANEČNÍ CENTRUM

Konzultant: prof. Dr. Ing. Martin Pospíšil, Ph.D.
Vypracovala: Tereza Pojerová
Vedoucí práce: prof. Akad. arch. Vladimír Soukenka
Ústav: 15115 Ústav interiéru
Semestr: letní 2022/23
D.2.1 Technická zpráva
 D.2.1.1 Popis objektu
 D.2.1.2 Popis konstrukce
 D.2.1.3 Seznam použitých podkladů pro zpracování

D.2.2 Statický výpočet

D.2.3 Výkresová dokumentace
 D.2.2.1 Stropní příhradová deska M 1:100
 D.2.2.2 Sřešní příhradová deska M 1:100
 D.2.2.3 Příhradový nosník v desce M 1:20
D.2.1.1 Popis objektu

Projekt TRIKONO se nachází vedle Ladislavova parku na Prazce 7. Řešený objekt je novostavba, který bude sloužit jako divadlo se zaměřením na tanec. Celý areál je přístupný z ulice Jankovcova.

Půdorysný tvar budovy je trojúhelník, jehož vrcholy jsou zacíleny. Je to dvou patrová budova, s jedním nadzemním a jedním podzemním patrem. Technologicky je objekt vystaven z monolitického železobetonu, na něhož je následně zavěšena vnější pohledová vrstva. Tato pohledová vrstva se skládá z dřevěného pohledového betonu a svisle zavěšených hliníkových kledů s rozestupem 650 mm mezi sobou.

D.2.1.2 Popis konstrukce

Základové podmínky

Svislé nosné konstrukce

Obvodové nosné stěny a vnitřní nosné stěny se skládají ze železobetonu. Vnitřní příkry jsou z tvarců Yong. Nosné železobetonové stěny jsou navrženy v tloušťce 300 a 250 mm. Beton je použit C 20/25 a ocel S 235. Kromě stěnného systému, v budově jsou tři žB sloupy. Dva o průměru 600 mm a jeden o průměru 800 mm z důvodů vnitřních dalších pro kanalizační potrubí.

Vodorovné nosné konstrukce

Stropní konstrukční úrovni – 0,200 tvoří trapezový plech, tl. 80 mm, který jsou posazené na prostorovou příhradovou konstrukci a je zařízen betonovou vrstvou s vyzdviženou stříškou. Beton je použit C 20/25 a ocel S 235. Ve všech částech je prostorový příhradový vzakno podepřen stěnovým a sloupowým systémem.

Prostorová tuhost konstrukce

Prostorovou tuhost konstrukce zajišťuje více směřovaná železobetonová nosná sténa, ocelová prostorová příhradová konstrukce zajišťuje tuhost ve vodorovných rovinách.

Schodiště

Všechna schodišťová ramena budou z prefabrikovaného železobetonu, uložena na železobetonových monolitických podestávách a mezipodestávách na ose. Krytí výšku je navrženo na minimálně 20 mm.

Střešní konstrukce

Objekt má nepochozí střechu. Nosné konstrukce střechy je tvořena trapezovým plechem, tl. 80 mm, který je posazen na prostorovou příhradovou konstrukci a je zařízen betonovou vrstvou s vyzdviženou stříškou. Beton je použit C 20/25 a ocel S 235. Ve všech částech je prostorový příhradový vzakno podepřen stěnovým a sloupowým systémem.

D.2.1.3 Charakteristika prostředí

Základové podmínky

Budova se nachází na břehu řeky Vitavy. Částí budovy je zasazena do svahu s převýšením 4,49 m na 2 m. Srovnávací rovina t 0,00 je 187,23 m n. m. Úroveň silnice v místě k junctionu na tanečního centra je 187,03 m n. m. Základové spáry jedné základové desky se nachází v 5.800 m pod úrovní vozovky. Druhé základové desky je v 6.463 m pod úrovní vozovky. Hladina podzemní vody se nachází v 9.530 pod úrovní vozovky.

Základové podmínky byly zjištěny na základě inženýrsko-geologické průzkumu. Jedná se o vrt číslo GDO 664835 provedený Českou geologickou službou do hloubky 10 m a vrt číslo GDO 704562 provedený do hloubky 30 m.
Sněhová oblast

Objekt se nachází v 1. sněhové oblasti s charakteristickou hodnotou zatížení sněhem $s_1 = 0,7$ kPa.

Zatížení sněhem:

\[s = s_1 \cdot \mu \cdot \omega \cdot \xi \cdot c_0 \cdot [kN/m^2] \]

\[s_1 = 0,7 \text{ kPa} \]
\[\mu = 0,8 \text{ (dle sklonu střechy 0°-30°)} \]
\[\omega = 1 \]
\[\xi = 1 \]
\[c_0 = 0,8 \cdot 0,7 \cdot 1 \cdot 1 = 0,56 \text{ kN/m}^2 \]

Větrná oblast

Objekt se nachází v 1. větrné oblasti s rychlostí větru $v_0 = 22,5$ m/s.

Zatížení větrem:

\[v_0 = 22,5 \text{ m/s} \]
\[z = 11,5 \text{ m (vyšším budovou)} \]

Kategorie terénu: IV. (město)

\[s_{uv} = 0,19 \text{ m} \]
\[s_{uv} = 10 \text{ m} \]
\[s_{uv} = 1 \]
\[s_{uv} = 1,046 \cdot 1 \cdot 22,5 = 10,44 \text{ m/s} \]
\[s_{uv} = 1,1 \cdot 11,5 / 5 = 0,41 \]

Maximální charakteristické tlak:

\[q_u (k_2) = [1 + 7 \cdot k_2] \cdot 0,5 \cdot \rho \cdot (v_0)^2 = [1 + 7 \cdot 0,41] \cdot 0,5 \cdot 1,25 \cdot 10,44^2 = 263,41 \text{ N/m}^2 = 0,263 \text{ kN/m}^2 \]

Užitné zatížení

Pro výpočty bylo použito užitné zatížení pro konkrétní sněh (CS) s charakteristickou hodnotou $q_u = 7,5$ kN/m².

1. PP

<table>
<thead>
<tr>
<th>číslo místnosti</th>
<th>místnost</th>
<th>užitné zatížení q_u [kN/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.01</td>
<td>Technická místnost</td>
<td>5,0</td>
</tr>
<tr>
<td>01.02</td>
<td>Rozvodná EL</td>
<td>5,0</td>
</tr>
<tr>
<td>01.03</td>
<td>Stropová štípa</td>
<td>7,0</td>
</tr>
<tr>
<td>01.04</td>
<td>WC nádělníci páně</td>
<td>2,0</td>
</tr>
<tr>
<td>01.05</td>
<td>WC nádělníci dámy</td>
<td>2,0</td>
</tr>
<tr>
<td>01.06</td>
<td>Sídlová budova</td>
<td>3,0</td>
</tr>
<tr>
<td>01.07</td>
<td>Fojer</td>
<td>5,0</td>
</tr>
<tr>
<td>01.08</td>
<td>Výstavní plocha</td>
<td>5,0</td>
</tr>
<tr>
<td>01.09</td>
<td>Masážna</td>
<td>2,0</td>
</tr>
<tr>
<td>01.10</td>
<td>Sauna T1</td>
<td>2,0</td>
</tr>
</tbody>
</table>
D.2.2 Staticky výpočet

1. Návrh trapézového plechu

Zatížení:

<table>
<thead>
<tr>
<th>Stědi zatížení</th>
<th>h [m]</th>
<th>(q_u [\text{kN/m}^2])</th>
</tr>
</thead>
<tbody>
<tr>
<td>povrchový beton</td>
<td>0.15</td>
<td>24</td>
</tr>
<tr>
<td>separátor a krojová folie</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zbytníka</td>
<td>0.08</td>
<td>28</td>
</tr>
<tr>
<td>trapézový plech</td>
<td>0.05</td>
<td>18</td>
</tr>
<tr>
<td>Celkem</td>
<td>0.28</td>
<td>67</td>
</tr>
</tbody>
</table>

Nahodni zatížení:

<table>
<thead>
<tr>
<th>Užitné C5 (doklad)</th>
<th>(q_g [\text{kN/m}^2])</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Užitý plech 0,75</th>
<th>(\psi)</th>
<th>(g_u [\text{kN/m}^2])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,25</td>
<td>1,5</td>
<td>12,36</td>
</tr>
</tbody>
</table>

Celkové zatížení:

\[
\Sigma (g_u + q_u) [\text{kN/m}^2] = 14,63 + 20,98 = 35,61 \text{kN/m}
\]

\[
M_{zd} = 1/10 \cdot (g_u + q_u) \cdot l^2
\]

\[
M_{zd} = 1/10 \cdot 20,98 \cdot 1,5^2 = 4,72 \text{kNm}
\]

Návrh profilu plechu:

W_{nax} = M \cdot (\gamma / \eta_f)

\[
\gamma = 1,15
\]

\[
f_{c} = 235 \cdot 10^3
\]

\[
W_{nax} = M_{zd} \cdot (1,15 / 235 \cdot 10^3) = 2,31 \cdot 10^4 \text{ mm}^3
\]

navrhování: \(W_0 = 2,795 \cdot 10^4 \text{ mm}^3 (\text{dp. typu 12103})\)

\(t_{s} = 130,209 \cdot 10^3 \text{ mm}^3\)

Moment únosnosti (LMS)

\[
M_{c, pax} = W_{0} \cdot (f_{c} / \eta_f) \gg M_{zd}
\]

\[
M_{c, spax} = 2,795 \cdot 10^4 \cdot (235 \cdot 10^3 / 1,15) = 5,71 \text{kNm}
\]

\[
M_{c, spax} > M_{zd}; \quad \text{VYHOVUJE}
\]

D.2.1.4 Seznam použitých podkladů pro zpracování

1. Výukové materiály pro předměty SNK1, SNK2, SNK3 a SNK4, FA ČVUT
2. ČSN EN 1993-1-1 Navrhování ocelových konstrukcí – Část 1: Obecná pravidla pro pozemní stavbu
3. ČSN EN 1992-1-1 Eurokód 2: Navrhování betonových konstrukcí – Část 1: Obecná pravidla a pravidla pro pozemní stavby
5. Informace o zatížení ze stránky [cit. 15.05.2023]: https://www.fce.vutbr.cz/3ZK/zvolanek/ivyuk a_bzv/BL01_zatizeni.pdf

Střecha: \(q_u = 1,0 \text{kN/m}^2\) (uzitně zatížení nepřesně nebo výjimek údězy a opravě)

<table>
<thead>
<tr>
<th>číslo místnosti</th>
<th>místnost</th>
<th>užitné zatížení</th>
<th>q_u [\text{kN/m}^2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.11</td>
<td>Sprcha T1</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>01.12</td>
<td>WC T1</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>01.13</td>
<td>WC zaměštaní</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>01.14</td>
<td>WC T2</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>01.15</td>
<td>Sprcha T2</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>01.16</td>
<td>Saňa T2</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>01.17</td>
<td>Ukrová místnost</td>
<td>7,5</td>
<td></td>
</tr>
<tr>
<td>01.18</td>
<td>Sklad garderoby</td>
<td>7,5</td>
<td></td>
</tr>
<tr>
<td>01.19</td>
<td>Gardenida</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>01.20</td>
<td>Združena</td>
<td>5,0</td>
<td></td>
</tr>
<tr>
<td>01.21</td>
<td>Chodba</td>
<td>5,0</td>
<td></td>
</tr>
<tr>
<td>01.22a</td>
<td>Hřebíček</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>01.22b</td>
<td>Ježovité</td>
<td>5,0</td>
<td></td>
</tr>
</tbody>
</table>

1. NP
Moment poutětlivostí (2.MS)
\[\sigma_{\text{ext}} = \frac{(L/192)(q_0 + q_0')}{E} \leq \sigma_{\text{ext}} = L/250 \]
\[\sigma_{\text{ext}} = \frac{(1/192)(14.63 \cdot 1.5\gamma + 2.1 \cdot 1^2 + 1.30209 \cdot 10^{-1})}{17.39 \cdot 10^{-3} \text{m}} \]
\[\sigma_{\text{ext}} = 12.250 = 0.048 \text{ m} \]
\[\sigma_{\text{ext}} < \sigma_{\text{ext}} \quad \text{… VYHOVOUJE} \]

2. Návrh příhradového vzátku

Síly od zatížení

\[G = 1.5 (\text{tla vzátku}) \]
\[F_{\text{Ex}} = (\Sigma \Delta + G) \cdot 1 = (14.63 + 1.5\gamma) \cdot 1.5 = 24.19 \text{ kN} \]
\[F_{\text{Ey}} = (\Sigma \Delta + G) \cdot 1 = (20.98 + 1.5\gamma) \cdot 1.5 = 33.72 \text{ kN} \]
\[q_0 = 0.263 \text{ kN/m}^2 \]
\[W_{\text{ex}} = q_0 \cdot (x_2) \cdot \gamma = 0.263 \cdot 1.1 \cdot 1 = 0.27 \text{ kN/m}^2 \]
\[W_{\text{ey}} = W_{\text{xy}} \cdot \gamma = 0.27 \cdot 1.5 \cdot 1 = 0.404 \text{ kN/m}^2 \]
\[v = c_{\text{ex}} \cdot 1.1 \cdot 1 = 0.404 \cdot 1.5 \cdot 1.5 = 0.49 \text{ kN} \]

Výpočet osovcích sil

a) Styčníková metoda
\[A + B = 8 \cdot F = (F / 2) = 0 \]
\[2A = 8 \cdot 33.72 = (33.72 \cdot 2) \]
\[A = 151.75 \text{ kN} \]
\[B = 151.75 \text{ kN} \]

b) Průsečníková metoda
\[a: (A' - 4 \cdot 2) - (F / 2) \cdot 4 \cdot 2 = (F - 3 \cdot 2) = (F - 2 \cdot 2) = (F - 1 \cdot 2) = (F_{\text{ex}} - 1) = 0 \]
\[F_{\text{ex}} = (-151.75 \cdot 4 \cdot 2) + (33.72 \cdot 2) \cdot 2 + (33.72 \cdot 2) \cdot (33.72 \cdot 2) = 1.7 \]
\[F_{\text{ex}} = 396.73 \text{ kN} \]
\[b: (A' - 3 \cdot 2) - (v \cdot r) - (F / 2) \cdot 3 \cdot 2 - (F - 3 \cdot 2) - (F - 2 \cdot 2) - (F - 1 \cdot 2) = (F_{\text{ex}} - 1) = 0 \]
\[F_{\text{ex}} = ((151.75 \cdot 3 \cdot 2) - (0.49 \cdot 0.8) - (33.72 \cdot 2) - (33.72 \cdot 2) - (33.72 \cdot 2) - (33.72 \cdot 2)) / 0.8 \]
\[F_{\text{ex}} = 168.12 \text{ kN} \]

