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Abstract

Since the inception of Banach Space Theory, the study of complemented and
uncomplemented subspaces of Banach spaces has been one of the main themes
of the area. Specifically, in non-separable Banach spaces, there have been many
efforts in constructing a theoretical framework to describe the linear complemen-
tation structure of Banach spaces. Classical concepts such as the Separable Com-
plementation Property, Projectional Resolutions of the Identity, and the Plichko
Property have been and continue to be studied in this area.

Similarly, Lipschitz maps between Banach spaces have also played a main role
in the development of the theory. Questions such as the Lipschitz classification
of Banach spaces, differentiability of Lipschitz maps, or the existence of Lipschitz
retractions onto subsets and subspaces of Banach spaces, have been and continue
to be active topics of research with a wealth of results and applications.

In this thesis we analyse the Lipschitz retractional structure of non-separable
metric and Banach spaces, as an analogous theory to the linear complementation
one in Banach spaces. We also discuss the connection of this topic with the ongoing
program to study the structure of Lipschitz-free Banach spaces, and to the problem
of finding bounded linear extension operators for Lipschitz functions.

First, we generalize some classical tools of the linear theory to the non-linear
setting: We define the concept of Lipschitz retractional skeletons as a generaliza-
tion of Projectional skeletons. As applications of these concepts, we show that
the Lipschitz-free space of a Plichko Banach space is again Plichko. We also use
Lipschitz retractional skeletons to characterize metric spaces whose Lipschitz-free
spaces enjoy the Plichko property witnessed by Dirac measures, and we show that
the Lipschitz-free space of any R-tree is 1-Plichko witnessed by molecules.

Next, we pass on to defining the (α, β) Lipschitz Retraction Property (Lipschitz
RP(α, β) for short) for a pair of infinite cardinals α ≤ β. These are the non-linear
analogues to the classical Complementation Properties. We observe that C(K)
spaces enjoy the Lipschitz RP(ℵ0,ℵ0), which in turn implies that their associated
Lipschitz-free space satisfy the Separable Complementation Property.

As a continuation of the previous study, we construct, for every infinite cardinal
Λ, a complete metric space which fails the Lipschitz RP(Λ,Λ). In the countable
case, we are able to produce a complete metric space, called the skein space, with a
stronger property than the negation of the Lipschitz RP(ℵ0,ℵ0): Every separable
subset of the skein space with at least two points fails to be a Lipschitz retract.
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ii ABSTRACT

Finally, we generalize a result of Heinrich and Mankiewicz to the non-linear set-
ting, by showing that for any metric space M , every subset is contained in another
subset of the same density character which admits a bounded linear extension
operator for the space of Lipschitz functions.

Keywords: Non-linear Functional Analysis, Lipschitz maps, Lipschitz retrac-
tions, Non-separable Banach spaces, Non-separable metric spaces, Lipschitz-free
spaces, Local Complementation, Linear Extensions of Lipschitz maps.



Resumen

Desde el comienzo de la Teoría de Espacios de Banach, el estudio de los subespa-
cios complementados y no complementados ha sido uno de los principales temas del
área. Específicamente, en espacios de Banach no separables, han habido grandes
esfuerzos en construir un marco teórico para describir la estructura de subespacios
linealmente complementados en espacios de Banach. Concepctos clásicos como
la Propiedad del Complemento Separable, Resoluciones Proyectivas de la Identi-
dad, y la Propiedad de Plichko han sido y continúan siendo estudiadas en esta
disciplina.

En igual medida, las aplicaciones de Lipschitz en espacios de Banach también
han jugado un papel importante en el desarrollo de la teoría. Cuestiones como
la clasificación de Lipschitz de los espacios de Banach, la diferenciabilidad de las
funciones de Lipschitz, o la existencia de retracciones de Lipschitz a subconjun-
tos y subespacios de espacios de Banach, son líneas de investigación activas con
abundantes resultados y aplicaciones.

En esta tesis analizamos la estructura de retractos de Lipschitz en espacios
métricos y espacios de Banach no separables, de forma análoga a la teoría de
complementación lineal en espacios de Banach. También discutimos la conexión
de este tema con el progreso actual en el estudio de la estructura de los espacios
de Lipschitz-free, y con el problema de la existencia de operadores de extensión
lineales para funciones de Lipschitz.

En primer lugar, generalizamos algunas herramientas clásicas de la teoría lineal
al marco no lineal: Definimos el concepto de esqueletos retractivos de Lipschitz
como una generalización a los esqueletos proyectivos. Como aplicación de estas
nociones, demostramos que el espacio de Lipschitz-free asociado a un espacio de
Banach con la propiedad de Plichko tiene a su vez la propiedad de Plichko. Uti-
lizamos también los esqueletos retractivos de Lipschitz para caracterizar aquellos
espacios métricos cuyo espacio de Lipschitz-free tiene la propiedad de Plichko con
medidas de Dirac, y mostramos que el espacio de Lipschitz-free asociado a cualquier
R-árbol es 1-Plichko con moléculas elementales.

A continuación, pasamos a definir la Propiedad del Retracto de Lipschitz (α, β)
(o la Lipschitz RP(α, β)) para un par de cardinales infinitos α ≤ β. Esta es la
propiedad no lineal análoga a la clásica Propiedad del Complemento. Observamos
que los espacios C(K) tiene la Lipschitz RP(ℵ0,ℵ0), lo cual implica que sus espacios
de Lipschitz-free asociados poseen la Propiedad del Complemento Separable.
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iv RESUMEN

Siguiendo con el estudio previo, construimos, para cada cardinal infinito Λ,
un espacio métrico completo sin la Lipschitz RP(Λ,Λ). En el caso numerable,
podemos mejorar este resultado produciendo un espacio métrico completo que
satisface una propiedad más fuerte que la negación de la Lipschitz RP(ℵ0,ℵ0):
Todo subconjunto separable con almenos dos puntos no es un retracto de Lipschitz.

Finalmente, generalizamos un resultado de Heinrich y Mankiewicz al marco no
lineal al mostrar que en cada espacio métrico M , todo subconjunto está contenido
en otro subconjunto con el mismo carácter de densidad que además admite un
operador lineal de extensión de funciones Lipschitz.

Palabras clave: Análisis Funcional No Lineal, Aplicaciones de Lipschitz, Re-
tractos de Lipschitz, Espacios de Banach No Separables, Espacios métricos No
Separables, Espacios de Lipschitz-free, Complementación Local, Extensiones lin-
eales de Aplicaciones de Lipschitz.



Abstrakt

Od počátku teorie Banachových prostorů bylo studium komplementárních a
nekomplementárních podprostorů jedním z hlavních témat této oblasti. Speciálně
v teorii neseparabilních Banachových prostorů bylo vloženo mnoho úsilí do stvoření
teoretických přístupů k problematice komplementární struktury Banachova pros-
toru. Klasické pojmy jako například Separabilní komplementární vlastnost, Pro-
jekční rozklad identity, nebo Pličkova vlastnost byly a stále zůstávají v centru
zájmu.

Podobně k této situaci, lipschitzovská zobrazení mezi Banachovy prostory také
hrají důležitou roli pro tuto teorii. Problémy typu lipschitzovské klasifikace Ba-
nachových prostorů, existence diferenciálu v kontextu lipschitzovských zobrazení,
nebo existence lipschitzovských retrakcí na podmnožiny a podprostory Banachova
prostoru jsou velmi aktivní oblastí s mnoha hlubokými výsledky a aplikacemi.

V této disertaci budeme studovat lipschitzovskou retrakční strukturu nesepara-
bliních metrických a Banachových prostorů, v analogii k teorii lineární komplemen-
tární struktury Banachových prostorů. Budeme se též zabývat souvislostmi této
tématiky s problematikou struktury Lipschitzovských volných prostorů, a s prob-
lematikou lineárních extenzních operátorů na prostorech lipschitzovských funkcí.

Nejprve provedeme zobecnění některých klasických metod lineární teorie na ne-
lineární případ. Zavedeme pojem Lipschitzovské retrakční kostry, jakožto zobec-
nění Retrakční kostry. Jednou z našich aplikací bude tvrzení že Lipschitzovský
volný prostor Banachova prostoru s Pličkovou vlastností má také Pličkovu vlast-
nost. Dále ukážeme s pomocí Lipschitzovských koster charakterizaci metrických
prostorů jejichž volný prostor má Pličkovu vlastnost s použitím Dirakových měr, a
ukážeme že Lipschitzovský volný prostor každého R stromu je 1-Pličko s použitím
molekul.

Poté přejdeme k definici (α, β)-Lipschitzovské retrakční vlastnosti (označe-
nou RP(α, β)) pro dvojici nekonečných kardinálů α ≤ β. Jedná se tedy o ne-
lineární analogii klasických vlastností komplementarity. Ukážeme, že C(K) pros-
tory splňují RP(ω0, ω0), z čehož vyplývá že jejich odpovídající volné prostory mají
Separabilní komplementární vlastnost.

V tomto směru dále sestrojíme pro libovolný kardinál Λ úplný metrický prostor
který nemá Lipschitzovskou RP(Λ,Λ) vlastnost. Pro připad spočetného kardinálu
sestrojíme úplný metrický prostor, pod názvem skein space, se silnější vlastností
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vi ABSTRAKT

než je pouhá negace RP(ω0, ω0). Pro tento příklad platí, že žádná alspoň dvouprvková
separabilní podmnožina není jeho lipschitzovským retraktem.

Nakonec též provedeme nelineární zobecnění výsledku Heinricha a Mankiewicze.
Ukážeme, že pro libovolný metrický prostor M , každá podmnožina je obsažena ve
větší podmnožině stejné hustoty, pro níž existuje lineární extenzní operátor pro
prostor lipschitzovských funkcí.

Klíčová slova: nelineární funkcionální analýza, lipschitzovská zobrazení, lip-
schitzovské retrakce, neseparabilní metrické a Banachovy prostory, lipschitzovské
volné prostory, lineární extenzní operátory na prostorech lipschitzovských funkcí.
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CHAPTER 1

Introduction

The main topic of this thesis is the study of Lipschitz maps in non-separable
metric and Banach spaces. This is a subfield of Geometric Non-linear Functional
Analysis, which encompasses the study of uniformly continuous and, in particular,
Lipschitz functions between metric and Banach spaces. This subject has been
deeply studied in the last century, and has many branches and applications, mainly
related to Linear Functional Analysis, and also to other topics such as Probability
and Measure Theory. This is illustrated by one classical result, due to Mazur and
Ulam [41], which says that every isometric bijection between Banach spaces is
necessarily linear. As put by Benyamini and Lindenstrauss in their fundamental
book [5], the Mazur−Ulam Theorem implies that the linear structure of Banach
spaces is entirely determined by their structure as metric spaces.

We are particularly interested in the concept of Lipschitz retraction, that is, a
Lipschitz function from a metric space onto one of its subsets which fixes all points
in the image (called a Lipschitz retract). Clearly, singletons are trivially Lipschitz
retracts in every metric space, whereas in every connected metric space, finite sets
with more than one point fail to be Lipschitz (or even continuous) retracts. Lips-
chitz retractions can be seen as the non-linear generalization of linear projections
in Banach spaces. It follows from the Hahn Banach theorem that subspaces with
finite dimension or finite codimension are always linearly complemented. These
are usually called the trivial linear complements.

In the linear theory, and specifically in the study of non-separable Banach
spaces, there is a strong incentive to determine how rich is the structure of non-
trivial complemented subspaces of a given density character in a Banach space,
since a good description often provides enough information to deduce additional
structural properties and to derive geometrical properties. As a relevant exam-
ple for our later discussion, the Plichko property can be described through the
presence of commutative projectional skeletons, and it implies the existence of
a Locally Uniformly Rotund renorming and a strong Markushevich basis. On
the other hand, it is known that there exist Banach spaces in which every infinite-
dimensional subspace fails to have any non-trivial linearly complemented subspace.
These spaces are called hereditarily indecomposable Banach spaces, and despite
their highly pathological properties, they are quite ubiquitous, according to the
celebrated Gowers dichotomy ([20]).
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2 1. INTRODUCTION

Similarly, in metric spaces, where Lipschitz maps are the canonical morphisms,
it is very natural to search for non-trivial Lipschitz retracts in order to understand
the original metric structure. Additionally, Lipschitz retracts often inherit good
properties from their superspace, which further motivates the study of these maps.
Since Lipschitz retractions are a weaker notion than linear projections, it is natural
to wonder if there also exist pathological metric and Banach spaces which lack non-
trivial Lipschitz retracts; or if, on the contrary, non-trivial Lipschitz retracts can
always be found in every metric or Banach space.

An important motivation and tool for the study of Lipschitz retractions in
metric and Banach spaces is the class of Lipschitz-free Banach spaces: Given a
complete metric space M with an arbitrary distinguished point 0 ∈ M , the vector
space Lip0(M) formed by all real-valued Lipschitz functions which vanish at the
distinguished point 0 is a Banach space when endowed with the norm given by the
best Lipschitz constant. Additionally, Lip0(M) is a dual space, and the canonical
predual is the Lipschitz-free space of M , which is denoted by F(M). The term
“Lipschitz-free space" was coined by Godefroy and Kalton in their influential article
[17]. Their publication motivated the study of this topic in Geometric Functional
Analysis, which remains a highly active area two decades later. However, Lipschitz-
free spaces had been studied before, either implicitly or under different names:
The earliest appearance of such a construction was given by Arens and Eells in [3].
The first version of the monograph [49] by Weaver (see [50] for the second version)
appeared four years before the publication of Godefroy and Kalton, and is still an
essential reference in this topic.

Many efforts in the recent study of Lipschitz-free spaces have been put into
understanding their structure as Banach spaces (see e.g.: [1, 10, 11, 18, 32, 30,
34] for a small sample). In this context, Lipschitz retractions play a crucial role,
since a Lipschitz retraction from a metric space M onto a subset S induces a linear
projection from F(M) onto F(S).

Although the converse of the previous statement does not hold, a linear pro-
jection from F(M) onto a subspace of the form F(S) does provide a bounded
linear extension operator E : Lip0(S) → Lip0(M), which, on bounded sets, is also
continuous for the topology of pointwise convergence of Lipschitz functions. This
suggests more natural structural questions in metric spaces: given a metric space
M and a subset S of M , when does there exist a bounded linear extension operator
E : Lip0(S) → Lip0(M)? This perspective to extension of Lipschitz functions has
been studied by A. Brudnyi and Y. Brudnyi (see e.g. [8, 6] or the monograph
[7]), and by other authors such as Godefroy and Ozawa [18, 16] in relation to the
Approximation Properties in Lipschitz-free spaces.

In our context, we say that S is locally complemented in M if there exists a
bounded linear extension operator E : Lip0(S) → Lip0(M). Although the notion
of local complementability was introduced by Kalton [31] in a different context, as
shown by Fakhoury in [13], the two notions coincide in Banach spaces. It follows
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from the landmark article of Lindenstrauss and Tzafriri [40] that non-Hilbert Ba-
nach spaces always contain closed subspaces which are not locally complemented.
However, using Model Theory, Heinrich and Mankiewicz showed in [26] that (non-
separable) Banach spaces have a relatively rich structure of locally complemented
Banach spaces, in the sense that every closed linear subspace is contained in a
locally complemented linear subspace of the same density character.

Outline of the thesis

To summarize the previous discussion, in Banach spaces we can consider the
following three structural notions for a given subspace, in descending order of
strength: linear complement, Lipschitz retract, and local complement. Since lo-
cal complementability can be expressed in terms of linear extension operators of
Lipschitz maps, both Lipschitz retracts and local complements are also natural
concepts in the more general setting of metric spaces. In this thesis we study these
three concepts in the context of non-separable complete metric and Banach spaces.
The main goals of this analysis are the following:

(A) Studying the linear concepts of projectional skeletons and the Plichko
property in the class of Lipschitz-free Banach spaces. Additionally, we
seek to define analogous non-linear notions in the underlying metric space,
and to describe the relationship between the linear and non-linear variants.

(B) Constructing pathological metric spaces which lack good Lipschitz retrac-
tional structures of a given density character.

(C) Extending the Heinrich and Mankiewicz result to the class of complete
metric spaces, proving that, in metric spaces, the local complementation
structure of a given density character is as well behaved as the correspond-
ing linear one in Banach spaces.

We discuss now how this thesis is organised. Including the present introduc-
tion and the conclusion, the main body of the text contains 6 chapters. Chapter
2 is dedicated to providing the necessary background for the rest of the thesis.
First, we present classical concepts regarding linear projections in Banach spaces,
and recall the definitions of projectional skeletons and Plichko spaces, as well as
discuss the relationship between both notions. In this part we also discuss the
so-called Complementation Properties, with special emphasis on the Separable
Complementation Property. Next, we introduce some basic concepts and results
regarding Lipschitz maps and Lipschitz retractions in metric spaces. Finally, we
take a look at Lipschitz-free spaces, briefly discussing their construction, their
basic properties, and some auxiliary results that we will use in later chapters.

Chapter 3 is related to goal (A) above. Recall that a Banach space X is said
to be Plichko if there exists a linearly dense set ∆ in X and a norming subspace
N in X∗ such that the set ∆f = {x ∈ ∆: ⟨f, x⟩ ̸= 0} is countable for all f ∈ N .



4 1. INTRODUCTION

If N can be taken to be X∗, then X is Weakly Lindelöf Determined. All non-
separable Lipschitz-free spaces contain an isomorphic copy of ℓ1(Γ), where Γ is
an uncountable set (see [23]). For this reason, non-separable Lipschitz-free spaces
are not Weakly Lindelöf Determined. Nevertheless, there are no known examples
of Lipschitz-free space which fail to be Plichko. In fact, in most cases, it is not
straightforward to show that the Plichko property holds either.

In this discussion, the concept of projectional skeleton introduced by Kubiś
in [36] is particularly relevant, as Kubiś showed that a Banach space is Plichko
if and only if it admits a commutative projectional skeleton. We generalize this
concept, introducing Lipschitz retractional skeletons, and use them to show that
the Lipschitz-free space associated to a Plichko Banach space is again Plichko.
Additionally, we characterize which metric spaces yield Lipschitz-free spaces with
the Plichko property witnessed by Dirac measures, and show that the Lipschitz-free
space of any R-tree is Plichko witnessed by molecules.

We finish Chapter 3 by extending the linear Complementation Properties to the
non-linear setting: Given a metric space M , and a pair or cardinal numbers α ≤ β,
we say that M has the (α, β) Lipschitz Retraction Property (Lipschitz RP(α, β)
for short) if every subset of density character α is contained in a Lipschitz retract
of density character β. We observe that C(K) spaces always enjoy the Lipschitz
RP(ℵ0,ℵ0).

In Chapter 4, working towards goal (B), we construct counterexamples to the
Lipschitz RP(Λ,Λ) for every infinite cardinal Λ. We first tackle the countable case,
seeking a stronger property than the negation of the Lipschitz RP(ℵ0,ℵ0): We
produce a complete metric space in which every non-singleton separable subset is
not a Lipschitz retract. This complete metric space, which we call the skein space,
is constructed in three steps:

(1) First, we define the elementary pieces of the space. These are compact
metric spaces isometric to subsets of the planar circumference endowed
with the arc-length distance. We call these pieces threads. Each thread
has two distinguished endpoints.

(2) Next, we produce the building blocks of the skein space. Each building
block, called a threading space, is constructed by gluing a certain family of
uncountably many totally disconnected threads by their endpoints, which
are now shared by all threads in a given threading space. The threading
spaces we construct satisfy that every separable space containing the two
endpoints is not a Lipschitz retract.

(3) Finally, we construct the skein space by transfinite induction. Informally,
the goal of this last step is to keep attaching threading spaces inductively
until every pair of close enough points acts as the two endpoints of a
threading space. This way, using the properties of the threading spaces
constructed in the second step, every separable space with at least two
points will fail to be a Lipschitz retract.
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In the second part of Chapter 4, we deal with the Lipschitz RP(Λ,Λ) for any
infinite cardinal Λ. This construction, while being significantly simpler than the
skein space, is also heavily reliant on the disconectedness of the resulting metric
space.

In Chapter 5 we discuss the local complementation property in metric spaces.
The main result, as hinted at in goal (C), is the generalization of the Heinrich
and Mankiewicz theorem for metric spaces. Specifically, we prove that in every
complete metric space M , every subset N of M is contained in another subset S
of the same density character such that there exists a linear extension operator
E : Lip0(S) → Lip0(M) with ∥E∥ = 1. The proof of our result relies on a different
proof of the Heinrich and Mankiewicz theorem given by Sims and Yost in [48].

Chapter 6 is a brief conclusion overviewing the contributions made in the thesis.
In chapters 3, 4 and 5, some open questions are discussed throughout the

exposition. These questions and some additional ones, are collected in the final
section of each of these chapters, together with a brief discussion of each of them.

The research collected in this thesis has been carried out with the thesis su-
pervisors Antonio José Guirao, Petr Hájek and Vicente Montesinos, at Universitat
Politècnica de València and the Czech Technical University:

• The content of Chapter 3 appears in the published article [25] and in the
preprint [21].

• The construction of the skein space of Chapter 4 appears in [24]. The
second part comes from [25].

• All new results from Chapter 5 are published in [25].

Notation

It is assumed that the reader is familiar with the fundamental notions of Func-
tional Analysis, and particularly of Banach Space Theory. The first four chapters
of the monograph [12] cover all needed background in this area. Although we
will introduce Lipschitz functions from basic concepts, some prior understanding
of the topic shall be helpful, for which we recommend the first three chapters of
[50]. Basic knowledge in General Topology will also be required, as well as some
familiarity with transfinite induction.

We briefly discuss now the notation that will be used in this document.
In metric spaces, we will use M to refer to a metric space in place of (M,d)

whenever there is no ambiguity regarding the distance M is endowed with. Given
a point p ∈ M and a positive number r > 0, we write B(p, r) to denote the open
ball centered at p of radius r. Given a subset A of a metric space M , we will denote
by A the closure of A in M . Given a point p and a subset A in M , the distance
from p to A will be written as d(p,A) = inf{d(p, q) : q ∈ A}. The distance between
two subsets A and B in M , will be written as d(A,B) = inf{d(p, q) : p ∈ A, q ∈ B}

All Banach spaces in this document are real. We will also use X to refer to a
Banach space in place of (X, ∥ · ∥) whenever there is no ambiguity regarding the
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norm X is endowed with. The unit ball of a Banach space X will be denoted by
BX , and its unit sphere by SX . The topological dual of a Banach space X will be
denoted by X∗, and given a point x ∈ X and a functional x∗ ∈ X∗, and we use
⟨x∗, x⟩ to denote the dual action of x∗ on x. Given a subset A of a Banach space
X, span(A) denotes the closed linear span of A, and conv(A) denotes the closed
convex span of A.



CHAPTER 2

Background

In this chapter we go over the basic notions and results in Linear and Non-
Linear Functional Analysis which are necessary to put the main results of this
thesis in the proper context. Most of the material we present is well known, but we
also introduce some concepts and results which are more specific to our purposes.
We include short proofs of some non-trivial statements, although we omit long and
involved ones in order to keep the text more focused. In cases where proofs are
not presented, appropriate references are given.

2.1. Linear notions in the structure of Banach spaces

Let X be a Banach space. Given any linear subspace Y of X, there exists
another linear subspace Z such that Y ∩Z = {0} and X = Y +Z. This is usually
written as X = Y ⊕Z, and Z is called an algebraic complement of Y . If X = Y ⊕Z,
then every vector x ∈ X can be written uniquely as a sum x = yx + zx for some
yx ∈ Y and zx ∈ Z. This defines a linear map PY : X → Y , which satisfies, by
uniqueness of the decomposition, that PY y = y for all y ∈ Y . This map is a linear
projection of X onto Y .

More generally, if X is a Banach space and Y is a linear subspace, a linear
projection of X onto Y is any linear map P : X → Y such that Py = y for all
y ∈ Y . Notice that up until this point we have not used the topology of the Banach
space X, since we do not require the subspaces to be closed, or the projections to
be bounded.

If Y is a closed subspace of X, and there exists a closed subspace Z such that
X = Y ⊕ Z, then Z is a topological complement of Y . It can be shown that in
this case the associated projection PY : → Y is bounded. In fact, a subspace Y
of a Banach space X admits a topological complement if and only if there exists a
linear and bounded projection P : X → Y onto Y . This leads us to the following
classical definition:

Definition 2.1. Let X be a Banach space. A closed subspace Y of X is linearly
complemented in X if there exists a linear and bounded projection P : X → Y onto
Y .

Every subspace of finite dimension and of finite codimension is always comple-
mented. However, in general, not every closed subspace is linearly complemented
in a given Banach space. Indeed, as Lindenstrauss and Tzafriri famously showed

7
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in [40], the only Banach spaces in which every closed subspace is linearly com-
plemented are Hilbert spaces. On the other end of the spectrum we find the
indecomposable spaces, which are Banach space in which the only complemented
subspaces are those with finite dimension or codimension. If X is an indecom-
posable space with the property that every infinite-dimensional subspace is again
indecomposable, then X is said to be hereditarily indecomposable. Although we
will not study these Banach spaces in this thesis, it is worth mentioning that this
latter class of Banach spaces are a well studied object, with a wealth of remarkable
and powerful results.

In non-separable Banach spaces, a natural line of research concerns the study of
separable complemented subspaces, since often a rich separable complementation
structure allows obtaining good information on the whole Banach space. In the
next subsections, we briefly introduce some concepts that are often used to describe
the aforementioned separable complementation structure of Banach spaces. It is
worth mentioning now that along this thesis, we will be presenting non-linear
analogues to the following concepts, as well as studying these linear notions in the
context of Lipschitz-free spaces.

2.1.1. projectional skeletons and the Plichko property. The next def-
inition was introduced by Kubiś in [36]. Recall that a partially ordered set Γ is
directed if for every pair s1, s2 ∈ Γ there exists an element t ∈ Γ such that s1, s2 ≤ t.
It is said to be σ-complete if every sequence {sn}n∈N such that sn ≤ sn+1 for all
n ∈ N, has the supremum in Γ. A subset Γ′ of Γ is cofinal if for every s ∈ Γ there
exists t ∈ Γ′ such that s < t.

Definition 2.2. Let X be a Banach space. A projectional skeleton on X is
a family {Ps}s∈Γ of bounded linear projections on X indexed by a directed and
σ-complete partially ordered set Γ, such that the following conditions hold:

(i) PsX is separable for all s ∈ Γ.
(ii) PsPt = PtPs = Ps whenever s, t ∈ Γ and s ≤ t.
(iii) If (sn)n is an increasing sequence of indices in Γ, then PsX =

⋃
n∈N PsnX,

where s = supn∈N sn.
(iv) X =

⋃
s∈Γ PsX.

If r ≥ 1, we say that an r-projectional skeleton is a projectional skeleton where
the norm of every projection is less than or equal to r. We say that a projectional
skeleton is commutative if PsPt = PtPs for all s, t ∈ Γ, regardless of whether they
are comparable or not.

It was observed in [36] that in every projectional skeleton {Ps}s∈Γ indexed by
a directed and σ-complete partially ordered set Γ, we can find a cofinal subset Γ′

and a real number r ≥ 1 such that ∥Ps∥ ≤ r for all s ∈ Γ′. For this reason, one
may always assume that the operator norms of the projections of a projectional
skeleton are uniformly bounded.
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On the other hand, we have the concept of Plichko spaces. Recall that given a
Banach space X and a real number r ≥ 1, a closed subspace N of X∗ is r-norming
if sup {⟨f, x⟩ : f ∈ N, ∥f∥ ≤ 1} ≥ 1

r
∥x∥.

Definition 2.3. Let X be a Banach space, and let r ≥ 1. We say that X is
r-Plichko if there exists a pair (∆, N), where ∆ ⊂ X is a linearly dense subset of
X and N is an r-norming subspace of X∗ such that for every functional f ∈ N ,
the set

S∆(f) = {x ∈ ∆: ⟨f, x⟩ ≠ 0}
is countable. We say that the pair (∆, N) is a witness of the Plichko property in
X. Since N is essentially determined by the linearly dense set ∆, we sometimes
say, equivalently, that X is Plichko witnessed by the set ∆.

This class of Banach spaces was studied by Plichko in several articles ([46,
45, 44, 43]) under a different name. In the survey [28], Kalenda named these
spaces Plichko spaces. We refer to this survey and to the monograph [22] for a
detailed study of this notion. It is known, for instance, that all Plichko Banach
spaces admit a Locally Uniformly Rotund norm, and that the Plichko property
is equivalent to the existence of a countably norming Markushevich basis. Some
classical examples of non-separable Banach spaces with the Plichko property are
c0(Γ) and ℓ1(Γ) for an uncountable set Γ, as well as all reflexive Banach spaces.
On the other hand, as will be easily deduced in the next subsection, the space ℓ∞
is not Plichko.

It is clear from the definition that a non-separable Banach space admitting a
projectional skeleton is “full" of separable linearly complemented subspaces. Less
obvious is the fact that Plichko Banach spaces also have a very rich separable
complementation structure. In fact, Kubiś showed the following result:

Theorem 2.4 (Kubiś [36]). Let r ≥ 1. A Banach space X is r-Plichko if and
only if it admits a commutative r-projectional skeleton.

2.1.2. Complementation properties. Projectional skeletons provide infor-
mation on the existence of separable complemented subspaces, with additional
structural properties. A more direct approach is given by the so-called Comple-
mentation Properties, which can be defined for any two given cardinal numbers:

Definition 2.5. Given α, β two cardinal numbers with α ≤ β, we say that a
Banach space X has the (α, β) Complementation Property (CP(α, β) for short), if
for every closed subspace Y ⊂ X with dens(Y ) = α there exists another subspace
Z that contains Y , such that dens(Z) ≤ β and Z is linearly complemented in X.
We say that X has the Separable Complementation Property (SCP) if it has the
CP(ℵ0,ℵ0).

The SCP is the most studied of the Complementation Properties. The following
well known result confirms the intuitive idea that projectional skeletons are a
stronger concept than the SCP.
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Proposition 2.6. If a Banach space admits a projectional skeleton, then it
has the SCP. In particular, if X is Plichko, then it has the SCP.

Proof. Let X be a Banach space, let {Ps}s∈Γ be a projectional skeleton in X,
and let Y be a separable subspace of X. Consider a sequence {yn}n∈N dense in Y .
Since X =

⋃
s∈Γ Ps(X), for every n ∈ N there exists sn ∈ Γ such that yn ∈ Psn(X).

By directedness of Γ, we may assume that sn ≤ sm for all n ≤ m ∈ N. Then, if
s = supn∈N sn, we obtain that yn ∈ Ps(X) for all n ∈ N, and thus Y is contained
in the separable and linearly complemented subspace Ps(X). □

It is worth noting that the fact that Plichko spaces enjoy the SCP was known
well before the study of projectional skeletons. Kubiś constructed in [37] a Banach
space which has the SCP but is not Plichko.

On the other hand, the space ℓ∞ does not have the SCP, since every infinite-
dimensional linearly complemented subspace of ℓ∞ is isomorphic to ℓ∞ itself, and
thus non-separable. It is also clear that nonseparable indecomposable Banach
spaces do not have the CP(α, β) for any two cardinals α ≤ β strictly smaller than
their density character. A remarkable result of Koszmider, Shelah, and Świȩtek
([35]) shows that, under the Generalized Continuum Hypothesis, there exist inde-
composable Banach spaces with arbitrarily large density character.

2.2. Basics in Lipschitz maps on metric spaces

We start with the definition of Lipschitz map between two metric spaces:

Definition 2.7. Let (M,dM) and (N, dN) be two metric spaces. A map
F : M → N is said to be Lipschitz if the supremum

∥F∥Lip =

{
dN (F (x), F (y))

dM(x, y)
: x ̸= y ∈ M

}
is finite. The value ∥F∥Lip is the Lipschitz constant of F .

Given a non-negative real number K, we say that a map F : M → N is K-
Lipschitz if it is Lipschitz and ∥F∥Lip ≤ K.

It should be noted that every linear and bounded operator between Banach
spaces is in particular a Lipschitz map, with Lipschitz constant equal to the oper-
ator norm.

