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Predmluva

V ramci svého piisobeni na katedfe fyziky Fakulty stavebni CVUT v Praze jsem se mohl
vyzkumné podilet na fadé témat z oblasti aplikované optiky. Zejména se jedna o analyzu
a pouziti aktivnich optickych prvka v zobrazovacich a métickych systémech, teoretickou
analyzu difrak¢nich jevii a dalsi oblasti optického zobrazeni, primérni ndvrh optickych
soustav s korigovanymi aberacemi nebo optické (laserové) skenovéni.

Tato préce je privodnim textem a souhrnnym piedstavenim témat publikaci vimpak-
tovanych mezindrodnich ¢asopisech, na kterych jsem se autorsky podilel a které vyznam-
nym zpusobem pfispély k rozsifeni znalosti daného oboru. V pfiloze jsou kopie téchto
praci uvedeny a v pribéhu textu se na né pribéZzné odkazuji.

Tematicky jsem préci rozdélil do tfi zékladnich kapitol. Prvni z nich pfedstavuje ana-
lyzu a pouziti aktivnich kapalinovych membranovych cocek pti navrhu kombinovanych
optickych ¢lent. Nejprve jsou aktivni prvky predstaveny obecné, poté je diskutovén po-
stup modelovani deformace membrén zminénych cocek a ten je nasledné vyuzit k nomi-
nalnim propoctiim kombinovanych €lent. Druha z kapitol se zabyva vybranymi oblastmi
optického zobrazeni, jmenovité skaldrni teorii difrakce a jejim aproximativhim feSenim
v piipadé difrak¢nich mfiZek a kruhovych apertur a nominalnim navrhem optickych sou-
stav s korigovanymi aberacemi. Jako posledni téma, kapitolu, jsem zatadil analyzu urceni
pfesnosti polohy bodu pfi pozemnim laserovém skenovéni.
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I 1 Uvod

Tato prace je pravodnim textem a souhrnnym pfedstavenim témat publikaci v impakto-
vanych mezindrodnich ¢asopisech, na kterych se autor podilel, které jsou stéZejni sou-
¢asti této prace a podle nichz jsou déleny jednotlivé kapitoly do tii zdkladnich celkd.

Prvnim tématem, které je publikovdno v pracich [1H7], je analyza aktivnich optickych
prvki a jejich vyuziti v zobrazovacich a méftickych systémech. Nejprve jsou aktivni prvky
predstaveny obecné, poté je diskutovan postup modelovani deformace membréan kapali-
novych cocek a ten je nasledné vyuzit k nomindlnim propoc¢tiim kombinovanych ¢lent.
Také je zminéna moZnost vyuziti aktivnich €ocek v optickém skenovani.

Druha kapitola se zabyva vybranymi tématy optického zobrazeni a souhrnem praci
[8-16]. Jednd se zejména o témata skaldrni teorie difrakce a jejtho aproximativniho fe-
Seni v pfipadé difrakénich miiZek a kruhovych apertur a ddle nominélni nédvrh optickych
soustav s korigovanymi aberacemi.

Posledni oblasti, které je vénovan text této prace, je geometricky popis a charakteris-
tika pfesnosti méreni optickymi (laserovymi) skenery a souhrn vystupti publikaci [17,18].

Kopie vyse zminénych ¢lank jsou uvedeny postupné v Piiloze [A} kde ¢tendf najde
uplné informace a reference.

Oblast, které se autor také vénoval a publikace [I9-21] jsou uvedeny v Piiloze [A]jako
vystup jeho védecké Cinnosti, aviak vzhledem k rozsahu neni pojednéna v této préci, je
meéfeni vybranych parametrti optickych soustav.
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I 2 Aktivni optické prvky a jejich vyuziti

Aktivni optické prvky se v poslednich letech staly cilem zdjmu velké fady vyzkumniki
a vyzkumnych tymi po celém svété a stdle nachdzeji ¢im dal vétsi uplatnéni v zobrazova-
cich a métickych systémech. Jejich nejvétsi prednosti je moznost velmi rychlé a kontrolo-
vané zmény zobrazovacich parametrii. Dfive bylo nutné pro modifikaci parametrti optic-
kych systémt zpravidla ménit vzdjemné pozice jednotlivych optickych ¢lend, ze kterych
byla soustava sestavena. S pomoci aktivnich prvki je tato nutnost vyraznym zptisobem
potlacena, jelikoZ ty jsou samy o sobé schopné ménit napfiklad optickou mohutnost, po-
larizaci nebo tvarové parametry.

Tématu analyzy a aplikace aktivnich optickych prvki se autor intenzivné zabyval a vy-
sledky jeho vyzkumné ¢innosti jsou publikovany v fadé mezindrodnich impaktovanych
¢asopisti [1H7]. Kopie téchto publikaci jsou uvedeny v Piiloze[Al

Prvni ¢ast této kapitoly pfedstavi zdkladni principy fungovéani aktivnich optickych
prvki, jejich zdkladni déleni a soucasné komercné dostupné produkty. Nasleduje
souhrnny popis modelovani deformace membrén kapalinovych cocek a ndvrh nerovno-
mérné tloustky membrany pro aplikace v optice, kterému se autor vénoval a podilel se na
publikaci praci [1H3]. Jednotlivé prvky 1ze kombinovat do hybridnich optickych systému
nebo navrhovat nové komponenty specifickych zobrazovacich vlastnosti (napt. ¢ocky
dvoji kiivosti, zoom systémy nebo hybridni ¢ocky [446]). MoZnost navrhu startovnich
parametri membrénovych Cocek pro tato vyuZiti je pfedstavena v dalsi ¢ésti kapitoly.
Posledni c¢ast kapitoly ukazuje pouziti aktivnich membranovych kapalinovych ¢ocek
v oblasti optického skenovani [7].

B 2.1 Zzakladni principy fungovani aktivnich op-
tickych prvka

Zakladni princip aktivni zmény optického zobrazeni daného prvku mtZeme popsat
schopnosti prostorové ménit geometricky tvar funkénich ploch (napfiklad ploch cocek,
zrcadel, optickych rozhrani a podobné), nebo jako moZnost ménit rozloZeni indexu
lomu materiélu, ze kterého je prvek, nebo jeho ¢ast, vyroben. Tim je pfimo ovliviiovdno
svételné zareni, které danym optickym clenem, prostiedim, prochézi, nebo které se od
néj odrazi.

Zminku o aplikaci aktivnich prvki lze datovat do 60. let 20. stoleti. H. W. Babcock
r. 1953 publikoval teoretickou préci, ve které se zabyval korekci vinoploch pomoci adap-
tivni optiky v astronomii [22]. Dalsi obecny prehled tykajici se adaptivni optiky mtize cte-
néf nalézt napiiklad v publikacich [23H27].

Zdakladni fungovani adaptivniho systému je ukdzéno na obr. Ten se obecné sklada

3



KAPITOLA 2. AKTIVNI OPTICKE PRVKY A JEJICH VYUZITI

deformovana korigovana
vlnoplocha vinoplocha

adaptivni opticky systém

kontrolni jednotka

senzor

= =

Obréazek 2.1: Princip adaptivniho optického systému

ze tfi komponent:

1. ze senzoru (napiiklad senzoru vinoplochy, CCD senzoru apod.), ktery registruje stav
dopadajiciho vinového pole vstupujiciho do systému (v pfipadé senzoru vinoplochy
napiiklad jeji deformovany tvar, v pfipadé CCD senzoru napfiklad rozloZeni energie
obrazu bodu);

2. z kontrolni jednotky, kterd kvantifikuje pfichozi vinéni a urcuje vhodnou korekci
pro zajisténi zobrazeni poZzadovanych parametrt;

3. z kombinované (hybridni) optické soustavy s aktivnimi optickymi prvky, kterd méa
za ukol korigovat zéfeni a pfeddvat ho dal systému.

Vys$e popsané tfi zakladni kroky (registrace, kvantifikace, korekce) jsou iterativné opa-
kovany tak, aby bylo zajisténo zobrazeni s co nejvyssi kvalitou. Pfichozi vinéni je tak dyna-
micky korigovéno a optické zobrazeni adaptivnim systémem muiZe mit takové parametry,
kterych by za pomoci klasické optiky s vylu¢né fixnimi prvky (klasické cocky, hranoly a zr-
cadla) nebylo moZzné dosahnout.

Od prvniho uvedeni myslenky adaptivni optiky a aktivnich prvk® doslo a stéle do-
chézi k jejich prudkému rozvoji v oblastech vyzkumu, vyvoje a aplikaci. V soucasnosti
jsou komponenty uplatniovany bézné v oblastech inspek¢ni techniky, spotfebni elektro-
niky, zdéznamu dat, déle poté v mediciné (korekce zraku, zrakové simuldtory, zobrazovaci
a diagnostické systémy), optické mikroskopii, laserovych technologiich, holografii nebo

komunikac¢nich systémech ve volném prostoru [28-36].

Jak uz bylo zminéno v tivodu této kapitoly, miizeme principy zmény optického zobra-
zeni rozdélit do dvou kategorii:

1. pomoci zmény geometrického tvaru funkénich ploch,

2. prostorovou zménou indexu lomu materidlu.

Zabyvejme se nyni v kratkosti prvnim pfipadem. Rozhrani mezi dvéma optickymi pro-
stiedimi, jejichZ indexy lomu oznacime n; a n; miZeme obecné vyjadfit pomoci impli-
citni funkce F(r,p(¢)) = 0 [37H39], kde r znaci polohovy vektor, a tedy funk¢ni zavislost
plochy na poloze, a p je vektor dal§ich parametrti zavislych na proménné ¢ (napf. cas).
Jednotkovy normdlovy vektor daného rozhrani Ize poté snadno urcit jako [37H39]

VF(r,
ne) = YF@RE)

= 2.1
IVE(x,pE)l &1
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(a) Odraz na rovinném rozhrani (b) Lom na rovinném rozhrani

Obrazek 2.2: Zakon odrazu a lomu

Rovnice popisuje geometrickou proménlivost rozhrani v z4vislosti na proménné ¢.
Dosazenim do znamého zdkona odrazu nebo lomu nebo s pouzitim Fresnelovych
vztahti miizeme snadno vyhodnotit vlastnosti zafeni, které se bude od daného rozhrani
odraZet, nebo jim bude prochéazet. Naptiklad zdkon odrazu ve vektorovém tvaru mtiZzeme
pséat jako [40-43]

n, =n; —2n(n-n;) (2.2)

a zakon lomu formou

. 2 .
n,=2n,—n \/l_(%) [1—(n-ni)2]+%(n-ni) : (2.3)
t t

kde n;, n, an; znac¢i postupné jednotkové normalové vektory dopadajici, odraZené a pro-
§lé vinoplochy ve zkoumaném bodé, n znaci jednotkovy normélovy vektor plochy roz-
hrani (orientovany smérem k pfichozi vinoploS$e viz obr. a n; a n; jsou indexy lomu
prostiedi, ze kterého vina pfichdzi a do kterého prochdzi.

Zmény geometrického tvaru funk¢nich ploch obecné vyuZzivaji aktivni kapalinové
cocky [26) 28} 29] nebo deformovatelna zrcadla [30,31].

Druhou kategorii zmény optického zobrazeni, tj. pomoci prostorové zmény indexu
lomu materidlu, mtiZeme demonstrovat nejlépe pomoci optické drahy OPD, kterad je de-
finovana jako [40-43]

B
OPD:f n(s)ds, (2.4)
A

kde n(s) je index lomu daného prostfedi zavisly na poloze s a ds je element kfivky. Op-
tickd dréha je jednoznacné zavisld na indexu lomu prostfedi v daném misté, v principu
je to veli¢ina odpovidajici vzdélenosti, kterou by svétlo urazilo ve vakuu. Ddle je zndma
tzv. véta o stdlosti optickych drah [40-43], kterda fikd, Ze optickd draha mezi dvéma vl-
noplochami téhoZ svazku paprskt je v izotropnim prostfedi konstantni. Uvazujme déle
jednoduchy diskrétni pfipad na obr.|2.3|(tj. integrdl nahrad’'me sumou soucinti elementt
drédhy paprsku a hodnot indexu lomu v daném misté). VInoplocha X; prochdzi homo-
gennim izotropnim prostfedim indexu lomu n,, aZ dorazi k variaci materidlu charakte-
rizované indexem lomu n, (pfedpoklddejme opét homogenni izotropni prosttedi). Op-
tickd drdha odpovidajici usecce s; bude OPD; = n;s;. Optickd drdha v mistech zmény
bude OPD;, = ny (s, + s3) + nod. Budeme-li znat vzdalenosti s;, s, a d, dostaneme z pod-
minky rovnosti optickych drah mezi dvéma vinoplochami pfisludejicich jednomu svazku,
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Obrazek 2.3: Sifeni vinoplochy prostfedim s variaci indexu lomu materialu

tj. OPD; = OPD,, pro hodnotu s3 vyraz s3 = s —S2 —d Z—f Jinymi slovy to znamens4, Ze
bude-li v cesté ¢asti paprsku stat prostorovd zména indexu lomu, dojde k prostorové de-
formaci vysledné vinoplochy.

Tohoto principu vyuZzivaji zejména tzv. prostorové modulatory svétla pracujici na bazi
tekutych krystala |32} 33} 44], [45].

B 211 Aktivnicoc

Pfredstavme nyni stru¢né zdkladni funkéni principy aktivnich €ocek, které, jak bylo uve-
deno vyse, modifikuji priichozi optické zéfeni prostorovou zménou rozhrani mezi dvéma
¢i vice optickymi prostfedimi. Jako zdkladni kategorie aktivnich ¢o¢ek mtiZeme jmenovat
napfiklad:

* membranové kapalinové cocky,

elektrosmacivé cocky,

dielektroforetické cocky,
 akustooptické cocky.

Princip fungovani membranovych kapalinovych ¢ocek je ukdzan na obr. Zakla-
dem cocky je komora, kterd je z jedné strany tvofena planparalelni deskou a z druhé pruz-
nou membranou z vhodného materidlu, ktera je pfipevnéna ke sténdm komory krytem
¢ocky a Srouby. Do komory je napoustécim ventilem pfivedena optickd kapalina. Zmé-
nou objemu kapaliny (napf. jesté s pouzitim vypouStéciho ventilu) 1ze poté ménit hyd-
rostaticky tlak uvnitf komory ¢ocky. Je-li uvnitt systému pfetlak, dojde k vybouleni mem-
brany a zvySeni optické mohutnosti ¢ocky. V opacném piipadé dojde ke klenuti mem-
brany a zmenseni optické mohutnosti. VySe popsané schéma konstrukce je rozdilné v za-
vislosti na konkrétnim vyrobci ¢ocek.

Membrény ¢ocek musi spliiovat fadu parametrii:

* vysokd svételnd propustnost,



2.1. ZAKLADNI PRINCIPY FUNGOVANI AKTIVNICH OPTICKYCH PRVKU

kryt Cocky U=0 U£0
Srouby
napoustéci ) olej )
ventil membrana voda yeNum’
vypoustéci y
\_i - e
_- kapalina i/

elektrostaticky tlak

=
7// e@,
/‘/ L
sklenéna sklenéna \\x izolant
2 Cot lan-paralelni lan-paralelni ,
komora docky plan-paralelni ¢ocka gesk: fl:sk: * kow
(a) Kapalinovd membranova cocka (b) Elektrosmaéciva aktivni cocka [29]

Obrazek 2.4: Principy fungovani aktivnich ¢ocek

maléa disperze pro poZadované svételné spektrum,
* dostate¢né hladky povrch pro vSechny pouzité stavy napnuti,

* vysokd ndvratnd deformovatelnost,

vhodné chemické vlastnosti (napi. nereaktivnost se zvolenou kapalinou),
* vhodné fyzikdlni vlastnosti (homogenita materiélu, teplotni stdlost apod.).
Zvolend optickd kapalina poté musi spliiovat naptiklad tato kritéria:
¢ vysokd svételnd propustnost,

e Sirokopdsmovost, tj. propustnost pro poZadované vinové délky (napf. pro IR oblasti
maji nékteré kapaliny jinou spektralni propustnost nez pro viditelné svétlo),

 odpovidajici index lomu (mensi deformace zptlisobi vétsi modifikaci prochézejiciho
zafeni),

e malda hustota (vzhledem ke gravitacnim G¢inkim na kapalinu),

¢ bez chemické reakce s membranou,

* nevypafujici se v pouzitych podminkéch,

» mald viskozita (pro dosaZeni vysokofrekvenc¢nich zmén zobrazeni).

Zminme nyni princip fungovani ¢ocek zaloZenych na elektrosmacivosti [26, 46], coz
je elektrokapildrni jev, kdy vodiva kapalina (kapka elektrolytu) umisténa na nevodivé die-
lektrické vrstvé zformuje kapénku s kontaktnim thlem 6y na okrajich a po pfivedeni elek-

trického napéti je mozné tento tthel ménit. Zména kontaktniho thlu 6 na pfivedeném
napéti U je popsdna napi. Young-Lippmannovou rovnici |26} 46]

0 =cosOp+ —U", 2.5
cosf = cosfy 2dy (2.5)

kde 0y je kontaktni thel pfi U =0V, gp je permitivita vakua, € je dielektrickd konstanta izo-
lanty, d je tloust'’ka izolantu, y je povrchové napéti mezi elektrolytem a okolni atmosférou
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(povrch kapaliny nepfipadajici izolantu) a U je pfivedené napéti. Velikost zmény kontakt-
niho thlu je tedy nepfimo iimérnd tloust' ce izolantu a kvadraticky imérnd pfivedenému
napéti.

Elektrosmacivé cocky jsou zpravidla mensi nez vySe zminéné membranové cocky aje-
jich rozsah ldmavosti je do 15 dpt. MoZn4 prakticka realizace je v jednoduchosti ukdzéna
naobr. Cocka je konstruovana pomoci dvou nemisitelnych kapalin, které jsou umds-
tény mezi dvéma krycimi sklicky (planparalelnimi deskami). Pfivedené napéti ma za na-
sledek zménu tvaru rozhrani mezi témito kapalinami a je tak moZzné provadét vysoko-
frekvenc¢ni zmény zobrazeni daného optického elementu. Vyrobné jsou tyto ¢ocky po-
mérné nendrocné a neni tfeba mechanickych pohybt jako napiiklad u ¢o¢ek membra-
novych.

Kapaliny elektrosmacivych ¢ocek by mély spliovat ndsledujici parametry:

¢ nemisitelnost,

vhodna rozdilnost indexu lomu,

maly rozdil hustot (vzhledem ke gravitacnim sildm),

jedna z kapalin musi byt vodivd, zatimco druhé je izolantem,

dostate¢nd transparentnost pro pouZité zéfeni,

chemicka nereaktivnost se svétlem.

Cocky dielektroforetické vyuZivaji tzv. dielektroforetické sily (dielektroforeze) [26,47].
To je sila plisobici na dielektrické ¢astice (neutrdlni ¢astice s rovnomérné rozlozenymi
kladnymi a zdpornymi néboji) v nehomogennim elektrickém poli, které lze vytvaret na-
pfiklad pouzitim zakfivenych elektrod nebo tzv. prouzkovanych nebo dirkovanych elek-
trod. Malé mnozstvi dielektrické kapaliny v nehomogennim poli tak mtiZe aktivné a kon-
trolované ménit sviij tvar a tim vytvoftit aktivni opticky prvek.

Konstrukéné jsou pak tyto cocky velmi podobné elektrosmécivym. Maji vSak rozdilné

vlastnosti pouzitych kapalin:

* kapaliny musi byt nevodivé s riznymi dielektrickymi konstantami,

* pusobici elektrické pole musi byt nehomogenni.

Dalsi parametry jako propustnost, nemisitelnost nebo teplotni stabilita kapalin
apod. jsou obdobné. V porovndni s elektrosmacivymi ¢ockami jsou dielektroforetické
mnohem méné energeticky ndro¢né (zejména diky malé generaci tepla) a stabilnéjsi.
OvSem vyvoj dielektrickych kapalin a dielektroforetickych cocek je zatim v pocatcich
v porovndni s cockami elektrosmécivymi. Je vSak pfislibem aplikaci nejen v zobrazova-
cich systémech v mikro a makro rozmérech, ale napiiklad i v oblastech aktivnich délicti
svazkd, aktivnich clon nebo v difuzérech svazki.

Na zavér této kapitoly zmifime ¢ocky akustooptické [26]. Ty vyuzivaji akustickych vin
ke zméné rozloZzeni indexu lomu v materidlu ptisobenim na jeho molekuly. Cocka poté
muZe byt konstruovdna naptiklad pomoci vélcové komory se dvéma nemisitelnymi ka-
palinami (napf. voda a silikonovy olej), kdy jedno z rozhrani komory je osazeno konkav-
nim akustickym pfevodnikem. Pomoci ného Ize cilit akustické viny na rozhrani kapalin,
které maji rozdilné energetické hustoty (rychlosti Sifeni zvuku) a indexy lomu, ¢imz do-
chazi k vzniku stojaté akustické viny a zakfiveni rozhrani. Zménou napéti na pfevodniku
lze poté ménit amplitudu stojaté viny — optickou mohutnost ¢ocky.
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Segmentova zrcadla Spojita deformovatelna zrcadla

rovinné odrazné spojita odrazna plocha

A/ plosky A/ (membrana)

aktuatory fil 3
b v Dpfilepené
' I I I/ ““ akmétory

Obrazek 2.5: Princip fungovani segmentovych a mikromechanickych membranovych zr-
cadel

. 2.1.2 Deformovatelna zrcadla

Deformovatelnd zrcadla jsou aktivni optické prvky, které, jak jizZ ndzev napovid4, modi-
fikuji zafeni pomoci zmény tvaru reflexni funkéni plochy. V praxi se vyuziva velka fada
principt, jak deformace docilit. Jako ptiklad zmitime zdkladni tfi typy deformovatelnych
zrcadel:

e zrcadla mechanicky deformovatelnd pomoci aktudtorti (zpravidla piezoelektric-

kych),
e mikromechanicka membranova zrcadla,

* mikro-elektro-mechanickd zrcadla (tzv. MEMS z angl. Micro Electro Mechanical
Systems).

Zptsob provedeni deformace uvedeny vySe je volen s ohledem na zamyslené pou-
ziti zrcadel a jejich konkrétni aplikaci. Princip fungovéni mechanicky deformovatelnych
zrcadel je velmi snadny. Na obr. [2.5/je schematicky ukdzana konstrukce vybranych zrca-
del. Aktudtory jsou pfipevnény k jednotlivym segmentim reflexni plochy nebo ke spojité
membrané. Zménou prostorové polohy a orientace aktuatorti dochédzi k sméfovani seg-
mentll nebo deformaci membrany, a tim ke zméné zobrazovacich vlastnosti zrcadla.

Na levé ¢ésti obr. 2.5je ukdzano schéma segmentovych zrcadel, kterd byla ¢asto vyuzi-
vana napf. v astronomii [23H25} 27]. Membranové deformovatelnd zrcadla, jejichZ princip
je schematicky ukdzan na pravé casti obr. jsou vyuzivana v aplikacich, kde neni tieba
tak velkého rozsahu deformace vzhledem k pouziti membrany.

Prakticky jsou pouZzivdna riznd rozlozeni aktudtort, napi. ve ¢tvercovych nebo he-
xagondlnich polich. JelikoZ je v praxi nejvice pouzivano kruhovych apertur, jevi se he-
xagondlni rozloZeni jako nejefektivné;jsi [25]. Velmi Casto jsou pouZivany aktudtory fero-
elektrické, vyrdbéné z keramickych materialli a zaloZené na inverznim piezoelektrickém
nebo elektrostrikénim efektu [25]. Inverzni piezoelektricky jev popisuje linedrni zavislost
deformace elementu na ptisobicim elektrickém poli, zatimco elektrostrikéni jev je cha-
rakterizovdn deformaci nevodice nebo dielektrika v zavislosti kvadratické.

MEMS deformovatelnd zrcadla vyuZzivaji obecného Coulombova zdkona elektrosta-
tiky, ktery popisuje velikost sily plisobici mezi dvéma bodovymi nédboji jako nepfimou
kvadratickou zavislost na vzdélenosti mezi danymi néboji. Budou-li mit tedy dvé elek-
trody (elektrostatické aktudtory) néboje, bude mezi nimi plisobit sila, a mtize tak dojit
k deformaci, tj. ke zméné jejich vzadjemné vzdalenosti.

Komercné je nabizena celd fada deformovatelnych zrcadel zaloZenych na rtiznych
principech [30} 3T}, 35}36]. Napiiklad firma Imagine Optic [35] je distributor zrcadel o prii-
mérech od 7 do 500 mm s deformaci do +50 um. Spole¢nost Flexible Optical [30] nabizi
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piezoelektrickd a mikromechanickd membrédnova deformovatelna zrcadla o aperturach
15 mm az 50 mm s rozsahem deformace do 12 ym. Komer¢né dostupna zrcadla firmy
Thorlabs [36] jsou k dispozici s 10mm aZ 14mm aperturami, v ptipadé MEMS konstrukce
nabizi tato spole¢nost maximalni deformace 3.5 um se sub-nanometrovou opakovatel-
nosti. Firma Alpao [31] nabizi zrcadla do priméru 240 mm s maximalnimi deformacemi
vinoplochy az 80 um. Zajemce mitiZe ale nalézt celou fadu dalSich spolecnosti, které de-
formovatelnd zrcadla nabizi.

B 213 Prostorové modulatory svétla

Prostorové moduldatory svétla se fadi mezi aktivni optické prvky na bazi tekutych krystal
123|144} 145, 48], coZ jsou elementy na pomezi krystalické a tekuté struktury charakteris-
tické svou optickou a elektrickou anizotropii. Toto pomezi krystalické a tekuté formy je
dano molekuldrni kompaktnosti a orientaci takovou, ktera se pfi vétsim mnoZstvi materi-
alu vyznacuje krystalickymi vlastnostmi (jako napf. dvojlom), ale zaroven natolik slabou,
Ze je mozné ji snadno ménit vnéj$imi vlivy (napf. elektrickym polem).

Obecné je zndma celd fada typt tekutych krystal [23} 144} [45], ovSem v oblasti ak-
tivnich optickych prvkl se pouzivaji zpravidla tzv. nematické tekuté krystaly. Jedna se
o moduldtory polarizace, jejichZ natoCend molekularni struktura rotuje rovinu polarizace
svétla, které skrze krystaly prochézi. Uspofdddme-li pole bunék tekutych krystalti do pra-
videlné struktury pixel (obdoba CCD senzoru), poté miiZeme prostorové modulovat pra-
chozi zateni (na vstupu zpravidla linedrné polarizované) v misté kazdého pixelu a docilit
tak modulace vlnoplochy.

Princip prostorové modulace lze snadno demonstrovat ndsledujicim zptisobem.
Je-li pfitomna r@izna orientace molekul krystali v rdmci struktury pixeli, potom bude
kazdy z pixell charakterizovan rtiznou dielektrickou konstantou (permitivitou) €. Je
Siroce znamo, Ze pro rychlost Sifeni v v daném prostfedi plati v = 1/,/€p, kde p znaci
permeabilitu, pro index lomu takového prostfedi plati n = c¢/v, kde c je rychlost svétla
ve vakuu, a opticky drdhovy rozdil je dan vztahem OPD = [ nds. Kombinaci téchto
jednoduchych vztahti 1ze snadno usoudit, jak bude vinoplocha prochézejici strukturou
pixeld tekutych krystalt modulovana.

Zafizenim pracujicim na tomto principu se fikd prostorové moduldtory svétla (SLM
z angl. Spatial Light Modulator) [32}33].

Jak bylo zminéno, modulétory na bazi tekutych krystalti jsou zpravidla pixelové struk-
tury. To md za ndasledek nékolik jevii, se kterymi je nutno pfi ndvrhu optické soustavy
s danymi prvky pocitat. Mezi kazdym z pixelti se bude nachdzet slepé misto, kde nebude
dochézet k modulaci (rdmecek pixelu). Velikost aktivni plochy pixelu mtZe byt popséna
tzv. faktorem zaplnéni (z angl. fill factor), ktery vyjadfuje pomér souctu aktivnich ploch
vSech pixeld viici ploSe celého senzoru. Moduldtory se tedy kromé primarni modulace
projevi jako difrakéni miizky. Déle povrch prostorovych moduldtort neni zpravidla ro-
vinny (jako nésledek vyrobniho procesu), a tak je tfeba modulovanou vlnoplochu prii-
béZné kontrolovat a ptfipadné zavadét vhodné korekce. Omezujicim faktorem je také to,
Ze mezi sousednimi pixely nemuze zpravidla dojit k p¥ilis velké zméné indexu lomu. Roz-
sah modulace je tak urc¢itou mérou omezen.

Prostorové modulétory svétla svou konstrukci muzeme délit na tfi zakladni kategorie:

¢ reflexni (odrazné),

* transmisni (propustné),

10
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kryeci skla
dopadajici modulované
pole pole \
dopadajici | modulované
7-27- pole 1 pole
i |
tekuté krystaly kryci sklo
v pixelové tekuté krystaly
truktuf i &
S e odrazny v plxelovve
struktufe
povrch

Obrézek 2.6: Schéma odraznych a transmisnich prostorovych modulatora svétla

o difraktivni.

Na obr.|2.6[je schéma reflexniho a transmisniho moduldtoru naznaceno. Odrazny mo-
dulétor je v principu konstruovén tak, Ze tekuté krystaly jsou umistény mezi planparalelni
a reflexni desku. Pfichozi zéfeni tedy prochdzi skrze krystaly, odrazi se od reflexni plo-
chy a pokracuje zpét skrze krystaly druhym priichodem. V pfipadé propustnych modu-
latorti je struktura krystalti umisténa mezi dvé planparalelni desky a zafeni po prichodu
skrz krystaly pokracuje modulované dal. Difraktivni moduldtory mohou byt konstruovany
obojim zptisobem, jak reflexnim, tak transmisnim. Jejich princip je zaloZen na variabilnim
uzavieni prichodu svétla nékterymi pixely. OdraZené nebo proslé zatfeni poté podléhd
pfedem definované difrakci na struktufe displeje modulétoru.

Komer¢né jsou prostorové moduldtory nabizeny napf. firmou Hamamatsu [33], kterd
nabizi fazové reflexni moduldtory. Firma Holoeye [32] je vyrobcem a prodejcem fazovych
nebo amplitudovych modulétort (pfipadné kombinace) reflexniho i transmisniho typu.

Existuje celd fada aplikaci, ve kterych prostorové moduldtory nachézi uplatnéni. Jako
piiklad jmenujme digitalni holografii, optické pasti a mikro-manipulace, tvarovani lase-
rovych svazki nebo optickou metrologii [32,33].

B 2.2 Deformace membrin kapalinovych cocek

V této kapitole budou shrnuty zdvéry z tématu vypoctu deformace membréan kapalino-
vych ¢ocek a ndvrhu nerovhomérné tloustky membrény pro aplikace v optice, kterému
se autor vénoval a podilel se na publikaci praci [1H3].

Zabyvejme se nejprve zjednoduSenym piipadem — deformace kruhové predpjaté
osoveé symetrické membrany konstantni tloust'ky [2} 3].

Vzhledem k tomu, Ze deformace membrany v aktivnich ¢ockdch nékolikandsobné
prevysuji jeji tloust’ku, neni mozné s dostatecnou presnosti pouzit klasické feseni vy-
poctu zaloZené na linedrni teorii pruznosti [49} 50]. Vliv radidlni deformace membrany
také nemuze byt pominut. Model uvazovany v pracich [2, 3] je zaloZen na pfesnych
geometrickych rovnicich a Saint Venantové-Kirchhoffové materidlovém modelu, ktery
pfedpoklddd linedrni vztah mezi Greenovym-Lagrangeovym pietvofenim a druhym
Piolovym-Kirchhoffovym napétim [51].

Predpokldadejme tedy kruhovou osové symetrickou membréanu kapalinové cocky;, jejiz
osa symetrie je totoZnd se z-ovou soufadnou osou a radidlni osa r je dédna dle obr.

11
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+z

WlllElX

Obrazek 2.7: Schéma radidlniho fezu kruhovou osové symetrickou membranou kapali-
nové cocky pfi ptisobeni rovnomérného tlaku p (¢arkovand modra linie — poc¢atecni tvar
pfinulovém tlaku a poc¢atecnim piedpéti, w(r) a u(r) — vertikdlni a horizontélni vychylka
bodu o pocéatecnich soufadnicich [r,0], a — polomér membrény, i — tloustka membrény,
Wmax — maximalni vychylka) [3]

Membrana je charakterizovdna polomérem a a konstantni tloust’kou h takovou, Ze ohy-
bova tuhost muzZe byt zanedbdna, a je fixovdna po svém obvodu. Pisobenim tlaku op-
tické kapaliny se deformuje, pficemz obecny bod o pocatecni poloze [r,0] je vychylen do
nové pozice [r + u(r), w(r)], kde w(r) znaci vychyleni ve sméru osy z a u(r) je radialni
vychyleni. Vysledny deformovany tvar membrény poté muzZe byt popsan funkci g(r) im-
plicitné dané vztahem g(r + u(r)) = w(r). Pfedpokladejme déle, Ze membréna je ve svém
pocatecnim stavu (neptisobi-li tlak p) pfedpjata a pocatecni protaZeni (angl. stretch) je
ve vSech smérech Ay > 1. Déle uvaZzujme, Ze zména tloustky membréany je zanedbatelna,
a tedy vysledny tvar mtZe byt charakterizovédn stfedovou kfivkou, viz silnd ¢erchovana
modr4 kiivka na obr. Nomindlni geometrickou tloustku membrany pfed pfedpétim
ozna¢me h a polomér @ = a /Ay.

Jak je v publikacich [2} 3] podrobné odvozeno, vyslednou deformaci stfednicové plo-
chy membrany lze popsat pomoci rovnic rovnhovahy

fz[rar(1+u’)]'—l~wt(l+%):p(r+u)w’, (2.6)

—h(ro,w) =pr+wld+u),

kde
/12
or=—2 (& +VE) +00, (2.7)
1-v
2
0y = —(& +VE)+00,
1-v
E znaci Youngliv modul pruZnosti, v Poissontiv pomér, o = %50 = 2(5 7 (A2 —1) pfed-

stavuje pocatecni pfedpétia gy = %(/1(2) — 1) pocétecni pretvorieni a dale

u u2

(W?+w?), & =—+— (2.8)

!
2 ro 2r2

Er=Uu +
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2.2. DEFORMACE MEMBRAN KAPALINOVYCH COCEK

jsou pfetvofeni s uvdZenim pfedpjatého stavu jako referen¢niho (vhodny pro vypocet
v rdmci optickych simulaci, kdy zndme rozméry vstupni pupily — ukotveni membrany
v pfedpjatém stavu). Ddle jsou v praci [3] definovdny a diskutovdny hrani¢ni podminky
feSeni, musi platit

w@=0, u0=0, u(@=0, w()=0. (2.9)

Jinou z moZnosti je vySetfeni tvaru membrany pomoci stavu ekvilibria, tj. minimali-
zaci potencidlni energie systému. Celkova potencidlni energie E, uvaZovaného systému
bude ddna vztahem [3]

Ep = Bint + Eext, (2.10)

tedy jako soucet vnitini energie pfetvofeni Ej, a energie vnéjsich sil Eey, kde

nhEa? L .

int:ﬁ /l%fo (€$+2ver£t+sf)pdp (2.11)

o (1+v)ed
+2(1+v)£0f ((~€r+£l‘),odp+—2 ,
0 Ag
N _ da
Eext = —27mpa wp+a)|l1+—/|dp. (2.12)
0 dp

Cilem matematickych modelaci je nalézt tvar funkci u a w, zndme-li pocatecni pied-
péti o, resp. protaZeni Ay, a rozméry piedpjaté membrany 7 a .

Jako jeden z vhodnych zptisobti se jevi pouziti metody fad (vySe uvedené diferenci-
alni rovnice charakterizujici vztah mezi vychylkami nemaji analytické feSeni, a tak je
tfeba volit feSeni numerické).

Ocekédvame-li regularni feSeni zminéného problému, vyuZijeme polynomickou apro-
ximaci funkci vychylek. Dédle je vhodné vyjadfit dlohu v bezrozmérném tvaru tak, Ze je
oblast feSeni transformovdna na interval [0, 1]. Dostdvdme tak problém pro bezrozmérné
vychylky & = u/a a w = w/a z4vislé na bezrozmérné soutadnici p = r/a. Vychylky poté
lze aproximovat polynomy

N . M .
w(p) =Y bil-p*), @)=Y cjlp-p*h, (2.13)
i-1 =1
kde b; (i=1,2,...,N)acj (j=1,2,...,M) jsou koeficienty fad. V§imnéme si, Ze fady (2.13)
automaticky spliiuji hrani¢ni podminky (2.9).
S vyzitim zminénych fad (2.13) ddle dostavame vztahy pro pretvofeni, plati

. -d0, 1[0y d "
"dp 2|[\dp dp '
M 1M RE
=Y ci|1-@j+1p¥ |+ 53 Y ¢ [1-@j+ 1o
j=1 2 =
N )2
+2(Zibip21_1),
i=1
- i
Bi= =t (2.15)

2p?

u

— +

P

M o 1
ZC](I—p ])+E
j=1

M 12
ch(l—pzf)} :
=1
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Soe -

i h(’)f_ = el

(a) Osové symetrickd membrana proménné

tloust’ky zatizena rovnomérnym tlakem (b) Prifez membréanou pii vychyleni a rotaci

Obrazek 2.8: Deformace osové symetrické membrany proménné tloust'’ky [1]

Po dosazeni do (2.10) a (2.11) snadno vyjadiime dlohu jako optimaliza¢ni problém
hledéni koeficientii b; a c¢; fad (2.13). Tim je problematika urceni tvaru deformované
membréany jednoznac¢né formulovéna.

Vyse pfedstaveny postup vypoctu deformace membrany urci tvar sttednicové plochy.
Za ptredpokladu, Ze membréna je velmi tenkd, bude rozdil oproti vnéjsim plochdam velmi
maly a pro vétSinu praktickych pouZiti zanedbatelny. Nicméné pro velmi pfesné optické
aplikace je tfeba znat tvar deformovanych vnéjsich ploch membrany. Tato problematika
je velmi podrobné fe$ena v praci [I], na které se autor podilel. Clanek prezentuje meto-
diku vypoctu proménné tloustky membréany takové, aby byl docilen poZadovany tvar jeji
vnéjsi nebo vnitfni plochy.

Postup vypoctu vychézi z rovnic pro vypocet proménné tloust’ky membrany, jestlize
zaddme pozadovany tvar sttednicové plochy po deformaci. Oznac¢ime-li g(7) jako funkci
reprezentujici pfedepsany tvar sttednicové plochy deformované membrény a 7 = r + u(r)
jako deformovanou radidlni soufadnici (viz obr. 2.8a), poté lze nalézt optimalni profil
tloust'ky membrany jako funkci i(r) pomoci rovnic [52]

A, +Bu,r)n+Cu,r) =0 (2.16)
a 2
1
h:B[_(”“) —(1+22), (2.17)
El rg'yil(1+g%)n-1 a
kde
n=(1+u),
Aw,r)=1+g",
B(ur)—zvu+vu2 1+v(1 ’Z)a(ur)
oy r2 § e

2u  u?
Cun=(—+=-vjaln,
r r

2
(1+7)°g'
(r+ug'-2g -2g"°

a(u,r)=

Poznamenejme, Ze prvni a druhd derivace funkce g v uvedenych rovnicich je uvazovana
vzhledem k deformované radidlni soutadnici 7 (na rozdil od funkci u(r) a w(r), které jsou
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vzhledem k soufadnici r), a tudiz plati: g’ = dg (r) ag'= & £ ()

dené rovnice je tteba uvaZovat okrajové podmlnky

. Déle pro feseni vySe uve-

u0) =0, ula)=u,, (2.18)

kde u, pfedstavuje pocatecni protazeni membrany (vzniklé napf. pfi konstrukci ¢ocky).
Rozséhlejsi analyza ukdZze, Ze prvni z podminek je splnéna vzdy, a tedy pro feSeni vysSe
uvedené rovnice proménné tloustky (nelineédrni diferencidlni rovnice prvniho fadu pro-
ménné u(r)) postacuje okrajovd podminka druhé. Podrobnéjsi rozbor rovnic mtize ¢tenéf
nalézt v praci [1].

Jak uz bylo zminéno vySe, pro opticky navrh je nezbytné znat tvar vnéjsich ploch mem-
brany, resp. je nutné navrhnout proménnou tloust’ku membrany takovym zplisobem, aby
se do pfedepsané formy deformovala vnéjsi nebo vnitfni plocha membrény.

Uvéazime-li situaci na obr. poté lze radidlni soufadnice vnitfni a vnéjsi plochy
membrany 7y, a 7, vyjadrit vztahy

1. 1.
Four =T — Eh(r) sin(¢), Fin=TF+ 5h (r)sin (¢) (2.19)
a odpovidajici vertikalni soufadnice g,, a g jako
1. o1
Sour = g () + zh(r) cos(p), gin=8/F - Eh (r)cos(¢) , (2.20)

kde ¢ je dhel natoceni fezu membrany, ktery mtizeme dale urcit jako: ¢ = arctan g’, a tudiz
g

a Cos
T S

kterou plati [53]
2
h(r) = h(r)v2e, + l_h()¢ V(E’”” +1, 2.21)

2 2 . AP c1s v .
kdee, = u'+3 (u’ +uw' ) ag; =%+ 2”7 jsou radiélni a tangencidlni pfetvoieni.

plati: sing = V tomto piipadé & (r) znaéi tloust’ ku membrany, pro

Popsané rovnice nemaji analytické feSeni, stejné jako tomu bylo pti hleddni deformo-
vaného tvaru membrany, a je tfeba tilohu feSit numericky, opét napiiklad pomoci metody
fad. Na vstupu vypoctu je zadédn tvar vnitfni nebo vnéjsi plochy a cilem ulohy je nalézt
takovou funkci proménné tloust’ky, pro kterou bude tvar vypoctené vnitini nebo vné;jsi
plochy po zatiZeni danym tlakem odpovidat ploSe pfedepsané. Podrobnéjsi pojednéani

o feSeni a optické analyze miize ¢tenaf nalézt v pracich [1-3,/52, 53].

B 2.3 Navrh kombinovanych membréanovych
cocek

V kapitole byl shrnut postup vypoctu deformace membran kapalinovych cocek.
S timto néstrojem lze modelovat a analyzovat membranové CocCky a pouZit vypoctené
tvary optickych rozhrani k navrhu unikatnich optickych systému, které kombinuji jak
fixni prvky tak prvky aktivni — kapalinové membranové c¢ocky. Vyhodou kombinovanych
systémt je to, Ze umoznuji korigovat optické aberace v mnohem §irsi oblasti obrazového
prostoru, nez je tomu u samotné jednoduché ¢ocky. Ta miiZe totiZ minimalizovat aberace
jen pro velmi omezenou oblast (odpovidajici jedné poloze pfedmétu a obrazu, resp.
ohniskové vzdélenosti).
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h1 =0.2282 mm, h2 =3.0009 mm
rn= 11.1026 mm, = -25.9070 mm
A =587 nm,n= ng = 1.4225, s = -00, s'F, =14.6499 mm
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(b) Trasovani svazku paprskii membranovou

v v

(a) Schéma membréanové cocky dvoji kiivosti e
¢ockou dvoiji kfivosti

Obrazek 2.9: Membranova cocka dvoiji kiivosti [6]

Névrhu nomindlnich parametrti vybranych kombinovanych systému se autor této
prace vénoval a podilel se na publikaci vysledkii v mezindrodnich ¢asopisech [4H6]. Nize
budou pfedstaveny a shrnuty vybrané vysledky.

Névrh parametrti jakéhokoli optického systému je zaloZen na modelovani optickych
aberaci, zpravidla paprskovych nebo vlnovych. Zname-li aberace soustavy, poté lze para-
metry jednotlivych ¢lenti systému optimalizovat tak (hledat jejich numerické hodnoty),
aby vybrané hodnoty aberaci byly minimalizovany (napf. polomér rozptylového krouzku,
prabéh paprskové aberace apod.). JelikoZ je podrobny rozbor a pfedstaveni vztah, které
se v pribéhu optického ndvrhu pouZivaji, nad rdmec této prace, ctenaf mazZe najit infor-
mace napiiklad v literature [40-43) 48} 54-56].

Jako prvni z analyz kombinovanych membranovych cocek, které se autor vénoval,
pfedstavme membranovou cocku dvoji kiivosti [6]. Jeji schéma je zobrazeno na obr.
Cocka se sklad4 ze dvou osové symetrickych membran riizné tloust’ky h; a hy, které bu-
dou mit p¥i stejném plisobicim tlaku p kapaliny uvniti ¢o¢ky riznou osovou kfivost. Zmé-
nou objemu kapaliny je moZné ménit tlak, a tim pddem i optickou mohutnost cocky. V no-
mindlnim stavu, kdy tlak nedeformuje membrany, je osova tloust’ka cocky oznacena d.
Zvysenim tlaku dojde k jeji zméné na d. Déle na obr. znaci ng index lomu materi-
dlu membrany, n index lomu kapaliny, w; a w» osovou maximélni deformaci membréany
a d; je vnitini osova tloust'’ka CoCky pfi nominélnim tlaku (nulové deformaci membran).
Vypocet deformace membrany lze provést feSenim rovnic predstavenych v kapitole

Znéame-li tvar membrdn, Ize snadno urcit osové kiivosti jednotlivych ploch, které od-
déluji jednotlivé optické materidly. To je vstupem pro vypocet napf. Seidelovych abe-
raci tietiho fadu [40-43) 48, 54H56]. Ve specidlnim pfipadé, bude-li index lomu materidlu
membran stejny jako index lomu kapaliny, ¢ehoz 1ze vyrobné dosdhnout, bude prvotni
analyza aberaci odpovidat hodnotdm tlusté cocky. Ndsledné l1ze optimalizovat geomet-
rické parametry cocky (tloustky membrén, jejich pocatecni nomindlni vzdélenost a pti-
sobici tlak) tak, aby byly aberace minimalizovdny. Dalsi z moZnosti je provést trasovani
paprskl optickou soustavou ¢ocky (viz obr. a analyzu paprskovych aberaci spole¢né
s naslednou optimalizaci. Podrobnosti analyzy mtZe ¢tenaf nalézt v préci [6]. Je zde po-
drobné vysvétlen postup vypoctu nominélnich parametrii ¢ocky s minimalizovanou sfé-
rickou aberaci tfetitho fddu pro pfedmét v nekonec¢nu pro rtizné indexy lomt kapaliny
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2.3. NAVRH KOMBINOVANYCH MEMBRANOVYCH COCEK
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(a) Zoom systém ze tii ¢lent, kdy dva vnéjsi

jsou aktivni a prostfedni fixni (b) Obecny hybridni zoom systém

Obrézek 2.10: Schémata vybranych kombinovanych zoom systém1i [5]

a pusobici tlaky. Ddle je napi. ukdzdna analyza parametra cocky, které zajisti stejnou hod-
notu ohniskové vzdalenosti pro rtizné tloustky membrén.

Dalsi z uzite¢nych aplikaci aktivnich cocek je konstrukce hybridnich zoom systém.
Cilem préce [5], na které autor spolupracoval, bylo vytvofit metodiku pocate¢niho navrhu
zoom systému, ktery bude sloZen z tenkych optickych ¢lenti (tenkych membréanovych ¢o-
¢ek) s proménnou ohniskovou vzdalenosti.

V piipadé klasickych zoom systémi se jednotlivé optické komponenty béhem zmény
ohniskové vzdalenosti systému nebo jeho zvétSeni pohybuji podél optické osy. Vnitini
struktura jednotlivych parametrti (poloméry kiivosti ploch c¢ocek, vrcholové vzdélenosti
aindexylomu) je fixni. Zdkladni rozdil téchto zoom systémti oproti tém s ¢leny proménné
ohniskové vzddlenosti je ten, Ze aktivni prvky zistavaji ve stejné pozici a jejich vnitini
struktura (parametry) se méni. V pfipadé klasickych systémt nemtize byt aberace nu-
lova pro cely rozsah ohniskovych vzdalenosti, mtiZe byt pouze minimalizovéna. V pfipadé
hybridnich zoom systém1i s aktivnimi prvky Ize dosdhnout situace, kdy budou Seidelovy
koeficienty (aberace) splnovat nékterou z nasledujicich podminek:

¢ systém bude mit poZadované hodnoty aberaci pro cely rozsah ohniskovych vzdale-
nosti zoom systému,

* aberace se budou ménit pouze minimdalné v rdmci rozsahu ohniskovych vzdéalenosti
zoom systému.

Hybridni zoom systémy lze konstruovat riznymi zpusoby. Vybrané jsou ukdzany
na obr. Vzhledem ke konstrukéni jednoduchosti se jevi jako vhodné takové sou-
stavy, které jsou sloZeny ze dvou vnéjsich aktivnich cocek s fixni ¢ockou mezi nimi (viz
obr. 2.10a). U téchto konstrukci ale neni mozné kompenzovat aberace pro vsechny
stavy systému (ohniskové vzdédlenosti nebo zvétSeni), jelikoZ jsou zde pfitomny pouze
dva variabilni parametry — prvni a posledni polomér kfivosti. Aberace tak mohou byt
korigovany pouze pro specidlni pfipady, v ostatnich se budou ménit. Déle je nutné zajistit
fixni vzdalenost obrazové roviny od posledniho komponentu zoom systému pro vSechny
hodnoty ohniskovych vzdélenosti (pro pfedmét v nekonecnu) nebo pficné zvétSeni
(pro predmét v kone¢né vzddalenosti). Obecnéjsi, vihodnéjsi, ale komplikovanéjsi mtize
byt piipad schematicky ukdzany na obr. Prvni a tfeti komponent (zobrazeny
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KAPITOLA 2. AKTIVNI OPTICKE PRVKY A JEJICH VYUZITI

modrou a zelenou barvou) jsou tvofeny jako dvé plankonvexni ¢ocky oddélené tenkou
deskou z transparentniho materidlu (sklo, Sylgard apod.) Druhy komponent je tvofen
druhou a tfeti membrénou a je pouZit jako kompenzac¢ni rezervodr. Poloméry kiivosti
jednotlivych membrén se budou ménit se zménou jednotlivych tlak®. Takovyto systém
muZe kompenzovat aberace pro vice pfipadt nez predchozi.

Pfedstaveny postup v praci [5] umozZnuje navrhnout jak vnéjsi parametry systému
(ohniskové vzdéalenosti jednotlivych ¢lent a jejich osové rozestupy), tak vnitini parametry
jednotlivych ¢lenti (poloméry kfivosti, tloustky a indexy lomu). Takto ziskané startovaci
parametry mohou byt pouzity pro nésledny optimalni opticky nédvrh. Pro podrobnéjsi stu-
dium a pfiklady odkdZeme c¢tenédfe na zminénou publikaci.

2 vz

Jako posledni ¢ast této kapitoly zminme vystup prace autora publikovany v ¢lanku [4],
kde je cilem zevrubnd analyza hybridni soustavy (Cocky) z jedné fixni a jedné nebo dvou
aktivnich cocek. Je zde velmi podrobné rozebran popis aberaci téchto systému, ktery je
déle vyuzit pro nomindlni opticky navrh jako startovni bod.

i 24 Vyuziti aktivnich prvku v optickych ske-
nerech

Jak jiz bylo zminéno, aktivni optické prvky mohou nalézt a nachdazeji Siroké uplatnéni
v radé praktickych aplikacich. Jednou z nich je i oblast adaptivniho skenovani. Optické
skenery jsou zafizeni pro bezkontaktni, velmi rychlé a pomérné presné méfeni prosto-
rové polohy bodi na pfedmétu zdjmu nebo k modifikaci vlastnosti jeho povrchu. Rozdélit
mutZzeme skenery do tii skupin:

e zamérfovani, provéfovani nebo kontrola stévajicich prvki,
* projek¢ni technologie,
¢ laserové technologie pfi vyrobé.

Zejména v projekcnich technologiich a pfi vyrobé (gravirovédni, fezani, svafovani
apod.) je Zadouci, aby stopa svazku byla zaostfena v roviné pfedmétu (na povrch pied-
meétu). To je s pouzitim klasickych optickych prvki pomérné komplikovana zdaleZitost,
zejména jednd-li se o vysokofrekvencni aplikace, kdy se stopa pohybuje velmi rychle. Zde
nachézi vyvhodné uplatnéni pravé aktivni optické prvky, které mohou bez zmény polohy
a velmi rychle modifikovat parametry zobrazeni projekéni optiky.

V rdmci prace [7] autor studoval pouziti aktivni plankonvexni ¢ocky v dvou-
zrcadlovém optickém skeneru, kde podrobné ukdzal vztahy pro trasovdni paprsku
optickou rozmitaci soustavou a také demonstroval vypocet ohniskové vzddalenosti ak-
tivni Cocky takové, kterd zajisti zaostieni systému do pozadované polohy na pfedmétu.
Principidlni schéma trasovani je ukdzédno na obr. zavislost hodnot ohniskové
vzdalenosti pro zaostfeni svazku ve vybranych bodech detekéni roviny je poté zobrazena
na obr. Podrobné odvozeni vztahti a jejich souhrnny popis je nad ramec této préce,
a proto pro vice informaci odkdZeme Ctenafe na zminénou publikaci.
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2.4. VYUZITI AKTIVNICH PRVKU V OPTICKYCH SKENERECH
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(a) Principidlni schéma trasovani optického (b) Zavislost hodnot ohniskové vzdélenosti
svazku soustavou dvou-zrcadlového skeneru pro zaostfeni svazku ve vybranych bodech de-
a plankonvexni aktivni ¢oCkou tek¢ni roviny

Obrazek 2.11: PouZiti aktivnich ¢ocek v optickém skenovani [7]
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I 3 Vybrané oblasti optického zobrazeni

V této kapitole budou shrnuty a pfedstaveny vybrané vystupy publikaci [8H16], na kterych
se autor podilel v rdmci analyzy riaznych témat optického zobrazeni. Kopie téchto publi-
kaci jsou uvedeny v Pifloze[Al

Prvni ¢ést se zabyva problémem skaldrni difrakce a jejiho feSeni na mfiZce, kruhové
pupile a mezikruZzi a analyzou rozptylové funkce bodu a osové rozptylové funkce bodu
[8-12]. Nésleduje ¢ast vénovana aberaci optickych soustav, a to zejména sférické aberaci
a jejimu vlivu na hloubku ostrosti a navrhu systému s jednou nebo dvéma asférickymi
plochami s korigovanou sférickou aberaci [13,[14]. Kapitola je zakon€ena tématem teore-
tické analyzy ndvrhu zédkladnich parametrti dvouclennych optickych systémi [15].

l 3.1 Skalarni teorie difrakce

B 3.1.1 Skaldrni teorie difrakce a jeji aproximativni feSeni

V optické teorii je zndmo, Ze komplexni amplituda pole v libovolném bodé P prostoru za
rovinnou aperturou (nebo fadou apertur) mtiZe byt vypoctena pomoci vztahu [40} 41,57~
60]

UP) =—= f f o ZRUKTPM) o) da, (3.1)
A rpm
A
kde je integrace provadéna pies plochu A apertury, M znaci bod na této ploSe apertury,
rpy znacivzdalenost mezibody P a M a cos(n, rpys) znaci cosinus thlu, ktery svird vnitini
jednotkovy normalovy vektor n k ploSe S se smérem vektoru rpy,. Uvazovana situace je
ukdzdna na obr. Je béZnou praxi, Ze smér Sifeni pole je volen ve sméru osy +z, tj. plati
n=(0,0,1).

Rovnice je tzv. Sommerfeldovo feSeni difrakéni tlohy (Sommerfeldav difrakéni
integrdl nebo také Rayleigh-Sommerfledovo feSeni druhého druhu). Pomoci tohoto
vztahu mtZeme vypocitat vlastnosti pole U(P) (komplexni amplitudu) v bodé P ohra-
niceném plochou S, jestliZze je zndma komplexni amplituda U(M) na oblasti apertury.
Intenzitu pole I(P) vbodé P poté miizeme urcit ze vztahu

I(P)=|UP)I*. (3.2)
Vztah (3.1) obecné nema analytické feSeni, a proto je vhodné (mozné) pouZit apro-
ximativni pfistupy, které v fadé praktickych pfipadi analytické feSeni uz poskytuji, nebo

alespon numerické feSeni vyrazné zjednodusuji.
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KAPITOLA 3. VYBRANE OBLASTI OPTICKEHO ZOBRAZENI

ty

Mz Vag 720 P(xp. vp. zp)

\ :

Obrazek 3.1: Difrakce na rovinné apertufe

Vzdalenost rpy; mezi body P a M je ddna vztahem (viz obr. zp =0)

rpM = \/(xp —xm)? + (yp—ym)? + 25 (3.3)
2 2
- (xp—xpm)°+ (Yp— yMm) ’
ZZP

kde je pouzit Taylortiv rozvoj [37-39] se zanedbdnim vyssich fada. V pfipadé, Ze pfedpo-

kladdme malé difrak¢ni thly (budeme vySetfovat pole v blizkosti optické osy), tj. mtiZeme
s dostatecnou pfesnosti poloZit cos(n,rpy) = 1, poté 1ze rovnici (3.1) vyjadfit jako

ik
U(P) = Cff UM) exp{—zlz [(xp— )2+ (yp — yM)Z] } dxpdyn, (3.4)
P
A

_ i exp(ikzp)

C= ,
A zZp

kde rpys bylo v exponentu nahrazeno rovnici a jmenovatel je poloZen rpys = zp.
Rovnice predstavuje tzv. Fresnelovu aproximaci Sommerfeldova difrakéniho inte-
gralu [40, 41),57H60].

Dalsiho zjednodu$eni dosdhneme v pfipadé, Ze difrakce nastava na apertufe, jejiz roz-
meéry jsou vyrazné mensi nez vzdalenost zp. Poté mtizeme predpokladat

exp ~1. (3.5)

—(xy +
22p (X +¥ar)

Druhd moZznost obdobného zjednoduSeni nastane v pfipadé difrakce konvergentni sfé-
rické (nebo alespon pfiblizné sférické) viny se sttedem v bodé P nebo v jeho blizkosti, kdy
plati

UM) =T(M)exp ) (3.6)

ik o,
—— (x5, +
2 Zp( Mt Ym)
kde funkce T (M) charakterizuje vlastnosti této viny v roviné apertury.
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3.1. SKALARNI TEORIE DIFRAKCE

Vztahy (3.5) a (3.6) vedou po dosazeni do (3.4) a snadné tpravé na tzv. Fraunhoferovu
aproximaci difrak¢ni dlohy [40} 41} 57H60]. Oznacime-li

u=xplzp a v =yplzp, (3.7

komplexni amplitudu v bodé P mtiZeme vyjadfit pomoci vztahti

UP) = Cff U(M) exp [—ik(uxpy + vym)| dxpdym, (3.8)
A

UPp) = cff T(M)exp [—ik(uxp + vym)| dxpdyn . (3.9)
A

Ze vztaht a je patrné, Ze komplexni amplituda U(P) je imérna Fourie-
rové transformaci [37H39] pole v roviné apertury. JelikoZ je numericky vypocet Fourierovy
transformace velmi dobfe realizovan na soucasnych pocitacich, je toto jednoduché feSeni
pro analyzy difrak¢énich jevil Casto pouZivano.

. 3.1.2 Difrakce na mrizce

Pomoci vztahti ukdzanych v pfedchozi kapitole lze analyzovat fadu difrakénich problémd.
Jednim z nich je difrakce na mfiZce, neboli Sifeni pole za stinitkem s periodickou sousta-
vou otvorli. Timto tématem se autor zabyval a publikoval analyzu difrakce na dokonalé
a nedokonalé mfiZce, kdy jsou jeji hrany popsdny harmonickymi funkcemi, v préci [8].
V publikaci [9] je poté analyzovéan vliv kone¢nych rozmérti mfizky na tzv. Talbotliv jev —
samozobrazovani periodické struktury za mfizkou. Vztahy odvozené v téchto pracich jsou
velmi uZitecnym a pfitom jednoduchym néstrojem pro analyzu zminéného difrakéniho
problému.

Pro ilustraci ukazme postup vypoctu stavu pole za nedokonalou difrakéni miizkou
s pouzitim Fraunhoferovy aproximace. Situaci Ize analyzovat zptisobem, kdy je kazd4 jed-
notliva §térbina m¥iZky popsana individudlni difrakci na apertute. Pole za takovou nedo-
konalou miizkou poté bude charakterizovdno superpozici ptispévki jednotlivych suba-

Yoy

pertur. Obecné Ize funkci propustnosti mfizky popsat vztahem [8]

&—Eno(m)

, 3.10
b, (n) ( )

fEm=A ) rect
n=—o0

kde A je konstanta, ¢,0(n) oznacuje funkci centralni linie n-té Stérbiny (subapertury)
a b, (n) je funkce popisujici jeji $itku. Obr.[3.2|zobrazuje uvazovanou situaci.
Déle lze psat

1
Enom) = E[En,d(n) +E¢nnM, by =&nnm—Enam, (3.11)

kde ¢,,qa(m) a &, n(m) jsou funkce jednotlivych hran n-té subapertury (Stérbiny). Tyto
hranové funkce mohou byt vyjaddfeny fadou zplisobti (aproximaci), naptiklad rozvojem
v mocninnou fadu, Legendreovy polynomy, Fourierovu trigonometrickou fadu apod.
1371.

Vyse uvedeny obecny formalismus zahrnuje riizné typy miizZek, které mohou mit $tér-
biny rtiznych tvart (popsanych individudlnimi hranovymi funkcemi ¢, 4(n) a &, ().
Centralni linie $térbin mfiZek (rovnice ) také nemusi byt vzdjemné rovnobézné, jeli-
koZ kazdé z hran miiZe mit rizny trend.
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fn,O = an(’?) n écn,d fn,() éﬂn,h
En,h = fnh(ﬂ) < \,“ <>
6ﬂ,d = fnd(‘v ) > I‘)
b n= b n(’?) '\: (
f ¢
b4
W
Al
b n,0

Obrézek 3.2: Schéma n-té Stérbiny (subapertury) nedokonalé mfizky

Zminme déle podminky existence miizky. Ta mlize byt fyzicky realizovatelna (vyro-
bena), pokud plati max|[¢ ,—1,, ()] <min[¢, 4(1)] pro kazdé n.

Predpokladejme nyni, Ze miizka ma N Stérbin, tj. n € [1, N]. Poté pro komplexni ampli-

tudu U(x, y, z) a intenzitu I(x, y, z) v roviné z za mfizkou s pouZzitim principu superpozice
dostavame

2
, (3.12)

N
U(x) yy Z) = US,I’l ) I(xy y) Z) =

n=1

N
Z US,n
n=1

kde Us,,, oznaCuje priispévek n-té subapertury mfizky. Uvazime-li déle pro ilustraci, Ze
na miizku dopadd rovinnd vlna, 1ze v pfipadé Fraunhoferovy aproximace Sommerfeldova
difrak¢niho integrélu, rovnice (3.8), pro miizky vysky 2d psat

d $nn(Ym)
Usn= CK[ f exp [—ik(uxpy + vys)| dxpdyn, (3.13)
_dgrn,d(yM)

_ _ _ _  iexplikz) _2n
kdeK—konst.,u—x/z,v—y/z,C——z Z ’k—T'

vsw

Uvazujme dale hrany Stérbin mfizky charakterizovdny pomoci harmonickych funkci
zptisobem

b

Ena(m) = Eno(0) — ;0 — Ap18in(Qu 10+ @) , (3.14)
bn,O .