Diagonální:
\[t = A - F / 2 - D \cdot \cos \sigma = F_{\text{ex}} \cdot \cos \gamma = 0 \]
\[D = (151.75 - (33.72 / 2) = (-396.73) \cdot \cos (90)) / \cos (81.93) \]
\[D = 504.15 \text{ kN} \]

Návrh horní pásnice
\[A = \frac{N / G}{\gamma} \]
\[x = 396.73 \cdot 1.15 / 2 \]
\[1.15 = 194.95 \text{ kN} \]
\[N = F_{\text{ex}} \cdot (396.73) \text{ kN} \]

Návrh dolní pásnice
\[A = \frac{N / G}{\gamma} \]
\[x = 168.12 \cdot 1.15 / 2 \]
\[1.15 = 194.95 \text{ kN} \]
\[N = F_{\text{ex}} \cdot (168.12) \text{ kN} \]

Návrh diagonální
\[A = \frac{N / G}{\gamma} \]
\[x = 504.15 \cdot 1.15 / 2 \]
\[1.15 = 684.19 \text{ kN} \]
\[N = F_{\text{ex}} \cdot (504.15) \text{ kN} \]
D.3 POŽÁRNĚ BEZPEČNOSTNÍ ŘEŠENÍ STAVBY
TRIGONO – TANEČNÍ CENTRUM

Konzultant: Ing. Stanislava Neubergová, Ph.D.
Vypracovala: Tereza Pojrová
Vedoucí práce: prof. Akad. arch. Vladimír Soukenka
Ústav: 15115 Ústav interiéru
Semestr: letní 2022/23
D.3.1 Technická zpráva

D.3.1.1 Úvod
D.3.1.2 Zkratky používané ve zprávě
D.3.1.3 Popis objektu
D.3.1.4 Rozdělení objektu do PÚ
D.3.1.5 Výpočet požárního rizika pro PÚ, stanovení SPB a posouzení velikosti PÚ
D.3.1.6 Stanovení PO stavebních konstrukcí
D.3.1.7 Evakuace, stanovení druhu a kapacity únikových cest
D.3.1.8 Odstupové vzdálenosti
D.3.1.9 Způsob zabezpečení stavby požární vodou
D.3.1.10 Vymezení zásahových cest a jejich technického vybavení
D.3.1.11 Stanovení požadavku na hašení požáru a záchranné práce
D.3.1.12 Zhodnocení technických, popřípadě technologických zařízení stavby
D.3.1.13 Stanovení zvláštních požadavků na zvýšení požární odolnosti stavebních konstrukcí
D.3.1.14 Posouzení požadavku na zabezpečení stavby požárně bezpečnostními zařízeními
D.3.1.15 Rozsah a způsob rozmístění výstražných a bezpečnostních značek a tabulek
D.3.1.16 Závěr
D.3.1.17 Seznam použitých podkladů pro zpracování

D.3.2 Vykresová dokumentace

D.3.2.1 PŘS – Koordinační siluace
D.3.2.2 PŘS – Půdorys 1.PP
D.3.2.3 PŘS – Půdorys 1.NP

M 1:500
M 1:200
M 1:200
D.3.1.1 Úvod

Cílem tohoto požárně bezpečnostního řešení je posouzení novostavby objektu tanečního centra. Požární bezpečnostní řešení je zpracováno dle § 41 odst. 2 vyhlášky č. 246/2001 Sb., o stanovení podmíněk požární bezpečnosti a výkonu státního požárního dozoru (vyhláška o požární prevenci) v rozsahu pro stavební povolení. Vzhledem k typu stavby je požárně bezpečnostní řešení zpracováno v souladu s § 41 odst. 4 vyhlášky o požární prevenci, pouze textovou formou s případnými schématickými či výkresovými přílohami.

D.3.1.2 Zkratky používané ve zprávě

SO = stavební objekt; TC = taneční centrum; k-ce = konstrukce; ZB = železobeton; IS = instalací šachta; VŠ = výtahová šachta; T1 = teplejný izolátor; SKD = sádrokartonová konstrukce; NP = nadzemní podlaží; PP = podzemní podlaží; DSP = dokumentace pro stavební povolení; T2Z = technické zařízení budov; HZS = hasičský záchranný sbor; JPO = jednotka požární ochrany; PD = projektová dokumentace; PBRS = požárně bezpečnostní řešení stavby; h = požární výška objektu v m; KS = konstrukční systém; PÚ = požární úsek; SP = štromaižovací prostor; SPB = spuštěn požární bezpečnost; PDK = požárně dělicí konstrukce; PBZ = požárně bezpečnostní zařízení; PO = požární odolnost; UC = úniková cesta; CHÚC = chráněná úniková cesta; NÚC = nedochráněná úniková cesta; úp = únikový pruh; PON = požárně otevřená plocha; PUP = požárně uzavřená plocha; PNP = požárně nebezpečný prostor; HS = hydrantový systém; PHP = přenosný hasičský přístroj; HK = hořlavá kapalina; SSHZ = samočinné stabilní hasičské zařízení; ZOKT = zařízení pro odvod koupele a tepel; SOZ = samočinné odváděcí zařízení; EPS = elektrická požární signalizace; ZDP = zařízení dávkového přenosu; OPPO = oběžné pole požární ochrany; KTP2 = klíčový tazer požární ochrany; NO = nouzové osvětlení; PBS = požárně bezpečnost staveb; RPO = rozváděče požární ochrany; VZT = vzduchotechnika; HUP = hlavní uzavírací plyn; UPS = náhradní zdroj elektrické energie; MaR = měření a regulace; CBS = části centrální bateriového systém; PK = požární klápky; NN = nákladně napětí; VN = vysoké napětí; R, E, I, W, C, S = měrné stavy dle ČSN 73 0810 – únosnost, celistvost, teplota, sladkost, samozavírací, kouřivost; VP = vnitřní štromaižovací prostor; SB = správa budovy.

D.3.1.3 Popis objektu

Popis navrhovaného stavu objektu

Objekt vystavby se nachází vedle Ladislavova parku na Praze 7. Řešený objekt je novostavba, který bude sloužit jako divadlo se zaměřením na tanc. Celý areál je přístupný z ulice Jenkovecova. Půdorys červené budy budov je trojúhelník, jehož vrchol je zaokrouhlen. Je to dvou patrová budova, s jedním nadzemním a jedním podzemním patrem. Celková výška je 10 m.

Popis konstrukčního řešení objektu

Technologicky je objekt vystaven z monolitického ZB, na něhož je následně zavěšen vnější pohledová vrstva, která se skládá z dlaždic pohledového betonu a svísel zavěšených hlínkových kédří. Konstrukčně jsou nosnými prvky obvodové stěny – druh konstrukce DP1. Stropy a schodiště jsou opatřeny z monolitického ZB (DP1) nenosné konstrukce jsou vyzdoběny z tváren. Konstrukční střechy jsou ocelové prostorové příhradové tvárnice s ocelovými trámy osazené okny – vytváří světlík. Zateplení stěn se skládá z tepelné izolace XPS o tl. 210 mm.

Požární bezpečnostní charakteristika objektu

- Podlažnost objektu ...1PP+1NP

- Požární výška objektu ... h = 5 m

- Konstrukční systém objektu nehořlavý (DP1)

Koncepce řešení objektu z hlediska PO

Objekt je klasifikován jako budova skupiny VP1 dle normy ČSN 73 0831. Budova tak bude v částech objektu s velkým množstvím koncentrace lidí, včetně provozu navazujících částí, posouzena dle požádavků normy ČSN 73 0831 a v souladu s vytí. Č. 23/2008 Sb.

D.3.1.4 Rozdělení objektu z hlediska PO

<table>
<thead>
<tr>
<th>PÚ</th>
<th>P01.01</th>
<th>Technická místnost</th>
<th>30,12 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>PÚ</td>
<td>P01.02</td>
<td>Rozvodna EL</td>
<td>11,30 m²</td>
</tr>
<tr>
<td>PÚ</td>
<td>P01.03</td>
<td>Strojovna SHZ</td>
<td>16,64 m²</td>
</tr>
<tr>
<td>PÚ</td>
<td>P01.04/N01</td>
<td>Foyer + WC + ...</td>
<td>504,52 m²</td>
</tr>
<tr>
<td>PÚ</td>
<td>P01.05</td>
<td>Zázemí + zkušebna</td>
<td>114,00 m²</td>
</tr>
<tr>
<td>PÚ</td>
<td>A-P01.06/N01</td>
<td>Choiba</td>
<td>239,69 m²</td>
</tr>
<tr>
<td>PÚ</td>
<td>P01.07/N01</td>
<td>Hasičství + jeviště</td>
<td>379,43 m²</td>
</tr>
<tr>
<td>PÚ</td>
<td>P01.02</td>
<td>Vrtání + technická místnost</td>
<td>27,94 m²</td>
</tr>
<tr>
<td>PÚ</td>
<td>P01.04</td>
<td>Strojovna VZT</td>
<td>29,60 m²</td>
</tr>
<tr>
<td>PÚ</td>
<td>P01.05</td>
<td>Zázemí</td>
<td>84,99 m²</td>
</tr>
</tbody>
</table>
D.3.1.5 Výpočet požárního rizika pro PÚ, stanovení SPB a posouzení velikosti PÚ

| PÚ | č. m. | místo | S | m² | a | b | c | č. m. | PÚ | č. m. | místo | S | m² | a | b | c | č. m. | PÚ | č. m. | místo | S | m² | a | b | c |
|---------|------|-------------|---|----|---|---|---|------|----|------|-------------|---|----|---|---|---|------|----|------|-------------|---|----|---|---|---|------|----|------|-------------|---|----|---|---|---|
| P01.01 | 01.01 | TECHNICKÁ MÍSTNOST | 30,12 | 15 | 1,10 | 2 | 0,9 | 2 | 30,12 | 15,00 | 1,10 | 2 | 0,9 |
| 2 | | | | | | | | 2 | | | | | | | | | 2 | | | | | | | | |
| P01.02 | 01.02 | ROZVODNA EL | 11,30 | 25 | 0,80 | 2 | 0,9 | 1 | 11,30 | 25,00 | 0,80 | 2 | 0,9 |
| P01.03 | 01.03 | STROJOVNA SHZ | 16,64 | 15 | 0,80 | 2 | 0,9 | 1 | 16,64 | 15,00 | 0,80 | 2 | 0,9 |
| P01.04/N01 | 01.04 | WC NM | 21,37 | 5 | 0,70 | 1 | 0,9 | 0,06 | SPRÁVA BUDOBY | 18,66 | 40 | 1,00 | 1 | 0,9 | 0,07 | FOYER | 418,83 | 10 | 0,80 | 1 | 0,9 |
| 1 | 0,08 | VÝSTAVNÍ PLOCHA | 25,24 | 15 | 1,10 | 1 | 0,9 | 1,04 | WC NM | 16,44 | 5 | 0,70 | 1 | 0,9 | 1,05 | ŠATNÁ N | 17,14 | 75 | 1,10 | 1 | 0,9 |
| 1 | 0,06 | WC NŽ | 26,49 | 5 | 0,70 | 1 | 0,9 | 0,07 | FOYER | 378,05 | 10 | 0,80 | 1 | 0,9 | 0,08 | VSTUPNÍ PROSTOR N | 24,47 | 40 | 1,00 | 1 | 0,9 |
| 1 | 1,09 | POKLADNA | 8,41 | 5 | 0,80 | 1 | 0,9 | 1,10 | BAR | 15,59 | 70 | 1,15 | 1 | 0,9 | 2 | 991,11 | 13,03 | 0,88 | 1 | 0,9 |
| P01.05 | 01.09 | MASKÁRNÁ | 13,39 | 40 | 1,10 | 7 | 0,9 | 0,10 | ŠATNÁ T1 | 10,60 | 15 | 0,70 | 7 | 0,9 | 0,11 | SPRÁHA T1 | 2,99 | 5 | 0,70 | 7 | 0,9 |
| 0,12 | WC T1 | 2,74 | 5 | 0,70 | 7 | 0,9 | 0,13 | WC Z | 5,25 | 5 | 0,70 | 7 | 0,9 | 0,14 | SPRÁHA T2 | 3,17 | 5 | 0,70 | 7 | 0,9 |
| 0,15 | SPRÁHA T2 | 3,46 | 5 | 0,70 | 7 | 0,9 | 0,16 | ŠATNÁ T2 | 14,61 | 15 | 0,70 | 7 | 0,9 | 0,17 | ÚKLODNO MÍSTNOST | 3,74 | 5 | 0,70 | 7 | 0,9 |
| 0,18 | SKLAD GARDEROBY | 5,44 | 150 | 1,10 | 7 | 0,9 | 0,19 | GARDEROBA | 14,79 | 50 | 1,10 | 7 | 0,9 | 0,20 | ZKUSEBNÁ | 33,82 | 15 | 1,20 | 7 | 0,9 |
| 3 | 114,00 | 27,05 | 0,84 | 7 | 0,9 | 0,21 | CHODBA | 110,42 | 5 | 0,80 | 2 | 0,9 | 1,01 | VSTUPNÍ PROSTOR Z | 31,29 | 5 | 0,80 | 2 | 0,9 |
| 1,21 | CHODBA | 97,90 | 5 | 0,80 | 2 | 0,9 | 3 | 239,69 | 5,00 | 0,80 | 2 | 0,9 |
| P01.07/N01 | 01.22a | HLEDĚŠTĚ | 144,99 | 25 | 1,10 | 7 | 0,9 | 0,22b | JEVŠTĚ | 25,03 | 15 | 1,25 | 7 | 0,9 | 1,22a | HLEDĚŠTĚ | 166,03 | 25 | 1,10 | 7 | 0,9 |