As is the case with linear and bounded operators, we have the following result
regarding compositions of Lipschitz maps:

Proposition 2.8. Let M,N and S be metric spaces, and let F : M → N and
G : N → S be Lipschitz maps. Then G ◦ F : M → S is a Lipschitz map with
∥G ◦ F∥Lip ≤ ∥G∥Lip · ∥F∥Lip.
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Proof. Let p, q ∈ M . Since F is ∥F∥Lip-Lipschitz, we have that dN (F (p), F (q)) ≤
∥F∥LipdM(p, q). Applying now that G is ∥G∥Lip-Lipschitz, we obtain that

dS (G(F (p)), G(F (q))) ≤ ∥G∥LipdN (F (p), F (q)) ≤ ∥G∥Lip · ∥F∥LipdM(p, q),

which finishes the proof. □

We will mainly focus on two specific types of Lipschitz maps: Lipschitz retrac-
tions and real-valued Lipschitz functions. We start by formally defining Lipschitz
retractions:

Definition 2.9. Let K be a non-negative real number, let M be a metric
space and let S be a subset of M . A map R : M → S is a K-Lipschitz retraction
if it is a K-Lipschitz map such that R(p) = p for all p ∈ S. In this case, the set S
is called a K-Lipschitz retract of M .

Again, it is clear that a linear and bounded projection in a Banach space is
in particular a Lipschitz retraction. On the other hand, it is often the case that
a linear subspace of a Banach space is not linearly complemented, but it is a
Lipschitz retract. For instance, while c0 is famously not linearly complemented in
ℓ∞, it is straightforward to check that the map R : ℓ∞ → c0 given by

(R ({xn}n∈N))k =

{
0, if |xk| < lim supn |xn|
sign(xk)(|xk| − lim supn |xn|) if |xk| ≥ lim supn |xn|

is a 2-Lipschitz retraction onto c0. This is an example of a Banach space being a
Lipschitz retract of its bidual. It was asked by Lindenstrauss in [38] whether every
Banach space is a Lipschitz retract of its bidual. A non-separable Banach space
which fails this condition was given by Kalton in [30], while the separable case
remains an open question. We will discuss this conjecture several times during
this thesis.

Given a real number K, if a metric space M is a K-Lipschitz retract in every
metric space that contains it, then we say that M is an absolute K-Lipschitz
retract. It can be shown that if a metric space S is a K1-Lipschitz retract of
an absolute K2-Lipschitz retract, then S is an absolute K1K2-absolute Lipschitz
retract. The space ℓ∞ is an absolute 1-Lipschitz retract, and thus it follows that
c0 is an absolute 2-Lipschitz retract.

Next, given a metric space M , we will denote by Lip(M) the set of all real-
valued Lipschitz functions defined on M . Note that the Lipschitz constant of a
map f ∈ Lip(M) is computed as

∥f∥Lip = sup
p̸=q∈M

|f(p)− f(q)|
d(p, q)

.

The ordered field structure of the real numbers allows us to multiply Lipschitz
functions by scalars and to perform addition of Lipschitz functions.
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Proposition 2.10. Let M be a metric space, let f, g ∈ Lip(M), and let λ ∈ R.
Then:

(1) ∥λf∥Lip = |λ|∥f∥Lip.
(2) ∥f + g∥Lip ≤ ∥f∥Lip + ∥g∥Lip.

Proof. Fix two points p, q ∈ M for the rest of the proof.
To show (1), notice that |λf(p)− λf(q)| = |λ||f(p)− f(q)|. Therefore:

sup
p ̸=q∈M

|λf(p)− λf(q)|
d(p, q)

= |λ| |f(p)− f(q)|
d(p, q)

= |λ|∥f∥Lip.

For (2), the triangle inequality shows through direct computation that |(f+g)(p)−
(f + g)(q)| ≤ |f(p)− f(q)|+ |g(p)− g(q)| ≤ (∥f∥Lip + ∥g∥Lip)d(p, q).

□

Notice that we have that, in particular, the set Lip(M) is a vector space.
We also have the following property about pointwise limits of Lipschitz func-

tions:

Proposition 2.11. Let M be a metric space, and let {fi}i∈N be a net in Lip(M)
with uniformly bounded Lipschitz constant, which converges pointwise to a function
f : M → R. Then f ∈ Lip(M) with ∥f∥Lip ≤ lim infi∈I ∥fi∥Lip.

Proof. A simple computation shows that for every p, q ∈ M we have:

|f(p)− f(q)| = lim
i∈I

|fi(p)− fi(q)| ≤ lim inf
i∈I

∥fi∥Lipd(p, q).

□

With this, we can show that pointwise suprema and infima of Lipschitz func-
tions behaves well with respect to the Lipschitz constant. We use the notation
f ∨ g = max{f, g} and f ∧ g = min{f, g}. We have the following easy properties:

Proposition 2.12. Let {fi}i∈I be a subset of Lip(M) with uniformly bounded
Lipschitz constant. Then

(1)
∥∥∨

i∈I fi
∥∥

Lip ≤ supi∈I ∥fi∥Lip.

(2)
∥∥∧

i∈I fi
∥∥

Lip ≤ supi∈I ∥fi∥Lip.

Proof. We show first that given two Lipschitz functions f, g ∈ Lip(M), then
∥f ∨ q∥Lip ≤ max{∥f∥Lip, ∥g∥Lip} and ∥f ∧ q∥Lip ≤ max{∥f∥Lip, ∥g∥Lip}. Fix
p, q ∈ M , and suppose without loss of generality that (f ∨ g)(p) ≥ (f ∨ g)(q).
Assume first that f(p) ≥ g(q). Then:

|(f ∨ g)(p)− (f ∨ g)(q)| = f(p)− (f ∨ g)(q) ≤ f(p)− f(q) ≤ ∥f∥Lipd(p, q).

Otherwise, if g(p) ≥ f(p) we obtain the inequality |(f ∨ g)(p) − (f ∨ g)(q)| ≤
∥g∥Lipd(p, q). It follows that ∥f ∨ q∥Lip ≤ max{∥f∥Lip, ∥g∥Lip}. The second part
can be shown from Proposition 2.10 (1) and the fact that f ∧g = − ((−f) ∨ (−g)).
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Now, given a net {fi}i∈I in Lip(M), the functions
∨

i∈I fi and
∧

i∈I fi are,
respectively, the pointwise suprema and infima of the net given by the suprema
and infima of all finite subfamilies of I. Therefore, the result follows by applying
Proposition 2.11. □

We can now show a fundamental theorem in the study of Lipschitz functions
is the following extension theorem, due to McShane [42].

Theorem 2.13 (McShane’s Extension Theorem). Let M be a metric space,
and let S be a subset of M . For every function f ∈ Lip(S) there exists a Lipschitz
function g ∈ Lip(M) such that g extends f and ∥g∥Lip = ∥f∥Lip.

Proof. For every p ∈ M , define

g(p) =
∧
x∈S

(f(x) + ∥f∥Lipd(p, x)) .

First we show that g : M → R extends f . Indeed, if we fix y ∈ S, for every x ∈ S
we have that f(y) − f(x) ≤ +∥f∥Lipd(y, x), with equality achieved when x = y.
This implies that g(y) = f(y).

Now, to show that ∥g∥Lip ≤ ∥f∥Lip, by Proposition 2.12 it is enough to show
that the function hx : M → R given by hx(p) = f(x) + ∥f∥Lipd(p, x) is ∥f∥Lip-
Lipschitz for all x ∈ S. Indeed, we have that for p, q ∈ M :

|hx(p)− hx(q)| = ∥f∥Lip|d(p, x)− d(q, x)| ≤ ∥f∥Lipd(p, q).

□

2.3. Lipschitz-free spaces

As can be deduced from Proposition 2.10, the function ∥ · ∥Lip : Lip(M) → R
defines a seminorm in the vector space Lip(M). It is not a norm, since all constant
functions in a metric space have Lipschitz constant 0, and thus we have non-zero
vectors in Lip(M) whose norm vanishes. However, if we fix a distinguished point
0 ∈ M , we have that in the subspace Lip0(M) = {f ∈ Lip(M) : f(0) = 0}, the
Lipschitz constant is a well defined norm. It can be shown that the normed space
(Lip0(M), ∥ ·∥Lip) is complete, and thus it is a Banach space. Moreover, the choice
of the distinguished point in M we have made to define Lip0(M) is not relevant,
in the sense that choosing a different distinguished point yields an isometrically
isomorphic space. Additionally, if M is a metric space and M̂ is its completion,
the Banach spaces Lip0(M) and Lip0(M̂) are isometrically isomorphic as well.

Given a metric space M with a distinguished point 0 ∈ M , and given a point
p ∈ M , the Dirac measure (or Dirac function) δ(p) : Lip0(M) → R, given by
δ(p)(f) = f(p) for all f ∈ Lip0(M), defines a linear and bounded functional, and
it is therefore a point in the dual space Lip0(M)∗. Moreover, the dual of the
closed linear subspace spanned by δ(M) ⊂ Lip0(M)∗ is isometrically isomorphic
to Lip0(M). This canonical predual, that is, the subspace span(δ(p) : p ∈ M) ⊂
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Lip0(M)∗ equipped with the inherited norm, is denoted by F(M), and is called the
Lipschitz-free space of M . Notice that it follows that Lipschitz-free spaces have the
same density character as the underlying metric space. Again, completeness and
the choice of the distinguished point yield isometrically isomorphic Lipschitz-free
spaces.

It is important to note that the map δ : M → F(M) is a (non-linear) isometric
embedding. Therefore, we may regard every complete metric space as a closed
subset of its Lipschitz-free space.

The subject of Lipschitz-free spaces is a very active area of research, and many
results have been obtained in this domain. We refer to the monograph [50], to the
seminal article [17] and to the survey [15] for an extensive study of these spaces.
We will discuss now those properties which are more relevant to our discussion,
and which we will use in the main body of the thesis.

Apart from Dirac measures, we may distinguish another type of points in
Lipschitz-free spaces of great relevance:

Definition 2.14. Let M be a metric space, and let p ̸= q ∈ M . The element
mp,q =

δ(p)−δ(q)
d(p,q)

∈ BF(M) is called an elementary molecule.

Note that given a function f ∈ Lip0(M) and two points p ̸= q ∈ M , we have
that ⟨mp,q, f⟩ = f(p)−f(q)

d(p,q)
. This implies that ∥f∥Lip = sup{⟨mp,q, f⟩ : p ̸= q ∈ M}.

As an application of Hahn-Banach’s Theorem, we obtain that

BF(M) = conv {mp,q : p ̸= q ∈ M} .
One of the most important properties of Lipschitz-free spaces is the following

result:

Theorem 2.15. Let M and S be two metric spaces. For every Lipschitz map
F : M → S such that F (0) = 0 there exists a linear operator F̂ : F(M) → F(S)

with ∥F̂∥ = ∥F∥Lip and such that F̂ ◦ δM = δS ◦ F .

Proof. Consider the linear operator T : Lip0(N) → Lip(M) given by Tg =
F : g for all g ∈ Lip0(N). It follows from Proposition 2.8 that ∥T∥ ≤ ∥F∥Lip.
In addition, T is weak∗ to weak∗ continuous (note that the weak∗ topology in
bounded subsets of Lip0(M) coincides with the topology of pointwise convergence).
It follows that T is the adjoint of an operator F̂ : F(M) → F(N), which satisfies
∥F̂∥ = ∥F∥Lip and F̂ ◦ δM = δS ◦ F . □

A special case of the previous theorem is when ι : S → M is an isometric
embedding of S into M . Then î : F(S) → F(M) is a linearly isometric embedding
of F(S) into F(M). This means, in particular, that when S is a subset of M
containing 0, we can consider F(S) as a closed linear subspace of F(M). We
will use this identification throughout the thesis. With this in mind, we have the
following result with a direct proof:
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Proposition 2.16. Let M be a metric space and let S be a closed subset of M
containing 0. If F : M → S is a Lipschitz retraction onto N , then F̂ is a linear
projection from F(M) onto F(S).

Proof. Since the Set δ(S) is linearly dense in F(S), it suffices to show that
F̂ fixes δ(p) for all p ∈ S. A direct computation shows that

F̂ δ(p) = δ(F (p)) = δ(p).

□

Given a Banach space X, there exists a linear left inverse to the map δ : X →
F(X). This map is called the barycenter map, and is usually denoted by βX : F(X) →
X (see e.g.: [17]). Using this linear inverse and Theorem 2.15 we obtain the fol-
lowing universal property of Lipschitz-free spaces:

Theorem 2.17. Let M be a metric space and let X be a Banach space. If
F : M → X is a Lipschitz map with F (0) = 0, there exists a linear map F̂ : F(M) →
F(X) such that F̂ ◦ δ = F and ∥F̂∥ = ∥F∥Lip.

Additionally, thanks to the next result, we have that when a Lipschitz-free
space F(M) admits a projectional skeleton, we may assume without loss of gener-
ality that the complemented subspaces generated by the skeleton are the Lipschitz-
free spaces of separable subsets of M . In the proof, we use the concept of support
of an element µ ∈ F(M) (denoted supp(µ)), defined as the intersection of all closed
subsets S in M such that µ ∈ F(S). This notion was introduced in [2], where,
among other properties and applications, it is shown that for every µ ∈ F(M),
the support of µ is a separable set such that µ ∈ F(supp(µ)).

Proposition 2.18 ([25]). Let M be a complete metric space (resp. Banach
space), and let {Ps}s∈Γ be a projectional skeleton on F(M). Then there exists
a σ-closed cofinal subset of Γ and a family {As}s∈Γ′ of separable subsets (resp.
separable linear subspaces) of M such that Ps(F(M)) = F(As).

In particular, F(M) admits a projectional skeleton {Ps}s∈Γ such that Ps(F(M))
is F(As) where As is a separable subset (resp. separable linear subspace) of M for
all s ∈ Γ.

Proof. Let s = s0 ∈ Γ be an arbitrary index. The set Ps0(F(M)) is a
separable subset of F(M). Since the support of a point in F(M) is a closed
separable subset of M , we obtain that the set

As0 =
⋃

µ∈Ps0 (F(M))

supp(µ)

is a closed separable subset of M as well. Moreover, since supp(µ) ⊂ As0 for all
µ ∈ Ps0(F(M)), we have that Ps0(F(M)) ⊂ F(As0), which is a separable subset
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of F(M). By the properties of projectional skeletons, we can find s1 ∈ Γ, with
s0 ≤ s1 such that F(As0) ⊂ Ps1(F(M)).

By induction, we construct (sn)n ⊂ Γ such that sn ≤ sn+1 and {Asn}n are
closed separable subsets of M satisfying

Psn

(
F(M)

)
⊂ F(Asn) ⊂ Psn+1

(
F(M)

)
.

This implies that
⋃

n∈N Psn

(
F(M)

)
=
⋃

n∈N F(An). Consider now ts = sup(sn) ∈
Γ. We have then that

Pts

(
F(M)

)
=
⋃
n∈N

Psn

(
F(M)

)
=
⋃
n∈N

F(An).

Note as well that
⋃

n∈N F(An) = F
(⋃

n∈N An

)
. Indeed, it is clear that

⋃
n∈N F(An) ⊂

F
(⋃

n∈NAn

)
. Conversely, note that

⋃
n∈N F(An) is a closed linear subspace

which contains δ(p) for every p ∈
⋃

n∈NAn, so it follows that F
(⋃

n∈N An

)
⊂⋃

n∈N F(An).
Set Ats =

⋃
n∈N An and Γ′ = {ts}s∈Γ. Clearly Γ′ is σ-complete and cofinal, and

the result follows.
It is easy to modify this argument to see that if X is a Banach space and F(X)

admits a projectional skeleton {Ps}s∈Γ, we can assume that Ps

(
F(X)

)
= F(Ys)

where {Ys} is a family of separable closed linear subspaces. □

Finally, we will also need a very useful result, due to Kalton, that characterizes
the norming subspaces of Lip0(M).

Theorem 2.19 (Proposition 3.3 in [32]). Let M be a metric space, let r ≥ 1,
and let N be a closed subspace of Lip0(M). Then N is r-norming if and only if for
every finite set A of M containing 0, every ε > 0, and every function g ∈ Lip0(A),
there exists a function f ∈ N such that f extends g and ∥f∥Lip ≤ (r + ε)∥g∥Lip.



CHAPTER 3

Lipschitz retractional structure of metric and Banach spaces

In this chapter we start by studying the non-linear versions of the classical
complementation properties we introduced in Chapter 2. It is divided into three
sections: In the first section we define Lipschitz retractional skeletons and their re-
lationship with projectional skeletons, and we use them to show that the Lipschitz-
free space of a Plichko Banach space is again Plichko. In the second section we
study the Plichko property and its witnesses in Lipschitz-free spaces of several
classes of metric spaces. We characterize metric spaces whose Lipschitz-free space
is Plichko witnessed by Dirac measures, and we show that the Lipschitz-free space
of any R-tree is Plichko witnessed by elementary molecules. Finally, in the third
section we look at Lipschitz analogues to the Complementation Properties, proving
some positive results and motivating the constructions of the next chapter.

3.1. Lipschitz retractional skeletons and the Plichko property

We start by defining the concept analogous to projectional skeletons in the met-
ric setting, by replacing linear projections with Lipschitz retractions. It is worth
noting that the related concept of retractional skeletons in compact topological
spaces, using continuous retractions, has been studied in the literature. We refer
to the monograph [27] for more details in this topic.

Definition 3.1. Let M be a metric space. A Lipschitz retractional skeleton
on M is a family {Rs}s∈Γ of Lipschitz retractions on M indexed by a directed and
σ-complete partially ordered set Γ, such that the following conditions hold:

(i) Rs(M) is a separable subset of M for every s ∈ Γ.
(ii) If s, t ∈ Γ such that s ≤ t, then Rs ◦Rt = Rt ◦Rs = Rs.
(iii) If (sn)n∈N is a totally ordered sequence in Γ, then Rs(M) =

⋃
n∈N Rsn(M)

where s = supn∈Nsn.
(iv) M =

⋃
s∈ΓRs(M).

Given r ≥ 1, a r-Lipschitz retractional skeleton is a Lipschitz retractional skeleton
with Lipschitz constant uniformly bounded by r. A Lipschitz retractional skeleton
is commutative if Rs ◦ Rt = Rt ◦ Rt for every s, t ∈ Γ, regardless of whether they
are comparable or not.

Since every linear and continuous projection is in particular a Lipschitz retrac-
tions, it is clear that the previous concept is weaker than the notion of projectional

17



18 3. LIPSCHITZ RETRACTIONAL STRUCTURE OF METRIC AND BANACH SPACES

skeletons, when considering Banach spaces as metric spaces. However, thanks to
the linearization property of Lipschitz free spaces (Theorem 2.15), we can show
that the existence of a Lipschitz retractional skeleton in a metric space implies
that the associated Lipschitz-free space admits a projectional skeleton. As we will
show in Chapter 4, the converse statement of this next result fails in a strong sense
for general metric spaces.

Proposition 3.2 ([25]). Let M be a complete metric space and r ≥ 1. Suppose
that M admits a (commutative) r-Lipschitz retractional skeleton on M . Then
F(M) admits a (commutative) r-projectional skeleton.

Proof. Let {Rs}s∈Γ be an r-Lipschitz retractional skeleton in M . Using
Theorem 2.15, let Ps : = R̂s : F(M) → F(M) be the linear maps such that
∥Ps∥ = ∥Rs∥Lip and Ps(δ(x)) = δ(Rs(x)) for all x ∈ M . Let us check that this
family is a projectional skeleton on F(M).

In the first place, since Rs(M) is separable for all s ∈ Γ, and Ps(F(M)) is equal
to F(Rs(M)), we obtain that Ps(F(M)) is separable for all s ∈ Γ. Next, suppose
s, t ∈ Γ with s ≤ t and take x ∈ M . We have then that

PsPt(δ(x)) = δ(RsRt(x)) = δ(Rs(x)) = Ps(δ(x)),

and similarly for PtPs(δ(x)). Since PsPt, PtPs and Ps are bounded linear maps
and δ(M) is a linearly dense subset of F(M), we obtain that PsPt = PtPs = Ps as
desired.

Next, suppose that (sn)n is an increasing sequence of indices in Γ, and let
s = supn∈N sn. Consider x ∈ M and ε > 0. By hypothesis there exists n0 ∈ N and
y ∈ M such that d

(
Rs(x), Rsn0

(y)
)
< ε. Hence, since the δ map is an isometry, we

have that ∥δ
(
Rs(x)

)
−δ
(
Rn0(y)

)
∥ < ε. This implies that ∥Ps(δ(x))−Pn0(δ(y))∥ <

ε. Hence, Ps(δ(x)) ∈
⋃

n∈N Psn(F(M)).
Now, since (sn) is increasing, by the remark we made about condition (ii) of

Definition 2.2, the family {Psn(F(M))}n is increasing as well. This implies that⋃
n∈N Psn(F(M)) is a linear subspace of F(M). Then, by the linearity of Ps and

the fact that δ(M) is linearly dense in F(M), we obtain that

Ps(F(M)) =
⋃
n∈N

Psn(F(M)),

as desired.
Finally, to prove that F(M) =

⋃
s∈Γ Ps(F(M)), we use the concept of support

of an element of F(M). For all µ ∈ F(M) the set supp(µ) ⊂ M is a closed
separable subset such that µ ∈ F(supp(µ)). Hence, if for every µ ∈ F(M) we
find s ∈ Γ such that supp(µ) ⊂ Rs(M), we will obtain that µ ∈ F(Rs(M)) =
Ps(F(M)), completing the proof.

To this end, consider µ ∈ F(M), and let (xn)n ⊂ supp(µ) be a dense sequence.
By hypothesis, for x1 we can find s1 ∈ Γ such that x1 ∈ Rs1(M). Suppose that we
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have constructed (si)
n
i=1 in Γ such that si ≤ si+1 for 1 ≤ i ≤ n− 1 and such that

xi ∈ Rsi(M). By hypothesis there exists s∗ ∈ Γ such that xn+1 ∈ Rs∗(M). Since Γ
is directed, we can find sn+1 ∈ Γ such that si ≤ sn+1 for 1 ≤ i ≤ n and s∗ ≤ sn+1.

This way we inductively construct an increasing sequence (sn)n such that xn ∈
Rsn(M). By item (iii) in the hypothesis, there exists s ∈ Γ such that Rs(M) =⋃

n∈N Rsn(M). Since the dense sequence (xn)n is contained in
⋃

n∈N Rsn(M), it
follows that supp(µ) ⊂ Rs(M). We conclude that {Ps}s∈Γ is a projective skeleton.
The last two statements follow immediately. □

This, together with Kubiś’ equivalence of the Plichko property in terms of
projectional skeletons, yields the following result about Lipschitz free spaces of
r-Plichko Banach spaces.

Corollary 3.3 ([25]). Let X be a Banach space and let r ≥ 1. If X is
r-Plichko, then F(X) is r-Plichko.

Proof. By Theorem 2.4, if X is r-Plichko, then it admits a commutative
r-projectional skeleton. Since linear projections are in particular Lipschitz retrac-
tions, by Proposition 3.2 the space F(X) also admits a commutative r-projectional
skeleton. By the converse implication of Theorem 2.4, F(X) is r-Plichko. □

Recall that a Banach space X is Weakly Lindelöf Determined (WLD for short) if
there exists a linearly dense subset ∆ ∈ X such that the set {x ∈ ∆: ⟨f, x⟩ ≠ 0} is
countable for all f ∈ X∗. Clearly, every WLD Banach space is Plichko. Moreover,
the WLD property is inherited by linear subspaces, and the space ℓ1(Γ) is not
WLD if Γ is uncountable. Since, as shown in [23], the space ℓ1(Γ) embeds linearly
into F(M), where Γ is the density character of M , we have that non-separable
Lipschitz-free spaces fail to be WLD. The previous corollary shows that the weaker
Plichko property can occur in Lipschitz-free spaces. In fact, there are currently no
examples of metric spaces whose Lipschitz-free space is not Plichko. In relation to
this question, it is not known if the converse of the Corollary 3.3 is true.

3.2. Witnesses of the Plichko property in Lipschitz-free spaces

When trying to show directly that the Lipschitz-free space of a metric space M
has the Plichko property, some natural candidates for the linearly dense set wit-
nessing such property are subsets of molecules. We start by studying the situation
for witnesses formed by Dirac measures.

3.2.1. The Plichko property witnessed by Dirac measures. If D is a
subset of M such that ∆D = {δ(p) : p ∈ D} is linearly dense in F(M), it is
straightforward to see that D must be dense in M . Therefore, if ∆D witnesses
the Plichko property in F(M), it follows that the associated norming subspace
ND = {f ∈ Lip0(M) : f is countably supported in D} must be contained in the
set of separately supported functions in M . This hints at the fact that the Plichko
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property in Lipschitz-free spaces witnessed by a subset of Dirac measures is a
rather strong condition in the underlying metric space. Indeed, we show that
it can be characterized by a strong form of local separability in a metric space.
Namely, among other equivalent properties, we will obtain that F(M) is λ-Plichko
witnessed by set of Dirac measures if and only if the open ball B (p, rd(p, 0)) is
separable for all p ∈ M and all r < 1

λ
.

Before stating the full characterization, let us prove that this property implies
that the space of separately supported functions is norming. Since we will use this
subspace repeatedly during this section, we fix the notation

S0 = {f ∈ Lip0(M) : supp(f) is separable } ⊂ Lip0(M)

for every metric space M and for the rest of the chapter. Here, supp(f) denotes
the support of the Lipschitz function f in the usual sense; that is, the smallest
closed subset of M such that f(x) = 0 for all x /∈ supp(f). This set is clearly a
closed linear subspace of Lip0(M).

Proposition 3.4 ([25]). Let M be a metric space and λ ≥ 1. If for every
p ∈ M , and every 0 < r < 1

λ
, the set B(p, r · d(p, 0)) is separable, then S0 is

λ-norming.

Proof. By Kalton’s Lemma 2.19, it is enough to show that for every finite set
F ⊂ M with 0 ∈ F , every ε > 0 and every Lipschitz function f ∈ Lip0(F ) with
∥f∥Lip = 1, there exists a function g ∈ S0 such that g|F = f and ∥g∥Lip ≤ λ(1+ ε).
Using McShane’s extension theorem, this is equivalent to proving that for every
finite set F ⊂ M with 0 ∈ F , every ε > 0 and every function f ∈ Lip0(M) with
∥f∥Lip = 1, there exists a function g ∈ S0 such that g|F = f|F and ∥g∥Lip ≤ λ(1+ε).

Fix f ∈ Lip0(M) with ∥f∥Lip = 1. Define the subsets P = {p ∈ M : f(p) > 0},
N = {p ∈ M : f(p) < 0} and Z = {p ∈ M : f(p) = 0}.

Fix x0 ∈ P and ε > 0, and define τx0(p) = max{f(x0) − λ(1 + ε)d(p, x0), 0}.
Put Dx0 = {p ∈ M, τx0(p) > 0} (Dx0 is the topological interior of the support of
τx0). We claim that Dx0 ⊂ P . Indeed, let p ∈ Dx0 . Then τx0(p) = f(x0) − λ(1 +

ε)d(p, x0) > 0. Equivalently, d(p, x0) <
(
λ(1 + ε)

)−1
f(x0).

Also, since ∥f∥Lip = 1, we have that |f(x0)− f(p)| <
(
λ(1+ ε)

)−1
f(x0). Thus,

f(p) ≥ f(x0)− (λ(1 + ε))−1f(x0) = f(x0)
(
1− (λ(1 + ε))−1

)
> 0,

as we claimed. It is also clear that x0 ∈ Dx0 . It follows that P =
⋃

x∈P Dx.
Similarly, for x0 ∈ N and ε > 0, we define τx0(p0) = min{f(x0) + λ(1 +

ε)d(p, x0), 0} and Dx0 = {p ∈ M, τx0(p) < 0}. Following the same reasoning
as before, we get N =

⋃
x∈N Dx. In particular, if x ∈ P and y ∈ N , we get

Dx ∩Dy = ∅.
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Now let F ⊂ M be a finite set with 0 ∈ F . Put FP = F ∩ P , FN = F ∩ N
and FZ = F ∩ Z. Define a function g : M → M in the following way:

g(p) =


∨

x∈FP

τx(p), if p ∈ P∧
x∈FN

τx(p), if p ∈ N

0, if p ∈ Z

This function has the desired properties, that is:
(i) g(p) = f(p) for all p ∈ F ,
(ii) g(0) = 0,
(iii) g ∈ S0, and
(iv) ∥g∥Lip ≤ λ(1 + ε).
Let us check this. Let p ∈ F . Suppose that p ∈ FP . Then g(p) ≥ τp(p) = f(p)

by definition. Let x be an arbitrary point in FP . Then, since ∥f∥Lip = 1 and
λ ≥ 1:

τx(p) = f(x)− λ(1 + ε)d(p, x) = f(x)− λd(p, x)− λεd(p, x)

≤ f(x)− d(p, x) ≤ f(x)− (f(x)− f(p)) = f(p)

Hence g(p) = f(p). By a similar argument we see that if q ∈ FN , then g(q) = f(q),
and clearly if z ∈ FZ, by definition g(z) = f(z) = 0. We have proven (i) and (ii)
since 0 ∈ F .

To see (iii), we need to prove that g has a separable support. Note that
supp(g) =

⋃
x∈F supp(τx). Since F is finite, it suffices to show that supp(τx) is

separable for every x ∈ F . Suppose x0 ∈ FP and let p ∈ M with d(p, x0) >
(λ(1 + ε))−1d(x0, 0). Then λ(1 + ε)d(p, x0) > d(x0, 0), so

f(x0)− λ(1 + ε)d(p, x0) < f(x0)− d(x0, 0) ≤ f(0) = 0,

which implies that τx0(p) = 0. Thus, supp(τx0) ⊂ B(x0, (λ(1 + ε))−1d(x0, 0)),
which is separable by hypothesis. The same reasoning applies if x0 ∈ FN , so we
conclude that g has separable support and thus condition (iii) is satisfied.

Property (iv) follows from the definition of τx for every x ∈ M , and Proposition
2.12. □

Once we have that our geometric property implies that S0(M) is norming,
in order to show that it also implies the Plichko property witnessed by Dirac
measures, it is enough to find a dense set D ⊂ M such that the associated linear
subspace ND = {f ∈ Lip0(M) : f is countably supported in D} is S0(M). This
will hold if and only if the intersection of D with every separable subset of M is
countable. The existence of such a dense set D is implied by the weaker property
of local separability. The following proof is an elementary application of Zorn’s
Lemma, but we include it for completeness.
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Lemma 3.5. Let M be a metric space such that every point in M has a separable
neighbourhood (M is locally separable). Then there exists a dense set D in M such
that for every separable subset S of M , the intersection D ∩ S is countable.

Proof. Consider the following set:

T =
{
{Ai}i∈I ⊂ P(M) : Ai is non-empty, open and separable for all i ∈ I,

Ai ∩ Aj = ∅ for all i ̸= j ∈ I
}
,

which is non-empty since M is locally separable. The set T can be ordered by
inclusion, and it is straightforward to check that every chain in T has an upper
bound given by the union of every family in the chain. Hence, by Zorn’s Lemma
we can consider F0 = {Ai}i∈I a maximal family in T . Then, since F0 is maximal
in T and M is locally separable, we have that M =

⋃
i∈I Ai.

Choose for every i ∈ I a countable set Di dense in Ai, and set D =
⋃

i∈I Di.
Let us check that D satisfies the thesis of the Lemma: Let S be a separable subset
of M . Then S has the countable chain condition, so there exists a countable subset
F ′
0 = {Ain}n∈N of F0 such that

S ∩
⋃
i∈I

Ai = S ∩
⋃
n∈N

Ain .

Therefore, since Di ⊂ Ai for all i ∈ I, we obtain that S∩D =
⋃

n∈N S∩Din , which
is countable since it is the countable union of countable sets. □

We now proceed to state the full characterization as the main result of this
subsection.

Theorem 3.6 ([21]). Let M be a metric space with distinguished point 0 ∈ M ,
and let λ ≥ 1. The following statements are equivalent:

(i) For all p ∈ M and for all r < 1
λ
, the ball B(p, r · d(p, 0)) is separable.