Enn(m) =<&no(0) + + Ap2Sin(Qp2n+@n2),

kde ¢5,,0(0) a by jsou pozice centrdlnich linii a Siftky subapertury pro soufadnici n = 0,
Ap1 a Ay jsou amplitudy hranovych funkci, Q,; a Q2 jsou thlové frekvence hrano-
vych funkci a ¢, a ¢,2 jsou jejich pocatecni fazové posuny. Oznacime-li dale Us , =
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CKUs,n,xy, poté po provedeni vhodnych zjednoduseni dostavame

d

Us,n,xy =1Dg n,2 f {exp(—ikvynr) expl—ifn2sin(Qn2ym + @n2)l} dym (3.15)
—d

d
—iDg n,1 f {exp(—ikvyn) explifin,1 sin(Qn1ym + @)1} dym,

-d
kde
,Bn,Z = An,zku ) ,Bn,l = An,lku ) (3.16)
1 ) by,
Dgpnq1= E exp | —iku (fn,o(o) - ZO)] ;
1 b
Dg n2 = s—exp |—iku (511,0(0) + n,O)] .
ku 2
Pro limitni pfipad u = 0 ndsledné plati
d
Usnxyl o = f exp(—ikvyn) [bo+ Ap1 SINQu1ym + @n1) + An2Sin(Qu2ym +@n2)| dym,
-d
(3.17)
prov =0
Us,nxy|y—g =1Dsn2 | expl=ifn28in(Qn2ym+@n2)l dym (3.18)

—iDgp,1 | explifn,1sin(Qpu1ym +@n,1)] dym

fd
-d
d

-d
apro u=v =0dostavame

2An,2 An,l

US,n,xylu:yzo =2bpod + sin(Qy2d)sing, » +

n,2 n,1

Pouzitim rovnic (3.13) az (3.19) ve vztahu (3.12) lze vyjadfit stav pole (komplexni am-

vV

plitudu) v roviné za mfiZkou. Pro intenzitu pole poté plati

sin(Qy,1d)sing,, 1 . (3.19)

2
KZ N
Iy, =735 Y Usnxy (3.20)
n=1
V limitnim p¥ipadé 1(0,0, z) dostdvame
2
2 N An,2 . . An,l . .
1(0,0,2) =4 Y | bnod+ sin(Q, »d)sing;, » + sin(Qp,,1d)sing,, |
A’zzz n=1 ' 7’1,2 ' ' n,l '
(3.21)

V publikaci [8] autoti ddle analyzuji a odvozuji vztahy pro charakteristiku mfizek s ma-
lymi defekty jednotlivych vrypt (§térbin), malymi amplitudami hranovych funkci nebo
proménnou periodou mfizky. Detailnéjsi informace miiZe ¢tendf nalézt v Pfiloze[Al
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(b) Detail fezu v roviné y = 0 v oblasti prvniho

R iné y=
(2) Rez v rovine y =0 difrakéniho maxima

Obrézek 3.3: Srovnani difrakce na dokonalé a nedokonalé miiZce — normalizovand inten-
zita pro a) dokonalou a b) nedokonalou mfizku s proménnou periodou [8]

Na obr. je pro pfiklad ukdzan fez normalizovanou intenzitou pfi Fraunhoferové
difrakci v roviné y = 0 pro dokonalou mfiZku s periodou py a nedokonalou mfizku s pro-
meénnou periodou, kterd je charakterizovdana vztahy

611,0(0) = np(l + Ap)Po » Np€ [_pr Np] » (3.22)
bpo=by, Ap1=A1, App=A4Az,
Qp1=Q1, Qu2=Q2, @un1=¢1, Pu2=¢2,
kde A, =0.02, po = 0.5 mm, N, =9, bp = 0.25 mm, A} = A = Q) = Qy = ¢ = @2 = 0.

Déle jsou pfedpoklddany rozméry miizky ¢ = d = 5 mm, parametry dopadajiciho pole
A=K =1aA =633 nm a rovina detek¢ni roviny je v pozici z = 150 mm. Tato mfizka
ma4 tedy linedrni hrany ale proménnou periodu, kterd se linedrné méni se vzdalenosti
od centra mfizky. Obr. nasledné ukazuje vytez kolem prvniho difrakéniho maxima.

Horizontalni osa grafti je uvedena v tihlové soutadnici w, kdy plati tanw = . Z obrazk

z
oy

je zfejmé, Ze diky nepravidelnosti m¥izky dojde jak k posunu maxim difrakénich ¥ada, tak
ke zméné intenzity.

Jak jiz bylo zminéno v tivodu kapitoly, v publikaci [9], na které se autor této prace podi-
lel, je analyzovan vliv kone¢nych rozmért miizky na tzv. Talbottiv jev. Jestlize pole dopadéa
na periodickou strukturu (napf. pravé na difrakéni m¥izku nebo pole dér v nepriihledném
stinitku), poté existuji vzdalenosti, ve kterych bude struktura intenzity odpovidat pfesné
struktufe stinitka (difrakéni mfiZky). Toto samozobrazeni m4 aplikaci v fadé metrologic-
kych aplikacich, interferometrii, mikroelektronice apod.

V publikaci [9] autoti provedli podrobnou analyzu tohoto jevu a zejména poté ukazali

N4

jednoduchy vztah pro odhad $itky tzv. pfechodové funkce Talbotova jevu, kterd charakte-
rizuje vliv kone¢nych rozmérti miizky na vzniklé Talbotovy obrazy (obrazy nebudou os-
tré, ale dojde k mirnému rozmazani jejich hran). Sitku pfechodové funkce A (horizontélni
vzdalenost mezi body na dolni a horni hrané pulzu obrazu normované intenzity, které vy-

tind pfimka prochézejici inflexnim bodem hrany pulzu) Ize odhadnout ze vztahu [9]

A=0.75—, (3.23)

kde p je perioda m¥izky a ¢ znaci $itku m¥izky.
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B 3.1.3 Difrakce na kruhové pupile a mezikruzi

Jak je zfejmé v ivodni ¢asti této kapitoly, stav pole za optickou soustavou je zévisljf na
tvaru vystupni pupily soustavy, pfes jejiZ plochu probihd integrace ve vztahu (3.1), na vl-
nové délce pouzitého zafeni a na vzddlenosti, ve které je stav pole vySetfovan. Obraz bodu
je poté charakterizovan rozloZenim intenzity (energie) — tzv. rozptylovou funkci bodu (PSF
z angl. Point Spread Function) [40, 41} 54} 60]. JestliZe je optickd soustava rotacné symet-
rickd a bez aberaci, maximdlni intenzita pole v obrazovém prostoru leZi v roviné, kter4 je
totoznd s geometricko-optickym obrazem bodu na pfedmétu.

V optické praxi jsou nejcastéji analyzovany pupily kruhové. Problematice kruhovych
pupil a pupil tvaru mezikruZi se autor této prace zabyval a podilel se na publikaci vysledkii
v pracich [10H12]. Nésledujici pasdz predstavi stéZejni mySlenky a vystupy zminénych pu-
blikaci.

Vypocet stavu pole za aperturou je historicky dobfe zndm a existuje celd fada moz-
nosti, jak rozptylovou funkci bodu urcit (napt. numericka integrace, Fourierova transfor-
mace a dal$i). V publikaci [10] se autor této prace podilel na formulaci explicitniho vy-
poctu rozptylové funkce bodu v pfipadé optické soustavy s kruhovou aperturou pro zob-
razeni osového bodu predmétu. Tento pfistup rozsitil dosud zndmé moznosti vypocti
o dalsi alternativu, ve které je integrace nahrazena rozvojem ve vhodnou fadu, a je tedy
velmi snadno implementovatelna.

UvaZujme rota¢né symetricky opticky systém s kruhovou vystupni pupilou, ktery zob-
razuje osovy bod pfedmétu. Vlnoplocha za vystupni pupilou bude v pfipadé systému bez
aberaci konvergentni sférickd se sttedem v obraze osového bodu. V takovém piipadé Ize
polozit U(M) = A(M) exp(—ikR)/R, kde A(M) je komplexni amplituda vinoplochy v bodé
M (na sférické vinoplose) a R znaci polomér vinoplochy. Necht' jsou dédle hodnoty xp
a yp vyrazné mensi neZ polomér R a mzeme tak pfedpoklddat nasledujici zjednoduseni
ve vztahu : cos(n,rppr) = 1, exp(ikryp)/rayp = exp(ikryp)/R. Komplexni amplitudu
vbodé P (pro U(M) = A(p) a kruhovou pupilu) 1ze poté psat ve tvaru [40, 41}, 54} [60]

exp(ikR)
R

27m

vb) = AR

1
].[/Mp)h(TP)Pdp, (3.24)
0

kde
()\/ 21y = H”x;yp uly (3.25)

t= \/xl% +y%), g=mntlc,p=rla, R=rop—R, rop je vzdalenost mezi sttedem vystupni
pupily abodem P, a = ryax je maximélni hodnota r, Jj je Besselova funkce prvniho druhu
a ¢ = R/(2a) je clonové cislo optického systému v obrazovém prostoru.

V pfipadé, kdy je opticky systém zatiZeny aberacemi, mtiZeme vztah vyjadrit

jako [10]

1
mm=LfmthMP®, (3.26)
0
kde
27m exp(lkR) .5
L= ] 5 Mz)exp(lkR), (3.27)
P(p) = T(p)exp [1kW(p)] = T(p){cos[kW (p)] + isin[kW (p)]}, (3.28)
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kde T (p) charakterizuje funkci amplitudové propustnosti pupily a W (p) je vinova aberace
optického systému [40, 41, 54} [60].
Intenzita I(P) miliZe poté byt vyjadiena jako

2

1
IP) = [UP)P =K f P(p)Jo(tp) pdp| (3.29)
0
kde
e (T
K=|L| _(lecz) . (3.30)

Lze ukazat, Ze vypocet rozptylové funkce osového bodu systému (vycisleni rovnice
(3.29)) 1ze provést pomoci tzv. Soninova integralu [61}, 62]

n+1 /2

X
],n+n+1(x):m f Jm(xsin H)sin™* ! rcos? 1 ds. (3.31)
0

Jestlize v rovnici (3.31) poloZime m =0, x =7 asint = p, plati

Jn+1(7)

Tn+l

1
f]o(rp)(l—pz)npdp:Z”T(n+1) , (3.32)
0

kde T'(n + 1) je Gamma funkce [37]. Je-li ddle moZné vyjadfit funkce T(p)sin[kW (p)]
a T(p) cos[kW (p)] rozvojem v fady

T(p)sinlkW (p)] = Y_ ps(1-p?)°, (3.33)
T(p)cos[kW (p)] = Y gs(1 - p?)’,
S

1ze vyjadfit komplexni amplitudu U(P) pomoci vztahu [10]

1
UP) =L fP(p)]o (tp) pdp=L ;25(q3+ ips)T(s+ 1)]5;(17) : (3.34)
0

Pomoci rovnice Ize explicitné vypocitat komplexni amplitudu pole v ptipadé
zobrazeni osového bodu optickym systémem, ktery je zatiZen aberacemi, jestlize je
funkce P(p) rozvinuta v fadu bdzovych funkci {(1 - pz)s}, kde s =0,1,2, .... Nasledné
lze snadno urcit rozptylovou funkci bodu (PSF) pomoci , tj. I(P) = |U(P)|*. Nor-
malizované rozloZeni intenzity (za pfedpokladu I,(r = 0) = 1) je tak dédno vztahem
(10]

2

Js+1(T) ’ (3.35)

I,(P)=K, 7o+1

Y 2%(gs+ip)T(s+1)

kde

-2

K,=4 (3.36)

2_ds

N
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Osové rozptylova funkce bodu (APSF z angl. Axial Point Spread Function), tj. rozloZeni
energie v podélném sméru osy §ifeni, 1ze urcit jako limitni p¥ipad pro 7 = 0. V pfipadé
komplexni amplitudy pole plati [10]

(qs+1ips)
Ur=0=L) ——, 3.37
(t=0) ;MHD (3.37)
a normalizovand intenzita poté bude dana vztahem [10]
(gs+ips) 2
APSF, =1,(t=0) =K S 3.38
n n(T ) n Xs: 2(s+1) ( )

VysSe uvedeny aparit je zdkladem pro explicitni vypocet rozptylové funkce bodu.
V préci [10] autofi ddle podrobné analyzuji pfipad vypoctu koeficientli rozvoje funkce
P(p) metodou nejmensich ¢tvercti a pomoci Taylorova rozvoje. Metodu dale prezentuji

na piikladech optického systému zatiZeného aberacemi do péatého fddu. Podrobnéjsi
informace mtize ctendf nalézt v kopii publikace [10] v Pifloze[A|této préce.

Jedna ze zdkladnich sloZek optickych aberaci, ktera ovlivni zobrazeni osového bodu
rotacné symetrickou optickou soustavou, je tzv. defokusace. Jedna se o piipad, kdy se po-
loha maximalni intenzity pole v obrazovém prostoru nenachéazi v geometricko-optickém
obraze osového bodu - je posunuta o hodnotu A. Analyzu rozptylové funkce bodu a osové
rozptylové funkce bodu v pfipadé defokusace pro optickou soustavu s kruhovou pupilou
a pupilou tvaru mezikruZi se autor vénoval a podilel se na publikaci prace [11]. V ni je po-
drobné odvozen vypocet komplexni amplitudy a intenzity pole pro danou situaci a jsou
také odvozeny vztahy, pomoci kterych lze jednodusSe urcit zadkladni charakteristiky roz-
ptylovych funkci, napf. polohy prvnich minim v podélném a pficném sméru. Je zde déle
také ukazano, jakym zptisobem volit tvar mezikruzi (poloméry ohranicujicich kruznic),
aby byla odpovidajicim zptisobem ovlivnéna hloubka ostrosti optické soustavy.

V piipadé rovnomérné rozlozené (konstantni) amplitudy v roviné vystupni pupily lze
pro normalizovanou intenzitu APSF,,(A) = I,,(A) v podélném sméru a stiedu difrakéniho
obrazce psat (tj. uvdzime 7 =0, Jo (0) = 1, A(p) = Ao, 1,,(0,0) = 1 anormalizované poloméry
kruznic ohranicujici mezikruzi p; a p») [11]

4 inkp (02— p2)/2] |
APSE, () = 1,0 = — | SRR T PO (339
05~ p}) h
kde
A
ﬁ_@, (3.40)

Chceme-li urc¢it hodnotu A,,;, pro kterou normalizovand intenzita na optické ose klesne
na I, = I,,(Ay,), 1ze pro vypocet pouZit piiblizny vztah [11]

16c2
Am(Im):iﬁ\/IO—Z\/?»O\/Im—& (3.41)
0

kde reélné feseni dostavame pro miniméalni hodnotu I,,, = (5/30)? = 0.028.

Pomoci rovnic a Ize studovat, jaky vliv bude mit geometrie mezikruZzi
na zobrazeni bodu optickou soustavou, na osovou rozptylovou funkci, a tim paddem na
hloubku ostrosti optické soustavy. Vétsi hodnota A, totizZ jinymi slovy fikd, Ze bod bude
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(a) Pupila tvaru kruhu (b) Pupila tvaru mezikruzi

Obrézek 3.4: RozloZeni normalizované intenzity kolem obrazu osového bodu optické sou-
stavy s konstantni amplitudou v roviné vystupni pupily tvaru kruhu a mezikruzi [11]

zobrazitelny ostfe ve vétsi podélné oblasti kolem geometricko-optické polohy svého ide-
dlniho obrazu. Napftiklad na umisténi senzoru za optickou soustavou mohou tak byt kla-
deny niZ8i pozadavky na pfesnost. Na obr. je pro ilustraci ukdzdno rozloZeni inten-
zity kolem obrazu osového bodu optické soustavy s konstantni amplitudou v roviné vy-
stupni pupily tvaru kruhu (p; = 0, p2 = 1) a na obr.[3.4b|poté rozloZeni intenzity pro pupilu
tvaru mezikruzi (p; = 0.95, p, = 1). Dalsi ptiklady a analyzy (napf. pro Gaussovské svazky
[40, 41]) mtize Etenaf nalézt v kopii ¢lanku v Pifloze[Al

Reseni tlohy defokusace v obraceném pojeti bylo publikovadno v préaci [12], kde se au-
tor podilel na tvorbé metodiky urCeni prostorové polohy Castice z méfeni dvojrozmeér-
ného rozloZeni intenzity v mikroskopii. Ze zaznamenaného rozloZeni normalizované in-
tenzity bodu je tak moZné urcit hodnotu defokusace, resp. podélnou polohu ¢éstice, ve
které se nachdazi vzhledem k roviné senzoru.

Lze ukézat, Ze hodnota malé defokusace muZe byt vyjddfena jako funkce normalizo-
vaného osvétleni L, (7,,,A) na vybrané kruhové oblasti. Plati [12]

_ 462‘[?” 1 —](z)(Tm) _]%(Tm) = Ly(Tm,A)

, (3.42)
ko \ 5 [J5@m) + 2 (m)] - 415 (@ m)

kde hodnotu osvétleni L, (7,,,A) ur¢ime z experimentdlniho méfeni a pomoci integrace

Tm

1
Ln(rm,A):EfIn(r,A)rdr, (3.43)
0

T, znaci polomér kruhu v roviné obrazu, na kterém integraci provadime a jehoZz stied
je umistén v misté maxima registrované intenzity, Jo a J; jsou Besselovy funkce prvniho
druhu (fddu nula a jedna).

Pro velké hodnoty defokusaci neexistuje jednoduché feseni, ale alternativni zptisoby
jsou diskutovany v praci . Ddle jsou zde uvedeny vztahy pro vypocet defokusace v pfi-
padé ctvercové apertury a feSeni jsou demonstrovdna na piikladech a experimentdlnim
méfeni. Podrobnosti muize ¢tendf najit v kopii publikace v Ptiloze[A]
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B 3.2 Navrh optickych soustav s korigovanymi
aberacemi

Porozuméni vzniku a moZznostem eliminace optickych aberaci patfi mezi zédkladni tkoly
béhem navrhu optickych systémii. Obecné se tomuto tématu vénovala fada autorti a ne-
ustdle jsou na danou problematiku publikovdny nové prace. Komplexni analyza aberaci
a vSech moznosti jejich minimalizace pro opticky navrh je nad rdmec této prace, nicméné
¢tendf snadno najde fadu knih a ¢lankf, které se témto oblastem vénuji [40} 4T, 48| 54H56] .
Obecné muiZzeme postup optického ndvrhu charakterizovat néasledujicimi kroky:

1. zadéni zédkladnich zobrazovacich pozadavkii na opticky systém,
2. analyza prichodu paprski (vinového pole) optickym systémem,

3. urc€eni zdjmovych charakteristik (napf. rozptylova funkce bodu, Seidelovy sumy
apod.),

4. optimalizace parametrt charakterizujicich optické ¢leny (optickd rozhrani, materi-
aly, geometrické pozice apod.), aby zdjmové charakteristiky dosahovaly pozadova-
nych hodnot (napf. minimum poloméru rozptylového krouzku).

Popsany postup zahrnuje jak pfipad nominélniho paraxidlniho ndvrhu, tak i ndsledné
redlné optimalizace parametrti systému. PouZijeme-li obecné formulace zobrazovacich
rovnic optické teorie, miizeme vyjadrit vliv parametr(i optickych ¢lenti systému na po-
Zadovanou zajmovou charakteristiku. Nasledné lze urcit parametry systému tak, aby za-
jmova charakteristika splnovala pozadovana kritéria.

Jako jednoduchy ptiklad uved’'me princip vypoctu tvaru rozhrani jednoduché cocky
takové, aby zobrazovala osovy bod pfedmétu s co nejlepsi kvalitou. Zdkladni pozadavky
na opticky systém budou v daném pfipadé vzdélenost pfedmétu a obrazu od vrcholt
cocky. Predpoklddejme, Ze prvni plocha ¢ocky bude rovina a druhé rota¢né symetricka
asférickd plocha urcend napft. rozvojem v mocninnou fadu a Ze tloust’ka cocky je fixné
zvolena. Zajmovou charakteristiku zvolime pro jednoduchost jako kvadraticky pramér
vzddalenosti mezi optimélni polohou obrazu v obrazové roviné a pruseciky, ve kterych
protinaji obrazovou rovinu paprsky svazku vychdzejici z osového bodu pfedmétu po
priichodu ¢ockou. Pomoci zobrazovacich rovnic vyjddifime funkéni zavislost zdjmové
charakteristiky na parametrech mocninné fady, kterd popisuje zadni asférickou plo-
chu ¢ocky. Timto definujeme optimaliza¢ni tlohu, kdy dale hleddme takové hodnoty
parametrt asférické plochy, aby hodnota zdjmové charakteristiky byla minimadlni.

Vybranym oblastem zdkladniho optického navrhu se autor této prace vénoval a podi-
lel se na publikacich [13H15], ve kterych prezentuje zejména postup minimalizace sférické
aberace a jeji vliv na hloubku ostrosti optické soustavy, a ddle zdkladni teoretickou ana-
lyzu ndvrhu dvouclennych optickych systému.

. 3.2.1 Korekce sférické aberace zobrazeni osového bodu

Uved'me nyni jako ukdzku vystupti publikovanych v préci [13] postup névrhu optického
systému s jednou nebo dvéma asférickymi plochami, ktery minimalizuje sférickou abe-
raci pii zobrazeni osového bodu pfedmétu. Uloha piredpokldd4, ze zndme polohy jed-
notlivych optickych rozhrani (osové vrcholové vzdalenosti), poloméry kfivosti sférickych
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Obrazek 3.5: Lom paprskili na optickych plochéch [13]

ploch a parametry prvni asférické plochy. Cilem je nalézt takové parametry druhé asfé-
rické plochy, kdy obraz osového bodu pfedmétu bude stigmaticky, tj. osovy bod predmétu
se zobrazi opét jako bod.

Pro ivod do problematiky se zabyvejme lomem paprskt na fadé optickych rotacné
symetrickych rozhranich. Na obr. je zobrazeno schéma lomu meridionalniho aper-
turniho paprsku na i-té a (i + 1)-ni ploSe (sférické nebo asférické). Jednotlivé symboly
v obrdzku znaci: n; — index lomu prostfedi za i-tym optickym rozhranim, o; — tthel mezi
paprskem dopadajicim na i-tou plochu a optickou osou soustavy (osou z), ;41 — Uhel
mezi paprskem dopadajicim na (i + 1)-ni plochu a optickou osou, s; — osovou vzdalenost
mezi bodem A; a vrcholem V; i-té plochy, y; — pficnou vzdédlenost bodu B; od optické osy,
d; —vzdalenost mezi vrcholem V;4; (i +1)-ni plochy a vrcholem V; i-té plochy, z; — z-ovou
soufadnici bodu B; méfenou od vrcholu V;, t; — vzddlenost mezi body A; a B;. Vyznam
dal$ich symboli je patrny z obr. Pro ujasnéni znaménkové konvence je vzdalenost
s; pfedpokldadéna negativni, jestlize bod A; leZi vlevo od vrcholu V; a kladnd v opa¢ném
ptipadé. Uhly o jsou méfeny od optické osy a jsou kladné, jestlize jsou méfeny ve sméru
hodinovych rucicek.

Obecné lze prachod meridiondlniho paprsku skrze asférickou plochu, ktera je po-
pséna funkci z = f(y), charakterizovat pomoci vztaht (i = 1,2,3,..., m) [63]

dz
yi=(s;j—zj)tano;, tanw;= (d— , E=w;—0j, (3.44)
i
. ni . i
sine’, = sing;, o0j41=0;+¢€;—¢", s’-:y—+zi,
1 1 1
ni+1 tano;y

kde w; je ihel mezi normélou v bodé (y;,z;) aosou zae; a e; znaci thly dopadajiciho
alomeného paprsku vzhledem k norméle i-tého rozhrani.

Predpokladejme ddle, Ze je opticky systém sloZen z m optickych ploch a zobrazuje bod
A= A;dobodu A’ = A, 41. Necht' [AA'] znaci optickou drdhu obecného meridionalniho
paprsku (sumu ndsobkt geometrickych vzddalenosti a indexti lomu v jednotlivych optic-
kych prostiedich mezi rozhranimi) a necht’ [AA’]( znaci optickou drahu paprsku procha-
zejictho podél optické osy. Rozdil optickych drah téchto paprskd poté bude dén vztahem

6 =[AA1-[AA"]. (3.45)
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S ohledem na obr. [3.51ze dale pro rotatné symetrické sférické a asférické plochy psat

m m
52251'22 [ni+1 (tlf—s;.)—n,-(t,-—si)] (3.46)
izl

i=1
o Oi+1 (o
:Z Vi (ni+1tan——l’litan—)—(ni+l_ni)zi .
i=1 2 2

Je znamo, Ze bude-li bod A stigmaticky zobrazen do bodu A’, poté musi byt splnéna
podminka 6 = 0 pro vS§echny paprsky svazku. Navrzeni optického systému, ktery bude nu-
lovat v§echny vyse zminéné optické drahové rozdily 6 povede k optiméalnimu optickému
néavrhu.

Pro jednoduchost a demonstraci principu dal§tho postupu uvazujme nyni jednodu-
chou ¢ocku ve vzduchu (m = 2, n; =1, np = n, n3 = 1), kde bude tvar prvni plochy znam,
napf. sféricky nebo asféricky. TudiZ lze velmi snadno urcit parametry paprsku po pri-
chodu touto prvni plochou. Vzhledem k obr. |3.5|ddle plati

Y2

tanogy = Y2 , tanos=— . (3.47)
So— 22 S2 — 22
Reseni soustavy (3.47) pro y» a z; vede na
(s} —s»)tanostanos sytano, — shtanos
yo=—= , Zp= 2 . (3.48)
tano, —tanos tano, —tanos
Pro stigmaticky zobrazeny bod A do bodu A/, tj. § = §; + 8, = 0, ddle plati
O3 ()
51+ s (tan?—ntan?)—(l—n)zz =0, (3.49)
kde
02 01
01=n (ntan?—tang)—(n—l)zl (3.50)

je opticky drahovy rozdil zavedeny prvni plochou ¢ocky. Dosazenim rovnic (3.48) do (3.49)
poté dostdvame pro thel o3 nésledujici rovnici, plati

asinosz+ fcosoz+y =0, (3.51)
kde

a = (61— Sy+nsp)COST2 — N(Sp— $p), (3.52)
B=-(51-s,+nsy)sino,,

Y =(s2— $3)sino.

Reseni rovnice (3.51) vede na vztah

ay + VTP
- a?+ fp? '
Dosazenim do vztahti lze po snadné tpravé ziskat parametrické soufadnice
bodu na druhém povrchu cocky (asférickém). Tato cocka bude zobrazovat bod A stigma-
ticky do bodu A’. Tuto mnoZinu bodt lze poté aproximovat rozvojem v mocninou fadu
nebo jiné vhodné vyjadieni pro dalsi optické analyzy.

sinos = (3.53)

V préci [13] déle autofi prezentuji daldi analyzy a ndstroje pro jiné moZnosti trasovani
mimoosovych paprskii obecnymi asférickymi plochami. Jaky ma vliv sféricka aberace na
hloubku ostrosti optické soustavy a tvar kaustiky pii zobrazeni osového bodu mtiZe ¢tenar
nalézt v publikaci [14]. Kopie téchto ¢lank jsou k dispozici v Piiloze Al
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Obrazova
S1>0 f5<0

? Ax)
B(b,0 l
= &0 —— 2p=konst
b "
a;
d ) ]

D=konst

(a) Schéma dvouclenného optického systému (b) Schéma analaktického dalekohledu

Obrazek 3.6: Zakladni schéma dvouclenné optické soustavy a analaktického dalekohledu
(15]

B 322 Navh dvouclennych optickych systémit

V optické praxi je pouZzivdna celd fada typli optickych systémf, jejichz konstrukce se lisi
v zévislosti na zamysleném pouZiti a poZadavcich na kvalitu optického zobrazeni. Jed-
némi z velmi ¢asto pouzivanych jsou dvouclenné optické systémy sklddajici se z objek-
tivu a okuldru. Objektiv i okulér jsou samostatné soustavy tvofené fadou optickych ¢lend,
které jsou spjaty takovym zplisobem, aby poskytovaly pozadované zobrazeni.

V prdci [15] se autor podilel na zédkladni teoretické analyze dvouclennych optickych
systémt, kdy prvni ¢len mé kladnou ldmavost a druhy zadpornou. Jedna se zejména o op-
tické systémy Petzvalova objektivu, teleobjektivu, reversniho teleobjektivu a objektivii
analaktického typu. Tyto optické systémy jsou velmi ¢asto pouzivdny v praxi, zejména
nachdézeji uplatnéni ve fotografii a méftickych zatizenich (napf. teodolity nebo nivela¢ni
pfistroje), kde se pouziva zpravidla analakticky typ dalekohledu s vnitfnim zaostio-
vanim (délka tubusu dalekohledu zistava stdld). V publikaci je prezentovdna metoda
navrhu zékladnich parametrii objektivu, tj. ohniskové vzdalenosti jednotlivych optickych
komponentt a jejich vzdjemné vzddlenosti a poloméry kiivosti jednotlivych rozhrani
cocek, jestlize jsou pro konstrukci pouzity tmelené dublety. Nasledné je provedena
diikladnd analyza optickych aberaci téchto systémt, pomoci které lze provést prvotni
navrh systému takovy, kdy budou volené aberace minimalizovany.

V nésledujici ¢asti budou pfedstaveny zdkladni vztahy pro charakteristiku dvouclen-
ného analaktického dalekohledu.

Predpokladejme, Ze je optickd soustava dalekohledu slozena ze dvou komponentti.
Optickym komponentem médme na mysli soustavu jedné nebo vice jednoduchych ¢ocek
(dublet, triplet apod.). Na obr. je zobrazeno zdkladni schéma této soustavy. Vyznam
jednotlivych symboli na obrazku je nasledujici: f{ a f, jsou obrazové ohniskové vzdale-
nosti prvniho a druhého komponentu, d je jejich vzdjemna vzddlenost, a; je vzdalenost
mezi osovym bodem na pfedmétu A a objektovou hlavni rovinou prvniho optického kom-
ponentu, a, je vzddlenost mezi obrazem A’ osového bodu A a obrazovou hlavni rovinou
druhého optického komponentu, ar je vzdalenost mezi objektovym ohniskem F objek-
tivu a hlavni rovinou prvniho optického komponentu, ar, je vzddlenost mezi obrazovym
ohniskem objektivu F’ a obrazovou hlavni rovinou druhého komponentu, g je vzdalenost
mezi bodem A a objektovym ohniskem F a ¢’ je vzdélenost mezi bodem A’ a obrazovym
ohniskem F’.

Predpokladejme ddle, Ze optickd soustava je ve vzduchu. Pouzitim zdkladnich zobra-

34



3.2. NAVRH OPTICKYCH SOUSTAV S KORIGOVANYMI ABERACEMI

zovacich rovnic [40} 41} 63] poté dostavame vztahy [15]

6/0]'=—f'2, aF:_f,(l—d/fZ’)’ a}:/:f,(l—d/fll), fr_ f1f2 (3.54)

Cfl+fi-d’

kde f’ je obrazovéd ohniskova vzdédlenost optického systému. P¥i¢né zvétseni m optického
systému muiZe byt vypocteno ze vztahu

/ !/ ! ! !
Yy g aaq

y q__F_alaz’

(3.55)

kde y znadi velikost predmétu a y' je velikost obrazu. Rovnice a charakterizuji
zékladni zobrazovaci vlastnosti dvouclenného optického systému ve vzduchu.

Nyni se zabyvejme vySe zminénym analaktickym dalekohledem. Jedna se o opticky
systém ze dvou komponentti, kdy prvni mé kladnou ldmavost a druhy (vnitini kompo-
nent) zapornou. Schéma takového systému je ukdzano na obr. Bez Gjmy na obec-
nosti jsou ukdzany jednotlivé komponenty ve formeé tenkych ¢ocek. V obrazové roviné se
nachdzi zamérny kfiz na sklenéné desticce. Na ni jsou vyryté dvé linie o vzdjemné vzdale-
nosti 2p. Ostfeni na rlizné vzdalené objekty se provadi posunem druhého komponentu,
zatimco vzdélenost D zlistdvd neménnd — tzv. vnitini ostfeni. Neménnost vzdalenosti D je
vyhodné v fadé aplikaci, kde neni Zddouci ménit mechanickou délku tubusu dalekohledu.

Ze zobrazovacich rovnic Ize odvodit vztahy [15]

/ ! I
a f; a f. aa p
! 1 / ! 2 172
aH=—:>:, m=a,—d, a=—=, m= =—, (3.56)
a + f] a+ f, aia, 'y

kde a; a a; (i = 1,2) znaci pfedmétové a obrazové osové vzdalenosti a m je pfitné zvétSeni

A

soustavy. Necht' a; = x. S pouzitim podminky D = d + a, = konst. a s rovnici pficného
zvétSeni poté z rovnice (3.56) dostdvame

! 1,x _ d
2 !
d—D+ (f1+,); ) :0, (357)
1+ (7 -d)
Ay ~
e - 0.
(ff +x) (le T d)
Eliminaci vzdalenosti d z rovnic poté dostavame
F(x,y) = Ax* + Bxy+Cy* + Ex+Fy+G, (3.58)
kde
A=p’fy, B=pfi(D-fi-2f), C=f*f, (3.59)

E=2p°fif;, F=f"p(D-2f;), G=p"fi°f;.

Rovnice (3.58) popisuje kfivku, na které bod A(x, y) leZi, jestlize se méni vzdalenost x.
Snadno lze poté z této rovnice ukazat, Ze kfivkou je hyperbola s asymptotami

Ya=kix+qi, Ya2=kx+qz, (3.60)
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jejichz parametry lze vyjadfit postupem uvedenym napf. v [37]. Po tipravé dostavame [15]

p|H+26-DF\/(f{-D)(f+4f;- D)
k2= .
2fif3
gi = p@f,p—2f f,ki+ f{kiD)
T op(fl+2fl-Dy-2flfiki
Uhel  mezi asymptotami mtiZe byt vypocten ze vztahu [37]
ko —k;
1+ kl kg
Predpokladejme déle, Ze je soustava zaostfena na nekonec¢no a nésledujici veliCiny
jsou zndmé: ohniskovd vzdalenost f; soustavy, délka dalekohledu D, pozice analaktického
bodu b = —¢q,/ k2, vzajemnd vzdélenost vrypt na desticce 2p a parametr k, (obvykle volen
ko = —0.01). Nasledné mohou byt hodnoty ohniskovych vzdalenosti f] a f, a vzdalenosti
dy (pro pfedmeét v nekonec¢nu) urceny ze vztaht [15]
G = b*p* + 2k, b*p + 6bp*) D + (p — bky)*D? (3.63)
fe bp - pD—-bk,D+ G kap — flkopD
1~ = ’
4p +2bky, — 2k, D 2k2 —2f/kop + p?
do=fi+f=ffalfy-
Pti pfeostfovani na konecnou vzdalenost x od prvniho optického komponentu soustavy
muzZeme urcit pozadovanou vzdalenost d, mezi komponenty ze vztahti [15]

_ H+ flx+D(f] +x)
- 2(f] +x)

Zabyvejme se nyni rozdilem mezi asymptotami a kiivkou polohy bodu A(x, y). Sou-
fadnice y bodu A(x, y) mliZe byt vypoctena ze vztahu [15]

(3.61)

i=1,2.

tanf = . (3.62)

k=

X

,H:\/[fl’x—D(fl’+x)][4f1’f2’+(f1’+4f2’)x—D(f1’+x)]. (3.64)

y= st i+ 0@f-D)+ fix—H] . (3.65)
2fifs
Vyska obrazu y’ nésledné bude dédna vztahem
! £/
Y hije (3.66)

T -0 -7
Bude-libod A(x, y) leZet na druhé asymptoté, jeho obrazova vyska y/, bude ddna vztahem

U

y;:U—a'(E—kg+j’c—12,), U:q2+dx(k—7c—12,). (3.67)
Rozdil mezi obrazovymi vyskami Ay’ = y' — y/, 1ze snadno ur€it pomoci rovnic
a (3.67). Vzdélenost xp mezi bodem A(x, y) a analaktickym bodem B mtize byt vyjadiena
vztahem xg = —y,/ky. Lze ukdzat, Ze pro delsi vzdalenosti xp je rozdil Ay’ velmi maly,
a tedy vypocet vzdalenosti x pfi zméfeni y miiZe byt snadno proveden ze znalosti pa-
rametri asymptoty. Na kratké vzdalenosti je ovSem potfeba zavadét vhodné numerické
korekce.

V préci [15] autofi déle podrobné pfedstavuji postup vypoctu parametri jednotlivych
¢lent optického dvouclenného systému, ktery bude mit korigovany vybrané aberace. Od-
vozené vztahy nédsledné prezentuji na nékolika pfikladech. Pro dal3i podrobnosti odka-
zeme Ctendfe na zminénou publikaci, jejiz kopie je uvedena v Ptiloze Al
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I 4 Optické (laserové) skenery

Optické (laserové) skenovani [64, [65] se béhem poslednich let stalo velmi populdrni
technikou kvantitativni charakteristiky geometrie povrchu a vlastnosti objektti. A to jak
v rdmci méfeni velmi malych pfedmétt (napf. v mikroskopii a strojirenstvi), tak pro
charakteristiku velmi rozsdhlych oblasti (napf. pozemni skenovéani v geodézii). Hlavnim
diivodem tspéchu této techniky je zejména rozvoj a dostupnost komercnich zafizeni,
kterd jsou schopna v rdmci zlomk vtefin zaznamenat informace o milionech bodt. Také
vypocetni kapacity zna¢né narostly a analyza mracen bodt, kterd jsou uloZena jako velmi
velké datové soubory, je snazsi.

Tématu optického (laserového) skenovani se autor této prace aktivné vénoval a je
spoluautorem nékolika ¢lankd, které se danou problematikou zabyvaji [17, [18]. V pub-
likaci [18] je podrobné provedena analyza polohy stopy optického svazku a jeji pfesnosti
pro jednozrcadlové a dvouzrcadlové skenery. Prace [17] je zaméfena zejména na zakladni
charakteristiku vlivii (matematickych i fyzikdlnich) na pfesnost pozemniho skenovédni na
dlouhé vzdélenosti. Kopie obou publikaci jsou uvedeny v Pfiloze A} kde ¢tenaf muize na-
1ézt podrobné informace a reference.

Pfedstavme nyni zdkladni formulaci apriorni analyzy pfesnosti pro pozemni laserové
skenovani. Kvalitu méfeni bodt ovliviiuji v prvni fadé geometrické nejistoty v konstrukci
skeneru. V principu pozemni skener urcuje prostorové sférické souradnice (horizontalni
a vertikalni Ghly a vzdédlenosti) vzhledem k vhodné zvolenému soufadnému systému. Na
obr. je ukdzan pravotocivy kartézsky soufadny systém pro matematicky popis polohy
bodu ur¢eného z méfeni. Globdlni soufadny systém (X, Y, Z) je ur€en svym pocatkem G.
V tomto systému se nachazi lokdlni soutadny systém skeneru (x, y, z), jehoZ pocatek O je
dén polohovym vektorem Xp v globadlnim systému a osy systému skeneru jsou rotovany
o hodnoty Roll, Pitch a Yaw.V systému skeneru je ddle umisténa rozmitaci jednotka, jejiz
interni soufadny systém (x’, ), z') je charakterizovan poc¢dtkem O’, ktery je dan poloho-
vym vektorem X v rdmci systému skeneru, a osy systému jednotky jsou otoCeny o uhly
a, p ay. Méfeny bod R je urcen polohovym vektorem Xp v globdlnim systému soufadnic,
Xp V systému skeneru a rg v systému rozmitaci jednotky.

Transformacni vztahy mezi jednotlivymi soufadnymi systémy mohou byt charakteri-
zovany ndsledujicimi vztahy, plati [17]

Xg =Xp+Sxp, Xgp=Xg +Rrg, 4.1)
kde
_ T _ T _ T
Xg=I[Xgr, YR, Zrl", Xo=I[X0,Y0,Z0l", Xr=I[XR, YR 2R]
|7

! / 11T
Xo = [Xo,Yo,201", YR=I[XR, YR 2Rl
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+x

(a) Souradné systémy pozemniho skeneru (b) Rozmitaci jednotka skeneru

Obrazek 4.1: Zékladni schémata soufadnych systémi a rozmitaci jednotky pozemniho
laserového skeneru [17]

S= Rz(Yaw)Ry (Pitch)R,(Roll),
R=R.()R,(HR,(a),

1 0 0 cosfp 0 sinf cosy —siny 0
Ri(a)= |0 cosa -sina], Ry(,B) = 0 1 0 , Rz(y) =|siny cosy O
0 sina cosa —sinff 0 cosp 0 0 1

V pozemnich skenovacich systémech je rozmitaci jednotka obecné tvofena jednou
odraznou plochou (zrcadlem, monogonem, optickym, polygondlnim nebo pyramidélnim
hranolem), kterd rozmitd laserovy svazek ve vertikdlnim sméru relativné vzhledem k télu
skeneru. Ddle se celé télo skeneru otaci a je tak zajiSténo rozmitdni v horizontadlnim
sméru. Jinou z moznosti je pouziti napt. dvouzrcadlovych skenert [18], tou se ale v této
préci déle zabyvat nebudeme (v praxi pozemnich skenert se pfili§ nevyuzivd). Uvazme
tedy systém jedné reflexni plochy, kterd rozmitd svazek zatfeni ve vertikdlni roviné
vzhledem k télu skeneru. Matematické schéma je zobrazeno na obr.

Predpokladejme, Ze stied otdceni C reflexni plochy ¢ je ddn polohovym vektorem rc
a necht’ se tato plocha déle otaci kolem osy rovnobézné s osou y’ soufadného systému
jednotky o thel ¢. Vzdalenost mezi odraznou plochou ¢ a bodem C je oznacena jako /.
Rovnice roviny odrazné plochy mtiZe byt urcena pozici bodu N, ktery je dan polohovym
vektorem ry, a jednotkovym normélovym vektorem n. Déle pfedpokladejme, Ze osa la-
serového svazku (zdmérnd pifimka) dopadajiciho na odraznou plochu je ur¢ena bodem S
(napf. zdrojem zafeni) charakterizovanym polohovym vektorem rg a jednotkovym smé-
rovym vektorem s;. Priisec¢ik zdmérné pfimky s odraznou rovinou je oznacen I a je dan
polohovym vektorem r;. Zafeni se v tomto bodé odrazi dle zdkona odrazu a pokracuje ve
sméru daném jednotkovym smérovym vektorem s,. Tento vektor miiZe byt urcen z vekto-
rové formy zédkona odrazu, plati [40, 41]

S, =8;—2n(s; -n), 4.2)
kde s; znaci jednotkovy smérovy vektor osy dopadajiciho svazku, n je jednotkovy norma-
lovy vektor odrazné plochy (orientovany do sméru k dopadajicimu zéfeni), s, je jednot-

kovy smérovy vektor osy odrazeného svazku. Vztah pro rotaci jednotkového normélového
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vektoru ny okolo osy dané jednotkovym smérovym vektorem c o tihel ¢, kterd protiné po-
¢atek pomocného soutadného systému, Ize psat jako [18]

n, =ngcosy +c(c-ng) (1 —cosy) + (c x ng) sing. (4.3)
Pozice bodu R vzhledem k rozmitaci jednotce lze vyjadfit po tpraveé jako [17]

(rc—rs+Iny,)-n
rp =I5+ 4 (psl- + prlsi —2ny(s; -ny)l, (4.4)
si-n(p

kde p; je parametr numericky rovny prostorové vzdalenosti mezi body I a R.

Pro teoretické analyzy (napf. nejistoty polohy stopy svazku apod.) 1ze hodnotu para-
metru p, ur¢it z nomindlni definice pozice detek¢ni roviny. JestliZe je detek¢ni rovina p,
na kterou dopadd zéfeni a odraZzi se, ddna bodem D urc¢enym polohovym vektorem rp
a jednotkovym normadlovym vektorem np, poté pro parametr p, plati [17]

Ip—rs— W i| "D

P = . 4.5
P [s; —2n4(s; -nyp)] -np (45

V praktickych aplikacich je nejcastéji poloha cilového bodu ur¢ovdana pomoci méfeni
tranzitniho ¢asu (metoda time-of-flight), ktery charakterizuje dobu trvani mezi vysldnim
a pfijmutim pulzu, kdy je svazek zateni vysldn ze zdroje, projde rozmitaci jednotkou, pu-
tuje k cili, odrazi se a stejnou cestou putuje zpét do ptijimace skeneru. Oznacime-li rych-
lost pulzu v daném prostiedi v = c¢/n (c = 299792458 m/s [40, 41] je rychlost svétla ve
vakuu, n znaci index lomu prostfedi), poté vzdélenost d méfreného bodu od referen¢niho
bodu (zdroje pulzu) je déna jako d = v7/2, kde T oznacuje tranzitni ¢as mezi vysldnim
a pfijmutim signdlu. V naSem piipadé je vzdélenost mezi zdrojem a odraznym bodem
dénajako d = p; + p,. Po Gpravé poté mliiZeme parametr p, vyjadfit s pouzitim méfreného
tranzitniho ¢asu 7 jako
7 (rc—rs+ilny)-ny

pr=v-—

4.6
2 Si*Ny (4.6)

Pomoci vySe uvedenych vztahti Ize analyzovat vliv nejistot konstrukce skeneru nebo
pozice skeneru na vysledné globélni soufadnice bodu R. Pro tyto potfeby je moZné pouZit
simulac¢ni metody, ve kterych jsou jednotlivé nejistoty dany relevantnimi pravdépodob-
nostnimi modely a pfiddny k nomindlnim modelovanym hodnotdm. Nésledné statistické
zpracovani muZe slouzit k vyhodnoceni prostorové nejistoty bodu R. V nékterych pfipa-
dech je mozné vyjadrit vztahy pro polohu bodu R analyticky a pouZit k odhadu nejistot
napf. zdkon pfendSeni varianci [18,37].

Dalsi ze zdkladnich vlivii na pfesnost urceni polohy bodi pii laserovém skenovani ma
presnost elektronického méfeni vzdalenosti. V radmci pozemniho laserového skenovani se
pouziva méfeni bez odraznych zafizeni, protoZe na cilovém objektu nejsou umistény od-
razné znacky. Obecné existuje celd fada typti elektronického méfeni vzdalenosti. Zakladni
a nejjednodussi metodou je tzv. metoda tranzitniho ¢asu. Pfi ni je méfen ¢as putovani
svételného pulzu od vysldni skenerem, pfes odraz na cilovém objektu az k ndslednému
prijeti skenerem. Druhou kategorii mohou byt metody zaloZené na méfeni fazové zmény
- metody amplitudové nebo fazové modulované spojité viny [66]. Tyto metody dosahuji
lepsi pfesnosti, ale jsou konstrukéné nérocnéjsi, a proto se v oblasti pozemniho lasero-
vého skenovani pftili§ nepouzivaji. Dale tedy budeme uvaZovat pouze metodu tranzitniho

casu.
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Jak jiZz bylo zminéno, metoda tranzitniho ¢asu [64H66] je zaloZena na velmi pfesném
meéfeni Casu Sifeni elektromagnetického pulzu skrze prostfedi mezi zdrojem zateni (ske-
nerem) a cilem. Puls je ve skeneru generovdn zpravidla pulzni diodou. Na délicim zafi-
zeni (napf. polopropustném zrcadle) je jeho ¢ast odklonéna na spina¢ méfeni ¢asu. DalSi

s

Cést pokracuje k cilovému objektu, od kterého se odrédzi, a putuje zpét do zafizeni, kde

N 2 w2

je ¢asovy spina¢ vypnut. Casovd méfici jednotka je elektronické zafizeni, které ¢itd sumu

period generovanych na oscildtoru. Ta je poté technikami Sifeni signalu pfepoctena na
tranzitni ¢as 7. Pro méfenou vzdélenost d poté dostdvame vztah [17]

2d=vrT, 4.7)

w2y,

kde v = c¢/n je rychlost 8ifeni pulzu prostfedim, c je rychlost svétla ve vakuu a 7 je index
lomu prostfedi.

Je-li poZadovana milimetrova piesnost urceni vzdalenosti, musi byt tranzitni ¢as
meéfen s pikosekundovou presnosti. Pfiblizny odhad 1ze provést jednoduchou tivahou -
diferenciaci vztahu (4.7), kde pro jednoduchost pfedpokldddme 7 = 1 (pfibliZnd hodnota
indexu lomu vzduchu). Po dosazeni dostdvame aproximaci poZadované piesnosti méfeni
tranzitniho ¢asu 6t = 26d/c. Po vycisleni s hodnotou rychlosti svétla a pfedpokladanou
chybou vzdalenosti 6d = 1 mm dostdvdme 6 ¢ = 6.67 ps.

Jestlize oznac¢ime hodnotu registrované amplitudy nebo poctu pulzt I(r), miZeme
odhadnout méfeny tranzitni ¢as T ur€eny z méfeni z registrovanych dat naptiklad pomoci

Vv

+00 +0o0
?:%fﬂ(r)dr, P:fl(r)dr, (4.8)

kde integraci provedeme v redlném pifipadé numericky na diskrétni mnoziné dat. Nejis-
totu o, ndsledné lze odhadnout jako druhou odmocninu variance o2, pro kterou plati

1 +00
o2 = > f 2 I(r)dr | -72. (4.9)
—00
Vzdélenost d; a jeji nejistota o4 odpovidajici méfenému tranzitnimu ¢asu 7 a jeho nejis-
toté o, budou nésledné dany vztahy
v v

d?: 5?, O'dZEO'T. (410)

Predpokladejme ddle, Ze ¢itac ¢asu je sém ovlivnén ndhodnou chybou, tj. registrované
hodnoty tranzitnich €ast jsou zatiZeny ndhodnym Sumem. Bez dalsi znalosti ¢itace mii-
Zeme predpokladat, Ze chyba CitacCe respektuje rovnomérné rozdéleni pravdépodobnosti
na intervalu At. Nejistota ua; nasledné muze byt odhadnuta jako smérodatna odchylka
rovnomeérného rozdéleni a vyslednd nejistota méfeni tranzitniho ¢asu u; bude déna kva-
dratickym souc¢tem zminénych dil¢ich nejistot, plati tedy

AT
Up =1/0%2+us , up; = —. (4.11)
T AT /—12

Nejistotu uy; métrené vzdéalenosti d 1ze poté odhadnout souhrnnym vztahem

Vo o
ud—E o7+ Uy, - (4.12)
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Vyse uvedeny odhad nejistot méfeni tranzitniho ¢asu a urceni vzdélenosti miize byt
snadno implementovan do modelu urc¢eni polohy bodu napfiklad pomoci kovarian¢nich
matic pfi pouZiti zdkona pfendSeni varianci [18,37]. Lze tak odhadnout celkovy efekt zmi-
nénych nejistot na vysledky méfeni.

Na zavér této kapitoly zminime vycet fyzikdlnich aspektli pouzitého laserového zafeni
a jeho prostupu okolnim prostfedim na vysledky laserového skenovéani. Podrobnou ana-
lyzu mtize ¢tenaf nalézt v kopii publikace [17] v Pfiloze [A} zde se omezime na zakladni
charakteristiky a popis.

Fyzikélni vlivy ovliviiujici pfesnost laserového skenovani mtizeme rozdélit do ¢tyt za-
kladnich kategorii:

e vliv odrazivosti pfirodnich material,

* vliv variace intenzity a velikosti stopy laserového svazku na sklonéné odrazné plose
na piesnost méfeni tranzitniho casu,

* vliv nerovinné geometrie cile na registrované intenzity odrazeného pulzu,

* vliv nehomogenniho rozlozeni atmosféry na Sifeni laserového svazku prostorem
a polohu urc¢eného bodu.

Odrazivost je optickd vlastnost materialdi, kterd vyjadfuje pomér odraZené intenzity
vic¢i mnozstvi intenzity zéfeni, kterd na dany povrch dopada [41]. Koeficient odrazivosti,
ktery kvantitativné tuto vlastnost charakterizuje, je zavisly na materidlu (chemickém slo-
Zeni, struktufe, teploté, drsnosti a barvé), na kterém k odrazu dochézi a na typu dopa-
dajiciho zéfeni (vinova délka, polarizace apod.). Pro bezkontaktni méfenti, jakym laserové
skenovdni je, je odrazivost kriticka. JestliZe jsou vlastnosti povrchu takové, Ze se dopadajici
zéteni odrazi zpét pfimo do skeneru, detektor miize pulz registrovat. V jinych pfipadech
muze dojit k iplné ztraté signdlu a bezkontaktni metody selhdvaji. Odrazivost 1ze rozdélit
do tii zdkladnich kategorii vzhledem k typu povrchu, kde k odrazu dochézi:

* odraz na Lambertovském povrchu (idedlné matny, difizni povrch), ktery odréazi
energii do vSech smérti [40, 41] — tyto povrchy ve skute¢nosti neexistuji, ale nékteré
materidly se svymi vlastnostmi k nim bliZi, napf. cihlové stény nebo 8kolni tabule;

2w,

e odraz na zrcadlovém povrchu, kdy se dopadajici svazek zafeni odrézi dle zédkona
odrazu;

e odraz na lesklém povrchu, kde dochdzi k rozptyleni zéfeni, ale dominantnim smé-
rem zUstava ten odpovidajici zdkonu odrazu - tyto povrchy jsou v praxi pomérné
Casté (napf. mokrd vozovka) a maji negativni vliv na méfeni laserovym skenovanim,
kdy se zpét do registracniho zatizeni vraci jen maly zlomek zéfeni a analyza signalu
je tak velmi ztiZena.

U laserovych svazki je zndmo, Ze rozloZeni intenzity v fezu kolmo na smér jejich §i-
feni neni rovhomeérné. Zakladni popis laserového zafeni poskytuji tzv. Gaussovské svazky
[40}/41]. Tato charakteristika také ik, Ze svazek nelze v pficném sméru zcela omezit a jeho
stopa bude ddna urcitou ploskou, ktera je rozbihava se vzrustajici vzdalenosti od skeneru.
Velikost této stopy mé poté vliv na registrovanou intenzitu, zejména jestliZze se bude zafeni
odrézet od sklonéné plochy. V préci [17] je provedena podrobnd analyza a jsou v ni uve-

deny napfiiklad vztahy pro definici poZadované frekvence registrovaného tranzitniho ¢asu
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takového, aby citac vliv sklonéné plochy viibec registroval. Vzhledem k tomu, Ze v soucas-
nosti dostupné a pouzivané CitacCe Casu registruji s velmi vysokou frekvenci, sklon odrazné
plochy mtZe v kritickych ptipadech vyznamnym zplisobem ovlivnit vypocteny tranzitni
cas.

Jestlize bude dochézet k méfeni na velké vzdalenosti, mtiZe stopa laserového svazku
byt uz pomérné velkd. Registrovany prabéh intenzity odrazeného pulzu neponese infor-
maci pouze o stfedu stopy, ale bude v ni zahrnuta celd plocha stopy svazku. JestliZze bude
odraznd plocha sklonéna nebo prostorové ¢lenénd (napf. méfeni do rohu budovy nebo
na roh budovy, na hranu stény apod.) miize byt vysledek vypoctené vzdalenosti cile od
skeneru zkreslen. V préci [17] je provedena diikladna analyza problému, kterd je formu-
lovédna na zakladé zdkladnich vztahti vinové optiky, a je zde uvedena metodika, jak dany
problém studovat pro libovolné geometrické parametry zkoumané situace. Na piikladé je
poté ukdzano, Ze pfi cileni na rohovou budovu ve vzddlenosti 50 m miiZe dojit ke zkresleni
v fddu milimetr(, coZ je pro piesné prace vyraznd chyba.

Poslednim vlivem, ktery zde zminime, je vliv variaci atmosféry, ve které laserové ske-
novani probih4, na vysledky méfeni. Sifeni laserového pulzu obecné probihd v prostiedj,
které je prostorové i casové nestdlé. Zabyvejme se zejména prostorovou nehomogenitou
prosttedi, kdy fyzikdlni parametry atmosféry jsou funkcemi prostorové polohy;, jelikoZz ta
ma na geometrické urceni cile zdsadni vliv (v kratkém Casovém intervalu méfeni). Na-
pfiklad nad silné slunec¢né osvétlenym asfaltovym povrchem bude vyrazné jina teplota
nez nad vodni plochou. Obdobné variuje i atmosféricky tlak, vlhkost a dal$i parametry.
Souhrnné se vlivy projevi na zméndach indexu lomu prostfedi, ve kterém se pulz vyslany
ze skeneru §ifi. Ten se ndsledné nepohybuje po pfimce, ale po zakiivené trajektorii. Tvar
této trajektorie nelze v obecném ptipadé urcit analyticky a tilohu je tfeba feSit numericky.
V préci [17] jsou vybrané postupy numerického trasovani pfedstaveny. Vliv na laserové
skenovani je poté takovy, Ze pulz putuje prostiedim po delsi trajektorii neZ po ptimé, kterd
se pii geometrickych pfepoctech uvazuje. Tim je zaprvé ovlivnéna méfena vzdalenost (re-
gistrovany tranzitni ¢as je delsi, neZ by mél byt). Ukazuje se ale, Ze hodnoty, o které jsou
rekonstruované vzdalenosti chybné, jsou zanedbatelné a pro bézné price neni tfeba ko-
rekce uvazovat. Zasadni vlivm4 ale zaktivend draha svazku na registrované thly. Pulz totiz
pfichézi po zakfivené trajektorii do skeneru ve sméru, ktery neodpovida skutecné poloze
cile, ale je k této trajektorii teCny. V praci [17] je na konkrétnim realistickém piikladé uka-
zano, zZe chyba v urCeni sméru mtize byt na vzdélenosti 100 m az 0.0035 deg (odpovida
pfiblizné 6 mm na 100 m), coZ je pro pfesné prace nepfijatelné a je tfeba provadét vhodné
korekce méfeni.
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Tato prace souhrnné predstavila vybrana témata vyzkumné ¢innosti, na kterych se autor
podilel v rdmci ptisobeni ve Skupiné aplikované optiky na katedfe fyziky Fakulty stavebni
CVUT v Praze. Obsahové je prace priivodnim textem k publikacim [TH21] v impaktova-
nych mezindrodnich ¢asopisech, jejichz kopie jsou uvedeny v Piiloze[Al

Nejprve bylo pfedstaveno téma analyzy aktivnich optickych prvki a jejich pouziti
v zobrazovacich a méfickych systémech. Védecké price provedené v této oblasti vy-
znamnym zpusobem pfispély k rozvoji zdkladnich ndstroji pro modelovani priabéhu
deformaci membrén kapalinovych Cocek. Ddle jsou napfiklad vyuZzitelné pro névrh
takovych parametri membran, pro které pfi zatizeni odpovidajicim tlakem dojde k po-
Zadované deformaci do predepsaného tvaru. Pfed vydanim zminénych publikaci fada
praci studovala danou problematiku, ale zpravidla s vyuzitim zjednodu$ujiciho aparatu,
ktery ne zcela ptresné vystihl velké deformace tenkych elastickych membran pouzivanych
v aktivnich kapalinovych €ockach. Publikované nové vztahy tak slouzi k pfesnéjSimu
nomindlnimu néavrhu a analyze, a vyznamné tak dopliuji znalosti v dané oblasti.

S pouzitim zminénych ndstrojt byly dale pfedstaveny vystupy publikaci zabyvajicich
se postupy navrhu a optické analyzy kombinovanych aktivnich soustav, které jsou sloZzeny
z nékolika ¢lenti s proménnymi a fixnimi parametry. Jmenovité se jedna o hybridni cocky
s jednim fixnim a jednim nebo dvéma aktivnimi prvky, zoom systémy sloZené z aktivnich
prvkl, membranové ¢ocky dvoji kiivosti a optické skenery s vloZenym aktivnim prvkem.
Tyto modely a optické soustavy nebyly do té doby pfedstaveny a analyzovany. Dané kom-
binovana zafizeni umoznuji naptiklad kompenzovat aberace a zajistit proménnost para-
metrl zobrazeni s minimalizovanym mechanickym pohybem, coz u klasickych systémii
nebylo moZné.

Druha kapitola shrnula vystupy zabyvajici se vybranymi tématy optického zobrazeni,
napfiiklad skaldrni teorii difrakce a nomindlnim ndvrhem optickych soustav s korigova-
nymi aberacemi.

Byl prezentovan novy univerzalni postup analyzy difrakce na dokonalé a nedokonalé
miiZce a vliv kone¢nych rozmér miizky na tzv. hranovou pfechodovou funkci v difrak¢-
nich obrazcich v Talbotové vzdalenosti. S danymi néstroji je mozné napftiklad snadno
analyzovat vliv vyrobnich nedokonalosti mfizek na jejich konkrétni aplikaci. Pro velmi
rychlé pouZiti jsou v publikacich odvozeny jednoduché analytické vztahy, pomoci kterych
lze vybrané charakteristiky zobrazeni kvantifikovat.

Déle prace ukézala vystupy publikaci zabyvajicich se diikladnou analyzou rozptylové
funkce bodu a osové rozptylové funkce bodu pfti zobrazeni optickymi soustavami s kru-
hovymi aperturami a aperturami ve tvaru mezikruZzi. StéZejnim vystupem danych praci
jsou jednoduché analytické vztahy, které slouZzi k charakteristice parametrti obrazti oso-
vych bodd, a vyznamneé tak ptispivaji svou uzZitecnosti v praktickych aplikacich napfiklad
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v mikroskopii.
mentdlni analyzu ndvrhu optickych soustav s korigovanymi aberacemi. Je zde prezen-
tovdna velmi jednoduch4 ale velmi uZite¢na metoda vypoctu parametri optickych ploch
pro pfipad soustav s jednou nebo dvéma asférickymi rozhranimi stigmaticky zobrazujici
osové body. V publikacich je déle ukdzan uzitecny postup, pomoci kterého lze urcit koe-
ficienty aberaci takovym zptisobem, kdy bude rozptylova funkce bodu ve vybrané oblasti
obrazového prostoru v dlisledku spliiovat poZadované charakteristiky. Déle je také pre-
zentovana zdkladni teoretickd analyza dvouclennych optickych systémi, kdy prvni ¢len
ma kladnou ldmavost a druhy zdpornou (zejména optické systémy Petzvalova objektivu,
teleobjektivu, reversniho teleobjektivu a objektivii analaktického typu).

Obecné jsou vystupy druhé kapitoly, kterd predstavuje vycet z celkem deviti publikaci
v mezindrodnich impaktovanych ¢asopisech, hodnotnym pfinosem v oblasti optického
zobrazeni a nominélniho navrhu optickych soustav.

Z4avéretnd kapitola prace byla vénovadna analyze geometrické pfesnosti poloh bodt
urcenych pomoci optického (laserového) skenovani.

V publikacich zabyvajicich se timto tématem se autor podilel na formulaci komplex-
niho apardtu pro nomindlni analyzu pfesnosti, kterou lze od optického (laserového) ske-
novani oc¢ekdvat. Takto souhrnny rozbor nebyl do té doby publikovan a vyznamnym zpt-
sobem tak ptispél k dané oblasti.

Pomoci pfedstavenych vztahti 1ze snadno modelovat fadu optickych soustav skenerti
a analyzovat konstruk¢ni nejistoty a jejich vliv na ur¢ovanou polohu bodi. Déle 1ze simu-
lovat ptisobeni fyzikédlnich vlivii na méfeni, jako naptiklad vliv odrazivosti sklonénych ci-
lovych ploch riiznych materiéld, §ifeni laserového svazku nehomogenni atmosférou a po-
dobneé.

Zminéné publikace nejsou kompletnim vyctem autorovy €innosti, ale vybérem nej-
vyznamnéj$ich piispévki v dané oblasti aplikované optiky. Mimo téchto vystupt se autor
podilel napiiklad na publikaci téméi dvaceti prispévk ve sbornicich mezinarodnich kon-
ferenci, vice nez tficeti ¢lankt v ceskych recenzovanych casopisech, byl vice nez tficetkrat
citovdn v prestiZnich mezindrodnich €asopisech, je spoluautorem dvou uZitnych vzort
a dvou funkénich vzorkd, vytvoril fadu vyzkumnych zprav v priibéhu feSeni nékolika vy-
zkumnych grantti zdkladniho i aplikovaného vyzkumu, nebo recenzi na ¢lanky a odborné
knihy. Kompletni vycet publikaci a védeckych vystupt, ktery svym rozsahem pfesahuje
mozZny ramec této prace, lze dohledat napiiklad ve vefejné dostupnych databdazich, kde
autor figuruje.
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prescribed shape. Furthermore, the influence of liquid pressure change on deformed membrane
shape, as well as on imaging properties of the lens, is investigated on the example of plano-
hyperbolic lens.
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1. Introduction

Membrane liquid lenses have been increasingly popular topics in optics during past few years. These optical elements are usually
composed of constant thickness axisymmetric membrane clamped at its edges, which encloses optical liquid filled chamber, see Fig. 1.
(a). The change of volume of the optical liquid inside the lens induces membrane deformation and therefore change of imaging
properties of the lens, see Fig. 1. (b).

This basic principle is in several variations usually present in almost every commercially available [1-4] or experimental [5-28]
designs of these devices. The main benefit of using membranes in active optical elements is their capability to change shape by means
of adjusting optical liquid pressure. However, one of the drawbacks of this property is the fact, that optical aberrations [29,30]
introduced by deformed membrane shape (although they might be corrected e.g. by other optical elements) will differ for different
values of liquid pressure.

Calculation of deformed shape of a constant thickness membrane actuated by hydrostatic pressure is described in detail in previous
publications of the authors [31,32]. It has been discovered that to calculate accurately the deformed shape of a membrane, one can’t
simply accept simplifications commonly used in theory of elasticity [33,34], i.e. small deflections, small cross-sectional rotations, or
small strains. One of the approaches to significantly reduce, or completely remove, (some) of the optical aberrations, is to use
membrane with optimized variable thickness. This ensures that for given value of hydrostatic pressure, the membrane deforms exactly
to the prescribed shape. The problem of thickness optimization to reach prescribed shape of a deformed membrane’s midsurface is
discussed in detail in previous paper of the authors [35].

The main goal of the present paper is to extend the aforementioned theory to allow optimization of variable thickness of membrane
lens such that the prescribed shape of the membrane’s outer surface is reached. The difference between shape of the midsurface and the
outer surface, where the refraction actually occurs, has significant impact on imaging properties, especially for large deformations of
the membrane.

In principle, the refraction on the membrane’s inner surface can be neglected in the analysis because it is possible, and practical, to
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use optical liquid with almost identical value of refractive index as the membrane’s material (e.g., Sylgard [36] in liquid and solid
form).

The second area of focus of the paper is the investigation of the influence of pressure change on deformed membrane shape and
imaging properties. Prescribed shape can be achieved only for one specific value of pressure. If we change the value of pressure from
the one, which was used to design an optimal thickness profile, the deformed shape changes as well, and it results in increase of
aberrations of the optical system.