Použité výpočty:

\[p_v = p * a * b * c = (p_h * p_b) * a * b * c \]

\[a = (p_h * p_b + p_h * a_b) / (p_h + p_b) \]

\[b = k / 0,005 * v_h \]

\[c = c_h \]

shz

<table>
<thead>
<tr>
<th>PÚ</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>p_v</th>
<th>SPB</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01.01</td>
<td>1,08</td>
<td>1,10</td>
<td>0,50</td>
<td>16,07</td>
<td>l</td>
</tr>
<tr>
<td>P01.02</td>
<td>0,81</td>
<td>0,90</td>
<td>0,50</td>
<td>9,81</td>
<td>l</td>
</tr>
<tr>
<td>P01.03</td>
<td>0,81</td>
<td>0,90</td>
<td>0,50</td>
<td>9,86</td>
<td>l</td>
</tr>
<tr>
<td>P01.04/N01</td>
<td>0,88</td>
<td>1,10</td>
<td>0,65</td>
<td>8,83</td>
<td>l</td>
</tr>
<tr>
<td>P01.05</td>
<td>0,85</td>
<td>0,70</td>
<td>0,50</td>
<td>10,17</td>
<td>l</td>
</tr>
<tr>
<td>P01.06/N01</td>
<td>0,83</td>
<td>1,50</td>
<td>0,55</td>
<td>4,79</td>
<td>l</td>
</tr>
<tr>
<td>P01.07/N01</td>
<td>1,14</td>
<td>1,50</td>
<td>0,60</td>
<td>55,94</td>
<td>l</td>
</tr>
<tr>
<td>N01.02</td>
<td>0,95</td>
<td>0,90</td>
<td>0,50</td>
<td>39,86</td>
<td>II</td>
</tr>
<tr>
<td>N01.04</td>
<td>0,90</td>
<td>1,10</td>
<td>0,50</td>
<td>8,42</td>
<td>l</td>
</tr>
<tr>
<td>N01.05</td>
<td>0,88</td>
<td>0,90</td>
<td>0,50</td>
<td>0,27</td>
<td>l</td>
</tr>
</tbody>
</table>

Použití koeficientů:

- a - součinitel vyjadřující rychlost odhovíraní [s]
- b - součinitel vyjadřující rychlost odhovíraní z hlediska přístupu vzduchu (0,5 ≤ b ≤ 1,7) [s]
- c - součinitel vyjadřující vliv požárně bezpečnostního zařízení [s]
S – celková půdorysná plocha PŰ [m²]

S₀ – celková plocha otvíracích otvorů v obvodových a středních konstrukcích [m²]

h₀ – světlá výška posuzováního prostoru [m]

h – výška otvorů v obvodových a středních konstrukcích [m]

k – součinitel vyjadřující geometrické uspořádání místností []

p₀ – požární zatížení [kg/m²]

D.3.1.6 Stanovení požární odolnosti stavebních konstrukcí

<table>
<thead>
<tr>
<th>konstrukce</th>
<th>materiál</th>
<th>SPB</th>
<th>požárně odolné</th>
<th>nevzorované</th>
</tr>
</thead>
<tbody>
<tr>
<td>POŽÁRNÍ STĚNY</td>
<td>28 stěna, tl. 250 mm</td>
<td>i. - NP</td>
<td>REI 15 DP1</td>
<td>REI 180 DP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i. - NP</td>
<td>REI 15 DP1</td>
<td>REI 180 DP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i. - PP</td>
<td>REI 30 DP1</td>
<td>REI 180 DP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i. - PP</td>
<td>REI 30 DP1</td>
<td>REI 180 DP1</td>
</tr>
<tr>
<td>POŽÁRNÍ STROPY</td>
<td>28 deska, tl. 250 mm</td>
<td>i. - NP</td>
<td>REI 15 DP1</td>
<td>REI 180 DP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i. - NP</td>
<td>REI 15 DP1</td>
<td>REI 180 DP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i. - PP</td>
<td>REI 30 DP1</td>
<td>REI 180 DP1</td>
</tr>
<tr>
<td>OBVODOVÉ STĚNY NOSNÉ</td>
<td>28 stěna, tl. 350 mm</td>
<td>i. - NP</td>
<td>REW 15 DP1</td>
<td>REI 180 DP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i. - NP</td>
<td>REW 15 DP1</td>
<td>REI 180 DP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i. - PP</td>
<td>REW 30 DP1</td>
<td>REI 180 DP1</td>
</tr>
<tr>
<td>NOSNÉ KONSTRUKCE STŘECHY</td>
<td>Ocelový vznik</td>
<td>i.</td>
<td>REI 15 DP1</td>
<td>REI 90 DP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i.</td>
<td>REI 15 DP1</td>
<td>REI 90 DP1</td>
</tr>
<tr>
<td>NOSNÉ KČ Uvnitř PŮ</td>
<td>28 stěna, tl. 250</td>
<td>i. - NP</td>
<td>R 30 DP1</td>
<td>REI 180 DP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i. - PP</td>
<td>R 30 DP1</td>
<td>REI 180 DP1</td>
</tr>
<tr>
<td>NOSNÉ KČ Uvnitř PŮ</td>
<td>28 mohutné</td>
<td>i. - NP</td>
<td>R 30 DP1</td>
<td>REI 180 DP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i. - PP</td>
<td>R 30 DP1</td>
<td>REI 180 DP1</td>
</tr>
<tr>
<td>KČ SCHODÍŠKŮ Uvnitř PŮ</td>
<td>28 mohutné</td>
<td>i.</td>
<td>R 30 DP1</td>
<td>REI 180 DP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i.</td>
<td>R 30 DP1</td>
<td>REI 180 DP1</td>
</tr>
<tr>
<td>INSTALAČNÍ SÁCHETY PDK</td>
<td>28 stěny, tl. 250</td>
<td>i.</td>
<td>EW 15 DP1</td>
<td>E1 30 DP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i.</td>
<td>EW 15 DP1</td>
<td>E1 30 DP1</td>
</tr>
<tr>
<td>INSTALAČNÍ SÁCHETY – UZÁVĚRY OTVORŮ</td>
<td>Hliníková a SOK rezervní dříve</td>
<td>i.</td>
<td>E1 15 DP2</td>
<td>E1 30 DP1</td>
</tr>
</tbody>
</table>

D.3.1.7 Evakuace, stanovení druhu a kapacity únikových cest

<table>
<thead>
<tr>
<th>PŮ</th>
<th>místnost</th>
<th>S [m²]</th>
<th>oₙ [ks]</th>
<th>[m²/ks]</th>
<th>oₙ [ks]</th>
<th>oₙ [ks]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01.01</td>
<td>TECHNICKÁ MÍSTNOST</td>
<td>90,12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P01.02</td>
<td>ROVODNÍ EL</td>
<td>11,30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P01.03</td>
<td>STROJOWNA SH2</td>
<td>16,64</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P01.04</td>
<td>WC NM</td>
<td>21,37</td>
<td>4</td>
<td>1,30</td>
<td>5,20</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>WC NŽ</td>
<td>20,42</td>
<td>3</td>
<td>1,30</td>
<td>3,90</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>SPRÁVA BUDOVY</td>
<td>18,16</td>
<td>3</td>
<td>2</td>
<td>12,44</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>FÖYER</td>
<td>418,83</td>
<td>110</td>
<td>3</td>
<td>139,61</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>VÝSTAVNÍ PLOCHA</td>
<td>25,24</td>
<td>-</td>
<td>2</td>
<td>12,62</td>
<td>13</td>
</tr>
<tr>
<td>P01.05</td>
<td>MASKERNÁ</td>
<td>13,39</td>
<td>4</td>
<td>1,35</td>
<td>5,40</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>ŠÁTNA T1</td>
<td>10,60</td>
<td>4</td>
<td>1,35</td>
<td>5,40</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>SPRÁCHA T1</td>
<td>2,99</td>
<td>1</td>
<td>1,30</td>
<td>1,30</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>WC T1</td>
<td>2,74</td>
<td>1</td>
<td>1,30</td>
<td>1,30</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>WC 2</td>
<td>5,25</td>
<td>2</td>
<td>1,30</td>
<td>2,60</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>WC T2</td>
<td>3,17</td>
<td>1</td>
<td>1,30</td>
<td>1,30</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SPRÁCHA T2</td>
<td>3,46</td>
<td>1</td>
<td>1,30</td>
<td>1,30</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ŠÁTNA T2</td>
<td>14,61</td>
<td>7</td>
<td>1,35</td>
<td>9,45</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>ÚKLODÓVÁ MÍSTNOST</td>
<td>3,74</td>
<td>-</td>
<td>10</td>
<td>0,37</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SKLAD GARDEROBY</td>
<td>5,44</td>
<td>-</td>
<td>10</td>
<td>0,54</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>GARDEROBA</td>
<td>14,79</td>
<td>2</td>
<td>1,35</td>
<td>2,70</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ČUŠEDNA</td>
<td>33,82</td>
<td>10</td>
<td>1</td>
<td>33,82</td>
<td>34</td>
</tr>
<tr>
<td>P01.06</td>
<td>CHOBA</td>
<td>110,42</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P01.07</td>
<td>HLEDIŠTĚ</td>
<td>144,95</td>
<td>100</td>
<td>1</td>
<td>130,83</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>JEVŠIŠTE</td>
<td>25,03</td>
<td>5</td>
<td>2</td>
<td>16,69</td>
<td>17</td>
</tr>
<tr>
<td>P01.08</td>
<td>VÝSTUPNÍ PROSTOR Z</td>
<td>31,29</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CHOBA</td>
<td>97,98</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P01.09</td>
<td>VRÁTNICE</td>
<td>11,30</td>
<td>1</td>
<td>3</td>
<td>3,77</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>SKLAD BAR</td>
<td>16,64</td>
<td>-</td>
<td>10</td>
<td>1,66</td>
<td>2</td>
</tr>
<tr>
<td>P01.10</td>
<td>WC NM</td>
<td>16,44</td>
<td>4</td>
<td>1,30</td>
<td>5,20</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>ŠÁTNA N</td>
<td>17,14</td>
<td>2</td>
<td>1,35</td>
<td>2,70</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>WC NŽ</td>
<td>26,49</td>
<td>3</td>
<td>1,30</td>
<td>3,90</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>FOYER</td>
<td>378,05</td>
<td>110</td>
<td>3</td>
<td>124,02</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>VÝSTUPNÍ PROSTOR N</td>
<td>24,47</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>POKLADNÁ</td>
<td>8,41</td>
<td>2</td>
<td>3</td>
<td>2,80</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BAR</td>
<td>15,59</td>
<td>3</td>
<td>1</td>
<td>15,59</td>
<td>13</td>
</tr>
<tr>
<td>P01.14</td>
<td>STROJOWNICA VZT</td>
<td>29,60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P01.05</td>
<td>WC ZM</td>
<td>3,20</td>
<td>1</td>
<td>1,30</td>
<td>3,10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>WC ZŽ</td>
<td>4,77</td>
<td>1</td>
<td>1,30</td>
<td>3,10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SPRÁCH ZŽ</td>
<td>2,17</td>
<td>1</td>
<td>1,30</td>
<td>3,10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SPRÁCH ZM</td>
<td>2,17</td>
<td>1</td>
<td>1,30</td>
<td>3,10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ŠÁTNA Z + B</td>
<td>24,52</td>
<td>25</td>
<td>1,30</td>
<td>32,50</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>SEKRETARIÁT</td>
<td>12,27</td>
<td>1</td>
<td>5</td>
<td>2,45</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>KANCELÁŘ ŘEDITELE</td>
<td>16,33</td>
<td>1</td>
<td>5</td>
<td>3,27</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SKLAD</td>
<td>19,96</td>
<td>-</td>
<td>10</td>
<td>1,96</td>
<td>2</td>
</tr>
<tr>
<td>P01.06</td>
<td>HLEDIŠTĚ</td>
<td>166,03</td>
<td>100</td>
<td>1</td>
<td>138,36</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>JEVŠIŠTE</td>
<td>43,38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Počet únikových cest, mezní délky a počet únikových pruhů

<table>
<thead>
<tr>
<th>typ ÚČ</th>
<th>p. s.</th>
<th>místo</th>
<th>K</th>
<th>E</th>
<th>s</th>
<th>u</th>
<th>u'</th>
<th>p.š.</th>
<th>n.š.</th>
<th>A/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>NÚC</td>
<td>DM1</td>
<td>VSTUPNÍ DVEŘE Z HLEDÍŠTE V 1NP</td>
<td>150</td>
<td>113</td>
<td>1</td>
<td>0,75</td>
<td>1,0</td>
<td>550</td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>NÚC</td>
<td>DM2</td>
<td>VSTUPNÍ DVEŘE Z HLEDÍŠTE V 1PP</td>
<td>95</td>
<td>113</td>
<td>1</td>
<td>1,19</td>
<td>1,5</td>
<td>825</td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>CHÚC-A</td>
<td>SM</td>
<td>VSTUPNÍ DVEŘE Z FOYER V 1 NP</td>
<td>90</td>
<td>120</td>
<td>1</td>
<td>1,33</td>
<td>1,5</td>
<td>825</td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>CHÚC-A</td>
<td>SM</td>
<td>VSTUPNÍ DVEŘE Z FOYER V 1 PP</td>
<td>60</td>
<td>115</td>
<td>1</td>
<td>1,92</td>
<td>2,0</td>
<td>1100</td>
<td>1200</td>
<td>A</td>
</tr>
</tbody>
</table>

Použití koeficienty:

p. s. – počet směrů [-]
K – počet evakuovacích osob v 1. únikovém pruhu [-]
E – počet evakuovacích osob v posuzováném kritickém místě [-]
s – součinitel vyjadřující podmínky evakuace [-]
u – požadovaný počet únikových pruhů [-]
u – zaokrouhlení na polovinu „požadovaný počet únikových pruhů“ [-]
p.š. – požadovaná šířka [mm]
n.š. – navrhovaná šířka [mm]
A/N – vyhovění podmínky p.š. < n.š. [-]

Mezní délka NÚC je 55 m

Šířky únikových cest:

Unikové cesty mají dostatečnou šířku ve všech kritických bodech.

Schodiště na únikových cestách:

Schodiště je dostatečně široká pro únik osob z podzemního podlaží. Zároveň jsou opatřena nouzovým osvětlením.

Označení únikových cest:

Úniková cesta je zvětšeně označena ve směru úniku vůle tam, kde východ na volné prostranství není přímo viditelný, kde se mění směr úniku nebo kde dochází ke křížení komunikací či změněn výškové úrovně. Není potřeba číslovat jednotlivé podlaží.