(ii) F(M) is λ-Plichko witnessed by a subset of δ(M).
(iii) F(M) admits a commutative λ-projectional skeleton {Ps}s∈Γ such that

Ps(δ(p)) ∈ {0, δ(p)} for all p ∈ M .
(iv) M admits a commutative λ-Lipschitz retractional skeleton {Rs}s∈Γ such

that Rs(p) = {0, p} for all p ∈ M .
(v) The closed subspace {f ∈ Lip0(M) : supp(f) is separable} is a λ-norming

subspace of Lip0(M).

Proof. Let us start by proving that (i) and (v) are equivalent. Indeed, Propo-
sition 3.4 is precisely the statement that (i) implies (v). To show the converse,
suppose by contradiction that S0(M) is a λ-norming subspace of Lip0(M) and that
there exists a point p0 ∈ M different from 0 and 0 < r0 < 1

λ
such that the open

ball B(p0, r0 · d(p0, 0)) is non-separable.
Consider the function f0 ∈ Lip0({0, p0}) defined by f0(0) = 0 and f0(p0) =

d(p0, 0). This function is clearly 1-Lipschitz, and thus by Kalton’s Lemma 3.3 in
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[32], choosing ε0 > 0 such that r0 · (λ + ε0) < 1 there exists a (λ + ε0)-Lipschitz
function g0 in S0(M) ⊂ Lip0(M) such that g0(0) = 0 and g0(p0) = d(p0, 0). Since
we are assuming that B(p0, r0 · d(p0, 0)) is non-separable, there must exist a point
x0 ∈ M with d(p0, x0) < r0 · d(p0, 0) such that g0(x0) = 0. However, this implies
that

|g0(p0)| = |g0(p0)− g0(x0)| ≤ (λ+ ε0)d(p0, x0)

< r0 · (λ+ ε0)d(p0, 0) < d(p0, 0),

which contradicts the choice of g0.
We continue with (i) implies (ii): If a complete metric space M satisfies prop-

erty (i), Proposition 3.4 shows that S0(M) is a λ-norming subspace of Lip0(M).
By hypothesis, the set M \ {0} is locally separable, so by Lemma 3.5, we can find
D′ ⊂ M \ {0} dense such that D′ intersects every separable subset of M \ {0} in
a countable set. Clearly, the set D = D′ ∪ {0} also satisfies that it is dense in M
and for every separable subset S of M , the intersection D ∩ S is countable. Put
∆ = {δ(x) : x ∈ D}. Then ∆ is linearly dense in F(M), and for every f ∈ S0(M)
we have that

{x ∈ D : ⟨f, δ(x)⟩ ≠ 0} ⊂ supp(f) ∩D

is countable. We conclude that F(M) is λ-Plichko.
(ii) implies (iii): Write ∆ ⊂ δ(M) to denote the set witnessing the λ-Plichko

property in F(M). Then S0(M) is countably supported in ∆, so by Proposition
21 in [36], the Lipschitz-free space F(M) admits a commutative λ-projectional
skeleton {Ps}s∈Γ which generates S0(M). Additionally, since ∆ is a subset of δ(M)
which is linearly dense in F(M), there exists a dense subset D of M such that
∆ = δ(D). Now, by Corollary 20 in [9] we may assume that Ps(δ(p)) ∈ {0, δ(p)}
for all p ∈ D and for all s ∈ Γ. By density of D in M and continuity of the
projections in the projectional skeleton, we conclude that Ps(δ(p)) ∈ {0, δ(p)} for
all p ∈ M and all s ∈ Γ.

(iii) implies (iv): Suppose that F(M) admits a commutative λ-projectional
skeleton {Ps}s∈Γ such that Ps(δ(p)) ∈ {0, δ(p)} for all p ∈ M . For every s ∈ Γ, the
image of the subset δ(M) ⊂ F(M) is contained in δ(M). Hence, when restricting
Ps to the subset δ(M), we obtain a map Ps|δ(M) : δ(M) → δ(M) which is λ-
Lipschitz. Since the map δ : M → δ(M) is an isometry, this restriction induces a
λ-Lipschitz map

Rs : M → M

for every s ∈ Γ, defined by Rs(p) = δ−1(Ps(δ(p))). For every s ∈ Γ, the map Rs

is a retraction onto δ−1(P (δ(M))), which is a closed separable subset of M . It is
direct to check that {Rs}s∈Γ is a commutative λ-Lipschitz retractional skeleton in
M , and it clearly satisfies that Rs(p) ∈ {0, p} for all p ∈ M .

(iv) implies (v): Suppose that M admits a commutative λ-Lipschitz retrac-
tional skeleton {Rs}s∈Γ such that Rs(p) = {0, p} for all p ∈ M . We show that
S0(M) is a λ-norming subspace of M once more by using Kalton’s Lemma 3.3 in
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[32]. Suppose that A ⊂ M is a finite set and that F ∈ Lip0(A) is a 1-Lipschitz
function defined in this set. The set A is finite and thus separable, so there exists
s0 ∈ Γ such that Ss0 = Rs0(M) is a separable set containing A. By McShane’s
extension theorem, we may find another 1-Lipschitz function F ∈ Lip0(Ss0) such
that F |A = F .

Define now fs0 : M → R by fs0(p) = F (Rs0(p)) for all p ∈ M . The map fs0
is λ-Lipschitz because Rs0 is a λ-Lipschitz retraction. Since Rs0(p) = 0 if p /∈ Ss0

and F (0) = 0, we obtain that the support of fs0 is contained in the separable
subset Ss0 , which implies that fs0 belongs to S0(M). We conclude that S0(M) is
λ-norming by Lemma 3.3 in [32].

Since the equivalence between (i) and (v) has already been discussed, we finish
the proof of the theorem. □

The geometric condition in (i) of the previous theorem is simple enough to
allow us to construct many non-separable metric spaces whose Lipschitz-free spaces
have the Plichko property witnessed by Dirac measures. The following example
shows that such metric spaces can be found in the Banach spaces ℓp(Γ) for every
1 ≤ p ≤ ∞ and every uncountable cardinal Γ. For 1 ≤ p ≤ ∞ and γ ∈ Γ, we write
eγ to denote the vector in ℓp(Γ) and c0(Γ) such that eγ(γ) = 1 and eγ(ν) = 0 for
ν ∈ Γ \ {γ}.

Example 3.7. Let p ∈ [1,∞] and let Γ be uncountable. The Banach space
ℓp(Γ) contains a complete metric space Mp of density character Γ such that F(Mp)
is 1-Plichko witnessed by Dirac measures.

To show this, fix p ∈ [1,∞]. For each γ ∈ Γ, denote Eγ = [0, eγ] = {(xν)ν∈Γ ∈
ℓp(Γ) : xγ ∈ [0, 1], and xν = 0 for ν ̸= γ}. Put Mp =

⋃
γ∈ΓEγ. Then Mp is

a complete metric space of density character Γ, and it is easy to check that for
every x ∈ Mp different from 0, the open ball B(x, d(x, 0)) is contained in the
separable segment Eγ such that x ∈ Eγ. Hence, Mp satisfies property (i) for
λ = 1 in Theorem 3.6 and we conclude that F(Mp) is 1-Plichko witnessed by
Dirac measures.

In the previous example, the constructed metric space Mp has a stronger prop-
erty than the geometric condition we demand: Every point x in Mp is contained in
a separable subset Ex such that for every point y ∈ Ex the open ball B(y, d(y, 0)) is
contained in Ex, and for every point z /∈ Ex the open ball B(z, d(z, 0)) is contained
in M \Ex. Informally, these metric spaces can be seen as the union of (uncountably
many) open and closed separable components “glued” at the distinguished point
0 in such a way that the distance between points in two different components is
always greater than the distance of each individual point to 0. This fact may sug-
gest that the geometric condition in (i) of Theorem 3.6 is only satisfied by metric
spaces that are very close to being separable in the previous sense. However, we
show in the next example that this is not the case:
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Example 3.8. There exists a non-separable metric space N2 isometric to a
subset of ℓ2(Γ) for uncountable Γ containing eγ for all γ ∈ Γ, whose Lipschitz-free
space is 1-Plichko witnessed by Dirac measures with the following property:

For every γ ∈ Γ and every separable subset Sγ in N2 containing eγ, there exists
a point x ∈ N2 \ Sγ such that eγ belongs to the open ball B(x, d(x, 0)).

To construct such a space, consider M2 ⊂ ℓ2(Γ) of Example 3.7. Define N2 =
M2∪{eγ+eν : γ ̸= ν ∈ Γ}. As before, for every x ∈ M2, the open ball B(x, d(x, 0))
in N2 is contained in the separable set Eγ such that x ∈ Eγ. Additionally, for every
pair of indices γ ̸= ν ∈ Γ, we have that d(eγ + eν , 0) =

√
2, and thus the open ball

B(eγ + eν , d(eγ + eν , 0)) in N2 is contained in the union of Eγ ∪ Eν ∪ {eγ + eν},
which is separable as well. The metric space N2 satisfies condition (i) with λ = 1
in Theorem 3.6 and we have that F(N2) is 1-Plichko witnessed by Dirac measures.

Now, for every γ ∈ Γ, given any separable subset Sγ in N2 containing eγ, there
exists ν ∈ Γ such that eγ + eν does not belong to Sγ (since that would contradict
the separability of Sγ). It is simple to verify that the point eγ belongs to the open
ball B(eγ + eν , d(eγ + eν , 0)).

In this last example, we may also intuitively identify separable components
whose union forms the whole complete metric space (each set of the form Eγ or
Eγ,ν for every γ, ν ∈ Γ). However, as we have proven, given a point p in one
component, there may be points in different components closer to p than the value
d(p, 0). Let us formalize this intuition by characterizing metric spaces with the
Plichko property witnessed by Dirac measures in terms of their metric structure:

Definition 3.9. Let M be a complete metric space, and let 0 < r ≤ 1. We
say that a collection S of subsets of M is a separable r-slab decomposition if

(1) For all N ∈ S, the set N \ {0} is an open separable set,
(2) For all N1, N2 ∈ S with N1 ̸= N2, it holds that N1 ∩N2 ⊂ {0}.
(3) For all p ∈ M such that the ball B(p, r · d(p, 0)) is contained in

⋃
N∈S N ,

there exists a countable subfamily Sp ⊂ S such that B(p, r · d(p, 0)) is
contained in

⋃
N∈Sp

N .

We say that a separable r-slab decomposition is total if M =
⋃

N∈S N .

Note that, for a total separable r-slab decomposition, the condition that the
ball B(p, r ·d(p, 0)) is contained in

⋃
N∈S N is satisfied automatically for all p ∈ M .

An important remark is that the geometric condition (i) of Theorem 3.6 triv-
ializes condition (3) of the definition of separable r-slab decomposition, in the
sense that if for some 0 < r ≤ 1 it holds that B(p, r · d(p, 0)) is separable
for all p ∈ M , then any collection satisfying condition (1) satisfies automat-
ically condition (3). Indeed, suppose S is a family of separable sets in such
a metric space, and fix p ∈ M such that B(p, r · d(p, 0)) ⊂

⋃
N∈S N . Since

B(p, r · d(p, 0)) is separable, there exists a sequence {xn}n∈N in B(p, r · d(p, 0))
such that B(p, r · d(p, 0)) ⊂ {xn : n ∈ N}. Consider for each n ∈ N a sequence
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{ynk}k∈N in
⋃

N∈D0
N converging to xn, and choose Nn

k ∈ S such that ynk ∈ Nn
k for

all n, k ∈ N. It follows that B(p, r · d(p, 0)) ⊂
⋃

n,k∈N N
n
k .

Proposition 3.10 ([21]). Let M be a complete metric space and let λ ≥ 1.
The following statements are equivalent:

(i) F(M) is λ-Plichko witnessed by a subset of δ(M).
(ii) For every 0 < r < 1

λ
, given a separable r-slab decomposition S of M there

exists a total separable r-slab decomposition S ′ such that S ⊂ S ′.
(iii) For every 0 < r < 1

λ
, M admits a total separable r-slab decomposition.

Proof. We start by showing that (i) implies (ii). Assume first that F(M) is
λ-Plichko witnessed by a set ∆ ⊂ δ(M). Fix 0 < r < 1

λ
, and fix a separable r-slab

decomposition S. Consider the following family:

Ω :=
{
D = {Ni}i∈I : S ⊂ D, D is a separable r-slab decomposition

}
,

which can be partially ordered by inclusion. We will use Zorn’s Lemma in the
family Ω. Consider {Di}i∈I a totally ordered subset of Ω, and define D0 =

⋃
i∈I Di.

We will show that D0 belongs to Ω. It is clear that D0 contains S, so we only
have to check that D0 is a separable r-slab decomposition. Condition (1) of the
definition of separable r-slab decomposition is direct, while condition (2) follows
from the fact that I is totally ordered. To check condition (3), fix p ∈ M such
that B(p, r · d(p, 0)) ⊂

⋃
N∈D0

N . Using (i) of Theorem 3.6, we have that B(p, r ·
d(p, 0)) is separable, so there exists a sequence {xn}n∈N in B(p, r · d(p, 0)) such
that B(p, r · d(p, 0)) ⊂ {xn : n ∈ N}.

Consider for each n ∈ N a sequence {ynk}k∈N in
⋃

N∈D0
N converging to xn, and

choose Nn
k ∈ D0 such that ynk ∈ Nn

k for all n, k ∈ N. It follows that

B(p, r · d(p, 0)) ⊂
⋃

n,k∈N

Nn
k ,

so D0 is a separable r-slab decomposition. We can apply Zorn’s Lemma to find a
maximal element S ′ ∈ Ω. Let us prove that S ′ is total.

Indeed, suppose by contradiction that there exists a point p ∈ M \ {0} such
that p lays outside the closure of the set

⋃
N∈S′ N . Then, applying condition (i)

of Theorem 3.6 we can find an open and separable set Ap containing p such that
Ap∩N = ∅ for all N ∈ S ′. Consider Sp = S ′∪{Ap∪{0}}. We will show that Sp is
a separable r-slab decomposition, contradicting the maximality of S ′. Conditions
(1) and (2) of the definition of separable r-slab decomposition are clearly satisfied
by the choice of Ap and the fact that S ′ is a separable r-slab decomposition. To
check condition (3), consider any x ∈ M . By (i) of Theorem 3.6 again, we get
that the ball B(x, r · d(x, 0)) is separable. Since N \ {0} is open for all N ∈ S ′, we
obtain that for every x ∈ Ap, B(x, r · d(x, 0)) intersects only countably many sets
of S ′ in a nonempty set. It follows that is a separable r-slab decomposition which
contains S, contradicting the maximality of S ′ in Ω.
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Since S = {0} is trivially a separable r-slab decomposition, it is clear that (ii)
implies (iii).

Finally, to show that (iii) implies (i), suppose there exists a total separable
r-slab decomposition S in M for every 0 < r < 1

λ
. We will prove that condition

(i) in Theorem 3.6 holds for the dense subset
⋃

N∈S N , which is enough to prove
that F(M) is λ-Plichko witnessed by Dirac measures.

Fix 0 < r < 1
λ
, consider a separable set N ∈ S, and fix p ∈ N \ {0}. First,

since S is total, it follows that

B(p, r · d(p, 0)) =
⋃
N∈S

N ∩B(p, r · d(p, 0)).

Next, since S is a separable r-slab decomposition, there exists a countable sub-
family S0 ⊂ S such that

B(p, r · d(p, 0)) =
⋃

N∈S0

N ∩B(p, r · d(p, 0)).

This shows that B(p, r · d(p, 0)) is the closure of a countable union of separable
sets, thus separable itself. □

3.2.2. The Plichko property witnessed by molecules. The case of R-
trees. As we have shown in the previous subsection, restricting the witness of the
Plichko property in Lipschitz-free spaces to a subset of Dirac measures imposes
strong structural and geometric conditions in the underlying metric space. By
(i) in Theorem 3.6, it forces, in particular, that every point except for possibly
one must have a separable neighbourhood. Since non-separable Banach spaces do
not satisfy this condition, we have by Theorem 3.3 that Lipschitz-free spaces of
non-separable Plichko Banach spaces have the Plichko property with witnesses not
contained in the set of Dirac measures.

In this subsection we study the subset of the Lipschitz-free space formed by
molecules, which contains multiples of the Dirac measures. In particular, we show
that the class of R-trees yields Lipschitz-free spaces with the 1-Plichko property
witnessed by a subset of molecules. Let us start by formally defining the concept
of R-tree.

In a metric space M , an arc between two points p, q ∈ M is a continuous
map F : [a, b] → M with a < b, such that F (a) = p and F (b) = q. We also call
the set [p, q]M = F ([a, b]) an arc in M if such a map F exists. A metric space
(T, d) is an R-tree if for every pair of points, x ̸= y ∈ T there exists a unique
arc [x, y]T ⊂ T , and moreover, the arc [x, y]T is isometric to the real line segment
[0, d(x, y)]. Fixing a distinguished point 0 in a R-tree T , called the root of T , we
can define the following partial order in T : Given p, q ∈ T , we say that p ≤ q if
and only if [0, p]T ⊂ [0, q]T . Notice that in this order, every arc of the form [0, p]T
for p ∈ T is totally ordered. We will use the notation [p, q)T to denote the set
[p, q]T \ {q}. The sets (p, q]T and (p, q)T are defined similarly.
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In [14], Godard showed that Lipschitz-free spaces over R-trees are isometrically
isomorphic to a space of the form L1(µ). Since L1(µ) is a 1-Plichko space for
every measure µ, it follows that F(T ) is 1-Plichko for any R-tree. However, it is
straightforward to see that R-trees do not satisfy in general the geometric condition
(i) of Theorem 3.6, and thus the 1-Plichko property of the associated Lipschitz-
free space is not witnessed by Dirac measures. We show in this subsection that
molecules are enough for this purpose.

We will need to describe subsets of R-trees in some level of detail. A subset of
T will be called an R-subtree if it is an R-tree which contains the root 0 ∈ T . We
start with the following observation regarding R-subtrees:

Given an R-subtree A of T , we get that if p ∈ A, then [0, p)T is contained in
A. Indeed, consider a sequence {xn}n∈N in A converging to p. Consider for every
n ∈ N the point

yn = max [0, xn]T ∩ [0, p]T .

Since yn ≤ xn, every point in [xn, yn)T is bigger than yn. Then, we have by choice
of yn that [xn, yn)T does not intersect the path [yn, p]T , so [xn, yn)T ∪ [yn, p]T is
the unique path in T joining xn and p (note that this holds trivially as well if
xn = yn). This implies that yn ∈ [xn, p]T , and that, in particular, the sequence
{yn}n∈N converges to p. Since yn ∈ [0, p]T , it also holds that yn ≤ p for all n ∈ N.
Combining both previous facts we obtain that [0, p)T ⊂

⋃
n∈N[0, yn]T . Finally, since

yn ∈ [0, xn]T and A is an R-subtree of T , we get that yn ∈ A and [0, yn]T ⊂ A. We
conclude that [0, p)T ⊂ A. As an immediate consequence to this observation, we
obtain that if A and B are R-subtrees of an R-tree T , then A ∩B = A ∩B.

We have the following standard result, which we briefly prove for completeness:

Lemma 3.11. Let T be a R-tree. For any closed R-subtree S of T the map
PS : T → S given by PS(t) = maxS ∩ [0, t]T for all t ∈ T , defines a 1-Lipschitz
retraction such that d(S, t) = d(PS(t), t) for all t ∈ T .

Proof. Let S be an R-subtree of T . Note first that PS is well defined, since
the arc [0, t]T is totally ordered and the set S ∩ [0, t]T is closed. Moreover, since S
is an R-subtree containing the root, we have that [0, t]T is contained in S if t ∈ S,
so it follows that PS(t) = t for all t ∈ S.

We will show next that d(S, t) = d(PS(t), t) for all t ∈ T . If t ∈ S then the
equality follows trivially. If t /∈ S, then, for any s ∈ S the set [t, PS(t)]T∪[PS(t), s]T
is the unique arc from t to s in T . By definition of R-tree, we have that d(t, s) =
d(t, PS(t)) + d(PS(t), s), from which it follows that d(t, s) ≥ d(t, PS(t)) for every
s ∈ S. Since PS(t) ∈ S, we obtain that d(S, t) = d(PS(t), t) as desired.

Finally, we show that PS is 1-Lipschitz. Let p, q ∈ T with p ̸= q. By the
previous property of PS, it is clear that d(PS(p), Ps(q)) ≤ d(p, q) if at least one
of p or q belongs to S, so we may assume that neither p nor q belong to S. It
is also trivial that d(PS(p), Ps(q)) ≤ d(p, q) if PS(p) = Ps(q), so we only have to
check this inequality when PS(p) ̸= Ps(q). In this case, we have that [p, PS(p)]T ∪
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[PS(p), PS(q)]T ∪ [PS(q), q]T is the unique arc between p and q in T , which implies
that

d(p, q) = d(p, PS(p)) + d(PS(p), PS(q)) + d(PS(q), q),

from which it follows that d(PS(p), Ps(q)) ≤ d(p, q). □

In the proof of the main theorem of this subsection we will construct another
tree structure in the partially ordered sense: We say that a partially ordered
set (Ω,≤) with a least element 0 ∈ Ω is a partially ordered tree if for any α ∈
Ω, the set [0, α]Ω = {β ∈ Ω: β ≤ α} is well ordered. We say that a partially
ordered tree Ω is complete if every chain has a supremum in Ω. Note that in
a complete partially ordered tree Ω, given two elements α, β ∈ Ω, the element
α ∧ β = sup [0, α]Ω ∩ [0, β]Ω is the infimum of the pair {α, β}.

We have the following useful remark about partially ordered trees:

Lemma 3.12. Let (Ω,≤) be a partially ordered tree. Let α1 ≤ α2 ∈ Ω. If β ∈ Ω
satisfies α1 ≰ β, then α1 ∧ β = α2 ∧ β.

Proof. Since α1 ∧ β ≤ α2 ∧ β and α2 ∧ β ≤ β, it is enough to show that
α2 ∧ β ≤ α1. Suppose otherwise for the sake of contradiction. Since the set
[0, α2]Ω is totally ordered and contains both points α1 and α2 ∧ β, it follows that
α1 ≤ α2 ∧ β. This implies that α1 ≤ β, a contradiction. □

We will construct a partially ordered tree in the set of closed R-subtrees of a
given complete R-tree, partially ordered by the inclusion relation. However, we
will first build partially ordered trees consisting of non-necessarily closed R-trees.
In order to obtain trees of closed R-trees preserving some desired qualities, we will
make use of the following technical lemma:

Lemma 3.13. Let T be a complete R-tree, and let (Ω◦,⊂) be a partially ordered
tree consisting of R-subtrees of T . Suppose that Ω◦ is complete and that for any
S1 ̸= S2 ∈ Ω◦, the set S1 ∩ S2 is a closed R-subtree which belongs to Ω◦. Then the
partially ordered tree (Ω,⊂) defined by

Ω = {S : S ∈ Ω◦}
is a complete partially ordered tree such that for any S1 ̸= S2 ∈ Ω◦, the set S1 ∩S2

is S1 ∩ S2 and belongs to Ω.

Proof. In order to show that (Ω,⊂) is a partially ordered tree, it suffices to
show that for any S ∈ Ω◦, we have [0, S]Ω = {H : H ∈ [0, S)Ω◦} ∪ {S}. Hence, let
H ∈ Ω◦ such that H ⊂ S, with H ̸= S. We have that H ∩ S is closed, and, using
that H and S are R-subtrees, we obtain:

H ⊂ H = H ∩ S = H ∩ S = H ∩ S.

Therefore, H = H and H ∈ [0, S)Ω◦ .
Next, consider an increasing net {Si}i∈I in Ω◦. It holds that

⋃
i∈I Si =

⋃
i∈I Si,

so it follows that Ω is complete. Finally, for any S1, S2 ∈ Ω◦ with S1 ̸= S2
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we have that S1 ̸= S2, so S1 ∩ S2 is closed and belongs to Ω◦. It follows that
S1 ∩ S2 = S1 ∩ S2 = S1 ∩ S2 is in Ω. □

A point l in a rooted R-tree T is called a leave if it is maximal with respect to
the order induced by the tree T . The set of all leaves of an R-tree T will be denoted
by L(T ). It is straightforward to show that T =

⋃
l∈L(T )[0, l]T . We introduce one

final notation before the main result of the subsection: Given a family S of closed
R-subtrees of an R-tree T , and a point p ∈ T , we define:

R (p,S) = sup
S∈S

(S ∩ [0, p]T ) ∈ [0, p]T .

Note that if p < q ∈ T and p /∈
⋃

S∈S S, then R (p,S) = R (q,S).
Theorem 3.14 ([21]). Let T be an R-tree. Then F(T ) is 1-Plichko witnessed

by a pair (∆, N) where ∆ is a linearly dense set of molecules.

Proof. We divide the proof into five steps. Let us briefly and informally
comment on the strategy of the proof: We will construct a transfinite and increas-
ing sequence {Ωα}α<ω1 of partially ordered trees consisting of closed separable
R-subtrees of T , in such a way that the whole R-tree T is covered by the end
of the construction. This partially ordered tree assigns an ordinal height to each
point in the R-tree T : namely, the minimum ordinal α such that the point appears
in a R-subtree of Ωα. We will then consider certain elementary molecules of the
form mp,q ∈ F(M) such that the height of q is the successor of the height of p,
and p, q range over a sufficiently small dense subset of T . The R-tree structure of
T will allow us to extend any Lipschitz function defined on a separable subset to
a function which is constant in all but countably many R-subtrees included in any
Ωα. This will imply that only countably many of the chosen elementary molecules
do not vanish at the constructed extension.

1.- Setup of the inductive construction

Let ω1 be the first uncountable ordinal. We will construct by transfinite induc-
tion an increasing family of partially ordered trees {Ωα}α<ω1 consisting of separable
closed R-trees. Simultaneously, we will construct for each α < ω1 a family of count-
able sets Dα = {DS}S∈Ωα . Let us state precisely the properties of the sets Ωα and
Dα for a given ordinal α < ω1:

(O1) The pair (Ωα,⊂) is a partially ordered tree consisting of separable, closed
R-trees of T .

(O2) Ωα is complete as a partially ordered tree.
(O3) Given S ∈ Ωα and β < α, if there exists H ∈ Ωβ such that S ⊂ H, then

S ∈ Ωβ.
(O4) Given S ̸= H ∈ Ωα, there exists β < α such that S ∩H belongs to Ωβ.
(O5) Maximality of successor generations: If α is the successor of an ordinal β,

for any leaf l ∈ L(T ) \
{⋃

S∈Ωα
S
}

there exists an element S ∈ Ωα such
that S ∩ [0, l]T is not contained in any element of Ωβ.



3.2. WITNESSES OF THE PLICHKO PROPERTY IN LIPSCHITZ-FREE SPACES 31

(D1) For every S ∈ Ωα, the set DS is a countable and dense subset of S.
(D2) Given S1 ⊂ S2 ∈ Ωα, we have that S1 ∩DS2 = DS1 .
To start the inductive construction, simply put Ω0 = {{0}} and D0 = {{0}}.
2.- The limit ordinal case

Let α < ω1 be a limit ordinal, and suppose that we have constructed Ωβ and
Dβ for all ordinals β < α. Put

Ω◦
α =

{⋃
β<α

Sβ : Sβ ∈ Ωβ, Sβ ⊂ Sβ+1 for all β < α

}
and

Ωα =
{
S : S ∈ Ω◦

α

}
.

Since α is a countable ordinal, all R-subtrees in Ω◦
α and Ωα are separable. We will

show that Ω◦
α is a partially ordered tree, and that conditions (O2) and (O4) hold

for Ω◦
α (that is, they hold considering Ω◦

α in place of Ωα). Note that condition (O4)
for Ω◦

α and inductive hypothesis imply in particular that the intersection of two
different elements in Ω◦

α is closed. Then, applying Lemma 3.13 we will have that
Ωα is itself a partially ordered tree satisfying (O1), (O2) and (O4). We will then
check (O3) for Ωα. Since we are at the limit ordinal case, we do not need to show
(O5).

We start by showing (O4) for Ω◦
α. Let S ̸= H ∈ Ω◦

α. We can write S =
⋃

β<α Sβ

and H =
⋃

β<α Hβ, where Sβ, Hβ ∈ Ωβ, and Sβ ⊂ Sβ+1 and Hβ ⊂ Hβ+1 for all
β < α. We may assume without loss of generality that S ⊈ H. Suppose first that
there exists γ0 < α such that H = Hγ0 ∈ Ωγ0 . Since S ⊈ H, there exists β0 such
that Sβ0 is not contained in H. Then, using inductive hypothesis and Lemma 3.12
we have that

S ∩H =
⋃

β0≤β<α

Sβ ∩H = Sβ0 ∩H.

We conclude, using inductive hypothesis, that S ∩H belongs to Ωmax{β0,γ0}, which
proves (O4) in this case.

Suppose now that H does not belong to Ωβ for any β < α. Then, we can find
a sequence of ordinals {βn}n∈N with βn < βn+1 < α for all n ∈ N such that Hβn+1

does not belong to Ωβn , and such that α = supn∈N βn. Since S is not contained
in H, by passing to a subsequence, we can assume as well that Sβn ⊈ Hβn for all
n ∈ N. This implies, by Lemma 3.12 again, that

Sβ ∩Hβn = Sβn ∩Hβn

for all β ≥ βn, which in turn shows that S ∩Hβn = Sβn ∩Hβn for all n ∈ N.
Suppose that Hβn ⊂ Sβn for all n ∈ N. Then, since [0, Sβn+1 ]Ωn+1 is totally

ordered and Sβn , Hβn+1 belong to this initial segment, we have that either Sβn ⊂
Hβn+1 or Hβn+1 ⊂ Sβn . The second possibility implies by (O3) in the inductive
hypothesis that Hβn+1 ∈ Ωβn , which contradicts the choice of Hβn+1 . Therefore,
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we conclude that in this case, Sβn ⊂ Hβn+1 for all n ∈ N. However, this also leads
to a contradiction, since it implies that S ⊂ H.

Hence, there exists n0 ∈ N such that Hβn0
⊈ Sβn0

. By Lemma 3.12, we get that
Sβn0

∩Hβ = Sβn0
∩Hβn0

for βn0 ≤ β < α. Fix now βn0 ≤ β < α. Then, both sets
Sβ ∩Hβ and Sβn0

belong to the initial segment [0, Sβ]Ωβ
, which is totally ordered.

Suppose for the sake of contradiction that Sβn0
⊂ Sβ ∩ Hβ. Then Sβn0

⊂ Hβ,
which implies that Sβn0

is the set Sβn0
∩Hβ = Hβn0

∩Sβn0
. Then Sβn0

is contained
in Hβn0

, contradicting the initial choice of the sequence {βn}n∈N. Hence, we have
that Sβ ∩Hβ is contained in Sβn0

, from which we obtain that

Sβ ∩Hβ = Sβn0
∩Hβ = Sβn0

∩Hβn0
.

Since this holds for βn0 ≤ β < α, we conclude that S ∩H = Sβn0
∩Hβn0

∈ Ωβn0
,

which concludes the proof of (O4) for Ω◦
α.

Finally, we prove that Ω◦
α is a partially ordered tree satisfying also (O2). We

start by showing that for S =
⋃

β<α Sβ ∈ Ω◦
α, the set [0, S]Ω◦

α
is well ordered.

Indeed, note that given H ∈ [0, S]Ω◦
α

with H ̸= S, we have by (O4) that there
exists an ordinal β0 < α such that H ∈ Ωβ0 and Sβ0 ⊈ H. By Lemma 3.12, we
have that Sβ ∩H = Sβ0 ∩H for β0 ≤ β < α. This implies that

H = S ∩H =
⋃
β≥β0

Sβ ∩H = Sβ0 ∩H.