To our best knowledge, the derivations presented in this paper have not been published so far and the proposed formulas can
significantly contribute in analysis and design procedures of membrane liquid lenses.

2. Membrane variable thickness optimization
2.1. Solution for prescribed midsurface shape

This section briefly summarizes the theory presented in authors’ previous publication [35] which can be used to find an optimal
thickness profile for membrane whose midsurface is supposed to deform to the prescribed shape. Suppose we have a situation illus-
trated in Fig. 2 [35]. We consider a circular axisymmetric membrane of a liquid lens with axis of symmetry z and radial coordinate r. In
undeformed state (stress-free), the membrane is characterized by its radius a and variable thickness h(r) with h so small, that its flexural
stiffness can be neglected. Along its circumference, the membrane can be generally prestressed in radial direction by prescribed
displacement u,, which can be understood as a distance the membrane has to be stretched by in radial direction before clamping into
the liquid lens chamber with radius a + u,. After applying the pressure of optical liquid, p, the membrane deforms and general point on
its midsurface with original coordinates [r,0] is displaced to the new position [r + u(r),w(r)], where u(r) is the radial displacement and
w(r) is the vertical displacement (displacement in direction of axis z). The deformed shape of the membrane can be described by
function g(r), which can be implicitly defined as g(r + u(r)) = gr) = w(r). The membrane thickness h is considered to be very small
compared to the vertical displacement and therefore the deformed shape is characterized by the midsurface.

To find an optimal membrane thickness profile represented by the function h(r), one can apply the following equations [35].

A(u, r)n* + B(u,r)n+C(u,r) =0 1)
and
2
=5 (-5 ) e 045
where
n=(1+u), (3)
Au,r) =1+¢'2, (C))
B(u,r) = ZL:‘Jri; —14u(1— g2)a(u, ), (5)
Clu,r) = <g + ”—j - y) alu,r), 6)
r oy

2
(1+2) &

7
(r+u)gn—2g —2g'3 2

a(u,r) =

g(@) is known function representing prescribed shape of a deformed membrane midsurface, 7 = r + u(r) (see Fig. 2) is the deformed
radial coordinate, E and v are the Young’s modulus and Poisson’s ratio of the membrane material.
It is important to note, that the first and second derivative of function g, which occurs in (2-7), is with respect to the deformed radial

(a) membrane (b) filling liquid
/ inlet valve I/—\_I
I I/ 4 ‘a
[ ~ o liquid drain

[\
\/ optical liquid I‘\_/I
cover glasses g

Fig. 1. (a) Schematic drawing of the membrane liquid lens and (b) result of optical liquid volume change.
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T e

Fig. 2. Axisymmetric membrane with variable thickness actuated by constant hydrostatic pressure.

coordinate 7 (unlike the derivatives of functions u(r) and w(r), which are with respect to the radial coordinate r), therefore it reads g’

_ D _ &g
. and g = -

The expression (1) represents first order nonlinear differential equation with one unknown function u(r), which has to satisfy two
boundary conditions

u(0) =0, u(a)=u,. (8)

At the first glance, one could argue, that the problem is over constrained, since we have two boundary conditions for the first order
differential equation. However, detailed analysis shows that the first boundary condition is always satisfied and therefore it does not
have to be taken into account.

Solving the Eq. (1) and substituting its solution, function u(r), to (2), we get function for variable thickness h(r) optimized, such that
membrane midsurface deforms to the prescribed shape g(r) for given value of pressure.

Eq. (1) can’t be generally analytically solved, thus it is necessary to use some of the available numerical methods to obtain the
solution. This procedure is described in detail in [35], where shooting method [41] is applied to find the solution of Eq. (1). This paper
further assumes, that by means of the expressions (1-8) we are able to find function of optimal variable thickness h(r) based on the
given input parameters p, a, ug, E, v and g(r).

To further clarify the limitations of the presented theory, the following points should be noted:

e Although this theory takes into account the possibility of very large deformations (geometrical nonlinearity), it is based on the Saint
Venant-Kirchhoff constitutive law [37], which postulates a linear relation between the Green-Lagrange strain and second
Piola-Kirchhoff stress and is the simplest hyperelastic material law defined only by two parameters. Furthermore, presented for-
mulas assume only static state, i.e. no dynamic actions are taken into account. This implies that the presented mechanical model
can’t in its current state take into account material nonlinearities like creep (deformation increasing in time while maintaining
constant pressure), cycling (changing material parameters due to the repetitive loading), fatigue (material failure due to the re-
petitive loading before reaching its ultimate strength), viscoelastic behavior (deformation also depends on the driving speed),
plasticity etc.

e In general, the membrane deformation would be also affected by the gravity (optical liquid self-weight), which is not taken into
account in the presented mechanical model either. Strictly speaking, the gravity effect is always present, no matter in which
orientation the lens is placed. However, with z axis positioned in vertical direction (upwards or downwards), one can imagine that
the gravity effect will be less important than in case, where z axis is in horizontal position (the worst scenario). Placing the liquid
lens z axis into different than vertical position and taking the liquid self-weight into account would cause non-symmetric defor-
mation which would already require two dimensional mechanical model, because the presented mechanical model postulates only
axisymmetric actions. This problem was briefly addressed in [10] where authors used commercial finite element software to
investigate it. One can also conclude form works [5,10,39,40] that the effect of gravity can be neglected for large applied inner
pressures. Although this is a very interesting and important topic for general analysis, it deserves its own study and it is beyond the
scope of this paper.

e The presented mechanical model assumes idealized conditions at the membrane clamped edge. In fact, as mentioned earlier, it
neglects the membrane flexural stiffness, which results in absence of points of inflection near to the edge of the membrane. In
reality, those will be present, especially in the case of thick membranes. However, the presented model is very useful to apply and
use in the case of thin membranes (usually used in optics) where the flexural stiffness is very small and points of inflection are very
close to the clamped edge. And for both thick and thin membranes, while designing the optical system, one usually consider areas
close to the optical axis because of optical aberrations in zones far from the axis. Another effect which affects idealized condition of
the model is practical clamping of the membrane to the lens body during fabrication, as it is challenging to obtain uniform prestress.

The aforementioned limitations of the theory clearly described some challenging topics for usage of the presented model. However,

for static initial analysis and design of most practically used liquid lenses the model gives satisfactory results and useful tool for
analysis, as will be presented in the following parts of the paper.

2.2. Extension of the theory for membrane’s outer surface

The above described theory for numerical design of the membrane midsurface using the optimization of the membrane thickness
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can be successfully used for practical optical applications where small deformations occur. However, it is necessary to realize that the
refraction of the light passing through the lens occurs mainly on the interface membrane-air. And this interface lays on the outer
surface of the membrane and not on its midsurface, see Fig. 3 for plano-convex membrane lens. In optical practice it is therefore
desirable to design variable thickness of the membrane, such that for above mentioned given input parameters, the membrane’s outer
surface deforms to the prescribed shape, because here, the refraction occurs. The difference between shape of the midsurface and the
outer surface can have significant impact on imaging properties especially for large deformations of the membrane. Without loss of
generality, the refraction on the membrane’s inner surface can be neglected in the analysis because it is possible to use optical liquid
with almost identical value of refractive index as the membrane material (e.g. Sylgard [36] in liquid and solid form).

To solve the aforementioned problem of designing the shape of outer membrane’s surface, consider the situation in Fig. 4. Radial
coordinates of the outer and inner surface of the membrane, 7, and i, respectively, can be expressed as:

1~ 1~
Tour = - Eh(r)51n(¢)7 ’Fin = 7+ Eh(r)sul(gﬂ) (9)

and the corresponding vertical coordinates, gy, and g, as:

o = 80) +h0)c0s(p), g = 7) — 3(r)cos(o), 10

g R |
JerT and cos ¢ JemT
Here, I~1(r)is the notation for the membrane’s thickness, deformed due to the plane stress, and for this mechanical model it can be
expressed as [38].

h(r) = h(r)\/2e. + 1 :h(r)q/w-i-l, 11

where & = ' +1 (W2+w'2) and g, =¥+ % are the radial and tangential strains.

Similarly, as in the situation for the midsurface calculation summarized in the previous section, the procedure to find an optimal
thickness profile of the membrane such that its outer surface deforms to the prescribed shape, has to be solved numerically.

Suppose we have an even function g(r), where g(0) = 0, which represents desired shape of the membrane liquid lens outer surface.
Furthermore, the input parameters p, a, u,, E and v are known. To get the finite thickness at the edge of the membrane h(a), one has to
prescribe nonzero, positive value of u, [35]. Let us define functions g(r;), ui(r) and hy(r), where i = 1, 2, 3...n corresponds to the
iteration count. For i = 1 it follows g;(r1) = g(¥) and by solving Eq. (1) and substituting its solution to (2) we get functions u;(r) and
h1(r). Proceeding in the calculation we have w1 (r) = g;(r1) and substituting into expressions (9-11) for the membrane’s outer surface to

where ¢ is cross-section rotation angle, which can be further expressed as ¢ = arctan(g’), therefore sin ¢ =

get functions h (r),Tout1 (71, 7) and goue 1 (T1,7). In the end of the iteration it is necessary to check the difference between the current shape
of the membrane’s outer surface and the prescribed shape. An arbitrary point of the membrane’s outer surface in the current iteration is
so far expressed by means of parameters 71 and r as [Four1(T1,7), &ue.1 (T1,7)] and to find the above mentioned difference we need to
express it by means of a single parameter 7 as [r1, 8,1 (71)]-

Considering that the whole process is solved numerically and therefore the only function we know in analytical form is the function
of prescribed shape g(r), one of the suitable ways to obtain an analytical form of functiong,,, ; (1 )is to use an approximation with even
power series in the sense of least squares fit:

N
o (1) = DA77, (12)
=1

where Ayj; are even coefficients and N is the number of coefficients.
Now, we can express deviation §g;(r1) of the membrane’s outer surface in the current iteration from the prescribed shape. For

- / membrane midplane
membrane outer surface
ght ray \(

it

=

f

optical axis

Glass plate

Fig. 3. Schematic drawing of light refraction on plano-convex membrane liquid lens.
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Fig. 4. Schematic drawing of membrane cross-section displacement and rotation.

5g1(0) = 0 it yields:
381(71) = 8(7) — 8our1 (1) + Bour,1 (0). (13)

Thus, for input prescribed shape for the next iteration, we can write:

) = 87+ 308 (). a

For i = 2, 3...n, the procedure stays the same, until the condition §g,(0) ~ O is satisfied with sufficient accuracy. Membrane with
variable thickness hy(r) is then deformed for given input parameters, such that its outer surface exactly corresponds to the originally
prescribed shape g(r).

3. Calculation of optical aberrations induced by the change of actuating pressure

Suppose the optical system of a liquid lens whose variable thickness membrane deforms exactly to the defined shape (e.g. spherical)
for certain value of pressure. The change of the pressure induces the change in the vertex radius of curvature (thus change in paraxial
focal length) and in general, change in the whole deformed shape (it won’t be spherical anymore). If the deformed shape of the
membrane was spherical even after the pressure change, wave aberration Wy ; would be introduced to the system. However, due to the
change of the membrane’s shape from spherical to generally aspherical, the wave aberration W5  will be introduced to the system. The
difference between the aberrations is therefore expressed as Wy = W g — Wa.

Let us investigate the above described situation for the case of aspherical surface, which can be expressed as

N : C}’2
=7+ Y, z= (15)

— 1+/1-(1=e)2r? "’

where Z represents the conic section of the surface, c = 1/R, R is the vertex radius of curvature, r is the radial coordinate (the surface is
axisymmetric along thegzaxis), ¢ is the numerical eccentricity [41], ay; are the aspherical coefficients, and N is the number of power
series coefficients. Let us now approximate the conic section in Eq. (15) by Taylor series [41]. For 10th order we get:

2 3 4
2 G 1)r4+c‘5(6‘2 -1 5 5 1) 8 Jr7c9(£2 -1 10
2 8 16 128 256

21

(16)

Maximal error Azm,x of the approximation (16) can be estimated with the following member of higher order of the Taylor series,
one gets [41]:

21 —1)

1024 a”n

AZnax & —

In the following chapter, we will be investigating the difference between the ideal hyperboloidical shape of the membrane’s outer
surface that would correspond to the focal length 2 and the actual shape which developed from the ideal hyperboloidical shape
optimized for the focal length 1 by changing the actuating pressure such that the paraxial focal length corresponds to the focal length 2.
Because the actual shape is general (it is not an exact conic section anymore), it is necessary to approximate it by an appropriate
function.

For many purposes, as will be shown in the following chapter, it is more convenient to use parabolic approximation instead of
spherical approximation with aspherical coefficients expressed by formula (15). One can simply obtain the parabolic approximation of
the axially symmetric optical surface, also commonly used in optical practice, by substituting ¢ = 1 into (15). The membrane shape
optimized for given pressure p can then be expressed as:

N
2p) =Y Aur™ (18)
i=1

For further analysis, suppose that the value of actuating pressure p will be changed to p;, therefore the shape is to become not ideal
(as it was optimized for the pressure p). Then the corresponding shape of the membrane surface changes from (18) to:
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N
Zl(pl) = ZBzi72i7 (19)
i=1

Where By; are the coefficients corresponding to the parabolic approximation of the surface that developed from (18) by changing the
actuating pressure from p to p;. Considering that the optimal shape of the membrane for the pressure p; would be given by:

N
2(p) =Y Car”, (20)
i=1

where Cy; are (in analogy to Ay;) the coefficients corresponding to the parabolic approximation of the optimal shape of the membrane
for the actuating pressure p;, the difference between the real and ideal shape of the membrane surface for pressure p; can be therefore
expressed as:

N N
dz(p1) = (Bu—Co)r' =y Dyr. (21)
p =1

Ideally, the coefficients Dy; would be zero. However, this scenario can’t occur, because the optimal thickness is designed only for
one specific value of pressure. It is expected, that the more the actuating pressure differs from the value for which the optimal thickness
was designed, the more the resulting deformed shape differs from the one, which was originally prescribed (spherical, parabolic,
hyperbolical etc.). As a result of this deviation, the membrane introduces certain wave aberration [29,30], which depends on the
actuating pressure.

Without the loss of generality, the refraction on the membrane’s inner surface can be neglected in the analysis because it is possible
to use optical liquid with almost identical value of refractive index as the membrane material (e.g. Sylgard [36] in liquid and solid
form). Afterwards, wave aberration §W(p;) introduced to the system due to the difference of the real and the ideal surface 5z(p;) can be
approximately expressed as [29,30].

N N
SW(p) = (n’cose" —ncos 8> Sz(p1) = (n'cose’ —ncos 8) ZDZirQi ~ <n/ — n) Z D%, (22)

i=1 i=1

wheren’, n are the refractive indexes of the substance outside and inside of the liquid lens, and ¢, ¢ are the angles of incident and
refracted ray on the membrane’s outer surface. Expression (22) is sufficiently accurate for our purpose, but reader can find more
accurate formulas in [42,43].

By means of the first derivative with respect to r of the expression (22), we get transverse ray aberration §y’ [29,30].

N
&Y ~ 2R (n' — n) Z iDyr* 1, (23)

i=1

whereR’denotes the radius of the reference sphere in the image space.
Denoting the transverse ray aberrationdy,;, which corresponds to the value of radial coordinate r = ri, we can estimate the radius p
of the circle of confusion as [29,30].

(24)

where K is the number of rays.
4. Examples
4.1. Example 1

The first example demonstrates the effect of difference between the outer surface and midsurface of the membrane, which are
considered for a membrane’s thickness and shape optimization, on imaging properties of the focus-variable liquid membrane lens.

Suppose that the lens is composed of a glass plate and a hyperboloidical membrane surface filled with optical liquid, see Fig. 3.
From geometrical optics [30] it is known, that axisymmetric plano-hyperboloidic lens is spherical aberration free for the light beam
parallel to its optical axis and entering from the side of its planar surface. Formula (25) expresses the general equation of the
second-order curve (conic section):

r? =2Rz+ (¢ - 1)2, (25)

where R is the vertex radius of curvature. From geometrical optics, for this hyperboloidical lens it further yields:

R=—f(n—1), e=n (26)
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Substituting (26) into (25), expressing the variable z and replacing radial coordinate r for (Section 2), we get for the prescribed
hyperboloidic shape of the outer surface of the membrane:

~2

z2(F) = = 27)
ran (v )

Suppose next that the membrane radius after introducing prestress is @, = 10 mm, prestressing displacement is u, = 1 mm and
therefore the radius of the membrane before introducing prestress (before clamping into the lens chamber) is a = a-uq = 9 mm. The
membrane is made of the material Sylgard 184 [36], whose Young’s modulus and Poisson’s ratio is assumed to be E = 1.97 MPa and
v=0.4. It is further demanded that for actuating pressure p = 0.001E = 1.97 kPa, the paraxial focal length is f = 100 mm. The
refractive index of the optical liquid in this example is assumed to be n = 1.4118, which corresponds to the material Sylgard 184 in
liquid form for the wavelength 633 nm. This kind of lens can be widely used in the field of optical scanners [44], for example.

In the next part of this example it is convenient to use parabolic approximation of the expression (27). Let us investigate, how the
exact formula for hyperbola z(r) (27) differs for this specific example from its approximation with Taylor series Z(r) (16) presented in
the previous chapter. Using the formula (17) one gets the approximate value of maximal error of this approximation, Azmax
~ 3.4 x 1078 mm, which tells us that the approximation accuracy is sufficient.

To demonstrate the effect of difference between the outer surface and midsurface on optical imaging properties, consider the
following scenario. Let the membrane thickness is optimized for the desired hyperbolic shape of the midsurface, as was presented in
previous publication of the authors [35]. Therefore, the paraxial focal plane is supposed to lay at a distance behind the vertex of the
midsurface which corresponds to desired focal length f. Let 2 denotes coordinate behind the membrane in a direction of ray propa-
gation. Further, let z;, is the coordinate of the maximal deformation of the midsurface (i.e., 2, = 0 for zero applied pressure), then the
paraxial focal plane will intersect the optical axis at coordinate zg,, = 2, + f . However, as the difference between optimized midsurface
and real outer surface of the membrane is neglected, the outer shape of the membrane will differ from supposed hyperbolic shape, and
it will affect imaging quality in the image (detection) plane. Fig. 5 shows transverse ray aberration 8y’ in the detection plane of
z-coordinate zq = 2z, for the supposed situation as a function of impinging height y on the planar surface of the lens. Fig. 6 then shows
transverse ray aberration in the detection plane where the gyration radius p (the radius of the circle of confusion), for the real imaging
by the outer surface of the supposed lens, is minimal. In the title of Fig. 6, z, is the vertex coordinate of the outer surface of the
membrane, zp, denotes coordinate of the effective focal point, As = 2r, — 2rm, $'Fo is the axial distance from the outer surface of the
membrane to the detection plane, and p is the value of the gyration radius.

From the presented figures, one can simply see that neglecting the difference between the midsurface and the outer surface of the
membrane during the thickness optimization can result in enormous errors in optical imaging. Therefore, the proposed optimization of
the outer membrane’s shape, presented in this paper, has to be performed for correct designing of the membrane liquid lenses.

4.2. Example 2

This example demonstrates the influence of pressure change in liquid membrane lens on deformed membrane shape and imaging
properties of the lens. Let the nominal value of pressure, the one the lens membrane thickness and the shape of outer surface was
optimized for, is p, and it varies.

A=633nm, n=14118,s = -c0, "= 100 mm
z =1.1969mm,z_ =,101'1969 mm,z, =z

y [mm]
(&) [=2]
e )

0 . .
-0.05 0 0.0 0.1 0.15 0.2 0.25
dy' [mm]

Fig. 5. Difference in transverse ray aberration in the paraxial focal plane for the case of optimized hyperbolic midsurface of the membrane lens
(dashed line - supposed compensated aberration for hyperbolic shape of the midsurface, solid line - real aberration induced by neglecting the effect
of membrane thickness and incorrect shape of the outer surface).
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A=633nm,n=14118,s = -c0, " =100 mm

z =1.2299 mm, z__ =103.2907 mm, As =2.0938 mm, z_ =2z
o Fo d Fo

s'c, = 102.0609 mm, p = 0.0144 mm

y [mm]
(4,

-0.02 -0.01 0 0.01 0.02 0.03 0.04
ay' [mm]

Fig. 6. Real transverse ray aberration in the plane with minimal radius of circle of confusion p.

Consider the material and geometrical parameters the same as in the previous example. If we change the value of the pressure from
p =1.97 kPa to p; = 1.5249 kPa, the paraxial focal length changes from f = 100 mm to f; = 125 mm, and the vertex radius of
curvature from R = —41.18 mm to R; = —51.475 mm. If we further change the pressure to p, = 1.2502 kPa, the paraxial focal length
changes to f, = 150 mm and the vertex radius of curvature to Ry = —61.77 mm. The deformed shape of the membrane after the
change of actuating pressure can be determined by minimizing of the total potential energy by means of using various numerical
methods. This procedure is described in detail in [31,32,38]. For the purpose of this paper, the power series method [41] combined
with optimization of its coefficients is applied to minimize the total potential energy. The corresponding shapes of the membrane’s
outer surface 2;,1(r) and 21 2(r) (for actuating pressures p; and ps, respectively) can be described using the formula (19), for N =5 it
yields

21(7) = By + By + Bg?® + Bgi® + By, (28)

where the values of the coefficients Bo; for the functions z;,1(r) and 2; o(r) are specified in Table 1.

To assess the difference between the functions z; 1(r), 21,2() and the corresponding ideal hyperbolical shapes for given values of
paraxial focal lengths f; and f 5, it is necessary to express the ideal shapes in the form of the power series as well. The approximation of
the general conic section with Taylor series (16) can be applied for this purpose, thus for functions Zg 1 (r) and 2o 2(r) we can write:

Z2(r) = G + G + CgP° + C7° + C107107 (29)

where the values of the coefficients C; =4, C4 = — ‘?;Tgl, Ce = %, Cs = — %and Cio = 7(25526’}219)4 after substituting (26) for focal
lengths f; and f » are specified in Table 2.

Using the values of coefficients specified in Tables 1 and 2 we can proceed to the calculation of the diameter of the circle of
confusion [30] for the given focal lengths of the membrane liquid lens f = 100 mm, f; = 125 mm and f» = 150 mm. The calculation
was performed using approximate formulas (21-26) and compared with the results obtained from OSLO software [45]. Fig. 7 shows
the dependence of the focal length on the diameter of circle of confusion generated by liquid lens due to the change of the shape of the
membrane’s outer surface from the ideal hyperboloid to the general axisymmetric aspherical surface. The calculation is performed for
two values of the diameter of the light beam entering the lens from the side of its planar surface, D; = 15 mm and Dy = 20 mm.

4.3. Example 3

Suppose we have membrane liquid lens with identical parameters as in example 1. The membrane is, again, made of the material

Table 1
Values of coefficients B,;.
Function
Coeff. 211 () 212 (P
B, -9.712788414425 x 102 -8.094344629507 x 1073
B, 2.305369478 x 10°° 2.411960994 x 107°
Bs 2.963174 x 107° 2.310320 x 107°
Bs 3.6524 x 10711 -3.0162 x 1071
Bio 1.43 x 10713 1.19 x 10713
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Table 2
Values of coefficients Co;.
Function
Coeff. §071 (F) Eo_z(f)
Cy -9.713453132589x10°3 -8.094544277157x10°2
C4 9.10224624x107 5.26750361x107
Ce -1.70590x10°1° -6.8556x10!!
Cs 4.0x107 1.1x10
Cio 0 0

d [mm]

-0.05 n L s L L L L " L
100 105 110 115 120 125 130 135 140 145 1

f [mm]

0

Fig. 7. Dependence of the diameterdof the circle of confusion on the focal length (solid — parabolic fit of values obtained from OSLO for D,
= 20 mm, circle - values obtained from OSLO for D, = 20 mm, cross — values obtained from approximate formulas for D, = 20 mm, dashed —
parabolic fit of values obtained from OSLO for D; = 15 mm, square - values obtained from OSLO for D; =15 mm, plus sign — values obtained from
approximate formulas for D; = 15 mm).

Sylgard 184 [36], whose refractive index is n; = 1.4118. However, this time the optical liquid inside the lens is distilled water with
refractive index n = 1.3318. Design of the desired shape of the membrane’s outer surface for focal length f= 100 mm is again per-
formed using formula (27) and the thickness profile for this specific shape for actuating pressure p = 1.97 kPa is determined by means
of using an iterative procedure derived in Section 2. In this example, all the surfaces will be expressed by means of formula (19) for
N = 5. Coefficients By; for the membrane’s inner and outer surface, 2o ;(r) and zg o(r) for the focal length f = 100 mm are specified in
Table 3.

If we change the value of the pressure from p = 1.97 kPa to p; = 1.4975 kPa, the paraxial focal length changes from f = 100 mm to
f1 =125 mm and the vertex radius of curvature from R = —33.181 mm to R; = —41.475 mm. If we further change the pressure to p;
= 1.2156 kPa, the paraxial focal length changes to f, = 150 mm and the vertex radius of curvature to Ry = —49.77 mm. Coefficients
By; for the membrane’s inner and outer surface, z; () and 2; ,(r) and 2 () and 25 ,(7) for the focal lengths f1 = 125 mm and f,
= 150 mm are specified in Tables 4 and 5.

Using the values of coefficients specified in Tables 3-5 we can proceed to the calculation of the diameter of the circle of confusion
for the given focal lengths of the membrane liquid lens f = 100 mm, f; = 125 mm and f» = 150 mm. The results are obtained from
OSLO software.

Fig. 8 shows the dependence of the diameter d of the circle of confusion on the focal length, which was generated by liquid lens due
to the change of the shape of the membrane’s outer surface from the ideal hyperboloid to the general axisymmetric aspherical surface.
The calculation is, again, performed for two values of the diameter of the light beam entering the lens from the side of its planar
surface, D; = 15 mm and Dy = 20 mm.

From Figs. 7 and 8 it is clear, that if we change the actuating pressure from its original value, for which the optimal thickness profile
of the membrane was designed and for which the membrane’s outer surface deforms exactly to the hyperboloidic shape, the deformed
shape changes to the general axisymmetric aspherical surface. Consequently, the optical aberrations introduced to the system by the
membrane increase. Considering that example 2 represents more complex lens, which composes of more optical substances (refractive
indexes of distilled water and membrane differ) and one of its surfaces has hyperboloidic shape, it can be expected, that the value of the
diameter of circle of confusion won’t intersect zero even for the original focal length f = 100 mm, see Fig. 8.

5. Conclusions

The paper presents the problem of optimal design of the variable thickness profile of the membrane in membrane liquid lens.
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Table 3
Values of coefficients By; of membrane’s inner and outer surface for f = 100 mm, membrane’s vertex deformed

thickness H(O) =46.5 x 1073 mm.

Function
Coeff. Zo,(7) - inner 20,0(F) — outer
B, -1.5427681909898 x 1072 -1.5069111713259 x 1072
By 1.796443969 x 10~° 2.633718250 x 107°
Bg -1.876658 x 10~° -5.72136 x 1071°
Bg -4.836 x 10712 -3.528 x 10712
Bio 1.2 x 1071 1.5 x 10714

Table 4
Values of coefficients By; of membrane’s inner and outer surface for f1 = 125 mm, membrane’s vertex deformed

thickness E(O) =47.4 x 107> mm.

Function
Coeff. 21,; () - inner 21,0 () — outer
B, -1.2406949245625 x 1072 -1.2055457579851 x 1072
B, 3.236978306 x 10°° 3.982282655 x 10°°
Bg -1.629885 x 10~° -6.18083 x 1071°
Bg -2.080 x 10712 -1.228 x 10712
Bio 1.0 x 10714 1.1 x 10714

Table 5
Values of coefficients Bo; of membrane’s inner and outer surface for f, = 150 mm, membrane’s vertex deformed

thickness E(O) =47.85 x 103 mm.

Function
Coeff. 2y, (7) - inner 23, (T) — outer
B, -1.0393807675511 x 1072 -1.0046215531050 x 1072
By 3.519069108 x 10~° 4.216893073 x 107°
Be -1.820727 x 107° -9.25025 x 10710
Bg -9.09 x 10713 212 x 10713
Bio 0.7 x 107 0.8 x 1071

0.35 T T T T T T T T T

03r

0.25 |

021

d [mm]

01t

0.05

-
%/
0 . . . . . .
100 105 110 115 120 125 130 135 140 145 150
f' [mm]

Fig. 8. Dependence of the diameter d of the circle of confusion on the focal length (solid — parabolic fit of values obtained from OSLO for D,
= 20 mm, circle - values obtained from OSLO for D, = 20 mm, dashed - parabolic fit of values obtained from OSLO for D; = 15 mm, square - values
obtained from OSLO for D; = 15 mm).

Firstly, the general formulas allowing us to design variable thickness profile, such that for specific value of actuating pressure the
membrane’s midsurface deforms exactly to the prescribed shape, are introduced. Secondly, an iterative procedure, which can be
applied to obtain variable thickness profile, such that the membrane’s outer surface deforms to the prescribed shape, is derived.

10
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Furthermore, the influence of the pressure change on the deformed membrane shape and on its optical aberrations is investigated. In
the end, the example for a specific plano-hyperbolic lens demonstrates the effect of difference between the outer surface and mid-
surface of the membrane, which are considered for a membrane’s thickness and shape optimization, on imaging properties of the focus-
variable liquid membrane lens. One can see that neglecting the difference between the midsurface and outer surface can result in
enormous errors in optical imaging. Further, two examples that show how the diameter of circle of confusion of the liquid lens depends
on the focal length when the actuating pressure is changed from the value for which the optimal thickness was designed, are presented.
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The paper discusses a numerical calculation of deformation of a circular axisymmetric membrane of a liquid lens
caused by the pressure of an optical liquid. Since such deflections of the membrane are many times larger than the
membrane thickness, a nonlinear model is applied and generalized relationships are derived that characterize the
resulting shape with a high precision and permit an accurate analysis of imaging properties of the lens and of
optical aberrations. By comparison with experimental data, it is shown that the presented model is suitable to

describe the deformation of the membrane of the lens.
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1. INTRODUCTION

In recent years, a rapid development and application of so-
called active lenses with tunable parameters have been noticed
[1]. Such lenses can change their internal or external parameters
in a predefined way and correspondingly modify the generated
optical image. There are many ways that the lens parameters
can be varied. One of the most widespread types are membrane
liquid lenses [1-23]. At present, some of these optical elements
are produced commercially [2,3] and applied in various imag-
ing applications. The fundamental component of the lens is a
membrane clamped at its edges, covering a chamber with an
optical liquid, as is schematically shown in Fig. 1(a). By chang-
ing the volume of the liquid, the shape of the membrane can be
changed and the optical properties of the lens can be controlled
[Fig. 1(b)]. Various authors analyzed both theoretically (nu-
merically) and experimentally the deflection of membrane el-
ements under uniform fluid pressure incorporated in different
types of membrane fluidic lenses using different mechanical
models of elastic membranes [4-23]. The accurate modeling
of the shape of the deflected membrane of a fluidic lens is cru-
cial for optical properties of such lenses.

To precisely predict imaging properties of membrane liquid
lenses, one has to know the shape of the membrane surface after
deformation very accurately. Considering large deformations,
compared to the membrane thickness, a classical linear theory
[24,25] typically used in mechanics or civil engineering does
not provide sufficient accuracy. Large deformations and stresses

1559-128X/17/215939-09 Journal © 2017 Optical Society of America

in plates were studied by Hencky [26] and Chein [27].
Campbell [28] generalized Hencky’s solution to the case with
initial stress. Numerical procedures based on iterative calcula-
tions of derived differential equations and series solutions were
presented by Goldberg and Pifko [29,30]. A modified method
of finite differences for a system of nonlinear differential equa-
tions describing strains and stresses was presented by Kao and
Perrone [31,32]. Pettit solved a system of three differential
equations using the Runge—Kutta method of the fourth order
[33]. A solution based on stress determination by the Newton—
Raphson method was carried out by Kelkar ez /. [34]. A sol-
ution based on series and analytical expressions for the series
coefficients was published by Fichter [35]. Allman presented
examples of variational solutions for the nonlinear deflection
of an annular membrane [36]. Shepload and Dugundji pre-
sented solutions for clamped circular plates under initial ten-
sion with transition to membrane behavior [37]. Zhao [38]
showed nonlinear models for prestretched and postheated
membrane solved by both the Ritz method and the Galerkin
method. Stanford and Ifju studied the validity range of low-
fidelity structural membrane models [39]. A generalized solu-
tion for large deflections was derived by Miks and Novék [40]
with the use of optimization algorithms.

In the aforementioned works, the authors built their solutions
on various assumptions and boundary conditions, and there-
fore the nonlinear differential equations and their solutions
are different. This paper presents an approach based on precise
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Fig. 1. (a) Scheme of liquid membrane lens and (b) result of a
change of liquid volume.

optical liquid
cover glasses

geometrical equations and the Saint Venant—Kirchhoff material
model, which postulates a linear relationship between the
Green—Lagrange strain and the second Piola—Kirchoff stress
[41]. Since the problem does not have an exact analytical solu-
tion, optimization algorithms [42,43] are applied to series expan-
sions. The presented derived model is illustrated by an example
and verified by a laboratory experiment. It is shown that such an
approach gives very accurate results, and it can be used for an
accurate optical design of optical systems with incorporated
membrane liquid lenses because it permits the analysis of their
imaging properties.

2. VARIATIONALLY CONSISTENT DERIVATION
OF GOVERNING EQUATIONS FOR LARGE
DEFORMATIONS OF MEMBRANE OF LIQUID
LENSES

Consider a membrane of a liquid lens to be circular and axisym-
metrical around axis z, which intersects the center of the lens as
is shown in Fig. 2. The radius of the membrane is denoted as «,
the vertical deflection of the membrane is described by function
w(r), and the horizontal (radial) displacement is described by
#(r). The membrane is assumed to have a constant thickness 4.
Any chosen point on the middle surface of the membrane will
move to the position [r + #(7), w(r)]. The deformed shape of
the membrane is described by a function g(r) implicitly defined
by the relation g(r + #(r)) = w(r). Let us also suppose that
the membrane is clamped at its edge, and its bending stiffness
is negligible.

Wmax

XuGry
w(r)

0 r a +x

Fig. 2. Scheme of deformation of circular axis-symmetrical mem-
brane under constant pressure (dashed line—membrane under zero
pressure, w(r) and u(r)—displacements of a point with initial position
[7, 0], —membrane radius, w,,,,—maximal deflection).
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As was already mentioned in the introduction, the constit-
utive behavior is described by the Saint Venant—Kirchhoff
material model, which deals with the Green—Lagrange strain
and the second Piola—Kirchhoff stress [41]. Normal strains
in the radial direction, €,, and in the tangential direction,
g,, are then expressed as

1 1
e, =-—(2-1)=4d +5(74'2 + w'"?),

2
1 u  u
:—/12_1 = — —, 1
e = (B-1) ="+ (1)

where %" and w’ are derivatives of displacements with respect to
the radial coordinate 7, and

A=+ (1 + )+ w?

=142 @

are stretches in the radial and tangential directions. Since the
material is in a plane-stress state and the shear strain y,, van-
ishes, the strain density energy A, (per unit initial volume) is
expressed as [24,25]

Aine(e) 8,) = (€7 + 2ue e, + &), 3

E
2(1-17)
where £ is the Young modulus and v is the Poisson ratio. These
elastic constants are characteristics of the chosen material of the
membrane.

Differentiation of the elastic potential, Eq. (3), leads to the
stress-strain equations [24,25]

Np  E
=, T TR T

Np  E
6, = ?tt = 1_—1/2(1/87 + ). 4)

For a constant pressure p, one can express the total potential
energy £, of the pressurized membrane as

Ep = Eine + Eexor (5)
where
Epne = 21h / " Aperdr ©6)
0

is the stored elastic energy (work done by internal forces), and
E.. = —277:11)/tZ w(r + u)(1 + «')dr (7)
0

is the potential energy of external forces.

The stable equilibrium state of the membrane corresponds
to the minimum of potential energy £, and so the first varia-
tion of potential energy at this state must vanish. The first varia-
tion of the stored elastic energy can be expressed as

a (N, oA,
SE,,, = 2nh / < X Se, + —n 58t) rdr
0 O€, O,

= 2nh /ﬂ(a,ée, + 0,6¢,)rdr. (8)
0
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As follows from Eq. (1), the strain variations are linked to the
displacement variations by

o, = ou' + u'6u’ + w'sw’,

ge, = 24 4. 10 (@)

r r

Substituting these expressions into Eq. (8), making use of
Eq. (4) and integrating by parts, we obtain

OF = 2”}1/ (767(574, + u'6u’ 4+ w'sw')
0

o)
+e, (au n _)) a
7

= 27hro,(6u + u'du + w'dw)]’_,

_onh / ((6,(1 + ) 6u + (ro,w') Sw)dr
0

+orh / ‘s, <5u + @> dr. (10)
0 r

In a similar fashion, the variation of the potential energy of
external forces is expressed as

SF o = —2ﬂp/a5w(r +u)(1+4")dr- 27&"17/1z wéu(1+u")dr
0 0
- 27rp/ﬂ w(r+ w)du'dr
0
= —27rp/aﬁw(r +u) (14 u")dr - 27plw(r + u)oul’_,
0

+2ﬂp/ﬂw'(r+ u)Sudr. (11)
0

Admissible displacement functions must satisfy boundary
conditions

w0) =0, wa)=0 w@=0  (12)

and analogous conditions must be satisfied by the variations
6u and Sw. Consequently, most of the boundary terms in
Egs. (10), (11) vanish and the variation of total potential energy
can be written as

5Ep = 5Eint + 5Eext

= 2nhro,w'dw|,—

+27r/0ﬂ </)6t<1 —i—%) -h(ro,(1+u"))’

+pw'(r+ u)) Sudr

on / " (h(row") +p(r+w)(1+u)owdr.  (13)
0

Since the values of variations 6% and dw in the open interval
(0, a) are arbitrary, the terms that multiply these variations in
the integrals must vanish (almost everywhere). The correspond-
ing optimality conditions

Hro,(1 + )]’ - ho, (1 1 %) = p(r + W,

~h(ro,w") = p(r+u)(1+4") (14)
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represent the strong form of equilibrium equations. In the case
of small radial displacements, we have #’ <« 1 and # < r, and
Eq. (14) reduce to

hro,)' - ho, = prw',
~h(ro.w') = pr. (15)

Such simplified equilibrium equations are considered in
papers [24—40]. The present paper deals with the more accurate
equilibrium Eq. (14).

It is also interesting to look at the structure of the boundary
conditions. At » = &, conditions #(2) = 0 and w(z) = 0 de-
scribe the constraints imposed by fixing the physical boundary
of the membrane. On the other hand, point » = 0 physically
corresponds to the center of the membrane and becomes a part
of the (mathematical) boundary only when the domain of
analysis is reduced to the interval [0, 4] based on axial sym-
metry. Continuity of the radial displacement implies that
#(0) = 0, but continuity of the deflection does not lead to
any constraint on w(0). Consequently, the variation dw at
r = 0 is arbitrary, and the missing boundary condition would
normally be obtained by setting the term that multiplies 52(0)
in Eq. (13) to zero. In the present case, this term, given by
-2zhro,w', seems to vanish automatically at » = 0. How-
ever, one should realize that this reasoning is based on the
implicit assumption that ¢,w’ remains bounded as » — 0.
In principle, a concentrated force F could be applied at the
center of the membrane, and then the stress would be un-
bounded. The potential energy would have to be enriched
by the term -F4w(0), and the resulting boundary condition
would read

Fy

li =-—. 16
r_l)l’(l)’h(?‘()’,w ) b (16)
Note that Q(r) = 2zhro,(r)w'(r) corresponds to the trans-
versal component of the specific internal force integrated along
a circle of radius », and Eq. (16) can be interpreted as
Q(0) = -F,. The second equilibrium equation from

Eq. (14) can be rewritten as

-Q' =2mp(r + u)(1 + ). (17)
Integrating and taking into account condition Q(0) = -Fy, we
obtain

Q(r) = -Fo - mp(r + u(r))*. (18)

This relation represents the equilibrium condition written for
the part of the membrane which, in the undeformed configu-
ration, has the shape of a disk of radius 7.

While the boundary conditions of Eq. (12) are kinematic
and, from the mathematical point of view, are essential, the
fourth boundary condition of Eq. (16) is static, and it does
not need to be imposed a priori on trial functions that approxi-
mate the exact solution. In the absence of a concentrated force,
it can be expected that the deflection is continuously differen-
tiable over the entire membrane. Combined with axial sym-
metry, continuous differentiability implies that

w'(0) = 0. (19)

This condition is not essential, but if it is satisfied by the
numerical approximation of the exact solution, faster convergence
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can be expected. Therefore, in the following section, we will con-
sider Eqs. (12) and (19) as the appropriate boundary conditions.

3. NUMERICAL SOLUTION OF CALCULATION
OF MEMBRANE’S DEFORMATION

Since Eq. (14) cannot be solved analytically, a numerical pro-
cedure based on series expansion will be presented in this paper.
Instead of solving the differential equations directly, we can ex-
ploit the fact that the solution minimizes potential energy
among all kinematically admissible states. The displacement
functions will be approximated by suitable polynomial series,
the potential energy will be expressed as a function of the series
coefficients, and an appropriate optimization algorithm will be
invoked [42,43]. Direct minimization of the potential energy
given by Eq. (5) turns out to be more robust than, e.g., min-
imization of the residual in Eq. (14). It is convenient to intro-
duce a dimensionless spatial coordinate p = 7/ and solve the
problem on the interval [0, 1]. In terms of the dimensionless
coordinate, the potential energy and strains can be expressed as

_ &Enh [1
P a-v) o

1 !
- Zﬂpaz/ u/(p + u) (1 -I-u)dp,
0 a a

u' 1

g, = ; + 2_42 (1/2 =+ w’z),

(€2 + 2ve,e, + e2)pdp

u I/tz

(20)

o= ap + 24%p%

To keep the notation simple, functions # and w are denoted
by the same symbols even when they are considered as func-
tions of the dimensionless variable p, and their derivatives with
respect to p are in Eq. (20) denoted by primes.

As explained in detail in the previous section, the displace-
ments should satisfy boundary conditions of Eqgs. (12) and
(19). From the symmetry of the problem it is clear that the
deflection w should be an even function, and the radial dis-
placement # should be an odd function. Therefore, let us
use polynomial approximations in the form

N M
wp) =Y b(1-p*),  wp) =Y ¢lp-p¥),
i=1 j=1
21)

where 6,(i = 1,2,...N) and ¢;(j = 1,2...M) are coefficients
to be found. Such approximations automatically satisfy the
boundary conditions. The maximal deflection

Wi = w(0) = Y _ b, (22)

corresponds to the sum of all coefficients 4;. To express the
resulting displacements as functions of the variable 7, the fol-
lowing formulas can be applied [as can be obtained from the
substitution p = r/a and Eq. (21)], as follows:
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N 2 r & rY
w(7)225i<1-ﬁ>, u(r)=;2ff<1‘ﬁ)‘
= =

(23)

The procedure can be summarized as follows:

1. Choose an appropriate series expansion that approxi-
mates displacement functions w(p) and #(p), and satisfies
boundary conditions given by Eqs. (12) and (19). In the
present study, Eq. (21) was used.

2. Substitute the approximation series [Eq. (21) in the
present case] into Eq. (20) and find the unknown coefficients
based on the condition of minimum of potential energy E,,
using an appropriate optimization algorithm.

3. Calculate the resulting displacements according to
Eq. (21) or Eq. (23), and the final shape of the membrane given
by the function g(r + u(r)) = w(r).

4. EXAMPLE

To illustrate the aforementioned procedure, let us analyze a
membrane using the same parameters as Mik$ and Novdk in
their paper [40]: radius 2 = 10 mm, thickness / = 0.1 mm,
Young modulus £ = 1.97 MPa, Poisson ratio v = 0.4, and
pressure p = 0.001 - £ = 1.97 kPa.

The calculation was done in the MATLAB software, exploit-
ing the large-scale interior-point algorithm with Hessian update
by the Broyden—Fletcher—Goldfarb—Shanno method [42,43].
As a check, the residuals in equilibrium Eq. (14) were calcu-
lated. The maximal absolute value of residuals (i.e., differences
between the left- and the right-hand side) was 2.8 - 107> Pa for
the first equation and 1.3 - 107 Pa for the second equation
(for equations rewritten in terms of the dimensionless coordi-
nate p = r/a).

The calculated displacements w(7) and #(r) are shown in
Fig. 3. The red-dashed line indicates the approximate solution
obtained with a simplified model based on assumptions #" < 1
and # < r [Eq. (15)]. Figure 4 shows the resulting shape of

WS 2.9544 [mm)]
wmax(simplified) =2.8864 [mm]

3 - =
E 2}
E
z 1 generalizedi
s - —simpliﬁi_

0 .

0 2 4 6 8 10
r [mm]
U= 0.2542 [mm]

u(r) [mm]

0 2 4 6 8 10
r [mm]

Fig. 3. Calculated displacements w(r) and #(r) and comparison

with simplified model [Eq. (15), red-dashed line].
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w__ =2.9544 [mm]
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1 \\ N
e N
\ \
0.5 [—ga) SN 1
= =w(r) \
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0 | 1 | |
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Fig. 4. Final membrane shape (blue line), vertical deflection (black
dashed line) and comparison with simplified model [Eq. (15), red-
dashed line].

the membrane g(r), which was afterward approximated by an
aspherical expression given by the formula

cr? > 5

#(1) = B+~ it ;Az,r . (24)

where z,,,, is the maximal deflection of the surface, c = 1 /Ry is
the axial curvature, and A,;(i = 2, ...5) are aspherical coeffi-
cients that characterize deviations from the sphere of radius
Ry. The results of the approximation are summarized in
Table 1 for both the generalized and the simplified solution.
The final shape of the deformed membrane was compared

to spherical approximations. The differences between the exact
shape and its approximations by spheres are shown in Figs. 5
and 6. Three approximations are considered: 1) the spherical
part of aspherical expression in Eq. (24) (i.e., aspherical coef-
ficients A,; = 0 for every i); 2) a sphere with the same maximal
deflection at » = 0, passing through the edge of the membrane
(r = a); and 3) a sphere with the same maximal deflection at
r =0 min imizing in the least-squares sense the differences
between the calculated approximation and the exact membrane
shape. RMS error values are specified in the figure. As is shown,
the difference between the resulting membrane shape and a
sphere is not negligible. Focusing on the differences between
approximations shown in Fig. 6, one can say that the least aver-
age deflection is obtained in the case of approximation in the
least-squares sense (case 3). However, considering the spherical
shape as close as possible to the real one measured from the
central part to the maximal distance, the best results are ob-
tained with the spherical part of the aspherical expression
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RMS, = 0.13 [mm], RMS, = 0.068 [mm], RMS, = 0.04 [mm]
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E
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ok |~ = 1) sphere (vertex curvature)
= == 2) sphere (vertex - edge)
== = 3) sphere (least squares)
.05 I L L L
0 2 4 6 8 10

r [mm]

Fig. 5. Approximation of resulting membrane shape by different
spheres: (1) spherical part of aspherical expression, (2) sphere matching
the deflection at » = 0 and the edge of the membrane (r = a),
(3) sphere matching the deflection at » = 0 and minimizing in the
least-squares sense the deviation from the calculated membrane shape.

e, (r) [%]
o

= 1) sphere (vertex curvature)

4 2) sphere (vertex - edge)
3) sphere (least squares)
-5 1 I \
0 2 4 6 8 10

r [mm]

Fig. 6. Relative error of spherical approximations of the membrane
shape: (1) spherical part of aspherical expression, (2) sphere matching
the deflection at » = 0 and the edge of the membrane (r = a),
(3) sphere matching the deflection at » = 0 and minimizing in the
least-squares sense the deviation from the calculated membrane shape.

[spherical part of Eq. (24)]. Therefore, if one wants to use
the region close to the optical axis for imaging purposes
(r = 0), the best approximation of the membrane shape will
be given by the spherical part of Eq. (24). In the presented

Table 1. Approximation of Deformed Membrane Shape by Aspherical Expression

Zmax [Mm] Ro[mm] A;[mm-3] Ag[mm™>] Ag[mm™7] Ajo[mm] RMS [mm]
Complete model 2.9544 -21.0163 -2.4120e-05 -1.8963e-07 1.2167¢-09 -1.1365¢-11 4.9¢-05
Simplified model 2.8864 -13.3843 1.3661e-04 1.7797e-07 -2.3620e-10 8.1189¢-12 2.6e-05
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example, the relative error will be less than 1% in one half of the
studied region.

To illustrate imaging properties of the membrane lens, the
results from the previous part were used for a simulation of
aberrations. Calculated aspherical surfaces were used for optical
ray-tracing in OSLO software. Figs. 7 a) and b) show the in-
fluence of the membrane’s shape on the transversal spherical
aberration of the membrane lens with thickness # = 0.1 mm.
DX and DY denote the transversal ray aberrations, and FX and
FY denote the height of an incident ray in the interval -5 mm
to 5 mm. The diameter of the lens was chosen as 10 mm,
and the calculation was made for the wavelength of light
A =587 nm. The first figure [Fig. 7(a)] shows the transversal
spherical aberration of the membrane lens with radius of
curvature R = 21.016 mm and axial thickness 4 = 5 mm if
the aspherical coefficients of approximation (24) are neglected.
The liquid of the lens was distilled water. In the second figure
[Fig. 7(b)], the transversal spherical aberration is shown for an
aspherical membrane lens with the same vertex radius R =
21.016 mm and the same axial thickness, with the following
values of aspherical coefficients: A4 = 2.41198e - 05 mm™,
Ag=1.89627¢-07 mm~, Ag = -1.21673¢ - 09 mm~’, and
Ajp=1.13654e-11 mm™. Both lenses have the same focal
length f” = 63.105 mm. As is obvious from the figures, the
membrane lens cannot be replaced by a spherical lens, because
the difference in the aberrations is too large.

Let us now analyze the influence of the approximate solu-
tion of membrane deformation, which can be calculated from
Egs. (15), on the transversal spherical aberration of the
lens with thickness # = 0.1 mm, radius of curvature R =
21.016 mm, and axial thickness 4 = 5 mm. The optical liquid
is distilled water. The aspherical coefficients of this lens are
Ay = -6.75618e - 05 mm™>, Ag = -1.49495¢ - 08 mm™>,
Ag=-2.37860e-11 mm~7, and A, =-3.77091e-14 mm™.
Note that the shape of the membrane was calculated from
Eq. (15) by varying the applied pressure to get the required
radius of curvature. Figure 7(c) shows the transversal spherical
aberrations. Comparing the results to Fig. 7(b) (solution based
on the complete model), one can see that the spherical aberra-
tion is “undercorrected” by the solution based on Eq. (14),
while the approximate solution of Eq. (15) gives an “overcor-
rected” spherical aberration. From the presented results, it is
obvious that an accurate analysis of membrane lenses with var-
iable focus must be based on the complete model, because the
error in imaging properties caused by using the approximate
approach is too large.

A very important parameter, which has a crucial effect on the
calculated membrane deflection of the membrane lens and thus
also on the imaging characteristics, is the membrane thickness.
Therefore, the influence of thickness on imaging properties was
studied in more detail. First, an initial calculation was done
with a membrane of the same parameters as in the previous
part, i.e., radius 2 = 10 mm, thickness # = 0.1 mm, Young
modulus £ = 1.97 MPa, Poisson ratio v = 0.4, and pressure
p =0.001-E = 1.97 kPa. The results of the approximation
with Eq. (24) are presented in Table 1. Afterward, the thickness
was varied and the pressure was optimized to get the same
spherical part of the approximation of Eq. (24) as for the initial
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(a) DY 1 0.1 DX 0.1

(b) DY ;1 0.5 DX r 0.5

© DY 1 DX 1

// FY &

Fig. 7. Comparison of transversal spherical aberration of the mem-
brane lens (a) with neglected aspherical coefficients of approximation
(24), (b) with aspherical coefficients taken into account, (c) with
aspherical coefficients taken into account but deformation calculated
from simplified Eq. (15) and with the applied pressure adjusted to
obtain the same paraxial properties (the same focal length) as with
the general Eq. (14); DX and DY denote the transversal ray aberra-
tions, and FX and FY denote the height of the incident ray in the
interval from -5 mm to 5 mm.

parameters. Therefore, paraxial properties of the lens remain
the same. However, aspherical coefficients and therefore aber-
rations of optical imaging change. Table 2 presents the results
of the analysis. It is obvious that the thickness of the membrane
affects the aspherical coefficients. A different pressure has to be
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Table 2. Comparison of Applied Pressure and Aspherical Coefficients of Lenses with the Same Optical Paraxial

Properties and Different Thicknesses

hlmm] plkPa] Zmax[mm] Ry[mm] Ay[mm™] Ag[mm™] Ag[mm™’] Ayo[mm™]
0.3 5.91 2.9544 -21.0163 -2.4123¢-05 ~1.8954¢-07 1.2157¢-09 -1.1361e-11
0.5 9.85 ~2.4132¢-05 -1.8927¢-07 1.2125¢-09 -1.1348e-11
0.7 13.79 ~2.4149¢-05 ~1.8879¢-07 1.2069¢-09 ~1.1326e-11

applied to obtain the same paraxial optical properties, and
therefore various lenses can image differently.

5. EXPERIMENTAL VERIFICATION OF
THEORETICAL RESULTS

The experimental measurement of a liquid membrane lens was
done to check whether the theoretical prediction of membrane
deflections corresponds to the real behavior. The scheme of the
lens is shown in Fig. 8. The basic part is a chamber. The liquid
(distilled water in our case) is injected by a precise pressure
pump through an inlet valve. The cover of the lens is attached
by screws and fixes the membrane (made of Sylgard 184 [44]),
which is deformed depending on the amount of liquid carried
into the chamber. The second part of the lens is a flat plane-
parallel plate. The amount of liquid in the chamber can be
reduced by a bleed valve. For the experiment, the chamber
diameter was D = 30 mm and the membrane thickness
h = 0.5 mm. Because mechanical parameters of the membrane
change for different recipes of mixtures and are affected by
thermal conditions during measurement, optimal values of
mechanical parameters of the membrane used for the calcula-
tion (Young’s modulus £ = 1.1 MPa and Poisson’s ratio
v = 0.45) were obtained by minimizing the difference between
the theoretically calculated and experimentally measured maxi-
mal membrane deflection.

The shape of the membrane was determined by a device for
measurement of surface topography (see Fig. 9) with 4 degrees
of freedom. The basic component of the device is a chromatic
confocal sensor [45], which can be positioned using step mo-
tors in two mutually orthogonal directions (axis x and axis z)
and rotated (around axis ). The sample can then be rotated
using the measurement table, and data characterizing the com-
plete topography can be obtained.

In view of the rotational symmetry of the lens, only the
meridian z = f(x) was measured. The range of measurement
was from -5 mm to 5 mm because of mechanical construction
of the device. The estimated uncertainty of the deflection

cover of the lens
screws

inlet valve / membrane
.

lens chamber

bleed valve

rd

planc-parallel planc

Fig. 8. Scheme of laboratory sample of liquid membrane lens.

measurement using the aforementioned laboratory device is
0.02 mm (combination of uncertainties in the measurement
with the confocal sensor and mechanical errors in the device).

The results of the measurement are shown in Fig. 10 and
Table 3 for three pressures—p = 3.0, 3.5, and 4.0 kPa—and
the experimental values are compared to theoretical predictions
calculated using the procedure presented in Section 3. RMS
errors (differences between theoretically predicted and mea-
sured values) are RMS; 9 =0.033 mm, RMS; s =0.024 mm,
and RMS;y = 0.014 mm. It is confirmed that the presented
theoretical model corresponds very well to the real behavior.

Fig. 9. (a) Laboratory device for surface topography measurement
and (b) measured sample of liquid membrane lens of the measurement

table.

z [mm]

r [mm]

Fig. 10. Measured lens deformation (red crosses) and comparison
to theoretical prediction (blue lines) for pressures p = 3.0, 3.5, and
4.0 kPa.
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Table 3. Approximation of Measured Membrane Shape by Aspherical Expression [Eq. (24)]

plkPa] Zmax[mm] R,[mm] Ay[mm3] Ag[mm™] Ag[mm~7] Ajo[mm] RMS [mm]
3.0 4.05 -32.24 4.483e-05 -3.879e-06 1.453e-08 -7.486e-12 1.5e-02
3.5 4.28 -28.60 1.657e-04 -5.835e-06 1.438e-08 3.673e-11 1.2e-02
4.0 4.47 -29.22 3.730e-05 -1.438e-06 -2.639e-09 3.630e-11 9.7e-03
Therefore, the method can be used for modeling the shape of 14. L. Li, Q. H. Wang, and W. Jiang, “Liquid lens with double tunable

membrane liquid lenses.

6. CONCLUSION

The paper presented a mathematical model and numerical
solution for the calculation of the deformation of an axisym-
metrical membrane liquid lens. The general formulas for deflec-
tions were derived based on precise geometrical equations and
the Saint Venant—Kirchhoff material model, which assumes a
linear relationship between the Green—Lagrange strain and the
second Piola—Kirchoff stress. The numerical solution was ob-
tained by minimizing the potential energy. As one possible ap-
proach, an approximation using power series that satisfy the
boundary conditions of the problem was presented. As is shown
in an example and verified by an experiment, the derived gen-
eral formulas and the numerical procedure can be used for ac-
curate modeling of membrane liquid lenses. The results can be
exploited in optical system design with incorporated liquid
lenses, and the developed method will be used in the future
for precise analysis of the imaging properties of such systems.

Funding. Ceské Vysoké Ucen{ Technické v Praze (CVUT)
(SGS17/004/OHK1/1T/11).
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This paper presents a complete model for analysis of the deformed shape of a prestressed circular axisymmetric
membrane of a liquid lens. The governing equations are derived using the exact relation between displacements
and the Green—Lagrange strains combined with the Saint Venant-Kirchhoff material law, which postulates a
linear relation between the Green—Lagrange strains and the second Piola—Kirchoff stresses. A numerical solution
based on minimization of potential energy is illustrated by an example, and the dependence of the maximum
membrane deflection on material properties and initial prestress is analyzed. The theoretical model is then ex-
perimentally validated. It is shown that the model is suitable for large-strain analysis of liquid lens membranes and
provides sufficiently accurate results that can be used in further analyses and simulations of imaging properties of

active optical elements based on liquid lenses.
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1. INTRODUCTION

Active optical elements represent a modern direction in optics,
which in recent years has been under rapid development. They
include well-known membrane liquid lenses [1-23], which are
commercially available for imaging purposes [2,3]. The basic
element of such lenses is a membrane fixed along its circum-
ference (the specific type of fixation varies depending on the
manufacturer). The lens chamber is filled by an optical liquid.
When the volume of the liquid is changed, the liquid inserts
uniform pressure on the membrane and the membrane deflects.

In the past, many authors performed theoretical and exper-
imental analyses of deformed membranes loaded by a uniform
pressure using various mechanical models [4-23] and various
numerical techniques [24-37].

In a previous paper [38], the authors analyzed in detail the
deformation of a circular axisymmetric liquid lens membrane.
This work extends the previous analysis by including the effect
of initial prestress, which is inevitably induced during installa-
tion of the liquid lens. The membrane is again considered to be
fixed along its circumference and subjected to uniform pressure
of the liquid.

Since the deflections of the membrane substantially exceed
its thickness, solutions based on standard linear elasticity
[39,40] are not sufficiently accurate. The influence of radial
deflections is also nonnegligible. The model presented in the
next section is based on exact strain-displacement relations
defining the Green—Lagrange strain and on the Saint
Venant—Kirchhoff material law that assumes a linear relation

1559-128X/17/349368-09 Journal © 2017 Optical Society of America

between the Green—Lagrange strain and the second Piola—
Kirchoff stress [41]. This model properly takes into account
geometrically nonlinear effects and includes the membrane’s
radial displacements, which are in Refs. [4-23] and considered
as small or totally neglected.

In the next section, the governing equations are derived and
a numerical solution based on polynomial series and optimiza-
tion algorithms [42,43] is presented. An example dealing with
specific parameters of a membrane lens illustrates the numerical
solution and compares it to results obtained by finite elements.
The dependence of the maximum membrane deflection on the
material properties and initial prestress is studied. In the last sec-
tion, the proposed model is validated by comparison to deflec-
tions measured in experiments. It is confirmed that the model is
suitable for an accurate description of the given problem and can
be used in further simulations and analyses related to optical de-
sign requiring a highly accurate description of optical interfaces.

2. THEORETICAL PREDICTION OF
PRESTRESSED MEMBRANE SHAPE

A. Derivation of Governing Equations

Let us consider a circular axisymmetric membrane of a liquid
lens, with the axis of symmetry denoted as z and the radial axis
as 7; see Fig. 1. The membrane is characterized by constant
thickness 4 and radius @, with 4 so small that the bending
stiffness can be neglected. Along its circumference, the mem-
brane is fixed. Under the pressure of the optical liquid in the
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Fig. 1. Sketch of a circular axisymmetric membrane deformed by
constant liquid pressure p (dashed blue lines—initial straight shape
of the prestressed membrane at zero applied pressure, w(r) and
u(r)—vertical and horizontal displacements of a point with initial co-
ordinates [r, 0], #—membrane radius, /—membrane thickness,
Wna—maximum deflection).

lens, the membrane deforms and a general point on its mid-
plane with initial coordinates [r, 0] is displaced to a new posi-
tion [r+ u(r), w(r)], where w(r) denotes the deflection
(displacement in the z direction) and #(7) is the radial displace-
ment. The deformed shape of the membrane can be described
by a certain function g(r), implicitly defined by the rela-
tion g(r + u(r)) = w(r).

Let us further assume that the membrane in its initial state
(i.e., at vanishing applied pressure p) is prestressed, and its ini-
tial stretch in all in-plane directions is 4y > 1 (the stretch is
defined with respect to the stress-free reference configuration).
Further, the effect of the change of thickness # on the mem-
brane shape is negligible, and so the deformed shape is de-
scribed by the midsurface.

The radial stretch 4, and the tangential (circumferential)
stretch 4, in the deformed state are easily expressed as

A=V (1 + )+ w?,

) = zo<1 +§), (1)

where #' and w'" are the derivatives of displacements # and w
with respect to the radial coordinate, 7. Let us assume that
the material can be described by the Saint Venant—Kirchhoff
model, which postulates a linear relation between the
Green—Lagrange strain and the second Piola—Kirchhoff stress
[41]. Based on the definition of Green—Lagrange strain, the
inplane normal strains are evaluated from the stretches as

1 ’ 1 ! ! 1
e =5 (2-1) =A%[u +5(u2+w2)} +3@-1)

= /1%57 + €0, (2)
1 ) S > 1 )
8,25(/11—1)2/10 ;+F +E(/10—1)
= A%Et =+ [ (3)
where
1
e =503~ 1) @
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is the initial strain and

1
& =u+ 5(14'2 + w"), (5)
2
gt "
o= ro 27 ©6)

are strains that would be obtained by taking the initial pre-
stressed state as the reference configuration [while Eqs. (2)
and (3) use the stress-free state as the reference configuration].

Since the state of the material corresponds to plane stress,
the strain energy density &, (per unit volume in the stress-free
state) is given by [39,40]

gint(Ew Et) = (8% + 21/£r£t + E%)) (7)

2(1-17)
where £ is the Young modulus and v is the Poisson ratio char-
acterizing the membrane material. Differentiating the strain en-
ergy density with respect to strains, we get the corresponding
work-conjugate stresses

agim _ E
Gr_a—gr_ l_yz(‘gr—‘f_l/gt)’ (8)
o€ E

int __

(e, + ve)), ©)

o, = =
de, 1-17

and substituting from Eqgs. (2) and (3), we can express them as

EX}
o, = 1_—32(5, + I/gt) + 0, (10)

E 2
c, = Loz(é,f + VE,) + oy, (11)

1-v

where
E E )

00_1—1/60_2(1—1/)(/10_1) (12)

is the initial prestress.

Since the strain energy density has been differentiated with
respect to Green—Lagrange strains, the resulting stresses are the
second Piola—Kirchhoff stresses, with the stress-free configura-
tion taken as the referential one. It is important to realize that
symbols # and 4 denote the membrane radius and thickness in
the state before application of the liquid pressure but after ap-
plication of the prestress. The corresponding dimensions in the
stress-free state will be denoted as 7 and 4, with 2 = /4, and
with / considered as a primary geometric characteristic of the
membrane.