Doba evakuace a zakoupení

<table>
<thead>
<tr>
<th>Příp.</th>
<th>h₀</th>
<th>a</th>
<th>t₀</th>
<th>t₀</th>
<th>v₀</th>
<th>K₀</th>
<th>s</th>
<th>U</th>
<th>E</th>
<th>t₀</th>
<th>t₀ 2 t₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0.01</td>
<td>4</td>
<td>1,08</td>
<td>2,31</td>
<td>0</td>
<td>25</td>
<td>30</td>
<td>1</td>
<td>1,1</td>
<td>0</td>
<td>0,00</td>
<td>A</td>
</tr>
<tr>
<td>P0.02</td>
<td>4</td>
<td>1,13</td>
<td>2,21</td>
<td>0</td>
<td>25</td>
<td>30</td>
<td>1</td>
<td>1,1</td>
<td>0</td>
<td>0,00</td>
<td>A</td>
</tr>
<tr>
<td>P0.03</td>
<td>4</td>
<td>0,96</td>
<td>2,60</td>
<td>0</td>
<td>25</td>
<td>30</td>
<td>1</td>
<td>1,1</td>
<td>0</td>
<td>0,00</td>
<td>A</td>
</tr>
<tr>
<td>P0.04/01</td>
<td>4</td>
<td>0,86</td>
<td>2,84</td>
<td>42,79</td>
<td>25</td>
<td>30</td>
<td>1</td>
<td>1,1</td>
<td>40</td>
<td>2,48</td>
<td>A</td>
</tr>
<tr>
<td>P0.05</td>
<td>4</td>
<td>0,85</td>
<td>2,94</td>
<td>0</td>
<td>25</td>
<td>30</td>
<td>1</td>
<td>1,1</td>
<td>40</td>
<td>2,42</td>
<td>A</td>
</tr>
<tr>
<td>A-P0.06/01</td>
<td>4</td>
<td>0,83</td>
<td>3,01</td>
<td>0</td>
<td>25</td>
<td>30</td>
<td>1</td>
<td>1,1</td>
<td>40</td>
<td>2,73</td>
<td>A</td>
</tr>
<tr>
<td>P0.07/01</td>
<td>4</td>
<td>1,14</td>
<td>2,19</td>
<td>0</td>
<td>25</td>
<td>30</td>
<td>1</td>
<td>1,1</td>
<td>72</td>
<td>2,18</td>
<td>A</td>
</tr>
<tr>
<td>N0.02</td>
<td>4</td>
<td>0,95</td>
<td>2,63</td>
<td>0</td>
<td>35</td>
<td>50</td>
<td>1</td>
<td>1,6</td>
<td>31</td>
<td>0,39</td>
<td>A</td>
</tr>
<tr>
<td>N0.04</td>
<td>4</td>
<td>0,90</td>
<td>2,78</td>
<td>0</td>
<td>35</td>
<td>50</td>
<td>1</td>
<td>1,0</td>
<td>0</td>
<td>0,00</td>
<td>A</td>
</tr>
<tr>
<td>N0.05</td>
<td>4</td>
<td>0,88</td>
<td>2,84</td>
<td>0</td>
<td>35</td>
<td>50</td>
<td>1</td>
<td>1,6</td>
<td>32</td>
<td>0,40</td>
<td>A</td>
</tr>
</tbody>
</table>

Použité koeficienty:

h₀ – světelná výška posuzovaného prostoru [m]
a – součinitel rychlosti odhořávání [-]
t₀ – doba zakoupení akumulačního vzniku [min]
l₀ – délka ÚČ [m]
v₀ – rychlost pohybu osob v únikovém pruhu [m/min]
K₀ – jednotlivá kapacita únikového pruhu [min/min]
s – součinitel vyjadřující podmínky evakuace [-]
u – nejmenší šířka na únikové cestě [mm]
E – počet evakuovacích osob v posuzováném kritickém místě [-]
t₀ – doba evakuace [min]

D.3.1.8 Odstupové vzdálenosti

<table>
<thead>
<tr>
<th>Příp.</th>
<th>S₀₀₀</th>
<th>S₀₀₇₇</th>
<th>p₀</th>
<th>k₀</th>
<th>S₀₀₇</th>
<th>l</th>
<th>h₀</th>
<th>S₀₀</th>
<th>p₀</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0.04/01</td>
<td>26</td>
<td>0</td>
<td>5,11</td>
<td>3,75</td>
<td>21,47</td>
<td>37,83</td>
<td>5</td>
<td>189,16</td>
<td>13,35</td>
<td>3,87</td>
</tr>
<tr>
<td>P0.04/01</td>
<td>33</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>26</td>
<td>9</td>
<td>5</td>
<td>48,00</td>
<td>60,18</td>
<td>3,87</td>
</tr>
<tr>
<td>P0.04/01</td>
<td>27</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>17</td>
<td>38</td>
<td>5</td>
<td>189,15</td>
<td>9,05</td>
<td>2,56</td>
</tr>
<tr>
<td>P0.05</td>
<td>12</td>
<td>0</td>
<td>10</td>
<td>1</td>
<td>12</td>
<td>35</td>
<td>5</td>
<td>176,30</td>
<td>7,02</td>
<td>2,81</td>
</tr>
<tr>
<td>A-P0.06/01</td>
<td>12</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>12</td>
<td>9</td>
<td>5</td>
<td>44,34</td>
<td>27,06</td>
<td>2,86</td>
</tr>
<tr>
<td>N0.05</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>35</td>
<td>5</td>
<td>176,30</td>
<td>4,34</td>
<td>2,25</td>
</tr>
</tbody>
</table>

Použité koeficienty:

s₀₀₀ – zvětšení POP obvodové stěny [m²]
s₀₀₇₇ – častečné POP obvodové stěny [m²]
p₀ – doba zakoupení akumulačního vzniku [kg/m²]
k₀ – součinitel redukující houstotu tafelního toku z častečné POP [-]
S₀₀ – celková POP v posuzované části obvodové stěny [m²]
l – délka [m]
h_v – výška [m]
S_p – plocha vymezené části posuzování obvodové stěny [m²]
p_o – procento POP [%]
d – odstupová vzdálenost [m]

Vzdálenost ostatních objektů jsou v souladu s vypočítanými odstupovými vzdálenostmi, a tudíž nehrozí přenos požáru na sousední stavby.

D.3.1.9 Způsob zabezpečení stavby požární vodou

Odběrová místa

- **Vnější odběrová místa**

Hasičský vůz je schopen dojet přímo k objektu. Nejbližší podzemní hydrant je 32 m vzdálený. V případě potřeby lze brát vodu z řeky.

Pro tento typ budovy hydrant musí být od objektu do 150-300 m, výtokový stojan do 500-1000 m a plnicí místo do 2000-4000 m. Vodní tok musí být do vzdálenosti 500 m.

- **Vnitřní odběrová místa**

V objektu se nachází stabilní hasičská zařízení, proto nemusíme navrhovat vnitřní odběrové místo (hydrant).

Přenosné hasicí přístroje

Přenosné hasicí přístroje jsou zavěšené na stěny ve výšce 1,2 m nad podlahou na vhodných viditelných místech. Množství odpovídá stanovení výpočtem.

<table>
<thead>
<tr>
<th>podloží</th>
<th>S [m²]</th>
<th>α [-]</th>
<th>c₁ [-]</th>
<th>h [-]</th>
<th>>1</th>
<th>n [-]</th>
<th>Hz [-]</th>
<th>nsw [ks]</th>
<th>nsw [-] [ks]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1PP</td>
<td>957,92</td>
<td>0,91</td>
<td>0,51</td>
<td>3,18</td>
<td>vypojuje 19,1</td>
<td>10</td>
<td>1,9</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1NP</td>
<td>1426,45</td>
<td>0,93</td>
<td>0,51</td>
<td>3,50</td>
<td>vypojuje 23,4</td>
<td>10</td>
<td>2,3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

V budově budou použity PHP třídy 34A na každém patře budov 2 tyto hasicí přístroje.

D.3.1.10 Vymezení zásahových cest a jejich technického vybavení

- **Přístupové komunikace**

Ve vzdálenosti 1,6 km na adrese Argentinská 149, 170 00 Praha 7 – Holešovice se nachází hasičský záchranářský sbor v Praze 7 – Holešovice. Vnější přístup ke stavbě je dopravně umožněn po asfaltové silnici v ulici Jankovcova.

- **Vjezdy a průjezdy**

Vjezd k objektu je možný přímo po asfaltové komunikaci na ulici. Přístupové cesty k objektu nejsou omezeny a splňují minimální šířky pro průjezd hasičských vozidel.

- **Nástupní plochy (NAP)**

Nástupní plochy není nutno zřizovat.

- **Vnitřní zásahové cesty**

Vnitřní zásahové cesty není nutno zřizovat.

- **Vnější zásahové cesty**

Vnější zásahové cesty není nutno zřizovat. Výjez d na středu je možný po žebříku.

D.3.1.11 Stanovení počtu, druhů a způsobů rozmístění hasicích přístrojů

Pro požární úseky v 1.PP jsou umístěny 2 PHP 34A ve skříně.

Pro požární úseky v 1.NP jsou umístěny 2 PHP 34A ve skříně.
D.3.1.12 Zhodnocení technických, popřípadě technologických zařízení stavby

- Prostupy rozvodů
Prostupy rozvodů jsou požárně utěšenění v souladu s ČSN 73 0810. Rozvodná potrubí a jejich příslušenství, sloužící k rozvodu nehořlavých látek pro technická zařízení prostupují požárně délčí konstrukci za dodržení podmínek.

- Vzduchotechnická zařízení (VZT)
Vzduchotechnická zařízení (větrání, oddechací, klimatizační) jsou provedena tak, aby se jim nebo po nich nemohl šířit požár nebo jeho způsobit do jiných požárních úseků. Pro zkoušení požární odolnosti vzduchotechnického potrubí platí ČSN EN 1368-1.

- Dodávka elektrické energie
Pro elektrické rozvody na ovládání PBZ je dodávka elektrické energie zajistěna ze dvou na sobě nezávislých zdrojů. Přepnutí na druhý záložní napájení je samočinné a neporušené. Jako záložní zdroj je použita záložní baterie.

- Vytápění objektu
Způsob vytápění stavebních objektu je zvoleno s ohledem na nejnižší bod vznešení látek, které se v objektu zpracovávají nebo skládají a mohou s topidly, popř. s jejich nechatráněným příslušenstvím, přijít do styku.

- Osветlení únikových cest – nouzová osvětlení (NO)
Únikové cesty jsou osvětleny nouzovým osvětlením ve všech podlaží u schodišť, aby nedošlo k úniku pědi. Nouzové osvětlení má vlastní baterii.

D.3.1.13 Stanovení zvláštních požadavků na zvýšení požární odolnosti stavebních konstrukcí nebo snížení hořlavosti stavebních hmot
Na požární odolnost nejsou stanoveny žádné zvláštní požadavky.

D.3.1.14 Posouzení požadavku na zabezpečení stavby požárně bezpečnostními zařízeními
Požadavky na PBZ jsou stanoveny v bodě D.3.1.12 tohoto PBŘS. Níže je uvedena závěrečná rekapitulace PBZ, která se v objektu vyskytuje pro lepší přehlednost.

- Zařízení pro požární signalizaci
 - Elektrická požární signalizace (SHZ) – ANO
 - Zařízení dálkového přenosu – ANO
 - Zařízení detekce hořlavých plynů a par – ANO
 - Zařízení autonomní detekce a signalizace – ANO
 - Zařízení pro potlačení požáru nebo vybírku
 - Stabilní (SHZ) nebo polo stabilitní (PHZ) hasiči zařízení – ANO
 - Automatické protivýbuchové zařízení – NE
 - Zařízení pro usměrňování pohybu kouře při požáru
 - Zařízení pro odvod kouře a lepí (ZOKT) – ANO
 - Zařízení předklakové ventilace – ANO
 - Kouřové dveře – ANO
 - Zařízení pro únik osob při požáru
 - Požární nebo evakuace výstup – NE
 - Neouzové osvětlení – ANO
 - Nouzové sedlovací zařízení – ANO
 - Funkční vybavení dveří – ANO
 - Zařízení pro zásobování požární vodou
 - Vnější odběrná místa – NE
 - Vnější odběrná místa (hydrant) – ANO
 - Nezavoděná požární potrubí (suhovod) – NE
 - Zařízení pro omezení šíření požáru
 - Požární klápky – ANO
 - Požární dveře a požární uzávěry otvorů včetně jejich funkčního vybavení – ANO
 - Systémy nebo prvky zajišťující zvýšení požární odolnosti stavebních konstrukcí nebo snížení hořlavosti stavebních hmot – NE
 - Vodní cesty – NE
 - Požární přepážky a požární úspory – ANO

- Náhradní zdroje a prostředky určené k zajištění provozuschopnosti požárně bezpečnostních zařízení – ANO

D.3.1.15 Rozsah a způsob rozmístění výstražných a bezpečnostních znácek a tabulek

V souladu s §10 vyhlášky č.23/2008 Sb. a čl.9.16 normy ČSN [73 0812] budou NÚC a CHÚC vybaveny bezpečnostním značením dle normy ČSN ISO [3864-1]:

- bezpečnostní označení směru úniku a východů pomocí podsvícených tabulek (v souladu s NO), příp. pomocí fotoluminiscenčních tabulek;
- označení dveří na volné prostranství značkou, příp. nápisy „nouzový východ“ nebo „úniková cesta“;
- označení umístění hlavního výpínače elektrické energie včetně označení přístupu;
D.3.1.16 Závěr

Při vlastní realizaci stavby je nutno plně respektovat toto požárně bezpečnostní řešení stavby. Jakékoli změny v projektu musí být z hlediska PBRS znovu přehodnoceny.