Therefore, H is a subset of Sβ0 . Now, with this reasoning, given two sets H1, H2 ∈
[0, S]Ω◦

α
with H1, H2 ̸= S, we can find an ordinal β0 such that H1, H2 ∈ Ωβ0 and

H1, H2 ⊂ Sβ0 . Since Ωβ0 is a partially ordered tree, we conclude that H1 and H2

are comparable, and thus [0, S]Ω◦
α

is totally ordered. It is also well ordered, since
given a nonempty subset A ⊂ [0, S]Ω◦

α
, we have two possibilities: either A = {S},

or A contains an element H strictly contained in S, In the first case A trivially has
a least element, while in the second case we have, using (O4), that H belongs to
Ωβ0 for some β0 < α. Moreover, it is straightforward to see that a least element of
A∩ [0, H]Ωβ0

in Ωβ0 is also a least element of A in Ω◦
α. The conclusion now follows

by inductive hypothesis.
It only remains to show that Ω◦

α is complete. Let {Si}i∈I be a completely
ordered subset of Ω◦

α. For every i ∈ I, define βi ≤ α as the least ordinal such
that Si ∈ Ωβi

. Suppose first that there exists i0 ∈ I such that βi0 = α, i.e.:
Si0 does not belong to Ωβ for any β < α. Then, since Ω◦

α satisfies (O4), we
obtain that for any i ∈ I such that Si0 ⊂ Si, we necessarily have that Si = Si0 .
Hence,

⋃
i∈I Si = Si0 which belongs to Ω◦

α. Otherwise, suppose that βi < α for all
i ∈ I. If supi∈I βi < α, the result follows from inductive hypothesis. Otherwise,
consider a sequence (in)n∈N such that βin < βin+1 and supn∈N βin = α. Then,
Sin ⊂ Sin+1 , since otherwise we would have that Sin+1 ⊂ Sin , which by (O3)
implies that Sin+1 ∈ Ωβin

, contradicting the minimality of βin+1 . Similarly, given
i ∈ I, there exists n ∈ N such that βi < βin , which implies by the same argument
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that Si ⊂ Sin . We conclude that⋃
i∈I

Si =
⋃
n∈N

Sin ,

which is clearly an element of Ω◦
α.

We have now shown that Ω◦
α is a partially ordered tree satisfying (O2) and

(O4), and thus it follows easily from Lemma 3.13 that Ωα satisfies (O1), (O2) and
(O4). We show now that Ωα also satisfies (O3). Let S =

⋃
β<α Sβ ∈ Ω◦

α, and
suppose there exists β0 < α and H ∈ Ωβ0 such that S ⊂ H. Then Sβ ⊂ H for
all β < α, and by inductive hypothesis on Ωβ we get that Sβ ∈ Ωβ0 for all β < α.
Since Ωβ0 is complete, we obtain that S ∈ Ωβ0 as well.

To finish the limit ordinal case, it only remains to define Dα. We do so by
defining, for every S =

⋃
β<α Sβ ∈ Ω◦

α the set DS =
⋃

β<α DSβ
. Since α is count-

able, it holds that DS is countable for every S ∈ Ω◦
α. Since DSβ

is dense in Sβ,
it also holds that DS is dense in S. Finally, given S =

⋃
β<α Sβ ∈ Ω◦

α, if H is
another element of Ω◦

α with H ⊂ S and H ̸= S, we have by Lemma 3.13 that
S∩H = S∩H = S ∩H = H. In particular, this implies that H is closed and that
H is a subset of S. Arguing as before, we obtain that there exists β0 < α such that
H ∈ Ωβ0 and H ⊂ Sβ0 . The inductive hypothesis now implies that H ∩DSβ

= DH

for all β ≥ β0 and thus H ∩ DS = DH . We have then that conditions (D1) and
(D2) are satisfied, and we conclude the limit ordinal case of the inductive process.

3.- The successor ordinal case

Suppose now that Ωα has been defined for a countable ordinal α. If T =⋃
S∈Ωα

S we stop the inductive process. Otherwise, there exists at least one leaf of
T which is not contained in

⋃
S∈Ωα

. Before defining Ωα+1 we need some previous
definitions and observations.

For every p ∈
⋃

S∈Ωα
S we may define the ordinal height(p) as the least ordinal

β ≤ α such that p ∈ H for some H ∈ Ωβ. Using minimality, such a set is unique
by condition (O4). Hence, we may define H(p) ∈ Ωheight(p) as the (unique) smallest
R-subtree in Ωα containing p. Indeed, observe that given a point p ∈

⋃
S∈Ωα

, for
any element S ∈ Ωα containing p, it holds that H(p) ⊂ S. Otherwise, the set
H(p) ∩ S is strictly contained in H(p), and thus by (O3) and (O4) there exists
an ordinal β0 < height(p) such that H(p) ∩ S ∈ Ωβ0 . Since p ∈ H(P ) ∩ S, this
contradicts the minimality of the ordinal height(p). In particular, this implies that
given p ≤ q ∈

⋃
S∈Ωα

S, it holds that H(p) ⊂ H(q).
Next, consider any leave l ∈ L(T ) such that l /∈

⋃
S∈Ωα

S. Consider R(l,Ωα) =
supS∈Ωα

S ∩ [0, l]T . We will show that R(l,Ωα) ∈
⋃

S∈Ωα
S. To show the existence

of a set in Ωα containing R(l,Ωα), we may assume that R(l,Ωα) ̸= 0 and consider
a strictly increasing sequence {pn}n∈N in [0, R(l,Ωα))T converging to R(l,Ωα). By
definition of R(l,Ωα), height(pn) is at most α and the set H(pn) belongs to Ωα

for every n ∈ N. Since H(pn) is contained in H(pn+1) for all n, using (O2), there
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exists a closed separable R-subtree Sl in Ωα containing
⋃

n∈NH(pn). Such a closed
set must contain the limit point R(l,Ωα).

We can now define Ωα+1. Using Zorn’s Lemma, consider a maximal set of
leaves Lα+1 ⊂ L(T ) \

{⋃
S∈Ωα

S
}

such that for any two different l1, l2 ∈ Lα+1,
there exists S ∈ Ωα such that [0, l1]T ∩ [0, l2]T ⊂ S. Define:

Ωα+1 = Ωα ∪ {H(R(l,Ωα)) ∪ [0, l]T : l ∈ Lα+1} .

Let us check that Ωα+1 satisfies (O1)-(O5). Clearly every set in Ωα+1 is a closed
and separable R-subtree of T . Moreover, given any l ∈ Lα+1, it holds that

[0, H(R(l,Ωα)) ∪ [0, l]T ]Ωα+1
= [0, H(R(l,Ωα))]Ωα

⋃
(H(R(l,Ωα)) ∪ [0, l]T ) .

Indeed, if S ∈ Ωα+1 is a proper subset of H (R(l,Ωα)) ∪ [0, l]T , then necessarily
S belongs to Ωα, since for any l′ ∈ Lα+1 different from l, the segments [0, l]T
and [0, l′]T are not comparable. Then, since neither S nor H(R(l,Ωα)) contain
any point strictly bigger than R(l,Ωα), and H(R(l,Ωα)) contains the segment
[0, R(l,Ωα)]T , we necessarily have that S is contained in H (R(l,Ωα)). We conclude
that every initial segment of Ωα+1 is well ordered, and thus (O1) holds.

To show (O2), consider a totally ordered family {Si}i∈I in Ωα+1. If Si ∈ Ωα

for all i ∈ I, the supremum of {Si}i∈I belongs to Ωα by inductive hypothesis.
Otherwise, there exists i0 ∈ I and l0 ∈ Lα+1 such that Si0 = H (R(l0,Ωα))∪[0, l0]T .
As before, since [0, l0]T and [0, l]T are not comparable for any other leaf l ∈ L(T ),
we must have that Si = Si0 for all Si containing Si0 . It follows that Si0 is the
supremum (it is indeed the maximum) of the family {Si}i∈I and (O2) is proven.

Condition (O3) follows easily from inductive hypothesis and the fact that no
leaf in Lα+1 is contained in any set of Ωα. To show property (O4), consider two
leaves l1 ̸= l2 ∈ Lα+1. On the one hand, we have that

[0, l1]T ∩ [0, l2]T = [0,min{R(l1,Ωα), R(l2,Ωα)}]T ⊂ H (R(l1,Ωα)) ∩H (R(l2,Ωα)) .

Indeed, the first equality follows from the fact that there exists S ∈ Ωα such that
[0, l1]T ∩ [0, l2] ∩ S, while the second is an immediate consequence of the fact that
H (R(l1,Ωα)) ∩H (R(l2,Ωα)) is an R-subtree of T .

On the other hand, by definition of R(l1,Ωα) and R(l2,Ωα) we also have that

H (R(l1,Ωα)) ∩ [0, l2]T ⊂ H (R(l1,Ωα)) ∩H (R(l2,Ωα))

H (R(l2,Ωα)) ∩ [0, l1]T ⊂ H (R(l1,Ωα)) ∩H (R(l2,Ωα))

Therefore, we obtain that

(H (R(l1,Ωα)) ∪ [0, l1]T )∩(H (R(l2,Ωα)) ∪ [0, l2]T ) = H (R(l1,Ωα))∩H (R(l2,Ωα)) ,

which belongs to Ωα by inductive hypothesis.
Finally, we show (O5). By contradiction, suppose there exists a leaf l0 ∈

Lα+1 \
{⋃

S∈Ωα+1
S
}

such that for every element H ∈ Ωα+1 there exists S ∈ Ωα
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such that [0, l0]T ∩ H is contained in S. However, this directly contradicts the
maximality of the family Lα+1.

Once (O1)-(O5) have been shown, consider for every l ∈ Lα+1 a countable
dense set D′

l ⊂ (R(l,Ωα), l]T , and put

DH(R(l,Ωα))∪[0,l]T = DH(R(l,Ωα)) ∪D′
l.

It is straightforward to check that (D1) and (D2) are satisfied. The induction
process is finished.

4.- T is covered by {Ωα}α<ω1

Once Ωα is constructed for every α < ω1, the first thing we check is that for
every point p ∈ T there exists α < ω1 and S ∈ Ωα such that p ∈ S. In order to
do this, it is enough to prove it for any leaf l ∈ L(T ). Suppose for the sake of
contradiction that there exists l0 ∈ L(T ) such that l0 /∈

⋃
S∈Ωα

S for every α < ω1.
We will construct by induction a transfinite sequence {pα}α<ω1 in [0, l0]T such that
for every α < ω1

(P1) pα ∈
⋃

S∈Ωα
S

(P2) For all β < α we have that pβ < pα.

Put p0 = 0. Suppose pβ has been defined for all β smaller than a limit ordinal α.
Define pα = sup{pβ}. Since pβ is in [0, l0]T for all β < α, we have that pα ∈ [0, l0]T .
Condition (P1) is satisfied since Ωα is complete as a partially ordered tree. Finally,
using inductive hypothesis, condition (P2) holds since pα ≥ pβ+1 > pβ for all β < α.

Suppose now that pα has been defined for a countable ordinal α. Since l0 /∈⋃
S∈Ωα+1

S, condition (O5) ensures that there exists an element S ∈ Ωα+1 such that
[0, l0]T ∩ S is not contained in any element of Ωα. Since H(pα) ∈ Ωα and contains
the segment [0, pα]T , this implies that there exists an element pα+1 ∈ [0, l0]T ∩ S
such that pα+1 > pα. Conditions (P1) and (P2) are easily seen to be satisfied in
this case, and the inductive process is finished.

Now, the set {pα}α<ω1 is an strictly increasing uncountable chain in the sep-
arable set [0, l0]T , a contradiction. Indeed, since the metric topology in [0, l0]T is
the order topology, with an strictly increasing uncountable chain we would be able
to define uncountable family of pairwise disjoint nonempty sets in [0, l0]T .

Therefore, we have that T =
⋃

α<ω1

⋃
S∈Ωα

S. This implies that the set D =⋃
α<ω1

⋃
S∈Ωα

DS is dense in T . Moreover, for every S,H ∈
⋃

α<ω1
Ωα, we have by

(D2) that (H ∩ S) ∩DS = DH∩S, so we obtain that DH∩S is contained in DS. It
follows that for every S ∈

⋃
α<ω1

Ωα we have D ∩ S = DS, which is a countable
dense set in S.

Note as well that since T =
⋃

α<ω1

⋃
S∈Ωα

S, we can define height(p) and H(p) ∈
Ωheight(p) for every point p ∈ T .

5.- The witnessing set of molecules.
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We can now define the subset of the molecules of F(T ) that witnesses the
1-Plichko property. Define:

∆ =
{
mR(p,Ωα),p ∈ F(T ) : p ∈ D and height(p) = α + 1

}
We will show that ∆ is linearly dense and that the set of countably supported
functions on ∆ is 1-norming.

In order to show that ∆ is linearly dense in F(M), it is enough to prove that
δ(p) belongs to the closed linear span of ∆ for every p ∈ T . We prove it by
induction on the height of p ∈ T .

If height(p) = 0, then δ(p) = 0, which trivially belongs to the closed linear span
of ∆. Suppose first that the closed linear span of ∆ contains δ(q) for all q ∈ T
with height(q) < α, for some limit ordinal α < ω1. Then, by definition of Ωα,
there exists for every β < α a set Sβ ∈ Ωβ such that H(p) =

⋃
β<α Sβ. Then δ(p)

is the limit of a sequence {δ(qβ)}β<α such that qβ ∈ Sβ for all β < α. It follows by
inductive hypothesis that δ(p) belongs to the closed linear span of ∆.

Suppose now that height(p) = α+ 1 and that δ(q) ∈ span∆ for all q ∈ T with
height(q) ≤ α. We may assume that p ∈ D. Note that R(p,Ωα) is a point of
height less or equal than α, and thus δ (R(p,Ωα). Since mR(p,Ωα),p belongs to ∆, it
follows that:

δ(p) = δ (R(p,Ωα)− d (R(p,Ωα), p)mR(p,Ωα),p ∈ span∆.

We conclude that F(M) = span∆.
To finish the proof, we show that N = {f ∈ Lip0(M) : f is countably supported in ∆}

is 1-norming. In order to prove this, we will show that any 1-Lipschitz function
defined on a separable subset of T and which vanishes at 0 can be extended to
a 1-Lipschitz function defined in the whole R-tree T and belonging to N . Using
Kalton’s Lemma 2.19, this will yield that N is 1-norming.

Therefore, fix a separable subset A of T containing 0, and fix a 1-Lipschitz
function g ∈ Lip0(A). Since A is separable, there exists a countable ordinal α and
a family S ⊂ Ωα of closed separable R-subtrees such that A ⊂

⋃
S∈S S.

Using McShane’s Theorem 2.13, we can extend g to a 1-Lipschitz function
ĝ ∈ Lip0

(⋃
S∈S S

)
. Finally, we define the function f ∈ Lip0(T ) by

f(p) =

{
ĝ(p), if p ∈

⋃
S∈S S

ĝ (R (p,S)) , otherwise.

Note that since
⋃

S∈S S is a closed R-subtree of T , we can write f as ĝ ◦ RS ,
where RS is the 1-Lipschitz retraction associated to

⋃
S∈S S described in Lemma

3.11. This yields immediately that f is 1-Lipschitz.
Now, consider a point p ∈ D with height(p) = β+1 for some countable ordinal

β. We will show that if ⟨mR(p,Ωβ),p, f⟩ ≠ 0, then p ∈
⋃

S∈S S. Since D ∩
⋃

S∈S S is
countable, this will show that f ∈ N , which finishes the proof.
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Suppose then that p /∈
⋃

S∈S S. If R (p,Ωβ) also does not belong to
⋃

S∈S S,
then, since R (p, ,Ωβ) ≤ p, we obtain that R (R (p,S) ,Ωβ) = R (p,S), and it
follows that ⟨mR(p,Ωβ),p, f⟩ = 0 by definition of f .

Otherwise, suppose that R (p,Ωβ) is contained in
⋃

S∈S S. We will show that
R (p,Ωβ) = R (p,S). Since R (p,Ωβ) < p and it belongs to

⋃
S∈S S, it holds

that R (p,S) ≥ R (p,Ωβ). Suppose for the sake of contradiction that R (p,S) >

R (p,Ωβ). By definition of R (p,S), and since p /∈
⋃

S∈S S, there exists S0 ∈ S ⊂ Ωα

such that R (p,Ωβ) < max{S0 ∩ [0, p]T} < p. Consider the R-subtree H(p) ∩ S0,
which contains the point max{S0 ∩ [0, p]T}. Since the height of p is β + 1, we
have that H(p) ∈ Ωβ+1. Now, using (O3) and (O4), and the fact that H(p) ∩ S0

is strictly contained in H(p), we deduce that H(p) ∩ S0 is in Ωβ. However, this
implies that R(p,Ωβ) ≥ max{S0 ∩ [0, p]T}, which leads to a contradiction. We
conclude that f ∈ N and the proof is finished.

□

3.3. Lipschitz analogues to Complementation Properties

We have now studied Lipschitz retractional skeletons as the natural extension
of the concept of projectional skeletons to the metric space setting. In this section,
we continue by analyzing the situation that arises when considering the non-linear
analogues to the classical Complementation Properties we discussed in Chapter 2.

Definition 3.15. Given α, β two cardinal numbers with α ≤ β, we say that a
metric space M has the (α, β) Lipschitz Retraction Property (Lipschitz RP(α, β)
for short), if for every closed subset N ⊂ M with dens(N) = α there exists another
subset S that contains N , such that dens(S) ≤ β and S is a Lipschitz retract of M .
We say that M has the Separable Lipschitz Retraction Property (Lipschitz SRP)
if it has the Lipschitz RP(ℵ0,ℵ0).

Analogously to the linear setting, if a metric space M admits a Lipschitz re-
tractional skeleton, then M has the Lipschitz SRP (a similar proof to Proposition
2.6 works in the non-linear case). Hence, the Lipschitz SRP is a useful tool to pro-
duce counterexamples of metric spaces which do not admit Lipschitz retractional
skeletons. We will expand on this approach in Chapter 4, where we construct
metric spaces failing the Lipschitz RP(Λ,Λ) for every infinite cardinal Λ.

Additionally, Proposition 2.16 readily implies that if M has the Lipschitz
RP(α, β), then F(M) has the CP(α, β) for any two cardinal numbers α ≤ β.
It is an open question whether every Lipschitz-free has the SCP.

For now, let us give results which describe the situation in the class of C(K)
spaces for a compact Hausdorff topological space K. Recall from Chapter 2 that, as
shown in [35], under the Generalized Continuum Hypothesis, for any cardinality Λ
there exists a compact Hausdorff space K of such that C(K) is an indecomposable
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space with density character Λ. However, in the non-linear setting, we have that
these spaces have a much richer Lipschitz retractional structure:

Theorem 3.16 ([25]). The Banach space C(K) of real continuous functions has
the Lipschitz SRP for any compact Hausdorff space K. Therefore, the Lipschitz-
free space of any C(K) space has the SCP.

Proof. Let Y be a separable linear subspace of C(K). Then, there exists a
separable linear subspace of C(K) that contains Y and is isometric to a C(K ′)
space for some compact metric space K ′ (see Exercise 5.88 in [12]). By Theorem
3.5 in [29], Y is an absolute 2-Lipschitz retract, so in particular it is 2-Lipschitz
retract of C(K), which concludes the proof. □

In the previous proof, we used that C(K) space are absolute 2-Lipschitz re-
tracts, where the constant 2 is optimal for general C(K) spaces. This way we
obtained a slightly stronger result: every separable subspace of a C(K) space is
contained in a separable 2-Lipschitz retract of C(K). We briefly show that the
constant 2 is also optimal for the Lipschitz SRP in ℓ∞. The proof of the follow-
ing result is based on the classical proof that shows that c0 is not better than a
2-Lipschitz retract of ℓ∞.

Theorem 3.17 ([21]). Let S be a separable subset of ℓ∞ containing c0, and
suppose there exists a Lipschitz retraction R : ℓ∞ → S. Then ∥R∥Lip ≥ 2.

Proof. Let S be a separable subset of ℓ∞ containing c0. We can write S =
{xn = (xn(k))k∈N ∈ ℓ∞ : n ∈ N}. Consider the sequence z ∈ ℓ∞ given by

z(k) =

{
−sign(xk(k)) for k ∈ N with xk(k) ̸= 0

1 for k ∈ N with xk(k) = 0.

For every k ∈ N, let Pk : ℓ∞ → ℓ∞ be the linear projection given by (Pkx) (i) = x(i)
if i ≤ k and (Pkx) (i) = 0 if i > k for every x ∈ ℓ∞. With this notation, define for
every k ∈ N the sequence yk = 2Pk(z), which belongs to S since S contains c0. It
is straightforward to check that ∥z − yk∥∞ = 1 for all k ∈ N.

For every n ∈ N and every k ≥ n, it holds that ∥xn − yk∥∞ ≥ 2, since
|yk(n)| = 2 and the n-th coordinate of xn is 0 or has the opposite sign. It follows
that lim supk→+∞ ∥x− yk∥∞ ≥ 2 for every x ∈ S. Therefore:

2 ≤ lim sup
k→+∞

∥R(z)− yk∥∞ ≤ lim sup
k→+∞

∥R∥Lip∥z − yk∥∞ = ∥R∥Lip,

and the result is proven. □

Using the previous result and the universal property of Lipschitz-free spaces,
we obtain the following corollary:

Corollary 3.18 ([21]). Let 1 ≤ r < 2. Then F(ℓ∞) is not r-Plichko.
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Proof. Suppose F(ℓ∞) is r-Plichko for some r ≥ 1. By Theorem 2.4 and
Proposition 2.18, there exists an r-projectional skeleton {Ps}s∈Γ and a family of
separable subspaces {Ys}s∈Γ of ℓ∞ such that Ps(F(ℓ∞)) = F(Ys) for all s ∈ Γ.
Using properties (iii) and (iv) of the definition of projectional skeletons, we have
that there exists s0 ∈ Γ such that c0 ⊂ Ys0 . Write βYs0

: F(Ys0) → Ys0 to denote
the extension of the identity map in Ys0 to the Lipschitz-free space, which exists
by Theorem 2.17. The map βYs0

◦ Ps0 ◦ δ : ℓ∞ → Ys0 is a Lipschitz retraction onto
Ys0 with Lipschitz constant less than or equal to r. By Theorem 3.17 we obtain
that r ≥ 2. □

3.4. Open problems

In the next chapter we will construct examples of complete metric spaces failing
the Lipschitz RP(Λ,Λ) for every infinite cardinal Λ. However, as we mentioned
throughout the previous discussion, there are currently no examples of Banach
spaces known to fail any of these properties.

Problem 3.19. Given an infinite cardinal Λ, does there exist a Banach space
failing the Lipschitz RP(Λ,Λ)? In particular, does there exist a Banach space
without the Lipschitz SRP?

The separable case is especially interesting, since the existence of a Banach
space without the Lipschitz SRP would imply that there exists a separable Banach
space which is not a Lipschitz retract of its bidual, giving a complete answer to
the Lindenstrauss conjecture discussed in Chapter 2. In Chapter 5 we introduce
the tools to derive the connection between these two questions. In particular, we
explicitly obtain this link in the discussion after Problem 5.9.

Regarding the linear Complementation Properties in Lipschitz-free spaces, no
counterexample is known at all:

Problem 3.20. Given an infinite cardinal Λ, does there exist a complete metric
space whose Lipschitz-free space fails the CP(Λ,Λ)? In particular, does there exist
a complete metric space whose Lipschitz-free space fails the SCP?

For the separable case in both Problems 3.19 and 3.20, a slightly easier ques-
tion is to find a Banach space without a Lipschitz retractional skeleton, and a
complete metric space whose Lipschitz-free space does not have a projectional
skeleton, respectively. However, it seems that the most natural strategy to find
such counterexamples is through the Lipschitz SRP and the SCP.

We have characterized the Plichko property witnessed by Dirac measures in
Lipschitz-free spaces. It would be interesting to strengthen this characterization:

Problem 3.21. Characterize the Plichko property witnessed by molecules in
Lipschitz-free spaces.

A particularly relevant case is that of the Lipschitz-free space of Plichko Banach
space:
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Problem 3.22. Let X be a Banach space with the Plichko property. Is the
Plichko property in F(X) witnessed by molecules?



CHAPTER 4

Pathological metric spaces

In this chapter we present the construction of two classes of complete metric
spaces which lack a rich structure of Lipschitz retracts of a prescribed density
character; namely, we construct for every infinite cardinal Λ a complete metric
space failing the Lipschitz RP(Λ,Λ). For the Lipschitz SRP (that is, when Λ = ℵ0),
it is actually possible to obtain a complete metric space in which every separable
set with at least two points fails to be a Lipschitz retract.

4.1. Failing the Lipschitz SRP: The skein space.

As mentioned above, the goal of this section is to prove the following result:

Theorem 4.1 ([24]). There exists a complete metric space M of cardinality
continuum such that every separable subset of M with at least two points is not a
Lipschitz retract of M . In particular, M fails the Lipschitz SRP.

In order to obtain a metric space with this property, we will construct for each
ordinal α a complete metric space Sk(α), called the skein space of order α. We will
show that if α is an ordinal with uncountable cofinality, the space Sk(α) satisfies
Theorem 4.1.

The construction of the skein spaces is self-contained though technical. It is di-
vided into three subsections, going from subsection 4.1.1 to 4.1.3. In 4.1.1 we define
the basic pieces of the construction, called threads. These threads are isometric
to subsets of one-dimensional circles with the distance given by the arc-length.
We will define uncountable families of totally disconnected threads which satisfy
certain metric properties related to Lipschitz functions between these threads (see
Theorem 4.9).

In 4.1.2 we will use these uncountable families of threads to define the building
blocks of the final metric space. These building blocks are called threading spaces,
and each block is built from one of the uncountable families defined in 4.1.1.
All threads that form each one of these threading spaces are attached to two
anchor points {0, 1} in the threading space, and every one of these threading
spaces satisfies the weaker property that every separable subset containing both
anchor points is not a Lipschitz retraction of the whole threading space.

In subsection 4.1.3 we finish by using these threading spaces to construct the
final metric space via a transfinite inductive process of length ω1. We call the
resulting complete metric space the skein space. Very informally, the skein space

41
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satisfies that any pair of points behaves as the pair of anchor points of one of the
threading spaces constructed in section 4.1.2. This way we have that any separable
space with more than one point contains two anchor points of a threading space,
and hence it is not a Lipschitz retract of the whole skein.

4.1.1. Construction of the fundamental pieces: Threads with infin-
itely many gaps.

4.1.1.1. Threads. Let l, a > 0 with a ≤ l. We say that a metric space (T, dl,a)
is an R-thread of length l and width a if T is a closed subset of the real segment
[0, l] containing 0 and l, and the metric dl,a is defined by

dl,a(x, y) = min{|x− y|, x+ (l − y) + a, y + (l − x) + a}
for every x, y ∈ T . Our main example will be constructed inductively by repeated
adjoining of metric spaces, isometric to a thread described above, to the previous
space. In this sense, the adjoined new pieces are certainly meant to be distinct
sets. However, keeping in mind this feature, there is no danger of confusion if we
simply call any metric space T a thread of length l and width a if T is isometric to
an R-thread of length l and width a as defined above (and work with it using the
above description).

Let us mention some basic facts about threads. First, notice that every thread
is a compact metric space. Also, we may define in every thread (T, dl,a) the natural
order and the Lebesgue measure since the set T is a subset of the real line. Then,
for every x, y ∈ T with x ≤ y we define the set [x, y]T ⊂ T as [x, y] ∩ T , where
[x, y] is the usual real segment. The set [x, y]T with the inherited metric is again
a thread.

If T is a thread of length l, we say that a closed subset I of T is an extended
interval of T if I is of the form [p, q]T = [p, q] ∩ T or [0, p]T ∪ [q, l]T for a pair of
points p, q ∈ T with p < q. In either case, the points p and q are called the extreme
points of I. See Figure 1 for a representation of a thread and the two kinds of
extended intervals it contains.

Notice as well that in a thread of length l and width a, the distance between
the extreme points 0 and l is exactly the width a. We can also realize that every
thread is locally isometric to T with the usual metric inherited from the real line;
indeed, if the distance between two points of T is less than the width of the thread,
then this distance coincides with the usual metric. As a consequence, we have that
if the length and the width of a thread coincide, then the thread is isometric to a
subset of the real segment [0, l].

The way we compute the distance in threads implies that Lipschitz functions
from threads into other metric spaces are similar to Lipschitz functions from in-
tervals. Specifically we have the following result:

Proposition 4.2. Let T be a thread of length lT and width aT , let M be a
metric space, and let K ≥ 0. A function F : T → M is K-Lipschitz if and only if
d(F (0), F (lT )) ≤ KaT , and for every x, y ∈ T we have d

(
F (x), F (y)

)
≤ K|y− x|.
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Figure 1. Thread of length l and width a. The red and blue lines
correspond to the two kinds of extended intervals possible in a
thread.

Proof. Evidently, if F is K-Lipschitz, we directly obtain that d(F (0), F (lT )) ≤
KaT and the inequality:

d
(
F (x), F (y)

)
≤ Kd(x, y) ≤ K|y − x|.

Suppose now that the inequality is true for every pair of points in T , and take
x ≤ y ∈ T . If d(x, y) = y − x, then we obtain directly that d

(
F (x), F (y)

)
≤

Kd(x, y). Otherwise, we have that d(x, y) = x+ aT + (lT − y). Therefore,

d
(
F (x), F (y)

)
≤ d
(
F (x), F (0)

)
+ d
(
F (0), F (lT )

)
+ d
(
F (lT ), F (y)

)
≤ K(|x|+ aT + |lT − y|) = Kd(x, y).

Hence, F is K-Lipschitz. □

4.1.1.2. Lipschitz functions between threads with gaps. In a thread T , we say
that a non-trivial open interval (x, y) ⊂ R is a gap of T if x, y ∈ T and (x, y)∩T =
∅. The points x, y of a gap C = (x, y) in a thread T are called the endpoints of
C, and the value d(x, y) is the length of the gap. It is readily seen that a closed
subset of R can have at most countably many distinct gaps. Hence, given any
complete thread T ⊂ R, we may consider the sequence {CT

k }k∈N of gaps in T .
Moreover, since every thread T is bounded, its sequence of gaps can be ordered so
that length(CT

k+1) ≤ length(CT
k ) for all k ∈ N.

We are going to study in detail the behavior of Lipschitz maps between threads
with infinitely many gaps. We have the following property.

Lemma 4.3. Let T and S be two threads of length lT , lS and width aT , aS re-
spectively. Let K ≥ 1, and suppose that there is no gap in T with length greater
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than or equal to aS/K. Then for every K-Lipschitz function F : T → S we have
that

|F (q)− F (p)| ≤ K|q − p|, for all p, q ∈ T.

Proof. For any pair of points p, q ∈ T with p ≤ q there exists an increasing
finite sequence (xk)

n
k=1 ⊂ T with x1 = p and xn = q such that d(xk, xk+1) < aS/K

for all 1 ≤ k ≤ n− 1. This implies that d
(
F (xk+1), F (xk)

)
=
∣∣F (xk+1)− F (xk)

∣∣.
Hence, we have

|F (q)− F (p)| ≤
n∑

k=1

∣∣F (xk+1)− F (xk)
∣∣ = n∑

k=1

d
(
F (xk+1), F (xk)

)
≤ K

n∑
k=1

d(xk+1, xk) ≤ K

n∑
k=1

(xk+1 − xk) = K(q − p).

The result is proven.
□

Next, we are going to prove an elementary proposition which will allow us to
assume without loss of generality that the Lipschitz maps we consider are non-
decreasing.

Proposition 4.4. Let K ≥ 1. Let T, S be two threads of length lT , lS and
width aT , aS respectively, and let F : T → S be a K-Lipschitz function such that
F (0) = 0 and F (lT ) = lS. Then there exists a non-decreasing Lipschitz function
F̂ : T → S with ∥F̂∥Lip ≤ ∥F∥Lip such that F̂ (0) = 0 and F̂ (lT ) = lS.

Proof. Put K = ∥F∥Lip. Notice that if T has a gap (p, q) of length greater
than or equal to aS/K, then the result follows directly putting F̂ (x) = 0 if x ≤ p,
and F̂ (x) = lS if x ≥ q. Suppose then that there are no gaps in T with length
greater than or equal to aS/K.