The equilibrium state after application of pressure p can be
found by exploiting the principle of minimum potential energy.
The total potential energy,

Ep = Eint + Eexv (13)

is the sum of the strain energy, £, and the energy of external
forces, E.,.. The state of minimum potential energy can be at-
tained only if the variation of functional £, vanishes for all
admissible variations of displacements # and w. Since &, rep-
resents the strain energy density per unit volume in the stress-
free reference configuration, the strain energy
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Ey = 27h / ‘ EnidF (14)
0

must be evaluated by integrating over a cylinder of radius 7 =
a2y and height 4. The integration variable 7 that varies from 0
to 4 corresponds to the radial coordinate 7 (in the prestressed
state) divided by 4. Therefore, we can transform Eq. (14) into

27h [a

Eie = / Enerdr. (15)
A5 Jo

The energy of external forces can be expressed as minus the

applied pressure multiplied by the volume between the initial
midplane and the deformed midsurface, leading to

Eoo = 2mp /tZ w(r + u)(1 + «')dr. (16)
0

The first variations of the strain energy and of the energy of
external forces can now be evaluated as

2nh [« [0E, 9E.
5E — nt 5 mnt 6 d
int A% A (087 &y + 08, Et)r r
_ 2
=%

/ﬂ(aréer + 0,0¢,)rdr

0

= 2r1h /ﬂ(oy&?r + 0,0€,)rdr
Jo

= 27h /d(mr(éu' + u'6u’ + w'bw')
0
+ 6,(6u + ubu/r))dr
= 2ahre,(5u + u'du + w'sw)l_,

- 2nh /ﬂ((m,(l + u"))ou + (ro,w') 6w)dr
Jo

+21h / ‘o, <5u n @) dr, (17
0 r

and
SE.. = -21p /) “sw(r + w)(1 + o')dr
mplutr + wyuliy
+ 21p A W (r + u)udr. (18)

As shown in Fig. 1, admissible functions # and w are con-
strained by boundary conditions
w(a) = 0,u(0) = 0, u(a) = 0, (19)
and analogous conditions must be satisfied by their variations
du and 6w. Summing Egs. (17) and (18) and making use of the
boundary conditions, we obtain the variation of total potential
energy in the form

SE, = -2rhro,w'sw|,—,

?
+2r /ﬂZ (/5@(1 +u> - h(ro,(1 + "))’
0 r

+pw'(r + u))éudr

By / (b(ro,w') + p(r + w)(1 + u')6wdr. (20)
0
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The corresponding strong form of equilibrium equations
reads

h(ro,(1 + ') - ho, (1 + ;) =p0r+wu,  (21)

~h(ro,w') =p(r+u)(1+4'). (22)

In many publications mentioned in the introduction
[24-37], the radial displacements # and their derivatives #’
are considered as negligible. Based on such an assumption,
Eq. (21) would reduce to

h(re,) - ho, = prw', (23)

—/;(rarw')’ = pr. (24)

Since the variation dw at » = 0 is completely arbitrary, the
first term in Eq. (20) leads to the boundary condition

ro,w' =0 atr=0. (25)

At a first glance, the condition seems to be satisfied auto-
matically. Indeed, if 0,2 has a finite value at » = 0, then
multiplication by zero leads to 76,2’ = 0. In a general setting,
a concentrated vertical force Fy could be applied at » = 0,
and then the resulting boundary condition would read
lim,_ o+ (ro,w') = Fy/(2xh). For the problem studied here,
no such concentrated force is present, and a refined analysis
leads to the conclusion that the deflection w considered as a
function of inplane coordinates x and y should be continuously
differentiable. Consequently, the derivative of w with respect to
rat r = 0 should vanish, and this can be imposed as the fourth
boundary condition,

w'(0) = 0, (26)
which supplements Eq. (19) conditions.

B. Numerical Approximation by Power Series
The governing differential equations written in terms of dis-
placements # and w could be constructed by substituting
the strain-displacement Egs. (5) and (6) and the stress-strain
Egs. (10) and (11) into the equilibrium Egs. (21) and (22).
However, the resulting set of two partial differential equations
with the boundary conditions of Egs. (19) and (26) cannot be
solved analytically. An approximate numerical solution can be
constructed by minimizing the energy functional £, over a
finite-dimensional space of suitable approximation functions.
Since the solution is expected to be highly regular, polyno-
mial approximations seem to be a good choice. It is also con-
venient to reformulate the problem in terms of dimensionless
displacements # = #/a and @ = w/a, and dimensionless
spatial coordinate p = r/a, so that the domain of analysis is
transformed to the interval [0, 1]. The displacements can then
be approximated by the polynomial series

N M
@) =S b(1-p¥),  dp) = c(p-p¥H), (1)
i=1 j=1

where 6, (i =1,2,...,N) and ¢ G=12..,M) are arbi-
trary coefficients. Note that these approximations automati-
cally satisfy the boundary conditions of Eq. (19) as well as
of Eq. (20).
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In terms of the dimensionless quantities, Egs. (5) and (6)
can be rewritten as

@]

Z [1-(2+ Dp¥] + 1 (Z Gl - (2 + l)ﬂzj]>

': j:]

N 2
+2 (Z z'b,-pz“) , (28)

=2 5(-p)+3 (Z (1~ 2f)> (29)

Substituting from Egs. (7), (2), and (3) into Eq. (15) and
transforming the integration variable from 7 to p, we obtain the
strain energy

2zh [« E
E,, = /1—2/ m(sf + 2ve,e, + €2)rdr

ﬂhE a

(/12 / (& + 2vé.é, + &2)pdp

1+ D)&‘%)
3 ’

In a similar spirit, the load energy of Eq. (16) can be ex-
pressed as

E, = —2ﬂpa3/ w(p + u)(l + )dp (31)
0

Substituting Eqs. (28), (29) into Eq. (30) and Eq. (27) into
Eq. (31), it is possible to express the potential energy £, =
Eine + Ecx as a function of coefficients 4; and ¢;. This objective
function is then minimized by invoking a selected optimization
algorithm [42,43]. Note that the last term in Eq. (30),
(1 4+ v)ej /23, is constant and therefore does not need to be

included in the objective function.

+2(1 +v)g / (&, + €)pdp + (30)
0

3. NUMERICAL EXAMPLE

A. Comparison of Power Series Solution with Finite
Element Method

In this section, the numerical solution is constructed for a
specific example of a prestressed liquid lens membrane.
Consider a circular membrane characterized by initial thick-
ness # = 0.1 mm, radius (in prestressed state) 2 = 10 mm,
Young’s modulus £ = 1.97 MPa, and Poisson’s ratio
v = 0.4. The membrane is prestressed by biaxial inplane stress
09 = 60 kPa and then loaded by constant pressure
»=0.001E = 1.97 kPa.

Figure 2 shows the membrane displacements and the
deformed shape computed using the optimization algorithm
described in the previous section. Deflections w(r) and radial
displacements #(r) were approximated by the series in Eq. (27)
with N = M = 5, and the objective function to be minimized
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was the potential energy £, Optimization was performed
in MATLAB [44] using the quasi-Newton algorithm with
Hessian updates based on the Broyden—Fletcher—Goldfarb—
Shanno method [42,43].

As seen in Fig. 2(c), the resulting shape of the deformed
membrane is not spherical. To quantify the deviation from
a perfect sphere, let us approximate function g(r) that describes

the deformed shape by

2(r) =z + ————F——

ZAZJ , (32

14+ V1-c22 =

where z,, is the maximum deflection, ¢=1/R, =
2" /(1 + 2"%)%? is the apex curvature (R, is the apex radius
of curvature, z' and z'' are the first and second derivatives
of the approximated function g(r) at » = 0), and A,; are
aspherical coefficients that characterize the deviation from an
apex sphere in the vertical direction. For our example, the
resulting parameters have the following values: 2z, =
2.5590 mm, Ry=+22.5530mm, A;=-+1.8528-10" mm™,
Ag = +2.1047 108 mm™>, Ag = +4.0574-10"' mm~7,

and A}y = +1.3916- 1072 mm™. The corresponding mean
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Fig. 2. Deformed membrane approximated by power series: (a) de-
flections w/(r), (b) radial displacements #(r), (c) membrane shape g(7).
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quadratic approximation error is RMS = 3.7-107° mm.
These results clearly show that the deformed shape indeed de-
viates from a sphere.

In a foregoing paper [38] the authors studied in detail the
difference between the solutions of the general equations of
Eq. (21) and their simplified form in Eq. (23). For the specific
example considered here, a similar difference would arise. As
clearly seen in Fig. 2(b), the radial displacement u(r) is defi-
nitely not negligible while the simplified equations in
Eq. (23) were derived using the assumptions that u(r) < r
and #'(r) < 1 for all » € [0, 4].

Similar results were obtained in Ref. [38] for a membrane
with no prestress. In that work, the authors studied the influ-
ence of membrane thickness on the deformed shape. The effect
was found to be strong, and thus the imaging properties can be
determined in a reliable way only if the thickness is known with
high accuracy.

For comparison, the deformed shape of the membrane was
also computed using the finite element method. Axisymmetric
membrane elements with linear interpolation of both displace-
ment components were implemented by the authors into the
open-source simulation platform OOFEM [45]. The geomet-
rical and material properties were the same as in the polynomial
series approximation. Figure 3(a) shows the difference between
the values of function g(7) obtained using the approximation
by polynomial series with M = N =4 and by the finite
element method (FEM) using a mesh consisting of 3200 linear
finite elements. The root mean square of the difference,
RMS = 3.5 nm, confirms that the results are comparable
and both methods can be used. Approximation by polynomial
series provides a good accuracy even with a relatively low num-
ber of polynomial terms, but the solution obtained by FEM
converges in a more regular manner as the mesh is refined.

The diagrams in Fig. 3(b) indicate that FEM leads to a quad-
ratic rate of convergence in terms of the maximum deflection
(blue crosses) as well as the volume under the deformed mem-
brane (orange crosses). The error was evaluated by comparing
the results obtained with various meshes to those obtained
with an extremely fine mesh consisting of 50,000 elements
(W = 2.5992560 mm, V = 431.5885857 mm?). For 100
elements, the maximum deflection is determined with an error
of about 270 nm, and then the error decreases 4 times whenever
the number of elements is doubled. On the other hand, approxi-
mation by polynomials gives the maximum deflection with an
error of about 13 nm already for N = M = 3, but as the order
of the approximating polynomial increases, the error is not re-
duced in a regular manner and for higher orders it can even grow.

Let us now study the influence of the prestress on imaging
properties of a plano-convex liquid membrane lens, in which
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RMS = 3.5 nm
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108 . . ‘
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Number of elements
Fig. 3. (a) Difference between the deformed membrane shapes ob-
tained by a power series approximation (g,,;,,) and by finite elements
(gpem)> and (b) dependence of the relative error on the number of
finite elements.

one side of the lens chamber is formed by a plane-parallel plate
and the other by a membrane. The membrane is supposed
to have the same properties as in the previous example.
The objective is to achieve an apex radius of curvature
Ry = 422 mm. Table 1 shows how the pressure p needed
to deform the membrane to this desired shape depends on
the prestress 6. For different values of the initial prestress,
the pressure can be adjusted such that the paraxial imaging
properties remain the same, but the general imaging properties
will be different; this is documented by the variation of

Table 1. Dependence of Pressure and Membrane Shape on Initial Prestress, Provided that the Same Apex Radius

Ry = +22 mm is Maintained

oy [kPa] p [kPa] Zmax [Mm] Ay [107° mm3] Ag [108 mm] Ag [1071° mm™] Ao [1072 mm™]
0 1.611 2.7600 +2.0279 +0.1181 -3.8856 +7.3839
30 1.851 2.7117 +1.8545 +8.8108 -1.2752 +4.6678
60 2.106 2.6745 +1.6965 +7.0029 -0.0666 +3.1490
90 2.372 2.6460 +1.5587 +5.8806 +0.4570 +2.2675
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(a) DY 1 0.2 DX 0.2

Fig. 4. Ray aberrations for (a) a spherical membrane of radius
Ry = 22 mm, (b) an aspherical membrane obtained when no initial
prestress is applied, (c) an aspherical membrane obtained when the
initial prestress is set to 6, = 60 kPa; DX a DY denote transversal
ray aberrations, and FX a FY denote the height of an incident ray
in the interval between =5 mm and 5 mm. Individual curves corre-
spond to values obtained for wavelengths 486 nm (red), 587 nm
(green), and 656 nm (blue).

aspherical coefficients. Figure 4 shows the ray aberrations
and Fig. 5 shows the polychromatic modulation transfer
function (MTF) for (a) a spherical membrane of radius
Ry =22 mm, (b) an aspherical membrane shape obtained if
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Fig. 5. Polychromatic MTF for (a) a spherical membrane of radius
Ry = 22 mm, (b) an aspherical membrane obtained when no initial
prestress is applied, (c) an aspherical membrane obtained when the
initial prestress is set to 6y = 60 kPa.

no prestress is applied, and (c) spherical membrane shape
obtained if the prestress is set to 67 = 60 kPa. In Fig. 4,
DX a DY denote transversal ray aberrations, and FX a FY
denote the height of an incident ray in the interval between
-5 mm and 5 mm.

The results indicate that the imaging properties of aspherical
shapes obtained with different prestress values are almost the
same; in other words, the prestress has a negligible influence
on the imaging properties provided that the applied pressure
is properly adjusted. On the other hand, deviations from the
imaging properties of a spherical lens are non-negligible.
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B. Dependence of Maximum Membrane Deflection
on Material Parameters and Initial Prestress

In experiments, a unique evaluation of membrane material
properties and of the initial prestress is often difficult.
Therefore, it is useful to exploit the measured deflection for
parameter identification.

Figure 6 shows the dependence of the maximum deflection
Wnax ON pressure p for a fixed prestress value o and for selected
values of Young’s modulus £ for a membrane with other
parameters taken by the same values as in the previous exam-
ples. Also shown is the dependence of the maximum deflection
Wpna ON pressure p for a fixed value of Young’s modulus £ and
selected values of prestress 6. By measuring the actual depend-
ence of the maximum deflection on applied pressure and
comparing it to the plotted curves, membrane parameters £
and o\ can be determined. This approach was exploited for
parameter identification, as will be described in the following
section.

v =0.4000, o = 0.0600 MPa

1 2 3 4 5 6 7 8 9 10
p [kPa]
(b) 55 v=0.4, E=1.97 MPa

7, =0.0000
7, =0.0300
7, = 0.0600
—— 0, =0.0900

15 . I I . . . I . )
1 2 3 4 5 6 7 8 9 10

p [kPa]

Fig. 6. (a) Dependence of the maximum deflection w,,,, on pres-
sure p for a fixed value of prestress 6, = 60 kPa and selected values of
Young’s modulus £, (b) dependence of the maximum deflection w,,,,
on pressure p for a fixed value of Young’s modulus £ = 1.97 MPa and
selected values of prestress 0.
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4. EXPERIMENTAL CONFIRMATION
OF GOVERNING EQUATIONS

For validation of the theoretical results by real data, the de-
formed shape of a membrane of a liquid lens was measured
experimentally, using a coordinate scanning device with a chro-
matic confocal sensor [46]. Figure 7 depicts the experimental
setup for topography measurements of optical surfaces and the
sample of a liquid lens. The liquid lens is formed by a chamber
filled by an optical liquid (in our case distilled water), which is
covered by an elastic membrane. The membrane is fixed by
screws. By injecting (or removing) the liquid, the volume of
the chamber is changed and the membrane is deformed.
The membrane shape is then measured using the scanning de-
vice, which can determine the position of a measured point
with an error of 0.02 mm (combining the mechanical uncer-
tainty with the uncertainty induced by the sensor).

The membrane was made of Sylgard 184 [47]. The mea-
sured initial membrane thickness was # = 0.45 mm, and
the radius measured from the support in the prestressed state
was @ = 14.45 mm. The Poisson ratio was taken as v = 0.41,
and the Young modulus £ = 1.078 MPa and prestress 6y =
0.0583 MPa were determined using the identification pro-
cedure described in the previous section (by optimizing the
agreement between the measured and computed dependence
of maximum deflection on applied pressure). Owing to the
high slope of the membrane surface near the support and in
view of the limitations of the measurements by a chromatic
confocal sensor, permitting only small deviations of the mea-
sured direction from the normal to the deformed surface,
the measurements focused on the region near the apex.
Since the membrane remains axially symmetric, only the
meridian was measured.

Figure 8 compares the measured and simulated shapes for
pressures p = 1.00, 2.00, 3.00, and 4.00 kPa. The root mean
square of the difference between the experiments and numerical
simulations is not greater than 0.021 mm (as indicated in the
figure legend), which corresponds to the estimated uncertainty
of measurements, and thus the theoretical model can be con-
sidered as validated. Consequently, the results of simulations
can be used in the design of optical systems and analysis of their
imaging properties, e.g., of the spherical aberration, the point
spread function, and the modulation transfer function.

Fig. 7. Device for measurement of the shape of optical surfaces and
an experimental specimen of a membrane liquid lens.
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RMSp =1.00 kPa

RMsp =2.00 kPa

RMSp =3.00 kPa

RMSp =4.00 kPa

=0.010 mm
=0.021 mm
=0.011 mm
=0.021 mm

X [mm]

Fig. 8. Comparison of the experimentally measured and numeri-
cally simulated shapes of a membrane liquid lens for applied pressures

» = 1.00, 2.00, 3.00, and 4.00 kPa.

5. CONCLUSION

In this paper, we have presented the theoretical description and
numerical solution of an axisymmetric circular membrane of a
liquid lens with an initial prestress. The model is based on the
exact relation between displacements and the Green—Lagrange
strain, on the Saint Venant—Kirchhoff material law, and on the
principle of minimum potential energy. The corresponding
governing equations have been derived, and a numerical
method based on polynomial approximations of displacement
functions and minimization of potential energy has been devel-
oped. The solution using polynomial approximations has been
verified by comparing the results to those obtained by the finite
element method, and the model has been validated by compari-
son of simulations to experimental data. A simple parametric
study has shown how the maximum deflection depends on
the elastic modulus, initial prestress, and applied pressure.

The presented numerical results and experimental measure-
ments confirm that the selected model of a prestressed mem-
brane is suitable for an accurate description of deformed liquid
lens membranes up to the large-strain regime. Therefore, the
model can be used for further analyses and simulations of im-
aging properties of these optical elements. A method of param-
eter identification has been presented that can be useful for
characterization of mechanical properties of membrane samples
in practical applications. It has also been documented by an
example that the initial prestress has almost no influence on
the imaging properties of a plane-convex membrane lens.

Funding. Ceské Vysoké Ucen{ Technické v Praze (CVUT)
(SGS17/004/OHK1/1T/11).
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The paper presents a methodology of calculation of the inner structure of two- and three-component hybrid liquid-
membrane lenses with variable focal length that have corrected spherical aberration and coma. Specifically, the
formulas for calculation of initial-design inner parameters (radii of curvatures of individual surfaces, axial thick-
ness, and refractive indices of a material of the lens) of a thin-lens system are derived for a hybrid two-component
system (doublet) made by one glass and one liquid-membrane lens, and a hybrid three-component lens (triplet)
made by one glass lens and two liquid-membrane lenses, which both have variable focal length and corrected
spherical aberration and coma for an object at infinity. As optimization during the optical design process requires
the starting point be very close to the optimal solution, the presented approach can be successfully used for its

calculation, as it is based on fundamental proven formulas of optical aberrations.
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1. INTRODUCTION

Liquid-membrane lenses have found many practical applica-
tions in many fields of science and technology, due especially to
a possibility to change their imaging properties (focal length) in
a prescribed way with variation of the inner pressure p in liquid,
which is not possible with classic glass lenses [1-37]. The change
in inner pressure p can be easily realized with a variation of a
volume of the liquid in between membranes. These systems can
find applications in scanning devices, for example, where the
scanning unit is placed behind the active lens with variable focal
length, and one demands similar properties of the laser beam
spotamong whole field of view.

While designing optical systems composed of many members
having variable focal length, first, the outer parameters of the
system are calculated (i.e., focal lengths and axial distances in
between individual components). This topic is studied in detail
in previous authors’ works, e.g., [19-21]. The next step of the
design is to determine the inner structure (parameters) of indi-
vidual components in such a way that the optical system fulfills
conditions required on optical imaging quality. In a previous
paper [28], the authors present only the case for a specific lens
(plano-convex lens with variable focal length), from which
the optical system can be constructed, while the surfaces of
individual lenses can be both spherical or aspherical. Detailed
analysis and calculation of individual membrane deformation
was presented by the authors in [30-32].

1084-7529/21/010099-09 Journal © 2021 Optical Society of America

The goal of this paper is to derive formulas that can be used
for calculation of inner parameters (i.e., radii of curvatures
of individual surfaces, axial thickness, and refractive indices
of a material of the lens) of a hybrid two-component system
(doublet) made by one glass and one liquid-membrane lens
that has variable focal length and corrected spherical aberration
and coma [38,39] for an object at infinity. Further, the paper
presents formulas for a hybrid three-component lens (triplet)
made by one glass lens and two liquid-membrane lenses of
similar properties, i.e., with corrected spherical aberration and
coma.

While the liquid-membrane lenses are used for the men-
tioned hybrid systems, one should discuss the effect of gravity,
which can affect deformation of the membrane, and hence
the optical aberrations, especially if the lens is oriented verti-
cally. However, as one can conclude from earlier works [7,24],
this effect can be neglected for large applied pressures inside
the lenses. Therefore, the influence of gravity on the inner-
parameters design, which is presented in this paper, will not be
considered.

During the optical design process, an initial guess of the
optimization process has to be estimated or calculated as close as
possible to the optimal global solution to the problem. Results of
this paper, as they are based on analytic derivations coming from
fundamental formulas of optical aberrations, can be used as a
very strong tool for calculation of the starting point of further
optimization processes.
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2. LIQUID-MEMBRANE LENSES AND THEIR
PROPERTIES

A scheme of a simple liquid-membrane lens with both sur-
faces made by membranes is shown in Fig. 1. In between the
membranes, an optical liquid is filled. Many liquids can be
used for optical applications (see, e.g., [40,41]). Thicknesses
and shapes of surfaces of those membranes can in general be
different, or one can be replaced by a glass plane—parallel plate
(Fig. 2).

A two-component hybrid liquid-membrane lens (doublet)
can be made by one glass lens and one membrane, as shown in
Fig. 3. In the case of the hybrid doublet, the spherical aberra-
tion and coma can be corrected for a specific value of the focal
length, which is not possible in the cases shown in Figs. 1 and 2.
However, for a different value of the focal length, the correction
of the spherical aberration and coma will be affected, as one has
only one free parameter for the design—the radius of curvature
of the membrane.

To correct the spherical aberration, coma, and a longitudinal
chromatic aberration for a specific value of the focal length,
one can design a hybrid three-component lens with two mem-
branes (triplet), schematically shown in Fig. 4. For a different
value of the focal length of this lens, the correction of coma
and chromatic aberration will be affected; the lens has two free
parameters only—the radii of curvatures of the first and second
membranes.

membrane 2

e

membrane 1

N

liquid

Fig.1. Scheme of liquid-membrane lens with two membranes.

membrane
glass

plate

Fig.2. Scheme ofliquid-membrane lens with one membrane.
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glass membrane

Fig. 3.  Scheme of two-component hybrid liquid-membrane lens
(doublet) with one membrane.

membrane 1 — «~— membrane 2

Fig. 4. Scheme of three-component hybrid liquid-membrane lens
(triplet) with two membranes.

3. SEIDEL ABERRATION COEFFICIENTS

Assume a thin-lens optical system in air that consists of X lenses.
Seidel aberration coefficients (Seidel sums) [38,39] Si, Su, Sui
Siv,and Sy are then given by the following formulas:

K
i=1
Ko K
Su=Y_hlhiM;+Y " hiN, @)
i=1 i=1

SIH_Z/oZb2M —i—ZZh 5N +Z¢l, (3)

Siv = ﬁ (4)
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M; = 2 (A; X} + B X, Y + C;Y? + D)),
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In the aforementioned formulas, /#; denotes the incidence
height of a paraxial aperture ray (auxiliary aperture ray) at the
ith lens, 4; is the incidence height of a paraxial principal ray
(auxiliary principal ray) at the 7th lens, 7;, 7/ are the vertex radii
of curvatures of the 7th lens, s;, 5/ are, respectively, object and
image distances from the ith lens, 7; is the refractive index of the
ith lens, ¢; is the optical power of the ith lens, S is the Seidel
sum for spherical aberration, Sy is the Seidel sum for coma, Sy
is the Seidel sum for astigmatism, Sy is the Seidel sum for field
curvature (Petzval sum), and Sy is the Seidel sum for distortion.

One can calculate radii of curvatures of the 7th lens, in the case
when the lens power ¢, refractive index #;, and shape parame-
ters X; are known. Using Eq. (7), itholds:

,Z.ZM, rl{:M_ )]
pi(X;+1) i (X; —1)

Transverse ray aberrations 83" and 8x” in the image plane
of the optical system composed by X thin lenses in air can be
calculated from the formulas

o et xp) y1(3y% + x3)
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where xp, yp denote coordinates of the ray in the plane of
the entrance pupil of the optical system, y; is the distance of
the object point from the optical axis, 51 is the distance of the
object plane from the first surface of the optical system, 57 is
the entrance pupil distance from the first lens of the optical
system, #1 = b1 /sy is the angle of paraxial aperture ray in the
object space, #; = b1 /5 is the angle of principal ray in the
object space, uy = u1/m is the angle of paraxial aperture ray
in the image space, and 7 is the transverse magnification of
the optical system. Furthermore, / denotes the Lagrange—
Helmholtz invariant, which is defined for the optical system in
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air as follows:

- 1 1 -
[:/)1/)1 (——_—)Zull]l—ﬁllﬂl. (10)
S1.051
Without loss of generality, one can suppose unit Lagrange—
Helmholtz invariant, i.e., /=1, and one can set /; =1.
Afterwards, it follows that
$ 15_1

b= (11)

51—s1

The so-called Seidel difference formula (in the case of 7 = 1 and
b1 = 1) between / and / is then given with the formula

j
. . di_
hi=h; (}”J“Zb,-l/a,-)’ (12)

i=2

where d; denotes the axial distance between 7th and (7 + 1)th
lenses.

Inageneral case, one can express Seidel aberration coefficients
for the centered optical system of / spherical surfaces as follows

[38,39]:
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where #; and #; denote paraxial angles of the aperture and
chief rays incident at the 7th surface of the optical system, #; is
the index of refraction in front of the 7th surface, and 4; is the
incident height of the paraxial aperture ray at the ith surface.
Furthermore, it holds: i = b1 /5, =y0/(s1 —s1), where
yo is the object height. It is evident from the previous equa-
tions that one can use an arbitrary choice of input parameters
(b1, w1 = h1/s1, b1, i1 = b1 /51) for calculation of the third-
order aberration coefficients for a given object distance s; and a
position 51 of the entrance pupil.

4. TWO-COMPONENT HYBRID
LIQUID-MEMBRANE LENS

Consider now the hybrid liquid-membrane lens (doublet) com-
posed of two lenses of optical powers ¢; and ¢,, which are made
by materials (glasses or liquids) with refractive indices and Abbe
numbers 71, V1, 73, and v,. With an appropriate choice of mate-
rials, this doublet can have the Seidel coefficient S of spherical
aberration, Seidel coefficient Sy; of coma, and coefficient C} of
longitudinal chromatic aberration of required values for one
specific focal length. However, the chromatic aberration cannot
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be corrected in every case, as there is only a limited amount of
types of optical liquid appropriate for those lenses.

One can see in Fig. 3 that a change in focal length can be
realized by modifying the vertex radius of curvature of the mem-
brane. If the doublet has corrected spherical aberration and
coma for one specific focal length (one can choose this value),
the aberrations will be affected for its different value.

Suppose now the first approximation of the design, i.e., the
doublet is composed of two thin lenses and has optical power
@ = 1. Further, let the doublet image an object at infinity
(s1 = 00) and the entrance pupil be at vertex of the first surface
(51 =0). With Egs. (1) and (2) for K = 2, one can, after modifi-
cation, derive the following polynomial of the fifth order for the
optical power ¢; of the firstlens, and it holds:

4507 + a4t + 300 + 420> + arp1 +a0=0,  (15)
where
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dnyny(ny — 1)3
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ny —ny
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+ (480" = 38n + 285 + Dny®
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The optical power @, of the second lens then can be calculated
with the formula

ay=

p=1-¢. (16)
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Shape parameters X; and X, of the lens can be calculated
from the following formulas:

A X —1 —1
x =2 X2=<P1( 1 =D =1)

1, 17
B @2(ny — 1) (7

where
A= (Es+ G, — Gy — ExH)p1* + (E2H — 2E) ¢
+ E; 4+ Gy + S,

B=(E; — ExH)p\* + (E2 H) g1,

Hzi’lz—l

ﬂl—l‘

Afterwards, the radii of curvatures can be calculated with
Eq. (8). Those values then can be used as a starting point (with
corresponding axial thicknesses of individual lenses) for further
doublet optimization with, for example, optical design software

Zemax [42] or OSLO [43].

5. THREE-COMPONENT HYBRID
LIQUID-MEMBRANE LENS

Consider now the situation of a three-component hybrid liquid
membrane as in Fig. 4. The inner parameters of individual
components of this hybrid triplet can be calculated following
three steps.

1. The optical power ¢; of the first lens of the membrane
component is set, and the overall optical power of the
membrane component is set ¢ = 1. Further, materials of
individual lenses of the membrane component are selected,
i.e., refractive indices and Abbe numbers. The optical
power ¢ of the second lens and ¢35 of the third lens then can
be calculated as follows:

Ci=@1/v2+ @2/v3 + 3/ v4.

(18)
Further, one gets the following formulas for optical powers
@2 and g3:

=91+ ¢+ @3,

_ v3(12¢ — V21 + 491 — Crvavy)
v2(v3 — vg)

@2

’

_ 4(10¢ — 91 + v3¢01 — Civavs)
V2 (V3 — vg)

@3 =

. (19)

where v,, v3, and v4 are Abbe numbers of the lenses, and
( is the coefficient of longitudinal chromatic aberrations
of the membrane component [38,39]. With the use of the
paraxial imaging equation [38,39]

Mig1tiy1 — Miptip) = hi(nigy —n)[ri, i=1,2,3,4,

(20)
one gets for paraxial aperture angles #; the following
formulas:
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2141 1
wm=pr—u+—-—-0Q(——-1],
ny

ny
2141 1
us=gr -+ - Q——1),
n3 n3
2u1 + ¢ 1 p2(ng—1)
o B (1) D)
n4 4 ng(nz — 1)
us=u; + 1,

(1)

where #; is the paraxial aperture angle in the object space
of the optical system, 7;, 73, and 74 are the indices of
refraction of components’ (lenses’) materials, 7; is the
radius of curvature of the 7th optical surface, Q is Abbe
invariant [38,39] on the second surface of the system, and
h; is the paraxial impinging height. In the presented case
of the optical system of thin lenses, one can choose /; =1
(1=1,2,3,4). In Eq. (21), the air is supposed to be the
object and image space of the optical system (7; = ns = 1).
For the object at infinity, it holds: #; = 0. Substituting
Eq. (21) into Eq. (13), one gets the following formula for
the Seidel coefficient of spherical aberration §j of the thin
hybrid lens:

SI=ﬂ2Q2+ﬂ1Q+ﬂo, (22)

where

%_2%4-902—1_’_7’12-{-2%’

n3 n4 ny

a) =

ay = A+ Anu,

+¢,—1 31, + 4
AH:S('OI ¥2 _2( n %)_8@’
n4 ny ns3
3,2 ay? 2n ngy— 1
Ay = pi° ot 2nagy ﬂ-l-&z 1_(4 )
ny—1 ng—1 n3—1|ng n4

9022 2 2
—m[w (n3 — 1) — n3"(ng — 1],
_ a(ng—1)

o) = ’
27 nsnz — 1)

ag = Ay + Aorur + Aoos

061=§01+ﬁ—012—17
14

+ +o,—1
A02=8n2 $1 _8901 $2 +8ﬂ,
ny 74 ns3

_ 513+ 61 + 692 — 6n3¢1 — 6p192 +¢2° =5 (g1 +¢2—1)
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In the case of coma, one gets for the Seidel coefficient Syj of coma
for the thin three-component lens, after substitution of Eq. (21)
into Eq. (13), as follows (51 = 0),

SII = b() + les (23)

where

b it —1 mter @
1= - - —,

n4 %) ns3

bo = Boo + Boiu1,

)

+or—1
301=3+2(ﬂ—i—ﬁ>—2—§01 L&

7y n3 n4

74 [g 2 eang—1) 1}

s—11ns  ni? nlns—1)
—1 2

y ¢1+@_¢z(n4 U
ng  n4(nz —1) ny—1

©2(n3 — ng)

———————|n3¢2 + n4@1(n3 — 1)|.
n4*(n3 — 1)2[ ]

2. Setting the Seidel coefficient of spherical aberration &

equal to a desired value, one can calculate the parameter
Q with Eq. (22). Afterwards, the radii of curvatures of
individual surfaces of a thin three-component lens can be
enumerated from the formulas

2
I 2 L A
73 ng—1 \nyg 7142

(7n4 (n5 — 1+ @1 + @2 — n301)

AOI
n3—1 ng(nz — 1) (ng— 1)
7012
+ @an3(ng — 8)] — ——,
ny — 1
n@1° ng? o1 ¢ @ang—1)
(ny—1) (ng—1)" Lng  ngs  ng*(n3—1)

n392%(n3 — ns)

(13902 + ns@1(n5 — D]
ng(n3 —1)°

2
1} |:(p1+ﬂ_ @2(ns — 1) _1]

ng  ng(nz —1)
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1 n 1
—=Q—u1+2—¢1, —=Q—u +¢i,

71 712—1 7

1 02+ (uy — 1) (n3 — 1)

—=Q- ,

73 713—1

1 3 02+ (w1 — 1) (n3 — 1)
—=Q- — . (24)
4 ng—1 n3y — 1

3. For completing the calculation, one should multiply the
values calculated from Eq. (24) by the desired value of the
focal length of the appropriate component.

If one requires a specific value of the Seidel coefficient of coma
Si1, then an appropriate value of the optical power ¢; has to be
chosen to obtain the coefficient Sy in Eq. (23).

With a variation of the focal length /" =1/¢ of the hybrid
triplet, the second glass lens remains unchanged, but the
first and second membranes change their radii of curvatures.
Therefore, one knows the optical power ¢, and the shape factor
X, of the glass lens. Suppose next that the object is at infinity.
Further, one can derive the following formula for the Seidel
coefficient of spherical aberration S from Egs. (1)—(6), and it
holds:

Si=e301° + e201” + €191 + eo, (25)

where

¢3=A, — As — By + B; + C, — C; + D, — Ds,
er=—0,(343 —3B; — 4C, +3C; + 3D5)
+ (345 — B; — G +3D3)¢
+ AQ2A, — AB)) + B(B; — 24;),
e1=—0:"[3(A3 — B3+ Cs + D;) — 4C, + 2B, X,]
+¢2[2(3A45 — Bs — C5+ 3D5)¢ + 2B(B; — 245)]
+(Cs — Bs — 343 — 3D3)¢”> + (443 B)p + A* A, — A3 B?,
eo=—0(—A, X,> + By Xo + A3 — By — C, + C3 — D, + D3)
+ ¢,°[(3A5 — B — C5 4+ 3Ds)¢ + (B; — 245) B]
—[(34; + By — Cs + 3D3)¢” + (B — 49) A3 B]
+ (As+ B3+ Cs + D3)¢” — (245 + Bs) B” + (A3 BY) g,

_ O (Xo+ 1D — 1) _ ©2( X3 — 1)(n3 — 1)

ﬂz—l 712—1

A

, B

Similarly, one gets for the Seidel coefficient of coma Sy
Si=g201" + g101 + £o. (26)
where
2=E—E;—F + F,
g1 =2E30 —y(QE3s +2F, —2F;) + AE, — BE3,
g0=—0(E3+ F,— Fs — E,X))

+ 92(2E3¢ — BE3) — (E3 + F3)¢” + BE3p.
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One can calculate the optical power ¢; of the first lens from
Eq. (25) for the Seidel coefficient of spherical aberration S.
Afterwards, the optical power @3 of the third lens and shape
parameters X; and X3 of the first and the third lenses can be
calculated from the formulas

B
X;=——1. (27)

A
V3= — @1 — @2, Xi=—+1,
@1 (%}

The radii of curvatures then can be calculated with Eq. (8).

6. EXAMPLES
A. Example 1

Consider now a situation of a laser scanner (monochromatic
light) that has a hybrid liquid-membrane lens with variable
focal length (doublet in Fig. 3) as an objective. Let the objective
be in front of the scanning unit (e.g., rotating mirror), which
steers the beam in a field of angles w = £ wy,x. To get the beam
spot aligned in a line in the image plane behind the scanner, the
focal length of the objective has to vary according the formula
fi,=a+ (f§ —a)/ cosw, where 2 denotes the distance of
an axis of rotation of the mirror from an image principal plane
of the objective, f{ is the nominal focal length for w = 0 deg,
and f is the focal length of the objective for the angle w. One
can see that the objective has to be corrected from spherical
aberration only for this specific case.

The aforementioned case is the hybrid liquid-membrane
lens (doublet) with a variable focal lens made by three spherical
surfaces. The axial thickness &; of the first glass lens, with radii
of curvatures 7; and r, is constant, while the axial thickness &,
of the liquid-membrane lens, with radii of curvatures 7, and 3,
is changing according to the variation of the focal length of the
objective, and the edge thickness of the doublet has to be con-
stant (the construction demand). The glass lens is made from
Schott N-BK7, and both the membrane and liquid are from
Sylgard 184 [40]. The index of refraction 7z of Sylgard 184 for
the wavelength A can be calculated from the following formula:

2
. 1.00931 ’ 28)
A2 —0.013185
where the wavelength X is in micrometers.

Let one study the influence of the change in focal length of
the used hybrid liquid-membrane lens on its imaging qual-
ity. With Egs. (15)—(17), one gets the following values of the
radii of curvatures of the thin aplanatic doublet (/' =1 mm):
@1 =—1.148mm™!, 7 =0.3931 mm, 7, =0.2094 mm,
r3 = —4.3843 mm. After the thickness consideration and opti-
mization in software OSLO [43], the parameters of the designed
hybrid liquid-membrane lens for focal length /=100 mmand
its transverse diameter D = 20 mm are shown in Table 1, where
the Strehl ratio (S.R.) [38,39] for the wavelength A = 635 nm
and imaging of the axial point is presented as well. The edge
thickness was chosen as 3 mm, 2 = 15 mm, and maximal view
angle W, = 51 deg. Figure 5 shows the plot of aberrations
for the object at infinity for /' =100 mm, and Fig. 6 shows
aberrations for " =150 mm.

With the change in pressure in the back liquid-membrane
lens, the focal length of the doublet can be variable. Table 2
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Table 1. Parameters of Two-Component Hybrid
Liquid-Membrane Lens (Doublet) with f =100 mm,
D =20 mm, and S.R.=0.924

7 [mm] d [mm] Material
40.611 2.000 N-BK7
21.694 5.587 Sylgard 184
—345.076
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Fig. 5. Aberrations of two-component hybrid liquid-membrane

lens (doublet) for /" =100 mm.
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Fig. 6. Aberrations of two-component hybrid liquid-membrane

lens (doublet) for /" =150 mm.

presents values of the third radius of curvature 3 of the mem-
brane of the doublet, axial thickness & of the lens, and S.R.
for the wavelength 635 nm and imaging of the axial point, as a
dependent variables on the focal length f” of the doublet.

One can see from the results in Table 2 that the imaging
quality is very good for both focal distances. Further, one can
deduct from the aforementioned situation that the #-number
of the system F = f”/ D will vary according to the change in
focal length, and, therefore, the spot size of the beam as well.
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Table 2. Third Radius of Curvature r;, Radial
Thickness d, and Strehl Ratio of Two-Component
Hybrid Liquid-Membrane Lens (Doublet) for A =635 nm
for Imaging of Axial Point for Different Values of Focal
Length

Jf' [mm] 73 [mm] d [mm] S.R.
100 -345.076 5.587 0.924
150 191.000 5.180 0.520

Moreover, the circular shape of the spot for the angle w = 0 deg
becomes elliptical for different values of w [38,39].

B. Example 2

Consider now the situation of a thin three-component hybrid
liquid-membrane lens (Fig. 4). The liquid in the first and
third lenses is water, and the second lens is made by Schott SF6
glass. The focal length of this system is f" =1 mm. Further,
suppose Seidel coefficients of spherical aberration S; =0 and
coma Sj; =0, and coefficient of longitudinal chromatic aber-
ration C; =0 as well for this focal length. After the solution
to Egs. (22)-(24), one gets (for an object at infinity) X; =
—1.6473e — 01, X, =5.0623e+ 00, X3 =—1.9377¢+ 01,
r1 =4.6090e — 01 mm, 7, =—3.3052e — 0l mm, r3=
—4.9325¢ — 01 mm, 74 = —4.4483e — 01 mm.

For different values of the focal length of the hybrid triplet,
the optical power ¢, and the shape coefficient X remain con-
stant. Optical powers and shape parameters of the first and
second membrane lenses change, i.e., the radii of curvatures
of the first and second membranes vary as well. Further, the
recalculation can be processed with Egs. (25)—(27).

Table 3 presents parameters of hybrid triplets for focal lengths
f =100 mm, ' =150 mm, and /" =200 mm, for diameter
of thebeam D = 20 mm. Axial thicknesses of liquid-membrane
lenses are calculated to get the edge thickness of the 3 mm lens
for transverse diameter of the 22 mm lens. The S. R. in the tables

Table 3. Parameters of Three-Component Hybrid
Liquid-Membrane Lens (Triplet)
7 [mm] d [mm)] Material
f =100 mm, D =20 mm, S.R.=0.990, A = 635 nm
46.090 6.202 Water
-33.052 2.000 SF6
—49.325 3.139 Water
—44.483
f =150 mm, D =20 mm, S.R. = 0.996, A = 635 nm
114.070 5.416 Water
-33.052 2.000 SF6
—49.325 3.280 Water
—40.500
f" =200 mm, D=20mm, S.R.=0.998, A = 635 nm
327.190 5.069 Water
-33.052 2.000 SF6
—49.325 3.308 Water
-39.800
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is calculated for the wavelength A =635 nm and of imaging
of the axial point. Figures 7-9 show aberrations of the hybrid
triplet calculated in the software OSLO [43].

It is obvious from the aforementioned analysis that in the
presented case of the hybrid liquid-membrane triplet (for the
wavelength 635 nm and imaging of the axial point), one can
obtain excellent imaging quality for a wide spectrum of focal
length variation.

7. CONCLUSION

The paper presented formulas for calculation of parameters of
hybrid doublets and triplets with variable focal length, which
have the desired values of the Seidel coefficient S of spherical
aberration, Seidel coefficient Sj; of coma, and coefficient Cj of
longitudinal chromatic aberration for one specific focal length.
The procedure of calculation was demonstrated on examples of
the doublet and triplet. In the case of a hybrid triplet, one can
obtain excellent imaging quality for a wide spectrum of focal
length variation and imaging of the axial point. The calculated
values of radii of curvatures with formulas derived in the paper
can be used as a very good starting point for further optimization
and designing processes of the optical system in optical design
software.
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1. INTRODUCTION

Refractive tunable-focus lenses with variable optical parameters
were developed in recent years [1-6]. Such components offer
a possibility to design novel optical devices with no analogy in
classical systems, as they can change their focal length within a
certain range. With the use of several tunable-focus lenses, the
optical systems with variable optical parameters (e.g., the focal
length or magnification) can be built, while the mutual positions
of the inner components of the system remain without change.
Optical systems with variable optical parameters (zoom
lenses) [7-29] have a wide application area in various parts of
practice, for example, in microscopy or photography. Those sys-
tems have to fulfill a fundamental requirements of unchanging
position of the image plane with respect to some fixed point dur-
ing the change of the focal length or magnification of the zoom
lens and small residual aberrations [30-36]. In contemporary
zoom lenses, the change in the focal length and a fixed position
of the image plane are achieved by the appropriate axial shift of
individual elements of the zoom lens. However, the positions of
pupils of the system have to be changed during zooming, too.
In the paper [10], the authors present in detail the calculation
of paraxial optical parameters in classical zoom lens systems
that have fixed positions of two pairs of planes (two-conjugate
zoom systems). Nevertheless, several different approaches were
developed for controlling the focal length of lenses.
Tunable-focus lenses use multiple construction princi-
ples for changing their parameters, e.g., the principle of
voltage-controlled liquid crystals as active optical elements,
the controlled injection of fluid into chambers with deformable
membranes, thermo-optical or electro-active polymers, and
electro-wetting. A possibility to tune lens parameters provides
another degree of freedom in the optical design process. It results
in enormous advantage of the proposed solution of a zoom

1559-128X/20/3410838-08 Journal © 2020 Optical Society of America

system using tunable-focus lenses, as the individual components
can vary their parameters, and they can change the imaging
properties of the system without moving their mutual position.
Mechanical design of those zoom devices can be much simpler as
well. Compared to the classical solutions presented in [22-29],
the active focus-variable lenses provide new possibilities and
many advantages.

The goal of this paper is to develop a methodology for
zoom-system design, which are composed of thin optical com-
ponents (e.g., membrane lenses) with a variable focal length.
The proposed procedure allows us to design not only the outer
parameters of the system (focal lengths and separation of lenses),
but the inner structure of individual components of the system
can be calculated as well (radii of curvature, thicknesses, and
refractive indices)—i.e., the starting values of the mentioned
parameters can be calculated and used for the next optimization.

2. ABERRATIONS OF THE OPTICAL SYSTEM

A. Seidel Aberration Coefficients of the Optical
System

Aberrations are essential factors that affect the image quality
of optical systems. For the purpose of the paper, consider a
rotationally symmetric system of refractive lenses (see Fig. 1)
consisting of K spherical surfaces [30-36]. In the case that
one knows the radii of curvature of individual lenses, their
thicknesses, indices of refraction, and axial distances between
individual lenses, aberration coefficients of the third order
(Seidel aberration coefficients) can be calculated.

Aberration coefficients of the third order (Seidel coefficients)
can be expressed for the centered optical system of spherical sur-
facesas [30,31]
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where 0; and 6; are the paraxial angles of the aperture and chief
rays incident at the 7th surface of the optical system, 7; is the
index of refraction in front of the 7th surface, and 4; is the inci-
dent height of paraxial aperture ray at 7th surface. Furthermore,
it holds (see Fig. 1) that 61 = /;1/5_1 = y0/(51 — 51), where y
is the object height. Individual aberration coefficients of the
third order have the following meaning: S is the coefficient of
spherical aberration, Sy is the coefficient of coma, Sy is the
coefficient of astigmatism, Syy is the Petzval coefficient, and Sy
is the coefficient of distortion. It is evident from previous equa-
tions that one can use an arbitrary choice of input parameters
(b1, 01 =h1/s1, b1, 01 =h1/51) for the calculation of the
third-order aberration coefficients for a given object distance s;
and a position §7 of the entrance pupil.

B. Seidel Aberration Coefficients for Thin Lenses

Assume a thin lens optical system in air that consists of X lenses.
Seidel aberration coefficients [30-36] (Seidel sums) S, Si1, S,
Siv,and Sy are given by the following formulas [21]:

K
i=1
K _ K
Su=Y hhiM;+)_ hIN, )
i=1 i=1
object entrance exit image

pupil . v pupil

Sy s

Fig. 1. General rotationally symmetric optical system composed of
K spherical surfaces.
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where [21,35]

M; = g} (M; + 2N;Y; +1.06Y7) , ©)
N =2 (N; + 1317, (10)
M= fPM; — 2 f*N;Y; + 1.56Y7, (11)
= f2N; — 1.31,. (12)

The aforementioned formulas give sufficiently accurate results
for all practical cases. The parameters M and N describe
the spherical aberration and the coma for a system of sev-
eral thin lenses in contact (cemented doublet, triplet, etc.)
having unit focal length and unit magnification [35], and
M; = M(p; =1, m; =—1), N: = Nig; =1, m; =—1).
Parameter Y; in Egs. (9)—(12) has the following form:

_sl’-—l-:i_m,-—i-l_ ) 2 _ 2
_s;—xi_mi—l_ 5 slo:”
hipi
Vi =—2 (1, —1)—1. (13)
hiv19iv1

In previous equations, s; and s} denote the object and image dis-
tances from the 7th lens. Without loss of generality, one can put
the Lagrange—Helmholtz invariant H = o1hy —61h1 =1, and
b1 = 1. Afterwards, itholds that by = 5151 /(51 — s1).

If one substitutes Egs. (9) and (10) into Egs. (4)—(8), then it
holds for Seidel aberration coefficients for zoom lenses [21] that

Z ﬂ(pr +2Zh]41gafYﬂN +1 OGZbﬂ(p, i
i=1

i=1

Suj = Z b0} M; + Z W02 Qhihp Y+ DN,

Z jl(pl (106/]],/;

Y+ 1.31),

K
S = Z /vﬁ@f,w?/% +2 Z bbb Yy + 1) N;
/ i=1

K

Z o} Vi(1.06hihip; Y +2.62) + > g,
i=1
S\/]=Z/J l(le—l-Z/Jl(p,
Z 07 Vi(1.06h;h

jz(pi in + S)N

pipi ﬂ+393)+3622 w,,
i=1
(14)
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where; =1, 2, ..., K, K is the number of zoom lens members,
j=1,2,..., L, and L is the number of configurations of the
zoom lens system (e.g., values of focal lengths or magnifications,
which are considered for correction of the optical system; note
that for classic optical systems the condition L > K should
be fulfilled). By solving the system of Eq. (14) (least-squares
method) one obtains the values of variables #/ and N for indi-
vidual members of the optical system. In the case that individual
components of the zoom system are composed of lenses with
variable focal length, one substitutes in Eq. (14) as follows:
®; — @ji» where j; is the optical power of the /th component in
the jth configuration (state) of the zoom system.

3. DESIGN OF ZOOM SYSTEMS WITH
COMPONENTS WITH VARIABLE FOCAL LENGTH

A. Zoom Systems with Variable Focal Length

In the case of classic zoom systems, individual components of
the optical system move along the optical axis while changing
the system’s focal length or magnification, and the inner struc-
tures of individual parts (radii of curvature, vertex distances,
and refractive indices) remain unchanged. The fundamental
difference of those zoom systems having variable focal length
is that the components remain in the same positions and the
inner structure (parameters) is modified. In classic optical sys-
tems, the aberrations cannot be zero in the whole range of focal
distances; they can be only minimized. However, in the case of
zoom systems with components with variable focal length, one
can obtain a situation in which Seidel coefficients of the zoom
system (the aberrations) will fulfill one of the following:

* The system will have desired values of aberrations in the
whole range of focal distances of the zoom system.

* The aberrations will change minimally in the whole range
of focal distances of the zoom system.

During designing the zoom system with components of
variable focal length, one follows the scheme that, first, the outer
parameters of the system are given, i.e., focal lengths and mutual
distances of individual components of the zoom system. In the
previous papers of the authors [7-13], the mentioned problem
is studied in detail, and one can use the presented methods
published in this works. The second step of the design is to cal-
culate so-called inner parameters (inner structure) of individual
components of the zoom system.

Suppose now that the inner parameters of individual compo-
nents of the zoom system are designed, while the components
have variable focal length, and they are made by thin membrane
lenses. Let Sy, Si1, and C denote the desired values of the Seidel
coefficients of the spherical aberration, coma, and coefficient
of longitudinal chromatic aberration of one of the components
of the zoom system. Further, let the individual membrane
components be made by three (or more) membrane lenses or
a combination of membrane and classic glass lenses (hybrid
components). Systems of three or more components are chosen,
as only a limited number of optical liquids is available for mem-
brane lenses, and three-component systems offer a possibility to
reach the desired values of Seidel coefficients S, Sy, and Cj. For
construction simplicity, the hybrid components made by one
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membrane 1 — «— membrane 2

Fig. 2.

Scheme of three-component hybrid lens.
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Fig. 3.

Scheme of general three-component hybrid lens.

(middle) glass lens and two membranes in front of and behind
the glass lens are advantageous (see Fig. 2).

Suppose now the situation shown in Fig. 3. Individual com-
ponents of the zoom system are made by three membrane lenses.
The first and the third lenses (presented with blue and green
color in Fig. 3) are both made by two plano-convex lenses sep-
arated by a thin plate of a transparent material (glass, Sylgard,
etc.). The second lens is made by membrane 2 and membrane
3, and it is used as a compensating reservoir. The radii of the
curvatures of membranes 1, 2, 3, and 4 can be in certain ranges
modified by applying pressures p1, p2, p4,and ps.

In a situation when zoom systems will be made by three-
component hybrid components with middle glass lens of fixed
dimensions (Fig. 2), the aberrations of the system cannot be
corrected for all states of the systems (focal lengths or magnifica-
tions). These systems have only two selected parameters: the first
and the last radius of curvature. Aberrations can be corrected
for several specific cases only. In other states, aberrations will
be changing, and one has to fulfill a fixed distance of the image
plane from the last component of the zoom system for all values
of the focal length (for an object at infinity) or transverse mag-
nification (for an object at finite distance). To compensate for
aberrations for more states of the zoom system, its individual
components have to be made by systems with more components
as shown, for example, in Fig. 3.

B. Calculation of Inner Parameters of Zoom Systems
with Components with Variable Focal Length

Suppose that number of components of the zoom system and
their outer parameters (focal lengths and axial distances between
individual components) are known. Further, let those compo-
nents be made by several thin lenses (e.g., triplets). Calculation
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of the inner parameters of individual thin components of the

zoom system can be realized as follows:

1. One chooses a number L of states (configurations),

e.g., number of focal lengths of the zoom system, for
which the system has corrected or minimized aberrations.

. The system of Eq. (14) for selected Seidel coefficients is
solved.

. By solving the system of equations Eq. (14), one obtains
the values of variables M; and N;, where i =1, 2, .., K,
(X is the number of zoom lens members) for an individual

member of the optical system.
4. Onesets St = M; and S;; = N..

Let the individual components of the zoom system be triplets.

Afterwards, one should calculate the inner parameters of the
individual component with the following three steps:

1. The optical power ¢; of the first lens of the membrane
component is set, and the overall optical power of the mem-
brane component is set to ¢ = 1. Further, the materials
of the individual lenses of the membrane component are
selected, i.e., refractive indices and Abbe numbers. The
optical power ¢, of the second lens and @3 of the third lens
can then be calculated as follows:

Ci=@1/va+ @2/v3 + @3/v4.
(15)

Q=@+ ¢+ s,

Further, one gets the following formulas for optical powers

@2 and g3:

030129 — V1 + 491 — Cva1y)
v (V3 — vg)

¥2

3

_ V4(129 — 1291 + v301 — Crigvs)
vy (V3 — vg)

. (16)

Y3 =

where v,, v3, and v4 are Abbe numbers of lenses, and C; is
the coefficient of longitudinal chromatic aberrations of the
membrane component [30,31]. With the use of the parax-
ial imaging equation [30,31]

i=1,2,34,
(17)

NipiUhip1 — N U4 = hi(”z‘+1 —ni)/ri,

one gets for the paraxial aperture angles #; the following
formulas:

2141 1
wm=p—u+—-—-0Q(——-1],

) 72
2%1 1
ns3 ns3

2 1 -1
u4=(p1—u1+—ul+(p2—Q<——l>——(p2(n4 )

n4 74 ng (n3 —1)

us=uwu; +1, (18)

where #; = 07 is the paraxial aperture angle in the object
space of the optical system; 7,, 73, and 74 are the indices
of refraction of the components’ (lenses’) materials; 7; is
the radius of curvature of the 7th optical surface; Q is Abbe

)
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invariant [30,31] on the second surface of the system; and
h; is the paraxial impinging height. In the presented case of
the optical system with thin lenses, one can choose /; =1
(=1, 2, 3, 4). Let the object and image space of the opti-
cal system be air (7; = ns = 1). For the object at infinity, it
holds that %1 = 0. Substituting Eq. (18) in Eq. (1), one gets
the following formula for the Seidel coefficient of spherical
aberration S; of the thin hybrid lens:

Si=aQ* + a1 Q + ap, (19)
where
2 —1 2
az:ﬂ_zﬁal"‘% +”2+ §01,
ns 4 %)
ay = Ay + Anu,
—1 3 4
Ay =g —2( ek g01)—8@,
74 7y n3
3 2 2
Ay = (2!
7y, — 1 ng— 1

_ 2n3¢n AN CS =Dy o
n3—1Lng  ng? (n3—1) n3
2n400

_g(ﬂ+&_az_l>
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—m[”éz (n3—1) —n3” (ns— 1],
4 (n3 —

¥2 @y (ng — 1)
=g+ ——a—1, a=—""-°:

74 ng (n3 — 1)
ag = Aoyur” + Aoiur + Ao,

+ o —1
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In the case of coma, one gets for the Seidel coefficient Sy of
coma for the thin three-component lens, after substitution
of Eq. (18) in Eq. (1), the following (s; = 0):

Su="bo+ Qby, (20)
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where
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2. Setting the Seidel coefficient of spherical aberration
equal to a desired value, then one can calculate the param-
eter Q with Eq. (19). Afterwards, the radii of curvature of
individual surfaces of thin three-component lens can be
enumerated from the following formulas:

1 n 1

—=Q—u + cadl , —=Q—u+¢,

71 712—1 7

1 @2+ (1 — 1) (n3 — 1)

—=Q- i

73 n3 — 1

1 ¥3 02+ (u1 — 1) (13 — 1)
—=Q- — . (21)
74 ng— 1 n3 — 1

3. To complete the calculation, one should multiply the values
calculated from Eq. (21) by the desired value of the focal
length of the appropriate component.

The process of the aforementioned steps is then repeated
for each member of the zoom system, i.e., fori =1, 2, ..., X,
where K denotes the number of zoom lens members for an
individual member of the optical system.

Suppose now the situation of the three-component hybrid
lens (Fig. 2), where X, denotes the shape parameter, and the
optical power @, is fixed while changing the focal length of the
lens; the variable parameters of the lens are the radii of curvature
of the first and the second membrane. Further, let the optical
power of the hybrid lens be ¢ = ¢; + ¢, + ¢3. Afterwards, one
can derive the following formula for the Seidel coefficient of
spherical aberration Sy with Eq. (1) for the object at infinity:

Si=e301° + 201 + €191 + eo, (22)

where
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Similarly, one gets for the Seidel coefficient of coma Sy the
following:

Si=g201" + 2191 + g0, (23)
where

2=E1—E;—F + F;,
gl = 2E3(p — (p2(2E3 + 2F2 — 2F3) + AE] — BE3,
g0=—0(E3s+ F, — F3— E,X))

+ ¢2(2E3p — BE3) — (E3 + F3) 9* + BE30,
where =1, 2, 3) [21,35],
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1 1 i+
P = i_l T B Xi= )
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where 7;, 7/, n;, and X; denote radii of curvature, refractive
indices of the materials (glass, liquid), and the shape parameters
ofith lens. Further, itholds thatr, = 7], 73 = 7}.

One can calculate the optical power ¢ of the first lens from
Eq. (22) for the Seidel coefficient of spherical aberration .
Afterwards, the optical power @3 of the third lens and shape
parameters X; and X3 of the first and the third lenses can be
calculated from the following formulas:

B
X;= 2 1. (25)

A
P3=¢0—@1— ¢, Xi=—+1,
@1 ¥3
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membrane 1 — «~— membrane 2

Fig.4. General membrane lens with plane-parallel plate.

Finally, one can calculate the radius of curvature of the ith
lens, in the case that the lens power ¢;, refractive index #;, and
the shape parameters X are known. It holds that

2(n; — 1) ;2= 1)
=, }’l, =
0:(X; +1) i (X; —1)
To recalculate Seidel coefficients Sy, Sy for adifferent position
of the object and the entrance pupil, and for a different value of

the focal length, one can use formulas presented, for example, in

papers [31,32,36].

(26)

i

C. Effect of Plane-parallel Plate on Imaging
Properties of Membrane Lens

Consider now the situation of a general membrane lens with
a plane-parallel plate placed between two plano-convex lenses
(see Fig. 4) and study the influence of the plate on the imaging
properties of the membrane lens used in the zoom system in
Fig. 3. For simplicity, consider the spherical aberration only.
For the Seidel coefficient S of spherical aberration of the
aforementioned membrane lens, one gets with Egs. (1) and (2)

dot (1 1 3
S = ®1 (___)+ ®1

n3 my?(ny — 1)°

(13— de1) (m3p1 — manser + mansps — dmagrps)®
2?3t (ny — 1)

X (713(/71 - 7’122”3901 + ﬂ22ﬂ3<ﬂ4 - dﬂ22<ﬂ1<ﬂ4) )
(27)

where
- ny — 1 ny — 1

Y1 = ) Y4 = —
71 74

(28)

are optical powers of the first and the second (last) surface of the
lens.
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For the Seidel coefficient of spherical aberration of a thin
membrane lens, one can write

2(p1° — 201904 + ¢4°)
ny — 1

Sro=(p1 — ¢4)° —

0P — 0 2017 (o1 — @4)
(ny — 1) 7 )

(29)

Further, the difference between the Seidel coefficient of the
spherical aberration of the thin membrane lens and the mem-
brane lens having the transparent plate of thickness 4 in between
the membranes then can be expressed with the following
formula:

(o1 — m22@1 + n2%0s) (91 — mag1 + m29s)?
n2?(ny — 1)°

4 d‘ﬂ14(n22 - ”32)

n22n33

AS =

_ (n3 —do1) (n3p1 — man3@r + nan3ps — dnrp194)
nytnzt(ny — 1)°

X (n3@1 — ma*n3@r + na’n3es — dny’r9s) . (30)

The Seidel coefficient of the spherical aberration of the plane-
parallel plate of thickness 4 made by material of the refractive
index 7, surrounded by a space with the refractive index 7, can
be calculated from the formula

dnou? (n2 - noz)

n3

: (31)

Sl,plan =

where #; is the aperture angle of the ray impinging on the plate.
As one can see from the aforementioned formula, if the mate-
rial of the plate has the refractive index 7, which is similar to
the refractive index 7 of the surrounding space, then one can
practically neglect the effect of the plane-parallel plate in the
membrane lens.

Table 1 presents the error of the Seidel coefficient §; of the
spherical aberration of the lens influenced by the plane-parallel
plate of thickness &, =1 mm (d; =d3 =0) made by glass
Schott BK7 (7 = 1.5168). The calculation is done for the object
at infinity. The liquid in between membranes and the plate is
water (7 = 1.333). S;; denotes the Seidel coefficient of coma for
the case in which the entrance pupil is at the vertex of the first
surface of the lens. The values of Sio and Sy ¢ present Seidel
coefhicients for the cases in which the plate has zero thickness, 71
and r; are the radii of curvature of the first and the last surface
of the lens (r, = 73 = 00), and f” is the focal length of the lens.

Table 1. Influence of a Plane-parallel Plate on Imaging with a Membrane Lens (Length Values in Millimeters)

St Su St,0 S0 7 74 d i Error [%]
1.8357e—04 —1.4925¢—03 1.8951e—04 —1.5252¢—03 20.00 —20.00 1.00 3.0027e¢+01 —3.2333e¢+ 00
2.3315e—05 —3.7720e—04 2.3689e—05 —3.8129¢e—04 40.000 —40.00 1.00 6.0053e + 01 —1.6019¢ + 00
6.9449e—06 —1.6825e—04 7.0189e—06 —1.6946e—04 60.000 —60.00 1.00 9.0080e + 01 —1.0647e+ 00
2.9377e—06 —9.4811e—05 2.9611e—06 —9.5322e—05 80.000 —80.00 1.00 1.2011e+02 —7.9727e—01
1.5065¢—06 —6.0744e—05 1.5161e—06 —6.1006e—05 100.00 —100.00 1.00 1.5013e + 02 —6.3723e—01
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Table 2. Outer Parameters of the Optical System (Length Values in Millimeters)
f A f f Sp 5;; by b, b; by by hs
55.0000 730.3056 —34.8367 36.5817  20.5631 —78.9646 4.9107 4.7762 8.0357 —0.9347  0.0000 1.1684
82.5000 75.4234 —26.7195 41.3782 27.2172 —63.1605 7.3661 5.4128 8.0357 —0.8248  0.0000 1.0310
110.0000 57.9037 —27.4887 52.3328 30.5531 —47.8663 9.8214 6.4291 8.0357 —0.6944  0.0000 0.8680
137.5000 53.7200 —31.8809 78.4208 31.8624 —36.6996 12.2768 7.7061 8.0357 —0.5793  0.0000 0.7241
165.0000 55.6694 —45.2755 242.4949  31.2141 —27.8736 14.7321 9.4394 8.0357 —0.4729  0.0000 0.5912
Length values are in millimeters in Table 1. One can see that the Table 3. Coefficients M, N, My, and N, of the Optical

effect of the plate is minimal, and one does not have to consider
its influence for the starting design of the optical system.

4. EXAMPLE

Suppose now the three-component zoom system with mem-
bers of variable focal length, which are made be three-lens
components (Fig. 3). Suppose next that the object is at infin-
ity (s; = —00). During the calculation, the first step is to set
o=1/f, d, dy, and 5}, where f7 is the focal length of the
optical system, 4; and 4, are axial distances between individ-
ual components of the system, and s/ is the image distance.
Further, let one demand the Petzval sum Sry &~ 0. Afterwards,
optical powers @1, @2, and @3 can be calculated from formulas
for the optical power ¢ of the optical system, for the position
of the image focal point s%, and for the Petzval coefficient
(Stv ~ @1 + @2 + @3 = 0), from which the following system of
equations can be derived, and one can easily calculate the desired
values:

d
(dr+dos'rg) o1 = =5 (VI = 1) =spp+ 1,

2
2y =—¥ -1,
@3 = —¢P1 — @2, (32)
where
4<P),3 8 2 (di+d)o—1,
S iy [P L R LA S
v (M Al ddw  F

With the aforementioned Eq. (32), one can simply recalculate
focallengths f], f3,and fj of the individual members of the sys-
tem for different values of the focal length /7, and to construct
zoom diagrams, for example.