D.3.1.17 Seznam použitých podkladů pro zpracování

<table>
<thead>
<tr>
<th>Číslo účel místnosti</th>
<th>Plocha [m²]</th>
<th>Druh podlahy</th>
<th>Úprava povrchu stěn</th>
<th>Úprava stropu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.22b JEVIŠTĚ</td>
<td>43.38</td>
<td>DŘEVĚNÉ PARKETY</td>
<td>LISOVANÉ AKUSTICKÉ DESKY</td>
<td>AKUSTICKÉ DESKY</td>
</tr>
<tr>
<td>1.22a HLEDIŠTĚ</td>
<td>166.03</td>
<td>BETONOVÁ STĚRKA</td>
<td>LISOVANÉ AKUSTICKÉ DESKY</td>
<td>AKUSTICKÉ DESKY</td>
</tr>
<tr>
<td>1.10 BAR</td>
<td>15.59</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLEDOVÝ BETON</td>
<td>MŘÍŽKY OPEN CELL</td>
</tr>
<tr>
<td>1.09 POKLADNA</td>
<td>8.41</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLEDOVÝ BETON</td>
<td>SÁDROKARTON KNAUF</td>
</tr>
<tr>
<td>1.05 ŠATNA N</td>
<td>17.14</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLEDOVÝ BETON</td>
<td>SÁDROKARTON KNAUF</td>
</tr>
<tr>
<td>1.06 WC NŽ</td>
<td>26.39</td>
<td>KERAMICKÁ DLAŽBA</td>
<td>KERAMICKÉ DLAŽDICE</td>
<td>SÁDROKARTON KNAUF</td>
</tr>
<tr>
<td>1.04 WC NM</td>
<td>16.37</td>
<td>KERAMICKÁ DLAŽBA</td>
<td>KERAMICKÉ DLAŽDICE</td>
<td>SÁDROKARTON KNAUF</td>
</tr>
<tr>
<td>1.03 SKLAD BAR</td>
<td>16.64</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLEDOVÝ BETON</td>
<td>BEZ ÚPRAV</td>
</tr>
<tr>
<td>1.02 VRÁTNICE</td>
<td>11.30</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLEDOVÝ BETON</td>
<td>MŘÍŽKY OPEN CELL</td>
</tr>
<tr>
<td>1.20 SKLAD</td>
<td>19.56</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLEDOVÝ BETON</td>
<td>BEZ ÚPRAV</td>
</tr>
<tr>
<td>1.19 KANCELÁŘ ŘEDITELE</td>
<td>16.22</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLEDOVÝ BETON</td>
<td>MŘÍŽKY OPEN CELL</td>
</tr>
<tr>
<td>1.18 SEKRETARIÁT</td>
<td>12.19</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLEDOVÝ BETON</td>
<td>MŘÍŽKY OPEN CELL</td>
</tr>
<tr>
<td>1.17 ŠATNA B</td>
<td>12.27</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLEDOVÝ BETON</td>
<td>MŘÍŽKY OPEN CELL</td>
</tr>
<tr>
<td>1.16 ŠATNA Z</td>
<td>11.71</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLEDOVÝ BETON</td>
<td>MŘÍŽKY OPEN CELL</td>
</tr>
<tr>
<td>1.15 SPRCAH ZŽ</td>
<td>2.17</td>
<td>KERAMICKÁ DLAŽBA</td>
<td>KERAMICKÉ DLAŽDICE</td>
<td>SÁDROKARTON KNAUF</td>
</tr>
<tr>
<td>1.14 SPRCAH ZM</td>
<td>2.17</td>
<td>KERAMICKÁ DLAŽBA</td>
<td>KERAMICKÉ DLAŽDICE</td>
<td>SÁDROKARTON KNAUF</td>
</tr>
<tr>
<td>1.13 WC B</td>
<td>4.77</td>
<td>KERAMICKÁ DLAŽBA</td>
<td>KERAMICKÉ DLAŽDICE</td>
<td>SÁDROKARTON KNAUF</td>
</tr>
<tr>
<td>1.12 WC Z</td>
<td>3.20</td>
<td>KERAMICKÁ DLAŽBA</td>
<td>KERAMICKÉ DLAŽDICE</td>
<td>SÁDROKARTON KNAUF</td>
</tr>
<tr>
<td>1.11 STROJOVNA VZT</td>
<td>29.60</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLEDOVÝ BETON</td>
<td>BEZ ÚPRAV</td>
</tr>
<tr>
<td>1.21 CHODBA</td>
<td>98.26</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLEDOVÝ BETON</td>
<td>MŘÍŽKY OPEN CELL</td>
</tr>
<tr>
<td>1.01 VSTUPNÍ PROSTOR Z</td>
<td>31.79</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLEDOVÝ BETON</td>
<td>MŘÍŽKY OPEN CELL</td>
</tr>
<tr>
<td>81 PŮDORYS 1.NP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D.4 TECHNICKÉ ZAŘÍZENÍ BUDOV

TRIGONO – TANEČNÍ CENTRUM

Konzultant: Ing. Dagmar Richtrová
Vypracovala: Tereza Pojerová
Vedoucí práce: prof. Akad. arch. Vladimír Soukenka
Ústav: 15115 Ústav interiéru
Semestr: letní 2022/23
D.4.1 Technická zpráva

D.4.1.1 Popis objektu
D.4.1.2 Přípojky
D.4.1.3 Větrání a vzduchotechnika
D.4.1.4 Výstupení
D.4.1.5 Chlazení
D.4.1.6 Vodovod
D.4.1.7 Kanalizace
D.4.1.8 Elektroinstalace
D.4.1.9 Seznam použitých podkladů pro zpracování

D.4.2 Výkresová dokumentace

D.4.2.1 Koordinační situace M 1:500
D.4.2.2 Půdorys 1.PP M 1:150
D.4.2.3 Půdorys 1.NP M 1:150
D.4.1.1 Popis objektu
Objekt výstavby se nachází vedle Ladislavova parku na Praze 7. Řešený objekt je novostavba, který bude sloužit jako divadlo se zaměřením na tanec. Celý areál je přístupný z ulice Jenkovicova. Půdorysný tvar budovy je trojúhelník, jež východní vrcholy jsou zastřešeny. Je to dvoupatrová budova, s jedním nadzemním a jedním podzemním patrem. Celková výška je 11,5 m. Technologicky je objekt vystaven monolitického železobetonu, na něhož je následně zavěšena vnější pohledové vrstvy. Tato pohledová vrstva se skládá z dřevěných pohledových betonu a svislé zavěšených hliníkových kedarů s rozestupem 650 mm mezi sebou.

D.4.1.2 Přípojky
Vnitřní vodovod bude napojen pomocí přípojky na vodovod pro veřejnou potřebu ze severozápadní strany budovy. Přípojka – vedená do technické místnosti v 1. PP je navržena z plastu – PVC, délky 44,4 m, o průměru potrubí DN 25 mm, ve sklonu 0,5%. Vodoměrná sestava bude umístěna ve vodoměrné šachtě mimo objekt.
Kanalizační přípojka je navržena z plastu – PVC, délky 27,8 m, o průměru potrubí DN 150. Bylo vedeno v nezávislé hloubce se sklonem minimálně 2% k uličnímu řadu. Revizní šachta splaškové kanalizace, o průměru 600 mm, bude umístěna taktéž mimo objekt. Přípojka je navržena jako oddělené vedení pro splaškovou vodu, tak pro sprašovou vodu. Dešťová voda bude svedena do akumulační nádrže. Odkud bude následně využita pro zasěvání okolní vegetace.
Přípojka silnoprudu o délce 18,4 m bude umístěna v přípojové šlitině společné s elektroměrem umístěně v nicí stěně. Přípojka do domu povede ze severní části pozemku pod úrovní základové desky 1. NP.

D.4.1.3 Vzduchotechnika
V objektu je navrženo větrání pomocí centrální vzduchotechniky. Jednotka s deskovým rekuperátem je typu VS 180 a má rozměry 6244 x 2085 x 2714 m a bude umístěna ve strojovně VZT v úrovni 1. NP. Do jednotky bude vzdych, který bude teplotně i vlhkostní upravován, nasávan z exteriéru přívodním potrubím, které vede na střechu. Vzduchotechnická jednotka je dimenzována maximálně na 13 500 m³/h.
Vzduchotechnické potrubí s rychlostí vzduchu ve vzduchovodech je obdělníkově nerezové potrubí, velikostně od neuvěřitelného potrubí 1000 x 500 mm po nejméně 200 x 200 mm.

D.4.1.4 Vytápění

<table>
<thead>
<tr>
<th>Větrání</th>
<th>(V_p) [m³/h]</th>
<th>(m^3/h/m²)</th>
<th>(n) [ks]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13500</td>
<td>60</td>
<td>225</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Přívod vzduchu</th>
<th>(A) [m²]</th>
<th>(V_p) [m³/h]</th>
<th>(v) [m/s]</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,54</td>
<td>13500</td>
<td>7</td>
<td>1,0</td>
<td>0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velikosti potrubí</th>
<th>(V_p/x)</th>
<th>A</th>
<th>rozměr [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,27</td>
<td>0,20</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>0,17</td>
<td>0,13</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>0,10</td>
<td>0,07</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>0,03</td>
<td>0,20</td>
<td>0,2</td>
<td></td>
</tr>
</tbody>
</table>

Použití koef.:
- n – počet osob
- \(V_p \) – vzduchový výkon v určité části vzduchovodu/vyústek [m³/h]
- \(v \) – rychlost vzduchu ve vzduchovodech [m/s]
- A – plocha vzduchovodu/vyústek [m²]
- a – šířka vzduchovodu/vyústek [m]
- b – výška vzduchovodu/vyústek [m]

Přívoď i odpovídající potrubí bude vedeno převážně pod stropem volně. Jako nasávací a výdechový prvek jsou navrženy vyústky umístěné na spodní straně potrubí.

V hygienickém zásahu bude navrženo podtlakové nesečné větrání. Přívoď vzduchu bude zajištěn také pomocí dvěrnic mřížek, odvod obstará VZT jednotka.

Tepelné ztráty objektu (Qvyr)

<table>
<thead>
<tr>
<th>Místo</th>
<th>Praga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venkovní náhradá teplosta v zimním období ((t_{0a}) [°C])</td>
<td>-13</td>
</tr>
<tr>
<td>Délka otopního období (d [dní])</td>
<td>216</td>
</tr>
<tr>
<td>Průměrná venkovní teplota v otopním období ((t_{0am}) [°C])</td>
<td>4</td>
</tr>
<tr>
<td>Převažující vnitřní teplota v otopním období ((t_{0am}) [°C])</td>
<td>10</td>
</tr>
<tr>
<td>Objem budovy (V) [m³]</td>
<td>10123,2</td>
</tr>
<tr>
<td>Celková plocha (A) [m²]</td>
<td>3535,8</td>
</tr>
</tbody>
</table>
Zdroj tepla a otopná soustava

\[
\begin{align*}
V_p &= 13500 \\
\nu &= 0.28 \\
\lambda &= 284.44 \\
\beta &= 0.75 \\
H_3 &= \text{měnič čerpadla pro teplo} [\text{m}^2] \\

&= 15.75 \\

&= 232.6 \\
&= 111.7 \\
&= 161.4 \\
&= 205.9 \\
&= 169.6
\end{align*}
\]
D.4.1.5 Chlazení

Komplex bude ochlazován pomocí tepelného čerpadla země – voda MTA Neptune Tech NET075 o jmenovitém chladicím výkonu 368,79 kW. Čerpadlo bude napojeno na chladič ve VZT jednotce, jako jeho koncový prvek.

<table>
<thead>
<tr>
<th>místnosti</th>
<th>vnější zisk</th>
<th>vnitřní zisk</th>
<th>z osušení</th>
<th>zisky z osob</th>
<th>zisky z vnitřního osvětlení</th>
<th>zisky z technologie</th>
<th>PC</th>
<th>kopírka/projektor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPRÁVA BUDOVY</td>
<td>-</td>
<td>1,89</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>FOYER</td>
<td>415,9</td>
<td>332,72</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>VÝSTAVNÍ PLOCHA</td>
<td>24,86</td>
<td>19,89</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>MASÝRNA</td>
<td>-</td>
<td>1,34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>ŠÁTNA T1</td>
<td>-</td>
<td>1,07</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>ŠÁTNA T2</td>
<td>14,59</td>
<td>1,36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>SKLAD GARDERÓBY</td>
<td>5,55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>GARDERÓBA</td>
<td>15,02</td>
<td>1,50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>ZKUŠEBNÁ</td>
<td>34,06</td>
<td>3,41</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>CHODBA</td>
<td>-</td>
<td>89,13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>HLEDIŠTĚ</td>
<td>147,6</td>
<td>133,76</td>
<td>14,76</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>JEVŠTÍ</td>
<td>68,41</td>
<td>68,41</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Vstupní prostor Z</td>
<td>-</td>
<td>25,03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>CHODBA</td>
<td>-</td>
<td>78,38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Větrnice</td>
<td>-</td>
<td>1,13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>FOYER</td>
<td>358,43</td>
<td>286,74</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>VSTUPNÍ PROSTOR N</td>
<td>24,43</td>
<td>12,22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>POHLADNA</td>
<td>9,08</td>
<td>4,54</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>BAR</td>
<td>12,71</td>
<td>6,36</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>ŠÁTNA Z&B</td>
<td>24,93</td>
<td>12,47</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>ŠKOLA</td>
<td>-</td>
<td>1,23</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>KANCELÁR ŘEDITELÉ</td>
<td>16,33</td>
<td>1,63</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>HLEDIŠTĚ</td>
<td>166,03</td>
<td>16,60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Souhrn [W]</td>
<td>1388,03</td>
<td>981,907</td>
<td>9</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Celkový tepelný zisk [W] 2565

<table>
<thead>
<tr>
<th>Druh spotřeby vody</th>
<th>q [l/s, den]</th>
<th>n</th>
<th>Qs [l/s, den]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dividlo</td>
<td>2,74</td>
<td>225</td>
<td>66,5</td>
</tr>
<tr>
<td>Bar</td>
<td>50</td>
<td>mytí skla</td>
<td>60</td>
</tr>
<tr>
<td>celkem</td>
<td>110</td>
<td>200</td>
<td>2200</td>
</tr>
</tbody>
</table>

D.4.1.6 Vodovod

Vnitřní vodovod

Druh spotřeby vody

<table>
<thead>
<tr>
<th>Druh spotřeby vody</th>
<th>q [l/s, den]</th>
<th>n</th>
<th>Qs [l/s, den]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dividlo</td>
<td>2,74</td>
<td>225</td>
<td>66,5</td>
</tr>
<tr>
<td>Bar</td>
<td>50</td>
<td>mytí skla</td>
<td>60</td>
</tr>
<tr>
<td>celkem</td>
<td>110</td>
<td>200</td>
<td>2200</td>
</tr>
</tbody>
</table>

Celkem 22010,5

<table>
<thead>
<tr>
<th>Druh spotřeby vody</th>
<th>q [l/s, den]</th>
<th>n</th>
<th>Qs [l/s, den]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dividlo</td>
<td>2,74</td>
<td>225</td>
<td>66,5</td>
</tr>
<tr>
<td>Bar</td>
<td>50</td>
<td>mytí skla</td>
<td>60</td>
</tr>
<tr>
<td>celkem</td>
<td>110</td>
<td>200</td>
<td>2200</td>
</tr>
</tbody>
</table>

Celkem 22010,5

<table>
<thead>
<tr>
<th>Druh spotřeby vody</th>
<th>q [l/s, den]</th>
<th>n</th>
<th>Qs [l/s, den]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dividlo</td>
<td>2,74</td>
<td>225</td>
<td>66,5</td>
</tr>
<tr>
<td>Bar</td>
<td>50</td>
<td>mytí skla</td>
<td>60</td>
</tr>
<tr>
<td>celkem</td>
<td>110</td>
<td>200</td>
<td>2200</td>
</tr>
</tbody>
</table>

Celkem 22010,5

<table>
<thead>
<tr>
<th>Druh spotřeby vody</th>
<th>q [l/s, den]</th>
<th>n</th>
<th>Qs [l/s, den]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dividlo</td>
<td>2,74</td>
<td>225</td>
<td>66,5</td>
</tr>
<tr>
<td>Bar</td>
<td>50</td>
<td>mytí skla</td>
<td>60</td>
</tr>
<tr>
<td>celkem</td>
<td>110</td>
<td>200</td>
<td>2200</td>
</tr>
</tbody>
</table>

Celkem 22010,5

Použité koeficienty:

-

Q čitřička tepelný zisk v roce [W]

Q čitřička = celkové tepelné zisky (vnější + vnitřní) [W]

Q čitřička = celkové tepelné zisky (vnější + vnitřní) [W]
Příprava teplé vody

Teplá voda bude připravována ve dvou zásobnicích TV o objemu 1200 l. Teplota vody bude udržována pomocí cirkulačního oběhu.