Now define F̂ : T → S by

F̂ (x) = max
y≤x

F (y).

Clearly, F̂ is non-decreasing with F ≤ F̂ , F̂ (0) = 0 and F̂ (lT ) = lS. It only
remains to see that ∥F̂∥Lip ≤ K. Using Proposition 4.2, we only need to prove
that given p, q ∈ T with p ≤ q, we have

(4.1) d
(
F̂ (q), F̂ (p)

)
≤ K(q − p).

Observe that F̂ (q) = F (z) for some z ≤ q. If z ≤ p we necessarily have that
F̂ (q) = F̂ (p) and the equation is trivially satisfied. Otherwise, using Lemma 4.3
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with p ≤ z yields

d
(
F̂ (q), F̂ (p)

)
≤ F̂ (q)− F̂ (p) = F (z)− F̂ (p)

≤ F (z)− F (p) ≤ K(z − p) ≤ K(q − p),

and equation (4.1) is proven.
We conclude that ∥F̂∥Lip ≤ K and the result is proven. □

We can also use Lemma 4.3 to prove a similar result to the one above.

Proposition 4.5. Let T and S be two threads with length lT and lS, and width
aT and aS respectively. Let K ≥ 1. Suppose there exists a K-Lipschitz function
F : T → S such that F (0) = A and F (lT ) = B, for two points A,B ∈ S with
A < B. If T does not have any gap of length greater than or equal to aS/K, then
the function F̂ : T → [A,B]S defined by

F̂ (x) =


A, if F (x) ≤ A

F (x), if F (x) ∈ [A,B]S
B, if F (x) ≥ B

is K-Lipschitz as well.

Proof. As before, by Proposition 4.2 we only need to check that for every
p, q ∈ T with p ≤ q, we have:

d
(
F̂ (q), F̂ (p)

)
≤ K(q − p).

We will only prove the case when F (p) ≤ A and F (q) ∈ [A,B]S, since the remaining
possibilities are shown similarly. By Lemma 4.3, we have in this case that

d
(
F̂ (p), F̂ (q)

)
= d
(
A,F (q)

)
≤ F (q)− A

≤ F (q)− F (p) ≤ K(q − p).

We conclude that ∥F̂∥Lip ≤ K.
□

Let us now give some definitions and prove some technical results which will
be heavily used in the proof of the main theorem of the section. Let T and S
be two threads, and suppose there is a Lipschitz function F : T → S which is
non-decreasing. We say that a gap (pT , qT ) in T jumps over a gap (pS, qS) in S
with respect to F if F (pT ) ≤ pS and F (qT ) ≥ qS (see Figure 2).

The first lemma we prove says intuitively that if we have a non-decreasing
Lipschitz function F between two threads T and S that fixes the extreme points
of the threads, then every gap in S must be jumped by a gap in T with respect
to F . Although this result is fairly intuitive, we include the (simple) proof for
completeness.
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p
q

0 lT

aT

F (p)
F (q)

0 lS

aS

F

x y

Figure 2. The gap (p, q) jumps over (x, y) with respect to F .

Lemma 4.6. Let T and S be two threads of length lT and lS respectively. Sup-
pose that there is a non-decreasing Lipschitz function F : T → S such that F (0) = 0
and F (lT ) = lS. Let CS be a gap in S. Then there exists a gap in T that jumps
over CS with respect to F .

Proof. Define pS, qS ∈ S such that CS = (pS, qS). Consider the points:

e− = max{F (x) ∈ S : x ∈ T, F (x) ≤ pS},
e+ = min{F (y) ∈ S : y ∈ T, F (y) ≥ qS}.

These minimum and maximum values always exist since we have that F (0) = 0
and F (lT ) = lS, and T is compact. Hence, we can find

x− = max{x ∈ T : F (x) = e−},
y+ = min{y ∈ T : F (y) = e+}.

Since F is non-decreasing and e− < e+, we have that x− < y+ and (x−, y+)T =
∅. Moreover, both x− and y+ belong to T again by compactness, so (x−, y+) is a
gap in T . The gap (x−, y+) jumps over (pS, qS) with respect to F . □

The second lemma we prove can also be easily deduced and is intuitively clear.
It shows that if a small enough gap (in a sense that is made explicit in the state-
ment of the lemma) CT in a thread T jumps over several gaps in a thread S
simultaneously with respect to a Lipschitz function F , then the length of CT must
be bigger than the length of the smallest subinterval of [0, 1] that contains all the
gaps CT jumps over, divided by the Lipschitz constant of F .

Lemma 4.7. Let K > 1, and let T and S be two threads of length lT and lS
respectively. Denote by aS the width of S. Suppose that there is a non-decreasing
Lipschitz function F : T → S with ∥F∥Lip = K such that F (0) = 0 and F (lT ) = lS.
Let CT be a gap in T such that length(CT ) < aS/K, and let

(
(xj, yj)

)k
j=1

be a finite
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collection of different gaps in S. If CT jumps over (xj, yj) with respect to F for
all 1 ≤ j ≤ k, then

K · length(CT ) ≥ max
j ̸=j′

|yj − xj′|.

Proof. Put CT = (p, q) with p, q ∈ T . Since CT jumps over (xj, yj) for all
1 ≤ j ≤ k, we have that F (p) ≤ xj and F (q) ≥ yj. Hence, we have that

F (q)− F (p) ≥ max
j ̸=j′

|yj − xj′|.

Since d(p, q) < aS/K, when computing the distance between F (p) and F (q) in
the thread S, we necessarily have that d

(
F (p), F (q)

)
= F (q) − F (p). Therefore,

applying that F is K-Lipschitz we obtain:

max
j ̸=j′

|yj − xj′ | ≤ d(F (q), F (p)) ≤ K · length(CT ),

and the result is proven. □

We are going to define also a particular kind of intervals which will be useful
in the proof of Theorem 4.9. Let (a, b) ⊂ [0, 1] be a nontrivial open interval, and
let r > 0. We define the sweeping of [a, b] by r as the interval

Dr(a, b) = (b− r, a+ r).

Notice that if r ≤ (b − a)/2, then Dr(a, b) = ∅. We can prove two simple
properties about this concept.

Proposition 4.8. The following properties are satisfied:
(1) Let (a, b) ⊂ [0, 1] be a nontrivial open interval, and let r > 0. Then the

Lebesgue measure of the sweeping Dr(a, b) is less than 2r.
(2) Let r > 0, and let T and S be threads of length lT and lS respectively. Let

F : T → S be a non-decreasing K-Lipschitz map such that F (0) = 0 and
F (lT ) = lS. Suppose that there is a gap CT in T such that length(CT ) <
aS/K, and such that CT jumps over two gaps CS

1 , C
S
2 in S with respect to

F . Moreover, suppose that CS
2 ⊈ Dr(C

S
1 ). Then K · length(CT ) > r.

Proof. Statement (1) is easy to see. For statement (2), put CS
1 = (x1, y1), C

S
2 =

(x2, y2) with x1, x2, y1, y2 ∈ S. Notice that if CS
2 ⊈ Dr(C

S
1 ), this means that either

y1 − r − x2 > 0, or y2 − x1 − r > 0. In any case, we obtain that

max{|y1 − x2|, |y2 − x1|} > r,

Now, since CT jumps over CS
1 and CS

2 simultaneously and length(CT ) < aS/K,
the result follows from Lemma 4.7. □

In figure 3 we have a representation of the situation in (2) of the previous
result.

Finally, we are able to prove the main result of the first part of the process:
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x1 y1

0 l

a

r

x2

y2

F (p)

F (q)

y1 − r x1 + r

Figure 3. The gap CT = (p, q) jumps over (x1, y1) and (x2, y2),
and (x2, y2) ⊈ Dr

(
(x1, y1)

)
= (y1−r, x1+r). Hence, K ·length(CT ) ≥

r.

Theorem 4.9. Let K ≥ 1, let {Sn}n∈N be a countable family of threads of
length ln and width an respectively for each n ∈ N, and let ε > 0 be such that for
every n ∈ N:

• The Lebesgue measure of Sn is bigger than ε.
• If I is an open interval such that I ∩ Sn is nonempty, then there exist

infinitely many gaps of Sn contained in I.

Then, there exists a decreasing sequence γ∗ = (γ∗
k)k∈N of positive real numbers

with the following property:
Let 1 ≤ K ′ ≤ K, let T be a thread of length lT , and let {CT

k }k∈N be the sequence
of gaps of T ordered decreasingly according to their length. If length(CT

k ) ≤ γ∗
k for

all k ∈ N, then for every n ∈ N such that length(CT
1 ) < an/K

′ there does not exist
any K ′-Lipschitz function T → Sn such that F (0) = 0 and F (lT ) = ln.

Proof. For each n ∈ N, let {Gn
k}k∈N be the sequence of gaps of Sn ordered

decreasingly according to their length, and put αn
k = length(Gn

k). Then αn =
(αn

k)k∈N is the decreasing sequence of lengths of the gaps in the thread Sn for each
n ∈ N.

We are going to construct inductively by a diagonal method the sequence γ∗ =
(γ∗

k)k∈N with the following properties:

(1) γ∗
k < 2−(k+1)K−1ε, for all k ∈ N.

(2) Let 1 ≤ K ′ ≤ K, let T be a thread, and let {CT
i }i∈N be the sequence of

gaps of T ordered decreasingly according to their length. If length(CT
i ) ≤

γ∗
i for all i ≤ k, then for every i ∈ N with i ≤ k such that length(CT

1 ) <
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ai/K there is no Lipschitz map F : T → Si with ∥F∥Lip ≤ K ′ such that
F (0) = 0 and F (lT ) = li.

For k = 1, define γ∗
1 such that 0 < γ∗

1 < min{2−2K−1ε,K−1α1
1}. Property (1)

above is satisfied. Let 1 ≤ K ′ ≤ K, let T be a thread, let {CT
i }i∈N be the sequence

of its gaps in decreasing length order, and suppose that length(CT
1 ) ≤ γ∗

1 . Suppose
by contradiction that length(CT

1 ) < a1/K
′, and that there exists a Lipschitz map

F : T → S1 with ∥F∥Lip ≤ K ′ and F (0) = 0 and F (lT ) = l1. We assume F to be
non-decreasing by Proposition 4.4.

The thread S1 has the gap G1
1 of length α1

1. By Lemma 4.6, there exists
i ∈ N such that the gap CT

i in T jumps over G1
1. Then, by Lemma 4.7, since

length(CT
i ) ≤ length(CT

1 ) < a1/K
′, we have that K ′ · length(CT

i ) > α1
1. However,

we know that
K ′ · length(CT

i ) ≤ K · length(CT
1 ) ≤ Kγ∗

1 < α1
1,

a contradiction. The first step of the induction is done.
Suppose we have selected {γ∗

i }ki=1 satisfying the desired properties for k ∈
N. Before continuing with the proof, let us informally give some intuition of
the technical argument that follows. We want to define the next element in the
sequence (that is, γ∗

k+1) small enough so that any thread T with gaps smaller than
the first k + 1 elements of γ∗, and smaller than ak+1, cannot be mapped with a
K-Lipschitz function that preserves the extremes into the thread Sk+1. However,
since the first k elements of γ∗ are already set and do not depend on the next
thread Sk+1, the first k gaps in T could jump over many gaps in Sk+1, and in
many different ways. Nevertheless, as we are going to see, the fact that Sk+1 is of
large enough measure and contains infinitely many gaps in each intersecting open
interval, and the way in which we chose the first k elements in γ∗, ensures that
there will always be infinitely many gaps in Sk+1 that cannot be jumped over in
any way with the first k gaps of T with any suitable K-Lipschitz function. Hence,
we will be able to define γk+1 small enough so that the biggest of these “unjumped"
gaps in Sk+1 cannot be jumped over either by the remaining gaps of T . We just
need to account for all the possibilities in which the first k gaps of T might behave
under a K-Lipschitz function.

Let σ = {ji}ki=1 be an ordering of the sequence {1, . . . , k}. For convenience of
the notation, put j0 = 0, and nj0 = 1, and define

D(j0,j1) = DKγ∗
j1
(Gk+1

nj0
).

D(j0,j1) is the sweeping of Gk+1
nj0

, the biggest gap of Sk+1, by Kγ∗
j1

. The measure
of D(j0,j1) is at most 2Kγ∗

j1
< 2−j1ε < ε. Hence, since Sk+1 has measure greater

than ε, the set Sk+1 \ D(j0,j1) = Sk+1 ∩ ([0, lk+1] \ D(j0,j1)) is nonempty. Since
[0, lk+1] \D(j0,j1) is a finite union of open intervals, by hypothesis there must exist
infinitely many gaps in Sk+1 \D(j0,j1). We can then consider

n(j0,j1) = min{n > nj0 : Gk+1
n ⊈ D(j0,j1)}.
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Intuitively, Gk+1
n(j0,j1)

is the biggest gap of Sk+1 smaller than Gk+1
nj0

which is not
contained in the sweeping D(j0,j1). We continue the process defining

D(j0,j1,j2) = D(j0,j1) ∪ DKγ∗
j2
(Gk+1

n(j0,j1)
).

The measure of D(j0,j1,j2) is at most (2−j1 + 2−j2)ε < ε, and its complement in
[0, lk+1] is still a finite union of open intervals, so by the properties of Sk+1 we can
make the same argument as before to find

n(j0,j1,j2) = min{n > n(j0,j1) : Gk+1
n ⊈ D(j0,j1,j2)},

which will be the biggest gap of Sk+1 smaller than Gk+1
n(j0,j1)

not contained in
D(j0,j1,j2). Hence, it is not contained in neither the sweeping DKγ∗

j1
(Gk+1

nj0
) nor

DKγ∗
j2
(Gk+1

n(j0,j1)
).

Repeating this process k times, we can define nσ = n(j0,...,jk−1) ∈ N such that
Gk+1

nσ
is the biggest gap of Sk+1 not contained in DKγ∗

jk
(Gk+1

n(j0,...,ji−1)
) for any 1 ≤

i ≤ k, and smaller than Gk+1
n(j0,...,ji−1)

for every 1 ≤ i ≤ k − 1. Notice that this last
condition can be written as:

(4.2) αk+1
nσ

< min
1≤i≤k

αk+1
n(j0,...,ji−1)

.

Now, let Ωk = {σ = {ji}ki=1 : σ is an ordering of {1, . . . , k}}. Clearly Ωk is a
finite set, so we can define nΩk

= max{nσ : σ ∈ Ωk}. The corresponding gap Gk+1
nΩk

is smaller than or equal to each Gk+1
nσ

. Equivalently, we have that

(4.3) αk+1
nΩk

≤ min
σ∈Ωk

αk+1
nσ

.

Finally, choose γ∗
k+1 so that 0 < γ∗

k+1 < min{2−(k+2)K−1ε,K−1αk+1
nΩk

}. Again,
property (1) of the induction is satisfied. Let 1 ≤ K ′ ≤ K, let T be a thread
such that its sequence of gaps {CT

i }i∈N ordered decreasingly in length, satisfy that
length(CT

i ) ≤ γ∗
i for all i ≤ k + 1. Applying inductive hypothesis, since the result

is assumed to be true for k, we only need to prove that if length(CT
1 ) < ak+1/K

′,
there is no Lipschitz map F : T → Sk+1 with ∥F∥Lip ≤ K ′ and F (0) = 0 and
F (lT ) = lk+1. Suppose by contradiction that such a map F exists. Again, we may
assume F to be non-decreasing.

Put again j0 = 0 and nj0 = 1, and consider the gap Gk+1
nj0

in Sk+1 (that is, the
biggest gap of Sk+1). By Lemma 4.6, there exists j1 ∈ N such that the gap CT

j1
in

S jumps over Gk+1
nj0

, which has length αk+1
nj0

. Since K ′ · length(CT
k+1) < αk+1

nΩk
< αk+1

nj0
,

by Lemma 4.7 we have that j1 ≤ k. Therefore, we can define n(j0,j1) = min{n >
nj0 : Gk+1

n ⊈ D(j0,j1)} as before.
Consider now the gap Gk+1

n(j0,j1)
in Sk+1, and take j2 such that CT

j2
jumps over

Gk+1
n(j0,j1)

. Again, since K ′ · length(CT
k+1) < αk+1

nΩk
< αk+1

n(j0,j1)
, we obtain that j2 ≤ k.

Moreover, j2 is different from j1. Indeed, if j2 = j1, then CT
j1

jumps over both Gk+1
nj0
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and Gk+1
n(j0,j1)

. By the choice of n(j0,j1), Gk+1
n(j0,j1)

⊈ DKγ∗
j1
(Gk+1

nj0
), so by Proposition

4.8, we have that K ′ · length(CT
j1
) > Kγ∗

j1
, a contradiction.

We can repeat this process k-times until we obtain a sequence σ = {ji}ki=1

of k different numbers in {1, . . . , k} (so σ ∈ Ωk) such that CT
ji

jumps over the
gap Gk+1

n(j0,...,ji−1)
in Sk+1 for all 1 ≤ i ≤ k. To finish the proof, consider the

gap Gk+1
nσ

in Sk+1, where nσ is defined as above for σ ∈ Ωk, and take ĩ such
that CT

ĩ
jumps over Gk+1

nσ
. Reasoning as before, by the choice of γ∗

k+1 and using
equation (4.3) we have that ĩ ≤ k. Then ĩ = ji0 for some 1 ≤ i0 ≤ k. We have
chosen i0 such that CT

ji0
jumps over Gk+1

n(j0,...,ji0−1)
as well. Moreover, Gk+1

nσ
is not

contained in DKγ∗
ji0

(
Gk+1

n(j0,...,ji0−1)

)
. Therefore, by Proposition 4.8, we have that

K ′ · length(CT
jk0

) > Kγ∗
jk0

, a contradiction.
The induction is finished and the result follows.

□

Compact subsets of the real line with positive measure that contain no nontriv-
ial intervals have been considered many times before: the well known fat Cantor
sets are examples of this kind of objects. For our purposes, we need to find threads
with these properties and whose gaps are smaller than any given decreasing se-
quence of positive real numbers. For completeness, we include the construction of
such threads in the following subsection.

Let us first finish this subsection by making a simple remark:

Remark 4.10. Let M be a complete metric space, let K ≥ 1, and let S1, S2 be
two closed subsets of M such that d(S1, S2) = ε > 0. Then, if T is a thread such
that its sequence of gaps {CT

k }k∈N satisfies length(CT
k ) < ε/K for all k ∈ N, then

there is no K-Lipschitz map F : T → S1 ∪ S2 such that F (0) ∈ S1 and F (p) ∈ S2

for some p ∈ T .

Proof. Consider the point
P = min{x ∈ T : F (x) ∈ S2}.

The point P is not 0 since F (0) ∈ S1, and for all x ∈ [0, P )T we have that
F (x) ∈ S1. However, since every gap in T is smaller than ε/K, there exists
x ∈ [0, P )T such that d(x, P ) < ε/K. Then d(F (x), F (P )) < ε, which contradicts
the fact that d(S1, S2) = ε. □

4.1.1.3. Construction of threads with infinitely many gaps. Our objective now
is to define a collection of closed subsets of the real segment [0, 1] containing 0 and
1 which, when given a thread metric, will satisfy the hypothesis of Theorem 4.9
for ε = 1/2. For the rest of this section, fix Q ∩ (0, 1) = (qn)

∞
n=1, an ordering of

the rational numbers in the interval (0, 1). Consider a decreasing sequence of real
numbers γ = (γi)

∞
i=1 such that

(i) γi > 0 for all i ∈ N,



52 4. PATHOLOGICAL METRIC SPACES

(ii) γi < 2−(i+1) for all i ∈ N.
(iii) q1 + γ1 < 1.
Put ∆ = {γ = (γi)i : γ is decreasing and satisfies (i), (ii) and (iii)} for the rest

of the section.
For any given γ ∈ ∆, we define {Gi}i∈N inductively as the following open

subintervals of (0, 1):
Gγ

1 = (q1, q1 + γ1),

and for i ≥ 2:

Gγ
i = (qni

, qni
+ γi), where ni = min

{
n ∈ N : (qn, qn + γi) ⊂ (0, 1) \

(⋃
j<i

Gγ
j

)}
.

Note that property (ii) of γ guarantees that ni exists for all i ∈ N.
Using this, we define the closed subset Tγ ⊂ [0, 1] as

Tγ = [0, 1] \
( ∞⋃

i=1

Gγ
i

)
for any γ ∈ ∆. The definition of {Gγ

i }i∈N and Tγ for every γ ∈ ∆ is fixed for the
rest of the section.

Proposition 4.11. Let γ = (γi)
∞
i=1 ∈ ∆, and let {Gγ

i }i∈N and Tγ be defined as
above. Then Tγ is a compact subset of [0, 1] that satisfies:

(1) The Lebesgue measure of Tγ is greater than or equal to 1/2.
(2) The points 0 and 1 belong to Tγ.
(3) The sequence of gaps of Tγ is the sequence {Gγ

i }i∈N, and length(Gγ
i ) = γi

for all i ∈ N.
(4) The set Tγ does not contain any nontrivial interval. Consequently, if

(x, x+ δ) ∩ Tγ ̸= ∅ for some x ∈ [0, 1] and δ > 0, then (x, x+ δ) contains
infinitely many gaps of Tγ.

Proof. Notice that the Lebesgue measure of Tγ is greater than or equal to
1−

∑∞
i=1 2

−(i+1) = 1/2 for all possible γ by property (ii), and the points 0 and 1
are not in Gγ

i for any i ∈ N by construction and property (iii), so (1) and (2) are
clear.

To see (3), we need to prove that Gγ
i is a gap in T γ for all i ∈ N, and that every

gap of T γ is one of Gγ
i for some i ∈ N. Consider an interval Gγ

i = (qni
, qni

+ γi).
We have directly by construction that Gγ

i ∩T = ∅, so we only need to see that the
endpoints of Gγ

i are in T to prove that it is a gap of T . If one of the endpoints
pi of Gγ

i is not in T , there must exist j ∈ N such that pi ∈ Gγ
j . Since Gγ

j is open
and pi is in the closure of Gγ

i , we have that Gγ
i ∩Gγ

j ̸= ∅, a contradiction with the
choice of ni and nj. We conclude that Gγ

i is a gap of Tγ.
Next, let x, y ∈ Tγ with x < y and (x, y)Tγ = ∅. For a point p ∈ (x, y), since

p /∈ Tγ, there must exist i ∈ N such that p ∈ Gγ
i . The interval Gγ

i is contained
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in (x, y) because both x and y belong to Tγ. Moreover, since the endpoints of Gγ
i

belong to Tγ, we necessarily have that Gγ
i = (x, y), and we are done with (3).

Finally, the set Tγ is nowhere dense, since it contains no intervals. Indeed,
suppose there is an interval (x, x + δ) ⊂ Tγ for some x ∈ [0, 1] and δ > 0 with
x+δ < 1. The subinterval (x, x+δ/2) contains a rational number qn0 . Since (γi)∞i=1

is decreasing and converging to 0, there must exist i0 such that γi < δ/2 for all
i ≥ i0. Then, for all i ≥ i0, the natural number n0 satisfies that (qn0 , qn0+γi) ⊂ Tγ,
and in particular

(qn0 , qn0 + γi) ⊂ (0, 1) \
(⋃

j<i

Gγ
j

)
.

Therefore, there must exist i1 ≥ i0 such that n0 = min

{
n ∈ N : (qn, qn + γi1) ⊂

(0, l) \
(⋃

j<i1
Gγ

j

)}
, which implies that Gγ

i1
= (qn0 , qn0 + γi1); a contradiction

with the assumption that (qn0 , qn0 + δ/2) ⊂ Tγ. □

Now, given any γ ∈ ∆ and any 0 < a ≤ 1, we may assign the metric d1,a
as defined at the beginning of this section to the set Tγ, such that (Tγ, d1,a) is a
thread. We will denote by Tγ(1, a) the thread of length 1 and width a formed by
endowing the subset Tγ as defined above for γ ∈ ∆ with the metric d1,a.

With Proposition 4.11 we have that any countable family of these threads sat-
isfies the hypothesis of Theorem 4.9. In fact, any countable family of subthreads
with measure uniformly bounded from below also satisfies the hypothesis of Theo-
rem 4.9. Moreover, given such a countable family of threads {Tn}n∈N and K ≥ 1,
for the sequence γ∗ = {γ∗

k}k∈N obtained by Theorem 4.9 we can always find an-
other sequence γ0 = {γ0

k}k∈N ∈ ∆ such that γ0
k ≤ γ∗

k for all k ∈ N. Hence, there
exists a thread of the form Tγ0(1, a) that cannot be mapped with a K-Lipschitz
function preserving the extreme points onto any Tn for any n ∈ N, provided
a < width(Tn)/K.

Observe that thanks to the properties of the generic sets Tγ, we can obtain the
following fact about the thread Tγ(1, a):

Proposition 4.12. Let γ ∈ ∆, and let Tγ(1, a) be the thread of length 1 and
width a associated with γ. Then Tγ(1, a) is totally separated, i.e.: If p and q are two
different points in Tγ(1, a), there exist two disjoint open and closed subsets S1, S2 ⊂
Tγ(1, a) such that p ∈ S1, q ∈ S2, and Tγ(1, a) = S1 ∪ S2. As a consequence, for
any point p ∈ Tγ(1, a) and any ε > 0, there exists an open and closed subset S of
diameter less than ε such that p ∈ S.

Proof. Put T = Tγ(1, a). Let p and q be two different points in T . Suppose
without loss of generality that p < q. If the interval (p, q)T is empty, then the
result follows considering S1 = [0, p]T and S2 = [q, 1]T . Otherwise, if (p, q)T is
nonempty, by property (4) in Proposition 4.11 there exists a gap (x, y) in T such
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that p < x and y < q. Put now S1 = [0, x]T and S2 = [y, 1]T and the result is
proven.

The second statement follows immediately from the first and from the linear
structure of threads. □

When dealing with Lipschitz functions between threads, the image of the ex-
treme points of a thread plays an important role for some technical arguments (as
can be seen in the previous subsection). This is the motivation for introducing the
next result.

Proposition 4.13. Let T and S be two threads of length lT and lS, and width
aT and aS respectively. Let K ≥ 1. Suppose T is totally separated. Consider
S1 and S2 open subsets of S, and take D1 and D2 dense subsets of S1 and S2

respectively.
Let F : T → S be a K-Lipschitz function such that F (0) = A and F (lS) = B

with A ∈ S1 and B ∈ S2. Then for every ε > 0, there exists a pair of points
P,Q ∈ T with P < Q, a pair of points Â ∈ D1 and B̂ ∈ D2, and a (K + ε)-
Lipschitz function F̂ : [P,Q]T → S such that F̂ (P ) = Â and F̂ (Q) = B̂.

Proof. Since S1 is open in S and F (0) ∈ S1, there exists a positive number
r > 0 such that for any point p ∈ [0, r]T we have F (p) ∈ S1. The thread T is totally
separated, so we can find P ∈ [0, r]T and δP > 0 such that d

(
[0, P ]T , T\

(
[0, P ]T

))
=

δP . Similarly, we may find Q ∈ T with P < Q and δQ > 0 such that F (Q) ∈ S2

and d
(
[Q, lT ]T , T \

(
[Q, lT ]T

))
= δQ.

By density, we can find Â ∈ S1 and B̂ ∈ S2 such that d
(
F (P ), Â

)
< 2−1ε · δP

and d
(
F (Q), B̂

)
< 2−1ε · δQ. Define now F̂ : [P,Q]T → S so that

F̂ (x) =


Â, if x = P,

F (x), if x ∈ (P,Q)T ,

B̂, if x = Q.

It is now routine to check that F̂ is (K + ε)-Lipschitz. □

4.1.2. Construction of the building blocks: Threading metric spaces.
We now want to use the threads Tγ(1, a) we defined for γ ∈ ∆ and 0 < a ≤ 1
to construct non-separable complete metric spaces that will act as building blocks
of the final metric space. To do this, we first formalize the notion of attachment
of metric spaces, which will allow us to “glue" metric spaces in a convenient way.
This concept has been used in many contexts in the literature, but we choose to
include a definition tailored to our necessities.

Definition 4.14. Let (M,dM) be a complete metric space. Consider N =
{(Nγ, dγ)}γ∈Γ be a collection of pairwise disjoint and disjoint with M complete
metric spaces, and let S = {Sγ}γ∈Γ be a collection of sets such that: for each γ ∈ Γ
the set Sγ is a compact subset of Nγ, and there exists an isometry Φγ : Sγ → M
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onto a subset of M . The attachment of M with N by S is the pair (M(N ,S), dN ,S),
where

M(N ,S) = M ∪
(⋃

γ∈Γ

Nγ \ Sγ

)
,

and

dN ,S : M(N ,S)×M(N ,S) −→ R+

is a map defined by

dN ,S(p, q) =


dM (p, q), if p, q ∈ M,

dγ(p, q), if p, q ∈ Nγ \ Sγ for some γ ∈ Γ,

minx∈Sγ{dγ(p, x) + dM (Φγ(x), q)}, if p ∈ Nγ \ Sγ for some γ ∈ Γ, and q ∈ M,

Hγ1,γ2(p, q), if p ∈ Nγ1 \ Sγ1 , q ∈ Nγ2 \ Sγ2 for γ1 ̸= γ2 ∈ Γ,

where Hγ,η : Nγ ×Nη → R+ is the map defined by

Hγ,η(p, q) = min{dγ(p, x) + dM(Φγ(x),Φη(y)) + dη(y, q) : x ∈ Sγ, y ∈ Sη}.

Notice that both minima used in the definition of dN ,S are well defined by
compactness of the sets Sγ for each γ ∈ Γ. Moreover, it is straightforward to check
that the map dN ,S defines a complete metric in M(N ,S).

It is also clear from the definition that the metric space M(N ,S) contains M
isometrically, as well as an isometric copy of Nγ for each γ ∈ Γ. We may write
M ⊂ M(N ,S) and Nγ ⊂ M(N ,S) by virtue of this fact.

With this concept, we can now define the aforementioned building blocks of
the main metric space we seek to construct:

Definition 4.15. Consider a metric space M = {A,B} formed by two points
at a distance 0 < a ≤ 1. Let Na = {Tγ(1, a)}γ∈∆, where ∆ is the set of sequences
defined in Section 1, and Tγ(1, a) is the thread associated with γ of width a. We
may consider Tγ(1, a) and Tη(1, a) to be disjoint for γ ̸= η. For each Tγ(1, a), put
Sγ = {0γ, 1γ}, the set of the two extreme points of Tγ(1, a). We let Sa = {Sγ}γ∈∆,
and Φγ : Sγ → M as Φγ(0γ) = A, Φγ(1γ) = B.

We define the threading space Th(A,B) to be the attachment of M with Na

by Sa. We say that Th(A,B) is anchored at A and B, and these two points are
called the anchors of Th(A,B). If a threading space Th(A,B) is fixed and there
is no room for ambiguity, we write Tγ(1, a) ⊂ Th(A,B) to denote the isometric
copy of the thread Tγ(1, a) contained in the threading space Th(A,B).

Note that in a threading space Th(A,B) we have that Tγ(1, a) ∩ Tη(1, a) =
{A,B} for any two different γ, η ∈ ∆. Moreover, if p, q ∈ Th(A,B) belong to
different threads, the distance d(p, q) is computed according to the definition of
attachment, which in this case results in

d(p, q) = min{d(p,A) + d(A, q), d(p,B) + d(B, q)}.
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A B

a

p

q

Tγ1(1, a) Tγ2(1, a)

Tγ3(1, a)

Tγ4(1, a)

Figure 4. Subset of Th(A,B). The distance from p to q is d(p,A) + d(A, q).

See Figure 4 for a representation of a subset of a threading space.
By definition, in a metric space M(N ,S) formed by attachment (and in thread-

ing spaces in particular), given a point p ∈ Nγ for some γ ∈ Γ and a point x1 ∈ M ,
there exists a point s1 ∈ Sγ such that d(p, x1) = d(p, s1) + d(s1, x1). However, it is
possible that for a different point x2 ∈ M , the point s2 ∈ Sγ such that the identity
d(p, x2) = d(p, s2) + d(s2, x2) holds, is different from s1. Points in Nγ that always
use the same point in Sγ to compute their distance to the rest of the space are
especially relevant to our discussion.