Let the following values be selected as an example:
dy =20mm, dr=25mm, and s, =90 mm. Further, let
the aperture stop be in the position of the second member. With
Eq. (32) and paraxial imaging formulas, one can calculate the
parameters presented in Table 2, i.e., focal lengths £], f;, and
/3 of individual components; the impinging height 4 of the
aperture ray; and the impinging height b of the principal ray.
The value of s, is the position of the entrance pupil, and s/,
is the position of the exit pupil. Length units are millimeters
in Table 2. The focal length of the zoom system is selected in
the interval /7 € [55 — 165] mm, the f-number of the zoom
system is F#=75.6 for f' =55 mm, and the image height is
5 mm for all values of the focal length. Further, itholds [35] that

System for Different Boundary Values of the Interval for
the Focal Length f’

Member M N M, N,
f;xin = Ssmm’ fx:-nax = 165mm

1 4.5753 1.7281 2.1792 0.4181
6.4526 —0.6185 8.7496 —1.9285

3 1.5348 —0.9450 4.4848 —2.2550
" =82.5mm, f; =137.5mm

1 2.8988 1.2723 1.4141 —0.0377

2 1.7536 —0.2572 3.3280 —1.5672

3 1.2975 —0.7042 3.7659 —2.0142

Table 4. Starting Parameters of the Optical Zoom

System (Length Values in Millimeters)

n = 1-3330, n; = 1.8052, V) = 57-07, V= 25.43, n3 =mnp,

V3 ="

f =55 £ =85 f=1375 f =165
r/730.3056 r/74.4234 r/53.7200 r/55.6694 d

1 0.4181 0.4510 0.4510 0.4181

2 —0.4188 —0.3612 —0.3612 —0.4188

3 —0.7195 —0.5649 —0.5649 —0.7195

4 —0.5190 —0.4545 —0.4545 —0.5190
—7/34.8367 —r/26.7195 —7/31.8809 —r/45.2755 20

5 0.6656 0.7102 0.7102 0.6656

6 —0.3808 —0.2777 —0.2777 —0.3808

7 —0.6142 —0.3841 —0.3841 —0.6142

8 —0.3430 —0.3323 —0.3323 —0.3430
r/36.5817  r/41.3782  r[78.4208 r[242.4949 25

9 1.0007 0.8843 0.8843 1.0007

10 —0.2404 —0.2492 —0.2492 —0.2404

11 —0.3163 —0.3318 —0.3318 —0.3163

12 —0.2925 —0.3042 —0.3042 —0.2925

Mo; = Mi(p; = 1, m; =0) = M; — 2N; + 1.06,
N

Noi = Ni(¢; =1, m; =0)=N; — 1.31. (33)

After the solution of Eq. (14), for Si= Sy =Sm =0, K =3
and L =2, and then one gets the results presented in Table 3.
Afterwards, Table 4 presents the starting parameters of the zoom
system for focal lengths f’ =55 mm, 82.5 mm, 137.5 mm,

and 165 mm.
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5. CONCLUSION

The paper presented a design process of a zoom system com-
posed by members with variable focal length. The formulas for
calculation of the aberration properties of individual compo-
nents of the zoom system are presented, while the third-order
aberration theory and thin lenses are considered. In detail, there
is a solution of a calculation of the inner structure of individual
components presented, especially for the case of three-lens
components (triplets). Those components (Fig. 3) can be of
the properties that Seidel coefficients Sy, Sy, and Cy can have
desired values for any configuration (state) of the zoom system.
Individual components are then made by liquid membrane
lenses. It was shown that in the case of hybrid triplets, where
one of the lenses is a classic glass lens (Fig. 2), one can obtain the
desired values of the aforementioned Seidel coefficients for one
configuration of the zoom system only (e.g., for one value of the
focal length). For other configurations, the condition cannot be
reached as one has two free parameters only (the radii of outer
membranes’ surfaces). The zoom system made by those hybrid
components (Fig. 2) will have worse imaging quality than the
one composed by liquid membrane lenses shown in Fig. 3.

Itis shown in the paper that one cannot reach the same imag-
ing quality of zoom systems composed by members of variable
focal length compared to classic zoom systems of glass lenses.
The next disadvantage of the membrane liquid components is
that those have only a small diameter, and the mechanism main-
taining the change of the imaging properties might be quite
complex in comparison to simple axial movement of individual
classic glass lenses.

To conclude, the zoom systems made by liquid membrane
lenses (or hybrid components) only cannot compete with
classic zoom systems of glass lenses from the point of imaging
quality and field of view. However, those novel systems can be
appropriate in many fields, e.g. scanning systems or individual
components of the zoom systems. Further development of those
components promises wider application areas, especially as they
will improve the imaging qualities, and they can simplify the
zoom systems construction.

Funding. Czech Technical University in Prague (Ceské
Vysoké Uteni Technické v Praze) (§GS20/093/OHK1/2T/11).
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The paper presents a theoretical analysis of properties of a specific liquid membrane lens composed of two axially
symmetric membranes of different thicknesses and double curvature. These membranes enclose a space where an
optical liquid is filled. Mechanical and optical properties of the lens are then changed by varying the volume of the
liquid. The paper presents new formulas for calculation of membrane deflections, radii of curvatures of the mem-
branes, and axial geometry, which offer to minimize the third-order spherical aberration of the lens for an object at
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1. INTRODUCTION

Active optical components with continuously varying optical
properties, i.e., focal length, have found growing utilization in
many fields of science, industrial applications, and medicine [1-
15]. Those elements can be realized by many approaches, e.g., as
mirrors with variable shapes or lenses with an active change in
focal length [1-15]. There are many components available from
commercial companies with a quality suitable especially for less
demanding applications [13,14]. Nevertheless, development
of those components is in progress, and one can expect intense
propagation of more perfect samples, which will suit the most
stringent requirements in the future. Afterwards, one would be
able to design specific imaging lenses or objectives with variable
focal lengths, for example, zoom lenses.

Recently, many papers presenting a design or experimental
verification of liquid-filled tunable lenses have been published
[6-8,12] that minimize especially spherical aberration under
specific circumstances. For example, in Ref. [6], a pressure-
actuated tunable biconvex microlens is simply designed,
manufactured, and experimentally verified. However, there
is no analytic description or detailed formulation of the lens’s
imaging properties presented. In Refs. [7,8,16], the authors
design a membrane thickness to reduce the spherical aberration
of a plano-convex liquid-filled lens. Similarly, Ref. [12] presents
an iterative numerical design of a plano-convex membrane lens
with corrected spherical aberration over a user-defined focal
length range.

This paper presents a theoretical analysis of /1 of a specific
liquid membrane lens composed of two axially symmetric mem-
branes of different thicknesses #; and /4, and double curvature.
A scheme of such a lens is shown in Fig. 1. The membranes
enclose a space filled by optical liquid with refractive index 7. By
changing the volume of the liquid, the inner pressure p varies,

1559-128X/20/329924-07 Journal © 2020 Optical Society of America

and itis possible to deform membranes and to change the optical
properties of the lens. In a nominal state, while the pressure does
not deform membranes, the axial thickness of the lens is 4.
By raising the pressure, its value is changed to 4 (see Fig. 1).
In Fig. 1, ns denotes the refractive index of the membranes’
material, w; and w, are axial deformations of the membranes,
and d, is the inner axial thickness for zero pressure. This type of
lens enables two surfaces of different properties (e.g., different
values of radii of curvatures) and variable axial thicknesses. A
combination of those lenses can be used to design much more
complex optical systems with continuous variation of optical
characteristics (zoom systems).

In the first part of the paper, a calculation of membrane defor-
mation under uniform pressure is presented. Afterwards, the
paper discusses a spherical aberration of a thick lens, and for-
mulas are then used to derive initial geometric parameters of the
double curvature membrane lens (i.e., radii of curvatures, thick-
nesses, and distances of membranes of the lens) with minimized
spherical aberration.

2. CALCULATION OF MEMBRANE
DEFORMATION UNDER UNIFORM PRESSURE

This section summarizes a process of calculation of membrane
deformation under uniform hydro-static pressure, and it enables
to theoretically characterize imaging properties of the aforemen-
tioned lens of double curvature. The authors of this paper have
presented many publications on this topic, e.g., Refs. [9-11].
Let the membrane of the liquid lens be of spherical shape
with constant thickness / and radius , which is clamped at its
circumference. Without loss of generality, one can neglect the
change in thickness of the membrane during deformation. It is
shown in other papers of the authors [11,16] that the influence
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Fig.1.

Scheme of double curvature membrane lens.

of membrane thickness, and its variation, on wave spherical
aberration is negligible for most practical purposes.

Considering the symmetry of the membrane, one can sup-
pose a meridian section (x, z) [see Fig. 2(a)]. Under the load of
constant pressure p, the membrane is deformed. Figure 2(b)
shows movement of a selected point of the membrane’s mid-
plane from point[r, 0] to [» + #(r), w(r)], where #(r) denotes
the radial deformation and w(r) the deformation in vertical
direction. As one can suppose, the maximal deflection Wy
occurs forr = 0.

Further, let the membrane have negligible bending stiffness.
It is shown in previous papers of Pokorny e al. [9,10] that one
can suppose a Saint-Venant—Kirchhoff material model with
Green—Lagrange strain and the second Piola—Kirchhoff stress
[17] for the membrane. Let the membrane in the double cur-
vature lens be prestressed, and its initial stress in all directions is
Ao > 1. Afterwards, one can write the following formulas for the
stretch A, in radial direction and A, in tangent direction [10]:

2 = oy (14 )2 + w72, xt=xo(1+§), (1)

where #' and w’ denote, respectively, derivations of functions
u = u(r) and w = w(r) with respect to 7. It is known from the
theory of elasticity that the strain density energy Wi, per unit
volume can be expressed as follows [10,18,19]:

E
W = ——— (e + 2ve e, + &%), 2
D R R
where E is the Young modulus, v is the Poisson number, and
¢, and &, are Green—Lagrange strains in radial and tangent
directions, respectively, given by the formulas
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Fig. 2. (a) Scheme of circular membrane of radius # with constant

thickness /4 loaded by constant pressure p in meridian section (x, z);
(b) scheme of movement of selected point of membrane mid-plane
during deformation from point [r, 0] to [r 4 #(r), w(r)], where u(r)
denotes the radial deformation and w(r) the deformation in vertical
direction.

1 1
81":5()\-3_1)’ €z=§()»f— 1). (3)
Substitution of Eq. (1) into Eq. (3) then obtains [10]

6 =22 [ e w@)} Loz,

1
2
S [ u? 1,5 4

To characterize the membrane after deformation, the poten-
tial energy can be minimized to achieve system equilibrium. If
one is able to write a formula describing the potential energy
of the system and to minimize it, with an optimal optimiza-
tion algorithm, for example, the given problem will be solved.
The potential energy £, for constant pressure p is given as
follows [10]:

Ep = Eint + Eexta (5)

where
a
Eine=2mh / Winer dr (6)
0
is the inner elastic energy (i.e., the work of inner forces), and

Emz—znp/ w +u)(1 4+ 4)dr (7)
0
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is the outer forces’ potential energy. After substitution of Egs. (2)
and (4) into Egs. (5)—(7), one gets the final formula for potential
energy E,.

Let one study boundary conditions for the aforementioned
case now. Figure 2(b) shows that the following formulas must be
fulfilled for displacement in horizontal and radial directions:

w(a)=0, u0)=0, u(a)=0. (8)

The three conditions in Eq. (8) can be completed with
another one:

w'(0) =0, ©)

which is not necessary; however, it is considerable, with the sym-
metry of the problem and constant pressure uniformly loaded at
the surface of the membrane. Moreover, it arises from numerical
analyses that Eq. (9) significantly improves the convergence of
calculation during an approximate solution of potential energy
minimization.

One can find an equilibrium equation with variation calculus
(variation of potential energy d £, has to equal zero). One gets
after modification and with boundary conditions in Egs. (8) and

(9) [10]

blro,(1+ )] — ho, (1 + ;) = p(r +

—h(row) =p(r +u)(1+4'), (10)

where 0, and o, are stresses in radial and tangent direc-
tions, respectively, where the stress—strain law is applied

(0, = O W, /0€,, 0, = 0 Wiy /0¢,). Therefore, it holds [10]:

, E =
0 =M (& +vE) +

&0
1—v

€0, (11)

2 E = =
(o :)\,Om(é‘t + Vgr) + 1

where &, =’ + %(u’z +w'?), &, = “+ %, gy = %()»ﬁ —1)is
the initial strainand £¢y/(1 — v) the initial prestress 0.

It is obvious that Eq. (10) does not have an analytic solution.
Therefore, one has to find an approximate form. In practical cal-
culations, it is more suitable to find the minimum of the poten-
tial energy E, given by Eq. (5). It will be used during further cal-
culations. A specific solution can be found with the appropriate
optimization algorithm [20,21] and series expansion.

It is suitable to choose the series in such a form to fulfill
boundary conditions (8) and (9) directly. One of the options is
to setdeflections w = w(») and # = u(r) in the form

N M
w(r) =Y bi(a® =¥, w(r)=) cj(rat —arth),
i=1 =1
(12)
where b; (i=1,2,..., N)and¢; (j=1,2,..., M) are coef-
ficients to be calculated. After substitution of Eq. (12) into
Egs. (2)—(7) and with the appropriate optimization algorithm,
the approximate solution can be obtained for the minimum of
the potential energy (5) with a goal function defined as follows:

M=/ [Einc(bi, ¢j. 1) + Eexe(bi, ¢j, 7)] dr. (13)
0
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p = 1.00 kPa: RMS = 0.010 mm
P =2.00 kPa: RMS = 0.021 mm
p =3.00 kPa: RMS = 0.012 mm

Fig. 3. (a) Device for measurement of surface topography with
chromatic confocal sensor and experimental sample of plano-convex
membrane lens; (b) comparison of experimentally measured data of
membrane lens deformation (red crosses) and simulated data (blue
curve) for pressures p = 1.00, 2.00 and 3.00 kPa.

The aforementioned theory of membrane deformation
was experimentally verified. Figure 3(a) shows a device for
measurement of surface topography with a chromatic sensor,
and laboratory sample of a plano-convex membrane lens. Its
main part is a chamber filled with optical liquid (distilled water
in our case), which is enclosed by an elastic membrane and
mechanically clamped at its edges. The liquid volume can be
changed, which modifies loading pressure. After deformation,
the optical parameters of the lens change. The membrane of the
lens is made by Sylgard 184 [22]. Geometrical and mechanical
parameters of the membrane were experimentally measured:
a=1445mm, h»=045mm, E=1.078 MPa, v =041,
0o = 0.0583 MPa. Figure 3(b) shows a comparison between
measured and predicted values of deflection. As the lens is sym-
metrical, the meridian section of the surface was evaluated only.
The sensor has to be ideally positioned in a normal direction
to the surface under test; therefore, only the vertex part of the
lens was investigated. One can see that mean quadratic errors
(RMS values) show very good agreement between theory and
experiment, and it is in accordance with the nominal accuracy
of the measurement device, estimated as 0.02 mm (consider-
ing uncertainties in a chromatic sensor measurement and in
mechanical construction).

3. SPHERICAL ABERRATIONS OF THE THICK
LENS IN AIR

It is generally well known that imaging with optical systems
depends on their optical aberrations [23-26]. This section
presents variations of aberrations of liquid lenses that are made
by two membranes of different thicknesses. Without loss of
generality, one can neglect the prestress of the membrane for the
next calculations; therefore, 1o = 1. With a change in volume
of the optical liquid inside the lens, the focal length of the lens
will vary, and therefore its optical aberrations change as well. As
the membranes have different thicknesses, and their deforma-
tion will differ. Therefore, radii of curvatures of the lens outer
surfaces will not stay the same, and the so-called shape factor
[23,24] of the lens changes as well as its thickness. It is known
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[25] that the value of the shape factor of the thickness of the lens
affects its aberrations.

It can be shown simply that if the membrane is made from
material with the refractive index 7,, and has thickness ¢, then
the change in the lens surface’s optical power caused by the
membrane thickness is

t

where 7 is the radius of the surface, and 7 is the refractive index
of the liquid. It is obvious from Eq. (14) that the change in opti-
cal power 8¢,, is small, and that the influence of the membrane
on imaging properties of the focus variable liquid lens can be
neglected.

This part discusses the effect of the shape factor and lens
thickness on the spherical aberration. Let 71 and 7, be the vertex
radii of curvature of the lens surfaces (membrane surfaces), #
the refractive index of liquid between membranes, ¢; and ¢,
the optical powers of lens surfaces,  the axial thickness of the
lens, X the shape factor of the lens, and ¢ the optical power of
the thick lens; then the following equations hold for the thick
spherical lens in air:

X:rz—i-rl’ = (n—1) l(pd(X2—1)+n+1 ,
7y — 71 o(X+1) n
_n—1 9= ¢ _1—mn
1= " s wz_l—d(pl/n’ 7y = . ,
1) 1 1 +d(n—1)2
p=u 71 7 nriry ' (15)

The Seidel coefficient of spherical aberration Sy of a thick lens
in air, for an object at infinity, can be expressed with the formula

(25]

S 1 2
PG [ e e
J[eiter - n)* (g1 — n?) (16)
* n3(n —1)? '

Further, the transverse, 8y’, and lateral, 8s’, spherical
aberrations can be calculated as follows [23-25]:

8’ ==L IS, (17)

where f” denotes the focal length of the lens, and H is the
impinging height of the aperture ray at the first surface of the
lens. Formulas for calculation of Seidel aberration coefficients of
the coma, Sy, astigmatism, Sy, field curvature, Spy, and distor-
tion, Sy, of a thick lens are presented in Ref. [25]. Calculation
of Seidel coefficients for different positions of the object and
entrance pupil can be calculated with formulas presented in
Refs. [23,24].

In the case of a classic lens in air, it is possible to realize such
asituation in which the shape factor is constant while changing
the focal length f{ of the lens to the value f]; = £ f{, where £ is
constant. One can see from Eq. (15) that for such a case, the fol-
lowing formulas hold:

8y =—1FHS,

Vol. 59, No. 32/ 10 November 2020 / Applied Optics 9927

1 ( 1)(1 1)+d(n—1)2
e (n— L2 ’
ff [t ¥

nrirp
11 ——1) 1 1 +/m’(n—1)2
i B k f{ -V kry  kry nkrkry
1 1 —1)?
- 1) (___)+dll(n ) ‘ (18)
T T2 nri T2,

Therefore, the lens with focal length f{} has the radii of curva-
tures 71,11 = k71, 72,11 = kr; and axial thickness 4y = k4, which
implies

X1= 72+rl, X1

r—=r

k?‘z—i—/??’l
=— =X 19
ki’z—/@?"l ! ( )

If the radii of curvatures and the thickness of the lens are multi-
plied by the same constant value, the focal length changes in the
same way; nevertheless, the shape factor of the lens remains con-
stant.

Let one calculate parameters of a thick lens with minimized
spherical aberration of the third order for an object at infinity.
Without loss of generality, one can suppose the focal length of
thelens £’ = 1. Therefore, the optical power gives ¢ = 1 as well.
Finding an extreme of §; [Eq. (16)] with respect to ¢; (the first
derivative equals zero), one gets

4d@; —3dn (n+2) @1 +n* [2n (2d + 1) +2 (d +2)] &

-’ [n (02—1-2)—1- 1]:0,
(20)

where @; and 4 denote, respectively, the optical power of the first
surface and the lens thickness for a normalized value of ¢ = 1.

To the authors’ best knowledge, Eq. (20) has not been
published in previous papers; therefore, it offers an origi-
nal approach to calculate the lens with the aforementioned
properties.

The solution to Eq. (20) gives a value of the optical power ¢,
and one can simply calculate the first radius of curvature of the
thick lens: 7; = (n — 1) /@;. The second radius then can be cal-
culated with the following formula:

_ __(n—l) (J—Jn+n;1)

n(—n+1) (21)

To calculate the parameter of the lens with a focal length
value different from f’ =1, but f' =k f', where % denotes a
constant, itholds: 7 = k71, 7, = k7>, and d = kd.

Table 1 shows an example situation of lenses with different
values of refractive indices 7 for a thin lens, & = 0 mm, as well
as for a thick lens with axial thickness 4 = 0.1 mm. Optical
powers of lenses are ¢ =1/ f' =1 mm. One can simply cal-
culate parameters for different values of the focal length #” by
multiplying radii of curvatures and axial thicknesses by this
value of the focal length. All the lenses calculated in this way
have minimized third-order spherical aberration for an object at
infinity. In Table 1, all lengths are in millimeters.
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Table 1. Parameters of Lenses with Minimized
Third-Order Spherical Aberrations for an Object at
Infinity for Different Values of Refractive Indices

f=1mm,d=0mm f =1mm,d=0.1mm

n 71 [mm)] 7, [mm)] n 71 [mm)] 7, [mm]
1.500 0.5833 —3.5000 1.500 0.5891 —3.1197
1.625 0.6561 —13.1818 1.625 0.6628 —10.3311
1.750 0.7143 15.0000 1.750 0.7217 18.0191
1.875 0.7614 5.8649 1.875 0.7696 5.9985
2.000 0.8000 4.0000 2.000 0.8088 3.9673
4. EXAMPLES

A. Example 1

Suppose now an example of a liquid membrane lens composed
of two membranes while the first has thickness #; = 0.5 mm
and the second one has thickness 4, = 0.8 mm, and study the
effect of inner pressure variation on imaging properties of the
lens. Let the membranes be made by Sylgard 184 [22] and the
transverse radius of the lens be 15 mm. Results of calculations
are presented in Table 2, where p denotes the inner pressure
in kPa, X is the shape factor, f” is the focal length of the lens,
d is the axial thickness, #; and r, are the radii of curvatures,
Sp is Seidel coefficient of spherical aberration, §y” denotes the
transverse spherical aberration for an aperture ray impinging on
the first surface at height A from the optical axis calculated with
Eq. (17), 854510 denotes the same value calculated with the
software OSLO, w; and w, are the maximal deflections of the
membranes, 7 is the refractive index of the liquid filled between
the membranes (water), and A is the used wavelength. Lengths
are shown in millimeters in Table 2.

As one can see from Table 2, changing the pressure in the
lens affects its focal length /7, its axial thickness , radii of cur-
vatures 71, 72, as well as its shape factor X. Dependence of the
focal length f” on the pressure p can be approximated with the
formula

_aipta

P (22)
3

f/

where 27 =32.466 mm, 4, =137.700mm -kPa, and
a3 =1.256kPa. The RMS error of approximation equals
0.14 mm for this case. Dependence of the shape factor X on the
pressure p can then be expressed as

_xiptx
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where x1 = 0.024, x, = 1.395 kPa, and x3 = 18.297 kPa, with
the RMS error of the approximation less than 2e—4.

B. Example 2

The second example presents a double curvature membrane lens
with a minimized value of spherical aberration for an object at
infinity. Let the initial parameters of the lens be /" =20 mm
and4 = 10 mm.

Reference [10] explains that the maximal deformations w
of membranes are related to the mid-plane. Imaging of the
aforementioned lens will be generally realized by four refractive
surfaces (see Fig. 1). Denote the axial distance between the first
and second surface of the lens #; = 4, and the refractive index
between those surfaces as 7. The index of refraction between
the second and third surface is 7, and the axial distance between
them is given with the formula #, = w; + w;, + d,, where d, is
a correction that has to be calculated to maintain the required
focal length 7 of the lens (axial distance between membranes
with applied zero pressure). Similar to the first and second
surface, the distance between the last two surfaces is ; = 5>,
and those surfaces enclose a material with the refractive index
ns. It is obvious that it holds for the axial thickness of the lens
d =t + t, + 13, and that 4, > 0 has to be fulfilled to maintain
the lens design possible for manufacture.

Without loss of generality, one can further suppose the same
index of refraction for the membrane material and the liquid,
e.g., ng=n=1.4225 (Sylgard 184 [22] in liquid and solid
form), and that the radii of curvatures for both membrane sur-
faces are constant (change in curvature between the mid-plane
and its outer surfaces is negligible). With Eqs. (20) and (21), one
gets for minimized spherical aberration the following values:
d=0.5mm, 7 =0.5551 mm, 7, = —1.2953 mm, and, there-
fore, r;1 = 11.1025 mm, r, = —25.9070 mm for the designed
lens.

The further goal would be to find thicknesses of the first and
second membranes for a given pressure p and required values of
the focal length, i.e., to calculate corresponding radii of curva-
tures. Supposing the same membrane parameters as in the first
example (material Sylgard 184 [22]) and the transverse radius of
thelens 5 mm, one gets thicknesses /#; and 4, of the membranes
and other lens parameters for selected pressures p, which are
shown in Table 3. Units of pressures in Table 3 are kPa, and
length units are in millimeters. The thicknesses were calculated
to obtain corresponding radii of curvatures with error less than
le—3mm.

Figure 4 shows a ray-tracing through the double curvature
membrane lens for the second example in Table 3, where the

X= T (23) surfaces were calculated with formulas presented in Section 2.
pTx

Table 2. Parameters of Double Curvature Membrane Lens
H=5mm,n=1.333,. =587 nm, h; = 0.5 mm, », = 0.8 mm, d, =2 mm
7 [kPa] X f' [mm] d[mm] 71 [mm] 7, [mm] 10005; 4y’ [mm] 8 Yps10 [mm] w; [mm)] w, [mm)]
1.00 0.0735 75.4386 7.2779 45.9431 —53.2351 0.0111 —0.0524 —0.0508 2.8478 2.4301
4.00 0.0668 50.8614 10.4616 30.4838 —34.8445 0.0365 —0.1161 —0.1082 4.5723 3.8893
7.00 0.0618 443218 12.2750 26.2777 —29.7415 0.0554 —0.1536 —0.1390 5.5585 47165
10.00 0.0577 41.0056 13.6499 24.0992 —27.0491 0.0703 —0.1802 —0.1590 6.3086 5.3414
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Table 3. Parameters of Double Curvature Membrane Lens for Different Inner Pressured and Fixed Focal Lengths
p [kPa] by [mm] b, [mm] 71 [mm] 7, [mm] w; [mm] w, [mm] d, [mm]
1.00 0.0570 0.7503 11.1029 —25.9069 1.3676 0.5703 7.2548
4.00 0.2282 3.0009 11.1026 —25.9070 1.3677 0.5703 4.8329
7.00 0.3992 5.2520 11.1018 —25.9072 1.3678 0.5703 2.4107
h1 =0.2282 mm, h2 =3.0009 mm A=587nm,n= ng= 1.4225,s = -c0,8"'= s'F, =14.6499 mm
r, =11.1026 mm, r, = -25.9070 mm 4 ‘ I ‘ ‘ ‘ ‘ ' ‘
A=587nm,n= ng = 1.4225, s = -00, s'F. =14.6499 mm
6 - - . - ; . 351
5 1 | 3
1
4 1 1 251
; £
= 3 q o 2r
E S
> 9 q 151
1 g 1t
0 . 05}
-1 : : : : : : 0 | . . . ‘ . | ‘
-10 5 0 5 10 15 20 09 -08 -07 -06 -05 -04 03 -02 -01 0
z [mm] doy' [mm]
Fig. 4. Ray-tracing through the double curvature membrane lens (@)

(blue solid lines, surfaces of the lens; blue dashed lines, inner surfaces of
membranes).

In the figure, s represents the axial distance of an object from the
first surface of the lens, and s, is the axial distance of the focal
point from the second surface of the thick spherical lens with
the same vertex radii of curvatures as the double membrane lens
calculated by the known formula fora thick lens in air [23]:

5§/=f/<1—¢16—i), o =" 1, (24)
n 71

where f7 is the focal length of the lens, ¢y is the optical power of
the first surface of the lens, 4 denotes the axial thickness of the
lens, and 7 is the index of refraction of the lens. To demonstrate
imaging properties of this lens, Fig. 5 shows transverse spheri-
cal aberrations for the case in which an image plane is located
at the distance s =7, behind the second surface of the lens
(Fig. 5(a)], and at the distance s" =5, 4+ ds [Fig. 5(b)], where
ds is optimized according to the minimization of a gyration

radius 7, calculated from the equation (for a circular exit pupil)
(26]

a2 [T
e = ﬁ/(; 6y hdh, (25)

where 4 denotes the radial coordinate in the plane of the exit
pupil of the lens, H is its maximal value, and 8y’ is the transverse
spherical aberration in the image plane. In Fig. 5, yo denotes
the impinging height of rays on the first surface of the lens. In
the aforementioned figures, the calculations were done for the
wavelength A = 587 nm and for an object at infinity.

One can see from Fig. 5 that the mentioned double curvature
membrane lens has very good imaging quality for imaging of

A=587nm,n= ng = 1.4225, s = -00

s'=12.3122 mm, s'F, =14.6499 mm, ds' = -2.3377 mm, rg =1.27e-01 mm
4 T T T T

0 . . .
-0.3 -0.2 -0.1 0 0.1 0.2

dy" [mm]
(b)

Fig. 5.  Transverse spherical aberration of the double curvature
membrane lens. (a) Transverse spherical aberration 8y in an image
plane of the lens in an axial distances s” = s, from the second surface
of the lens; yo denotes impinging height of the ray on the first surface
of the lens. (b) Transverse aberration §y” in an image plane of the lens
in an axial distance s’ from the second surface of the lens, while s’ is
optimized for minimal gyration radius 7,; yo denotes impinging height
of the ray on the first surface of the lens.

an axial point at infinity even if it is a simple lens. The gyration
radius 7, = 1.29¢ — 01 mm. Therefore, the presented formulas
are designed from initial paraxial equations, and the procedure
can be used as a very good starting point for further optimization
processes.
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5. CONCLUSION

The paper presented a theoretical analysis of the double cur-
vature membrane lens with different axial thicknesses of the
membranes whose optical properties vary with changes in
inner uniform pressure. The paper presented new formulas
for calculation of membrane deflections, radii of curvatures of
the membranes, and axial geometry, which offer to minimize
the third-order spherical aberration of the lens for an object
at infinity. The presented theory was examined on specific
examples.
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The paper presents formulas for a ray tracing in the optical system of two-mirror optical scanner with a focus-
tunable lens. Furthermore, equations for the calculation of focal length which ensure focusing of a beam in
the desired point in a detection plane are derived. The uncertainty description of such focal length follows as
well. The chosen vector approach is general; therefore, the application of formulas in various configurations of
the optical systems is possible. In the example situation, the authors derived formulas for mirrors’ rotations

and the focal length depending on the position of the point in the detection plane.
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1. INTRODUCTION

In the industrial application it is very often important to de-
termine the spatial parameters of different kinds of objects
(e.g., a surface topography of the object under study), or to
perform specific modification in three-dimensional space
(e.g., cutting or welding). Several principles exist for such pur-
poses. One of the possibilities is the usage of 3D optical scan-
ners for their speed and accuracy [1-4]. The beam-steering
device can be constructed in many ways. From the chosen type
of construction the principles of usage are derived. As an exam-
ple, let one name one-mirror scanners, two-mirror scanners,
polygonal, acousto-optical or electro-optical systems, etc. [1].
In the last decades the adaptive optical elements development
has been a focus of interest and especially the focus-tunable
lenses have been studied [5-11].

From the general point of view one can divide the optical
scanners into three categories: (a) measurement devices for re-
vision and testing of current objects, (b) projection technology,
and (c) high-power technology in industry.

The first of the above-mentioned categories covers the ap-
plication in civil engineering and architecture, such as docu-
mentation of interiors, mining, building foundation, volume
measurement, underground network measurement, or similar.
Also mechanical engineering is part of this category, as well as
reverse engineering, quality control, automobile industry, docu-
mentation of traffic networks, digital terrain modelling, histori-
cal and art documentation, security purposes, crack detection,
water engineering, archaeology, or medicine. The second char-
acteristic covers the entertainment industry, light effects, video

1559-128X/15/226955-06$15/0$15.00 © 2015 Optical Society of America

mapping or theatre lightning. And the last category, the appli-
cation of high-power sources in industry, describes manufactur-
ing technologies for cutting, welding, engraving, or coating.

In the last couple of years many papers have been written
that were especially focused on the one-dimensional or two-
dimensional description of mirror scanners. Flat mirrors were
analyzed by Pegis and Rao [12]. Two-dimensional free-of-
distortion scanners were presented by Sabban ez al [13].
Image shape analysis as an intersection with the detection plane
was presented as well [14—17]. Stability of optical systems was
analyzed by Friedman and Schweitzer [18]. Profiling based on
beam reflection is shown by Shinozaki et al [19]. Three-
dimensional analysis of the position and accuracy of the beam’s
spot in the detection plane was presented by Pokorny [3]. The
adaptive optical components were studied in detail by
Miks et al [5-11].

In this paper, the authors present a general vector approach
for a ray tracing in the optical beam-steering device of a two-
mirror scanner with a plano—convex focus-tunable lens. The
position of the beam’s spot is calculated in the detection plane
as a function of the mirrors’ angles of rotation. Moreover, the
calculation of the focal length of the focus-tunable lens is pre-
sented based on the condition of beam focusation in the de-
tection plane. This condition finds utilization in many
practical applications. At the end of the paper the results are
presented in examples. The calculation of the mirrors’ rotations
for one type of scanner is carried out as well. To the authors’
best knowledge, derived formulas of such type have never been

published yet.
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2. GENERAL VECTOR MODEL FOR
RAY-TRACING ANALYSIS

Based on the calculation of the beam spot position in the de-
tection plane presented in the previous authors’ articles [3,4],
the modification for the system with a plano—convex focus-
tunable lens is going to be presented.

Suppose the situation in Fig. 1. System K transforms the
incoming light to a beam of parallel rays. The position of such
system’s last surface is given by vector sy. The vertex V; of a
rear surface of a focus-tunable lens defines its position by a vec-
tor 1y, in such a way that points Sy, V;,, and O, define a line
with a unit directional vector 0. Let this line be an optical axis of
the lens. Unit vector ay with point S, which is given by position
vector 8, determines a parallel ray emerging from the system K.
Unit vector a; with point L, given by position vector 1, then
defines a ray behind the lens.

The position of the mirrors in the system is defined by vec-
tors 0; and 0,, and by their unit normal vectors n; and n,.
Position vectors 1y and r, denote places where the ray impinges
and reflects from the mirrors. Unit vectors a, and az then de-
note directions of the ray after the reflection on the first and the
second mirror. Planar detector, detection plane &, is supposed to
be given by a normal vector q and it is distanced by a value of 4
from the origin of the coordinate system. The intersection of
the ray with such plane ¢ is determined by position vector p of
the point P.

For the next analysis let one suppose the rotationally sym-
metric plano—convex focus-tunable lens, which is very often
used in practice. The considered situation is depicted in Fig. 2.

In Fig. 2, point S and unit directional vector ay describe an
off-axis ray. The point of intersection L lays in height 4, which
can be calculated as a distance between the incoming ray and
the optical axis of the lens. From the depicted situation it is
obvious that ay equals 0. According to the law of refraction
the ray is refracted in the point L and the unit directional vec-
tor a; defines its direction in the lens with index of refraction
n;. In the point L, the ray is refracted again and emerges the
lens in the direction of unit vector a;. Without the loss of gen-
erality for practical purposes, where the geometrical aberrations
caused by the optical components are usually smaller than dif-
fraction effects, this model of off-axis ray can be converted to
the paraxial one with the use of formulas of geometrical optics
[20,21]. Therefore, the following simplifications hold: /# — 0,
a,=o0, (s-s5)) >0, I-L,) -0, (a; -0) - 0, where 0

incoming
light
q
—
T

Fig. 1. Two-mirror scanner.
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Fig. 2. Ray-tracing of a beam in a plano—convex lens.

denotes null vector. The authors show a practical example
and a proof of such simplification at the end of this paper.
For the geometrical characteristics, let the position of the
lens be given by stable center Vi, of its planar surface by its
positional vector ly,. As the focal length of the lens changes,
the position of front vertex V;; changes. The center of curva-
ture moves its position as well. As is obvious in Figs. 1 and 2,
one can characterize the position of point V;; as follows:

ly; = ly, - £,0

1
=lv2—[t+R—§\/4R2—d%}o. (1)

In Eq. (1) #; denotes variable axial thickness of the lens; # is
the fixed thickness of the lens measured at the edge; 4; is the
diameter of the lens; R denotes the lens first surface’s radius of
curvature, which can be enumerated from the formula
R = f'(n; - 1), whereas f" is the back focal length of the lens
and 7; is the index of refraction of its material. One can derive
the following formula for variable position of the center of
curvature, it holds:

lSl = lVl + RO

=1y, - {t_;,/uez _4§]o. @)

Let one start with ray tracing through the mirror system
with the description of unit normal vector 7; (p;) of the
i-th mirror, rotated by angle ¢; around the axis with unit direc-
tional vector ¢;. From the analytical geometry it can be shown
that the following formula represents the aforementioned sit-
uation [3,4]:

n,(@;) = n;(0) cos @; + ¢;[c; - n;(0)](1 - cos @;)
+ [¢; x m,;(0)] sin ;. (3)

As the paraxial model is supposed, the position vector r;
equals 0,. Afterwards, one can write for the unit directional
vector of the ray reflected on the first mirror as follows [3,4]:

a(py) = a; - 2n,(ey)[a; - ny(ey)] (4)

With the use of analytical geometry [22,23] the formula for
the point 1, of the ray’s intersection with the second mirror can

be derived, it holds:
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[0, - 0,] - m,(9,)

a0 Mgy 2O ©

r, =0; +

Similar to Eq. (4), the unit directional vector of the ray
after the reflection on the second mirror can be written as

follows [3,4]:

a3(¢2) = a,(@y) - 2m,(@,)[a3(9)) - my(9y)] (6)

The ray’s intersection with the detection plane, i.e., the
point P, is afterwards given by positional vector p. It can be

shown that the following formula holds [3,4]:

d-r,.
p=r,+ r-q

m a3(¢,). (7)

The beam spot’s position calculation is therefore completely
described.

The focus-tunable lens can be manipulated in such a way
that the beam will be focused in the point P in the detection
plane. Let one derive the formula for the calculation of the focal
length.

The optical power of the aforementioned plano—convex lens
will be given as follows [20,21]:

1 _ nr — 1

(p:fr_ R

@

In Eq. (8), f" denotes the variable focal length, 7; is the
index of refraction, R is the radius of curvature of the first lens’
spherical surface. As the optical power changes, the vertex V;
of the spherical surface shifts on the optical axis.

With the use of formulas of geometrical optics the distance
s" between the back lens surface and the image plane (distance
between points V, and P) of such a lens can be written, it
holds [20,21]:

s =f’(1 _¢2). ©)
nr

The meaning of the symbols in Eq. (9) is obvious from pre-
vious statements.

If one substitutes Eqs. (1) and (8) in Eq. (9), then the fol-
lowing formula comes:

1 1
f/:’JJF:Z_L:S’Jrn_{tJFR_E’MRz_d%}' (10)
L

L

After some elementary rearrangements the quadratic for-
mula for the focal length can be written as follows:

2 r ! d2 t 2
fz[(”L‘l)z-l]'f'z(f"i')f-Lz‘ (;’4-) =0.
i nr) np 4”L ny

(11)

The suitable solution for our purposes follows:

! 1 ! l
f __nL(”L_Z) (t-l—an _2\/D7f>' (12

The value of Dy can be calculated from the following
formula:

Dy = 4nis' - 8mis'(s' - 1)
+ mi[d7 + 4G + %) - 165'7]
+ n;[82(s" - t) - 2d%] + 4% (13)

As obvious from Egs. (12) and (13), the value of ideal focal
length for focusing the beam in the point P in the detection
plane can be calculated if the value of s" is known. From
the aforementioned formulas, the value of 5" can be calculated
from the relation as follows:

s'= oy -ly,| + [r; -0y + [p -] (14)

Let one determine the uncertainty #(f”) of the calculated
focal length given by Eq. (12). Suppose the dependency of
such uncertainty on uncertainties of side thickness of the lens
u(t), the index of refraction #(7;), the value of distance be-
tween points Vy, and P u(s"), and the lens diameter u(d}).
Without any loss of generality one can consider the aforemen-
tioned uncertainties very small compared to the absolute val-
ues of their mutually independent parent variables, i.e., the
values of uncertainties are expected to be comparable to
the total differentials of the given model. Suppose next the
even probability distribution for such uncertainties. The con-
ditions describe the situation of random errors only; therefore,
one considers systematic errors to be suppressed. With these
assumptions the law of variance propagation can be used
[24,25] and the uncertainty of the focal length can be

expressed as follows:

u(f) =\ U + Ui (ny) + U () + Ud(d),
(15)

where coefficients U; (i = 1, ..., 4) are given with following
formulas, it holds:

U =NDV,-1),

U, =N? |:(nL -2n; DV, + (n; - 1) (Zt -4 /Df> + nﬁs’],
Us = N(DV'3 - nyp),

U,=NDV,

Vi
Vs

8[s'n3 + (£ - 25 )m2 + (s' = 26)my + 1],
16513 - 24s' (s - )n? + 2[d? + 4(s” + £2) - 165't]n;
+82(s' - 1) - 2d2,
Vs = 8[s'nt - n3 (25" - 1) + 5'n? - 2em2 + tny],
V4 = ZJL(n% - 27?[),
VD 1
D= —f, N=————.
4Df ﬂL(i’lL - 2)

Suppose now the situation when one calculates the smallest
possible beam’s spot in the detection plane and the position of
such an ideal image plane as well. As known from the theory of
optical imaging, the unique plane where the beam spot has the
smallest diameter exists for each optical system and for a given
field of view.
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The transverse ray aberration dy’ of the plano—convex lens
(see Fig. 2), and for an object at the infinity can be calculated
with formulas from [9,20,21] as follows:

, (PN - 2np +2
” _'?<7> [mel)z} (e

where 4 is the incidence height of the aperture ray and 7; is the
index of refraction. This formula is valid for thin plano—convex
lenses, having the first radius spherical and the second radius
infinite. Formula (16) gives sufficiently accurate results also for
thick lenses with moderate f-number. For the f-number F
[20,21] of the lens it holds: F = f"'/d;. Substituting the for-
mula for the f-number of the optical system in Eq. (16) results
in the following equation for maximal value of transverse ray
aberration 8y, . in the paraxial image plane, it holds

(h=1dr/2):
. f n -2 +2
5ymax - 16F3 7ZL(7’IL - 1)2 ' (17)

The position D, of an optimal image plane, where the
diameter of the circle of confusion 4,;, is minimal, according
to the paraxial image plane can be calculated both with the
value of minimal circle of confusion’s diameter ,;,, with for-
mulas stated in Miks and Novak’s paper [26] as follows:

Dopt = 4F5yr,na_x/3’ mm - |5)’max|/3 (18)

Let one set the minimal diameter of the circle of confusion
from Eq. (18) equal to the diameter of the Airy disc
(d4 = 2.44QF). Afterwards, the minimal f-number for the
lens can be calculated using Eqs. (17) and (18), one gets

1 off' [m-2n+2
Fogn = —— | L |22 T2 19
min 3.29 A |: nL(nL - 1)2 :| ( )

Using Eq. (19) one can calculate such f-number of the
plano—convex lens that the lens can be considered as a physi-
cally ideal optical system.

Commercially available focus-tunable lenses [27] are usually
placed between two plano-parallel plates. Therefore, an aberra-
tion induced by such plates has to be considered for precise
analysis as well. Aberrations of a plano-parallel plate are de-
scribed in detail in [28]. Transversal spherical aberration dy,
induced by thickness 4, of a plate from material with index
of refraction n, is given with formula as follows [28]:

Sy — d(n 1) 0
), = T2l f’ : (20)

As obvious from Egs. (16) and (20), the aberration in-
duced by the plate’s thickness is much smaller than the lens’
aberration (|5yp| < [0y;]). Therefore, such aberration given
by Eq. (20) can be neglected. The plano-parallel plate behind
the lens does not affect the lens’ focal length. However, the
paraxial image plane will be shifted about the value

A=d,(n,-1)/n, 28]

3. EXAMPLES

A. Example 1
Suppose that the plano—convex focus-tunable lens Optotune
EL-10-30 [27] with parameters ; = 11 mm, r = 2.45 mm,
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A =587 nm, and n; =1.559 is used in the optical
system of a two-mirror scanner with the following
parameters:

Sy = —50e1 =+ 30e2, 1V2 = —3081 + 30e2,

01 == 3062, 02 == 0, CI = el,

-(e; +¢,)//(2),
n,(0) = (e; +€,)/./(2), q=e,

where e;, €,, and €5 denote the basis of the coordinate system.

For the zero rotation of the mirrors the focal length equals to
111.727 mm and the axial thickness of the lens is
t; = 2.693 mm. The maximal transverse ray aberration
Oyrax Of the plano—convex lens (see Fig. 2), and for object

at the infinity, can be calculated from Eq. (16), and one gets
(h=d./2)

¢, =e;n(0) =

d =50 mm,

o (A m-2nt +2]
OV max = T f 7;”(”[ )2 = -0.01270 mm.
(21)

If one considers the axial thickness equal to 2.693 mm,
OSLO accurate calculation for a thick lens gives the value
5)”L(OSLO) = -0.01271 mm. Such a result can be obtained with
the aforementioned Eq. (7) for general ray tracing in a given
optical system as well. Therefore, the approximation used in
Eq. (16) gives enough accurate results with an error less than
0.08% for a given situation.

For the aberration induced by a plano-parallel plate with
thickness &, = 0.5 mm, which is made by glass BK7
(n, = 1.516), one gets with the use of Eq. (20) (h =d/2)
the following value:

d(n

, 1)
&) max = 16;1 <f’> = 0.000011 mm. (22)

As obvious, the value of 5)/}', max 18 much smaller than &y} . s
therefore, it can be neglected.

If one considers the wavelength equal for example to
587 nm, then the diffraction effect of the system expressed
by the radius of the Airy disc [20,21] can be calculated from
the following formula: r4 = 1.224 F = 0.0073 mm, where 4
is the wavelength. As is obvious, the assumption of the paraxial
model was justified because the transverse ray aberration is
comparable with the radius of the Airy disc and the diameter
of the circle of confusion 4,,;, = 0.0042 mm, which is smaller
than the diameter of the Airy disc (44 = 2r4, = 0.0146 mm).

The beam spots in the detection plane for different angles of
rotation ¢; and ¢, are shown in Fig. 3. The calculated focal
lengths for the beams’ focusation in the detection plane respect-
ing the aforementioned situation are shown in Fig. 4.

B. Example 2

Consider now the situation of known position of the point P in
the detection plane. The question is, how shall one rotate the
mirrors and how the focal length of the focus-tunable lens in
the system has to be to fulfil the condition of the focused beam
in the point P? Suppose the same parameter of the scanner as in
Example 1.
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Fig. 3. Beam spots in the detection plane for different angles of ro-
wtion @y = {-30°, -28°, ..., +28°, +30°), @, ={-18°-16°...,
+16°+18°).

Substituting the given scanner’s parameters into the
aforementioned formulas, one gets the following expression
of the coordinates of the point P, i.e., the position vector

P = (upyt)

px = d’
= d tan 2¢,,
d
pz = —tan @, <01J’ —+ m), (23)

where o;, is the y-direction component of the vector
0; = (01, 01, 01;). Afterwards, the angles of rotation can be
expressed from the Egs. (23) as follows:

)
. <—)
o1y + \/]’y2 +d?

_1! Ly
@, = 5 atan<d>. (24)

The distance between points V7, and P can be then calcu-
lated from the formula

40
40 -
y [mm] 60 z [mm]

Fig. 4. Focal lengths for the beams focusation in the
detection plane for different angles of rotation ¢ =
(230, -28°, ..., +28°, +30%}, @, = {-18° 16", ..., +16° +18°}.
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Table 1. Coordinates of Points in the Detection Plane,
Corresponding Angles of Mirrors’ Rotations, and Focal
Lengths for the Scanner from Example 1

point p, [mm] ?y [mm] @, []] @, [°] S’ [mm]

1 0 0 0.0000  0.0000 +111.727
2 -20 +30 +12.7609 +15.4819  +122.260
3 -20 0 +14.0362  0.0000 +114.186
4 -20 -30 +12.7609 -15.4819 +122.260
5 +20 +30 -12.7609 +15.4819 +122.260
6 +20 0 -14.0362  0.0000 +114.186
7 +20 -30 -12.7609 -15.4819 +122.260

(d*+p)p2
2
(% +/p+ d2>
l%/Zypg,

2)
<01y + \/P}zl + d2)

where /v, and [y, are components of the vec-
tor lyy = (Jya,e Ly Lyaz)-

Equation (12) can be then used for the calculation of the
focus-tunable lens’ focal length.

In Table 1, there are shown given coordinates of points in
the detection plane and corresponding angles on the mirrors’
rotations and focal lengths for focusation of the lens in the sys-
tem. The points in the detection plane are shown in Fig. 5.

S’ = _[V2x+ d2+pj2/+

+ 0@ + (25)

C. Example 3
Suppose the uncertainties of the focus-tunable lens’ parameters
in three possibilities as follows:

(@) u(t) = u(dl) = 0.1 mm, u(nl) = le -6,
(b) u(t) = u(dl) = 0.3 mm, u(nl) = le -5,
(c) u(t) = u(dl) = 0.5 mm, u(nl) = le - 4.

For each of the aforementioned cases let the uncertainty
u(s') = 0.01 -5, ie., one percent from the value s". In
Fig. 6, the dependency of uncertainties of focal length on
the distance between points V7, and P is shown for the scanner
from Example 1 and its focal length focused in the detec-
tion plane.

30 L >
20
10
T
E 0 =
>
-10
-20
-30 L b
-40
-30 20 -10 [ 10 20 30
z[mm]

Fig. 5. Given points in the detection plane from Example 1 with
parameters of the scanner from Example 1.
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Fig. 6. Dependency of uncertainties of focal length #(f”) on the
distance between points V, and P for different cases of uncertainties
of the focus-tunable lens” parameters.

4. CONCLUSION

The ray-tracing analysis of the optical system of a two-mirror
scanner with a focus-tunable plano—convex lens was presented.
The general vector approach was used, which ensures the appli-
cability for different optical systems. The exact formulas for the
calculation of the beam spot in the detection plane was pre-
sented as a dependency on the angles of the mirrors’ rotation.
Afterwards, the calculation of focal length of the lens was de-
rived according the condition of focusation in the detection
plane. The uncertainty analysis of such focal length is presented
as well. In the end of the paper, the authors show the practical
examples and usage of derived formulas. For the most used type
of two-mirror scanner the formulas for exact calculation of the
angles of the mirrors’ rotation was presented for given positions
of points in the detection plane. The presented formulas can
find utilization in many practical applications of optical
scanners.

Funding. Czech Technical University in Prague (SGS15/
125/0OHK1/2T/11).
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1. INTRODUCTION

Amplitude diffraction gratings [1-8] are fundamental optical
components that are used in many practical applications, for
example, during construction or measurement with spectrome-
ters, monochromators, and similar. As the demand for accuracy
is continuously growing in industry, diffraction gratings have to
be manufactured with very high precision. While imperfections
or defects are present, those have to be identified, and one has to
know their effect on measurement.

The paper presents theoretical formulas for calculation of
diffraction by perfect infinite and finite amplitude gratings with
Fresnel and Fraunhofer approximations [1,9-13]. Further, gen-
eral formulas for diffraction by an imperfect diffraction grating
are derived where edges of the grating are described with general
harmonic functions. Such a formalism provides enough power
to accurately characterize imperfections of diffraction grat-
ings, and it serves as a simple tool for a solution to a diffraction
problem.

Many studies of diffraction by gratings have been presented
[2—8] using various approaches. Similarly, several authors pub-
lished different approaches to solve diffraction problems by
imperfect circular apertures, slits, etc. [14-23]. The diffrac-
tion by gratings with rough edges was studied in [24-29].
Nevertheless, the approach presented in this paper is unique,
and it offers the very simple possibility to analyze diffraction by
imperfect gratings without any expensive software tools.

2. DIFFRACTION BY APERTURE

Itis known from the diffraction theory that the amplitude of the
field in arbitrary point P of the space behind an aperture (or a
series of apertures) can be calculated with the formula [1,9-13]

1559-128X/20/309368-08 Journal © 2020 Optical Society of America

U(P):—é / / U SRR (o e A, (1)
A

rPM

where the integration is performed across the surface A of the
aperture. Equation (1) is the so-called Sommerfeld solution
of diffraction (Sommerfeld diffraction integral or Rayleigh—
Sommerfeld solution of the second kind). This formula enables
us to calculate the field properties U(P) in an arbitrary point P
of an area bounded by surface S, if one knows the field U(M)
on such a surface, while rpy is the distance between points P
and M, and cos(n, rpy) denotes the cosine of the angle between
inner normal vector n = (0, 0, 1) to the surface S with a direc-
tion of the vector rpy (see Fig. 1). Intensity of the field /() in
point P is then given as follows:

I(P)=|U(P)I*. @)

It is usually possible to use several simplifications during
calculations of practical examples, which makes numerical
evaluation easier. Distance 7 pys between points P and M is given
with the formula (according Fig. 1, z3s = 0)

rpM = \/(XP —xm) +Or —ym) + 25

(xp — x>+ (p — yu)?
+
2zp

&“z[)

: (3)

where the Taylor series neglecting higher orders was used.
Moreover, if one supposes only small diffraction angles,
i.e., cos(n, rpp) ~ 1, then Eq. (1) can be approximated with
satisfactory accuracy as follows:
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My, Yar)

=

4 P(xp, ¥p, 2p)
.

Fig.1. Diffraction by aperture.

U(P):C// U(M)
A

14
X exp {zl;[(xp —xm)’+ (p _}’M)z]} dxardy s,

Co _i exp(ikzP)’ @

A Zp

where 7pyy is substituted by Eq. (3) in the exponent of Eq. (1),
and the denominator is equal to 7py = zp. Equation (4) rep-
resents the so-called Fresnel approximation of the Sommerfeld
diffraction integral.

In the case of diffraction by an aperture of characteristic
dimensions much smaller than distance zp, one can suppose

ik
exp [Euil +yi4>} ~1. (5)

The same approximation would hold for coordinates x p and y p,
which states that the diffraction is studied near the optical axis.

In the case of diffraction of a convergent spherical (or approx-
imately spherical) wave with the center in point P or in its close
distance, itholds:

7
U(M) = T(M) exp |:—2Z7P(x,2w + y}w)} , (6)

where function 7(M) characterizes properties of these waves in
the plane of the aperture. Equations (5) and (6) give the so-called
Franhofer approximation of diffraction integral. If one denotes

u=xp/zp and v=yp/zp, (7)

the field in point P can be described by formulas

UPr)=C // U(M) exp[—ik(uxpr + vya)ldxpdyr, (8)
A

upr)=cC // T (M) expl—ik(uxpr + vyu)ldxydys. (9)
A

One can see that considering the Franuhofer approximation
of the diffraction integral, the field U(P) is proportional to

Fourier transformation of the field in the plane of the aperture.
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3. DIFFRACTION BY AMPLITUDE GRATING
A. Diffraction by Perfect Amplitude Grating

Consider now an amplitude diffraction grating [9-13]
(e.g., Ronchi grating), whose scheme is shown in Fig. 2, where p
denotes the period and 4 the width of the transparent part of the
grating. Afterwards, such a grating can be characterized with the

formula ( = +/—1)

f&=4) rect<5_b”]’>= Y cnexp <i27nn$>,

N N (10)
where [11]
L, Ixl<1/2,
rect(x) =1 1/2, |x|=1/2,
0, |x] >1/2,

A is the amplitude transitivity of the grating, and Fourier coeffi-
cients ¢, are given as follows [9-12]:

anAésinc <n_b> , (11)
b4 p

where sinc(x) = sin(rx) /(7w x). Further, consider that the grat-

ing is opaque outside the region (i.e., the field outside the men-

tioned region does not affect the diffraction).

Without loss of generality, one can suppose A =1 for the
next purposes. The goal is to calculate the state of the field
U(x, y, z) in distance z behind the grating. Using the Fresnel
approximation of the Sommerfeld diffraction integral [1,9,13]
for a complex amplitude of wavefield in the point of Cartesian
coordinates (x, y, z), one gets

c

d
U(x,y,Z)=C/ Ulxms yu, 0)
—d

—C

= 2
X Z C,eXp (i—nan>
o0 14
_ 2 _ 2
X exp |:z'k (= x)" + O = yan) ] dxprdy ar,
2z
(12)
n
2d £

2c

Fig.2. Amplitude grating.
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where U(xp, ym, 0) denotes the complex amplitude of
the field impinging on the amplitude grating, # =27/ is the
wavenumber, A is the wavelength, 24 is the height, 2¢ is
the width of the grating, and (xs, y») are coordinates in
the plane of the grating. Suppose now that the impinging field
is a plane wave. Therefore, one can set without loss of generality
U(xp, ym, 0) = 1. The derivation of the field state in the plane
behind the amplitude grating is presented in a previous paper
[30]. It can be shown that the following formula holds [30]:

. o0 2
U(x, y,2)= —% exp(ikz) Z U,exp |:z' (y - /43_01)1| ,

— (13)

where
U,=c, [F(t1) = F(©)] [F(61) — F(6,)], (14)

while

x—c)f+2 (x+c)f+2

7
=@ -—dJa, 6=

L
(o +d)va.

a=mn/(Az), B=-"12nn/p, y=2nx/p,
(15)
and F(7) denotes
F(1) =/ exp(i¢?)de =\/§[C(r,/z/n) +iS(ty/2/m)].
0
(16)

where C(t4/2/m) and S(t/2/7) are Fresnel integrals [10-13]
defined by formulas

C(x)=/:cos( )dt S(x)Z/O

The field intensity is then given according to Eq. (2):

Ly e <y—4/3—2):|'2. (18)

X

sin ( ) de. (17)

I(x,y,2)=

n=—00

The addition in Eq. (18) demonstrates that the image
of intensity will be identical to its template for distances
z= Nz7= N(2p*/A), where N is a constant. The distance
z7 = 2p? /A is the so-called Talbot distance [30-33].

For an infinite diffraction grating (¢ — oo and & — 00), one
can apply the known properties of limit cases of Fresnel integrals
[10-13]. Afterwards, the complex amplitude and the intensity
can be calculated with formulas [30]

Ulx, y, 2) =—i exp[ (kz—i— 2)] i € eXp [i ()’ - Z)]

(19)
oo Nl
X cor[ (- 4))

n=—00

I(x,y,2)= (20)

Consider now a diffraction problem by a finite grating.
One can calculate the state of the field U(x, y, 2) in distance z
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behind the plane of the grating, which is described by Eq. (10),
with Eq. (8) (Fraunhofer approximation, U(M) =1), and it
holds:

Ulx,y,2)= / / Z Cp €Xp (z—an>

n

x exp[—ik(uxp + vy ldxpdypr. (21)

Equation (21) describes diffraction by the grating that is
impinged on by a convergent spherical wave with radius
z. Considering further the formula fic exp(iy€)dE =
2sinyc/Y, one can modify Eq. (21) to express the state of
the field U(x, y, z) after simplification, and it holds:

U(x, y, 2) = —4i exp(ikz) sm(/evd) Z cnS,,
kvz £

S,=sin(Yc)/y, Y= 277[71 — ku. (22)

And it follows for the intensity on the plane in the center of
the convergent spherical wave (which is distanced by z from the

grating):

. o0 2
I(x,y,2) = 16|:SH;L(:Uvj) Z cn5n:| . (23)

Thelimit case for # = v = 0 then is represented by the formula

24\ v
](0, 0,Z)=4<E> |:Z Cy

n=—0o0

sin(2nnc/p):|2 o)
n

B. Diffraction by Imperfect Amplitude Grating

Suppose now the case of an imperfect amplitude grating. Let
any individual slit of the grating be described as an individual
diffraction by the aperture. The field behind the imperfect grat-
ing then will be characterized as a superposition of contributions
of those individual sub-apertures. Generally, one can consider
the following formula to describe the grating, and it holds:

O E—E,0(0)
f(E,n)—An;OOrectI:—bn(n) } (25)

where A is the constant, &, ¢(17) denotes the function of the cen-
ter line of the nth slit (sub-aperture), and 4, (1) is the function
ofits width. Figure 3 distinctly shows a scheme of the considered
grating.

Further, one can suppose

1
En0(n) = S18n.a(0) + &np (M),

bn (77) = En,b(n) - ‘i:n,d(n)’ (26)

where &, 4(n) and &, 5, (1) are functions of individual edges of
the nth grating’s sub-aperture (slit). The edge-function can be
described by various types of prescriptions (approximations),
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fn,O = 6}’10(}7) n éﬂ,d én,O én,h
én,h = énh(r/) i“
gn,d = éfnd(n ) ?\\’
b, =b,(n)
T ¢
(b,
\ \
L
bn,O
Fig. 3. Scheme of 7 the slit (sub-aperture) of imperfect amplitude
grating.

e.g., power series, Legendre series, Fourier trigonometric series,
orsimilar [34].

The aforementioned general formalism covers various
types of gratings, which can have every slit of a different shape
[described by individual edge functions &, 4(17) and &, ,(n)]. In
general, central lines of slits [Eq. (26)] of the grating do not have
to be parallel, as one can vary individual shapes of the slits” edges.

For completeness, let an existence condition be defined.
The grating can be physically possible (manufactured) if the
following condition holds: max[&,_; 5 (n)] < min[&, 4(n)] for
every 1.

Suppose now that the grating has N slits; therefore,
n € [1, N]. Afterwards, the complex amplitude Ul(x, y, 2)
and the intensity /(x, y, z) in plane z behind the grating can be
expressed with the superposition principle as follows:

N
2 Us.
n=1

where Us,, is the contribution of the nth sub-aperture of
the grating. In the case of the Fraunhofer approximation of
the Sommerfeld diffraction integral, Eq. (8), one can write the
following formula for the grating of height 24:

2

N
U(x,y,z):ZUgyn, I(x,y,2)= . (27)

n=1

d En,b()/M)
Us,= CK/ f exp [—ik(uxp + vya)] dxardypr,
—d JEy 4Oy M)
(28)

- en(ib
where K =const, u =x/z,v=y/2,C= —i@,andk:
2

Consider now a specific case where the grating’s edges are
described by harmonic functions as follows:

b, .
E,.a() =£,0(0) — 2’° — Ay Sin(Q11 + Pu1),

by, .
.5 () = E,0(0) + 2’° + Ay sin(Q,00 + 9,2, (29)

where &, 0(0) and 4, ¢ denote, respectively, the position of the
center line and width of the sub-aperture for coordinate n = 0;
Ay, Ay are amplitudes of edge-functions; 2,1, €2, are
angular frequencies of edge-functions; and ¢, 1, ¢, 2 are their
initial phase shifts. Setting next Us,, = CK Us,, xy, one then
gets the following formula after appropriate simplification:
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d
US,n,xy = Z'DS,n,z / {CXp(-lkU_yM)
—d
X expl—if.2 sin(QRu 291 + 0421} dyus
d
—iDg 41 / {exp(—i/evyM)
—d

x exp[iB,,1 sin(§2,,1 9 + (pn,l)]} dyy,  (30)
where

,Bn,z = An,Zkuv ,3n,1 = An,lk”,

1 . bn,O
DS,n,l - E exp |:_l/€” (EW,O(O) - ) )i| s

) e

1 b,
Dg 2= o P |:—z'/eu (En,o(o) + 2’0

It holds for the limit case # = 0:

d
US’”’”"u:OZV/_d CXP(—Z'/?U)/M)[%

+ Ay sin(2, 194 + @u1)

+ A2 sin(Q, 090 + @42)1dyur. (32)
Forv =0, one gets

d

USJ’I,X] |v=0 = Z'DSJ’I,2 / CXP[_iﬂn,z Sin(Qn,ZyM + wnZ)]dyM
d

d
—iDg 4 / expli B sin(S2,1 94 + ©u1)1 dyur,
—d

(33)
andforu =v =0,
24,
US,n,xy }u=v=0 = an,od + Qn,f Sin(Qn,Zd) Sin(pn,Z
24, . .
+ ) .1 sin($2,,14) sing,, ;. (34)
n,1

Using Egs. (28)—(34) in (27), one can express the state of the
field in the plane behind the grating. Afterwards, one obtains for
intensity

x| ’
](xv ) Z) - )\.2_22 US,n,xy (35)
n=1
In thelimit case /(0, 0, 2), the following formula holds:
K& Ana .
10,0, 2) =4~ ; [bn,odjt Qmzsm(szn,zaz) sing,.»
A, 2
+ Z2L6in(Q,.14) simpn,l]
Qn,l '

(36)
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If one considers small amplitudes A, ; and A4, >, then the
function Uy ., in Eq. (30) can be simplified as follows:

d
US,n,xy %l‘DS,n.Z / CXP(_lkU)/M)
—d

X [1 =i, sin(, 090 + ¢0,2)1dym
d
—iDs 1 / exp(—ikvyy)
—d
x [1+iB,1sin(82, 191 + (Pn,l)]d}’M

d
=i(Ds,n2 — DS.n,l)/ exp(—ikvys) dyy
—d

d
+ :Bn.ZDS.n,Z/ exp(—ikvyn) sin(, 29 m + ©2) dyu
—d

d

+ ﬁr/,l DS,W,I/

(37)
Further, one gets after modification

US,n,xy ~ i(DS,n,Z - DS,n,l) Q
+ IBn,l DS,n,l Qn,l
+ ﬁn,ZDS,n,Z Qn,29 (38)

where

i(Dg.p2— Dsn1)Q=

4 . . bn,O
. sin(kvd) sin <ku7>

X [cos(ku&,,0(0)) — 7 sin(ku&, 0(0))],
(39)
2

W [Qn,l COS(/@Ual) sin(a’Qn,l)

Qn,l =

— kvsin(kvd) cos(a’Q”,l)] sin @, |

2

t Q. — k?