<table>
<thead>
<tr>
<th>Druh budovy</th>
<th>Měrná jednotka</th>
<th>f</th>
<th>V_{tepla} [l/den]</th>
<th>V_{tepla} [l/den]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restaurace</td>
<td>jídlo</td>
<td>100</td>
<td>4</td>
<td>0,4</td>
</tr>
<tr>
<td>Dvadlo</td>
<td>sedadlo</td>
<td>200</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

Použité koeficienty:

- V_{tepla} – specifická potřeba teplé vody [l/měrná jednotka*den)]
- V_{tepla} – denní potřeba (objem) teplé vody [l/den]
- f – počet měněných jednotek

D.4.1.7 Kanalizace

Splašková kanalizace

Objekt je napojen na veřejnou kanalizační síť. Kanalizační přípojka je navržena z PVC DN 150, která je vedena ve sklonu 3% pod asfaltovou komunikaci. Odpadní potrubí z PVC DN 150 je vedeno převážně v instalační šachtě, od baru vede v podhledu, a je odvětráno na stěnu.

- Výpočet množství splaškových odpadních vod

<table>
<thead>
<tr>
<th>Zařízení předmět</th>
<th>počet</th>
<th>Systém l (DU [kg])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umyvadlo</td>
<td>21</td>
<td>0,5</td>
</tr>
<tr>
<td>Sprcha – vanička bez závrtky</td>
<td>4</td>
<td>0,6</td>
</tr>
<tr>
<td>Písací toaleta s automatickým splachovacím zařízením nebo šachováním</td>
<td>4</td>
<td>0,5</td>
</tr>
<tr>
<td>Kuchyňský dvířko</td>
<td>2</td>
<td>0,8</td>
</tr>
<tr>
<td>Automatická myčka náděl do 6 kg</td>
<td>2</td>
<td>0,8</td>
</tr>
<tr>
<td>Záchodová toaleta s šachováním</td>
<td>16</td>
<td>1,8</td>
</tr>
<tr>
<td>Podlahová výplut DN 50</td>
<td>3</td>
<td>0,8</td>
</tr>
</tbody>
</table>

Průtok odpadních vod \(Q_{DUW} = K^* \cdot (\Sigma DU) = 0,5 \cdot 7,02 = 3,5 \text{ l/s} \)

Dešťová kanalizace

Dešťová kanalizace bude ze střechy odváděna při sklonu min. 2% do střešních svodů. Dešťová voda bude dále odváděna do akumulační nádrž, odkud bude následně použitá pro okolní vegetaci.
D.4.1.8 Elektroinstalace

Buďova je napojena na veřejnou elektrickou síť z ulice Jankovcova. Připojovací skříň s elektroničkou, hlavním jističkem a rozvaděčem se nachází u chodníku 2 metry od vstupu pro zaměstnance. Od připojovací skříň vede rozvod do hlavního rozvaděče v 1.PP, do místnosti „Rozvodna EL“ a pak jednotlivých rozvaděčů podle místnosti. Rozvaděče obsahují jistič prvků světelných a zásuvkových obvodů. Rozvody elektriny jsou vedeny pod stropem v podhledu.

D.4.1.9 Seznam použitých podkladů pro zpracování

1. [https://www.tzb-info.cz/]
2. Výukové materiály předmětu TZB I., FA ČVUT
TANEČNÍ CENTRUM
1PP/1NP
1NP ± 0,000 = 187.23 m. n. m. (BpV)
výška atiky = +6.5 m

Jankovcova
Bubenské nábřeží

LEGENDA
POVRCHY
STÁVAJÍCÍ OBJEKTY
Plynovodní sítě
Silnoproudové sítě
Slaboproudové sítě
Vodovodní sítě
Kanalizační sítě

STÁVAJÍCÍ SÍTĚ
VSTUP DO OBJEKTU

NOVÉ PŘÍPOJKY
Přípojka Silnoprodukce
Přípojka Silnoprodukce
Přípojka Vodovodní sítě
Přípojka Kanalizační sítě
Přípojka Kanalizační sítě
Vstupní sácha (VS)
Přípojová skvěř (PS)

REVIDNÍ SÁCHA
VERŠÍNÍ DEŠTÍ VODY
(pod povrchem)
AKUMULÁČNÍ NÁDRŽ
(malé měřítko)
VÝVOD SPLASHKOVÉ
KANALIZACE
VŮLE SÉJESTOVÉ
KANALIZACE
POZEMNÍ HYDRANT

= 0,000 = 187,23 m. n. m. (BpV)
± 0,000 = 187.23 m. n. m. (BpV)

-0.200
-4.690
10.2
37.8

TRIGONO - TANEČNÍ CENTRUM
KOORDINAČNÍ SITUACE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ
FAKULTA ARCHITEKTURY
Č. výkresu: D.4.2.1
Formát: A3

Materiál: 1:500

Stupen: A1

Č. roku: 2022/2023

Vedení práce: prof. Acad. arch. Vladimír Soukenka
Konzultant: Ing. Dagmar Richtrová
Název ústavu: Ústav interiéru 15115
ÚLOHA

Vypracovala: Tereza Pojerová
Konzultant: Ing. Dagmar Richtrová
Vedoucí práce: prof. Akad. arch. Vladimír Soukenka

OBSAH

ČÍSLO ÚČEL MÍSTNOSTI PLOCHA [m²] DRUH PODLAHY ÚPRAVA PO VRCHU STĚN ÚPRAVA STROPU

<table>
<thead>
<tr>
<th>Číslo</th>
<th>Místo</th>
<th>Plocha [m²]</th>
<th>Druh podlahy</th>
<th>Úprava po vrchu stěn</th>
<th>Úprava stropu</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.01</td>
<td>Technická síť</td>
<td>30.09</td>
<td>Betonová stěrka</td>
<td>Pohledový beton</td>
<td>Bez úprav</td>
</tr>
<tr>
<td>01.02</td>
<td>Rozvodna EL 11</td>
<td>11.30</td>
<td>Betonová stěrka</td>
<td>Pohledový beton</td>
<td>Bez úprav</td>
</tr>
<tr>
<td>01.03</td>
<td>Strojovna SHZ</td>
<td>16.64</td>
<td>Betonová stěrka</td>
<td>Pohledový beton</td>
<td>Bez úprav</td>
</tr>
<tr>
<td>01.04</td>
<td>WC NM</td>
<td>21.20</td>
<td>Keramická dlažba</td>
<td>Keramické dlaždice</td>
<td>Sádrokarton KNAUF</td>
</tr>
<tr>
<td>01.05</td>
<td>WC NŽ</td>
<td>20.36</td>
<td>Keramická dlažba</td>
<td>Keramické dlaždice</td>
<td>Sádrokarton KNAUF</td>
</tr>
<tr>
<td>01.06</td>
<td>Správa budovy</td>
<td>18.66</td>
<td>Betonová stěrka</td>
<td>Mřížky Open Cell</td>
<td></td>
</tr>
<tr>
<td>01.07</td>
<td>Foyer</td>
<td>415.41</td>
<td>Betonová stěrka</td>
<td>Pohledový beton</td>
<td>Hliníková deska vrobená</td>
</tr>
<tr>
<td>01.08</td>
<td>Výstavní plocha</td>
<td>24.97</td>
<td>Betonová stěrka</td>
<td>Pohledový beton</td>
<td>Hliníková deska vrobená</td>
</tr>
<tr>
<td>01.09</td>
<td>Maskérna</td>
<td>12.94</td>
<td>Betonová stěrka</td>
<td>Pohledový beton</td>
<td>Mřížky Open Cell</td>
</tr>
<tr>
<td>01.10</td>
<td>Šatna T1</td>
<td>10.36</td>
<td>Betonová stěrka</td>
<td>Keramické dlaždice</td>
<td>Mřížky Open Cell</td>
</tr>
<tr>
<td>01.11</td>
<td>Sprcha T1</td>
<td>2.85</td>
<td>Keramická dlažba</td>
<td>Keramické dlaždice</td>
<td>Sádrokarton KNAUF</td>
</tr>
<tr>
<td>01.12</td>
<td>WC T1</td>
<td>2.74</td>
<td>Keramická dlažba</td>
<td>Keramické dlaždice</td>
<td>Sádrokarton KNAUF</td>
</tr>
<tr>
<td>01.13</td>
<td>WC Z</td>
<td>5.20</td>
<td>Keramická dlažba</td>
<td>Keramické dlaždice</td>
<td>Sádrokarton KNAUF</td>
</tr>
<tr>
<td>01.14</td>
<td>WC T2</td>
<td>3.12</td>
<td>Keramická dlažba</td>
<td>Keramické dlaždice</td>
<td>Sádrokarton KNAUF</td>
</tr>
<tr>
<td>01.15</td>
<td>Sprcha T2</td>
<td>3.25</td>
<td>Keramická dlažba</td>
<td>Keramické dlaždice</td>
<td>Sádrokarton KNAUF</td>
</tr>
<tr>
<td>01.16</td>
<td>Šatna T2</td>
<td>14.32</td>
<td>Betonová stěrka</td>
<td>Pohledový beton</td>
<td>Mřížky Open Cell</td>
</tr>
<tr>
<td>01.17</td>
<td>Úklidová místopl</td>
<td>3.74</td>
<td>Betonová stěrka</td>
<td>Pohledový beton</td>
<td>Bez úprav</td>
</tr>
<tr>
<td>01.18</td>
<td>Sklad garderoby</td>
<td>5.44</td>
<td>Betonová stěrka</td>
<td>Pohledový beton</td>
<td>Bez úprav</td>
</tr>
<tr>
<td>01.19</td>
<td>Garderoba</td>
<td>14.79</td>
<td>Betonová stěrka</td>
<td>Pohledový beton</td>
<td>Mřížky Open Cell</td>
</tr>
<tr>
<td>01.20</td>
<td>Zkušebna</td>
<td>33.59</td>
<td>Betonová stěrka</td>
<td>Sádrokarton KNAUF</td>
<td></td>
</tr>
<tr>
<td>01.21</td>
<td>Chodba</td>
<td>110.52</td>
<td>Betonová stěrka</td>
<td>Pohledový beton</td>
<td>Mřížky Open Cell</td>
</tr>
<tr>
<td>01.22a</td>
<td>Hlediště</td>
<td>144.99</td>
<td>Betonová stěrka</td>
<td>Lisovalé akustické desky</td>
<td>Akustické desky A3</td>
</tr>
<tr>
<td>01.22b</td>
<td>Jeviště</td>
<td>25.03</td>
<td>Dřevěné parkety</td>
<td>Lisovalé akustické desky</td>
<td>Akustické desky A3</td>
</tr>
</tbody>
</table>
Vývod odpadního vzduchu

Vzt. v DN 100

<table>
<thead>
<tr>
<th>Číslo</th>
<th>Název</th>
<th>Vzduchem vedení</th>
</tr>
</thead>
</table>
| 1.01 | Přívoz vzduchu | VPUS
| 1.02 | Přívoz vzduchu | VPUS
| 1.03 | Přívoz vzduchu | VPUS