In general, given a metric space M and a closed subset N , we say that a
point p ∈ N is bound to s ∈ N in N if for every x ∈ M \ N we have d(p, x) =
d(p, s) + d(s, x).

For example, in a threading space Th(A,B), it is not hard to check that a point
p in a thread Tγ(1, a) is bound to A in Tγ(1, a) if and only if d(p,A) < d(p,B) and
d(p,A) ≤ 1−a

2
(the analogous result for B holds as well).

In the final subsection we will deal with Lipschitz functions defined on a single
thread and with image in metric spaces formed by attachment. We finish this
section by defining two simple concepts and proving a result that will help us
simplify this type of maps.

Now, if T is a thread, M is a metric space, N is a closed subset of M , and
F : T → M is a Lipschitz function, we say that an extended interval (as defined
in the beginning of subsection 4.1.1) I is maximal with respect to F and N if
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F (I) ⊂ N and every extended interval J = [a′, b′]T in T that contains I and such
that F (J) ⊂ N is equal to I. We have the following straightforward result:

Proposition 4.16. Let T be a thread of length l and width a. Let M be a
metric space, let N be a closed subset of M , and let F : T → M be a Lipschitz
function. If an extended interval I in T with extremes a, b ∈ T is maximal with
respect to F and N , and there exists s ∈ N such that both F (a) and F (b) are
bound to s in N , then the function F̂ : T → M defined by:

F̂ (x) =

{
s, if x ∈ I,

F (x), if x ∈ T \ I

is Lipschitz with ∥F̂∥Lip = ∥F∥Lip.

Proof. Put K = ∥F∥Lip. We will start by proving that

(4.4) d
(
F̂ (0), F̂ (l)

)
≤ K · a.

If both 0 and l belong to the extended interval I then it follows trivially. Similarly,
if 0 and l belong to T \I then the inequality follows since F is K-Lipschitz. Hence,
suppose first that 0 ∈ I and l ∈ T \ I. Then, we have necessarily that a = 0, and
so F (a) is bound to s in N . This implies that

d
(
F̂ (0), F̂ (l)

)
= d
(
s, F (l)

)
≤ d
(
F (0), s

)
+ d
(
s, F (l)

)
= d
(
F (0), F (l)

)
≤ K · a

A similar argument shows that if 0 ∈ T \ I and l ∈ I the same inequality holds.
Hence we conclude that equation (4.4) is satisfied.

Next, we prove that for every x, y ∈ T with x < y we have

(4.5) d(F̂ (x), F̂ (y)) ≤ K(y − x).

As before, we may only check this holds for x, y ∈ T with x < y such that
x ∈ T \ I and y ∈ I. By maximality of I, there exists t ∈ T with x ≤ t < y such
that F (t) /∈ N . Additionally, since t is not in I but y does belong to the extended
interval, one of the extremes a or b of I belongs to (t, y]T . We may suppose without
loss of generality that x ≤ t < a ≤ y. Notice that d

(
F (t), s

)
≤ d

(
F (t), F (a)

)
because a is bound to s in N . Then we have:

d
(
F̂ (x), F̂ (y)

)
≤ d
(
F (x), F (t)

)
+ d
(
F (t), s

)
≤ d
(
F (x), F (t)

)
+ d
(
F (t), F (a)

)
+ d
(
F (a), F (y)

)
≤ K

(
(t− x) + (a− t) + (y − a)

)
= K(y − x).

This proves that equation (4.5) holds as well.
Using both equations (4.4) and (4.5) we can apply Proposition 4.2 to obtain

that ∥F̂∥Lip ≤ K. □
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The process used to construct the skein metric space which fails to have any
non-trivial separable Lipschitz retracts is to keep attaching threading spaces in-
ductively such that any two distinct points of the skein act as the anchors to a
threading space contained in the skein1. As we are going to see in the final section,
this construction presents its own technical difficulties. However, the main results
of the first two sections will be very useful in this regard.

4.1.3. Construction of the skein metric spaces. The final metric space
will be constructed using transfinite induction. Let us discuss this process in
general for limit ordinal numbers:

Let κ be a limit ordinal number. Suppose that {(Mα, dα)}α<κ is a transfinite
sequence of metric spaces that are increasing, in the sense that Mα ⊂ Mβ if α < β
and the restriction of dβ to Mα results in the metric dα. Then we may define the
metric space (Mκ, dκ) where Mκ =

⋃
α<κMα, and dκ is defined for any p, q ∈ Mκ

as dκ(p, q) = dα(p, q) where α < κ is the least ordinal number such that p, q ∈ Mα.
It is straightforward to check that the metric dκ is well defined and (Mκ, dκ) is
indeed a metric space.

We will call (Mκ, dκ) the metric space generated by {(Mα, dα)}α<κ, and as usual
we may omit the mention of the metric dκ when referring to it if there is no room
for ambiguity. If κ is an ordinal with uncountable cofinality (i.e., the supremum of
any countable sequence of ordinals (αn)n such that αn < κ for all n ∈ N is strictly
smaller than κ), then the metric space Mκ generated by {Mα}α<κ is complete,
provided each Mα is complete for every α < κ. To see this, consider any Cauchy
sequence (pn)n in Mκ. Each pn belongs to Mαn for some ordinal αn < κ. Since κ
has uncountable cofinality, the supremum α∗ = supn(αn) is strictly smaller than κ.
Hence, the sequence (pn)n belongs to the complete metric space Mα∗ , and therefore
it is convergent in Mα∗ to a point p∗. The point p∗ belongs to Mκ, and clearly
(pn)n converges to p∗ in Mκ as well.

4.1.3.1. Construction of the skein metric spaces. We are going to construct by
transfinite induction an increasing class of complete metric spaces {Sk(β)}β for
every ordinal β ≤ ω1, called the β-skein metric spaces. The complete metric space
failing to have any non-trivial separable Lipschitz retract is the ω1-skein space
Sk(ω1).

Consider at the first step the 0-skein metric space M0 = {A,B} formed by two
points at distance 1/2, and put G0 = {A,B}. Suppose we have defined increasingly
the α-skein spaces {Sk(α)}α<β up to an ordinal β ≤ ω1. If β is a limit ordinal,
simply define Sk(β) as the completion of generated metric space

⋃
α<β Sk(α) in

the way described above, which contains isometrically the previous skein spaces
Sk(α) for all α < β. Notice that if β has uncountable cofinality (i.e.: if β = ω1),
it is not necessary to take the completion.

1“skein: a length of yarn or thread collected together into the shape of a loose ring” (Cam-
bridge dictionary. n.d.).



4.1. FAILING THE LIPSCHITZ SRP: THE SKEIN SPACE. 59

Suppose now that β = λ + 1 for an ordinal λ < ω1. For every p in the skein

Sk(λ) and every q ∈ Gλ = Sk(λ) \
(⋃

α<λ Sk(α)
)

with p ̸= q and d(p, q) ≤ 1/2,

we may consider the threading space Th(p, q) as defined in subsection 4.1.2. Take
now the family of complete metric spaces Nλ = {Th(p, q)}{p,q}∈Γλ

, where

Γλ =
{
{p, q} ⊂ Sk(λ) : p ∈ Sk(λ), q ∈ Gλ, 0 < d(p, q) ≤ 1/2

}
,

which we may take to be pairwise disjoint and disjoint with Sk(λ). For any
{p, q} ∈ Γλ, we have by definition of the threading space Th(p, q) that there is
an isometry Φ{p,q} from the set of anchor points An{p,q} of Th(p, q) onto the set
{p, q} in Sk(λ). Therefore, considering Sλ = {An{p,q}}{p,q}∈Γλ

we can define Sk(β)
as the attachment of Sk(λ) with Nλ by Sλ. The resulting metric space Sk(β) is
the β-skein, and it is a complete metric space containing isometrically the previ-
ous skein space Sk(λ). The induction process is finished, and we have defined the
β-skein metric space for every ordinal number β ≤ ω1.

Intuitively, we may describe the previous process in the following way: If β ≤ ω1

is a limit ordinal, then the β-skein space is the completion (if necessary) of the
union of all previous skein spaces. If β is the successor of an ordinal λ, then the
β-skein is formed by attaching a threading space at every pair of points closer than
1/2 and such that at least one of them was newly introduced at the previous step
λ.

Note that although we may formally continue the inductive process for ordinals
greater than ω1, since no new points are introduced at this step, the process
becomes stationary and the skein space Sk(β) is Sk(ω1) for every β ≥ ω1.

For a subset S of a skein space Sk(β), we may define its (skein) order, written
ord(S), as the least ordinal α ≤ β such that S ⊂ Sk(α). For a point p ∈ Sk(β),
we write ord(p) = ord({p}). For any ordinal β, the (skein) generation of order β

is the set Gβ = Sk(β) \
(⋃

α<β Sk(α)
)

.

Figure 5 is a conceptual representation of a subset of the skein Sk(3), which
contains 3 different generations (the gaps in the threads have been ignored for
the sake of clarity). The distance between the points x and y in the figure are
computed by d(x, y) = d(x, p) + d(p, q) + d(q, y).

Crucially, in the skein space Sk(ω1), the corresponding generation Gω1 is empty,
and every point in the ω1-skein Sk(ω1) belongs to a previous generation. This
means that, in this space, every pair of points p and q such that d(p, q) ≤ 1/2
belong to a set Γα where α is strictly smaller than ω1, and thus an isometric copy
of the threading space Th(p, q) is contained in Sk(β). Moreover, in this case, the
order of any separable subset of the skein space Sk(ω1) is strictly smaller than ω1.

Notice that for any two different pairs of different points (p1, q1), (p2, q2) ∈
Sk(ω1)×Sk(ω1) such that d(p1, q1) = d(p2, q2) ≤ 1/2, the threading spaces Th(p1, q1)
and Th(p2, q2) are contained in Sk(ω1) and are isometric. Moreover, for any γ ∈ ∆,
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Figure 5. Subset of the skein space Sk(3). The points x and y are
bound to p and q respectively.

each of these two threading spaces contains an isometric copy of the thread Tγ(1, a),
where a = d(p1, q1). To differentiate the different copies of the same thread in M
that arise due to this fact, we will denote by Tγ(p, q) the thread Tγ(1, d(p, q))
contained in the threading space Th(p, q) ⊂ Sk(ω1).

Finally, note also that for a given successor ordinal number β + 1 and any
(p, q) ∈ Γβ and γ ∈ ∆, it holds that Tγ(p, q) \ {p, q} is open in the skein Sk(β+1).
Hence, we conclude that any open subset of a thread Tγ(p, q) ⊂ Sk(β + 1) with
(p, q) ∈ Γβ and γ ∈ ∆ which does not contain the extreme points {p, q} is also
open in Sk(β + 1).

The skein space Sk(ω1) contains separable subsets with different structures, all
of which fail to be Lipschitz retracts of Sk(ω1). We are going to prove some results
that let us reduce the kind of separable subsets we have to consider to a smaller
class. In particular, first we are going to show that it is enough to prove that
separable subsets without isolated points are not Lipschitz retracts. Secondly, we
will introduce some concepts and prove some results to deal with points in limit
ordinal generations. We structure these two topics in two different subsections:

4.1.3.2. First reduction: subspaces with isolated points. This first reduction is
relatively straightforward to see. It is based on two quick observations about the
skein space Sk(ω1) and about threads with small gaps. The first observation is
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a general fact about threads which we have already stated and proven in remark
4.10. The second one we present in the following simple lemma:

Lemma 4.17. Let p, q ∈ Sk(ω1) be two different points. There exists a finite
sequence {xk}nk=0 ⊂ Sk(ω1) with x0 = p and xn = q such that d(xk, xk+1) ≤ 1/2
for all 0 ≤ k ≤ n− 1.

Proof. We prove the result by transfinite induction on ord({p, q}) < ω1. If
ord({p, q}) = 0, then {p, q} = {A,B} and the result follows directly. Suppose
ord({p, q}) = β < ω1, and suppose the result is true for any set of two points
with order α < β. Consider βp = ord(p). If βp is a limit ordinal, then p is
the limit of a sequence in

⋃
α<βp

Sk(α), and in particular we can choose xp with
ord(xp) < βp such that d(xp, p) ≤ 1/2. If βp = λ+1 for a countable ordinal λ, then
by construction of Sk(ω1) we have that p belongs to the threading space Th(xp, yp)
for some xp, yp ∈ Sk(λ). Since p is in a thread of length 1 with extremes xp, yp,
the distance from p to one of these extremes is less than or equal to 1/2. Assume
without loss of generality that d(xp, p) ≤ 1/2. We conclude that in any case there
exists xp with ord(xp) < ord(p) such that d(xp, p) ≤ 1/2, and arguing in the same
way there exists xq with ord(xq) < ord(q) such that d(xq, q) ≤ 1/2.

The points xp, xq satisfy that ord({xp, xq}) < β, so by inductive hypothe-
sis there exists a sequence {xk}nk= ⊂ M with x0 = xp and xn = xq such that
d(xk, xk+1) ≤ 1/2 for all 0 ≤ k ≤ n. The result follows now adding the points p
and q at the beginning and at the end of the sequence respectively. □

Let us mention that this previous lemma can be improved so that the distance
between the points in the sequence is less than 1/4, since this is the biggest pos-
sible gap in the threads we are considering. However, we do not consider this
improvement to be relevant enough and prefer to prove it with a simpler and
shorter argument, since we will only need to use the lemma as it is stated now.

Now we can prove the first reduction result:

Proposition 4.18. Let S be a closed subset of Sk(ω1) with at least two different
points. If there exists p ∈ S such that p is isolated in S, then S is not a Lipschitz
retract of Sk(ω1).

Proof. Put ε = d
(
p, S\{p}

)
, which is positive since p is isolated in S. Suppose

there exists a Lipschitz retraction R : Sk(ω1) → S, and put K = ∥R∥Lip.
Consider any point q ∈ S different from p. By Lemma 4.17 there exists a

finite sequence {xk}k∈N ⊂ Sk(ω1) such that x0 = p and xn = q, and such that
d(xk, xk+1) ≤ 1/2 for all 0 ≤ k ≤ n−1. By construction of the skein space Sk(ω1),
there exists an isometric copy of the threading space Th(xk, xk+1) in Sk(ω1), so we
may assume that these threading spaces are contained in Sk(ω1). For every 0 ≤
k ≤ n−1, the threading space Th(xk, xk+1) itself contains the threads Tγ(xk, xk+1)
for every γ ∈ ∆. Choose γ∗ = (γ∗

i )i∈N ∈ ∆ such that γ∗
i < ε/K for every i ∈ N,
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and write T ∗
k to denote the thread Tγ∗(xk, xk+1) contained in the threading space

Th(xk, xk+1) with extremes xk and xk+1 for every 0 ≤ k ≤ n− 1.
Define

k0 = min
{
k ∈ {0, . . . , n− 1} : R

(
T ∗
k

)
⊈ {p}

}
,

which exists since q ∈ T ∗
n−1 and R(q) = q ∈ S \ {p}. By definition of k0, there

exists a point y0 ∈ T ∗
k0

such that R(y0) ∈ S \ {p}. If k0 = 0, the point y0 cannot
be the lower extreme x0 = p of the thread T ∗

0 , since R(p) = p. If k0 ̸= 0, again we
have that y0 cannot be xk0 because xk0 is also in the previous thread T ∗

k0−1 as its
higher extreme point, which would contradict the minimality of k0. We conclude
then that R(xk0) = p. Since the gaps of T ∗

k0
are given by the sequence γ∗, they are

all smaller than ε/K. We can then apply Remark 4.10 to reach a contradiction
with the existence of the retraction R. □

4.1.3.3. Second reduction: points in limit ordinal generations. In the construc-
tion of the skein space Sk(ω1), we have a better understanding of the points be-
longing to successor ordinal generations than we do of points in limit ordinal
generations. Indeed, for a point p of order α + 1 we know that there exist two
points x and y, with at least one of them in generation α such that p belongs to a
thread Tγ for a sequence γ ∈ ∆ with extreme points x and y. However, a point in
a limit ordinal generation can initially only be described as a limit of a sequence of
points in previous generations, and it does not belong to a thread or to any other
defined structure. This subsection is dedicated to finding ways to describe these
limit points in order to compensate for the comparatively low a priori knowledge
we have of them.

For a closed subset S of a metric space M and r > 0, define the open ball
around S of radius r, denoted by B(S, r)◦ as the set

B(S, r)◦ = {p ∈ M : d(p, S) < r}.
The main result of this subsection is the following:

Proposition 4.19. In the skein space Sk(ω1), for every ordinal number β <
ω1, the β-skein Sk(β) is a 1-Lipschitz retraction of the ball B(Sk(β), 1/8)◦.

In fact, as we are going to see, a stronger result is satisfied, which is helpful in
the inductive argument we use to prove it.

Let us introduce some useful concepts: For an ordinal number β < ω1 and
a point p ∈ Sk(ω1), we may consider the set Pβ(p) =

{
x ∈ Sk(β) : d(p, x) =

d
(
p, Sk(β)

)}
. Since the β-skein Sk(β) is not compact when β > 0, we cannot

easily ensure that Pβ(p) is nonempty in every case. In the case where Pβ(p) is
nonempty for a point p ∈ Sk(ω1) and an ordinal β < ω1, the members of Pβ(p)
will be called the ancestors of p of order β.

If a point p ∈ Sk(ω1) has order β + 1 for some ordinal β < ω1, then it belongs
to a threading space Th(x, y) for a pair of points (x, y) with ord{x, y} = β, and it
is straightforward to see that the set of ancestors of p of order β is nonempty and
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is contained in {x, y}. Since every thread in Th(x, y) has length 1, if d(p, Sk(β)) <
1/2, then Pβ(p) is unique and is equal to either x or y. The other point will be
called the pseudo-ancestor of p of order β, and will be denoted by Qβ(p). In this
way, every point p in a successor ordinal generation Gβ+1 such that the distance
d(p, Sk(β)) is smaller than 1/2 will belong to the threading space Th(Pβ(p), Qβ(p)).
Notice that this concept is only defined for points in successor ordinal generations
and with respect to the preceding ordinal.

For each ordinal number β < ω1, we say that a subset S of Sk(ω1) containing
Sk(β) is β-stable if for every point p ∈ S there exists an ancestor Pβ(p) and it is
unique, and moreover, the resulting well defined map Pβ : S → M is a 1-Lipschitz
retraction. Hence, the main result of this subsection will be proven if we show that
B(Sk(β), 1/8)◦ is β-stable for all β < ω1.

We prove the following even stronger result:

Proposition 4.20. Let β < ω1 be an ordinal number. If two points p and q
belong to the ball B(Sk(β), 1/8)◦, then the ancestors Pβ(p) and Pβ(q) exist and are
unique. Moreover, if Pβ(p) ̸= Pβ(q), then d(p, q) = d

(
p, Pβ(p)

)
+d
(
Pβ(p), Pβ(q)

)
+

d
(
Pβ(q), q

)
.

In particular, the ball B(Sk(β), 1/8)◦ is β-stable.

Proof. Put α = ord{p, q}. We are going to prove the result by induction on
α. If α is smaller than β, then both p and q belong to the skein Sk(β) and the
result follows trivially. Hence, we will start the induction assuming α = β + 1.
Let us divide the proof into three parts: the base case, the successor ordinal case,
and the limit ordinal case. The base case is in fact the most technical part of the
proof:

1.- The base case: α = β + 1

Suppose that α = β + 1. Since ord{p, q} = β + 1, at least one of p and q is in
generation Gβ+1. Assume without loss of generality that p belongs to generation
Gβ+1. As we discussed earlier, since the distance from p to Sk(β) is less than 1/8
and in particular less than 1/2, we have that the ancestor of order β of p, Pβ(p),
exists and is unique, and p is in the threading space anchored at its ancestor
and pseudo-ancestor of order β, denoted by Th

(
Pβ(p), Qβ(p)

)
. Moreover, since

d(p, Pβ(p)) < 1/4, we have that p is bound to Pβ(p) in Sk(ω1) \ Sk(β) (we briefly
discussed this when introducing the concept of boundness before Proposition 4.16).
In other words, we have that the distance from p to any point x ∈ Sk(β) is
computed by
(4.6) d(p, x) = d

(
p, Pβ(p)

)
+ d
(
Pβ(p), x

)
for every x ∈ Sk(β).

Now, if the point q is in the skein Sk(β), then q is its own ancestor of order
β, and the result follows directly by the previous identity. Suppose then that q
is also in generation Gβ+1. By the same discussion as above, q belongs to the
threading space Th

(
Pβ(q), Qβ(q)

)
, and q satisfies the corresponding identity to
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(4.6). There are two possibilities: either both threading spaces Th
(
Pβ(p), Qβ(p)

)
and Th

(
Pβ(q), Qβ(q)

)
are the same, or p and q belong to different threading spaces.

If p and q belong to two different threading spaces, then the result follows from
equation (4.6) (applied to both p and q) and the construction of the skein Sk(β+1).
Otherwise, if both threading spaces Th

(
Pβ(p), Qβ(p)

)
and Th

(
Pβ(q), Qβ(q)

)
are

the same, we may assume that the pseudo-ancestor of p, Qβ(p), and the ancestor
of q, Pβ(q), are the same point (otherwise Pβ(p) = Pβ(q) and there is nothing left
to prove). Now, on the one hand we have that d

(
p, Pβ(p)

)
< 1/8 and d

(
q, Pβ(q)

)
<

1/8 by hypothesis; and on the other hand the width of the threading spaces in
the skein spaces we defined is less than 1/2, so d

(
Pβ(p), Pβ(q)

)
≤ 1/2. Hence, we

necessarily have that

d
(
p, Pβ(p)

)
+ d
(
Pβ(p), Pβ(q)

)
+ d
(
Pβ(q), q

)
< 3/4 < |q − p|,

from which the result follows, whether p and q belong to the same thread in the
threading space Th

(
Pβ(p), Pβ(q)

)
or not.

2.- The successor ordinal case: α = η + 1 for η > β

Suppose now that α = η + 1 for some countable ordinal η > β, and that
the result holds for every pair of points of order strictly less than η + 1. Let us
prove first that both ancestors Pβ(p) and Pβ(q) exist and are unique and that the
ancestor operation commutes for p and q at order η, that is: Pβ

(
Pη(p)

)
= Pβ(p)

and Pβ

(
Pη(q)

)
= Pβ(q). Since the argument is exactly the same for both points,

we will only prove it for p, and again we may assume without loss of generality
that p is in the generation Gη+1. Since the distance from p to Sk(β) is less than
1/8, we have as well that d

(
p, Sk(η)

)
< 1/8 since Sk(β) ⊂ Sk(η). Therefore, by

the first step of the induction process we have that the ancestor of p of order η is
unique and

(4.7) d(p, x) = d
(
p, Pη(p)

)
+ d
(
Pη(p), x

)
, for all x ∈ Sk(η).

Moreover, now Pη(p) ∈ Sk(η), and with the previous equation we can deduce that
Pη(p) belongs to the ball B(Sk(β), 1/8)◦ as well, so by induction again we have that
Pβ

(
Pη(p)

)
is unique, and d

(
Pη(p), x

)
= d

(
Pη(p), Pβ

(
Pη(p)

))
+ d
(
Pβ

(
Pη(p)

)
, x
)
.

These two identities result in the following equation:

d(p, x) = d
(
p, Pη(p)

)
+ d
(
Pη(p), Pβ

(
Pη(p)

))
+ d
(
Pβ

(
Pη(p)

)
, x
)
.

Applying equation (4.7) for Pβ

(
Pη(p)

)
∈ Sk(β) we can put the first two terms of

the right-hand side in the previous equation as d
(
p, Pη(p)

)
+d
(
Pη(p), Pβ

(
Pη(p)

))
=

d
(
p, Pβ

(
Pη(p)

))
, and finally obtain:

(4.8) d(p, x) = d
(
p, Pβ

(
Pη(p)

))
+ d
(
Pβ

(
Pη(p)

)
, x
)
, for all x ∈ Sk(β).

Now, from equation (4.8) it is easy to prove that Pβ(p) is unique and Pβ

(
Pη(p)

)
=

Pβ(p).
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To finish with this case, suppose that Pβ(p) ̸= Pβ(q). Then Pη(p) ̸= Pη(q) by
what we have just proven. We can now apply the inductive hypothesis several
times and deduce that:

d(p, q) = d
(
p, Pη(p)

)
+ d
(
Pη(p), Pη(q)

)
+ d
(
Pη(q), q

)
= d

(
p, Pη(p)

)
+ d
(
Pη(p), Pβ(p)

)
+

d
(
Pβ(p), Pβ(q)

)
+ d
(
Pβ(q), Pη(q)

)
+ d
(
Pη(q), q

)
= d

(
p, Pβ(p)

)
+ d
(
Pβ(p), Pβ(q)

)
+ d
(
Pβ(q), q

)
.

This finishes the successor ordinal case.

3.- The limit ordinal case

Suppose finally that α is a limit ordinal. As in the previous case, we start
by proving that Pβ(p) and Pβ(q) exist and are unique. Similarly, we assume that
ord(p) = α, and we only prove it for p. Consider a sequence {pn}n∈N of points in
Sk(α) convergent to p and such that ord(pn) < α for all n ∈ N. Moreover, since
the ball B(Sk(β), 1/8)◦ is an open set of Sk(ω1) which contains p, we may suppose
that d

(
pn, Sk(β)

)
< 1/8 as well for all n ∈ N. Therefore, by inductive hypothesis,

Pβ(pn) is unique for all n ∈ N, and

(4.9) d(pn, x) = d
(
pn, Pβ(pn)

)
+ d
(
Pβ(pn), x

)
, for all x ∈ Sk(β) and all n ∈ N.

We are going to prove first that the sequence {Pβ(pn)}n∈N is convergent. Indeed,
since ord(pn) < α for all x ∈ N, for all n,m ∈ N such that Pβ(pn) ̸= Pβ(pm),
we have that d(pn, pm) = d

(
pn, Pβ(pn)

)
+ d
(
Pβ(pn), Pβ(pm)

)
+ d
(
Pβ(pm), pm

)
. In

particular, d
(
Pβ(pn), Pβ(pm)

)
≤ d(pn, pm) for all n,m ∈ N, whether Pβ(pn) ̸=

Pβ(pm) or not. Since the sequence {pn}n∈N converges, it is a Cauchy sequence,
which implies that the sequence {Pβ(pn)}n∈N is a Cauchy sequence as well, and
thus convergent in the complete metric space Sk(β). Denote the limit of this
sequence by P ∗, which belongs to the set Sk(β).

Taking the limit when n tends to infinity in equation (4.9), we obtain that

d(p, x) = d
(
p, P ∗)+ d

(
P ∗, x

)
, for all x ∈ Sk(β).

Similarly to the successor ordinal case, from this equation it follows that Pβ(p) =
P ∗ and it is unique.

Now, suppose that Pβ(p) ̸= Pβ(q), and consider two sequences {pn}n∈N and
{qn}n∈N in B(Sk(β), 1/8)◦ converging to p and q respectively, and satisfying that
ord{pn, qn} < α. By the previous argument, we have that:

d(p, q) = lim
n

d(pn, qn) = lim
n

(
d
(
pn, Pβ(pn)

)
+ d
(
Pβ(pn), Pβ(qn)

)
+ d
(
Pβ(qn), qn

)
= d
(
p, Pβ(p)

)
+ d
(
Pβ(p), Pβ(q)

)
+ d
(
Pβ(q), q

)
,

which concludes the proof. □
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P1(B2)

P1(B1)

P1(B3)

P1(B4)

P1(B5)

B1

B2

B3

B4

B5

Sk(1)

B(Sk(1), 1/8)◦ =
5⋃

i=1

Bi

Sk(3)

Figure 6. The skein Sk(1) is a 1-Lipschitz retract of the ball
B(Sk(1), 1/8) with the ancestor map.

In Figure 6 we observe conceptually Proposition 4.20. In this diagram we
portray again a subset of the skein Sk(3), and the ball B(Sk(1), 1/8)◦ (colored in
blue) is partitioned into 5 subsets {Bi}5i=1 such that every point in the same Bi

has the same ancestor of order 1. The ancestor map clearly defines in this case a
1-Lipschitz retraction onto Sk(1).

Finally, with this proposition, the second reduction result follows directly:

Proof of 4.19. It follows directly from Proposition 4.20. □

In the proof of the main theorem, given a separable subset, we will consider
a bigger separable subset that is in some sense closed for the operation of taking
ancestors closer than 1/8. Specifically, we have the following Lemma:

Lemma 4.21. Given a separable subset S of the metric space Sk(ω1), there
exists a separable set Ŝ ⊂ Sk(ω1) containing S such that: for every point x ∈ Ŝ
and every ordinal β < ω1 such that d(x, Sk(β)) < 1/8, the unique ancestor of order
β of x belongs to Ŝ.

Proof. For any point x ∈ Sk(ω1), put β0(x) = ord(x), which is a countable
ordinal. Trivially we have that the ancestor Pβ0(x) = x is unique. We might
define then β1(x) = min{β < ω1 : d

(
Pβ0(x), Sk(β)

)
< 1/8}, which satisfies that

Pβ1

(
Pβ0(x)

)
is unique as well.
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Then, we can inductively define a decreasing sequence of ordinal numbers

βn(x) = min{β < ω1 : d
((
Pβn−1(x) ◦ · · · ◦ Pβ0(x)

)
(x), Sk(β)

)
< 1/8}

for each n ∈ N. Since βn+1(x) ≤ βn(x) for every n ∈ N and the ordinal numbers
are well ordered, there must exist n0(x) ∈ N such that βn(x) = βn0(x) for all
n ≥ n0.

Now, given a separable subset S of the metric space M , take D a countable
and dense subset of S. Consider the set D̂ defined by:

D̂ =
⋃
x∈D

⋃
n∈N

βn−1(x)⋃
β=βn(x)

Pβ

((
Pβn−1(x) ◦ · · · ◦ Pβ0(x)

)
(x)
)
,

which is countable, contains D, and satisfies that for any point x ∈ D̂ and any
ordinal β with d(x, Sk(β)) < 1/8, the ancestor Pβ(x) belongs to D̂ as well.

Finally, put Ŝ = D̂. The set Ŝ is separable and it contains S. For any point
x ∈ Ŝ and any ordinal β < ω1 such that x belongs to the ball B(Sk(β), 1/8)◦, we
have that x is the limit of a sequence {xn}n∈N of points in D̂ which are also in
B(Sk(β), 1/8)◦. As we argued in the proof of Proposition 4.20, we have that the
sequence {Pβ(xn)}n∈N, which is contained in D̂, converges to Pβ(x). The statement
of the lemma now follows directly. □

We will use the previous lemma as well the fact that every separable subset
of the skein Sk(ω1) is contained in the closure of the union of countably many
threads:

Lemma 4.22. Let S be a separable subset of the skein Sk(ω1). Then there exists
a countable family of pairs {(xn, yn)}n∈N in Sk(ω1)×Sk(ω1) and a countable family
of sequences {γn}∈N in ∆ such that the following property is satisfied:

For every point x ∈ S in a successor ordinal generation there exists a natural
number nx such that x belongs to the interior of the thread Tγnx (xnx , ynx) ⊂ Sk(ω1).

Proof. Suppose by contradiction that the result fails. Since S is separable,
there are only countably many ordinals α < ω1 such that the intersection of S
with generation Gα is nonempty. Hence, there must exist one successor ordinal
α0 + 1 such that for every countable collection of pairs

{
{xn, yn}

}
n∈N in Γα0 and

any countable family of sequences {γn}∈N in ∆, there exists a point in S ∩Gα0+1

that lies outside the interior of the thread Tγn(xn, yn) ⊂ Sk(α0 + 1) for all n ∈ N.
Since every point in S∩Gα0+1 belongs to the interior of a thread anchored at a

pair of points in Γα0 , by a standard transfinite induction argument we may find an
uncountable set of different points {pi}i∈I in S ∩Gα0+1 and an uncountable family
of different threads {Tγi(xi, yi)}i∈I with {xi, yi} ∈ Γα0 and γi ∈ ∆ for all i ∈ I,
such that pi belongs to the interior of the thread Tγi(xi, yi) for all i ∈ I. However,
this implies that the family {Tγi(xi, yi)

◦ ∩ S}i∈I is an uncountable collection of
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nonempty and open subsets of S which are pairwise disjoint, which contradicts
the separability of S. □

4.1.3.4. Proving the general case. We proceed now to prove the main result of
the section:

Proof of Theorem 4.1. Consider the complete skein Sk(ω1). We will prove
that it does not contain any non-singleton separable Lipschitz retracts.