[Qn,l sin(kvd) cos(dS2,,.1)

— kv cos(kvd) sin(danl)] CoS P, 1, (40)

2

W [Qn,Z COS(kUd) sin(dQ”,z)

Qn,Z ==

— kvsin(kvd) cos(dQn,z)] sin @, 2

2

T —
Q. , — k?

[2,,.2 sin(kvd) cos(dS2,2)

— kv cos(kvd) sin(dQ,,,z)] COS Q2. (41)

Substituting Eqs. (39)-(41) into Eq. (38) can be used for
approximate calculation of the state of the field if the amplitudes
of the grating’s sub-apertures are small.

exp(—ikvyn) sin(,1ym + @u1) dyar.
d
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While deriving Eq. (37), the first two orders of Taylor series
exp(£iX)~1+iX — X?/2+ ... were used. Maximal rel-
ative error &,,;. of such an approximation of integrands in
Eq. (30) can be estimated from properties of orthogonal series
expansion, and it holds: €., ~ —X?/[2(1 £iX)]. Applying
in Eq. (30) and Eq. (37), one gets the following formula for the
estimation of the maximal relative error § Us , .y :

1

(SUS,n,x}/ X — 2U5
J,XY

d
I:Z'Ds,ng/ exp(—ikvy )
—d
X Br,sin® (29 m + @n2) dyus
d
+l'Ds,n,1f exp(—ikvy )
—d

x B2 sin* (19w + @1) dyr] - (42)

Equation (42) can simply be used for an analysis of the accuracy
of field-state calculation with Eq. (38).

Let one consider a specific case of the imperfect grating
that has the same shape of all the slits” edges, i.e., integrals in
Eq. (30) will be constants. Suppose now Eq. (30) for Fraunhofer
diffraction by a grating in the following form:

US,n,xy = l‘(DS.nA,Z G2 - DS,n,l Gl) (43)
Further, let one assume

Ds, 1 = By exp[—ikué, 0(0)],

Ds, 2 = By exp[—ikué, ¢(0)], (44)
where
1 kub, 1 kub,
B ZECXP <i 2 '0) , B, = Eexp <—z 5 ’0> . (45)

Afterwards, one gets for Eq. (30)
Us ey = 1(B2Gy — B Gy) exp[—iku§, o(0)]. (46)
If p denotes the grating’s period, then it holds:

§n+1,0(0) = gﬂ,O(O) + P (47)

After summing contributions from all slits of the grating,
one gets

N N
D Usinsy =i(B2Gy — B1G1) Y expl—iku, 4(0)]

n=1 n=1
sin(Ng)
sin g

=i(BG2 — B1Gy) explig(N —1)]

3

(48)

whereg = kup /2.

In a specific case of the same shape for both slits’ edges,
Le., An,l = An,Za S271,1 = Qn,Z» DOn1 = Pn,25 and bn,O = bO is
constant, one gets
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N
US = E US,n,xy
n=1

= by explig(N — 1] G [Sin(/’)] [Sin(Ng)

h sin g :|’ (49)

where h = kuby/2.
Further, it holds for a perfect grating (A4, = A4,,=0):
G = G, where

(50)

G = [sin(dkv)}
0= .

dkv

Therefore, one gets

) } . (51)

Us.o = bo explig (N — 1)] G [sin(b)i| |:sin(Ng)

sin g

Afterwards, the following formula for the difference between
amplitudes of imperfect and perfect gratings holds:

Us — Us o= (G — Go) b,

h sin g i| (52)

The difference in intensities between perfect and imperfect
gratings with same-shaped edges is then given with the formula

(g=tup/2,h=luby/2)

% explig(N— 1)] |:sin(}))i| |:sin(Ng)

: 2F . 2
Al =1y —1=[Gy— |G|k [Sm/sh)] [Sm-(Ng)} .
smg

(53)

Finally, the relative difference in intensities can be expressed as

follows:

Al G2— |G G\’

_:0—|21|:1_<ﬂ). (54)
Iy G2 Go

4. EXAMPLES

A. Example 1-Diffraction by Perfect Amplitude
Grating

Figure 4 shows the intersection of intensity of a diffraction pat-
tern calculated with Egs. (20) and (18) (Fresnel approximation)
for infinite and finite perfect diffraction gratings with parame-
ters p =0.5mm, 4 =0.25mm, A =633 nm, ¢ =d =5 mm,
A=1, y=0mm, and N,,x =500 in Talbot distance [30-32]
z=z7=2p?/)=789.8894 mm. Figure 5 then presents an
intensity diffraction pattern where the convergent spherical
wave with radius of curvature z impinges on the grating, cal-
culated by Eq. (23) (Fraunhofer diffraction). The horizontal
axis in Fig. 5 is expressed in angular coordinate @, and it holds:
tanw ==,

B. Example 2-Diffraction by Imperfect Amplitude
Grating with Irregular Grating Period

Suppose now the situation of an imperfect amplitude grating,
described by Eq. (25) and the following parameters:
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Fig. 4. Intersection of diffraction pattern intensity formed by

petfect a) infinite and b) finite amplitude gratings with parameters:
p»=05mm, $=025mm, A =633nm, ¢c=d=5mm, A=1,
y =0mm, z=z7="789.8894 mm, N, = 500.

0.8 q

0.7 g

0.6 1

0.5 4

- Fraunhofer

0.4 4

I(w)

0.3 J

. . | A
0 0.05 0.1 0.15 0.2 0.25
w [deg]

Fig. 5. Intersection of diffraction pattern intensity (Fraunhofer
diffraction) formed by perfect finite amplitude grating with parame-
ters: p=0.5mm, 6 =0.25mm,A=633nm,c =d =5mm, A=1,
y =0mm, z= 27 ="789.8894 mm, N, = 500.

Sn,o(o)znp(l—i_Ap)pO? npe[_l\lpy 1\7}1]9
bn,Ome An,l =A1’ An,2:A2a
Qn,l = Qla Qn,Z = 927 ©On1 = @1, D2 = P2, (55)

where A, =0.02, pp =0.5mm, N, =9, by =0.25 mm, and
A=A, =Q =2, =¢; =¢,=0. Consider dimensions
of the grating to be ¢ =d =5 mm, and the parameters of the
impinging field can be set without loss of generality as follows:
A=K =1,1=0633 nm, z= 150 mm. Therefore, this grating
has sharp linear edges and a variable period, which linearly
changes with the distance from its center.

Figure 6 shows an intersection of normalized intensities
in plane y =0 for Fraunhofer diffraction by a perfect grating
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Fig. 6. Intersection of normalized intensities in plane y =0 for
(a) perfectand (b) imperfect gratings with irregular periods.
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Fig. 7. Detail of intersection of normalized intensities in plane y =
0 for (a) perfect and (b) imperfect gratings with irregular periods for the
peak of the first diffraction order.

that has constant period py, and for the imperfect grating with
the aforementioned parameters. Figure 7 presents the same
situation in detail around the peak of the first diffraction order.
Figure 8 then presents the difference in those intensities. One
can see that irregularity of the grating affects the positions
of diffraction maxima. Further, the change in intensities in
individual peaks is visible as well.

C. Example 3-Diffraction by Imperfect Amplitude
Grating with the Same Shape of Slits

Suppose now the imperfect amplitude grating that has slits of all
the same shape, and the edges of those slits are identical. Let the
parameters of the grating be

bn,O = bv

§n,0(0)=”p]7, ”pe[_Npa Np]v

A1 =A,0=H40, Q1 =2,20=, @1 =0,2=0,

(56)
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Fig. 8. Difference in intensities of perfect (/;) and imperfect (/)

gratings with irregular periods in plane y = 0.
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Fig. 9. Diffraction by perfect and imperfect gratings, which have

slits of all the same shape, and the edges of those slits are identical.

where p =0.5mm, N, =10, 6=0.1mm, Ay=0.05mm,
and Q2 =1, ¢ =0. Consider dimensions of the grating to be
¢=d=>5mm, and the parameters of the impinging field
can be set without loss of generality as follows: A=K =1,
A=0633nm, z="789.8894 mm.

Figure 9 shows a comparison of intensity profiles for diffrac-
tion by a perfect grating (with zero amplitude of edges) and the
aforementioned imperfect grating. Results were calculated using
Egs. (49), (51), and (53). Identical results can be calculated with
Eq. (35). For such an imperfect grating, the intensity loss in
diffraction orders is significant compared to the perfect grating.
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5. CONCLUSION

The paper presented theoretical formulas for calculation of
diffraction by perfect infinite and finite gratings with Fresnel
and Fraunhoffer approximations of diffraction problems.
Further, the unique general formulas for an imperfect grating
were derived as well, where the shape edge-functions of individ-
ual slits (sub-apertures) were described with general harmonics.
This approach offers precise characterization of imperfections
of amplitude gratings. Moreover, it gives a simple solution to
a diffraction problem. Therefore, the results presented in the
paper contribute to possibilities of analysis of imaging (diffrac-
tion) by diffraction gratings, and presents outputs that can find
wide practical applications.
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1. Introduction

English scientist William Henry Fox Talbot (1800-1877) discovered a phenomenon in 1836 [1,2] and he described the
following properties of a propagating light field. When the wave field (e.g., a plane wave) impinges any periodical structure
(for example an amplitude grating or a field of holes in an opaque iris) the unique distances from such the structure exist
where the structure is self-imaged. Such a phenomenon - Talbot phenomenon - has many applications in optical metrology,
interferometry, or microelectronics [2-11].

This paper presents a detailed mathematical description of such a phenomenon for an amplitude grating illuminated by
a plane wave. A simple formula for a calculation of the edge spread function width, which affects the quality of Talbot image,
is shown. Such a study of the edge spread function of Talbot phenomenon on the amplitude grating has not been published
yet. The results of the analysis bring a complete insight to the problematics and it can serve as a great theoretical background
in many applications where Talbot phenomenon is used.

2. Mathematical description of Talbot phenomenon

Let one describes a mathematical theory of the phenomenon on the example of an amplitude grating. Suppose the
amplitude diffraction grating (Ronchi grating) shown in Fig. 1 where p denotes period and b is width of a transparent part
of the grating.

* Corresponding author.
E-mail address: petr.pokorny@fsv.cvut.cz (P. Pokorny).
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n

-b P_

Fig. 1. Amplitude grating.

The grating shown in Fig. 1 can be described with the following formula:

f&)=A Zoo: rect (5 _b”p) = Zoo: Cn exXp (iz?ﬂné). (1)

n=—o00 n=—o00

In Eq. (1) i denotes imaginary part (i=./(—1)), A is amplitude transparency of the grating and Fourier coefficients ¢, are
given as follows [12,13]:

b nb
cn =A—=sinc (—) 2
"TTp p (2)

Without any loss of generality, one can suppose A= 1. Using Fresnel approximation in Sommerfeld diffraction formula
[12-17], the complex amplitude U(x, y, z) of a wave field in a point given by rectangular coodrinates [x, y, z] behind the
grating can be described as follows:

d c
Ux,y,z)= C//U(fg”, n,0) Z Cn exp (iz?ﬂné) X

—d —c
_£)? _n)? 3
x exp [ik(x §) ;z(y n) } dédn, &)

1 exp(ikz)

Czkz’

where U(&, n, 0) denotes the wave field impinging the grating, k=27/A is wave number, A is used wavelength, 2d is height
and 2c is width of the grating, and (&, n) are coordinates in the grating’s plane. Let one suppose a plane wave impinging the
grating; afterwards, the generality of the study will not be lost with denoting U(§, n, 0) = 1. With the use of substitution:

t:x_S,UZ.V—’?,O‘:T"/)LZ,

B=-2mn/p,y =-px, (4)

the following formula can be used of the calculation of integrals in Eq. (3), it holds:

& , 52\/&+%
. 1 . B .
2 _ 1 b 2
/exp[l(at +Bt+y)ldt= ﬂexp [1 <y 40[)} / exp(iv”)dv. (5)
&1 5]\/&+%

Afterwards, Eq. (3) can be rewritten using Eq. (5) as follows:

U(x,y,z) = —% exp(ikz) Z Unexp (—iBx) exp <—if;) , (6)

n=-—0o0

where

Un=cn [F(61) = F (62)] [F(z1) - F ()], ™
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whereby
—(x—c)a+ ﬂf,
rz—(x+c)f+if, (8)
6, = (v - d)Va,
6, = (v + d)Va.

F(t)in Eq. (7) is given with the following formula:

T

F(r)= /exp( ig2)d¢

_ ﬁfcuﬁnmuﬁﬂ .

In Eq. (9), C and S denote Fresnel integrals [15,16,18]. Intensity of the field in given point [x, y, z] is than calculated with
the formula:

(9)

I(x,y,2) = U, y,2)?

10
,n.z ZUnexp 1,Bx) exp <—1’32> (10)

Nn=—00

Suppose now that z=Nzy, where zr =2p%/A and N=1, 2, 3, .. .. Afterwards, the third component in Eq. (10) is equal to one.
The distance zt is so called Talbot distance [2,3]. The intensity of the field in Talbot distance is than given as follows:

2

I(x,y,NzT)=%| f:Anexp (izp;nx)| , (11)
n=—00
where
An = cn [F (61n) — F (620)] [F (z1n) ~ F (Tan)]. (12)
Oy = y-d o y+d

2N’ n =y 2N

[T (Xx—C [T (X+C
Tin = W(T_ZNH)’IZ”: m(T—2N>

In the case of the grating with infinite size, i.e. c — oo, d — oo, it holds: A, — c,. Therefore, Talbot image of the grating is its
own copy. For a finite sized grating, it is obvious from Eq. (11) that Talbot image has the same period as the grating. However,
while the grating is defined with Fourier coefficients c;, its Talbot image has different Fourier coefficients A,. Moreover, one
can see from Eqs. (11) and (13) that Talbot image of Ronchi grating does not depend on the used wavelength.

(13)

3. Edge spread function of Talbot phenomenon

Let one study the effect of finite size of the grating on its Talbot image now. Because the size of the grating is limited
the edge of the image will not be steep as in the case of infinite grating. It will be gradual and the transition will have given
width. Function describing such a transition is called the edge spread function. The main focus of the following study will
be given on the effect of finite size of the grating on the edge spread function.

Let one define the width A of the edge spread function (similarly as in the theory of optical imaging) as a distance between
x-coordinates of the points where the tangent to the edge spread function intersects the top and the bottom of the pulse;
therefore, it holds: A =—A/I'(x;), where A is amplitude of the pulse and I'(x;) is derivative of Eq. (11) in the inflection point
on the side of the transition with x-coordinate x;. In Fig. 2 the situation for the grating with once amplitude (A=1) and size
10 mm x 10 mm is shown. For the edge spread function width A it holds: A =1.54 pm. SummationinEq.(11)is approximated
for n from —Nmax to +Nmax. One can see Gibbs phenomenon as well, as a result of approximation of discontinuous functions
(grating) with Fourier series [12,19].

One of the criteria for an image quality in the theory of optical imaging is an area under the edge spread function. The
smaller the area the better image quality of the optical system from the point of edge sharpness view. Such a situation for
the aforementioned Talbot imaging is shown in Fig. 2 with yellow colour.
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Fig. 2. Edge spread function for grating with size 10 mm x 10 mm. (For interpretation of the references to colour in the text, the reader is referred to the
web version of this article.)
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Fig. 3. Dependency of edge spread function width A on grating size for grating period p=0.1 mm.

Fig. 3 shows a dependency of the edge spread function on the grating size. Let one suppose the grating with size 2c x 2c¢
(i.e., c=d) and period p. Analysis of the aforementioned formulas gives the following approximate expression for the edge
spread function width A, it holds:

A~0.75p%/c. (14)

One can use Eq. (14) for an easy calculation of the edge spread function width of Talbot imaging; the formula gives results
with an error less than 10% for gratings where p/c>0.1.

4. Effect of used wavelength on quality of Talbot image

Let one study the effect of a spectral width dA of a used light on the quality of Talbot imaging with a grating. As is obvious
from the aforementioned formulas, Talbot distance zr = 2p2/A is wavelength dependent. For the case of small changes of the
wavelength, i.e. dA << A, the change of Talbot distance can be calculated as follows:

dzT=—2<§)2d)L=—zT (c%) (15)

As is obvious from Eq. (15), the change in Talbot distance is dependent on the ratio p/A squared for a given spectral width
dA. For usual cases in practice, where period p is much larger than used average wavelength A, the change in Talbot distance
will be very significant. For an example, the grating with period p=0.1 mm, used average wavelength A =500 nm, and
spectral width dA =20 nm cause change in Talbot distance dzy =—1.6 mm which is a significant value compared to Talbot
distance zr =40 mm. Usage of Talbot phenomenon in practical technical applications requires sources of light with very
tight spectral width (lasers, laser diodes, etc.). Fig. 4 shows the edge spread functions dependent on used wavelengths for
a grating illumination. The calculation was done for a plane distanced from the grating by Talbot distance for wavelength
A=500nm (zy =40 mm). As is obvious, the small change in wavelength (dA =1 nm) cause significant changes in intensity
profiles. Therefore, the grating image will be blurred in such an image plane.

5. Conclusion

Talbot phenomenon—a self-imaging of a periodical structure in given distances behind its template, when the structure
is illuminated by a plane or a spherical wave, has many practical applications in optical metrology and in industry. The paper
presented an analysis of the effect of a finite size of the grating on the edge spread function of Talbot image. The effect of
a spectral width on Talbot distance was studied as well. It was shown that Talbot image of Ronchi finite grating has the
same period as in the case of infinite grating; however, the amplitudes are different and they are not dependent on the used
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Nmax=1000, p=0.1mm,c=d=5mm
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Fig. 4. The effect of wavelength changes on edge spread function for grating with size 10 mm x 10 mm and period p=0.1 mm.

wavelength which is used for an illumination. Afterwards, it was shown that a small change of wavelength affects the edge
spread function significantly. The simple relation for the calculation of the edge spread function width of Talbot imaging
of Ronchi grating is shown. It allows the simple analysis of the edge spread function for different grating sizes without any
difficult calculations.
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Keywords: The paper presents novel formulas for an explicit calculation of the Point Spread Function for
Point spread function an optical system with a circular pupil and the case of axial-point imaging, which were derived
Pupil function with the use of Sonin’s integral. In such a case, it is not needed to perform integration in

Explicit calculation

T the pupil, as it is usual with different methods. The approach is presented and verified with
Sonin’s integral

examples. The presented apparatus wide-spreads the theory of calculation of the Point Spread
Function, and one can use it as an alternative solution of the mentioned task.

1. Introduction

One of generally well-known facts of the theory of optical imaging is that an image of a point, which is created by an optical
system, can be described as specific energy distribution (diffraction) characterised by intensity of the wave-field — so called PSF
which stands for the Point Spread Function [1-5]. If the optical system is rotationally symmetric and without any aberrations, the
maximal intensity of the wave-field will lay in a plane which corresponds to a geometric-optical image of the point at the object.

Intensity of such the field then depends on a shape of the pupil (circle, annulus, rectangle, slit, etc.), on a transmissivity, and
on a wavelength of used light. Further, the intensity distribution varies with distance where it is studied (calculated, measured). In
the case of a circular pupil, the problem is well described in Refs. [1-16], and several studies have been presented on the topic of
so called apodisation — the effect of pupil shape and transmissivity on PSF, see, for example, Refs. [17-19].

This paper covers the area of explicit calculation of the Point Spread Function for an optical system with a circular pupil and the
case of axial-point imaging. As will be presented, the Sonin’s integral [20,21] is used and novel explicit formulas are derived. With
the proposed method, it is not needed to perform integration in the pupil, as it is usual with different methods of PSF calculation. One
can explicitly enumerate the wave-field state in the image plane just with the use of proper series. The approach is then presented
and verified with examples.

The presented apparatus wide-spreads the theory of calculation of the Point Spread Function, and one can use it as an alternative
solution of the mentioned task, where the process of integration in the exit pupil of the optical system can be eliminated.

2. Imaging of axial point by optical system with circular pupil

At the beginning, suppose an optical system without optical aberrations and let the object and image space to be air. For the
following analysis, only the scalar wave-field will be considered, as it is a very accurate approximation for optical system with
numerical apertures less than 0.7 [8,9]. This condition is fulfilled in most of practical situations of optical systems (an exception
would be, for example, photographic objectives, microscope objectives with small or medium value of numerical aperture, telescope
lenses, etc.). Polarisation properties of the field can be neglected in this situation as well.
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Fig. 1. Calculation of diffraction of convergent spherical wave.

Suppose now the situation in Fig. 1. Let the scalar wave-field U(M) at the wave-front .S in image space of the optical system is
given. It is known from theory of optical imaging that the amplitude U(P) of the wave-field at point P in image space of the optical
system can be expressed as follows [1-5]:

U(P) = —%//SU(M)M cosa dS, )

MP
where M is the point at the wave-front S, r),p is the distance between points P and M, 1 is the wavelength of light, k = 2z/4
is the wave-number, and « is the angle between inner normal n of the wave-front .S and the vector r,,p, i denotes the imaginary
unit. Suppose next that the wave-field U(M) is a convergent spherical wave with radius R having its origin in point C, i.e. UM) =
A(M)exp(—ikR)/ R, where A(M) denotes the complex amplitude of such wave at point M.

Further, let the optical system is rotationally symmetric with circular pupil, and let values of 4, xp, and yp are much less
than radius R of the wave-front (i.e., the angle « is small as well). Then one can approximate cosa = 1, and exp(ikryp)/ryp =~
exp(ikrysp)/R. With such assumptions, one can simply conclude the following approximate formula for the amplitude U(P) at the
point P (for A(M) ~ A(p) and circular pupil), it holds [1-6]:

2 ikR !
0= =i |2 [ Ao oo, @

where
2 2
A/ Xp tVp
AW S WALy ®
A \R Ac Ac
t= \/x%, + y%,, p=r/a, R=rop— R, a=r,,, is the maximal value of r, J, is the Bessel function of the first kind, and ¢ = R/(2a) is

the f-number of the optical system in image space.
In the presence of aberrations of the optical system, one can modify and express Eq. (2) as follows [1-5]:

1
UpP)=1L /0 P(p)Jy (zp) pdp, )
where
_ .2zd? exp(ik R) _ . = B
L=-i R [T] =-1 <2/17> eXp(lkR), (5)
P(p) = T(p)exp [ikW (p)] = T(p){cos[kW (p)] + i sinlkW (D)1}, ®)

where function T(p) characterises the amplitude pupil transmissivity and function W (p) is the wave aberration of the optical
system [1-5].
Finally, intensity I(P) in the case of imaging of axial point can be generally written using Eq. (4) as follows:
2
; @)

1
IP) = [UP)P = K /0 P(p)Jo (tp) pdp

where

2
2= *
K =|L| _<2,1c2> . ®
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3. Defocusation and spherical aberration of the third and fifth order

Consider now the optical system which images an axial point with presence of optical aberrations and defocusation. Such a case
covers various practical situations of optical systems, where an image of the axial point with as small aberrations as possible is
desired.

The wave aberration for imaging of axial point can be written, in the case of aberrations of the third order (Seidel aberrations),
as follows [1-6]:

W (p) = Wy + Wap® + Wyp* ©
where
A 55" g
W=z Wi 1qa 10

4 in the longitudinal defocusation, s’ is the longitudinal spherical aberration for an aperture ray passing the edge of the entrance
pupil, W}, is a constant, and c is the f-number of the optical system in the image space.
In the case of aberrations of the fifth order one can write [1-6]:

W (p) = Wy + Wap? + Wyp* + Wpb. an

If one assumes the image laying in the optimal image plane, where the Strehl ratio has maximal value, then it holds [22]:

W2=—W4—19—0W6, A=—-8c*W,, 12)

where A denotes the distance of optimal image plane from the paraxial image plane of the optical system. Considering és,,, to
be the extreme value of the longitudinal spherical aberration and r, the radial range of the zone from the optical axis where the

longitudinal spherical aberration has zero value (i.e., it is corrected), one can write following equations for coefficients W, and W,
it holds:

85’ o 3

_ _ 3.2
Ws = PN W, = 2W()ro. 13)
0

4. Explicit calculation of point spread function

Enumeration of integral in Eq. (4) or (7) for the intensity in the image plane of the axial point, i.e., the calculation of the Point
Spread Function (PSF), can be performed with the use of Sonin’s integral [20,21], where it holds:

xn+

1 /2
Jppng1 (%) = m/o J (xsint)sin™* ¢ cos?™* 1z dr . (14)

If m=0, x =1, and sint = p in Eq. (14), one can write Sonin’s integral as follows:

1
/ Joep)(1 = p*)'pdp=2"T(n + I)L(T) , (15)
0

J
o+l

where I'(n + 1) is Gamma function [23]. Further, if one expands function T'(p) sin[kW (p)] and T'(p) cos[kW (p)] as series:

T(p)sinlkW (p)] = Y py(1 =)' (16)

T(p) coslkW ()] = Y a,(1 = p*)",

then the amplitude U(P) can be calculated with formula:

JS+1 (T)
s+l '

1
UP)=L / P(p)Jy (zp) pdp=L Y, 2°(qs+ip)I(s+1) 17)
0 3
With Eq. (17), one can explicitly calculate the amplitude of the wave-field for the case of imaging of the axial point of the optical
system, if the series expansion of the function P(p) with basis {(1 — p?)*}, where s = 0,1,2, ..., is known. Afterwards, one simply
gets PSF of the optical system with Eq. (7), i.e. I(P) = |U (P)|?. The normalised intensity distribution (assuming I,,(zr = 0) = 1) then
can be calculated with formula:

2
I541(7)
s+l

1,(P) =K, , 18

Y 2%(g, +ip)T(s+ 1)
where

19
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Axial Point Spread Function (APSF) can be calculated as a limit case for = = 0, it holds:

U(T=O)=LZ%, (20)

and the normalised intensity of APSF is then given as follows:

. 2
z (g, +ipy) ‘ 1)

APSE =1 (r=0)=K
n=hE=0=K2, 557

N

5. Expansion of function P(p) into a series of {(1 — p?)’}

As was shown in the aforementioned parts of the paper, explicit calculation of PSF or APSF can be done if one is able to find the
series expansion (6) of P(p) with functions {(1 — p?)*}, where s = 0,1, ..., i.e. one has to calculate coefficients p; and g, of Egs. (16).
Exact (explicit) calculation of those coefficients is difficult and it is appropriate to calculate then numerically. The following part
will present several methods for such purpose.

5.1. Numerical calculation of coefficients p, and g, with least squares method

One of approaches to calculate coefficients p, and ¢, of Egs. (16) is numerical enumeration where the function P(p) is
approximated on a discrete set of values p,,.
Suppose that one knows values of P(p,,) = F.(p,,) + i F,(p,,) at points p,,, where

Fo(p) = T(0,) coslkW (p,)] . Fy(p,0) = T(p,,) sinlkW (p,)]. (22)

m=0,1,... M, py =0, py, = 1. Further, let S denotes the degree of expansion {(l — p?)*}, i.e. s =0,1, ...,.S, M > S, then one can
calculate coefficients p; and ¢, by solving the system of equations, for example with least squares method [23].

System’s matrix can be symbolically written as follows (with indexing from 0): A = (g, 1) = (1 — pm2)’. Further, let column
matrices F, and F, are defined: F, = (c,.11) = T(p,) cos[f (p,)], Fg = (s41.1) = T(p,) sinlf(p,,)]. Afterwards, coefficient matrices
q; = (¢y41.1) = g5 and p; = (py41,) = p, can be calculated as follows:

—1 -1
q,=(ATA) ATF, . p,=(ATA) ATF,. (23)
5.2. Calculation of coefficients p, and g, with Taylor series

Another approach of calculation of coefficients p, and ¢, in Egs. (16) is with Taylor series [23]. Without any loss of generality,
suppose that the pupil amplitude transmissivity is constant, i.e. T(p) =T, = 1.

Taylor series for a function f(p) = sin[kW (p)], where W (p) = Ef\i . W,,p* is even function, which has small values around the
point p = 0 (Maclaurin series), can be written as follows:

s
sin[kW (p)] = Y, Fy, 0™, 24
s=0
where
(2s)
e = S(p) (25)
2s)! =0
Series expansion of
s
sinkW (o)l = ). py(1 = p»)’ (26)

5s=0

is determined with coefficients p,. With the use of binomial theorem then one gets:

S S s S
o= =Y Yo, (;) Dk =Y By p, @7)

s=0 s=0 k=0 s=0

Sy _ s!
where <k> = oo
With comparison of members of corresponding powers of p and after modification, considering the symmetry of given problem,

one can express coefficients p, as follows:

s
b, = (=1)* Z (;) Fy . (28)
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Coefficients F,; can be calculated with Eq. (25), where one can enumerate high-order derivatives with general Faa di Bruno’s
theorem [24-26] (firstly presented by Arbogast in 1800 [24] and named by Faa di Bruno in 1855 [26]). It holds:

S— "D () \
FO @y =Y, )(u<p>)-]'[(”j—,(”)> , 29)
j=1 :

mylmy!--m,!

where summing is done with all tuples of positive numbers (m;, m,, ..., m,) which satisfies condition Z;’:I jomp=1-m+2-my+
cet+n-m, =n.

In the case of aberrations of the fifth order one set N = 3. Without any loss of generality one can suppose W, = 0 as well.
Therefore, it holds: W (p) = W,p®> + W,p* + Wyp°. As an example, consider S = 10. In such a case, one can express the first 11
coefficients p, as follows:

po=Fy+F+F,+Fs+Fg+Fy+F,+F,+Fg+ Fg+ Fy, (30)
P =F+2F, +3F+4F;+5F0+6F,+7F,4+8F¢+9F;3+10F,
pr=F, +3F;+6F;+10F g+ 15F, +21F;, + 28 Fi¢ + 36 Fg + 45 Fy,
Py = Fg+4 Fg + 10 Fig + 20 Fj, + 35 Fi, + 56 Fg + 84 Fjg + 120 Fy,
ps=Fg+5F g+ 15F, +35F 4+ 70 Fjg + 126 Fi3 + 210 F,,

ps = Fio+ 6 Fpy + 21 Fiy + 56 Fig + 126 Fjg + 252 Fyy,

P = Flz +7F14 +28F16 +84F18 +210F20,

p7 = F14+8F16 +36F18 + 120F20,

pg = F16 +9F18 +45F20,

pg = FIS + lOon N

p1o =T

Afterwards, one gets coefficients F,; for function f(p) = sin[kW (p)] with Eq. (25) as follows:

Fy =0, 31
Fy =Wk,
F,=W,k,

”23 3
F6= —T k +W6k,
Wy? Wy 3
f=\——"7%— )%

e Wy r W Wat  Wawr\ o,
10 = TAN +t\—F7F———F k,
120 2 2
WLyt w, w3
F12=%k5+<_74_W2W6W4>k3’

" 5040 24 12 2 2

Fo= A2 i We W wy Wil wy e AL JE
16— 720 + 6 M) + 2 ’

_w’ 9+<_W6%6_%5m2) ;

W, W, Wyt W, w2 WiW, W, W2
F14=< 2>k7+(62+2 N VS L e R T VS

F
187 362880

720 240
(W WIWEWe W Wit s T s
12 4 24 6 ’

o= W W, O+ W W, wtwy? i
207 740320 120 144

W W Wt W WE W W
4 6 120 ’

To derive the aforementioned formulas, one can use properties of even function W(p) = Zfl 1 Wai p*. Therefore, derivatives at point
p =0 can be expressed as follows:

W) =@t . W) =0, (32)
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and further it holds:

T KW (p)) = sin[

. = sin <m§> . (33)
o=

Similarly to Eq. (28), one gets coefficients g, of g(p) = cos[kW (p)] = Zf:o q,(1 — %)’ as follows:

N

i
g, = (-1)° ; (s> Gy (34)
where G,; denotes coefficients of Taylor series calculated with formula: G,; = g?7(p)/(2i)! o Further, it holds:
P

g™ W () = cos [kW (o) + mg]

Y = cos (mg) , (35)

p=

and one gets coefficients G,; after modification:

Go=1, G,=0, G4=<—T> K2, (36)

Ge = (- W,) K2,

Wyt w,?
G8=2—Zk4+<—74—WZW6> K2,

Wy W,
Gio= —o— K+ (=W W) k2,

W, o (W wliwit\ w2\
G, = K Kk -8 ) &2,
12 < 720) +< 6 T 1 "\ 72

W,> W, W W2 W, W, W,3
Gl4=<‘§To4>k6+< kil L

G2 W s (W W
16 ™ 40320 120 48

WP W2 W, W.2Pw, W,*
+ 2 6 + 274 6+ 4 k4
4 2 24

p =W27W4k8+ Wewtw, Wy wy 46
187 75040 24 36
WiAW, W, W, W,?
+< 4 6+ 2 24 6 >k4,

o (Wewsl | watwi g
3628800 5040 1440

+< Wyt W62 Wy Wy W W22W44>k6

12 48

W6 Wz W? > 4
3 )

6. Examples

In the following examples, the optical system affected by residual spherical aberration of the fifth order will be considered, and
coefficients p, and ¢, of Egs. (16) will be calculated. Suppose that the optical system has corrected spherical aberration for zone
ro = 1 (pupil edge) and let the pupil amplitude transmissivity is constant, i.e. T(p) = T, = 1. Extreme value of longitudinal spherical
aberration §s’,,, will then occurs for zone r = V0.5 = 0.707. Let the f-number of the optical system be ¢ = 4 and 65 ,,, = 24Ac>.
Afterwards, one gets aberration coefficients for optimal image plane as:

Wy =65 ,,/6¢2 =44, W, =-3W,/2=-65,,/4c> =64, 37)
Wy = —W, —9W;/10 =244, A= -8c*W, =085, = 19.24c>.

Finally, let the wavelength is 4 = 587 nm.
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5s' =023 mm, W, = 2.4}, W, = -6.0), W = 4.0)

cos[ kW(p) ]

1.5 T T T T T T T T

sin[ KW(p) ]
\
3

Fig. 2. Approximation of functions cos kW (p) and sin kW (p) for S = M =5 (solid line — exact functional values, dashed line — approximation, blue points —
uniform points distribution on the interval [0,1].

A=587nm,c=4,M=8=5, Al =28.7%

5 =0.23mm, W, =2.4\, W, =-6.0\, W. = 4.0\
1.2 L A i il

0.8

< o6t

0.4

0.2

10

Fig. 3. Comparison between the calculation of normalised intensity distribution with Eq. (18) (dashed line) and numerical integration with Eq. (7) (solid line),
S=M-=5.

6.1. Numerical calculation of coefficients with least squares method

As the first example, let the coefficients p, and ¢, of Eqs. (16) are calculated with least squares method. As was mentioned,
properties of the wave aberration are known, and one can simple compose system matrix for selected points p,,, where m =
0,1,...., M, py =0, py; = L. Coefficients then can be calculated for selected .S with Egs. (23).

In the case that P(p,,) is not known at point py, it is appropriate to fill the matrix of system by appropriate boundary conditions.
For the case of uniform amplitude it holds: ¥, g, = T, = 1 and Y, p, = 0. Therefore, new row of values (ay, ;) = 1 should be
added to matrix A, and matrices F, and F should be filled by values (cy,; ;) =Ty =1, and (s5,,,) =0.

Fig. 2 shows comparison of approximations of function cos [kW (p)] and sin [kW (p)] for the case S = M =5 and p,, uniformly
distributed at interval [0, 1]. Fig. 3 then compares normalised intensities calculated with Eq. (18) and numerical integration by
Eq. (7). One can see that error Al in the calculation of normalised intensities for = = 0 is equal 28.7% in this case. Figs. 4 and 5
then presents similar results for S = M = 18, the order which were found iteratively to fulfil the condition 47, < 1%.
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cos[ kW(p) ]

Ss'ext =0.23 mm, W2 =24), W4 =-6.0), W6 =40\
1 _C—Aa-_s T T T T T T T T
AN e
05+ Q o
]
0 \o\ e rd
6o
0.5
A L L I I ! 1 L !
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
14
1 T T o - m < g
08 /
06 p
/
04 o
02F 9
o /0/ L L | ! L L
0 0.1 0.2 0.3 0.4 0.5 0.6

P
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Fig. 4. Approximation of functions cos kW (p) and sin kW (p) for optimised .§ = M = 18 such that the error in calculation of normalised intensity 41, for r =0
is less than 1% (solid line — exact functional values, dashed line — approximation, blue points — uniform points distribution on the interval [0,1].

0.8

A=587nm,c=4,M=5=18, Al =04 %

65'"‘ =0.23 mm, W2 =24), W4 = 6.0}, ws =4.0)

0.7

T T

-5 0 5

Fig. 5. Comparison between the calculation of normalised intensity distribution with Eq. (18) (dashed line) and numerical integration with Eq. (7) (solid line)
for optimised S = M = 18 such that the error in calculation of normalised intensity 4I, for r =0 is less than 1%.

6.2. Numerical calculation of coefficients with Taylor series

The second example considers defocusation W, = 0.54 and W, = Wy = 0. The goal is to find number of members (order) of the
series for coefficients p, and ¢, to reach the accuracy of 41, < 1% at = = 0, both for series in Egs. (16) calculated analytically with
Egs. (28) and (34) and for numerical calculation by least squares method.

Fig. 6 shows result of iterative calculation with analytical formulas (28) and (34), where the desired condition is fulfilled for
M =S =09, i.e. for ten coefficients. Fig. 7 then presents similar results for numerical calculation by least squares method. In such
a case, M = .S =6 only, i.e. one needs seven members of the series.
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A=587nm,c=4,M=S =9 (Taylor), AIo =0.2%
W, =053, W, =0.0\, W, =0.0\

T T T T T T T 9

Optik 239 (2021) 166885

Fig. 6. Comparison between the calculation of normalised intensity distribution with Eq. (18) (dashed line in the top figure) and numerical integration with
Eq. (7) (solid line in the top figure) if the coefficients p, and ¢, of series (16) were calculated with analytic formulas (28) and (34) (Taylor series) for optimised
S = M =9 such that the error in calculation of normalised intensity 41, for = = 0 is less than 1%; the bottom figure shows the difference of normalised intensities

between explicit and numerical calculation.

A=587nm,c=4,M=S =6 (LSM), AI0=0.0%
W, =051, W,=0.0\, W, =0.0A

Fig. 7. Comparison between the calculation of normalised intensity distribution with Eq. (18) (dashed line in the top figure) and numerical integration with
Eq. (7) (solid line in the top figure) if the coefficients p, and g, of series (16) were calculated with the least squares approach for optimised S = M = 6 such
that the error in calculation of normalised intensity 4I, for z = 0 is less than 1%; the bottom figure shows the difference of normalised intensities between

explicit and numerical calculation.
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7. Conclusion

The paper presented new formulas for an explicit calculation of the Point Spread Function for axial point imaging by the optical
system with circular pupil, where Sonin’s integral was used during derivation. With presented method, one can explicitly enumerate
the intensity distribution in the image plane without any integration. Further, the derived formulas were presented and verified with
examples.

The results fulfil the field of theory of the Point Spread Function calculation, and the proposed procedure can be used in various
cases where the reader wants to avoid the integration in the plane of exit pupil of the optical systems. The derived formulas can be
further used for analysis of influence of individual aberrations coefficients on distribution of the Points Spread Function.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

This work was supported by the Grant Agency of the Czech Technical University in Prague, Czech Republic, grant No.
S$GS21/092/0HK1/2T/11.

References

[1] M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, 1999.
[2] A. Maréchal, M. Francon, Diffraction, Structure Des Images: Influece de la Coherence de la Lumiere, Vol. 1, Editions de la Revue d’optique théorique et
instrumentale, 1960.
[3] E. O'Neill, Introduction To Statistical Optics, Dover Books on Physics, Dover Publications, 2003.
[4] J. Goodman, Introduction To Fourier Optics, W. H. Freeman, 2017.
[5]1 A. Miks, Applied optics, CTU in Prague, 2009.
[6] W. Welford, Aberrations of Optical Systems, CRC Press, 2017.
[71 J. Braat, P. Dirksen, A.J.E.M. Janssen, Assessment of an extended nijboer-zernike approach for the computation of optical point-spread functions, J. Opt.
Soc. Amer. A 19 (5) (2002) 858, http://dx.doi.org/10.1364/josaa.19.000858.
[8] A. Miks, J. Novak, P. Novak, Calculation of point-spread function for optical systems with finite value of numerical aperture, Optik 118 (11).
http://dx.doi.org/10.1016/j.ijl€0.2006.05.002.
[9] A.S. Marathay, G.B. Parrent, Use of scalar theory in optics, Journal of the Optical Society of America 60 (2). http://dx.doi.org/10.1364/josa.60.000243.
[10] D.G. Flagello, A.E. Rosenbluth, Lithographic tolerances based on vector diffraction theory, Journal of Vacuum Science & Technology B: Microelectronics
and Nanometer Structures Processing, Measurement, and Phenomena 10 (6). http://dx.doi.org/10.1116,/1.585959.
[11] J.J. Stamnes, H. Heier, Scalar and electromagnetic diffraction point-spread functions, Appl. Opt. 37 (17). http://dx.doi.org/10.1364/A0.37.003612.
[12] C.W. McCutchen, Generalized aperture and the three-dimensional diffraction image, J. Opt. Soc. Am. 54 (2). http://dx.doi.org/10.1364/josa.54.000240.
[13] J.C. Heurtley, Scalar Rayleigh-Sommerfeld and Kirchhoff diffraction integrals: A comparison of exact evaluations for axial points, J. Opt. Soc. Am. 63 (8).
http://dx.doi.org/10.1364/josa.63.001003.
[14] H. Osterberg, L.W. Smith, Closed solutions of Rayleigh’s diffraction integral for axial points, J. Opt. Soc. Am. 51 (10). http://dx.doi.org/10.1364/josa.51.
001050.
[15] Y. Li, Predictions of Rayleigh’s diffraction theory for the effect of focal shift in high-aperture systems, J. Opt. Soc. Am. A 25 (7). http://dx.doi.org/10.
1364/josaa.25.001835.
[16] C.J.R. Sheppard, P. Torok, Focal shift and the axial optical coordinate for high-aperture systems of finite fresnel number, J. Opt. Soc. Am. A 20 (11).
http://dx.doi.org/10.1364/josaa.20.002156.
[17] P. Jacquinot, B. Roizen-Dossier, Apodisation, in: Progress in Optics, Elsevier, 1964, http://dx.doi.org/10.1016,/50079-6638(08)70570-5.
[18] A.N.K. Reddy, M. Hashemi, Apodization pupils: design and performance (review), J. Phys.: Conf. Ser. 1096. http://dx.doi.org/10.1088/1742-6596,/1096/
1/012140.
[19] J. Ojeda-Castaiieda, C.M. Gémez-Sarabia, Tuning field depth at high resolution by pupil engineering, Adv. Opt. Photonics 7 (4). http://dx.doi.org/10.1364/
aop.7.000814.
[20] Sonin integral, https://encyclopediaofmath.org/wiki/Sonin_integral.
[21] G. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library, Cambridge University Press, 1995.
[22] A. Miks, J. Novak, P. Novak, Dependence of Strehl ratio on f-number of optical system, Appl. Opt. 51 (17) (2012) 3804, http://dx.doi.org/10.1364/ao.
51.003804.
[23] K. Rektorys, Survey of Applicable Mathematics, Mathematics and Its Applications, Springer Netherlands, 2013.
[24] L. Arbogast, Du calcul des derivations, 1800.
[25] B. Tortolini, Annali di scienze matematiche e fisiche, no. sv. 6, Tip. delle bella arti, 1855.
[26] Faa di Bruno’s formula, https://en.wikipedia.org/wiki/Fa%C3%A0_di_Bruno%:27s_formula.

10



Optik - International Journal for Light and Electron Optics 230 (2021) 166317

Contents lists available at ScienceDirect

Optik

journal homepage: www.elsevier.com/locate/ijleo

Original research article t.)

Check for

Influence of circular and annular pupil function on Axial Point | updaid’
Spread Function of optical system

Antonin Miks, Petr Pokorny *

Czech Technical University in Prague, Faculty of Civil Engineering, Department of Physics, Thakurova 7, 166 29 Prague 6, Czech Republic

ARTICLE INFO ABSTRACT
Keywords: The paper presents an analysis of influence of shape and transmissivity of a pupil of an optical
Axial Point Spread Function system on an axial energy distribution while the optical system images axial point. Therefore, a

Point spread function

depth of focus is studied. Specifically, the analysis is done for uniform illumination of a circular
Pupil function

pupil, and for the circular and annular pupil in the case of Gaussian amplitude distribution.
Analytical formulas for Point Spread Function and Axial Point Spread Function are described, and
characteristics of properties of the depth of focus of the optical system are derived. The novel
analytic formulas presented in the paper can be used for determination of the value of the depth
of focus of the optical system for given threshold limit of normalized axial intensity.

1. Introduction

It is well-known from the theory of optical imaging that an image of a point, created by an optical system, is a diffraction energy
distribution characterised by an intensity of wave-field (PSF - Point Spread Function). In the case of a rotational symmetric optical
system without aberrations, the maximal intensity of the wave-field will lay in a plane corresponding to a geometric-optical image of a
point of an object. Intensity of the field will be dependent on a shape of the pupil (circle, annulus, rectangle, slit, etc.), on a trans-
missivity, and on a wavelength of used light. Further, the intensity distribution will be influenced by a distance where it is studied
(calculated, measured). In the case of a circular pupil, the problem is well described in Refs. [1-11], and several studies have been
presented on the topic of apodization - the effect of pupil shape and transmissivity on PSF, see, for example, Refs. [12-14].

The goal of this paper is to analyse the influence of shape and transmissivity of a pupil of an optical system on an axial energy
distribution while the optical system images axial point. Therefore, a depth of focus is studied. Specifically, the analysis is done for
uniform illumination of a circular pupil, and for the circular and annular pupil in the case of Gaussian amplitude distribution.

The analysis and modelling of the axial PSF (APSF) has been carried out by many authors. In the paper [15], the APSF is modelled
and analysed for applications in wide-field microscopy. Authors of paper [16] model the transverse and axial PSF with the
Martinez-Corral filter (the Martinez-Corral filter consists of a transparent annulus and central clear circular aperture of area less than
the area of the annulus) and with new filter of a definite number of black and white annuli of a certain number of circles, where the
center is a clear circular disc. Afterwards, the authors discuss several examples. The application confocal microscopy is shown in [17],
where the authors propose pupil filter, which are composed by a number of concentric annular zones with constant real transmittance.
The number of zones and their widths can be adapted according to the shape requirements. The presented method is then applied to
design filters that produce axial super-resolution in scanning systems. As another example, the paper [18] can be stated, where the
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Yp

— C .xP

Fig. 1. Calculation of diffraction of convergent spherical wave.

authors present a new simple iterative method which is used to binarize pupil filters designed to control the intensity distribution in the
focal volume of an optical system.

In comparison to the aforementioned papers, the presented work describes the PSF and APSF analytically. Specifically, the analysis
is done for the case of a circular and annular pupil with uniform or Gaussian amplitude distribution in the pupil plane. Further,
analytical formulas are derived which can be used for characterisation of the depth of focus properties, which have not been presented
before. Those novel formulas are a useful completion of theory and analysis of PSF and APSF.

2. Imaging of axial point by optical system with circular pupil

To introduce the reader into the analysis, consider now a physically perfect optical system, i.e. the optical system without aber-
rations, and let an object and image space are an air. In the analysis, consider the scalar wave-field only, which gives enough accurate
results for optical systems with numerical apertures less than 0.7 [3-6]. This condition can be fulfilled in most of practical situations of
optical systems (an exception can be microscope objectives with high magnification). Therefore, polarization properties of the field
does not have to be considered.

Suppose a scalar wave-field U(M) on a wave-front S in an image space of the optical system to be known. Further, it is known from
the theory of optical imaging that the amplitude U(P) in a point P in an image space of the optical system can be expressed by the
following formula, it holds [1,2]:

UP) = — // uan@PHne) o g, )

M s mp

where M is the point on the wave-front S, ryp is the distance between points P and M, 4 is the wavelength of light, k = 2z/1 is the wave-
number, « is the angle between the inner normal n of the wave-front S in the point M and the vector ryp, and i is the imaginary unit.
Suppose the field U(M) to be a convergent spherical wave, i.e. UM) = A(M)exp( — ikR)/R, with the radius R having its centre in the
point C. Further, let the point P is in a plane perpendicular to an axis OC which is distanced by A from the point C. Further, coordinates
of the point P with respect to the point O are (xp,yp,R+ A), and coordinates of the point M with respect to the point O are (rsing,rcosy,
Zm), where

ZM(2R—ZM) :rQ. (2)

Fig. 1 presents the considered situation.
According the Fig. 1, the following formula for ryp holds:
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pupil pupil point spread
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Fig. 2. Imaging of axial point with aberration-free optical system (A = 0).

2

- L(XPSI'”(.{) + ypcosg) 3

= —A—
'mp = Top R R

where rop is the distance between points O and P.

Consider now a rotational symmetric optical system with a circular pupil. Further, let the values A, xp, and yp are much less than the
radius R of the wave-front, i.e., the angle a is very small. In such a case, one can set: cosa ~ 1, exp(ikrmp) /rvp ~ exp(ikryp)/R, and the
amplitude U(P) of the field in the point P, for U(A) = A(p) and the circular pupil, can be calculated with approximate formula [1,2]:

. 2za* | exp(ikR)
P)=—i—— |7
up) = —ize { ] @
! Cad*A
X / A(p)exp< — 1kﬁp2>Jo(Tp) pdp,
0
where p =r/a, @ = 'may is the maximal value of r, and Jj is the Bessel function of the first kind [19]. Further, one gets:
_ AZ 2 2
R:ropr%A+sz. (5)

2R

The value 7 can be calculated with formula:

_2m(a s o WX +yp  at
R R e ©
where ¢ = R/(2a) is the f-number of the optical system in the image space, t = ,/x2 +y2, and g = nt/c.
Afterwards, in the case of A(p) = Ao where A denotes constant, the amplitude of the wave-field in the plane which is perpendicular
to the axis OC and lays in the point C (R ~ A = 0), can be calculated with Eq. (4) as follows:

. )

AR?

2A0 7 az) 27, (1)
T

Us(P) = —i (

The intensity in such a plane then can be calculated with the formula:
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d,=2r, |dy,=2r, |d=2a

Fig. 3. Scheme of annular pupil of a diameter d = 2a which is transparent in region created by two circles of diameters d; = 2r; and d, = 2rs.

2Ac? T

(1) = Io(P) = |Uy(P)]> = (”A(’)Q[ZJI (’)]2. )

One can see that the image of the point, in the aforementioned situation, is a diffraction distribution called Point Spread Function
(PSF), and the image is characterised with a specific energy distribution. It is known [1,2] that the diameter d4 of the central part of the
diffraction image (so called Airy disc) is given with the formula: dy, = 2.44c. As an illustration, Fig. 2 shows optical scheme of imaging
of a lighting point by an optical system without aberrations (A = 0).

In a general case, one gets for the intensity I(P) with Eq. (4):

I(r,A) = I(P) = |U(P)[* ©)
1 A 2
=K /OA(ﬂ)exp(—ik@ﬂz)Jo(w) pdp| .
where
Vi 2
K= (3a) (10)

For a normalized intensity I,(0, A) in the centre of the diffraction pattern (z = 0) one gets the following formula, A(p) = Ao, I,(0,0) =
1:

. 2
1,(0,A) =4 [%} , (11)
where
A
p= 82 (12)

One can simply derive from Eq. (11) that minimal values of intensity I,,(0, A) are located in places with A = 8nic?, wheren = +1,4+2,

3. Imaging of axial point by optical system with annular pupil and uniform amplitude distribution

Suppose now a situation of imaging with an optical system which has an annular pupil of a diameter d = 2a, and that this pupil is
transparent in annular region created by two circles of diameters d; = 2r; and d; = 2r5. The considered pupil is schematically shown
in Fig. 3.

Afterwards, instead of Eq. (9), one can write the following formula for the intensity of light I(z,A) = I(P):

2

I(r,A) =K (13)

P2 . A
/ A(/))exp( - lk@pz)Jo(w) pdp

P1

where p; =r;/a and p, = ry/a. Then, the normalized intensity distribution I,(0, A) in the centre of the diffraction pattern can be
expressed from Eq. (13) as follows (z = 0,Jy(0) = 1,A(p) = Ao, and I,(0,0) = 1):
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Fig. 4. Normalized intensity distribution I,(0, A) in the centre of diffraction pattern.
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Fig. 5. Normalized intensity distribution I,(z, A) for p; = 0.95 and p, = 1.00.
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In Fig. 4, there is the normalized intensity I,(0, A) in the centre of the diffraction pattern shown for the case of p; =0, p, =1, and
p; = 0.95, p, = 1. Fig. 5 then shows the normalized intensity I,,(z, A) for p; = 0.95 and p, = 1, and Fig. 6 presents the normalized
intensity I,(z, A) for p; = 0 and p, = 1. In all the figures, the wavelength 2 = 633 nm and the f-number of the optical system ¢ = 5.

Suppose now that the argument in the sinus in Eq. (14) is small. Further, one can write an approximate formula for the normalized
intensity in the centre of the diffraction pattern (suppose that sina ~ a — a®/6 for small ), it holds:

1,(0,4) = 14
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Error of approximation of A
=095 p,=1.00 \=633[nm]

c=5(red) c=10 (blue)

0 0.1 0.2 0.3 0.4 0.5
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Fig. 7. Relative error dA of A, calculated with Eq. (16) (solid lines) and Eq. (18) (dashed lines) from its exact value A.

272 2 2
B NS >

1,(0,A) ~ (1 o (15)

where A, = p3 — p2.
If one demands to calculate the minimal value of A, on the axis where the normalized intensity reaches I, = I,(0,A,), then, after
substitution from Eq. (12) into Eq. (15), one gets after simplification the following approximate formula:

16¢2
An(ly) = tin 6(1 f \/1—) . (16)

A more accurate results can be obtained considering the following approximation in Eq. (14): sina ~ a— a®/6+ a°/120. The
normalized intensity in the centre of the diffraction pattern then can be calculated approximately as follows:

A2k2}2 A4k4 2
_AKE A ﬁ4> . a7

1n(0,8) ~ (1 24 1920

And substituting from Eq. (12) into Eq. (15) results in:

16¢2
An(l,) = ii 10 — 24/304/1,, — 5, (18)
p

while one gets a real solution only for minimal usable value I, = (5/30)% ~ 0.028.

One can see from Egs. (16) and (18) that the depth of focus on the axis of the optical system, which will be characterised by the
value of Ap, is inversely proportional to A, = p3 — p3. Considering that the area of the annulus is 7(p3 — p3) = 7A,, one can see that the
depth of focus on the optical axis will be the same for different optical systems with different annular pupils but of the same areas; and
the depth will be, for constant values c and k, inversely proportional to this area of the annular pupil.

Fig. 7 presents relative errors (in percents) of approximate formulas (16) and (18) for calculation of A,, from its exact value A, for
two f-numbers of the optical system ¢ = 5 and ¢ = 10. One can see that the error of approximation with Eq. (16) is small for larger
values of the f-number c, i.e., for optical systems with not too large numerical aperture NA (¢ = 1/(2 NA)).

Fig. (8) presents normalized intensities of light I (z, A) for different starting values of p;. The values of p, are chosen to obtain the
same area of the annular pupil as in the case of the example presented in Fig. 5. Further, in Fig. 8, the red lines characterise the depth of
focus for the axial region where I,(0,A) > 0.75. One can see that the depth of focus is the same regardless the change in p,. However,
the transverse profile of the intensity changes, and transverse minimums of the intensity are closer for larger values of p;.

Consider now the problem of calculation of the first transverse minimum of the PSF in the image plane. Suppose the situation for
A =0 and A(p) = Ap. Afterwards, the intensity described by Eq. (13) in transverse direction can be approximated by a series
expansion. One gets after simplification:

S (_l)kTZk 2k
I(7,0) m AgK| S ————2— (p2kH2 _ pak2 (19)
(7,0) = Ao ;ZO F 0k 1 2) () (P32 = p1?)
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Fig. 8. Normalized intensity distribution I, (z, A) for different values p; and p, selected to obtain the same area of the annulus as in Fig. 5 (red lines —
axial depth of field for I,(0,A) > 0.75). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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Axial Point Spread Function for Gaussian beam
p;=050 p,=100 X=633[nm] c=5

1,,(0.4),1,(0,A)

A [mm]

Fig. 9. Effect of the value w on the profile of normalized intensity distribution I,,(0, A) and comparison with I;(0, A).

where the series expansion of the Bessel function of the first kind J, was used. Considering the first members only, than the transverse
value 7¢ of the location of the minimum of the intensity I(z,0) has to fulfil the following equation:

Te10® 4 Tuty* + Totg> + Ty =0 (20)
where

Ts =p,° +P14P22 +p12p24 +P26

T, =—48(p,* + p’p,° + p,°)
T, =1152(p> + p,?)
Ty =-9216.

In the case of circular pupil, i.e., p; =0, p; =1, one gets 7o ~ 3.66. Compared to a value 74 = (ar4)/(Ac) = 1.2z ~ 3.77, wherery =
da /2 denotes the radius of the Airy disc, it is obvious that the approximate calculation with Eq. (20) gives enough accurate results for
the guess of the first minimum of the diffraction pattern (PSF) in transverse direction. For values of p; and p, in Fig. 8 one gets: p; =
0.25, py =0.40, 79 ~ 7.27; p; = 0.50, p, =0.59, 79 = 4.38; p; =0.75, p, = 0.81, 79 =~ 3.07. It is obvious that choosing the values of
p, and p, affects and define the depth of focus of the optical system, and one gets better resolution of the system with larger radii of
inner circle of the annular pupil.

4. Imaging of axial point by optical system with annular pupil for Gaussian beams

Consider now a situation when the field in the plane of the pupil of the optical system corresponds to Gaussian beams. In that case,
one can write for A(p) the following formula [1,2]:

P
w-ev(-5). a

where w is constant. After substitution into Eq. (13) for the intensity generated by the annular pupil, one gets for the Gaussian beam on
the optical axis (r = 0):

2

P2 2
: P LA
L,(0,A) =K /p] exp(—ﬁ)exp(—lk@p) pdp (22)
Further, it holds for an axial distribution of the intensity for z = 0 after simplification:
Kw* 2 2
L(0,A) = [G} + G; — 2G,Gycos(kpD,) |, (23)

4wt +1)

where

Afterwards, one gets the following formula for the normalized intensity I;,(0,A) (Ig(0,0) = 1):
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Axial Point Spread Function for Gaussian beam
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Fig. 10. Normalized intensity distribution I;,(z, A) for Gaussian beam for parameters of the annular pupil p, = 0.50 and p, = 1.00, and A =
633 nm, ¢ = 5, for different values of w (red lines — axial depth of field for I,(0,A) > 0.50). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

G? + G2 — 2G,Gscos(kpA,)

(G = G (Pl w* +1) 24

I,,(0,A) =

It can be simply proven that the limit case for w — oo gives the formula for I,,(0, A) in Eq. (14). Fig. 9 shows the influence of value w
on the profile of the intensity I,,(0, A) compared to the intensity I, ,(0,A), for the situation of p; = 0.50, p, =1.00, 4 =633 nm, and
¢ = 5. It is obvious that the lower values of w generate larger depth of focus compared to the uniform amplitude distribution in the
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Error of approximation of A
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Fig. 11. Relative error dA of Ag, calculated with Eq. (26) from its exact value A for parameters p; = 0.50, p, = 1.00, 4 = 633 nm, and ¢ =5 for
different values of w.

aperture.
An approximate expression of the intensity I, ,(0,A) can be obtained using the Taylor series of the 7-th order in Eq. (24) with
respect to the variable . With such a procedure, and substituting for g, one gets the following approximate formula of the 6-th order:

La(0,A) = 1+ DyA + DyA* + DA o)
where
K\’ A G G,
D2 = - <ﬁ> W4 - e — 5 s
¢ (G1 — Gy)
D, = (L)4 WA Gi1Ga (8 + 12w)
8c? 12(61 — Gz)z )
D ( k )" 1 A°GiGy (8, 4304w +360w°)
— () e .
’ 8c? 360 (G, — Gy)’

Afterwards, to calculate an approximate value of Ag,, where the axial intensity distribution reaches the value of I, = I 2 (0, Agm),
Agm has to fulfil the following equation:

(1 = Ippm) + DaAg® 4+ DyAg® + DsAg,n® = 0. (26)

Fig. 10 presents the axial PSFs of the optical system for specific cases of the Gaussian beam in the plane of pupil, together with the
depth of focus for I, ,(0,A) > 0.50. Afterwards, Fig. 11 shows relative errors of A, ,, from its accurate values A, which are calculated
with Eq. (26) for p; = 0.50, p, = 1.00, 2 = 633 nm, ¢ = 5, and different values of w. One can see that for larger values of w, the
approximation is appropriate for limited values of A only. Fig. 10 shows that as the profile of the intensity is closer to the one of the
corresponding uniform amplitude distribution in the pupil, the approximation with the 6-th order (Eq. (25)) is accurate only for a close
central region of the APSF, i.e., for A close to zero. The more accurate results for Ag,, for a non-central region of the APSF can be
calculated numerically. An estimation of the relative error 6I;, of the approximation with Eq. (25) can be calculated with next member
of the Taylor series of Eq. (24), one gets:

1/ k\®
8y, = <@) [wm 27)

I g.n

A2Gi Gy (A°+56A,% w* +1680A,2 WS +20160w'?)
20160 (G — G, )

5. Conclusion

The paper presented an analysis of the 3D PSF (Point Spread Function) and APSF (Axial Point Spread Function) for the case of a
circular pupil and the case of an annular pupil. The situation of a uniform amplitude distribution and of a Gaussian beams was studied,
and new analytic formulas (Egs. (16), (18), (20), and (26)) were derived which characterise properties of the depth of focus of the
optical system. Those novel formulas have not been presented in previous works, and they are a useful completion of theory and
analysis of the APSF.
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Keywords: The paper analyses a possibility of determination of axial defocus of lighting point, which is
Microscopy imaged by an optical system without aberrations, from a knowledge of intensity distribution or
Imaging an amount of light (amount of energy — fractional total energy) detected in a region around a
Defocus

point's image centre. Analytic formulas for calculation of the defocus are derived, and they are
verified by numerical examples, simulations and experiment. Outputs show that the method can
evaluate the axial depth of the particle up to several micro-metres with accuracy in a range of
fraction of percents.

1. Introduction

In microscopy [1-10], there are many cases where one studies an object which composes of practically point micro-particles, for
example bacteria, coloured segments of structures with fluorochromes in the fluorescence microscopy, or similar. These micro-
particles are located in positions in an object space which are given by their spatial coordinates (x, y, z). It is quite simple to
determine transverse coordinates (x, y). This problematic is studied by localization microscopy, and one can found detailed in-
formation in Birk's book [8] for example. However, accurate determination of axial z-coordinate, or axial defocusation, is still
challenging.

The goal of this paper is to analyse a possibility of determination of the axial defocus of lighting point, which is imaged by an
optical system without aberrations, from a knowledge of intensity distribution or an amount of light (amount of energy — fractional
total energy) detected in a region around a point's image centre. To the authors best knowledge, this approach has not been ana-
lytically studied and presented in literature yet.

Formulas for calculation of amount of light detected in a circle are known, see for example Martin's [1] or Born and Wolf's book
[2]. However, there is no solution for the axial longitudinal defocus of the lighting point presented. Franke et al. [11] present a
solution of this issue only experimentally, the authors used area of circular ring between two radii around an image of point particle.
Fuchs et al. [12] show theoretical and experimental image formation study in the presence of astigmatic aberrations, and macro-
scopic location scheme of micrometer-sized particles for the single camera astigmatism particle tracking velocimetry (APTV) tech-
nique.

The first part of this paper is focused on imaging with a physically ideal optical system without aberrations and analysis of a
diffraction of convergent spherical wave-front. The optical system without aberrations is justly selected as all microscope objectives
are constructed with such an image quality that one can neglect effects of aberrations on image. Formulas for calculation of an
intensity distribution in a plane located in the centre of convergent spherical wave-front are presented both for circular and rec-
tangular aperture (detector). Relations for the intensity distribution in an axially displaced (defocused) plane are then shown as well.
As will be derived, analysis of an intensity and illumination distribution can give information about the distance between mentioned
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R

Fig. 1. Scheme for a calculation of spherical wave diffraction.

planes — the defocus. Energy invariance than helps with practical application in microscopy for example, where the intensity dis-
tribution is registered on a plane of a detector.

The second part of the paper presents numerical examples and verify derived formulas. The formulas are simply applicable in
practice which has not been possible in previous published works. The final part than shows simple experimental verification of the
presented approach.

2. Optical imaging of axial points and calculation of axial defocus

Suppose now a physically ideal optical system, i.e. optical system without aberrations. It can be justly selected as all microscope
objectives are constructed with such an image quality that the image is not distorted at all and only diffraction effects come into
consideration.