Technická infrastruktura

- Plynovodní sít
- Silnoprovní sít
- Vodovodní sít
- Kanalizační sít

Technická infrastruktura

- Nástěna baterie
- Zásahová dělicí vody
- Zimní souprava

Zázemí ohřívač vody

- Zásobník ohřívač vody
- Stůpně

Technická infrastruktura

- Silnoprovní rozvody
- Stupné
- Trigonální taneční centrum

Technická infrastruktura

- Zásahová dělicí vody
- Zásahová dělicí vody

Technická infrastruktura

<table>
<thead>
<tr>
<th>Číslo</th>
<th>Název</th>
<th>Plocha [m²]</th>
<th>Druh podlahy</th>
<th>Úprava po vrchu stěn</th>
<th>Úprava stropu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td>Vstupní prostor Z 31.79</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLED</td>
<td>VÝ BETON</td>
<td>MŘÍŽKY OPEN CELL</td>
</tr>
<tr>
<td>1.02</td>
<td>Vraćenice 11.30</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLED</td>
<td>VÝ BETON</td>
<td>MŘÍŽKY OPEN CELL</td>
</tr>
<tr>
<td>1.03</td>
<td>Sklad bar 16.64</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLED</td>
<td>VÝ BETON</td>
<td>BEZ ÚPRAV</td>
</tr>
<tr>
<td>1.04</td>
<td>WC NM 16.37</td>
<td>KERAMICKÁ DLAŽBA</td>
<td>KERAMICKÉ DLAŽDICE</td>
<td>SÁDROKARTON</td>
<td>KNAUF</td>
</tr>
<tr>
<td>1.05</td>
<td>Šatna N 17.14</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLED</td>
<td>VÝ BETON</td>
<td>SÁDROKARTON</td>
</tr>
<tr>
<td>1.06</td>
<td>WC NŽ 26.39</td>
<td>KERAMICKÁ DLAŽBA</td>
<td>KERAMICKÉ DLAŽDICE</td>
<td>SÁDROKARTON</td>
<td>KNAUF</td>
</tr>
<tr>
<td>1.07</td>
<td>Foyer 378.02</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLED</td>
<td>VÝ BETON</td>
<td>HLINÍKOVÁ DESKA</td>
</tr>
<tr>
<td>1.08</td>
<td>Vstupní prostor N 24.47</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLED</td>
<td>VÝ BETON</td>
<td>HLINÍKOVÁ DESKA</td>
</tr>
<tr>
<td>1.09</td>
<td>Pokladna 8.41</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLED</td>
<td>VÝ BETON</td>
<td>SÁDROKARTON</td>
</tr>
<tr>
<td>1.10</td>
<td>Bar 15.59</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLED</td>
<td>VÝ BETON</td>
<td>MŘÍŽKY OPEN CELL</td>
</tr>
<tr>
<td>1.11</td>
<td>Strojovna vzt 29.60</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLED</td>
<td>VÝ BETON</td>
<td>BEZ ÚPRAV</td>
</tr>
<tr>
<td>1.12</td>
<td>WC Z 3.20</td>
<td>KERAMICKÁ DLAŽBA</td>
<td>KERAMICKÉ DLAŽDICE</td>
<td>SÁDROKARTON</td>
<td>KNAUF</td>
</tr>
<tr>
<td>1.13</td>
<td>WC B 4.77</td>
<td>KERAMICKÁ DLAŽBA</td>
<td>KERAMICKÉ DLAŽDICE</td>
<td>SÁDROKARTON</td>
<td>KNAUF</td>
</tr>
<tr>
<td>1.14</td>
<td>Sprcha ZŽ 2.17</td>
<td>KERAMICKÁ DLAŽBA</td>
<td>KERAMICKÉ DLAŽDICE</td>
<td>SÁDROKARTON</td>
<td>KNAUF</td>
</tr>
<tr>
<td>1.15</td>
<td>Sprcha ZM 2.17</td>
<td>KERAMICKÁ DLAŽBA</td>
<td>KERAMICKÉ DLAŽDICE</td>
<td>SÁDROKARTON</td>
<td>KNAUF</td>
</tr>
<tr>
<td>1.16</td>
<td>Šatna Z 11.71</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLED</td>
<td>VÝ BETON</td>
<td>MŘÍŽKY OPEN CELL</td>
</tr>
<tr>
<td>1.17</td>
<td>Šatna B 12.27</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLED</td>
<td>VÝ BETON</td>
<td>MŘÍŽKY OPEN CELL</td>
</tr>
<tr>
<td>1.18</td>
<td>Sekretariát 12.19</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLED</td>
<td>VÝ BETON</td>
<td>MŘÍŽKY OPEN CELL</td>
</tr>
<tr>
<td>1.19</td>
<td>Kancelář ředitele 16.22</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLED</td>
<td>VÝ BETON</td>
<td>MŘÍŽKY OPEN CELL</td>
</tr>
<tr>
<td>1.20</td>
<td>Sklad 19.56</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLED</td>
<td>VÝ BETON</td>
<td>BEZ ÚPRAV</td>
</tr>
<tr>
<td>1.21</td>
<td>Chodba 98.26</td>
<td>BETONOVÁ STĚRKA</td>
<td>POHLED</td>
<td>VÝ BETON</td>
<td>MŘÍŽKY OPEN CELL</td>
</tr>
<tr>
<td>1.22a</td>
<td>Hlediště 166.03</td>
<td>BETONOVÁ STĚRKA</td>
<td>LISOVANÉ AKUSTICKÉ DESKY</td>
<td>AKUSTICKÉ DESKY</td>
<td>A3</td>
</tr>
<tr>
<td>1.22b</td>
<td>Jeviště 43.38</td>
<td>DŘEVĚNÉ PARKETY</td>
<td>LISOVANÉ AKUSTICKÉ DESKY</td>
<td>AKUSTICKÉ DESKY</td>
<td>A3</td>
</tr>
</tbody>
</table>
D.5 REALIZACE STAVEB

TRIGONO – TANEČNÍ CENTRUM

Konzultant: Ing. Milada Votrubová, CSc.
Vypracovala: Tereza Pijerová
Vedoucí práce: prof. Akad. arch. Vladimír Soukenka
Ústav: 15115 Ústav interiéru
Semestr: letní 2022/23
D.5.1 Technická zpráva

D.5.1.1 Popis objektu a staveniště
D.5.1.2 Konstrukčně výrobní systém
D.5.1.3 Návrh zdvihacích prostředků, výrobních, montážních a skladovacích ploch
D.5.1.4 Návrh trvalých záborů vjezdů a výjezdů ze staveniště
D.5.1.5 Ochrana životního prostředí během výstavby
D.5.1.6 Bezpečnost a ochrana zdraví na staveništi
D.5.1.7 Seznam použitých podkladů pro zpracování

D.5.2 Výkresová dokumentace

D.5.2.1 Koordinační situace M 1:500
D.5.2.2 Stavební jáma M 1:250
D.5.2.3 Zařízení staveniště M 1:450
D.5.1.1 Popis objektu a staveniště

1. Popis objektu

Název stavby: TRIGONO – taneční centrum
Adresa: Praha 7 – Holešovice, 170 00, Česká republika
Název katastrálního území: Holešovice [730122]
Číslo parcely: 2378/1

Projekt TRIGONO se nachází vedle Ladislavova parku na Praze 7. Řešený objekt je novostavba, která bude sloužit jako divadlo se zeměřením na taneč. Celý areál je přístupný z ulice Jankovce. Půdorysný tvar budovy je trojúhelník, jehož vrchol je zaoblený. Je to dvou patrová budova, s jedním nadzemním a jedním podzemním patrem. Technologicky je objekt vystaven z monolitického železobetonu, na něhož je následně zavěšena vnější pohledová vrstva. Tato pohledová vrstva se skládá z dlaždic pohledového betonu a svisle zavěšených hliníkových kledrů s rozestupem 650 mm mezi sebou.

2. Popis staveniště

Parcela pro výstavbu se nachází v Praze 7 – Holešovice. Jedná se o území ležící na břehu řeky Vltavy, které je momentálně není využíváno. Kvůli své pozici se počítá se samo odvodňováním budov. Terén je převažně rovinatý, jedním svazitém část se nachází podél vozovky. Na západě pozemek sousedí s Holešovickým sídlem a na východě se nachází vojenské hřiště. Přístup a příjezdy jsou dostupné z ulice Jankovce. Pro výstavbu se během stavby bude muset zřídit dočasná komunikace pro přístup stavenišťních aut do dolní část pozemku. Tato dočasná komunikace bude zřízena především pro východní část staveniště. Pro manipulaci s věcí na západní straně lze přejít z ulice Na Mininách, okolo zmínceného sílu.

3. Vymezení podmínek pro zakládání

Informace o podloží byly získány od České geologické služby z databáze geologicky dokumentovaných objektů. Na stavební parcele se nachází dva geologické vrty. Pro návrh byl vybrán vrt provedený v roce 2004 (vrt u vozovky) a 2008 (vrt u Vltavy). Ustálená hladina spodní vody je 9,33 m, naražená hladina vody ve vrtu u Vltavy je 2,50 m.
4. Návrh postupu výstavby

V první fázi dojde k přípravě území – prořezání současných dřevin, násypu zeminy u vozovky (pro dopravu nákladních aut na nižší podloží k základům a skladovacích ploch) a sejmutí ornice na dolní části. Ve druhé fázi dojde k hrubé stavbě – výkop a zajištění stavební jámy. Následně, ještě ve stejné fázi, založení stavby želobetonovou základovou deskou a postup hrubé spodní stavby ve fází třetí. Ve čtvrté fázi dojde k hrubé vrchní stavbě – příprava bednění a opěry, bednění, monolitický želobeton (ŽB).

D.5.1.2 Konstrukčně výrobní systém

1. Řešení dopravy materiálu

Nitro-staveniště

Mimo-staveniště

Dovoz betonu na staveništi je zajištěno autodochůdca, je tedy dovážen v tektém stavu. Přeprava betonu je zajištěna pomocí nákladních aut.

Nejlépe betonální je TBG METROSTAV s.r.o., Betonárna Praha Rohanské nábřeží, která se nachází 1,9 kilometrů od staveniště. Převoz betonu trvá přibližně 6 minut.

2. Záběry pro betonářské práce

Vodorovní konstrukce

- Plocha stropu: \(S = 296,42 \text{ m}^2 \)
 \[S = 296,42 - 43,34 = 253,08 \text{ m}^2 \]

- Šachty a schodiště
 - Šachty: \(0,29 \times 3,65 = 1,05 \text{ m}^2 \)
 - \(4,54 \times 0,25 = 1,14 \text{ m}^2 \)
 - Východy: \(7,25 \times 2,31 = 16,74 \text{ m}^2 \)
 - Schody: \(5,02 \times 2,4 = 12,05 \text{ m}^2 \)

- Objem betonu: \(V = 253,08 \times 0,4 = 42,24 \text{ m}^3 \)

- Betonářský kost: \(96 \times 1,5 = 144 \text{ m}^3 \)

- Počet záberů: 362,53/144 = 2,59 → 4 záběry

Svislé konstrukce

- Výška stíně: 4,60 m
- Šířka stíně: 0,25 m
- Objem vnějších stíně: \(V_1 = 131,38 \text{ m}^3 \)
- Objem vnějších stíně: \(V_2 = 215,51 \text{ m}^3 \)
- Objem svislých konstrukcí: \(V = 131,38 + 215,51 = 346,9 \text{ m}^3 \)

3. Bednění stěn, sloupů a stropů

Bednění stropu

Jako bednění stropu využijí metodou ztraceného bednění Colfrasol 50/250 (rozměry 1,0x3,0 m), který se skládá z trapézových ocelových profilů. Na bednění 1. záběru stropu, který budeme skladovat, bude třeba vybetonovat 127,48 m³. Na tuto plochu budeme potřebovat 107 ks trapézového plechu.

- plocha stropu: 318,69 m²
- plocha trapéz. plechu: 3 m²
- 318,69 / 3 = 106,23 = 107 trapézových desek

Bednění sloupů

Na sloup dimenzi sloupové bednění GEOTUB kruhové průřezu od firmy ReXcom. Součástí bedniciho pružku jsou dva půlkruhové plastové prvky, které jsou průměrem 0,6 m široké a 0,6 m vysoké. Jednou segment (dvou půlkruhy) je spojen 6 koly. V dolní části se celý tento komplex připevňuje papírovitým rozšířovacím příčkami (pojistka před protechením betonu). Vertikální stabilitu zajišťují dvě vzpěry. Na bednění jednoho sloup u je potřeba 16 ks plastového půlkruhového segmentu, 64 spojovacích kolíků, 8 příček a 2 vzpěry. Zařízení se bude do výšky 4,6 m. Tento počet nám stačí pro všechny záběry. Bednění lze také použít na 1. záběry. Po zasunutí se bednění odobere, opětovně čistou vodou (povrchové bednění je nelesný s betonem) a využije se na další sloup.
Bodemní stěna

Bodemní stěna bude zajištěná dvěma druhy bednění. Na zakulacené části bude použito kruhové bednění TRAPEZ TTR, který lze nakonfigurovat, od 5 metru do nekonečna. Bednění je tvořené z finské březové překližky o tloušťce 21 mm a stabilních trapézových nosníků z ocelového plechu tl. 4 mm. Boky jsou uzavřeny čelním uzavřením. Na betonáž 1. záběru zakulacených stěn bude potřeba pro vnější bednění 57 segmentů (0,60 x 3,00 m) a pro vnitřní 54 segmentů (0,58 x 3,00 m).

Pro rovné stěny se využije panel FF20 (1,00 x 5,50 m). Na betonáž 3. záběru stěn bude třeba z obou stran 48 ks svislých panelů a 24 opěr. Po odbednění stěny se bednění očistí (na vyhrazené plochu) a opakovaně použije.

D.5.1.3 Návrh zdvíhacích prostředků, výrobních, montážních a skladovacích ploch

Model	Délka	Hmotnost	Utěrky	Balast	Kram	Sklo	Délka Vlasy	Délka Vlasy	Utěrky	Balast	Kram	Sklo	
1000	1,00	0,80	1,00	1,00	0,80	0,80	0,80	0,80	0,80	0,80	0,80	0,80	0,80
1500	1,50	1,25	1,25	1,25	1,25	1,25	1,25	1,25	1,25	1,25	1,25	1,25	1,25
2000	2,00	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
2500	2,50	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75

1. **Hmotnost betonu v koší**

<table>
<thead>
<tr>
<th>Objem</th>
<th>Objemová hmotnost</th>
<th>Hmotnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5 m³</td>
<td>2500 Kg/m³</td>
<td>2500 * 1,5 = 3750 kg = 3,75 t</td>
</tr>
</tbody>
</table>

2. **Hmotnost schodiště**

<table>
<thead>
<tr>
<th>Délka</th>
<th>Plocha A</th>
<th>Objem I x A</th>
<th>Objemová hmotnost</th>
<th>Hmotnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2 m</td>
<td>1,134 m²</td>
<td>1,36 m³</td>
<td>2500 Kg/m³</td>
<td>2500 * 1,36 = 3402 kg = 3,4 t</td>
</tr>
</tbody>
</table>
3. Tabulka břemen

<table>
<thead>
<tr>
<th>Břemen</th>
<th>Hmotnost [t]</th>
<th>Vátlivost [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleta příhradového nosníku</td>
<td>4</td>
<td>43,17</td>
</tr>
<tr>
<td>Paleta trapézových piečů</td>
<td>2,5</td>
<td>35,24</td>
</tr>
<tr>
<td>Paleta skupového hřebíku</td>
<td>0,10</td>
<td>38,34</td>
</tr>
<tr>
<td>Paleta betonových desk</td>
<td>0,74</td>
<td>43,40</td>
</tr>
<tr>
<td>Paleta ocelových stěbek</td>
<td>0,65</td>
<td>43,04</td>
</tr>
<tr>
<td>Monolitické schodiště</td>
<td>3,4</td>
<td>54,81</td>
</tr>
</tbody>
</table>

Betonový koš

<table>
<thead>
<tr>
<th>vlastní váha</th>
<th>beton</th>
<th>celková</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,27</td>
<td>3,75</td>
<td>4,02</td>
</tr>
</tbody>
</table>

D.5.1.4 Návrh trvalých záborů vjezdů a výjezdů ze staveniště

Staveniště je ze všech stran (kromě jižní strany od Vltavy) oplecen plotem vysokým 2 m. Vjezd je v severozápadní části staveniště z Jankovců ulice na nově vytyčenou (dočasnou) zpevněnou komunikaci. Výjezd je zabezpečen na severovýchodní části. Dočasné omezení v prostoru komunikace, také vjezd a výjezd budou vyznáeny dopravními značkami a zábranami. Ulíce bude jednosměrně průjezdna v jednom pruhu, pro automobily, jedoucí ve směru zataraseného pruhu, bude objížďka přes ulici V Háji.

D.5.1.5 Ochrana životního prostředí během výstavby

1. Ochrana půdy

Vyřezávaná půda bude rozprostírěna v okolí. Manipulace a skladování s pohonnými hmotami a chemikáliemi se bude odehrávat pouze na asfaltové nebo betonové ploše.

2. Hluč stavebních stojů a dopravních prostředků

Staveniště se nachází vedle městě frekventované ulice, v blízkosti bytových a administrativních domů. Výrazně hlučné práce budou vykonávány během pracovních dnů, kde je povolený limit 65 dBA. Tento limit nesmí být překročen. Hluk bude měřen ve vzdálenosti 2 m před fasádou nejbližší administrativní budovy.

3. Znečištění ovzduší výfukovými plyny a prachem

Komunikace na staveniště bude vybavena z betonových panelů, aby byla omezena prachová plovoucí hmoty. Prachové materiály budou zvětrávaly a kropeny, aby se co nejrychleji omezily šíření prachu ze staveniště.