We will proceed by contradiction. Let S be a separable subset of Sk(ω1) con-
taining at least two points. We may assume that S has no isolated points by
Proposition 4.18. Suppose there exists a Lipschitz retraction R : Sk(ω1) → S onto
S, and put K = ∥R∥Lip. We are going to find a specific thread T ∗ in Sk(ω1) such
that when restricting the map R to T ∗, the resulting K-Lipschitz function can be
transformed to yield a contradiction. Because of the length of the proof, we di-
vide it in two parts: The first part describes the process to define the problematic
thread T ∗, while the second part deals with the map R|T ∗ , and how to transform
it to arrive at a contradiction. We will also highlight important facts throughout
the proof to help in its readability.

1.- Defining the conflicting thread T ∗

We start by finding two points to anchor the thread T ∗:

Fact 1. There exist two points p and q in S closer than 1/2, and such that
there exists a successor ordinal β0 with p, q ∈ B(Sk(β0), 1/8)

◦ which satisfies that
Pβ0(p) ̸= Pβ0(q).

Moreover, the ancestor Pβ0(p) is in generation β0, and is contained in a thread
Tγ0

(
A0, B0

)
with

{
A0, B0

}
∈ Γβ0−1.

Proof of Fact 1. Define α0 as the least ordinal such that S ∩ Sk(α0) is
nonempty,

We divide the proof in two cases:
Case 1: There exist two different points p and q in B(Sk(α0), 1/8)

◦ ∩ S closer
than 1/2 such that Pα0(p) ̸= Pα0(q).

In this case, if the ordinal α0 is a successor ordinal, putting β0 = α0 we are
done, since by definition of α0 both Pα0(p) and Pα0(q) belong to generation Gα0 .

Suppose then that α0 is a limit ordinal. Since p and q belong to the ball
B(Sk(α0), 1/8)

◦, the ordinal

α1 = min{β < ω1 : {p, q} ⊂ B(Sk(β), 1/8)◦}
is less than α0. Both Pα1(p) or Pα1(q) are well defined and unique. Moreover, by
minimality, α1 must be a successor ordinal, and at least one of Pα1(p) or Pα1(q)
must belong to generation Gα1 . Therefore, we can put β0 = α1 and Fact 1 is
proven for Case 1.

Case 2: There exists a point A ∈ S∩Sk(α0) such that for all x ∈ B(A, 1/8)◦∩S
we have that Pα0(x) = A.
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Pβ0
(p)

Pβ0
(q)

d0

A0 B0

C1

C0

Figure 7. Thread of the skein Sk(β0) showing one possible arrange-
ment of the ancestors of p and q and choice of C0 and C1.

Notice that the above statement follows from negating the assumption of Case
1. In this case define the ordinal

η0 = min{η < ω1 : Pη(x) ̸= A for some x ∈ B(A, 1/8)◦ ∩ S},

Such an ordinal number must exist since A is not isolated in S by assumption.
Moreover, η0 must be a successor ordinal since every point in a limit ordinal
generation is the limit of the succession given by its previous (existing) ancestors.
Take now any point p ∈ B(A, 1/8)◦ ∩ S such that Pη0(p) ̸= A, and set q =
A. Putting β0 = η0, we have that both p and q belong to B(Sk(β0), 1/8)

◦ and
Pβ0(p) ̸= Pβ0(q) = q. Moreover, the ancestor Pβ0(p) belongs to generation Gβ0 by
minimality. □

With this in mind, we can apply Proposition 4.12 to the thread Tγ0(A0, B0)
and the point Pβ0(p), to find a compact subset C0 ⊂ Tγ0(A0, B0) with diameter
less than d

(
Pβ0(p), Pβ0(q)

)
such that Pβ0(p) ∈ C0 and C0 is open and closed in

Sk(β0). Put C1 = Sk(β0) \ C0. Then the point Pβ0(q) belongs to C1, and since C0

is compact and disjoint from the closed set C1, the distance d
(
C0, C1

)
is strictly

positive. Put d0 = d
(
C0, C1

)
> 0.

Figure 7 summarizes one possible layout of the elements we have defined so far
in the skein Sk(β0).

Now, the separation between the sets C0 and C1 allows us to use Remark 4.10
to obtain the following fact:

Fact 2. If T = [0, l] is a thread whose gaps are all smaller than d0/2K, there
cannot be any 2K-Lipschitz map F : T → Sk(β0) such that F (0) = Pβ0(p) ∈ C0

and F (l) = Pβ0(q) ∈ C1.
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Next, we define the subset Ŝ ⊂ Sk(ω1) using Lemma 4.21 such that the follow-
ing fact is satisfied:

Fact 3. The set Ŝ ⊂ Sk(ω1) is separable, it contains the set S, and for any
point x ∈ Ŝ and any ordinal number β such that x ∈ B(Sk(β), 1/8), the unique
ancestor Pβ(x) belongs to Ŝ.

To continue with the proof, since Ŝ is separable, by Lemma 4.22 we can
find a countable family of sequences {γn}n∈N in ∆, and a countable set of pairs
{(xn, yn)}n∈N in Sk(ω1)×Sk(ω1) such that, denoting by T n the thread Tγn(xn, yn) ⊂
Sk(ω1) for each n ∈ N, the countable family of threads T0 = {T n}n∈N satisfies
that any point x ∈ Ŝ belonging to a successor ordinal generation is contained in
the interior of at least one thread T nx for some nx ∈ N. For every n ∈ N, the
thread T n = Tγn(xn, yn) ∈ T0 has length 1, and so the open subsets given by
[xn, xn + 1/8)Tn and (yn − 1/8, yn]Tn are separable subsets that do not intersect.
Define for every n ∈ N two countable sets Dn

1 and Dn
2 such that Dn

1 is dense in
[xn, xn + 1/8)Tn and Dn

2 is dense in (yn − 1/8, yn]Tn .
Finally, we can define the countable family of threads given by

T =
⋃
n∈N

( ⋃
(x,y)∈Dn

1×Dn
2

{
[x, y]Tn

})
.

Notice that each thread in T0 has Lebesgue measure of at least 1/2. Therefore,
the measure of the threads in T is bounded below by 1/4. We can apply now
Theorem 4.9 with ε = 1/4 and 2K ≥ 1 to find a sequence γ∗ ∈ ∆ with the
following property:

Fact 4. There exists a sequence γ∗ = {γ∗
k}k∈N ∈ ∆ such that:

For any thread S of length lS whose sequence of gaps {CS
k }k∈N in decreasing

length order satisfies length(CS
k ) < γ∗

k for all k ∈ N, it holds that: For every K ′ ≤
2K, if there exists a K ′-Lipschitz function F : S → [x, y]Tn such that F (0) = x
and F (ls) = y, where n ∈ N and (x, y) ∈ Dn

1 ×Dn
2 ; then the thread S has a gap of

length greater than or equal to d(x, y)/K ′.
Moreover, without loss of generality we may choose γ∗ such that

γ∗
k < min

{
1

16K
,
d0
2K

}
for all k ∈ N.

Since the sequence γ∗ belongs to ∆, the associated thread Tγ∗(p, q) belongs
to the threading space Th(p, q), and is therefore a subset of Sk(ω1). Put T ∗ =
Tγ∗(p, q). This is the problematic thread we will use to reach a contradiction.
Recall that the length of the gaps of the thread T ∗ is given by the sequence
γ∗ ∈ ∆. Hence, we have the following result by the choice of γ∗ and Fact 2:
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Fact 5. There does not exist any 2K-Lipschitz map F : T ∗ → Sk(β0) such
that F (p) = Pβ0(p) and F (q) = Pβ0(q).

In the next section we will find a function in contradiction with this last fact.
The retraction R from Sk(ω1) onto S can be restricted to T ∗ to obtain a K-
Lipschitz map R|T ∗ : T ∗ → Ŝ such that R(p) = p and R(q) = q. This restriction
will be the starting point in the process to define the contradicting function.

2.- Transforming the map R|T ∗

We can only ensure that the image of the map R|T ∗ is contained in S, and so
the order of R|T ∗(T ∗) is less than the order of S, but it can still be higher than
β0. We are going to transform inductively the map R|T ∗ to reduce the order of its
image until we arrive at β0, where we will reach a contradiction.

In order to do this, we need the following result:

Claim 1. Let T ∗, Ŝ, K and β0 be defined as above. Let F : T ∗ → Ŝ be a
Lipschitz map such that ∥F∥Lip < 2K, and F (p) = Pβ(p) and F (q) = Pβ(q) for
some ordinal β ≥ β0. Then we have the three following results:

(A) If ord(F (T ∗)) is a limit ordinal then there exists an ordinal β̂ ≥ β0, and a
K-Lipschitz function F̂ : T ∗ → Ŝ such that F̂ (p) = Pβ̂(p), F̂ (q) = Pβ̂(q),
and ord(F̂ (T ∗)) < ord(F (T ∗)).

(B) If ord(F (T ∗)) is a successor ordinal α + 1 such that β < α + 1 then for
every ε > 0 such that ∥F∥Lip + ε < 2K, there exists a Lipschitz function
F̂ : T ∗ → Ŝ such that ∥F̂∥Lip < ∥F∥Lip + ε, F̂ (p) = Pβ(p), F̂ (q) = Pβ(q),
and ord(F̂ (T ∗)) ≤ α < ord(F (T ∗)).

(C) If ord(F (T ∗)) is a successor ordinal α+1 such that β = α+1, and β > β0,
then for every ε > 0 such that ∥F∥Lip + ε < 2K, there exists a Lipschitz
function F̂ : T ∗ → Ŝ such that ∥F̂∥Lip < ∥F∥Lip + ε, F̂ (p) = Pα(p),
F̂ (q) = Pα(q) and ord(F̂ (T ∗)) ≤ α < ord(F (T ∗)).

Before proving this claim let us discuss its implications: The map R|T ∗ satisfies
the general hypothesis of the claim with β = ord{p, q}. Notice as well that if a
function F satisfies either of the conditions (A), (B) or (C) then the resulting map
F̂ for any valid ε > 0 satisfies again the general conditions of the claim. In all
three cases, the order of the image of the map F̂ produced is an ordinal strictly
lower than the order of the image of F .

This means that putting F0 = R|T ∗ , we can define inductively K-Lipschitz
maps {Fn}n∈N such that

Fn+1 =

{
F̂n if Fn satisfies (A), (B) or (C),
Fn otherwise .
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We may choose any valid ε > 0 at the steps that require it. There must exist
n0 ∈ N such that Fn = Fn0 for all n ≥ n0. Indeed, otherwise the sequence
{ord(Fn)(T

∗)}n∈N is an infinite strictly decreasing sequence of ordinal numbers,
resulting in a contradiction with the well ordering of the ordinals.

Therefore, the map Fn0 : T
∗ → Ŝ is a Lipschitz map with ∥Fn0∥Lip < 2K such

that F (p) = Pβ(p) and F (q) = Pβ(q) for some β ≥ β0 that does not satisfy one
of (A), (B) or (C). Since it does not satisfy (A), we have that ord(Fn0)(T

∗) is
successor ordinal α + 1. This means that in order to fail (B), the ordinal α + 1
must equal β. In turn, since Fn0 does not meet the requirements of (C) either, we
conclude that β (that is, the ordinal such that Fn0(p) = Pβ(p), Fn0(q) = Pβ(q),
and the order of Fn0(T

∗)) equals β0.
In conclusion, Fn0 : T

∗ → Ŝ ∩ Sk(β0) is a Lipschitz map with ∥Fn0∥Lip < 2K
from the thread T ∗ = Tγ∗(p, q) into Sk(β0) such that Fn0(p) = Pβ0(p) and Fn0(q) =
Pβ0(q). This contradicts Fact 5, which leads to the desired contradiction. It only
remains to prove Claim 1.

Proof of Claim 1. We prove each statement separately:

Proof of (A). Put α = ord(F (T ∗)). Then α ≥ β. Since T ∗ is compact,
the image F (T ∗) is also compact in Sk(ω1). Therefore, there exists a point
x0 ∈ T ∗ such that F (x0) belongs to the limit generation Gα in Sk(ω1). Put
r0 = min{d(F (x0), Sk(β0)), 1/8}. Since β0 is a successor ordinal, the number r0 is
strictly positive.

Now, choose a finite set of points {xi}ni=1 ⊂ T ∗ such that

F (T ∗) ⊂
n⋃

i=1

B(F (xi), r0/2).

For each i = 1, . . . , n, the ordinal number

αi = min{γ < ω1 : d
(
F (xi), Sk(γ)

)
< r0/2}

is a successor ordinal strictly smaller than the order of F (T ∗). Hence, if β̂ =

max{αi : i = 1, . . . , n}, we have that β̂ < ord(F (T ∗)) and d
(
F (x), Sk(β̂)

)
< r0 for

all x ∈ T ∗. This implies that β̂ is greater than β0. Applying Corollary 4.19, since
r0 < 1/8, we have that the map

F̂ : T ∗ −→ Ŝ

x 7−→ Pβ̂

(
F (x)

)
is a K-Lipschitz map. It is well defined since the ancestor of order β̂ of each
point in F (T ∗) is unique, and the image of any point x ∈ T ∗ belongs to the set
Ŝ again since d

(
F (x), Sk(β̂)

)
< r0 for all x ∈ T ∗ (see Fact 3). We have then that
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F̂ (p) = Pβ̂(Pβ(p)) = Pβ̂(p), and similarly F̂ (q) = Pβ̂(q). Finally, the order of
F̂ (T ∗) is at most β̂ as well, so it is satisfied that ord(F̂ (T ∗)) < ord(F (T ∗)). □

Proof of (B). Put K = ∥F∥Lip. Suppose that the order of F (T ∗) is α + 1,
and that β < α+ 1. Since the image of F is in Ŝ and α+ 1 is a successor ordinal,
there exists a subsequence {nk}k∈N such that F (T ∗) ∩ Gα+1 = F (T ∗) \ Sk(α) is
contained in the union of threads

⋃
k∈N T

nk . Informally, the “problematic" part of
F (T ∗) is contained in this countable set of threads (without the extreme points,
since these always belong to a lower generation), which is a subfamily of the set
T0 we have considered in the definition of T ∗.

Hence, for any t ∈ T ∗ such that F (t) ∈ T nk(t) for some nk(t) ∈ N, we may find
an extended interval It in T ∗ containing t such that It is maximal for F and T nk(t) .
The extended interval It is actually of the form [at, bt]T ∗ with p ≤ at < bt ≤ q,
since if It contains both extremes p and q of T ∗, then necessarily {F (p), F (q)} =
{Pβ(p), Pβ(q)} ∈ Γα, so α = β, and thus It = [p, q]T ∗ = T ∗.

With this idea, since F (T ∗) is separable, we can define a countable family of
maximal intervals {[ai, bi]T ∗}i∈N in T ∗ such that F

(
[ai, bi]T ∗

)
is contained in T nk(i)

for all i ∈ N, and every point t ∈ T ∗ such that its image F (t) is in generation Gα+1

is contained in [ai, bi]T ∗ for some i ∈ N. To simplify the notation, we abuse it and
write nk(i) = i. Therefore, we will write that F

(
[ai, bi]T ∗

)
is contained in the thread

T i. Recall that the thread T i ∈ T0 belongs to the threading space Th(xi, yi) for
every i ∈ N. Again informally, we have identified a countable family of maximal
intervals in T ∗ that contain all the points whose image we need to change to prove
(B).

In the following Fact, we “correct" the image of this countable family of maxi-
mal intervals.

Fact 6. For every i ∈ N, there exists a Lipschitz function Fi : T
∗ → Ŝ with

∥Fi∥Lip ≤ ∥F∥+ε such that Fi(t) = F (t) for all t ∈ T ∗\[ai, bi]T ∗ and Fi(t) ∈ {xi, yi}
for all t ∈ [ai, bi]T ∗ .

Proof. Fix i ∈ N. Since the order of F (T ∗) is α + 1, we may work directly
on the skein Sk(α + 1). Here, the point F (ai), which belongs to the thread Ti, is
bound to either xi or yi in T i. To see this, notice that, since there are no gaps in
T ∗ of length greater than (2K)−1/8, by maximality of [ai, bi]T ∗ in Tγi(xi, yi), we
have that the distance from F (ai) to Sk(α + 1) \ T ∗ is smaller than 1/8. Hence,
by construction of the successor ordinal skein Sk(α + 1), the distance from F (ai)
to one of the two extremes of the thread T i is also smaller than 1/8, which implies
that F (ai) is bound to one of these extremes. Similarly, F (bi) is bound to either
xi or yi in T i. Suppose without loss of generality that F (ai) is bound to xi.

There are two possibilities: either F (bi) is bound to xi as well, or F (bi) is
bound to the other extreme point yi. If F (bi) is bound to xi, then we can apply
Proposition 4.16 and obtain Fi with the desired properties.
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F (ai)

F (bi)

xi

yi yi

xi = Fi(ai) = Fi(bi)

T i
⊂ Sk(α+ 1)

F (T ∗)

Sk(α)

Fi(T
∗)

Figure 8. If both F (ai) and F (bi) are bound to the same anchor
xi, we may define Fi by sending all points in [ai, bi]T ∗ to xi without
increasing the Lipschitz constant.

In Figure 8 we observe this first possibility, and the resulting map Fi according
to Proposition 4.16.

Suppose now that F (bi) is bound to yi in T i. We are going to show that there
is a gap Ci in [ai, bi]T ∗ with length greater than d(xi, yi)/(K + ε). Indeed, suppose
by contradiction there is no such gap.

We have that F (ai) belongs to the interval [xi, xi+1/8)T i , while F (bi) belongs
to (yi−1/8, yi]T i . Recall the definition (prior to Fact 4) of the dense and countable
subsets Di

1 ⊂ [xi, xi + 1/8)T i and Di
2 ⊂ (yi − 1/8, yi]T i in T i, which were used to

define the sequence of gaps of the thread T ∗. Since Di
1 is dense in [xi, xi + 1/8)T i ,

and Di
2 is dense in (yi−1/8, yi]T i , considering the subset [ai, bi]T ∗ of T ∗ as a thread,

and restricting F to this thread, we obtain by Proposition 4.13 that there exist two
points a′i, b

′
i ∈ [ai, bi]T ∗ , and two points (x′

i, y
′
i) ∈ Di

1 × Di
2 with x′

i < y′i, together
with a (K + ε)-Lipschitz function F : [a′i, b

′
i]T ∗ → Tγi(xi, yi) such that F (a′i) = x′

i

and F (b′i) = y′i. Notice that since the length of T i is 1, and the points x′
i and y′i

belong to [xi, xi + 1/8)T i and (yi − 1/8, yi]T i respectively, the distance d(x′
i, y

′
i) is

greater than d(xi, yi).
Finally, since we are assuming that there is no gap in [ai, bi]T ∗ with length

greater than d(xi, yi)/(K + ε), we can apply Proposition 4.5 and assume that F
has its image contained in the thread [x′

i, y
′
i]T i , which belongs to the family T

we have used to define γ∗. Since the thread [a′i, b
′
i]T ∗ is a subinterval of T ∗, its

decreasing sequence of gaps {Ci
n}n∈N also satisfies that length(Ci

n) < γ∗
n for all

n ∈ N. Hence, the existence of the function F whose Lipschitz constant does not
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F (ai)

F (bi)

xi

yi yi = Fi(bi) = Fi(di)

xi = Fi(ai) = Fi(ci)

T i
⊂ Sk(α+ 1)

F (T ∗)

Sk(α)

Fi(T
∗)

F (ci)

F (di)

Figure 9. If F (ai) and F (bi) are bound to different anchors, then
by choice of T ∗ there must exist a gap (ci, di) in [ai, bi]T ∗ big enough
to bridge the distance from xi to yi with a minimal increase of the
Lipschitz constant.

exceed K+ε < 2K, implies by Fact 4 that there is a gap Ci
n0

in [a′i, b
′
i]T ∗ such that

length(Ci
n0
) ≥ d(x′

i, y
′
i)/(K + ε).

The fact that the gap Ci
n0

is also a gap of [ai, bi]T ∗ and that d(x′
i, y

′
i) ≥ d(xi, yi)

results in the desired contradiction.
Hence, there exist two points ci, di ∈ [ai, bi]T ∗ with ci < di such that (ci, di) ∩

(ai, bi)T ∗ = ∅ and d(ci, di) > d(xi, yi)/(K + ε). Define now Fi : T
∗ → Ŝ by

Fi(t) =


F (t) if t ∈ T ∗ \ [ai, bi]T ∗ ,

xi if t ∈ [ai, ci]T ∗ ,

yi if t ∈ [di, bi]T ∗ .

Using Proposition 4.2, maximality of [ai, bi]T ∗ for F and Tγi(xi, yi), and the fact
that F (ai) and F (bi) are bound to xi and yi respectively in Tγi(xi, yi), it is straight-
forward to check that Fi satisfies ∥Fi∥Lip ≤ K+ε (we use in fact the same argument
as in the proof of Proposition 4.16).

Figure 9 intuitively summarizes the second possibility. Notice that in both
Figures 8 and 9 the resulting map Fi avoids the thread T i, thus reducing the order
of the image of the maximal interval [ai, bi]T ∗ . □

To finish the proof of part (B) of the Claim, for each t ∈ T ∗ such that t ∈
[ai, bi]T ∗ for some i ∈ N, define i(t) ∈ N as the least of the natural numbers such
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that t ∈ [ai(t), bi(t)]T ∗ . Now, define F̂ : T ∗ → Ŝ by

F̂ (t) =

F (t), if t ∈ T ∗ \
(⋃

i∈N[ai, bi]T ∗

)
,

Fi(t)(t), if t ∈ [ai, bi]T ∗ for some i ∈ N.

To check that ∥F̂∥Lip ≤ K + ε, we only need to consider t, s ∈ T ∗ with t < s and
such that t ∈ [ai(t), bi(t)]T ∗ and s ∈ [ai(s), bi(s)]T ∗ with i(t) ̸= i(s). We have then the
following inequalities:

d
(
F̂ (t), F̂ (s)

)
= d
(
Fi(t)(t), Fi(s)(s)

)
≤ d
(
Fi(t)(t), yi(t)

)
+ d(yi(t), xi(s)) + d

(
xi(s), Fi(s)(s)

)
≤ d
(
Fi(t)(t), Fi(t)(bi(t)

))
+ d
(
F (bi(t)), F (ai(s))

)
+ d
(
Fi(s)(ai(s)), Fi(s)(s)

)
≤
(
K + ε

)(
(bi(t) − t) + (ai(s) − bi(t)) + (s− ai(s))

)
=
(
K + ε

)
(s− t).

Since d
(
F̂ (p), F̂ (q)

)
= d

(
Pβ(p), Pβ(q)

)
≤ d(p, q) = aT ∗ , we can apply Proposition

4.2 to obtain the desired Lipschitz constant for F̂ and finish the proof of (B).
□

Proof of (C). The proof of the third case (C) resembles the proof of (B).
The difference is that in this case at least one of F (p) and F (q) is in generation
Sk(α + 1), which is at the same time the order of F (T ∗). Intuitively, the idea of
the proof of this last part is to first transform F to lower the order of the image
of p and/or q. When we have done this, then we may simply apply the case (B)
to the resulting map, thus obtaining a Lipschitz function whose image has a lower
order than F .

Since F (p) = Pα+1(p), there exists n ∈ N such that xn = Pα(p), yn = Qα(p),
and F (p) belongs to the thread T n = Tγn

(
Pα(p), Qα(p)

)
∈ T0. We start by selecting

p′ ∈ T ∗ such that [p, p′]T ∗ is maximal for F and the thread T n.
There are two possibilities: either p′ = q, or the point p′ is different from

q. If p′ = q, since Pα(p) ̸= Pα(q), we have that the range of F is contained
in the single thread T n = Tγn

(
Pα(p), Pα(q)

)
, and moreover F (p) = Pα+1(p) and

F (q) = Pα+1(q) belong to this same thread. Since the distance from p and q
to Sk(α) is less than 1/8, we have that F (p) belongs to

[
Pα(p), Pα(p) + 1/8

)
Tn

and F (q) belongs to
[
Pα(q) − 1/8, Pα(q)

)
Tn . Hence, we can apply Propositions

4.13 and 4.5 as we did in the proof of (B) to obtain two points a′, b′ ∈ T ∗ with
a′ < b′ and two points x′, y′ ∈ Dn

1 ×Dn
2 together with a (K + ε)-Lipschitz function

F : [a′, b′]T ∗ → [x′, y′]Tn with F (a′) = x′ and F (b′) = y′. Since the thread [x′, y′]Tn

belongs to the family T , by Theorem 4.9, there exists a gap C = (c, d) in T ∗ such
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that d(c, d) > d
(
Pα(p), Pα(q)

)
/(K + ε). Defining F̂ : T ∗ → Ŝ as

F̂ (t) =

{
Pα(p), if t ∈ [p, c]T ∗ ,

Pα(q), if t ∈ [d, q]T ∗ ,

finishes the proof of (C) if p′ = q, without need for further discussion.
Hence, suppose now that p′ is not q. We are going to define a (K + ε/2)-

Lipschitz function F 1 : T
∗ → Ŝ such that F 1(p) = Pα(p) and F 1(t) = F (t) for all

t ∈ (p′, q]T ∗ .
In the space Sk(α + 1), the point F (p) = Pα+1(p) is bound to Pα(p) in T n

because the distance from p to Sk(α) is less than 1/8. In addition, the point F (p′)
is also bound to one of the extremes Pα(p) or Qα(q) in T n. This is because there
are no gaps in T ∗ bigger than (2K)−1/8 and [p, p′]T ∗ is maximal for F and T n.
We may consider again two possibilities: either F (p′) is bound to Pα(p) as well, or
F (p′) is bound to Qα(p).

If F (p′) is bound to Pα(p), we can use Proposition 4.16 to define a K-Lipschitz
function F 1 : T

∗ → Ŝ with F 1(t) = Pα(p) for all t ∈ [p, p′]T ∗ , and F 1(t) = F (t) for
all t ∈ (p′, q]T ∗ ; as desired.

Suppose then that F (p′) is bound to Qα(p). Then, since F (p) belongs to the
interval

[
Pα(p), Pα(p)+1/8

)
Tn and F (p′) ∈

[
Qα(p)−1/8, Qα(q)

)
Tn , we can repeat

the process we did in the proof of (B) and in the case when p′ = q to find a gap
C = (c, d) in [p, p′]T ∗ such that d(c, d) > d

(
Pα(p), Qα(p)

)
/(K + ε/2). Again, we

use this gap to define F 1 : T
∗ → Ŝ by

F 1(t) =


Pα(p), if t ∈ [p, c]T ∗ ,

Qα(p), if t ∈ [d, p′]T ∗ ,

F (p), if t ∈ (p′, q]T ∗ .

The Lipschitz constant of F 1 is less than or equal to (K + ε/2) as desired.
We may repeat the same argument to find a point q′ ∈ T ∗ with p′ < q′, together

with a second (K + ε/2)-Lipschitz function F 2 : T
∗ → Ŝ such that F 2(q) = Pα(q)

and F 2(t) = F (t) for all t ∈ [p, q′)T ∗ . We combine F 1 and F 2 to form yet another
Lipschitz function F : T ∗ → Ŝ in the following way:

F (t) =


F 1(t), if t ∈ [p, p′]T ∗ ,

F (t), if t ∈ (p′, q′)T ∗ ,

F 2(t), if t ∈ (q′, q]T ∗ .

It is again straightforward to prove that the Lipschitz constant of F is less than
or equal to K + ε/2. It is possible that the order of F (T ∗) is already the desired
ordinal α < α + 1, in which case the proof is finished. However, it might be that
there are points in F (T ∗) in the generation Gα+1. If this is the case, notice that the
function F satisfies the hypothesis of the claim and the conditions of (B). Hence,
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we may use the already proven case (B) with ε/2 > 0 to find a (K + ε)-Lipschitz
function F̂ : T ∗ → Ŝ such that F̂ (p) = Pα(p), F̂ (q) = Pα(q), and the order of
F̂ (T ∗) is α. The proof is now finished. □

We have proven the three parts of the claim. □

Having proven the claim, the theorem holds by the discussion after the state-
ment of the claim.

□

4.2. Failing the Lipschitz RP(Λ,Λ)

In the previous section we have constructed a metric space which fails the
Lipschitz SRP in a strong sense. In this section we prove that for every infinite
cardinal number Λ, we can find a metric space that fails the Lipschitz RP(Λ,Λ).
Given a cardinal Λ, we want to construct a metric space M such that there exists
a subset with density character Λ which is not contained in any subset of M with
density character Λ that is a Lipschitz retraction of M .

Set Γ = {γ = (γα)α∈Λ : 0 < γα < 1/2, ∀α ∈ Λ}. For every γ ∈ Γ we are going
to define a subset Mγ ⊂ [0, 1]Λ ⊂ ℓ∞(Λ) in the following way:

Mγ = {(pα)α∈Λ ∈ [0, 1]Λ : pα ∈ [0, 1/2− γα] ∪ [1/2 + γα, 1], ∀α ∈ Λ},

endowed with the metric inherited from ℓ∞(Λ). Notice that if for a subset A ⊂ Λ we
write the point eA = ((eA)α)α∈Λ (called a vertex ) as the point such that (eA)α = 1
if α ∈ A, and (eA)α = 0 if α /∈ A; then eA ∈ Mγ, for any choice of A ⊂ Λ and
γ ∈ Γ. If A = {α} is a singleton, we write e{α} = eα. Notice also that e∅ = 0 ∈ M .

As we did with in the construction of threading spaces, set for each γ ∈ Γ:

M̂γ = {(p, γ) : p ∈ Mγ, p ̸= eA, for anyA ⊂ Λ},
and consider

M =

(⋃
γ∈Γ

M̂γ

)
∪ {eA}A⊂Λ.

Alternatively, the set M can be realized by considering the disjoint union of each
Mγ and then identifying each vertex eA with its corresponding copy in every Mγ.
We will define a metric d on M “step-by-step". Let p, q ∈ M . If p, q ∈ M̂γ∪{eA}A⊂Λ

for a fixed γ ∈ Γ, then

d(p, q) = ∥p− q∥∞,

where we make the identification p = (p, γ) ∈ M̂γ for any point in M̂γ. If p, q ∈ M

belong to different M̂γ1 , M̂γ2 respectively, then
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d(p, q) = inf
A⊂Λ

{d(p, eA) + d(eA, q)}.

Notice that if a point p is not a vertex, then there exists a coordinate α ∈ Λ such
that 0 < pα < 1, and so d(p, eA) ≥ min{pα, 1 − pα} > 0 for every A ⊂ Λ. This
shows that d(p, q) = 0 if and only if p = q. The triangle inequality follows directly
from the definition of the metric d.

Also note that for any p ∈ M and any α ∈ Γ, the coordinate pα cannot be
equal to 1/2 by construction of M .

4.2.1. Arc-connected components of M . The metric space M as defined
above is not arc-connected. Indeed, the points eA and eB are not connected by an
arc if A ̸= B ⊂ Λ. We will prove this in detail in this section. Let us first define
precisely the concepts we will be using:

Recall that in a metric space M , an arc between two points p, q ∈ M is a
continuous map F : [a, b] → M with a < b, such that F (a) = p and F (a) = q. We
say that two points p, q are arc-connected if there exists an arc between p and q.
This defines an equivalence relation in M . Moreover, if F is an arc that connects
p and q, then it is straightforward to see that p is arc-connected with any point in
F ([a, b]). Therefore, given C ⊂ M an equivalence class of this relation in M , we
have that any two points in C are connected by an arc whose range is contained in
C. We call the equivalence classes the arc-connected components of M , and they
form a partition of M . M is said to be arc-connected if M is the only equivalence
class.