Let a scalar wave-filed amplitude U (M) on a spherical wave-front S in an image space of the optical system is known (see Fig. 1).
It is known from the theory of optical imaging [1,2] that the amplitude U (P) of a wave-field in a point P in the image space of the
optical system is given with formula:

_ i exp (iknvp)
U(P) = 2 ‘/]; U(M)irMP cosa ds, o

where M is the point on the wave-front S, nyp is the distance between points P and M, 1 is the wave-length, k = 27/1 is the wave-
number, and « is the angle between the inner unit normal vector n of the wave-front S in the point M and the vector r (between
points M and P) and i denotes the imaginary unit.

Suppose next that the amplitude U (M) is a convergent spherical wave of the radius R having its centre in the point C and having
the amplitude in a unit distance from C equal to A, therefore U(M) = A exp(—ikR)/R.

Let the point P is located in a plane perpendicular to the axis OC,which is distanced by a A from the point C. Therefore, co-
ordinates of the point P with respect to the point O are [xp, ¥, R + A]. Coordinates of the point M with respect to the point O are
[osing, pcosp, zy], where

(2R —2m) = P2 P = \Xir + Yy, COSQ =yy/p,  sing = xu/p. )

The distance nyp can be calculated as follows, according Fig. 1 (rop = OP),

P’ P,
Mp = Top — A_ZRZ - E(xp sing + y, cosg)
2 2
Xy + Y 1
=rop — AiMZRz Mo E(xPxM + YY) 3)

Let the values of A, xp and y, are significantly smaller than the wave-front's radius R. Afterwards, one can consider the angle a
very small and it holds: cosa = 1, and exp(iknyp)/nvp ~ exp(iknyp)/R. Moreover, for areas close to the optical axis one can write the
following formula:

2 2
N+ x5+ Y,

Top— R~ A+ ~A.

4

Substituting the afore-mentioned assumptions into Eq. (1), one can express approximate analytic formulas for the complex
amplitude U (P) in point P. Afterwards, an intensity distribution I (P) for points P and an illumination L(7p) (time-averaged mean
amount of energy) for a region 7, will be given with formulas:

I(P) = UP)U*(P), L(7) =[/T'P 1(P)dzp, )

where * denotes complex conjugate. The following part of the paper discusses situations of circular and rectangular aperture.
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2.1. Calculation of axial defocus for circular aperture

Suppose now that the optical system is rotational symmetric with a circular pupil. One can then write a modified formula for the
amplitude U (P) in point P. With the assumptions mentioned in Eq. (4) one can modify the formula for the complex amplitude in the
case of circular aperture as follows [1,2]:

2 2
U = —i%kAexp(ikA) /0‘1 exp(_ikz_RAzrz)Jo(Tr) rdr | .

where a = p, . is the maximal value of p (see Fig. 1), and J; is the Bessel function of the first kind. If one defines new variable:
( )\/— 7r1/xp+yp _m_g
A A’ 9]

where ¢ = R/(2a) is the f-number of the optical system in the image space, t = \/x3 + ylf and g = 7t/c. The amplitude of the field in
the plane perpendicular to the axis OC crossing the centre C (A — 0) then can be calculated from Eq. (6), one gets:

2Ji(7)

U i( L xa
Aeo(f)—_l(ﬁ ) . ®)

where the position of point P is expressed with variable 7 and one supposes rotational symmetry of the image. Corresponding
intensity distribution of the field is then given by formula:

b= (] [42].

One can see from Eq. (9) that image of the point is not a point, but it is a diffraction energy distribution — Point Spread Function. It is
known from literature [1,2] that the diameter d, of the central part of the diffraction image is so called Airy disc: d4 = 2.44c. In
general case, one can use Eq. (6) and the intensity I (P) in the point P can be calculated as follows:

I(t, A) = | exp( ikBr2)Jo (zr)rdr |2 |
R

(10
where
A
F=sa an
An amount of light dL in a circular ring of the radius 7 and width dr is given by formula:
dL = 2nrdt (z, A). (12)
Afterwards, an illumination L = L(5y, A) in a circle of the radius 7,, can be calculated as follows:
— m d
L(ty, A) = 271"/0' I(z, A)tdr. (13)
Suppose now that the defocus A is small, i.e. the value of § is small as well. Afterwards, one can approximately write:
exp(—ikpr?) ~ 1 — ikpr? — %kzﬁzr“. 14)
Afterwards, the complex amplitude in Eq. (6) can be re-written as follows:
.a? . 1 . 1
U(r, A ~ —1%kAexp(1kA) ./01 (1 — ikpr? — Ekzﬁzr“)Jo(rr) rdr. 15)
It is generally known that the following formulas hold:
_ Ji (T)
W@ = f e dr = (16)
_plos _2th(D) + (22 - (1)
L(t) = j(; rJo(zr)dr = = , a7)
_ s _ @ =84tk (@) + (* = 8)Nh(7)]
L@ = [ r@)dr= - : (18)
Therefore, one can modify Eq. (15) to the form:
a? 1
U(r, A) » —i—kA ikA)| L — ikpL — —(kB)?IL ]
(5, ) ~ =i kA exp(ika)| @) = kBH() = £ KBV (o) o)

An approximate formula for the intensity distribution then follows:
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2 2
I(T, &)~ (%kA) [ (D) + (kB)*(IF (7) — L(DL(D)].

(20)
Suppose next that the normalized intensity is equal to one for a limit case 7 — 0 and A — 0, i.e.:
. 1(a, Y
lim I(z,A) =— LAl =1.
7=0,A—0 4\ R? 21)

Afterwards, the following formula for the normalized intensity I,(z, A) holds:
Li(t, A) = 47 (1) + (kB> (I3 (1) — K(D)I5(0))]. (22)
Normalization of the illumination L, in the circle of the radius 7, can be calculated for a condition L, ( co , 0) = 1. It holds:

1 Tm
L, (5, A) = 5 j; I,(z, A)rdr. (23)

Substituting Eq. (22) in Eq. (23), one gets the normalized illumination L, as an approximation:

Ly (T, A) » 2(kﬁ)2[ i (f'n) _ 205 ) -; 5 ()
Tm Tm
= [J5 (o) + R (zw) — 11. 24

If the normalized intensity distribution I,(z,, A) is known, one derives the defocus A = A(I, (7, A)) from Egs. (22) and (11), it
holds:
4c? \/ L(z, A) — 4L (7)
E@ - L) (25)
After modification of Eq. (24), one derives the formula for the defocus A = A(L,(7,, A)) as a function of normalized illumination
L, (5, A), it holds:

4c’t} J 1 — 2(5n) — R () = Lu(t, A)
k T}’%l [J()2 (Tn) + le (@] — 4’le ) . (26)

A=

Egs. (25) and (26) are approximate solutions of the problem for small values of A. In the case of large defocus, there is no simple
analytic solution. Nevertheless, there are other options. One can pre-calculate nominal values of L, for series of values A and 7, with
exact solutions in Egs. (10) and (13) and approximate function L,(7,, A) with appropriate polynomials. Different approach can be
based on optimization algorithms where a goal function implements Egs. (10) or (13).

2.2. Calculation of axial defocus for rectangular aperture

Suppose that the aperture contributing to imaging into point P has a rectangular shape with width 2a and height 2b. With
assumptions shown in Egs. (2)-(4), one can re-write, after several simple modifications, Eq. (1) as follows:

UP) ~ — Wf f exp{lk[ (1 _ xMz;yM] - %(xpo +yPyM)]}ddeyM

A
—i— ikAU U, ,
1/1122 exp(ikA) Uy 27)

Q

where

a b
Ue= [ expliteod + Bl dv, Uy = [ expliCayd + B0 by
A Xp Yp
= —k— , = —k= , = —k=
@ 2R2 ﬁx R ﬁy R

Solution of integrals in Egs. (27) can be found using Fresnel integrals [13-15]. The following formulas can be easily derived or they
are known from differential and integral calculus:

B
a s _ L _ ﬁ_z 2 .
‘/;1 expli(at? + Bt)]dt = NG exp( l4a)f % exp(iv?) dv,

Ep s _rE s B .o _
‘/];l exp(iv?)dv = ‘/O‘ exp(iv?)dv — ‘/O‘ exp(iv?)dv = F(E,) — F(Ey),

o s 5o 2} ()]
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where C and S denote Fresnel integrals and «, 8, E; and E, are constants. Afterwards, one can write:

U =Lexp —16—2 [F(Ex) — F(Ew],
X ﬁ 4 2x 1x

(29)

1 B
U=— exp[—lé][F(Ezy) — F(Ey)l.,

Ja
R
1x=—a\/ﬁ+&=—a\/ﬁ+—£rx, ZX—a\/—+ﬁ——a\/—+—£Tx,
2a Ar T
B ﬁ
E1y=—bﬁ+2—y=—b\/—+5£ _b\/_+——b\/—+££ry,
o V1
= Zx 5, ==
T BT

where ¢ = R/(2+/a? + b?) is the f-number of the optical system in the image space. Intensity in point P than can be calculated as
follows:

A

I(P,A) =U(P, A)U*(P, A) = (ARZ

2
) — [F(Ex) — F(Ew) PIF (Ey) — F(Ey)F = [F (Ex) — F(E)P[F (Ey) — F(Eyy)P.

2 AZ

(30)

Similarly as in the case of circular aperture, one can approximate the afore-mentioned formulas for small defocuses, i.e. « — 0,
and exp(iat?) ~ 1 + iat? — %cxzt“. Therefore, U, and U, from Egs. (27) can be approximated as follows:

. 1 .
U, ~ ‘/:Z (1 + i — Eazxf,[) exp(if ) dxys

=sin(aB,) _ﬁlx(Z — a*a? + 2id’a) + ﬁ%(mzaz —ia) — ﬁ—toc + cos(aﬁx)[%(—a%c2 + iaa) + %aaz],

b . 1 .
U, ~ ‘/:b (1 + layy, — Ecxly]‘\‘l) exp(iB, ) dyy

X X

= sin(bB,)| (2 — bia? + 2ib%) + — (3% — i) — 2xa? | + cos(bﬁy)[iz(—b%cz + iba) + z—jbaZ].
B, B B A B, 31
The intensity in point P than will be given by the formula:
A Y ®IT T* A Y 4 2 4 2
I(P,A)=U(P, A)U*(P, A) = (E) U UG Up ~ (W) (LeadS* + Lo A% + L)y A + I, A% + 1), (32)

where

Ly= (;;2) ﬁm — [(@*B} — 122?87 + 24)sin(ap,) + 4(a®8 — 6aB,)cos(aB)?,

L,= (L)z ﬁ6 [(40 — 8a26 )cos(2aB,) + 32aB,sin(2aB,) + 24a2/5’2 — 40],

2R?
Lo= PSIHZ(aﬁ ) >
4
L= (%) & [(B4B? — 12%2 + 24)sin(BB)) + 4(%B° — 6bB,)cos(bB) P,

I, = (%)zﬁﬁ [(40 — 8b%62)cos(2bB,) + 32b, sin(2b,) + 24b%62 — 40],

Lo = Esmz(bﬁ ).

Next, let the normalized intensity is equal to one for a limit case 8, — 0, 8, - 0, and A — 0. Afterwards, one can derive the following
formulas from Eq. (32):
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Ir~o(P, A) = lim I (P, A)
A—-0
(- (2
- 2 | %040 = 2 232
IR AR) B2

2
L= lm Iio(P,A)= 16a2b2(i) .
ﬁx—>0,ﬁy—>0 /1R2

sin*(aB,)sin*(bg, ),

(33)
Egs. (33) presents generally known formulas of diffraction theory [2]. Therefore, the afore-mentioned derivations leads to correct
values and the procedure is proved. The normalized intensity I, (P, A) than can be described as follows:
1

L(P, A) ~
n(P, 4) 16a2b?

e a & + Lo 02 + L)Ly a & + Lo A% + o). 34)

At this moment, one can find solution for the defocus A by calculating roots of the polynomial of the 8-th order which is given by
modification of Eq. (34):

16a%b%1, (P, A) = Ly 4L 4 &% + (Lealy s + Lol 4)A°
+ (Ix,4Iy,O + Ix,ZIy,Z + Ix,OIy,4)A4 + (Ix,ZIy,O + Ix,OIy,Z)A2 + Ix,OIy,O . (35)

Simplified analytic formulas for calculation of the defocus can be derived supposing the approximation exp(iat?) ~ 1 + iat?. The
normalized intensity in point P than can be derived with similar procedure, and the following formula holds:

1
I,(P, A) & ——— (G4 A* + G, A + Gy),
(P, A) 16a2b2( 4 2 0) (36)

where

kY 16 5., . )
G, = (W) T [(@®B; — 2)sin(aB,) + 2ap, cos(aB,)]
x Py

[(6%B] — 2)sin(bB)) + 2bB,cos(bB)]*,

k \? 16 5 . )
G, = ( ) [(@*B2 — 2)sin(aB,) + 2ap, cos(aﬁx)]251n2(bﬁy)

2R B8]
kY 16 50 . i 2
+ (ﬁ) 5250 [(b°B; — 2)sin(bB,) + 2bB, cos(bB,) ’sin*(aB,) ,
x Py
Gy = B}Zyz sinz(aﬁx)sinz(bﬁy).

Afterwards, one can find an approximate solution for the defocus A = A(Z,(P, A)) from the formula:

N \/ —G, + JGZ — 4G,[Gy — 162171, (P, A)]
2G, 37)

In the afore-mentioned situation of the rectangular aperture, there is no analytic solution for the normalized illumination. It can
be seen from the assumption of calculation in a region which has its width 2z, ,, and height 27, ,, (note that the variables 7 is used).
Afterwards, the normalized illumination L, (z m, T,,m, A) would be given by formula:

Ty’m

Tx,m
L, (Tx,ms Ty, m» A) = Kj: ‘/:T L (%, Ty, A) dedTy ,

(38)

Ty,m

where K denotes the normalization constant. Substituting Eq. (34) in Eq. (38) leads to integration of a type which has no analytic
solution. Therefore, there is no simple analytic formula for calculating the defocus A from the rectangular aperture.

3. Examples
3.1. Example 1 - Calculating the defocus from intensity measurements

Suppose the following parameters of an optical system and imaging: the f-number of the optical system c = 2, the pixel size of the
detector p = 1.25um, and the wave-length 4 = 633 nm. Fig. 2 shows simulated normalized intensity distribution calculated with
presented formulas for the circular detector with dimension p,_,, = a = 100p and nominal values of defocuses A = [1, 3, 5, 10] um.
Fig. 3 shows simulated normalized intensity distribution calculated for the rectangular detector with dimensions a = b = 100p.
Calculated defocuses from intensity distributions by the approximate solution from Eq. (25), by finding roots of the polynomial from
Eq. (35), and the approximate solution by Eq. (37) are presented in Table 1. Afterwards, the normalized illuminations for the circular
aperture were calculated according Eq. (23) and one get values of reconstructed defocuses with Eq. (26) which are shown in Table 1
as well.
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Fig. 2. Simulated normalized intensity distribution for circular aperture and parameters: ¢ = 2, p = 1.25um, 1 = 633 nm, p,,, = a = 100p.
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Fig. 3. Simulated normalized intensity distribution for rectangular aperture and parameters: ¢ = 2, p = 1.25um, 1 = 633 nm, a = b = 100p.
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Table 1
Calculated defocuses from intensity distributions for circular detector by solving Eq. (25), for rectangular detector by solving Egs. (35) and (37), and
defocuses calculated from normalized illumination for circular aperture by solving Eq. (26)

Nominal defocus [um] Eq. (25) [um] Eq. (35) [um] Eq. (37) [um] Eq. (26) [um]
1.00 0.99 1.00 0.80 1.02
3.00 2.98 3.00 2.43 3.06
5.00 4.92 4.97 4.12 5.25
10.00 9.17 10.00 8.90 11.63

3.2. Example 2 - Calculating the defocus for its large values

Consider now a situation when the value of defocus A has larger value than in the Example 3.1. Suppose the following parameters
of the optical system with a circular aperture: ¢ = 2 and ¢ = 1, A = 633 nm. In Fig. 4, there is a plot of the function L, (z,, A) for values
A in interval [0, 0.05] mm, ¢ = 2 for 5; = 3.832, i, = 25 and 5 = 37. If one knows value of the function L,(z,, A) it is possible to get
value A. As shown in Fig. 4, it is necessary to use larger values of 7, for larger A for accurate calculation. Function L, (7,, A) for A in
interval [0, 0.01] mm and parameters of the optical system ¢ = 1, 7 = 3.832, , = 25 and i = 37 is shown in Fig. 5. In Fig. 6, there is a
dependence of L, (7, 7,m A)onA for a square aperture with dimensions 27, X 21, presented, which was calculated by Eq. (38) for
c=2.

As shown in Fig. 5, one can detect depth differences of the magnitude of 10~ mm if L, (z,, A) is known (measured) for the optical
system with ¢ = 1 (numerical aperture = 0.5). Comparison between Fig. 4 (circular aperture) and Fig. 6 (square aperture) shows
similar curves in both cases. Therefore, it is not important which of the aperture shape is used. Values of L, (z,, A) for the square
aperture are slightly higher than in the case of circular one as the square area is 4z which is more than the circular 3.1472.

4. Experimental verification and application in microscopy
4.1. Design of experimental setup

This part of the paper presents experimental verification of the aforementioned theoretical analysis. Fig. 7 shows a principal
optical scheme of the measurement unit. The source of light S illuminates through the condenser C a shade with very small pin-hole
which has a diameter smaller that the diameter of the Airy disc (in the plane of the pin-hole) of the optical system OS (microscope
objective). The pin-hole is imaged on the CCD sensor. The signal from the CCD sensor is transferred to the computer where the
calculation is performed.

Fig. 8 shows a scheme of utilisation in practice. The proposed method can determine depth of sample with measuring the intensity
or illumination distribution. The source of light S illuminates trough the condenser C a very small particle, i.e. a microsphere [16] or a
pin-hole [17], which can be considered as a point source (if its diameter will be smaller than the Airy disc's diameter d4 = 2.4Ac in the
object space of the optical system OS). Such a particle is imaged by the optical system OS on the sensor (CCD) which registers the
intensity distribution. The signal is transferred to the computer which processes it. If the particle is shifted from the position of the
best focus of the optical system by the value of A, the intensity distribution can be recorded and the defocus can be evaluated using
the presented formulas in the previous part of the paper.

Table 2 shows diameters of Airy disc in the object space ds and in the image space for several microscope objectives (magnifi-
cation/numerical aperture) and wave-length. If the pin-hole or the observed particle has smaller diameter than d,, it can be

c=2, A=633nm, r, =3.832, 7,=7.664, 7, =11.496
1 T T T T

g

e,
~Jd ~. -—

0 0.01 0.02 0.03 0.04 0.05
A [mm]

Fig. 4. Dependence of L,(z,, A) on A and 1, for circular aperture of radius 7,, and ¢ = 2.
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0 0.002 0.004 0.006 0.008 0.01
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Fig. 5. Dependence of L,(7,, A) on A and 7, for circular aperture of radius 7,, and ¢ = 1.
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Fig. 6. Dependence of L, (tm, T),m A) on A for 27, X 27, square aperture and ¢ = 2.
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sl |
- E

Fig. 7. Principal optical scheme of the measurement unit.

considered as a point source.

4.2. Experimental verification

An experimental setup for a verification of the afore-mentioned situation was realized. Mono-chromatic light of the wave-length
A = 633 nm was carried by the optical fibre and focused approximately to the object plane of the microscope objective by the lens of
the condenser. A pin-hole (Edmund optics 1 um Aperture Diameter Precision Pinhole [17]) was placed in the object plane of the
microscope objective (Meopta Achromat 10x0.30). The pin-hole fulfilled the condition on a smaller diameter than the Airy disc's
diameter, and it could be supposed as a point source of light (lighting point particle). An image of the pin-hole was registered by a
common CCD sensor (machine vision Edmund optics camera EO-18112 Color USB 3.0 [17]), which is commercially easily available.

Images of point source were registered for different values of defocuses and the evaluation was processed in the area of Airy disc
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Fig. 8. Principal scheme of sample's depth determination in microscopy.

Table 2

Diameters of Airy disc in the object space (d,) and in the image space (d}) of microscope objectives
objective ¢ =1/(2NA) dy [mm)] dj [mm]
10x/0.25 2.00 0.0026 0.0262
20x/0.45 1.11 0.0015 0.0291
40x/0.65 0.77 0.0010 0.0403
40x/0.95 0.53 0.0007 0.0276
60x/0.85 0.59 0.0008 0.0462
100x/1.4 0.36 0.0005 0.0468
Table 3

Results of experimental verification for the microscope objective and imaging parameters m = 11.63 (calibrated
with respect to experimental setup), NA = 0.30, A = 633 nm, p = 1.25um, d = 1 um

Nominal defocus [um] 2.00 4.00 6.00
Eq. (25) [um] 2.46 3.57 5.05
Eq. (26) [um] 1.52 4.12 5.42

(a) (b) (c)

Ay =246 pm, A, =152 pm A, =357 um, A,=412um Ay =5.05,um, A,=542m

09
08
(X4

08

0 0
[ [

o
(e

Fig. 9. Results of experimental verification for the microscope objective and imaging parameters m = 11.63 (calibrated with respect to experimental
setup), NA = 0.30, 1 = 633 nm, p = 1.25 pm, d = 1 um; normalised images for nominal defocus: a) 2 um, b) 4 pm, ¢) 6 pm (solid bold line —
measured data, dashed lines - theoretical values for zero and nominal defocus; A; - solution with Eq. (25), A, - solution with Eq. (26)).

(5, = 3.832). After a background variation suppression, all images were normalized with respect to the nominal image without the
defocus. Table 3 and Fig. 9 presents results of the evaluation.

One can see very good agreement between nominal and reconstructed values. Differences from nominal values can be caused by
noise or inaccuracies in registered intensities with a common CCD sensor. One should be able to retrieve much more better results
with professional camera for metrologic applications. Other possibility in the source of differences is an uncertainty in setting the
nominal value of the defocus on the microscope table which was 1 um for this case.

10
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5. Conclusion

The paper analysed a possibility of determination of axial defocus of lighting point, which is imaged by an optical system without

aberrations, from a knowledge of intensity distribution or an amount of light (amount of energy — fractional total energy) detected in
a region around a point's image centre. Analytic formulas for calculation of the defocus were derived for rectangular and circular
aperture of the optical system, and they were verified by numerical examples, simulations and experiment. Outputs show that the
method can evaluate the axial depth of the particle up to several micro-metres with accuracy in a range of fraction of percents.
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The paper presents a detailed theoretical analysis of characteristics of a rotationally symmetric lens system with one
or two aspherical surfaces having corrected spherical aberration and reduced coma aberration for a given position
of the object and the image. Formulas for surface shape optimization are derived, and the procedure for calculat-
ing the aspherical system is shown. The presented formulas are verified with examples of ray tracing.  © 2020 Optical
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1. INTRODUCTION

Designing aspherical surfaces has been a challenging task for
decades, and it has been studied in many books [1-7] and papers
[8—23]. There is a variety of computational tools available that
help with optimization of lenses’ forms, e.g., Zemax [24] or
Oslo [25]. For example, reduction of a spherical aberration of a
classic lens can be done with one aspherical surface for a given
object position.

One can find many papers [8-10,13-19,23] on topics of
minimization of the spherical aberration, which solve the
problem by various approaches. The goal of this paper is to
present a simple method of designing a lens system with one
or two aspherical surfaces that has, for a given object position,
corrected spherical aberration. To the authors’ best knowledge,
the presented simple procedure has not been published before.
The formulas are valid for ray tracing through several optical
surfaces, while one or two of them are aspherical.

As a specific case, a situation of a simple lens in air is specifi-
cally discussed. However, it can be easily generalized for optical
systems of many surfaces.

In the paper, formulas for a polynomial approximation of an
aspherical surface are derived, and tools for a general meridional
ray analysis are presented, as well as formulas for ray tracing of
off-axis rays. Moreover, the paper studies a coma aberration
minimization for the aspherical lens. The final part of the paper
presents examples that demonstrate the proposed approaches
of aspherical lens design and verify derived equations. The
method can serve as an alternative possibility to optical design in
commercially available software.

1084-7529/20/091390-08 Journal © 2020 Optical Society of America

2. DESIGN OF ASPHERICAL SURFACE OF
OPTICAL SYSTEM

A. General Situation of Ray Refraction on Optical
Surfaces

Let one study a ray refraction by a system of optical surfaces now.
Figure 1 shows a scheme of meridional aperture ray refraction on
an i-th and (7 + 1)-st optical surface (spherical or aspherical).
Symbols in the figure represent: #;, index of refraction of 7-th
space; 0;, angle between a ray impinging on the 7-th surface with
an optical axis (axis z) of the optical system; 0,41, angle between
a ray impinging on the (7 + 1)-st surface and the optical axis;
5;, axial distance between point A; and vertex V; of the i-th
surface; y;, transverse distance of point B, from the optical axis;
d;, distance between vertex V;1; of (i 4+ 1)-st surface of the
system and vertex V; of the i-th surface; z;, z coordinate of point
B, measured from the vertex V; of the 7-th surface; #;, distance
between points A; and B;. Meanings of other symbols are obvi-
ous in Fig. 1. To clarify a sign convention used in the paper, the
distance s; is negative if the point A; is located on the left side of
the vertex V;, and positive if opposite. Angles o are measured
from the optical axis and are positive if this direction is clockwise
and negative if opposite.

Suppose now that the optical system consists of 7 optical
surfaces and images point A = A; into the point A’ = A, 4. Let
[AA] denote an optical path distance (a product of geometrical
distance and index of refraction) of a general meridional ray, and
let [AA]y symbolize an optical path distance of a ray passing
along the optical axis of the system. The difference of optical
path distances of those rays is then given as follows:

§ =[AA] — [AA],. (1)
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Fig.1. Rayrefraction on optical surfaces.

According to Fig. 1, one then gets the following formula for
rotationally symmetric spherical or aspherical surfaces:

m m
51’:2 niv1 (6 = s7) = ni(t = )]

i=1 i=1

é [ (nH_l tan T+I — n; tan 02 ) — (nj41 — n;) zi] .
()

It is known that for a stigmatically imaged point A into
point A’, an equation § = 0 has to be fulfilled. In general, the
surface (surfaces) shape will affect the optical path difference,
and it can be used for the designing process described below. An
optimal optical design can be reached in a situation if the shape
of an optical surface (surfaces) will generate zero optical path
difference .

B. Situation of a Simple Lens in Air

Suppose a specific situation of a simple lens in air is now (m = 2,
n =1, np =n, n3 =1), where the shape of the first surface
of the lens is known, e.g., spherical or aspherical. Therefore,
one can easily calculate parameters of rays coming through this
surface.

In general, ray tracing of meridional rays through an aspheri-
cal surface [5], whose surface is described by the formula
z= fly), can be calculated using the following formulas
(=1,2,3,...,m):

dz
)/,-=(s,'—z,') tan oy, tanw; = — |,
i

dy
& =w; —0;, SinSl/»: Siné‘,‘,
7i+1
_ ’ " Ji 3
Oit1=0;+¢& —¢&;, $;= ano + z;, ( )
a i+1

where w; is the angle between the normal in point (y;, z;) and
axis z, and €; and &, denote, respectively, angles of the impinging
and refracted rays with respect to the normal of the i-th surface.
As the first simple case, suppose a spherical shape of the first
surface with the vertex radius of curvature 7;. Further, let given
(selected) parameters of the lens be: the axial distance s1 between
the object and the vertex of the first surface, the impinging
height y; on the first surface of the lens, lens thickness &, index
of refraction 7 of a lens material, and paraxial axial distance s/
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behind the second surface of the lens. Then one calculates
J 12 b2

s tan o) =
1 [1 +V1-— 01/71)2]

. 51 . . , Sin81
singgy = — —1]sinoy, sing; = s

71 n

zZ] = )
1 — 21

/ / J1
o,=01+& —&, §=
tan o)

+2z1, sa=s —d.
(4)

Afterwards, the second surface of the lens is calculated in such
a way that the lens images an axial object point as a stigmatic
image—without spherical aberration.

Further, it holds for a simple lens in air, according to Fig. 1,
that

2 (5)

sh—2z

)2
tan o) = , tan o3 =
2= 22

The solution to Eq. (5) then leads to

tan 0, tan 03(s; — ;)
2= , 2=
tan 0oy — tan 03 tan 0, — tan 03

5 tan oy — s, tan o3

(6)
With Eq. (2), for a case of stigmatically imaged point A into
pointA’,ie., 8 =§&; + 8, = 0, one gets the following formula:

31+ 92 (tan % — ntan 072) —(1—n)z =0, (7)

where

851=mn (n tan % — tan %) (n— 1z (8)

isan optical path difference introduced by the first surface of the
lens. Substituting Eq. (6) into Eq. (7) then gives the following
formula for a calculation of the angle o3:

asinos + Bcosaz +y =0, (9)
where

o =cos0(8; — 52/ + ns) —n(sy — 52/),
,3 = —sin 0'2(51 - S; + ﬂSz),

Yy =sinoy(s —s,). (10)

Afterwards, the solution to Eq. (9) leads to

: ay + BVl + B2 —y?
sinoz = — 5 5 . (11)
at+ B
Substituting Eq. (11) into Eq. (6) and simple calculation then
give parametric coordinates of the point on the second surface of
the lens (an aspherical surface).

In the case of the first aspherical surface of the lens (bi-
aspherical lens), one uses the same procedure only with
application of general Eq. (3) instead of Eq. (4). Therefore,
the given problem is solved. This procedure leads to simpler
calculations than, for example, [18].

Using the aforementioned formulas in Egs. (10), (11), and
(6), one can calculate coordinates (y;, z;) of the point on
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the aspherical (second) surface. The profile of the lens can be
obtained after a selection of several values y; and repeating the
aforementioned procedure for different impinging heights.

Suppose now that one wants to ray trace a ray through a
rotational symmetric aspherical lens for a different position
of an object than the lens was designed for. To be able to use
ray-tracing procedures, one has to know a function z, = f(y,),
i.e., an analytical description of the surface shape.

Suppose that the rotational symmetric aspherical surface is
described with the following formula (power series):

N
Zz=2ﬂz‘)/§i’ (12)
i=1

where 21 =1/(2r;), and r, is the vertex radius of the last
(second) surface of the lens. One has to determine coeffi-
cients «; at the moment. Therefore, a series of coordinates
(22, y2)¢ for different values (y7); can be calculated, where
k=1,2,3,..., K, K> N. Afterwards, coefficients #; can be
calculated with the least-squares method [26] as follows. Two
matrices A and B can be arranged with elements

A= Be=(22)s, (13)

where £ denotes the index of the point (z2, y2); and number
of the row in matrices A and B, and 7 is the column number in
matrix A. Unknown coefficients a = [41, 43, ..., ay]’ then
can be calculated with the known formula of the least-squares

method [26]:
a=(ATA)'ATB, (14)

where 7" denotes matrix transposition. Therefore, Eq. (12) is an
approximate description of the aspherical surface with known
coefficients @;. Accuracy of calculated coordinate z, of the
aspherical surface depends on a number of series elements N.
The usual value is N =5 in practice. At this point, it has to be
noted that matrix A”A can be badly conditioned in some cases
for large values of y,, and results calculated with Eq. (14) can be
inaccurate if one uses a low number of valid digits. Therefore,
for such situations, it is more appropriate to use a normalized
variable J2 = y2/(y1)max instead of y, where (y1)may denotes
the maximal value of height y; on the first surface of the lens.

3. RAY TRACING OF MERIDIONAL RAYS
THROUGH AN ASPHERICAL LENS

Suppose now the aspherical lens in air with the first spherical
surface and the second aspherical surface, which is determined
by Eq. (12), and coefficients 2, are known. Afterwards, an analy-
sis of a general meridional ray passing through the lens can be
processed with two possibilities.

In the first approach, the following parameters are known:
r,d, n, 51, y1, a1, az, az, ag, as (N =5). Afterwards, Eq. (4) is
used to calculate refraction on the first surface, and values of s,
and o, are obtained. Further, one can generally substitute the
formula y, = (s; — 2;) tan 0, into Eq. (12), and the following
condition for the value of z; holds after simplification:

10
D buzy =0, (15)
m=0
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where

b1y = a5 tan' o,

by =—10b19s3,

bg = 4551055 +C,

by = —120b1955 — 8Cs3,

bs = 210b1955 +28Cs3 + D,

bs = —252by9s5 — 56Cs3 — 6Ds3,

bsy=210b1os$ +70Cs4 +15Ds2 + E,

by = —120b19s; — 56Cs5 —20Ds; — 4Es,,

by =45b1055 +28Cs$ +15Ds5 + GEs? + F,

by = —10b10s29 - SCS; - 6D525 — 4E5§ —2Fsy—1,

bo = b1os )0 + Cs8 + Ds$ + Esd 4 Fs2,
(16)

and where

C = astan’o,, D = astan’o,, E = aytan’o,, F = a;tan’ 0.
(17)
The solution to Eq. (15) (finding the root of the polynomial
on the left-hand side) then gives the desired value of the coor-
dinate z, of the ray intersection with the aspherical surface.
Substituting the value z; into the formula y, = (s, — z2) tan o3
and simple calculation then give the corresponding value of
coordinate y;. The angle w, between a normal to the aspheri-
cal surface in the point (2, 2;) and the optical axis can be
calculated according to Eq. (3) as follows:

N
tanw2=22iaiy§i_l. (18)
i=1

Afterwards, one can calculate the ray refraction by the aspherical
surface with Eq. (3).

The second possibility of calculation of coordinates (y,, z2)
of the ray intersection with the aspherical surface is based on an
iterative procedure.

1. In the first step, the following initial guess is stated:
(72)° =+, tanoy, (22)° = 0.
2. In the second step, the following formulas hold:

N
(22)? = Z a; (I () = [s2 — (22)?] tan 0.
i=1 (19)

The iterative procedure [Eq. (19)] is repeated for given
p=1,2,3,...(p denotes the iteration number) as long as the
following condition is fulfilled: |(z2)? — (22)? 1 < A, where
A denotes stated tolerance (e.g., A= 10~% mm). Therefore, the
coordinates of the ray intersection (y3, 2;) are calculated, and
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next, ray tracing can be done with the same procedure as in the
aforementioned situation.

The problem of calculation (ray tracing) of the general
meridional ray is therefore solved. Generally, if the index 2 in
Egs. (15) and (19) is replaced by 7, for example, then one gets
the system of equations for a system of 7 rotational symmetric
optical surfaces of an arbitrary shape.

4. RAY TRACING OF OFF-AXIAL RAYS
THROUGH AN ASPHERICAL SURFACE

Analysis of a general off-axial ray can be calculated according
to formulas presented in [3,12]. Another approach can be as
follows. Suppose the situation shown in Fig. 2. The formula for
the aspherical surface in Eq. (12) can be rewritten as follows:

N
F(x,y,z):z—Zai(x2+y2)i=0. (20)

i=1

Suppose next the following formula for the impinging ray on the
aspherical surface:

r=ro+1p;, (21)

where r=(x, y, 2) is the positional vector of the ray inter-
section with the aspherical surface, ry = (xo, y0, 29) is the
positional vector of the ray intersection with a tangential
plane 7 that touches the aspherical surface in the vertex V,
p1 = (Px, Py, p2) is the unit directional vector of the ray, and
¢ denotes the parameter, which depends on the point of the
ray intersection with the surface, to be calculated. Next, let the
symbols in Fig. 2 denote: n, unit normal vector of the aspherical
surface in a direction of the impinging ray; s,, unit directional
vector of the refracted ray; 7, index of refraction of the space
in front of the aspherical surface; 7, index of refraction of the
space behind the aspherical surface.

One can obtain the formula of the 2 N-th order for the param-
eter ¢ after substitution of components of vector r from Eq. (21)
into Eq. (20). The solution to the formula leads to the desired
value of the parameter ¢. Substituting the value of the parameter
back into Eq. (21) then gives coordinates of the intersection
of the off-axial ray with the aspherical surface. Afterwards, the
normal vector of the aspherical surface can be calculated, and
using the law of refraction then gives a direction of the refracted
ray.

Therefore, in the aforementioned situation, the parameter #
has to fulfill the condition

T

G

\

Fig.2. Ray tracing of off-axial rays through an aspherical surface.
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N
O:zo-i-tpz—zﬂi(](lz—f-[r-i-M)l, (22)

i=1

where

K=p.+p;, L=20x0ps+y0py)s M=x5+yi.

The condition (2/NV-th order polynomial) in Eq. (22) was
obtained by substituting the components of vector r from
Eq. (21) into Eq. (20) and by the rearrangement.

For N=5 and after simple modification, one gets the
formula of the 10th order for the parameter #; it holds that

> ar' =0, (23)

where

cro=K’as, co=5K"Las, cs =5K>2L*> + KM)as + K*as,
c7=10K*L(L* + 2KM)as + 4K> Lay,
c6 =5KQK*M?* + 6KL*M + LYas +2K*(BL* + 2K M)a,
+ KPas,
¢s = LBOK*M? 4+ 20KL*M + L*)as + 4KL(L* 4+ 3KM)ay
+3K%Las,
s =5MQK*M?* + 6K L* M+ LYas + (6K*M?
+12KL*M + LYas+ 3K (L* + KM)as + K*as,
¢3=10LM*(L* + 2KM)as
+4LM(L? +3KM)as + L(L* + 6K M)as + 2K Las,
¢, =5M 2L* + KM)as +2M*(3L* + 2K M)ay
+3M(L* + KM)as + (L* + 2K M)a, + Ka,,
c1=5LM'as +4LMa; +3LMas+2LMa, + La; — s,
o= ]Wsas + Mias+ May + May + Ma, — z,.
Therefore, the problem of determination of the parameter # is
solved by finding the root of Eq. (23).
The unit normal vector n= (n,, n,, n;) of the aspheri-
cal surface (see Fig. 2) can be calculated from the formula

n=—VF(x,y,2)/|IVF(x, y, z)|. It holds after modification
that



1394 Vol. 37, No. 9/ September 2020 / Journal of the Optical Society of America A

. _
ne =2 aix( 4y | JIVF(x, . ),

Li=1

- N -
n, =2 Za,'iy(xz—i-yz)l_l [IVFE(x,y, 2)|,

Li=1 .

ny = —|VF(.X', 2 z)lila

N 2
IVF(x,y,2) =1 +4[Z aiix(x” +y2)"‘}

i=1

N 2
’ 4[2 aity (<* HZ)H} '

i=1

(24)

The unit directional vector s, of the refracted ray can be calcu-
lated with the law of refraction in the vector form; it holds that

1 1

LR S [\/”3 —mi +ni(py )’ +m(p, .n):| .
(25)

As in the previous section (the case of the meridional ray),
the intersection r= (x, y, z) of the general off-axial ray with
the aspherical surface can be calculated with the iterative pro-
cedure. If in the first step the following initial guess is stated:
(x)°=x0, ()°=yo, then the following formulas for an
iterative procedure similar to Eq. (19) hold:

N

@ =Y ae+ ]

i=1

»_2
() =g+ D20,

z

P _
0 =yo+ D2, (26)

V2
This procedure calculates the ray intersection with a plane
perpendicular to the optical axis with point (2)? in it. If the
intersection (coordinates) r= (x, y, z) is calculated, then
one continues with a similar procedure according to Egs. (24)

and (25).

5. EFFECT OF LENS SHAPE ON COMA
ABERRATION

It has been stated above that the spherical aberration of the
simple lens can be eliminated if one of its surfaces is aspherical.
During imaging of off-axial points, images will no longer be
points, but so-called spot diagrams. The sizes of the diagrams
depend on the shape of the lens for given object plane position,
focal length, and entrance numerical aperture, and the used
wavelength is determined by a dispersion formula of the lens
material. In other words, the effect of the lens shape on coma
aberration depends on a ratio of vertex radii of curvatures of
the lens. Therefore, one can affect coma aberration during
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designing the lens with eliminated spherical aberration as well.
It is known from geometrical optics [1,3,5,7] that meridional
(tangential) coma 8y, can be expressed with the formula

Sm 85’
8ym =370 (m—n: - i) =3y4Cn> (27)

where y; is the image size, §m = m — my is the deviation from
the sine condition, m =sino/sin o’ is the transverse magni-
fication of the lens in air, o is the entrance aperture angle, o' is
the exit aperture angle, 7 is the paraxial magnification, §s” is
the lateral spherical aberration, p’ is the distance between the
image plane and the exit pupil of the optical system, and C,,
is the coma coefficient. In the case of the aspherical lens with
corrected spherical aberration, it holds that §s” = 0. In the case
of minimized coma of the aspherical lens, the radii of curvatures
71 and r; have to fulfill the following approximate formula:

m%<2_”2_1><1+2_f’), (28)
7y — 1] n+1 s

where 7 is the index of refraction of the lens, /7 is its focal
length, and s is the object distance from the lens. Eq. (28) was
derived from the theory of aberrations of the third order; see,
for example, [5,7]. It is valid for a lens with both spherical sur-
faces. However, one can use the mentioned formula as a very

good approximation for an aspherical lens, as will be shown in

Section 6.B.

6. EXAMPLES
A. Example 1—Plan-Hyperbolic Lens

It is known that the rotational symmetric plan-hyperbolic lens
has no spherical aberration for a parallel beam of rays impinging
on the lens from a side of its planar surface. And similarly, the
plan-hyperbolic lens transforms the ray coming from its focal
pointimpinging on the hyperbolic surface to a parallel beam.

The general formula for a curve of the second order (conic
section) has the following form, as known from analytic
geometry [20]:

92 =2Roz+ (e* — )2, (29)

where Ry is the radius of curvature of the curve in its vertex, and
€ is its numerical eccentricity. For the case of a plan-hyperbolic
lens in air, it holds that (as can be easily proven with the Fermat
principle)

y2=2Rox + (n* — D22 = =2f(n — Dz + (n* — 1)2%,
(30)
where /7 is the focal length, and 7 is the index of refraction of the
lens material.

Consider now the following parameters for a plan-hyperbolic
lens: s; = —o00, 11 =00, 55 = f' =100 mm, where f” is the
image focal length of the lens; 71 =1, my=n=1.5, n3 = 1;
the axial thickness of the lens is 4 = 10 mm; and the impinging
heightis y; =25 mm.

Issuch asituation, this limit case has the following results:
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5y =0Q, SinUZIEZy—ZZO,
2 \/}’22 + (22 — 52)°
cosop, =1, 8, =0,
a=(n—1sy B=—nys y=y.

and one gets after substitution into Eq. (11)

Fraln—1) =y Jn2yd + 20 =17 — 53
n2yi 4+ fr(n—1)° '

Further, with the use of Eq. (6), one gets after simplification

sina3 = —

yz ==2f(n—1)z+ n* =122,

which is the second formula of Eq. (30) for hyperbola.
Therefore, it is analytically shown that the presented procedure
in the paper is valid.

Numerically, the results of this example are: « = 50 mm, § =
—37.5mm, y =25 mm, 03 = 13.2917 deg, y, = 25 mm, and
zp = —5.8258 mm.

B. Example 2

As the second example, a general rotational symmetric
aspherical lens in air is designed. Suppose the following input
parameters:  (y1)ma =40 mm, 7; =63 mm, 4 =20mm,
n =1, np=n=1516, nz3=1, s;=—4000mm, s)=
100 mm, and N =5. The calculation is processed for heights
(coordinates) y; selected from an interval y; € [0, (1) max]-
It is appropriate to select non-uniform distribution for large
numerical apertures of the lens with smaller spacing for larger
values of y;. Afterwards, one calculates a set of coordinates
(72, 22)4 of points on the aspherical surface for a given height
(y1)¢ with Egs. (3), (4), (6), (11), and, e.g., £#=1,2, ..., 20.
With Egs. (13) and (14), one then gets the following coef-
ficients of the aspherical surface described with Eq. (12):
as =—9.8135¢ — 19 mm ™, 24 =9.4575¢ — 15 mm™/, a3 =
—5.3593e — 11mm™>, 2, = 5.826le — 07 mm™>, 4, =

—1.0953¢ — 03 mm~". The vertex radius of curvature of the
aspherical surface then equals 7, = 1/(241) = —456.497 mm.
Afterwards, one can ray trace rays through the aspherical lens
with Egs. (3), (4), and (15)—(18). Figure 3(a) shows a residual
transverse spherical aberration, and Fig. 3(b) shows a depend-
ency of the coefficient C,, of the meridional coma aberration on
the height y; (impinging height on the first surface of the lens).
The radius of curvature of the first surface (r; = 63 mm) was
chosen to satisfy the condition in Eq. (28) as much as possible.
Table 1 presents numerically a dependency of the maximal value
of the coefficient C,, on the first radius of curvature 7; and on

the value
2n? 2f
AX:m—( d —1)(1+ f). (31)
ry — 11 n—+1 s
C. Example 3

Suppose now a design of an aspherical lens with a given first
surface different from the spherical shape. Consider a parabolic
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Transverse spherical aberration
r, =63.00 mm, r, = -456.50 mm, d = 20.00 mm, n = 1.516, NA = 0.36

f =108.71 mm, s, = -4000.00 mm, 5'2 =100.00 mm, m = -0.03
a, = -9.8135e-19 mm™, a, = 9.4575e-15 mm”’, a, = -5.3593¢-11 mm"

a, = 5.8261e-07 mm™, a, = -1.0953¢-03 mm""
40 " T T

35 1

30 [ 1

25 1

20 1

y, [mm]

0 L I 1 1
-2.5 -2 -1.5 1 -0.5 0

Ay’ [mm] x10™

(a)

Coma
r, =63.00 mm, r, = -456.50 mm, d = 20.00 mm, n = 1.516, NA = 0.36
f =108.71 mm, s, = -4000.00 mm, s'2 =100.00 mm, m = -0.03
5 = 9.8135e-19 mm™, a, = 9.4575¢-15 mm7, , = -5.3593e-11 mm™

a, = 5.8261e-07 mm™, a, = -1.0953¢-03 mm’
40 T T T T T T T T

35

30

25

20

y, mm]

C,, =Amm-As’s’ %1073
(b)
Fig.3. Resultsofaspherical lens design for example 2. (a) Transverse
spherical aberration and (b) coma aberration.

Table 1. Dependency of the Maximal Value of the
Coefficient C,, on the First Radius of Curvature r; and
on the Value AX

r o0 200 100 63 50 45
(C)max 0.20 0.14 0.07 —-0.01 -0.07 —0.12
AX -1.79 —-128 —0.74 0.02 0.59 0.98

surface described with the formula z; = 4;y7. The known
parameters of the design are: i =63 mm, b =1/(2r) =
0.008 mm™!, (y)max =40mm, 4=20mm, n=1.516,
§1 = —4000 mm, s, =100 mm, and N =>5. The calculation
was processed for values of y; € [0, (§1)max] With non-uniform
distribution similar to the previous example. However, the ray
tracing through the first surface was calculated with Eq. (3),
where tan w; = dz;/dy; =24, y,. With the presented design
procedure, one gets the following coefficients of the second
aspherical surface of the lens: 25=2.3812¢ — 18 mm~,
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Transverse spherical aberration
P, = 0.008 mm'1, r, =63.00 mm, r,= -456.44 mm, d = 20.00 mm, n = 1.516
f'=108.71 mm, s, =-4000.00 mm, s’, = 100.00 mm, m = -0.03, NA = 0.36
a, =2.3812e-18 mm”, a, = -1.8759e-14 mm”, a_ = 7.7472e-11 mm’>

a,= -1.9405e-07 mm'3, a, = -1.0954¢-03 mm™!
40 T T
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30 1
25 1

20 1

Y, mm]

0 L L L 1 L
0 0.2 0.4 0.6 0.8 1 1.2

Ay' [mm] %1073

(a)

Coma
P, = 0.008 mm'1, r= 63.00 mm, r,= -456.44 mm, d = 20.00 mm, n = 1.516
f =108.71 mm, s, =-4000.00 mm, s', = 100.00 mm, m = -0.03, NA = 0.36

a, =2.3812e-18 mm?®, a , =-1.8759e-14 mm7, a, = 7.7472e-11 mm"®

a, = -1.9405e-07 mm™, a, = -1.0954e-03 mm™*

40 T T T T
30 + A
E
E 20f ,
Ny
10+ .
0 I | ! I ! !
-3 2.5 -2 -1.5 -1 -0.5 0 0.5 1
C,, = Am/m- As's' x1073
(b)

Fig.4. Results of aspherical lens design for example 3. (a) Transverse
spherical aberration and (b) coma aberration.

a5=—1.8759% — l4dmm 7, a3 =7.7472¢ — 11 mm ™, 2, =
—1.9405¢ — 07 mm ™3, 27 = —1.0954¢ — 03 mm ™. The ver-
tex radius of curvature of the aspherical surface then equals
ry=1/(Q2a;) = —456.44 mm. Figure 4(a) shows results of
the design with calculated transverse spherical aberration, and
Fig. 4(b) presents the coma aberration of the lens.

D. Example 4

The last example shows a ray tracing of off-axial rays with the
aspherical lens with geometrical and material parameters as in
the second example.

Figures 5(a) and 5(b) show calculated spot diagrams in a plane
(x}, y5) in the axial distance s} from the vertex of the second
(aspherical) surface of the lens for a point object in a plane
(%0, y0), which is in the axial distance 51 in front of the vertex
of the first (spherical) surface of the lens. The beam of rays is
limited by a value (y1) max in a plane tangential to the first surface
of the lens. Refraction on the second surface was calculated with
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«103% %= 0 mm, Yo = 0 mm, rAiry‘ 633nm = 1.07e-03 mm
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-0.26 il
-0.265 [ i

E 027 ¢ 1
=
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(b)

Fig. 5. Results of off-axial ray tracing for example 4. (a) Spot dia-

gram for central beam: blue, spot diagram; red circle, Airy disc for
A =633 nm. (b) Spot diagram for excentric beam: blue, spot diagram;
red circle, Airy disc for A = 633 nm.

Egs. (20)—(25). It is possible to get the same results with the
iterative procedure in Eq. (26).

7. CONCLUSION

The paper presented formulas for designing a lens system with
one or two aspherical surfaces. A specific case of an aspherical
lens with optimized parameters was shown; the lens has the first
surface planar, spherical or aspherical, and the second surface
of the aspherical shape. The lens has corrected spherical aber-
ration for point objects on the optical axis. This example can
be easily generalized into complex optical systems with one or
two aspheric surfaces. Design of the optical system with one or
two aspherical surfaces using the presented formulas is, to the
authors’ knowledge, the simplest way that has been published.
New original formulas [Eqs. (15)—(17)] for ray tracing of a
general meridional ray through the aspherical lens were derived,
and formulas for approximation of the aspherical surface with



Research Article

power series as well. Moreover, new procedures [Egs. (23)—(26)]
for ray tracing of a general off-axial ray were presented. The cal-
culation can be done for an arbitrary position of a point object.
Further, an approximate formula in Eq. (28) for minimization
of the coma aberration of the aspherical lens was presented.

The paper brings a valuable contribution and deeper insight
into the theory of aspherical surfaces with an analytic study of
many challenges. Not every reader has a possibility to use mod-
ern optical programs such as Zemax, Oslo, and Code V, which
are very expensive; the presented formulas can be very easily
coded, and a design of aspherical lenses can be done without
large financial costs.
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This paper analyzes the influence of spherical aberration on the depth of focus of symmetrical optical systems for
imaging of axial points. A calculation of a beam’s caustics is discussed using ray equations in the image plane and
considering longitudinal spherical aberration as well. Concurrently, the influence of aberration coefficients on
extremes of such a curve is presented. Afterwards, conditions for aberration coefficients are derived if the Strehl
definition should be the same in two symmetrically placed planes with respect to the paraxial image plane. Such
conditions for optical systems with large aberrations are derived with the use of geometric-optical approximation
where the gyration diameter of the beam in given planes of the optical system is evaluated. Therefore, one can
calculate aberration coefficients in such a way that the optical system generates a beam of rays that has the gy-
ration radius in a given interval smaller than the defined limit value. Moreover, one can calculate the maximal
depth of focus of the optical system respecting the aforementioned conditions. ~ © 2017 Optical Society of America
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1. INTRODUCTION

The depth of focus of an optical system is a very important
imaging characteristic, and it describes an area in image space
where a diameter of a circle of confusion is approximately the
same or less than a given threshold value. The diameter of the
circle of confusion characterizes an area where a point is imaged
into and which we accept as an image point. As it is known
from optical theory, the image of a point is not a point due
to aberrations of the optical system and diffraction effects.
Rather, it is an energy distribution, so-called a point spread
function [1-5]. In the case of an optical system with a circular
aperture and without any aberrations, the diameter of the cen-
tral part of the point spread function is called the Airy disk, and
it is given by formula 4 = 2.4AF, where 1 is the wavelength
and F is the f-number of the optical system; one considers
imaging the axial points of a rotationally symmetric optical sys-
tem, and the image is analyzed in the paraxial image plane
[1-10]. If the optical system is affected by aberrations [1-10],
then the diameter of the circle of confusion depends on the
amount of aberrations. In the case of axial points of the rota-
tionally symmetric optical system, the diameter of the circle of
confusion depends on spherical aberration. Therefore, one can
modify the diameter of the circle of confusion with an appro-
priate spherical aberration, which depends on the distance from

1559-128X/17/175099-07 Journal © 2017 Optical Society of America

the paraxial image plane. If one accepts some threshold value of
the circle of confusion for practical applications, then there ex-
ists an area where the diameter of the circle of confusion is less
than or equal to the considered value. Such an area is called the
depth of focus of the optical system. Therefore, one can influ-
ence the depth of focus of the optical system with an appro-
priate modification of spherical aberration, in the case of
axial points.

The goal of this paper is to present the influence of spherical
aberration on the depth of focus of an optical system for the
case of imaging of axial points of a rotationally symmetric op-
tical system. The other way to achieve such an effect is with the
usage of appropriate optical elements, which will change the
amplitude, phase, and polarization of a passing wave field
[11-20]. Interesting reviews of modifying the depth of focus
are presented in [11,12]. This paper continues the topic that
was presented in the previous work [21], where only the geo-
metric-optical approach was applied. Readers can find other
references discussing the topic in [21] as well. This presented
paper shows a more general analysis considering the diffraction
point of view together with the geometric-optical description.
The practical usability is presented as well.

In the first part of this paper, analytical formulas for the
calculation of caustics of a ray beam are presented with the
use of ray equations in the image plane and with longitudinal
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spherical aberration. Afterwards, the influence of aberration co-
efficients on extremes of such a curve is discussed. This part fills
the theory of caustics, e.g., studies on evaluating and using
caustics in symmetric optical systems as was published by
Shealy and Burkhard [22-26], which were also used by
Andersen for automatically calculating caustics from high-order
aberration coefficients [27]. The next part focuses on the der-
ivation of the requirements for aberration coefficients of an op-
tical system if the Strehl definition should remain the same for
two symmetrically placed planes with respect to the paraxial
image plane. For optical systems with large aberrations, such
conditions are derived with the use of the geometric-optical ap-
proach where the gyration diameter of the system is evaluated
in given planes. Therefore, aberration coefficients of spherical
aberration can be calculated in such a way that the optical sys-
tem generates a beam of rays that has less or equal gyration
diameter than the given threshold value. Moreover, one can
calculate the maximum possible depth of focus of the optical
system that fulfills the aforementioned conditions. In the end of
the paper, the derived formulas are presented with practical ex-
amples. To the best of the authors’ knowledge, such a general
analysis of a similar topic has not been published yet. Thus, this
paper gives important answers for many practical applications
of the discussed topic. Results of the presented analysis have a
significant impact, especially for optical scanning systems,
which work generally with axial beams. Therefore, spherical
aberration is fundamental.

2. RAY EQUATIONS AND CAUSTICS IN AN
IMAGE PLANE

Consider the situation depicted in Fig. 1, where the axial ray
tracing (aperture ray) in the image space of the rotationally
symmetric optical system is presented. The image space is
homogenous, and isotropic rays become straight lines. Let O
be the origin of the defined coordinate system (e.g., the center
of the exit pupil of the optical system), line BC denote an out-
going ray from the optical system, & be the paraxial image plane,
and A, be the paraxial image of the optical system. Due to rota-
tional symmetry, one can analyze only a meridional section.
From mathematics, a line can be described by the following
formula [28]:

y=rlkx+h (1)

where & = k()) is the tangent of the angle between the ray
and the positive direction of the x axis. It holds for

& g
y
B
optical 7
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Fig. 1. Transverse spherical aberration.
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k = tan(180° - @) = -tan(a), and b = OB. According to
Fig. 1, it holds for

k=-(h-8"/p @2

where 6y = 6y'(/) is the transverse ray aberration of the op-
tical system (transverse spherical aberration) [1-10]. The
meaning of the other values is obvious from Fig. 1. The
transverse ray aberration of the aperture ray in the paraxial
image plane & can be, in the case of a rotationally symmetric
optical system, written in the form (§y’ is an odd function

of 5)

M

' =Y a b, (3)
m=2
where a,,,; denotes aberration coefficients. Substituting
Eq. (3) into Eq. (2), one gets

_ -h + Z[mw=2 aZm—Ihzm_l
» .

As it is obvious from Egs. (1) and (2) that the equation of
a ray (line) depends only on one parameter 4 for a constant
value of p (see Fig. 1). Therefore, those rays define a
family of lines, and one can calculate an envelope of this
family (i.e., a curve that is tangent to each member of
the family of lines [28,29]). From mathematics (from the
definition of an envelope), one can calculate the envelope
of lines [given by Eq. (1)] from the following system of equa-
tions [6,7,28,29]:

$(x 9, h) = 0,0¢(x, , h) /oh = 0, ()

k (@)

where
¢ 9,h) =y-kx-h=0. (6)

The lines’ envelope is called a caustic in optic [4,6,7,29]. It
can be shown that caustics are curves where the wavefronts’
centers of curvature are positioned [4,6,7,29]. The caustics for-
mula can be derived excluding the parameter / from Eq. (5). As
it is obvious from Eqs. (4)—(6), such a problem is generally
unsolvable. For this reason, the coordinates of caustics are ex-
pressed in the parametrical form. Using Egs. (2)—(6), one gets
formulas  for coordinates x. = x,.(#) and

7, = y,(h) in the following form:
’ _, fO

caustics’

ey T ey 0
where
M
FB) == a2,
u
gh) = 1= (2m=-1)ay, "D, )

m=2

In the case of an optical system without any aberrations, i.e.,
a3, =0 for m=2,3,..., M, one gets x, = p, y, = 0, and
therefore caustics become a point.

Now we will show another way to calculate caustics of a
beam of rays. This approach is based on the usage of longi-
tudinal spherical aberration &s’. Consider the situation in
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Fig. 2. Calculation of caustics of a beam of rays.

Fig. 2. Let the origin of the coordinate system O be in the
paraxial image plane &, which is positioned at a distance p from
the plane of the exit pupil #. As is obvious from Fig. 2, point O
is identical with paraxial image point A,. The ray equation of
BC can be expressed in parametrical form. It holds for coor-
dinates x = x(a, £), y = y(a, ) of an arbitrary point Q on
the ray:

x =065+t cos a, y=tsina, (9)

where 7 denotes the distance between points Q and A.
Longitudinal spherical aberration ds” can be written in the form
as follows:

N
os' = Zaz,,(tan a)?, (10)
n=1
where s,, denotes aberration coefficients.

As it is known [14,15], one can calculate an envelope of
lines given by Eq. (9) (generally curves) if Jacobian J of the
transformation from ray coordinates (@, #) to Cartesian (x, y)
is equal to zero:

o o
da 0Ot
= =0. 11
J » o (11)
da Ot
Using Egs. (9)—(11) then gives the following formula for
parameter ?: N
_ 2 2n (12)
t= o 0{; ns,,(tan a)=".

Substituting Eq. (12) into Eq. (9) gives the analytical
formulas for the coordinates of caustics (x,, y,):

N
x, = Z(Zn + 1)s5,,(tan )",
n=1

N
y, =2 Z ns,, (tan o) @7+ 1), (13)
n=1

Now we will study the extreme values of the caustic’s coor-
dinate y, depending on parameter 4. The necessary condition
for the extreme, dy,/0h =0, and the combination with
Egs. (7) and (8) gives the following formula:

f(he(h) =0, (14)
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where
m=M
eh) = 2Q2m=1)(m - ay, /#". (15)
m=2
Solving Eq. (14) results in value 4 where the coordinate y,
will be external.
Let one solve Eq. (14) for the case of an optical system with
aberrations of third and fifth orders, i.e., for M = 3. After
rearrangement, Eq. (14) has the form

1022/° + 13a3ash® + (343 - 10as)h* - 3a;* = 0. (16)
The solution of Eq. (16) then gives the following values of 4

for extremes:

hl = 0, bz = O,
hy = @ :?ﬂs’ hy = ~h3,

he — ﬂ3+4/ﬂ§+4ﬂ5 S
5 — T 2a5 6 — ~75

_ a3- /a3 +das _
by =\|-——5—— hy=-h. (17)

In the case of an optical system with aberrations of third,
fifth, and seventh orders, the transverse ray aberration

(in the paraxial image plane) can be written with Eq. (3) for
M = 4 as follows:

&y = ash® + ash® + a;l’. (18)

With Eq. (18), one can easily find the solution for a value
of /y where 6y’ = 0:

as — \/a? - 4aza
5022\/—%- (19)
7

For the case of an optical system with only third- and fifth-
order aberrations (M = 3), a similar analysis gives

by = £, /_? (20)
5

3. DEPTH OF FOCUS FROM THE POINT OF
WAVE OPTICS

We will now look at the aforementioned problem from the
point of wave optics. Let the optical system have only third-
and fifth-order aberrations (the most important in practice).
The wave aberration W of the optical system can be expressed
as series of Seidel polynomials [1,3-5,9] as follows:

W = Woor? + Wyor* + Wor®, (21)

where 7 is the normalized (7,,,, = 1) radial polar coordinate of
the point in the plane of the exit pupil or the reference sphere of
the optical system, W,, characterizes longitudinal defocus,
W 40 spherical aberration of the third order, and W is spheri-
cal aberration of the fifth order.

The Strehl ratio (Strehl definition) is defined as a ratio be-
tween the maximum value of the point spread function of a real
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optical system with aberrations and the maximum value
of the point spread function of an ideal optical system
(only diffraction limited) without aberrations (W = 0). The
Strehl definition S.D. of the optical system with small
aberrations (W < 0.51) can be expressed with the following
formula [1,3-5,9]:

S.D.~1-Q2rn/))?E,, (22)
where
_ 1 - 1
Ey=W?*-W%, W= 2/ W (r)rdr, W? = 2/ W2 (r)rdr.
0 0

(23

In the aforementioned situation, one gets for the variance of
wave aberration £ as follows [1,3,9]:

6 112
=€) W%O + €1 WZO + €o> (24)

<4W2 Wi Weo 9W§0>
45

where one can calculate aberration coefficients with the
following formulas [1,3,9]:

50 3
Wi = SR Wy = _EQOWGO)

As, As!
“7 — — _ ext R 2
O T 2F(1-q) 6Fg (29)

where F is the f-number of the optical system [1-4,9], 5, is the
defocus, As), is the longitudinal spherical aberration at the edge
of the exit pupil (» = 1), g, = 7} is the correction zone where
the longitudinal spherical aberration is corrected (i.e., it equals
zero for r = ry), and As/,, is the extreme value of longitudinal
spherical aberration [1,3,4].

Suppose now that the Strehl definition has to be the same in
two planes symmetrically placed with respect to the paraxial
image plane by the value of +£sy. If such a condition shall
be fulfilled, it has to be ¢; = 0 according Eq. (24). The solution

of this equation thus gives

9
Wi =~ 10 W o (26)
Comparing Eqs. (25) and (26) results in
3 9
Wy = ~5% Weo = 1o W so- (27)
Therefore,
90 = 15 = 3/5. (28)

One can summarize the aforementioned analysis as
follows. If the Strehl definition of an optical system with
small aberrations for axial points should have the same
value in two planes symmetrically placed with respect to
the paraxial image plane, then the spherical aberration of
the optical system should be corrected for zone
ro = \/3/5 = 0.7746.

If (), is the demanded value of the variance of wave aber-
ration in planes placed at distances £(s), from the paraxial
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image plane, then one gets, using Eqs. (24) and (26), the

following:
Wi = £5.3514/12(E), - (Wao)2, (29)

_ (So)p
8F*"

where

(W), = (30)

According to Eq. (26),

10
Weo = 5 Wi = F5.9464/12(E), - (W), (31)

With Egs. (29) and (31), one can calculate coefficients
W4 and Wy of wave aberration of the optical system in
the case of spherical aberration of the third and fifth order,
which ensures that the maximum value of the Strehl defini-
tion will be the same in planes at distances £(sy), from the
paraxial image plane of the optical system. For a real solu-
tion, it has to be fulfilled, according to Egs. (29) and (30), as

follows:
|(s0),| < 16F2,/3(Ey),. (32)

Equation (32) can be used for the initial calculation of the
maximum depth of focus with given variance (£),.
Note that between coefficients of wave aberration W, and
W o and coefficients 23 and a5 of transverse ray aberration the
following equations hold:
H* H®
40 = Eﬂa) Weo = @ﬂs) (33)
where H is maximum (edge) height 4 (see Fig. 1) and R is
the radius of the reference sphere. If point O (Fig. 1) is identical
with the center of the exit pupil of the optical system,

then R =p. The value » in Eq. (21) is then given as
r=h/H.