4. Znečištění komunikace břelem a zbytky stavebního materiálu

Před výjezdem ze staveniště budou všechny vozíčky mechanicky očištěny, případné splachované tlačítkové vodou. Voda bude získávána od odpadní nádrže na staveništi. Uvažovaný materiál z nádrže bude vytáčený a odvezený na skládku. Výjezd ze stavy bude pod kontrolou a případně znečištěné komunikace bude ihned odstraněno.
5. Ochrana proti znečištění podzemních a povrchových vod kanalizací

Kvůli ochraně povrchových a spodních vod bude autodomíchávač vyplachován v betonářce, plochy určené k čištění bednění musí být odolné proti průsekům škodivých látek do půdy a opatřeny nádrži. Všechna voda znečištěná výstavbou bude také odsmažována do odpadních usazovací nádrže a pravidelně odčerpávána.

6. Nakládání s odpady

7. Ochrana zeleně na staveništi

Staveniště se nachází na pozemku s poměrně velkým množstvím stromů. Větší část z nich, která se nachází v oblasti objektu nebo v jeho bezprostřední blízkosti bude pokácena a zbytek stromů bude mít během stavby kmene chráněno oplocením. Po dokončení stavebních prací bude v místě k tomu ručením zasazená nová tráva, v případě velkého poškození chráněných stromů bude vysazena nové stromky.

D.5.1.6 Bezpečnost a ochrana zdraví na staveništi

Pracovníci na stavbě musí být obeznámeni s pravidly bezpečného vykonávání práce a ochranou zdraví na staveništi. Musí mít na sebe pracovní oděv, ochranou příšelu a jiné pomůcky podle toho, jakou činnost vykonávají. Další osoby přítomné na staveništi budou poučeny o pravidlech chování na stavbě a musí mít nasazenou ochranou příšelu.

Při používání nářadí a strojů, dopravních prostředků a jiných technických zařízení budou dodržovány všechny požadavky na bezpečnost a ochranu zdraví při práci. Řízení strojů můžou vykonávat jenom osoby s potřebnou kvalifikací. Při soubojného ruční a strojní práci musí být zajistěna vzdálenost od stroje (2 m) a dostatek volného prostore na pohybu pracovníků.

Staveniště bude na celé svoji ploše dostatečně osvětleno.

Stavební jáma bude opatřena zábradlí výšky 1,1 m, 0,5 m od hrany výkopu. Okraje výkopu nesmí být zatežovány. Stupů do stavební jámy musí být výhradně pomocí žebříku.

Místo, kde hrozí nebezpečí pádu z větší výšky jako 1,5 m, musí být chránění zábradlí vysoké 1,1 m. Pokud takové místo nebude opatřeno zábradlím, nebude na něj povolený přístup. Práce ve větších výškách bude při zhoršení povětrnostních podmínek přerušována.
České Vysoké Učení Technické v Praze
Fakulta architektury

D.6 INTERIÉR
TRIGONO – TANEČNÍ CENTRUM

Konzultant: prof. Akad. arch. Vladimír Soukenka
Vypracovala: Tereza Pojérová
Vedoucí práce: prof. Akad. arch. Vladimír Soukenka
Ústav: 15115 Ústav interiéru
Semestr: letní 2022/23
D.6.1 Technická zpráva
 D.6.1.1 Povrchy a materiály
 D.6.1.2 Výbavení a konstrukce
 D.6.1.3 Seznam použitých podkladů pro zpracování

D.6.2 Výkresová dokumentace
 D.6.2.1 Půdorys foyer a bar M 1:80
 D.6.2.2 Pohledy a řezy bar M 1:15, 1:10
D.6.1.1 Popis prostoru

D.6.1.2 Povrchy a materiály

Podlaha by byla celá z broušeného betonu. Strop je tvořen z prostorově příhradově desky, za kterou by byl zavěšený požární podhled. Na tento podhled by se zavěšila vizuální část podhledu. Většina stropní plochy by byla zakryta strukturovaným (vlnkovaným) plechem se zrcadlovým efektem a mezery by byly zakryty mřížkovým roštem (pro přívod vzduchu ze vzduchotechniky, která je zakryta podhledem. Stěny jsou ze železobetonu, na který by se naříza pouze impregnace. Železobeton má světle šedou barvu a v rámci výstavby se zkrášit vyskladalo, tak aby našledeň vzhledové vrstva měla vodorovnou vlnicí se pruhy od dřeva. Části stěn by byly zakryty zelenou stínou, která by tvorila pruh o velikosti 2-3 m. V zelené stíně by byla použita bromélia, peperomia polybotrys a kapradí.

Podlaha – broušený beton

Podhled – mřížkový rošt

Podhled – strukturovaný (vlnkovaný) plech

D.6.1.3 Vybavení a konstrukce

V budově jsou navrženy interiérové prvky na míru (bar, pult v šatně, stoly, ...) a také vybrány ze sortimentu firem. Všechny vybrané prvky v celém komplexu jsou materiálové (dřevo, kov, sklo, textil, roštline) a barevně sladěny (černá, šedá, zelená, modrá, červená, bílá, hnedá) a podtrhují myšlenku celého návrhu.

Osvoření

- **Algoritmo System – Wired gear plates**
 - Rozměry: 1185 x 45 mm
 - Kategorie: LED
 - Světelný tok: 4614 - 7927,82 lm
 - Barva světla: světle modrá
 - Materiál: hliník
 - Max. výkon: 62 W
- **Erco – Tesis**
 Rozměry: ø 180 mm
 Kategorie: LED
 Světelný tok: 1100 lm
 Barva světla: světle žluté
 Materiál: hliník
 Max. výkon: 8 W

- **Lodes – A-Tube Nano**
 Průměr: ø 20 mm
 Délka: 300 mm, 600 mm, 900 mm
 Kategorie: LED
 Světelný tok: 480 lm
 Barva světla: bílé
 Materiál: matný černý hliník
 Max. výkon: 3 W
 Umístění: nad stoly a nad barem

- **Lodes – Volume 14, 22 a 29**
 Průměr: ø 14 mm
 Výška: 135 mm
 Barva světla: bílé
 Materiál: sklo broušené bílé
 Kategorie: LED
 Max. výkon: 15 W
 Umístění: ve shluku, u šatny nebo vedle baru

Prvky interiéru

- **Claesson Koivisto Rune – křeslo Bermuda**
 Materiál: kov a textil
 Barva: vínová, modrozelená

- **CLOAKROOM SOLUTIONS – věšák**
 Materiál: černý hliníkový
 Výška: 2100 mm
 Délka: variabilní

- **Pult šatna**
 Pult v šatně, na odkládání oděvů, by byl vyrobený na míru. Tento nábytek funguje jako příčka oddělující šatnu od foyer. Rozměry pultu jsou 5471 x 470 x 900 mm. Tento celek se skládá z oceli, plastové květnaté na kytky a skla.
Bar

Přední strana, viditelná pro návštěvníky, bude stejného typu jako pult v šatně, tím
minimální příčka, skladající se z hliníku, plastového květináče, rostlin a skla. Oproti pultu,
výška je 1250 mm. K této stěně je připevněna kuchyňská linka, která má dvě šířky
600 mm a 421 mm. V části, kde se obsluhuje je zůstená na 421 mm, pro lepší přístup
obsluhy, a tam kde se myje nádobí je široké 600 mm. Výška kuchyňské linky je 830 mm.
Linika je dřevěná.

Stoly

Stoly kolem baru jsou celé z černé matné oceli. Horní deska je ve tvaru trojúhelníku se
zakulacenými rohy, podobně jako půdorys. Hranice desky se zužují směrem dolů
a k sobě. Stůl má říční nohy, tvaru válcového zešikmeného do trojúhelníku. Výšky je
900 mm.
E DOKLADOVÁ ČÁST

TRIGONO – TANEČNÍ CENTRUM

Vypracovala: Tereza Pojurová
Vedoucí práce: prof. Akad. arch. Vladimír Soukenka
Ústav: 15115 Ústav interiérů
Semestr: letní 2022/23
Prohlášení autora

Prohlašuji, že jsem předloženou bakalářskou práci vypracoval samostatně a že jsem uvedl veškeré použité informační zdroje v souladu s „Metodickým pokynem o etické přípravě vysokoškolských závěrečných prací.“

V Praze dne 26.05.2023

Podpis autora bakalářské práce
2/ ZADÁNÍ bakalářské práce

jméno a příjmení: Pojerová Tereza
datum narození: M. 27. 8. 2000
akademický rok / semestr: Letní semestr 2023
obor: Interiéry 15115
vedoucí bakalářské práce: prof. Akad. arch. Vladimír Souknerka
štěrba bakalářské práce: TRIGONO – taneční centrum

ZÁDAČNÍ OBSAH DALŠÍCH ČÁSTÍ

Statika

TŽB

Realizace

Interiér

DALŠÍ POŽADOVANÉ PŘÍLOHY

Jednotlivé přílohy projektu budou zpracovány v souladu s podkladem OBSAH BAKALÁŘSKÉ PRÁCE – ARCHITEKTONICKÉ A URBANISTICKÉ.

Formální provedení projektu (formát, počty paré atd.) určí vedoucí práce.
BAKALÁŘSKÝ PROJEKT
ARCHITEKTURA A URBANISMUS
ZADÁNÍ Z ČÁSTI TZB

Ústav : Stavitelství II – 15124
Akademický rok : 2022 – 2023
Semestr : letní
Podklady : http://15124.fa.cvut.cz

Jméno studenta : Tereza Pojerová
Konzultant : Ing. Dagmar Richtrová

Obsah bakalářské práce:
Koncepce řešení rozvodů TZB v rámci zadaného objektu.

- Koordinační výkresy návrhů vedení jednotlivých instalací v podlažích

Návrh vedení vnitrních rozvodů vody (pitné, provozní, požární, odpadní splaškové – šedé a bílé), způsob nakládání s dešťovou vodou (akumulace, retence, vsakování), rozvodů plynu systému vytápění, větrání, chlazení, návrh vnitrního domovního rozvodu elektrické energie a způsob nakládání s tuhými komunálními odpady.

Umístění instalací, větracích, výtahových šacht, případně alternativní stavební úpravy pro stoupací a odpadní vedení, umístění kominů a trvale otevřených větracích otvorů. U rozvodů elektrické energie umístit hlavní a podružné rozvaděče, u požárního vodovodu hydrantové skříně, případné zázemí pro SHZ (nádrž a strojovna). V rámci stavby (nebo souboru staveb) definovat a umístit zdroj pro vytápění, ohrád TV, strojovnu vzduchotechniky, příp. chlazení. Vymezit prostor pro silnou a slaboproudou rozvodný, MaR a podle potřeby pro záložní zdroj energie. Vyznačit místa pro měření spotřeby, regulaci a revizí vedení.

Půdorysy v měřítku : 1 : 150

- Souhrnná koordinační situace širších vztahů

Návrh osazení objektu na pozemku, vyzačení vedení jednotlivých rozvodů technické infrastruktury a vytrasování jednotlivých domovních přípojek s osazením jejich kontrolních objektů (výstupní a revizní šachty, objekty pro hospodaření s dešťovou vodou, technologické šachty, vodoměrné šachty, HUP, přípojkové skříně, umístění popelnici...). Zakreslit případné napojení na lokální zdroje vody nebo lokální způsob likvidace odpadních vod.

Měřítko : 1 : 500
- Bilanční výpočty

Předběžný návrh profilu přípojek (voda, kanalizace), velikost akumulačních/retenčních/všakovacích objektů, předběžná tepelná ztráta objektu, orientační návrh větracích/chladících zařízení (velikost vzduchotechnické jednotky a minimálně rozměry hlavních distribučních vzduchotechnických rozvodů).

- Technická zpráva

Praha, 95 411

* Možnost připadné úpravy zadání konzultantem

Podpis konzultanta

<table>
<thead>
<tr>
<th>Ústav</th>
<th>Stavitelství II – 15124</th>
</tr>
</thead>
<tbody>
<tr>
<td>Předmět</td>
<td>Bakalářský projekt</td>
</tr>
<tr>
<td>Obor</td>
<td>Realizace staveb (PAM)</td>
</tr>
<tr>
<td>Ročník</td>
<td>3. ročník, 6. semestr</td>
</tr>
<tr>
<td>Semester</td>
<td>zimní</td>
</tr>
<tr>
<td>Konzultant</td>
<td>Dle rozpisů pro ateliéry</td>
</tr>
<tr>
<td>Informace a podklady</td>
<td>http://15124.fa.cvu.cz/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jméno studenta</th>
<th>Tereza Pajořová</th>
<th>Podpis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konzultant</td>
<td>Ing. Milada Votrubová, CSc.</td>
<td>Podpis</td>
</tr>
</tbody>
</table>

Podepsané zadání příložte jako přílohu k zadávacím listům bakalářské práce

Obsah – bakalářské práce – zimní semestr

Bakalářská práce z části realizace staveb (PAM) vychází ze cvičení PAM I, které může sloužit jako podklad pro zpracování bakalářské práce. Cvičení z PAM I vložené bez úprav a značení (viz dále) do bakalářské práce nebude uznáno.

Obsah části Realizace staveb (PAM):

1. **Textová část:**
 1.1. Návrh postupu výstavby rešeného pozemního objektu v návaznosti na ostatní stavební objekty stavby se zdůvodněním. Vliv provádění stavby na okolní stavby a pozemky.
 1.2. Návrh zdvihacích prostředků, návrh výrobních, montážních a skladovacích ploch pro technologické etapy zemní konstrukce, hrubá spodní a vrchní stavba.
 1.3. Návrh zajímání a odvodnění stavební jámy.
 1.4. Návrh trvalých záborů staveniště s vjezdy a výjezdy na staveniště a vazbou na vnější dopravní systém.
 1.5. Ochrana životního prostředí během výstavby.
 1.6. Rizika a zásady bezpečnosti a ochrany zdraví při práci na staveniště, posouzení potřeby koordinátoru bezpečnosti a ochrany zdraví při práci a posouzení potřeby vypracování plánu bezpečnosti práce.

2. **Výkresová část:**
 2.1. Celková situace stavby se zakreslením zařízení staveniště:
 2.1.2. Staveništní komunikace s vjezdy a výjezdy ze staveniště a vazbou na vnější dopravní systém.
 2.1.3. Zdvihacích prostředků s jejich dosahy, základnou a případně jeřábovou dráhou.
 2.1.4. Výrobních, montážních, skladovacích ploch a ploch pro sociální zařízení a kanceláře.
 2.1.5. Úpravy staveniště z hlediska bezpečnosti práce a ochrany zdraví při práci.