Note that if p, q ∈ M are connected by an arc F : [a, b] → M , we can assume
without loss of generality that a = 0 and b = 1.

Lemma 4.23. Let p, q ∈ M be two arc-connected points in M such that p ∈ Mγ1

and q ∈ Mγ2 with γ1 ̸= γ2 ∈ Γ. Then, for every arc F : [0, 1] → M connecting p
and q there exists t0 ∈ (0, 1) and A ⊂ Λ such that F (t0) = eA.

Proof. Consider

t0 = min{t ∈ [0, 1] : F (t) /∈ M̂γ1},

which exists by continuity of F and the fact that F (1) = q /∈ M̂γ1 . We claim that
F (t0) is a vertex. Indeed, suppose there exists γ0 ∈ Γ such that F (t0) ∈ M̂γ0 . By
definition of t0, we have that γ0 ̸= γ1. The set M̂γ0 is open in M , so by continuity of
F , there exists ε > 0 such that F ((t0−ε, t0+ε)) ⊂ M̂γ0 . However, this contradicts
the minimality of t0. Therefore, F (t0) = eA for some A ⊂ Λ. □

Proposition 4.24. Let M be the metric space as defined above for the cardinal
Λ. Then, for each A ̸= B ⊂ Λ, the points eA and eB are inside different arc-
connected components of M .
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Proof. Suppose there is an arc F : [0, 1] → M with F (0) = eA and F (1) = eB.
Consider the following points:

a0 = max{t ∈ [0, 1] : F (t) = eA}
b0 = min{t ∈ [0, 1] : F (t) = eB}

which exist by continuity of F . There are two possibilities: either there exists
γ0 ∈ Γ such that F (a0, b0) ⊂ M̂γ0 , or there exist t1 < t2 ∈ (a0, b0) and γ1 ̸= γ2 ∈ Γ

such that F (t1) ∈ M̂γ1 and F (t2) ∈ M̂γ2 .
Notice that in the second case, the restriction of F to [t1, t2] forms an arc

between F (t1) and F (t2), so by the previous lemma there is r ∈ (t1, t2) and C ⊂ Λ
such that F (r) = eC . Taking the minimum over all such r ∈ (a0, b0) yields a point
b∗0 ∈ (a0, b0) and B∗ ⊂ Λ such that F (b∗0) = eB∗ and F (a0, b

∗
0) is contained in a

M̂γ∗
0

for some γ∗
0 ∈ Γ. Moreover, B∗ ̸= A by maximality of a0.

In either case, without loss of generality we can assume that F (0, 1) ⊂ M̂γ0

for some γ0 ∈ Γ. Since A ̸= B, we may assume without loss of generality that
there exists an α ∈ B \ A. Then (eA)α = 0 and (eB)α = 1. For each α ∈ Λ, the
projection P γ0

α : M̂γ0 ∪ {eA : A ⊂ Λ} → [0, 1] given by Pα(p) = pα, is a continuous
map. Therefore, the composition map F = Pα◦F : [0, 1] → [0, 1] is continuous too,
and satisfies that F (0) = 0 and F (1) = 1. Therefore, there exists t∗ ∈ (0, 1) such
that F (t∗) = 1/2. However, this means that the α-th coordinate of F (t∗) ∈ M̂γ∗

is equal to 1/2, which is a contraction. □

Thanks to this last result, we can properly define for each A ⊂ Λ the arc-
connected component CA to be the arc-connected component of M that contains
the vertex eA. Moreover, given a point p ∈ M̂γ for some γ ∈ Γ, it is straightforward
to see that there exists a (unique) vertex eA such that p ∈ CA. Indeed, we have
that

CA = {(p, γ) ∈ M : |pα − (eA)α| < 1/2, ∀α ∈ Λ, γ ∈ Γ} ∪ {eA}.
For convenience, we write C{α} = Cα for every α ∈ Λ, and C∅ = C0.

4.2.2. Non-existence of Lipschitz retracts of cardinality Λ containing
a set of vertices. We now prove that certain subsets of M with density character
Λ are not contained in any subset of the same density character which is a Lipschitz
retract of M .

Theorem 4.25 ([25]). Let Λ be an infinite cardinal. There exists a metric space
M and a subspace N ⊂ M with density character Λ such that every intermediate
subset containing N with density character Λ is not a Lipschitz retract of M .
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Proof. Let M be the metric space we have defined in this section associated
with the cardinal Λ. Put

N =

( ⋃
α∈Λ

eα

)
∪ {0},

which clearly satisfies dens(N) = Λ. Let S be a subset of M such that N ⊂ S and
dens(S) = Λ, and let K ≥ 1. We are going to prove that S is not a K-Lipschitz
retract of M .

Since dens(S) = Λ, there exists a subset Γ′ ⊂ Γ with card(Γ′) = Λ such that

S ⊂
( ⋃

γ∈Γ′

M̂γ

)
∪ {eA : A ⊂ Λ}.

We write Γ′ = (γβ)β∈Λ and γβ = (γβ
α)α∈Λ for β ∈ Λ.

Define γ∗ ∈ Γ as follows: γ∗
α = (2K)−1γα

α for each α ∈ Λ. We obtain directly
that γ∗ /∈ Γ′. Now, suppose that F : M → S is a K-Lipschitz retraction onto
S. The image of an arc-connected set under a continuous function is still arc-
connected, so in particular, F (Cα) ⊂ Cα, since we know that F (eα) = eα for every
α ∈ Λ. By the same argument, we have that F (C0) ⊂ C0.

Consider now the point p∗ =
((

1/2−γ∗
α

)
α∈Λ, γ

∗
)

∈ M̂γ∗ . Since each coordinate

of p∗ is less than 1/2, we have that p∗ ∈ C0, which in turn implies that F (p∗) ∈ C0.
There are two possibilities: either F (p∗) = 0, or there exists a β0 ∈ Λ such that
F (p∗) ∈ C0 ∩ M̂γβ0 .

Suppose first that F (p∗) = 0. Choose any β0 ∈ Λ. The point q∗ =
(
q, γ∗) ∈

M̂γ∗ defined by qα = 1/2− γ∗
α if α ̸= β0 and qβ0 = 1/2 + γ∗

β0
satisfies q∗ ∈ Cβ0 , so

F (q∗) ⊂ Cβ0∩S. However, now we have that d(p∗, q∗) = 2γ∗
β0

< K−1γβ0

β0
< K−11/2,

and on the other hand

d(F (p∗), F (q∗)) > d(0, F (q∗)) > 1/2,

which contradicts the fact that F is K-Lipschitz.
Suppose now that there exists a β0 ∈ Λ such that F (p∗) ∈ C0∩M̂γβ0 . Consider,

as in the other case, the point q∗ =
(
q, γ∗) ∈ M̂γ∗ defined by qα = 1/2−γ∗

α if α ̸= β0

and qβ0 = 1/2 + γ∗
β0

. Similarly, we have that q∗ ∈ Cβ0 , and d(p∗, q∗) < K−1γβ0

β0
.

Since F (q∗) ∈ Cβ0 ∩S and F (p∗) ∈ M̂γβ0 , we have that the distance between F (p∗)

and F (q∗) is bigger than the distance from F (p∗) to Cβ0 ∩ M̂γβ0 . Looking at the
coordinate β0 of p∗, we have that

(
F (p∗)

)
β0

< 1/2− γβ0

β0
and the coordinate β0 of

any point in Cβ0 ∩ M̂γβ0 is bigger than 1/2 + γβ0

β0
. Therefore, we obtain that

2γβ0

β0
< d
(
F (p∗), F (q∗)

)
< Kd(p∗, q∗) < γβ0

β0
,

a contradiction. □
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4.3. Open problems

For the open problems related to this chapter, we present two kinds of open
problems related to the two constructions we have discussed.

On the one hand, we do not know the behaviour of the Lipschitz-free spaces
associated to the two classes of metric spaces we have constructed. They could
provide counterexamples to Problem 3.20.

Problem 4.26. Does the Lipschitz-free space of the skein space Sk(ω1) have
the SCP?

Problem 4.27. Given a cardinal Λ, does the Lipschitz-free space of the metric
space constructed in Theorem 4.25 have the CP (Λ,Λ)?

Notice that in general, we cannot obtain Lipschitz retractions from linear pro-
jections in Lipschitz-free spaces. For instance, it is not difficult to show that the
Lipschitz-free space of any threading space we used to construct the skein space
admits a commutative 1-projectional skeleton. However, threading spaces them-
selves do not have the Lipschitz SRP. This was shown in more detail in Remark
3.8 in [25].

In [4], Banakh, Vovk and Wójcik construct a class of connected complete metric
spaces where every separable subset is disconnected. Such metric spaces clearly
satisfy that every non-trivial separable subset is not a Lipschitz retract, and thus,
they are also natural candidates to produce Lipschitz-free spaces without the SCP.

On the other hand, we may ask as well if the examples we have constructed
can be generalized and improved.

Problem 4.28. Given an uncountable cardinal Λ, does there exist a complete
metric space such that any non-trivial subset of density character strictly smaller
than Λ is not a Lipschitz retract?

The techniques we used in the construction of the skein space do not appear
to be easily adaptable to uncountable cardinals. A complete metric space with
this property would yield a stronger result than both Theorems 4.1 and 4.25. A
weaker version of the previous question would also improve Theorem 4.25:

Problem 4.29. Given an uncountable cardinal Λ, does there exist a complete
metric space without the Lipschitz RP(α, β) for all α ≤ β strictly smaller than Λ?

We do not know if the metric space failing the Lipschitz RP(Λ,Λ) constructed
in 4.25 has the Lipschitz RP(α, β) for some α ≤ β smaller than Λ.



CHAPTER 5

Local complementation in metric spaces

We turn our attention to the concept of local complementation, introduced
by Kalton in [31] for Banach spaces. Divided into two sections, the first goal of
this chapter is to extend this concept to the setting of metric spaces naturally,
by describing the relationship between local complementation and Lipschitz maps.
This first section is short and expository.

In the second section, we show that, as in the Banach space case, every metric
space has a rich structure of locally complemented subsets for any given density
character.

5.1. Local complementation and linear extension operators

Let us start with the standard definition of local complementation in Banach
spaces:

Definition 5.1. Let X be a Banach space and λ ≥ 1. We say that a subspace
Y ⊂ X is λ-locally complemented in X if for every finite-dimensional subspace
F ⊂ X and every ε > 0 there exists a linear operator T : F → Y with ∥T∥ ≤ λ
such that ∥Tf − f∥ < ε∥f∥ for all f ∈ Y ∩ F .

We say that Y is locally complemented in X if Y is λ-locally complemented in
X for some λ.

Note that the Principle of Local Reflexivity implies that every Banach space
is 1-locally complemented in its bidual.

Several equivalent formulations of this concept are known in the literature. We
include the most important and the most relevant to our discussion in the following
result. The proof of these equivalent formulations can be found in [31, 13, 19].

Theorem 5.2. Let X be a Banach space, Y ⊂ X a linear subspace, and λ ≥ 1.
The following statements are equivalent:

(1) Y is λ-locally complemented in X.
(2) There exists a linear projection P : X∗ → Y ⊥ such that ∥IdX∗ − P∥ ≤ λ.
(3) Y ∗∗ is λ-complemented in X∗∗ in its natural embedding.
(4) Y has the Compact Extension Property in X, i.e.: for every Banach space

Z and every linear compact operator K : Y → Z, there exists a compact
operator K̂ : X → Z that extends K and such that ∥K̂∥ ≤ λ∥K∥.

(5) There exists a linear extension operator E : Y ∗ → X∗ with ∥E∥ ≤ λ.
83
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(6) There exists a linear extension operator E : Lip0(Y ) → Lip0(X) with
∥E∥ ≤ λ.

The equivalence between (1) and (6) in Theorem 5.2 shows that, even though
local complementation is a linear concept, it is characterized by a relationship
between spaces of Lipschitz functions. Therefore, we can extend this concept
naturally to the metric space setting:

Definition 5.3. Let M be a metric space and let λ ≥ 1. We say that a
subset N is λ-locally complemented in M if there exists a linear extension operator
E : Lip0(N) → Lip0(M) with ∥E∥ ≤ λ. We say that N is locally complemented if
it is λ-locally complemented for some λ ≥ 1.

If N is a Lipschitz retract of M and R : M → N is a Lipschitz retraction, the
operator E : Lip0(N) → Lip0(M) given by Ef = f ◦ R for every f ∈ Lip0(N)
is a linear extension operator with ∥E∥ = ∥R∥Lip. Therefore, it holds that every
Lipschitz retract is locally complemented.

In metric spaces, it is straightforward to show that the converse does not hold:
Consider M = [0, 1] ⊂ R with the usual metric. Then the set N = {0, 1} is
1-locally complemented, since the linear extension operator given by linear inter-
polation on [0, 1] does not increase the Lipschitz constant. However, N is not a
Lipschitz retract of M since M is connected and N is not.

The answer is less obvious for linear subspaces of Banach spaces. We have the
following result:

Proposition 5.4. Let X be a Banach space and let Y ⊂ X be a linear sub-
space. Suppose that Y is locally complemented in X. If Y is a Lipschitz retract of
its bidual Y ∗∗, then Y is a Lipschitz retract of X.

Proof. By (3) in Theorem 5.2, there exists a linear projection P : X∗∗ → Y ∗∗.
If R : Y ∗∗ → Y is a Lipschitz retraction, the restriction of the composition map
(R ◦ P )|X : X → Y is a Lipschitz retraction. □

As discussed in Chapter 2, Kalton showed in [30] that there exists a (non-
separable) Banach space which is not a Lipschitz retract of its bidual. Since every
Banach space is locally complemented in its bidual, the nontrivial result of Kalton
produces an example of a locally complemented space which is not a Lipschitz
retract.

5.2. The local CP(Λ,Λ) in metric spaces

With a natural definition of local complementation in metric spaces, we can
study local concepts analogous to the Lipschitz Retractional Properties and the
Linear Complementation Properties:

Definition 5.5. Given α, β two cardinal numbers with α ≤ β, we say that a
metric space M has the (α, β) Local Complementation Property (Local CP(α, β)
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for short), if for every closed subset N ⊂ M with dens(N) = α there exists another
subset S that contains N , such that dens(S) ≤ β and S is locally complemented
in M . We say that M has the Local Separable Complementation Property (Local
SCP) if it has the Local CP(ℵ0,ℵ0).

Lindenstrauss and Tzafriri proved in [40] that if a Banach space X is not a
Hilbert space, then it contains a closed linear subspace which does not satisfy
the Compact Extension Property in X. Therefore, by (4) in Theorem 5.2, in
every non-Hilbert Banach space we can find a linear subspace which is not locally
complemented. However, in [26], Heinrich and Mankiewicz showed using Model
Theory that every Banach space X has that Local CP(Λ,Λ) for every cardinal
Λ ≤ dens(X). Later, in [48], Sims and Yost proved the same result with a different
approach.

The purpose of this section is to extend this result to the metric space setting.
We will do so by adapting the techniques from [48] to this more general framework.
We start by proving an auxiliary statement analogous to Lemma 1 in [39].

Lemma 5.6 ([25]). Let M be a bounded complete metric space. Let F ⊂ M be a
finite subset of M , and let k ∈ N and 0 < ε ≤ infp ̸=q∈Fd(p, q) be given. Then there
exists a finite subset Z ⊂ M with F ⊂ Z such that for every ε-separated subset
E ⊂ M with F ⊂ E and card(E \F ) ≤ k there is a Lipschitz map L : E → Z with
∥L∥Lip ≤ 1 + ε and L(f) = f for all f ∈ F .

Proof. Write R = diam(M) and F = {f1, . . . , fn}. We may assume that
ε < 1. Consider E ⊂ M a ε-separated subset with F ⊂ E and card(E \ F ) ≤ k.
We can write this set as E = {f1, . . . , fn, pE1 , . . . , pElE} with lE ≤ k. Consider now
the real valued vector:

aE = (d(f1, p
E
1 ), . . . , d(f1, p

E
lE
), . . . , d(pElE , p

E
1 ), . . . , d(p

E
lE
, pElE)) ∈ R(n+lE)lE .

Since M has diameter R < ∞, the point aE belongs to RB
ℓ
(n+lE)lE∞

. Hence, if we
set

C =
k⊔

l=1

RB
ℓ
(n+l)l
∞

,

that is, the disjoint union of RB
ℓ
(n+l)l
∞

for l = 1, . . . , k, then for every set E ⊂ M

with F ⊂ E and card(E \ F ) ≤ k, the vector aE belongs to C. Since we are
working with a finite disjoint union, we can endow C with a metric d∞ such that
C is compact, the restriction of this metric to each RB

ℓ
(n+l)l
∞

coincides with the
metric given by the supremum norm, and each RB

ℓ
(n+l)l
∞

is separated at least by ε

from its complementary in C. Since C is compact, the subset

AF = {aE ∈ C : F ⊂ E and card(E \ F ) ≤ k} ⊂ C
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is totally bounded in C. Hence, given ε > 0 there exist {E1, . . . , Es} with F ⊂ Ej

and card(Ej \ F ) ≤ k such that AF =
⋃s

j=1B∞(aEj
, ε2). Set Z =

⋃s
j=1Ej. Let us

prove that Z satisfies the thesis of the Lemma.
Clearly, Z is finite and contains F . Consider any ε-separated subset E ⊂ M

with F ⊂ E and card(E \ F ) ≤ k. There exists a j0 ∈ {1, . . . , j} such that
d∞(aE, aEj

) ≤ ε2 and Ej ⊂ F . Moreover, since aE and aEj
are closer than ε, they

must belong to the same ball RB
ℓ
(n+l0)l0∞

, so d∞(aE, aEj
) = ∥aE − aEj

∥∞ ≤ ε2, and
card(Ej) = card(E) = n+ l0. Thus, we can write E = {f1, . . . , fn, pE1 , . . . , pEl0} and
Ej0 = {f1, . . . , fn, p

Ej0
1 , . . . , p

Ej0
l0

}.
Define now L : E → Z by L(f) = f if f ∈ F , and L(pEi ) = p

Ej0
i for i = 1, . . . , l0.

The map L satisfies L(f) = f for all f ∈ F by definition, so it only remains to
check that it is (1 + ε)-Lipschitz. Since L is the identity on F , it is sufficient
to check the Lipschitz constant for pairs of points x, y ∈ E where x /∈ F . Then
x = pEi1 for some 1 ≤ i1 ≤ l0. If y = pEi2 for some 1 ≤ i2 ≤ l0, then

d(L(x), L(y)) = d(p
Ej0
i1

, p
Ej0
i2

)− d(pEi1 , p
E
i2
) + d(pEi1 , p

E
i2
)

≤ ∥aEj0
− aE∥∞ + d(pEi1 , p

E
i2
) ≤ εε+ d(pEi1 , p

E
i2
) ≤ (1 + ε)d(x, y),

using the fact that E is ε-separated. If y ∈ F , then the inequality is proved
similarly. We conclude that ∥L∥Lip ≤ 1 + ε, and the proof is complete. □

Let us note two things about the previous lemma: first, we have restricted
ourselves to bounded metric spaces, and secondly, we need the set E to be ε-
separated for some ε > 0. The boundedness problem, although it has an effect
on the construction of the linear extensions in the proof of Theorem 5.8 for un-
bounded metric spaces, is easy to work around as we will see. However, to solve
the separation issue we need to alter the construction in a more meaningful way:
instead of defining linear extensions to the whole metric space M , we will extend
functions to some dense subset of M that has certain separation properties. The
dense subset we will use is well defined thanks to the following lemma.

Lemma 5.7 ([25]). Let M be a complete metric space and (Fn)
∞
n=1 be a sequence

of finite subsets of M with Fn ⊂ Fn+1 for all n ∈ N, and let (εn)∞n=1 be a decreasing
sequence of positive real numbers such that εn < inf p̸=q∈Fn d(p, q). Then there exists
a sequence of sets (Dn)

∞
n=1 with the following properties:

(i) Dn ⊂ Dn+1 for all n ∈ N,
(ii) Fn ⊂ Dn for all n ∈ N,
(iii) Dn ∪ Fn+k is εn+k-separated for all n ∈ N and k ≥ 0,
(iv) D =

⋃
n∈N Dn is dense in M ,

Proof. Consider the family of sets

A1 = {D ⊂ M : F1 ⊂ D, D ∪ F1+k is ε1+k-separated ,∀k ≥ 0}.
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Since (Fn)
∞
n=1 is increasing and Fn is at least εn-separated, the set F1 ∈ A1, so

A1 is non-empty. Consider now a chain of subsets (Cα)α∈I in A1. If we define
C =

⋃
α∈I Cα, then Cα ⊂ C and C ∈ A1, so it is an upper bound for the chain.

By Zorn’s Lemma, we can choose D1 ∈ A1 to be maximal for the inclusion.
Suppose we have defined Dn−1, then we define

An = {D ⊂ M : Dn−1 ∪ Fn ⊂ D, D ∪ Fn+k is εn+k-separated ,∀k ≥ 0}.
Note that Dn−1 ∪ Fn ∈ An, so An ̸= ∅. Arguing as before, we can choose a
maximal set Dn ∈ An. Let (Dn)

∞
n=1 be the sequence of sets obtained by this

inductive process. Let us check that it satisfies properties (i)-(iv). The first three
properties are clearly satisfied by definition of An. It only remains to check that
D =

⋃
n∈N Dn is dense in M . Suppose by contradiction that there exist an x ∈ M

and δ0 > 0 such that D ∩ B(x, δ) = ∅. Take an n0 ∈ N such that εn < δ for
all n ≥ n0. Then clearly D ∩ B(x, εn) = ∅ for all n ≥ n0, which in particular
means that Dn0 ∩ B(x, εn0) = ∅ and Fn ∩ B(x, εn) = ∅ for all n ≥ n0. But then
Dn0 ∪ {x} ∈ An0 , contradicting the maximality of Dn0 . We conclude that D is
dense, which finishes the proof. □

Now we can finally prove the main result of the section.

Theorem 5.8 ([25]). Let M be a complete metric space, and let N ⊂ M be a
subset of M with 0 ∈ N . Then there exists a subspace S ⊂ M with dens(N) =
dens(S) and a linear extension operator T : Lip0(S) → Lip0(M) such that ∥T∥ = 1.
In particular, every metric space has the Local CP(Λ,Λ) for every infinite cardinal
Λ smaller than the density character of M .

Proof. We first assume that N is separable.
We are going to find a linear extension operator T : Lip0(D ∩ S) → Lip0(D)

with ∥T∥ = 1, where D is a dense subset of M such that D ∩ S is dense in S.
This will suffice to prove the result, since it is known that we can extend linearly
Lipschitz functions from dense subsets preserving the Lipschitz constant, and this
extension is unique by continuity (check Proposition 1.6 in [50], for instance).

Let (pn)
∞
n=1 be a dense sequence in N . For n = 0, put S0 = {0}. Inductively,

suppose we have defined Sn−1, which is finite. Put Fn = Sn−1∪{pn} as a finite set,
θn = infp ̸=q∈Fn d(p, q) as the separation of said set, and rn = rad(Fn) its radius.
Set εn = min{1/n, θn} and Rn = max{rn, n}. We choose Sn to be the set Z given
by Lemma 5.6 applied to M ∩ B(0, Rn), which is bounded, with F = Fn, k = n

and ε = εn. Set S =
⋃

n∈N Sn. Then clearly S is separable and contains N .
Let (Dn)

∞
n=1 be the increasing sequence of sets given by Lemma 5.7 applied to

(Fn)
∞
n=1 and (εn)

∞
n=1. Notice that if D =

⋃
n∈N Dn, then D is dense in M by the

Lemma, and D ∩ S is dense in S because Sn ⊂ Dn+1 for all n ∈ N.
Fix n ∈ N, and define the family of subsets:

In = {E ⊂ Dn ∩B(0, Rn) : Fn ⊂ E, E is εn-separated, and card(E \ Fn) ≤ n}.
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Note that if E ⊂ Dn, the condition that E is εn-separated is redundant, but we
state it for clarity. Indeed, now it is clear that if E ∈ In, then there exists a
Lipschitz map LE : E → Sn with (LE)|Fn = IdFn and ∥LE∥Lip ≤ 1 + εn.

Let
I =

⋃
n∈N

In.

Notice that if E1 ∈ In1 , E2 ∈ In2 , then all three of E1, E2 and Fn1+n2 are contained
in Dn1+n2 . Hence, E0 = E1 ∪ E2 ∪ Fn1+n2 is εn1+n2-separated, and moreover
E0\Fn1+n2 ⊂ (E1\Fn1)∪(E2\Fn2), which means that card(E0\Fn1+n2) ≤ n1+n2.
Therefore, E0 ∈ In1+n2 ⊂ I. Thus, I, with the order given by inclusion, is a
directed set.

For a set E ∈ I, consider IE := {Z ∈ I : E ⊂ Z}, which is a subset of I. Since I
is directed, the family B = {IE}E∈I is the subbase of a filter on P(I). Let U be an
ultrafilter that extends this filter. For any p ∈ D, there exists a minimum np ∈ N
such that p ∈ Dnp ∩ B(0, np), so the set Ip := {Z ∈ I : p ∈ Z} belongs to B ⊂ U ,
since it can be written as Ip = IEp = {Z ∈ I : Ep ⊂ Z}, where Ep = {p} ∪ Fnp ,
which is a member of Inp ⊂ I.

Also note that for every n ∈ N, the set In can be written as IFn , so In ∈ U as
well.

For each E ∈ I define n(E) := max{n ∈ N : E ∈ In} which exists since E
is finite. Since E ∈ In(E), there exists a Lipschitz map LE : E → Sn(E) with
(LE)|Fn(E)

= IdFn(E)
and ∥LE∥Lip ≤ 1 + εn(E). We can extend each LE to a non-

Lipschitz function defined on the dense subset D =
⋃

n∈N Dn by simply defining
L̃E : M → Sn(E) as

L̃E(p) =

{
LE(p), if p ∈ E,

0, if p ∈ D \ E.

Finally, the linear extension operator T : Lip0(S) → Lip0(D) is defined for each
f ∈ Lip0(D ∩ S) by:

(Tf)(p) = lim
U

f(L̃E(p)), p ∈ D.

This limit exists since U is an ultrafilter and
⋃

E∈I f(L̃E(p)) is relatively compact
in R for all p ∈ D.

Let us check that T is a linear extension operator with norm 1. First, it follows
that T is linear by the linearity of the limit with respect to an ultrafilter.

By the definition of limit with respect to an ultrafilter and by definition of
S, to prove that T is an extension operator from Lip0(D ∩ S), it is enough to
show that given f ∈ Lip0(S), n0 ∈ N and p0 ∈ Sn0 , there is a set I0 ∈ U such
that f(L̃E)(p) = f(p) for all E ∈ I0. Consider I0 = IFn0+1 ∈ U , and note that
Fn0+1 ∈ I and satisfies Sn0 ⊂ Fn0+1. For every E ∈ I0, we have that Fn0+1 ⊂ E, so
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(LE)|Fn0+1 = IdFn0+1 . In particular, LE(p) = p for all p ∈ Sn0 , so f(L̃E)(p) = f(p)
as desired.

It only remains to prove that ∥T∥ = 1. Again, it suffices to show that for any
pair of points x, y ∈ D and any δ > 0, there exists I1 ∈ U such that for all E ∈ I1,
the inequality |f(L̃E(x))−f(L̃E(y))| ≤ (1+δ)∥f∥Lipd(x, y) holds. Consider n0 ∈ N
such that εn0 < δ, and set I1 = Ix ∩ Iy ∩ In0 ∈ U . If E ∈ I1, then x, y ∈ E, so
L̃E(x) = LE(x) and L̃E(y) = LE(y). Therefore, since LE is (1 + εn0)-Lipschitz in
E, we have that

|f(L̃E(x))− f(L̃E(y))| = ∥f∥Lip|L̃E(x)− L̃E(y)| = ∥f∥Lip|LE(x)− LE(y)|
≤ (1 + εn0)∥f∥Lipd(x, y) ≤ (1 + δ)∥f∥Lipd(x, y),

and the proof for the separable case is complete.
For the general case we use transfinite induction. Suppose that N is non-

separable, let λ = dens(N), and suppose that we have proved the result for every
cardinal α with ω0 ≤ α < λ. Choose {pα}α<λ. Since {pα}α<ω0 is countable, there
exists a separable subset Sω0 ⊂ M with pα ∈ Sω0 for all α < ω0 and a norm 1
linear extension operator Tω0 : Lip0(Sω0) → Lip0(M). Similarly, for ω0 < α < λ,
we can find a subset Sα ⊂ M containing

⋃
ω0<β<α Sβ ∪ {pα} with dens(Sα) ≤ α

and a norm 1 linear extension operator Tα : Lip0(Sα) → Lip0(M). Set

S =
⋃

ω0<α<λ

Sα.

We have that N ⊂ S and dens(S) = λ. For any ω0 < α < λ, consider the
linear map Rα : Lip0(S) → Lip0(Sα) given by the restriction to Sα. We have
that Eα = TαRα : Lip0(S) → Lip0(M) is a bounded linear map with ∥Eα∥ ≤ 1.
Therefore, for any f ∈ Lip0(S), the set {Eαf : ω0 ≤ α < λ} is bounded in Lip0(M),
and thus relatively compact for the weak∗ topology.

Let U be a non-principal ultrafilter on {α : ω0 ≤ α < µ}. Then we define
E : Lip0(S) → Lip0(M) by

Ef := w∗- lim
U

Eαf,

which is well defined by the discussed compactness and the fact that U is an
ultrafilter. It is straightforward to check that E is a linear extension operator with
∥E∥ ≤ 1. Note that E can also be obtained as the weak∗ limit of a subnet of Eα

using the compactness of BLip0(M) in the weak∗ topology. □

5.3. Open problems

Since every metric space has the Local CP(Λ,Λ) for every suitable Λ, we remark
only the following important problem:
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Problem 5.9. Is every separable locally complemented Banach space a Lips-
chitz retract?

This question has been asked several times in the literature (see e.g.: [33] Prob-
lem 10 and Proposition 3.22). Since every Banach space is locally complemented in
its bidual, by Proposition 5.4, it is equivalent to asking if every separable Banach
space is a Lipschitz retract of its bidual. That is, Problem 5.9 is equivalent to the
separable case of the Lindenstrauss conjecture. Recall that the non-separable case
was solved in the negative by Kalton in [30]

On the other hand, since every Banach space has the Local SCP, if there exists a
Banach space X without the Lipschitz SRP, then X contains a separable subspace
which is locally complemented but is not a Lipschitz retract. In other words, a
positive solution to the separable case of Problem 3.19 would yield a negative
solution to Problem 5.9 and the Lindenstrauss conjecture.



CHAPTER 6

Conclusion

We have studied the Lipschitz retractional structure of non-separable metric
and Banach spaces, generalizing classical concepts of the linear theory to the class
of metric spaces. Specifically, we have defined the concepts of Lipschitz retractional
skeletons and the Lipschitz Retractional Property (α, β) for a pair of cardinals
α ≤ β. We have shown the relationship between these concepts and the classical
ones in the context of Lipschitz-free spaces, and we have related them to some
long-standing open questions in the theory of Nonlinear Functional Analysis.

In Chapter 3 we have characterized the Plichko property witnessed by Dirac
measures in Lipschitz-free spaces, and have proven that this property is preserved
for Lipschitz-free spaces associated to Banach spaces. We have observed that
C(K) Banach spaces have the Lipschitz SRP, and have pointed out the relevance
of determining whether every Banach space possesses the Lipschitz SRP.

In Chapter 4 we have observed that, for metric spaces, the Lipschitz SRP can
fail in a very strong sense: we have constructed a complete metric space whose
only separable Lipschitz retracts are singletons. We have also produced, for every
infinite cardinal Λ, a complete metric space failing the Lipschitz RP(Λ,Λ).

Finally, in Chapter 5 we have extended results of Heinrich and Mankiewicz to
the nonlinear setting, by showing that in every complete metric space, each closed
subset is contained in a bigger closed subset of the same density character which
admits a linear extension operator for Lipschitz functions preserving the Lipschitz
constant.

Open questions and further work has been discussed at the end of every chapter
in the main body of the thesis.
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