4. CALCULATION OF ABERRATION
COEFFICIENTS WITHIN THE
GEOMETRIC-OPTICAL APPROXIMATION

In the case of large aberrations (W > A, with respect to the
optimal image point), it is not possible to use the Strehl def-
inition for a relevant description of the problem of optical im-
age quality. As presented by Miyamoto [8,30-32], the effect of
diffraction of light can be neglected if the wave aberration ful-
fills the condition W > 24, and optical imaging can be de-
scribed using geometric-optical approximation, based on ray
aberrations of the optical system. Such results are practically
identical with the ones obtained with the diffraction theory
of optical imaging. Consider now a situation and the way of
calculation of the depth of focus in the case of spherical aber-
ration of the third and fifth order, where transverse spherical
aberration in the paraxial image plane is given with the formula

6_}// = ﬂ3/?3 + ﬂs}]s. (34)
The mean value of the radius 7, of geometric-optical circle
of confusion (gyration radius [10,32]) can be calculated with

the following formula (valid for the circular exit pupil of optical
system):
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2 —L/ZH/H(é 0)>hdhd —i/H (6y4)*hdh
rg_ﬂHZ o 0 .yO (p_HZ o .y()
2

H
= — 8y — sy tan @)hdh,
[ -

(35)

where integration is performed over the plane of the exit pupil
of the optical system, (4, @) are polar coordinates in the plane
of the exit pupil, H is the maximum value of 4, s, is the dis-
tance between the paraxial image plane and the plane where
the size of the geometric-optical circle of confusion is calcu-
lated, a is the aperture angle (always positive) between the ray
and the optical axis (see Fig. 1), and Jy; is the transverse
spherical aberration in the plane &;, which is located at dis-
tance sy from the paraxial image plane. As shown by
Miyamoto [32], the geometric-optical intensity /, of the im-
aged point, in the first approximation, is in straight relation
with the gyration radius [32]:

I, = By + B (ry), (36)

where f§; and 3, are constants.
After integration of Eq. (35) with substituted Eq. (34), one
obtains the following equation for gyration radius:

s = 5% + £1% + o (37)

where

g = H*/(2p?),
g = -H'(3H?as + 4a3)/ (6p),
g0 = HO(10H 2% + 24H  a3as + 1542)/60.  (38)

Equation (38) can be written with Eq. (33) in the following
form, too, (R = p):

& =H*/(2p),
81 =-8W4/3-3W¢,
20 =2p*(10WZ%, +24W s W o+ 15W%)/(5H?). (39)

Let one demand an equal gyration radius 7, in two planes,
which are symmetrically placed with respect to the paraxial im-
age plane by value £5,. To fulfill such a condition, it holds
according to Eq. (37) that g; = 0. Finding the solution of this

equation, one obtains

az = —%Hzﬂs. (40)

Let (rg)p be the gyration radius in planes distanced from the
paraxial image plane by the value +(s;),. Then the aberration
coefficient a5 can be calculated from Egs. (37) and (40) as

follows:

4«/210\/2102(7;)? - H(5))?
+ 755 .

Equations (40) and (41) can be used for the calculation of
aberration coefficients 23 and 45 of the transverse ray aberration
of the optical system, which requires the gyration radius (rg)l17

as = (41)
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in planes that are shifted by the value £(s), from the paraxial
image plane.

To obtain the real solution of our problem, one can derive
the maximum possible depth of focus 2(s )y, from Eq. (41) as

(il < V2E (), (42)

One can calculate the maximum possible depth of focus of
the optical system in advance with Eq. (42), and the optical
system will have the aforementioned properties. If the desired
value of the depth of focus 2(sy) , is larger than 2(sg ) iy, one has
to change some of parameters H or p in such a way that
Eq. (42) will be fulfilled.

The next value of interest is the minimum gyration radius
(7),.;,- From the necessary condition for the extreme and with
Eq. (29) one gets

(rg)min = \/g_o (43)

Afterwards, the minimum value of the gyration diameter
(Dg)min is

(Dg)min = 2(rg)min = 2\/g_0 (44)

The correction zone can be calculated from Egs. (25), (33),
and (40) as follows:

9, =15 = 3/4 (45)

One can summarize the aforementioned analysis as follows.
If the value of gyration diameter of the optical system for axial
points should have the same values in two planes symmetrically
placed with respect to the paraxial image plane, then the spheri-
cal aberration of the optical system should be corrected for
zone 7y = /3/4 = 0.866.

Demanding the same value of gyration radius 7, for sp = 5o
and 5y = sqy, one gets the following from Eq. (37):

9H(501 + 502) Zt A/ 96D

&ZS = 7H2p >
3 3(s01 + $02)
az = — ZHZAZS + —4H2[7 > (46)

where
D = -9H> (s}, + s%,) + 17H?sg1502 + 707§_pz. (47)

For a solution in a real domain, D > 0. Therefore, it is not
possible to set the values of sy; and sy, independently.

5. EXAMPLE

Let one calculate aberration coefficients using the aforemen-
tioned procedure. Suppose the following initial parameters:
(s0), = £2 mm (depth of focus = 4 mm), (Dg)P =1 mm,
p =50 mm, and A = 12.5 mm.

One obtains the following with the use of Egs. (39) and
(40): @3 =1.5899¢-3 mm™ and 25 = -1.3567¢ - 5 mm™.
Next, for the minimum gyration diameter it holds that
(Dy) i = 0.707 mm. Equation (20) can be used for the cal-
culation of height /4, where the spherical aberration is cor-
rected, #, = 10.825 mm.

Figure 3 shows a plot of transverse spherical aberration 8y’ of
the optical system, which will fulfill the aforementioned
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Transverse ray aberration

p =50 [mm] a, =1.58991e-03 [mm?] a, = -1.35672e-05 [mm™]

h =125[mm] (D) =1[mm] Depth of focus =4 [mm]
ax ) gp - .

m;
12 i

h [mm]
(=]

-1.5 -1 -0.5 0 0.5 1 15
Transverse ray aberration dy” [mm]

Fig. 3. Transverse spherical aberration.

conditions. In Fig. 4, a dependency of the gyration diameter D,
on defocus sy is shown. Figure 5 then shows the beam of rays
and its caustics.

Now let us study the energy properties of light that are trans-
formed by the given optical system into an area given by the
gyration diameter. By splitting the aperture into subapertures of
equal areas, one can easily model such a phenomenon with rays
coming through the centroid of such subapertures.

Let a circular sector be defined by angle Ag. Let such a sec-
tor be divided into NV parts of the same area in a radial direc-
tion. Afterwards, the centroid of ith part of the annulus will be
given by radius 77y, and it holds that

4 (B-r) | A
rr = 3800772y sin. ==, (48)
where 7; and 7;_; denote the edge radii of the section of the ith
annulus, which can be calculated by the following recurrent
formula:

Gyration diameter Dg
p =50 [mm] a, = 1.58991e-03 [mm?] a, = -1.35672e-05 [mm™]
h . =12.5[mm] (Dg)p =1[mm] Depth of focus =4 [mm]

m:

0.6 I 1 1 1 1

-6 -4 -2 0 2 4 6
(D) =0.70711 s, [mm]

g’mim

Fig. 4. Dependency of gyration diameter D, on defocus s;.
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a, = 1.58990e-03 [mm], a_ = -1.35670e-05 [mm™], a, = 0.00000e+00 [mm®]
4

y [mm]

-3

-4 . . . . . . . )
-8 -6 -4 -2 0 2 4 6 8

Sy [mm]

Fig. 5. Dependency of caustics (red line) of a beam of rays (blue
lines) with respect to the gyration radius (green line) on defocus s,
for a constant step in ray height 4 in the aperture plane.

R2
_+A¢r12’

Yig1 = N iZO,...,N,TOZO. (49)

For a limit case where Agp — 0, one gets the following from

Eq. (48):

2013 -73)
rTio = 3 (712 _ 712,1) . (50)
Figure 6 shows an energetic study for aperture division into
equal areas. In the plane given by defocus -5, with respect to
the paraxial image plane in an area surrounded by the gyration
radius, there is focused 54% of energy in the plane +sy 78% of
energy.

a, = 1.58990e-03 [mm?], a_ = -1.35670e-05 [mm™], a, = 0.00000e+00 [mm*]

E(-s,) = 54.0 %, E(+s) =78.0 %
2

1.5

y [mm]

-2 I I 1 I I I I )
-2 -1.5 “1 -0.5 0 0.5 1 1.5 2

Sy [mm]

Fig. 6. Energetic study of a beam with division of aperture into
equal areas (blue, rays coming from centroids of the subapertures;
green, gyration radius).
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6. CONCLUSION

This paper presented the problem of depth of focus of an op-
tical system both from the point of view of geometrical optics
and from the point of wave optics. The formulas for the cal-
culation of aberration coefficients of longitudinal spherical
aberration were derived as well as formulas for wave aberration.
Both were studied under the condition that the optical system
with such aberration coefficients will generate a beam of rays
with a gyration diameter or a Strehl definition equal to or less
than a chosen threshold value in a given interval of image space.
Moreover, formulas for the calculation of initial maximum
depth of focus were derived for an optical system fulfilling
the aforementioned conditions.

Funding. Czech Technical University in Prague (CVUT)
(SGS17/004/OHK1/1T/11).
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The paper presents a detailed theoretical analysis of two-component optical systems of Petzval objective, tele-
objectives, reverse tele-objectives, and objectives of anallactic type. This type of optical system is popular in
practice, especially in the field of photographic technologies and surveying devices (theodolites, levelling devices,
etc.), where anallactic telescopes with inner focusing are used. The paper presents methods of designing of funda-
mental parameters of the objective, i.e., focal distances of the objective’s components and their mutual distance,
and radii of curvatures of individual surfaces if the components are cemented doublets. Further, a detailed analysis
of aberration properties of those optical systems is presented.  © 2020 Optical Society of America

https://doi.org/10.1364/A0.383985

1. INTRODUCTION

Optical systems composed of two optical components find
wide utilization in practice [1-9]. In a field of photographic
technologies, tele-objectives are the most used. The optical
system of those objectives is usually made by two components;
from those, the first has positive optical power, while the second
has negative power. This construction has an effect of shorter
length of the objective than its focal length [4-9]. Such tele-
objectives are commercially offered by different companies.
The next type of two-component optical system, also widely
used, is the so-called Petzval objective (both components have
positive optical power), reverse tele-objectives (the first ele-
ment has negative power and the second has positive optical
power), and objectives of observation telescopes. In the field
of measurement, usually the most used are so-called anallac-
tic telescopes, which find application in surveying devices. In
such systems, the first optical component has positive optical
power, while the second (the inner component) has negative.
A measurement reticle is placed in the image plane of the sys-
tem. Focusing on differently distanced objects is then done by
moving the second component, while the distance of the tube
remains constant, i.e., so-called inner focusing. For example,
in geodesy, the current offer of commercial companies includes
many optical devices whose telescope has an objective com-
posed by two optical components with mentioned positive and
negative optical power. The first component is usually made by
two or three optical elements; the second usually has one or two

1559-128X/20/071998-06 Journal © 2020 Optical Society of America

lenses. The eyepiece of the telescope is a positive optical system
usually made by three to five lenses. The anallactic construction
of the telescope promises usage in other fields than geodesy;
further, one can name possible applications in endoscopes
or other micro-optical systems. As is known from the theory
[10-20], a so-called anallactic point of such anallactic telescopes
(a vertex of focusing cone) has no fixed position. Its position
depends on a distance of a target from an entrance pupil. This
movement causes an error in measurement distance [12-20].
While changing the position of the target, optical aberrations of
the optical system vary as well, which causes other errors during
measurement [1,21]. The inventor of the anallactic telescope
is a known designer of geodetic devices, i.e., Wild [10,11].
Before his invention of anallactic telescope, telescopes with a
Keppler type of construction were used. With this system, the
eyepiece is moving with respect of the objective while focusing,
so-called outer focusing, and a distance of the objective from a
reticle, too.

This paper presents a detailed theoretical analysis of imaging
properties of a general two-element optical system. Further, an
aberration theory of the third order is applied for a derivation
of formulas, which can be used for designing such objectives.
With the presented derived formulas, one can calculate starting
parameters for further optimization of the optical system of
anallactic telescope, which can be processed in software OSLO,
ZEMAX, or similar. Further, two examples show a detailed pro-
cedure for calculating the telephoto lens and anallactic telescope
objectives.
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Fig.1. Optical scheme of a two-component objective.

2. IMAGING PROPERTIES OF
TWO-COMPONENT OPTICAL SYSTEMS

Suppose an optical system is composed by two optical compo-
nents. The optical component means an optical system of one or
more simple lenses (doublet, triplet, etc.).

In Fig. 1, there is an optical scheme of such a system shown.
The meaning of individual symbols is as follows: f] and £ are
focal lengths of the first and the second optical component of the
objective, 4 is their mutual distance, 4; is the distance between
the first object axial point A and the object principal plane of the
first optical component, 4} is the distance between the image A’
of the axial object point A and the image principal plane of the
second optical component, 45 is the distance between the object
focal point F of the objective and the principal plane of the first
component, a;, is the distance between the image focal point F'
and the image principal plane of the second component, ¢ is dis-
tance between point A and the object focal point E and g is the
distance between point A’ and the image focal point F'.

One can show that the following formulas are valid, using the
fundamental imaging equations, itholds [1-3]:

99’ =—f". ar=—f(1-d/f3),

’ 4 v 4 ﬂ ﬂ
arp = 1-— d y = 1
where /7 is the focal length of the optical system. A transverse
magnification 7 of the optical system than can be calculated
with formula

/

y_f_ 4 _4a @
y 4 [ oaa
where y is the object’s height and y’ is height of the image.

Equations (1) and (2) represent imaging properties of the
two-component optical system in air.

3. FUNDAMENTALS OF ANALLACTIC
OBJECTIVE CONSTRUCTION

The anallactic telescope’s objective is composed of two optical
components. The first has positive optical power, while the
second (the inner component) has negative. A scheme of the
objective is shown in Fig. 2. Without any loss of generality,
there are individual components in a form of thin lenses. In the
image plane, there is a reticle on a glass plate. On the plate, there
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plane plane
f1>0 f5<0
Alxy) \ y
B(b,0)
2p = const.
*bJ
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R [
a2
d
D = const.

Fig.2. Optical scheme of an anallactic objective of the telescope.

are two lines of mutual distance 2p. Focusing on differently
distanced objects is done by moving the second component,
while the distance D remains constant, so-called inner focusing.
The stability of distance D is appropriate in many applications,
e.g., geodesy [10-25], where a mechanical prolongation of the
telescope is not practical.

One can derive the following formulas with imaging
equations

r_ alfl/ ﬂ2ﬂ

a am=a, —d, a,=
1= ) =a , 2= ,
a; + 1, d2+2/
7
a\a
m=12_2 (3)
aya; y

where @; and 4, (i =1, 2) denote image and object axial
distances and 7 is the transverse magnification of the objec-
tive. Let one denote 27 =x. With the use of condition
D=d+ a5 =const. and the formula for the transverse
magnification, then, using Eq. (3), the following formulas hold:

5 (#5:~4)

d-D+ 0
’ f/x k]
A+ (f-d)
115y _p=0. 4
G {1+ 79

After elimination of distance & from Eq. (4), one obtains
F(x,y)=Ax*+ Bxy +Cy* + Ex+ Fy + G, ()
where
B=pfi(D-fi-2f).
C=ff E=2p"ff
F=f'p(D=2£), G=p"f’f 6)

Equation (5) describes the curve on which the point A(x, y)
lies while changing the distance x. It can be easily shown that
Eq. (5) represents a hyperbola with asymptotes:

A=p’f,

Yo =kix+q1,

Va2 =lox + q, (7)

where, using the procedure clearly described in [26] (vol. I,
section 9.6), one obtains after modification and simplification
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the following formulas for asymptotes parameters 4 and ¢, it

holds that

p|[fi+28-DFJF-DNAT4R-D)]
2A /5 ’
q:p@ﬂp—zﬂﬂ@+ﬂh0)
P(A+2f,—D)—2f] fik
Angle 8 between asymptotes can be calculated as follows [26]:

ky — Fy
14+ kb |

kl.Z—

=1,2.

@

tanﬂ:‘

Further, let one suppose that the focal length of the objec-
tive fj (when the system is focused at infinity), the length D
of the telescope, position of the anallactic point & = —¢,/4,,
mutual distance of reticle lines 2p, and parameter 4, (usually
ky =—0.01) as known values. Afterward, focal lengths f{
and f; and the distance 4y (for and object in infinity) can be

calculated with formulas:

G =06"p* + kb p +6bp*) D+ (p — bky)> D?,

bp — pD —bkyD+ G
4]) —|—2ka — ZkzD

’

fl=—

f= fkap — fllap D
R =2 flkp + p*

do=fi+ = [ ©)

While focusing the object in the finite distance x from the
first optical component of the objective, distance d, between the
objective’s components can be calculated as follows:

_ H+ fix+ D(f] +x)
o 2(f{ +x)

’

H=\/[flx— D(fi + )4/, i+ (fi +4/)x — D(f +(a;)éi

Let one examine the difference between the asymptotes
and the curve of point A(x, y). The y coordinate of the point
A(x, y) can be calculated with the following formula:

[(A+xQf -

D 'x — HJ. 11
y= 2f1fz )+ A ] (11)

Afterward, the image height y can be calculated as follows:

! ﬂf;
= . 12
’ ﬂx (ﬂ x) (dx f;)y (12

If point A(x, y) lies on the second asymptote, its image
height y! can be calculated with formula

r=V-a (G-bt L), v=prd (k- ﬁ)

Afterward, the difference of image heights Ay’ =" — y !
can be easily calculated with Egs. (12) and (13). Distance x5
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between point A(x, y) and anallactic point B, then, can be cal-
culated with the simple formula x5 = —y,/4;. It can be shown
that, for longer distances xp, the difference of image heights
Ay’ is small. Thus, measuring a value of y, the distance x can be
easily calculated knowing the asymptote’s parameters. However,
for measurement of short distances, a correction from deviation
of asymptote from its parent curve has to be considered.

5. SEIDEL ABERRATION COEFFICIENTS

This part of the paper is focused on aberration properties of the
optical system. Suppose now that the optical system is composed
by thin lenses. Seidel aberration coefficients (Seidel sums) i,
S1u, Sur, Siv, and Sy can be calculated as follows [18,27,28]:

K % ©
Si=Y hiM.  Su=Y_ hhM;+Y BN,
i=1 im1 P

K K K K
S = Z hihiM; +2 Z hih;N; + Z @i, Sy = Z 2i ¢
-1 im1 -1 -1

§\~|®|

B+ pi) ¢,

K K K
Sy=Y_hhM;+3)  hiN; Z
i=1 i=1

(14)

where Sy denotes the Seidel sum for the spherical aberration, Sy
is the Seidel sum for the coma, Sy is the Seidel sum for the astig-
matism, Sty is the Seidel sum for the field curvature (the Petzval
sum), and Sy is the Seidel sum for the distortion. In Eq. (14), the
variables have the following meaning: 4, is the impinging height
of the paraxial aperture ray on the ith lens, 4, is the impinging
height of the paraxial chief ray on the 7th lens, p; = 1/n;, n; is
the so-called equivalent index of refraction of the 7th compo-
nent of the optical system (a thin component can be composed
by many thin lenses in contact), ¢; = 1/ f! is the optical power
of the ith optical component, and f] is its focal distance.
Parameters M; and N; characterize the spherical aberration and
the coma aberration of the ith component [18,27,28].

If the optical system is made by K thin lenses, the chromatic
sums of the optical system are given as follows [1-3,18]:

K

C1=Z/7i(fl. Py, CII—Z}]}] %. s

i=1 ’ i=1

where C} is the chromatic sum for the lateral chromatic aberra-
tion, Cyy is the chromatic sum for the transversal chromatic aber-
ration, v; denotes the Abbe number of the 7th lens, and P;; is the
relative partial dispersion of the 7th lens. The optical system will
be corrected from chromatic aberrations if C; = 0 and Cy; = 0.

Consider now a general two-component optical system,
which fulfils the following conditions: ¢ = 1, §; = Sjj = S =
Sv =0, and Sy # 0 or Sjy = 0. The solution of Eq. (14) for the
object position s; = 0o and any arbitrary value of entrance pupil
position 5} gives the following formulas:
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Mg

Mr
M=—"Eod—1?, M=—"F
1 5 @ ) 2= i od — 1)

_ (p1d — D[(¢2 — 2¢1)d + Nr]

M 7
N = (Zw;zw‘i;ﬁ)m (15)
where
M =2p(pid — 91 — 2 + 0192d)51
+3(p2 — @1)d + 2ppad,
Nr = p(pid — @1 — 02 + Qr192d)51 + poad.
Afterward, substituting Eq. (15) into formulas
M; = fPM; =2 f* N;Y; +1.56Y7,
Ni=f? N, —131Y;, i=1,2,
one obtains the values of M, M, Ny, and Ny:
Yizs,f-i-s,- _mi+l :—l—i,
si—s; m;—1 $i;
Vo= 2P (-1 — 1, (16)
his1@it1

where s;, s/ denote axial object and image distance of the th
component. Parameters M; and N characterize the spherical
aberration and the coma aberration of the ith component,
which has unit focal distance and unit transversal magnification
(m=-1)[27,28].

Let one demand the two-component optical system (K = 2)
having corrected all aberrations of the third order. Afterward,
the solution of the system in Egs. (14) or (15) for ¢ =1,
S[ = SH = SIII = SIV = Sv =0, and pPr=p2=p results in
following formulas:

o1=—¢y, d=1/¢},

My =2¢3(p1 — D*(p+3). M=¢i(pi—D(p+3),
My=—=2¢](p +3)/(p1 — )%, No=¢?(p +3) /(g1 — D).
(17

It is known from the aberration theory of the third order
(2,3] that, if the aberration coefhcient S, equals zero,
then the aberration coefficient S;4; does not depend on
a position of the entrance pupil (¢ =1, II, III, IV, V). In
the presented case, the aberration coefficients equal zero
(51 = S]] = S]H = SIV = SV = 0); therefore, Eq. (17) does
not depend on the entrance pupil position. Without any loss
of generality, one can then consider hi=0or by =0, etc. In
the case of §; = Sy = Sy = Siy = Sv =0, the parameters M;
and N; of the individual optical component of the system are
calculated as follows:
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M, =7.24¢, (¢, — 1) + 1.56, N; = 3.62¢, — 2.31,

_ 7.24¢7 (g1 — 1) — 5.68¢% + 3.12¢; + 1.56
M, = .
(o1 —1)

- 3.62¢7 — 1.31(¢1 + 1)
2= .
(g1 —1)

Using the formulas in Section 5, one can calculate the values
of radii of curvatures of individual lenses. These values are start-
ing points for the next optimization process with optical design
software, e.g., ZEMAX [29], OSLO [30], etc.

s

(18)

6. CALCULATION OF CEMENTED DOUBLET’S
PARAMETERS

This part of the paper presents a calculation of radii of curvatures
of a cemented doublet for focal length equal /" =1 mm. In the
case of different focal lengths, the calculated radii of curvature
have to be multiplied by the final focal length’s value. B

The solution in Eq. (18) gives values of parameters A and
N for individual components of the optical system. If the
condition 1 < M — 0.86/N? < 2.76 is satisfied, then the optical
component can be realized asa simple lens [27,28]. If it is not the
case, the component can be manufactured usually as a cemented
doublet or two cemented doublets.

The radii of curvatures 1, 75, and 73 of the cemented doublet
can be calculated, knowing the values of M and NV; thus, with
the solution of equations presented in [27,28], it holds

O — vi(1+ Civyp)

1 —’ ¢2:1_¢17
Vi —V
Ki=—®,/2, Ky=®/2, (19)
)
AZ'Z(Dl'n + . Bz'zq)iKi9
n;
n; 2 n;+ 1
C=®| ——|, E=0,—, (20
"L2(n; = 1) n;
1 (o} b,
T=-— 1), 21
E, T+ N
=N kT
Ei1+ E,
Q;=A;R}—2B;R; +C;, i=1,2, (22)
SRt K4 =R+ K ®
pP1 = K 1 2(;11—1)’ P2 = I 1 2(711—1)’
=R+ K 2
P3 = Ky 2 2m—1)
(23)
ri=1/p;, j=1,2,3, (24)

Qi+ Q, — M| < 8. (25)
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In Egs. (19)—(25), ®; is the optical powers of lenses, 7; is the
indices of refraction of lenses materials, v; is the Abbe numbers
of lenses materials of the doublet, and Cj is the coefficient of the
chromatic position aberration of the doublet.

Calculation is processed in a way that one searches such a
pair of lens materials to satisfy Eq. (25) with demanded accu-
racy. A value of § M can be selected § M = 0.02, for example.
Equations (19)—(25) can be easily coded in a computing soft-
ware, e.g., MATLAB [31]. The calculation for a materials
catalogue of optical glasses can then be processed in a fraction
of second.

7. EXAMPLES

A. Example 1: Calculation of Two-Component Optical
System with Two Doublets with Optical Powers

P1=—¢2

For example, if one selects ¢y =1.5mm™", the follow-
ing values of paraxial parameters of the objective hold:
f =1mm, f{=0.6667 mm, f; =—0.6667 mm, s; =00,
hy=1mm, hy =0.3333 mm, b, =0 mm, h, = 0.4444 mm,
d=0.4444 mm, and D=0.7778 mm.  Substituting
@1 =15 mm™" in Eq. (18), one obtains M, = 6.99,
Ny =3.12, M, =22.71, and N, =9.74. These values can
be used to determine a structure of individual objective compo-
nents [27,28]. It is obvious from parameters M and N that the
components can be simple cemented doublets. With formulas
presented in Section 5, the parameters of cemented doublets
presented in Tables 1 and 2 are calculated (length units of radii
of curvatures are in mm). In the tables, 7 denotes the index of
refraction of the glass, v the Abbe number, and r represents radii
of the curvature. Doublets are achromatic (for wavelengths A 5
and A¢), i.e., the coefficient of chromatic aberration C; = 0.
Monochromatic aberrations are calculated for wavelength A 4.
Figure 3 presents results of MTF curves calculated in OSLO
software for the first possibility of the objective (N-BAK4/F2)
— (N-BAK1/N-LAF2) for the focal length of the objective
f'=100 mm, the f-number F =6.2, and the field-of-view
angle 2w = 12°. Radii of curvatures of lenses of the first and the
second component of the objective, presented in Tables 1 and 2,
are obtained by multiplying the tabled values by 66.666 for the
first component and by —66.666 for the second component.
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5o = 0.107 mm with respect to the paraxial image plane.

The distance 4 is multiplied by 100. Therefore, the parameters
of the system with the objective’s focal length " =100 mm
are calculated. Indices of refraction are given for wavelength
Ag4. In Fig. 3, it is shown that the imaging quality is good even
if the objective’s parameters are calculated with the third-order
aberrations only. Therefore, it is a good starting point for further
optimization calculations with optical design software ZEMAX,
OSLO, etc.

B. Example 2: Calculation of Anallactic
Two-Component Optical System with Two Doublets

Now let one suppose a situation of the anallactic objective with
the following parameters: the focal length of the objective for
an object point in infinity fj =200 mm, the length of the tele-
scope D =150 mm, parameter k, =—0.01, p =—2mm,
and position of the anallactic point 4 =75mm. Then,
with the use of Eq. (9), one obtains f] =132.8724 mm,
/5 =—101.0087 mm, s; =00, d=98.9701 mm. Let the
components be cemented doublets. Then, for a calculation
of their parameters, one should use modified parameters
corresponding to /' =1 mm. In such a case, the optical
powers and distance between the components would be
@1 =1.5052 mm~!, ¢, = —1.9800 mm™!, 4 = 0.4949 mm,

Table 1. Parameters of the First Component

First Component: MI =6.99, NI =3.12,G =0, f=1mm.

Glass 1 n v Glass 2 v, 71 [mm)] 7> [mm)] 73 [mm]
N-BAK4 1.57125 55.70 F2 1.62408 36.11 0.38448 —0.42081 1.73245
N-BAF52 1.61173 46.30 N-SF14 1.76859 26.32 0.39630 —0.79064 2.22643
N-K5 1.52458 59.22 SF5 1.67764 31.97 0.38239 —0.65460 4.91016
Table 2. Parameters of the Second Component

Second Component: My =22.71, N, =9.74, C; =0, f =1mm.

Glass 1 n v Glass 2 n, v, 71 [mm)] 7, [mm)] 73 [mm]
N-BAK1 1.57487 57.27 N-LAF2 1.74791 44.57 0.20761 —0.33031 0.60065
LLF1 1.55099 45.47 N-LAF7 1.75459 34.56 0.20953 —0.35822 0.71106
N-BAF4 1.60897 43.43 N-LAF7 1.75459 34.56 0.20805 —0.30925 0.51819
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Table 3. Parameters of the First and Second Components of the Anallactic Telescope
First Component: Ml =5.39, Nl =2.72,G =0, f=1mm.
Glass 1 n Vi Glass 2 n, v, 71 [mm] 7, [mm)] 73 [mm]
N —-K5 1.52458 59.22 N-SE8 1.69413 31.06 0.41714 —0.62050 —44.26320
Second Component: M; = 8.60, N; =7.03, C; =0, f =1 mm.
Glass 1 n v, Glass 2 n v, 71 [mm] 7, [mm)] r3 [mm]
SF5 1.67764 31.97 SF11 1.79190 25.55 0.26398 —0.28086 0.68256
2 ' ' ' mutual distance 4, radii of curvature of individual components,
S etc.). The calculated parameters can be used as a good starting
0751 I point for further optimization calculations in optical design
W: software, e.g., ZEMAX or OSLO.
b e __ i . v .
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p1=p2=p=0.62 mm, 5; =0. Afterward, one obtains
My =5.39, M, =2.72, M, = 8.60, and N, =7.03. With the
formulas presented in Section 5, the parameters of cemented
doublets for each component presented in Table 3 are calculated
(length units of radii of curvatures are in mm). In the tables, 7
denotes the index of refraction of the glass, v the Abbe number,
and  is the radii of curvature. To obtain values of radii of curva-
ture of an individual doublet’s surface, one has to multiply the
tabled value by the corresponding focal length. Therefore,
one obtains for the first component 7y =55.4264 mm,
ry = —82.4473 mm, and r3 = —5881.3576 mm, and, for the
second component, 71 = —26.6643 mm, r, = 28.3693 mm,
and 3 = —68.9445 mm.

Figure 4 shows MTF curves for the presented objective calcu-
lated in OSLO. It is shown that the imaging quality is good even
if the objective’s parameters are calculated with the third-order
aberrations only. Therefore, itis a good starting point for further
optimization calculations with optical design software ZEMAX,

OSLO, etc.

8. CONCLUSION

The paper presented a detailed analysis of fundamental imaging
properties of a two-component optical systems (Petzval lens,
telephoto and inverse telephoto lens, and anallactic objective
lens). Detailed theoretical analysis of those optical systems
was presented considering both the paraxial and aberrations
properties. The aberration properties were analysed with the
third-order theory (Seidel aberrations). General Egs. (15),
(17), and (18) were derived, which can be used for calculation
of fundamental optical parameters of those optical systems
(focal lengths f7 and f; of components of the optical system, its
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1. Introduction

The plane-parallel plate [1-9] is widely used in numerous
optical systems. Many optical prisms [4] are generally equivalent
to the plane-parallel plate. It is therefore important to know their
influence on imaging properties for the optical system, which
they are part of. Detailed calculation of the wave aberration
induced by the plane-parallel plate is explained in the paper [2]
by Braat. The objective of this paper is to perform a general
analysis of the geometric-optical properties of the plane-parallel
plate and its influence on image quality. The ray aberration and
the circle of confusion (RMS spot size) were selected as criteria for
image quality. The advantage of the circle of confusion over the
wave aberration is that it indicates the size of the area, where
almost all energy of the beam of rays is concentrated in. Thus,
point is not imaged as a point, but as certain area with a specific
intensity profile and size. The circle of confusion affects the image
sharpness. Using the diameter of the circle of confusion one can
very roughly determine (estimate) the MTF (Modulation Transfer
Function) of the optical system for low spatial frequencies and
vice versa. Robb’s paper [10] provides very complex formulas to
calculate the RMS image size for an annular entrance pupil.
Robb’s work does not apply the explicit equations for the plane-
parallel plate. Using formulas from Robb’s work to apply them to
the plane-parallel plate would result in very complex and lengthy
calculations including the equations from Buchdahl’s paper [11].
This is very impractical and difficult to use in practice.

* Corresponding author. Tel.: +420 2 24354948.
E-mail address: miks@fsv.cvut.cz (A. Miks).

0143-8166/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.optlaseng.2012.06.010

This paper provides exact formulas for calculating the trans-
verse ray aberrations induced by the plane-parallel plate. Further-
more, the paper presents a detailed analysis of ray aberrations,
the wave aberration, the circle of confusion, the optimal position
of the image point and the shape of the optimal image surface for
the 3rd and the 5th order aberration. The formulas used are very
clear and simple, hence very useful and easy to use in practice (for
example, for the lens design and initial lens design etc.). To our
best knowledge, there is neither the paper nor the book with
publication of the same relations.

2. Ray aberrations induced by plane-parallel plate

The beam of rays is considered to pass through the plane-
parallel plate with a thickness d made of a material (for example,
optical glass) with a refractive index n. The above explained
situation is shown in Fig. 1.

The surrounding medium in front of and behind the plate is
assumed to be air. Further on the plane-parallel plate a homo-
centric beam of rays strikes having a peak at a point B, lying in the
plane &, Next two rays of this homocentric beam of rays are
considered. The first ray intersect the plate at a point O (0,0,0),
which has been chosen as the origin of the coordinate system. Let
so be a unit direction vector of this ray. For the ray refraction by
the law of refraction [1,3] the following equation holds:

Sp = So/n+(cosgy—coseg/nk )

where sy’ is a unit direction vector of the refracted ray, k=(0,0,1)
is a normal vector to £q, which is the first surface of the plate, &g
and &’ denote the angle of incidence and the refraction angle of
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Fig. 1. Refraction of beams by the plane-parallel plate.

the beam on the first surface of the plate. After the refraction at
the surface &, the ray will continue in direction of the unit vector
So” =S¢ and intersect the plane &3 at a point Py, which is given by

the vector
+bk+Aid>so+d<l— cosso/>k @)
Cos&g n cosgy

e — d
93~ \n cose;,

where b is a position vector of the point B and A=d(n-1)/n is the
paraxial displacement caused by the plate [4]. The ray defined by
the unit direction vector s, strikes the plane &; at a point A, which
is given by the vector a. After the refraction on the plane &, the
ray will continue in the direction of the unit vector s;”=s; and
intersect the plane at a point P, which is given by the vector

1_13:“_( d : +bk+A_d>s1+d<l— cossl/>k 3)
1 cose, C0S&q 1 cose,

For the transverse ray aberration ér’'=(0x’,0y’,0z’) in the plane
&3, with respect to the ideal image of point B (i.e., the point which
is determined by the vector b+ AKk), the following exact relation is
derived.

51"=l‘13—(b+Ak):a+< d bk—d/n>s1

1 COSE] C0Sé&q
+d<1— oSt )k—(b+Ak). )
n cosg;

Eq. (4) allows to perform an exact (accurate) calculation of the
ray aberrations of the plane-parallel plate in general.

Assuming that the angle of incidence ¢ of the rays on the plate
is not too large, ¢ <30° (area of the 3rd and 5th order), cos ¢ and
cos €' can be simplified

cospn Sine sinfe o sin’e sine
’ 2 8 ’ 2n? 8n4
1 . sin®¢ 3sin’e 1 sine  3sinte 5)
cos & 2n2 8n4 ' cose 2 8

Let vector b=(0,b,,b,). If w is denoted as the half-angle of the
field of view, tanw=by/b, is valid. According to Fig. 1 the
following relations can be easily derived (s1=(S1x51y.512)):

1
\/ 14A2 +(tanw—A,)?

cose; =S1k=s1, =

Six = —Ax COSE1,  S1y = (tanw—Ay)cose, (6)

where Ay=a,/b, and Ay=a,/b, are the numerical apertures for the
axial point Bg.

Substituting the terms in Eq. (4) with the relations described
in (5) and (6), one gets the following formulas (after a long

calculation) for the transverse ray aberration of the 5th order:

Ox = —LAx(Xo—X; tan w+X, tan? w—X3 tan® w+X4 tan* w)
8y = —L(Yo—Y; tan w+Y; tan®? w—Y3 tan® w+Y, tan* w—Ys tan® w)

@
where
_3dm?-1* . 4n?
- 8n5 T 3(n2-1)’
Xo = (A} +AD)? —N(A; +A7),
X1 =4AZA,+4A-2A)N,
Xy =2A7 +6A7—N,
X3 =4A,, Xa=1,
Yo =Ay(A; +A)) (AL +AL-N),
Y1 =Ag+5A; +6ATAT—A;N-3A'N,
Y2 = 6AZA, + 104, —3A,N,
Y3 =2A; +10A;—N,
Y4=54A), Ys=1

L

Knowing the transverse ray aberrations dx'a Jy’, the wave
aberration W can be calculated from relation [6,9]

Q
W =Wo—Wp= / (Ox Ay + Oy dAy) ®)
P

where the integration is performed on a reference sphere from
the point P to the point Q, as is shown in Fig. 2 for the case of an
elliptical pupil. At first one integrates from the point P to B and
then from B to the point Q.

Using the Eq. (7) in (8), one obtains after integration the
following relation for the 5th order wave aberration

K L
W= {Z —G A HA )} (A7 + A2~ [K—L(AL +AD) | Ay (AL +A))tan w

1
+3 [K(Ai +3A%) LA + AD)(A2 + 5A§)] tan? w
—Ay {K - % L(3A; +5A; )} tan® w
- %L(Af +5A})tan* w+ LAy tan® w
=W3+W5; )

where

K=dmn*-1)/2n®, L=3dn*-1)*/8n°
W3 =K Bl (A; +AD) —(AZ+A)A, tan w+ %(Aﬁ +3A2)tan” w—A, tan® w]

- AL AL + (A2 +A2)?Ay tan w— L (AL +AD) (A% +5A2)tan? w
° +2(3A% +5A0)A, tan® w— 1 (A2 +5A))tan* w+ A, tan® w

Fig. 2. Integration path for the calculation of wave aberration W.
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Neglecting in relation (9) the term W5 which stands for small
quantities, one obtains the relation valid for the 3rd order wave
aberration.

3. Calculation of the circle of confusion

To calculate the center of the spot diagram the substitution
Ax=Acos @, Ay=Asin ¢ can be used, where A is a numerical
aperture of the incident beam on the plane-parallel plate, ¢ is the
polar angle in the plane ¢&;.

For the coordinates of the center of the spot diagram (ener-
getic center of the beam of rays spot) one obtains for the 5th order
aberration

1 2T rAM
(XY =0,40y'> = — / / Sy'AdAde
mAy Jo  Jo

= L[(Ay;,—A%Nytan w+ (3A%,—N)tan® w+tan® w] (10)

where Ay, is the maximal numerical aperture. Diameter d. of the
circle of confusion (RMS spot size) is determined by the following
formula:

de=2p.=24/<p%> an

where
1 2T rAM .
P2 = [ [T1ox— o> ey oy yidade (12)
nAyJo Jo
Using the relations (7), (10), (11) and (12) to calculate the

circle of confusion’s diameter d. in the 5th aberration order one
gets

d.= %LAM > Ditan'w, 13)
i=02468

where

3 18 9
Do = §A,gv,— ?A,?,,N+ ZA“MN2
D, = 36A%,—54Ay, N+ 18A%N?
D4 =171A%,—144A% N+ %NZ

Dg =201A%—72N
Dg=117/2

The diameter of the circle of confusion indicates the size of the
“spot” in which most of the energy of the beam of rays spread
caused by the aberrations is concentrated. The point therefore
does not appear as a point, but as a spot. As a result of this
phenomenon the resolution of the optical system will be reduced
and the number of lines R per unit of length is bound to the circle
of confusion’s diameter by the approximate relation R~ 1/d.. In
the case of a physically perfect optical system the central part of
the diffraction pattern is called Airy disk, whose diameter is in the
case of a circular and uniformly illuminated pupil given by
da=1.22/Ay, where 1 is the wavelength of the light. If the
diameter of the circle of confusion is less then the diameter of
the Airy disk, i.e. d.<da, then the aberrations of the optical
system do not affect the image quality and the optical system
can be practically considered as an optical system with a good
image quality.

For a plane-parallel plate thickness d, which does not cause
visible degradation of the image quality, one gets the expression

49.n°

d< :
A2m-1? [ Y Djtan'w
i=0,2,4,6,8

(14

In the next step the position of the “image point”, where the
circle of confusion has the smallest diameter will be determined.
Through shifting the image plane by a value of D with respect to
the paraxial image plane of the optical system the ray aberrations
changes in the following way:

0xp, = 0x'—DA cos@,dyp, = 8y’ —DA sing (15)

Using relations (7), (10), (11), (12) and (15) one obtains for the
diameter of the circle of confusion, in a plane shifted by the value
of D with respect to the paraxial image plane, the following
relation:

(do)p =2Aym > ditan'w (16)
i=0,2,4,6,8
where
1 2 1 1 2 1
do = €A8ML2— EA,?,,LZN+ §A4MLD+ ZA4ML2N2— §A2MLND+ ED2

dy = 4A%5 12 —6ANL°N +2A4°N? +4A% LD—2DLN
dy = 19AyL*—16A4L*N+ ngNz +3LD

dg = gA,ZV,Lz—SLzN
13,
dg = 7L

From the necessary condition for the extreme (9(d.)p/oD=0)
one obtains for the optimal position of the image point the
following relation:

Dope =L {A,zv, (g N-1

3 2A,2V,> +2(N—=2A%)tan®> w—3 tan* w (17)

From relation (17) it is obvious that the optimal image point
lies on the rotational surface (with respect to the optical axis of
the system—the axis z) whose z coordinate, with respect to the
paraxial image plane, is equal to D, (optimal image surface).
Substituting relation (17) into relation (16) one obtains for the
diameter of the circle of confusion in the optimal image point the
following relation:

(de)min = 2AML > diptan'w (18)
i=0,2,4,6,8

where

L sy 1aane
dom = 57 Au— 75 AuN+ 35 AuN
dom = 2A%,— ;A4MN+ %Aﬁ,Nz
dam = ?A;‘A_m,zwmr %N2

31

dem = ?Aﬁ,,—2N
dgm =2 19)

For the ratio of the circles of confusion in the optimal image
point (d¢ )min and the paraxial image plane d. in the 5th order
aberration one obtains from the relations (13) and (18) the
following relation assuming a point lying on the optical axis of
the system (tan w=0)

d)min 1 |3Ay/2-12A4N/5+N> 1
d. 3 (20)

3\ 24%/3-8A4N/5+N? 3

This relation shows that the diameter of the circle of confusion
in the optimal image plane is approximately three times smaller
than in the paraxial plane. Assuming, for example, an aperture as
large as Ay;=0.8 and a refractive index of the plate n=1.5 (N=2.4
and N?=5.8), then from the Eq. (20) one obtains: (dc)min/dc=0.35
showing that 1/3=0.33 is quite good estimation.
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In the case of 3rd order aberration (Seidel aberrations), one
obtains from the previous relations, that

K=dmn?>-1)/2n?

x); = K[A® cos p—A%sin2¢ tan w+A cos ¢ tan?w]

3y} = K[A® sinp—A%(1+2 sin® p)tan w+3A sin ¢ tan® w—tan? w]
@1

W=K EA“—/‘P sin ¢ tan w+ %Az(l +2 sin® $)tan® w—A sin ¢ tan> w
(22)

de = KAy \/Aly+8A% tan? w-+10 tan* w 23)

(de)p = Am \/ K?(Apy; +8A2, tan? w+10 tan* w)+2D?—8DK (A3, /3 +tan? w)
(24)

(do)min = KQJ \/A;\‘/,+24Aﬁ,, tan? w+18 tan* w (25)

For the ratio of the circles of confusion in the optimal image
point (d¢ )min and the paraxial image plane d. in the 3rd order
aberration one obtains from the relations (23) and (25) the
following relation assuming a point lying on the optical axis of
the system (tan w=0):

@)min _ 1

d 3

This relation shows that the diameter of the circle of confusion
in the optimal image plane is three times smaller than in the
paraxial plane.

If the diameter of the circle of confusion is less then the
diameter of the Airy disk, i.e. (dc)ynin < da, then the aberrations of
the optical system do not affect the image quality so much and
the optical system can be practically considered as an optical
system with a good image quality. From relations (22) and (25)
assuming for example for tan w=0 (axial point) one obtains for
the spherical aberration coefficient of the 3rd order relation:
W40=(3/8F)(dc)min- As is explained in [6], it holds that if the
Strehl ratio is greater than 0.8, than Wy < 0.954 must hold.
Substituting into the previous relation one gets: (d.)min=(8F/3)
0.954=2.53/F ~d,. This simple calculation provides evidence
that the claim (d.).,, < da provides a relatively good estimation
for practice.

Using relation (18) one gets the following expression for the
thickness d of the plane-parallel plate:

1.63An°

d<
A2 (n2—1)? >
i=0,2,4,6,8

- (26)
d;, tan' w

For a point lying on the optical axis (tan w=0) one obtains
from (26) the following relation for the thickness d:

7.34/n3

Edidedi 27
= Ay (n2—1) @7

In the case of optical systems (for example, photographic
lenses) with large values for the wave aberration (a few wave-
lengths), the wave aberration does not provide any useful infor-
mation while the circle of confusion provides precise information
on the quality of imaging. Using the diameter d. of the circle
confusion (RMS spot size), one can very roughly determine
(estimate) the MTF (Modulation Transfer Function) of the optical
system for low spatial frequencies and vice versa, as is indicated

by the simple relation from [9].

MTF(R) ~ 1—(4F)./T)R—(n? /2)R*d* ~ 1-1.273FJR—4.935R*d?,
(28)

where F denotes the f-number of the optical system, 4 denotes the
wavelength, R denotes the spatial frequency i.e. number of lines/
mm for the diameter d. of the circle of confusion measured in
mm. Although being a rough estimate, this information is very
useful in practice.

4. Example

In Fig. 3 the behavior of the transverse ray aberration in the
case of 3rd and 5th order aberration for d=10 mm, n=1.5, a,=0,
a,=20, a,=0, by=0, bye <0, 46.6), b,=100 and Ay=0.2 is shown.
As one can see from Fig. 3, the deviations in the case of the 3rd
order aberration (Eq. (21)) are lower than 3% and in the case of
the 5th order aberration the deviations of our Eq. (7) from the
exact results (exact ray tracing—Eq. (4)) are negligible. In this
case (Fig. 3), the error is smaller than 0.2%. For the most optical
systems (occurring in practice) our Egs. (7) and (9) are sufficiently
accurate for calculation of the transverse ray aberrations and the
wave aberration. Eq. (4) allows to perform accurate (exact)
calculation of the ray aberrations of the plane-parallel plate in
general.

5. Conclusion

The objective of the article was to provide a detailed geo-
metric-optical analysis of a plane-parallel plates’s imaging char-
acteristics. A number of novel analytical relations were derived
helping to extend the theoretical knowledge in the field of
geometrical optics on the new relations in the area of aberration
induced by the plane-parallel plate or its optical prism equivalent.
In particular, relation (4) allows the exact calculation of the
transverse ray aberration induced by the plane-parallel plate.
Furthermore, relations (7) allow to calculate the 5th order
transverse ray aberration and relations (13), (14), (16), (18), (20)
and (26) allow to calculate the diameter of the circle of confusion
in both paraxial and optimal image plane and determine the
optimal point position and shape of the optimal image surface.

3

w [°]

Fig. 3. Dependence of relative deviations of transverse ray aberration &y, =
100 (0Yixact—0Y')/OViexace| Of the 3rd and 5th order aberration on the half-angle of
the field of view w for maximal numerical aperture Ay;=0.2.
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Relation (9) presents the wave aberration in form of the apparent
influence of the 3rd and 5th order aberrations on the final value of
the wave aberration. In addition, the above stated relations allow
to calculate the thickness of the plane-parallel plate without
visible deterioration of the image quality, the influence of a prism
inserted into the optical system on its aberration, the effect of a
cover glass and water layers on the quality of imaging when
observing biological structures in confocal microscopy, etc. The
relations derived can also be applied to the area of primary optical
systems design and to the tolerance analysis of optical systems
containing optical plane-parallel plates and prisms. These rela-
tions have a simple form and can be easily programmed for
example in the MATLAB computing environment, etc.
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1. INTRODUCTION

Terrestrial laser scanning has become a very popular technique
of quantitative characterization of surface geometry and prop-
erties of large areas of interest in a very short time in the last
decades [1-6]. Laser scanners are able to measure millions of
points in a time scale of fractions of seconds. The fundamental
idea is to measure spherical coordinates (horizontal and verti-
cal angles and distance) of points of interest. Accuracy of the
acquired point-clouds depends on mechanical construction and
uncertainties of the scanner’s components, which measure the
mentioned angles, and on a quality of distance measurement.
There are many commercial companies offering terrestrial laser
scanners for practical applications [7—11].

As for the accuracy of scanning outputs (geometric uncer-
tainty of individual points of measured point-clouds), the first
component of the a priori analysis of the quality is based on a
description of uncertainties of geometrical parameters of the
scanner. It can be formulated using theoretical foundations
presented in previous works of the authors [12] or [13], which
will be generalized in this paper. The second component of the
accuracy analysis is based on uncertainty estimation of distance
measurement. The process of distance measurement during
terrestrial laser scanning is the so-called reflector-less electronic
distance measurement (EDM) [14], as there are no artificial
reflectors placed on the targets. In general, there exist many
principles of EDM used in practice. The fundamental and the
simplest one is the time-of-flight method (TOF), which accu-
rately measures time of a light-pulse traveling between a source
and a target. As the second category, one can name methods
based on measuring a phase change—amplitude-modulated

1559-128X/20/3310243-10 Journal © 2020 Optical Society of America

continuous wave method or phase-modulated continuous wave
method [6]. Those methods offer better accuracy. However,
their implementation is limited by the speed of measurement.
Therefore, the terrestrial laser scanning uses generally the TOF
method as a basic principle of distance measurement, and it will
be analyzed in this paper.

In general, the main goal of the paper is to present and derive
formulas and principles based on fundamental mathematical
and physical foundations, which can be used for characteri-
zation of & priori accuracy of terrestrial laser scanning. The
first part is focused on a mathematical description of geomet-
rical properties of the scanner. Useful general formulas for
uncertainty analysis of all types of scanner constructions are
presented. Afterwards, physical aspects affecting terrestrial laser
scanning are described. Specifically, a reflector-less measure-
ment of distances with the TOF method, reflectivity of natural
surfaces, the influence of spot size of laser beam on inclined
surface and non-planar geometry of a target object, and the
influence of an inhomogeneous refractive index on a measure-
ment are discussed. The final part of the paper summarizes the
presented analysis on examples. To the authors’ best knowledge,
such a general summary of effects that bring uncertainty in
terrestrial laser scanning has not been published. There are many
studies covering in principle experimentally several separate
topics [15-18]. The formulas and principles described in this
paper, therefore, offer a useful tool that can be used for « priori
analysis of many situations of terrestrial laser scanning.
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2. GENERAL MATHEMATICAL DESCRIPTION OF
ACCURACY OF TERRESTRIAL LASER
SCANNING

A scheme of a Cartesian clockwise coordinate system for math-
ematical description of point location determination measured
by a terrestrial laser scanner is presented in Fig. 1. A global
coordinate system (X, Y, Z) is determined by its origin G.
The system contains a local coordinate system of the scanner
(x, y, ), whose starting point O is given by a position vector
X in the global system of coordinates, and the axes of the sys-
tem of the scanner are rotated by angles roll, pitch, and yaw. The
system of the scanner further contains a steering unit, whose
internal coordinate system (x’, y’, 2’) is given by an origin O’
determined by a position vector xr within the system of the
scanner, and its axes are rotated by angles «, B, y. A measured
point R is determined by position vectors Xz in the global
system, Xp in the scanner system and rp in the system of the
steering unit.

Transformation relationships between the individual systems
can be characterized by the following equations, which holds
that

Xp=Xp+Sxz, xp=x0¢ +Rrp, (1)
where
Xp =Xz, Y, Zal",  Xo=1[Xo, Yo, Zol',
xz =[xz, yr» 2217, xo =[xor, yors zorl,
rr =[x Vo 2l
S=R.(Yaw)R, (Pitch)R, (Roll),

R= RZ(J/)R)/ (,B)RX(CY),

1 0 0 cosf 0 sinf
R, (@)=|0 cose —sina |, R,(B)= 0 1 0 |,
0 sina cosa —sinf 0 cospf

cosy —siny 0

R,(y)=| siny cosy O
0 0 1
+z

+X

Fig.1. Ascheme of coordinate systems of a terrestrial laser scanner.
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Fig.2. A scheme of steering device of a terrestrial laser scanner.

In terrestrial systems, the steering unit is generally made by
one rotating reflective surface (a mirror, a monogon, an optical,
polygonal, or pyramid prism), which steers the ray in vertical
direction (relative to the body of the scanner). Further, the whole
unit of the scanner is rotated to achieve steering in the horizontal
direction. There are other methods of realization of steering
units (two-mirror [1,12], etc.), but they will not be considered
further in this paper. We consider the case of one reflective
surface of the steering system, which realizes direction of a line
of sight in a vertical plane (relative to the body of the scanner).
A scheme for the mathematical description is presented in Fig. 2.

Suppose that a center of rotation C of the reflective surface
& is given by a position vector, r¢, and let the reflective surface
further rotate around a line parallel to the axis y’ of the coordi-
nate system of the unit by an angle ¢. A distance between the
reflective surface & and the point C is denoted, /. An equation
of the plane of the reflective surface can be characterized by a
location of a point IV given by a position vector r and by a unit
normal vector n. Let us further assume that the laser ray landing
on the reflective surface is given by a point S determined by a
position vector rs and a unit direction vector s;. The ray lands
on the reflective surface in a point / determined by a position
vector £y, and it is reflected according to the law of reflection and
continues in a direction given by a unit direction vectors,..

We can use the law of reflection to calculate the vector s,. It
holds in the vector form [19,20] that

s, =s; — 2n(s; - n), 2

wheres; denotes a unit vector in a direction of the incident ray, n
is a unit normal vector of interface at the point of intersection in
the direction of the incident ray, s, is a unit vector in a direction
of the reflected ray, and the middle dot denotes a scalar product
of vectors. Relation for rotation of a unit vector ng around an
axis given by a unit direction vector ¢ by an angle ¢, which inter-
sects an origin of an auxiliary coordinate system, is given by the
following formula [12]:

n, =ng cos @ +c(c-ng)(1 —cos ) + (¢ X ng) sing. (3)

Then, we can obtain a formula for position of the point R
within the steering unit after modifying elementary equations of
analytical geometry. It holds that
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(r¢c —rs+/ny) - ny
§; -y

rp=rg si + polsi —2n,(s; - ny)l], (4)

where p, is a parameter numerically equal to spatial distance of
the point I from the point R. For theoretical purposes (e.g., a
beam spot position accuracy analysis, or study of a position of
the beam spot for different rotations and configurations of the
sweeping unit), we can determine the value of the parameter
p» from a nominal definition of plane location of a target that
the beam impinges. If the plane of the target p, where the beam
impinges and from which it is reflected, is given by a point D, a
position vector rp, and a normal vector np, then after, it holds
for the parameter p, that

(rc—rg+iny)-n
[rD —rg— Twsi] ‘np

pPr= . (5)

[si - 2n<p (sz' : n(p)] ‘np

In practical applications, a location of a target is most
often determined using a measurement of transit time (TOF
method). If a speed of light in an environment is v =c¢/n
(¢ =299792458 m/s [19,20] is the speed of light in vacuum,
and 7 is a refractive index of the environment), then a distance
d of a measured point on the target from a reference point
(the source of the line of sight) is given by 4 = v %, where AT
denotes a transit time between sending and receiving a signal.
In our case, the distance between the source and the reflection
point is given by 4= p; + p,. After modification, we can
express the parameter p, using the measurement of transit time
AT as follows:

At (tc—r5+/ny)-n,
2 §; Ny ’

(6)

pr=v

Using the aforementioned relationships, it is possible to
analyze the influence of uncertainties of the scanner’s con-
struction components, or scanner’s position, on the resulting
global position of point R. For these analyses, it is possible to
utilize simulation methods in which the individual uncertain-
ties defined by relevant probability distributions are added to
modeled nominal values, and consequent a posteriori analysis
can characterize the uncertainty of point R. Alternatively, in
particular situations (case studies), it is possible to analytically
express the relationships of the location of point R and esti-
mate the uncertainties through the law of variance propagation
[12,21-24].

Let us consider a model given by a vector function fof 7 vari-
ables x;. If the function f has continuous partial derivatives, real
errors of variables x; are small relative to function values that the
vector function f takes on, and they have even probability distri-
bution with zero mean value, then the covariance matrix of func-
tion fwill be given by a known relationship [12,21-24],

Te=J%.J7, (7

where X, isa covariance matrix of parameters x; and J is a Jacobi
matrix of first derivatives of the function f. Variance of individ-
ual function values then belongs to a diagonal of the matrix X¢.
If we consider the analysis of spatial location of the point R
and we know its covariance matrix X g, then position accuracy
of the point can be unambiguously described by an ellipsoid of
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Table 1. Commercially Available Timing Measurement
Units from Companies AMS [26] and Texas
Instruments” °[27]

Accuracy Std (Type)

Company Sensor [ps] [ps] Range
AMS TDC-GP30 11 1,2(RMS) 10000 ps—4,1 ms
TI THS788 13 8 (accuracy) 0ps—7s
AMS TDC-GP22 22/90  35/45(std) 700 ps—4 ms/3,5
ps—2500 ps
TI TDC7201 55 35 (std) 8 ps—250 ps/12
ps—2000 ms

“Texas Instruments is abbreviated as T1.
“TDC stands for time to digital converter.

errors, whose sizes of half-axes are given by square roots of eigen-
values of the covariance matrix, and the directions of half-axes
are given by the corresponding eigenvectors.

3. PHYSICAL ASPECTS AFFECTING ACCURACY
OF TERRESTRIAL LASER SCANNING

A. Reflector-less Measurement of Distance with the
Method Time of Flight

The method of TOF [1,2,6,14] is based on a very precise
duration measurement of time of electromagnetic wave pulse
propagation through an environment between a source and
a target of the pulse. The pulse is generated by a pulse diode.
Afterwards, it is divided in a device (e.g., a semi-transparent
mirror), and one of its parts switches on a timing measurement
unit. Another part of the pulse is sent into the environment, and
after reflection from the target, it returns to the device, where it
switches off the timing measurement unit. The timing measure-
ment unit is an electrical device that counts the sum of periods
generated by an oscillator. The count of periods is converted

by techniques of signal distribution to a transit time of a wave
[1,2,6,14,25]. Then, for a measured distance D, it holds that

2D =vr, (8)

where v = ¢/ is a speed of pulse propagation through an envi-
ronment, ¢ is the speed of light in vacuum, 7 is a refractive index
of the environment, and 7 is a measured transit time.

If millimeter accuracy of the measured distance is required,
the transit time T needs to be measured with picosecond accu-
racy. An approximate estimate can be obtained by a trivial
reasoning—differentiation of the relationship [Eq. (8)], in
which we assume 7 =1 for sake of simplicity (the approxi-
mate value for air). After substitution, we obtain a first-order
approximation of the required accuracy of measured transit
time 6T =28 D/c. Substituting for the speed of light ¢ and an
assumed distance measurement error § D = 1 mm, we obtain
8t =6.67 ps.

Table 1 presents an overview of parameters of currently avail-
able timing measurement units (where TDC stands for time to
digital converter) offered by companies AMS [26] and Texas
Instruments [27].

If we denote the transit time 7 and a registered value of ampli-
tude or a count of pulses as 7(7), then we can determine an
estimate of measured transit time T, which we consider a target
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value during distance measurement, for example, as a center
of gravity (first moment) according to the following formula
[1,21]:

) +o0 +o0
i= / t(t)dr, P=/1(r)dr, ()

where the integration is calculated numerically on the examined
range of transit times. An uncertainty o; can then be determined
asa square root of variance UTZ , for which it holds that

+00
1
ol = ;ftzl(r)dr — 72 (10)

A distance D; and its uncertainty o corresponding to a
calculated transit time T and its uncertainty o is then given as
follows:

szgf, O’D=§O}, (11)
where v denotes a pulse speed through the environment.

Let us further assume that the switching of the timing mea-
surement unit itself is influenced by a random error. Without
further knowledge of the unit, we can assume the switching error
to be uniformly distributed with an interval width of A7. Then,
an uncertainty #. can be estimated as a standard deviation of
the given uniform distribution, and the resulting uncertainty %,
of measured transit time can be estimated as a cubic sum of the
above-mentioned uncertainties; therefore, it holds that

AT
ur=\Jor+uk,, dpar=——. (12)
At A m

For an uncertainty #p of the measured distance D, we then

obtain the estimate,
v ;)
up =3 o2+ uy,. (13)

The aforementioned uncertainty estimations of the transit
time or the distance can be further implemented into math-
ematical tools presented in Section 2 as components of the
covariance matrix used in the law of covariance propaga-
tion [Eq. (7)], and one can then estimate the overall effect of
uncertainties on measurement results.

B. Reflectivity of Natural Surfaces

Reflectivity is an optical property of surfaces that is expressed
by a ratio of reflected intensity to the amount of intensity of
incident radiation [20]. A coefficient of reflectivity R, which
quantitatively characterizes this property, depends on the mate-
rial (chemical composition, structure, temperature, roughness,
color) on which the reflection occurs, and on the type of incident
radiation (wavelength, light polarization, etc.).

Let us denote /p(A) an intensity of incident radiation on a
reflective surface, 7, (1) as an intensity of a reflected radiation,
and A the wavelength of light; then, a spectral coefficient of
reflectivity R; for one wavelength will be given by the following
formula:
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(b)
Fig. 3. A scheme of electromagnetic radiation propagation on

(a) Lambertian surface, (b) mirror surface, and (c) glossy surface

[1,2,6].

Ry =R =1L(A)/L(A). (14)

A coefhicient of reflectivity R for given widths of wavelengths
A1 and A, will then be given by

12 12
R= / Loodr/ | IGoda. (15)

Al Al

Reflectivity of a surface is a very important property for mea-
surements by contact-less methods. If properties of the surface
are such that the radiation reflects in precise direction as the
radiation impinges the surface, then the detector can register the
reflected intensity. In the opposite case, this is not possible, and
contact-less methods fail. Reflectivity can be divided into three
basic categories based on type of surface on which the reflection
occurs [6,20]:

* Lambertian surface (ideally matte, ideally diffuse surface)
reflects light energy to all directions [19,20,28]. Such surface
does not exist in practical cases, but walls of brick buildings
(plasters) or school blackboards have properties that resemble it.

* Mirror surfaces that have the feature of perfect reflection
[28] governed by the law of reflection.

* Special category of mirror surfaces is glossy surfaces. The
ray shatters, but a dominant direction of the following propaga-
tion is the direction of perfect reflection. An illustrative example
is presented in Fig. 3. These properties of materials negatively
influence distance measurement by contact-less methods. In
most situations, it is, therefore, not appropriate to measure in
wet conditions, namely when the reflective surfaces are inclined
compared to the line of view direction.

Similarly to reflectivity, registered values of measurement are
also influenced by transmissivity of atmosphere, which expresses
a fraction of intensity after it has traveled a certain distance to
intensity in the beginning of the distance. Transmissivity is
quantitatively characterized, correspondingly to reflectivity,
by a coefficient of transmissivity 7', which also depends on
atmospheric conditions and on properties of the radiation pass-
ing through. The coefficient of transmissivity 7" can never be
determined precisely (atmospheric conditions are changing in
time and space); hence, idealized models need to suffice.

Reflectivity of materials and transmissivity of atmosphere
have high influence on contact-less measurements. For a dif-
fusely reflective target, such as a building or a rock, it is possible
to idealize the reflected radiation as hemispherically dispersed
(see Fig. 3). Intensity decreases rapidly in each direction. Power
of the radiation that is reflected from the target and returns
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Table 2. Reflectivity of Selected Materials’
Material Reflectivity (%)
Dimension lumber (pine, clean, dry) 94
Snow 80-90
White masonry 85
Limestone, clay <75
Deciduous trees ~60
Coniferous trees ~30
Carbonate sand (dry) 57
Carbonate sand (wet) 41
Beach sands, bare areas in dessert ~50
Rough wood pallet (clean) 25
Concrete, smooth 24
Asphalt with pebbles 17
Lava 8
Black neoprene (synthetic rubber) 5
“From [8].

to the detector will be, in fact, only a fraction of the originally
transmitted signal. If we denote the power of the output signal
P, and P, as the power of the received signal, then according to
[4], assuming reflection on a Lambertian surface, it holds that

AT?

——P,, 16
2w D? (16)

P,=R
where R is the coefficient of reflectivity, A is the size surface of
a detector, 7 is the coefficient of transmissivity in the atmos-
phere, and D is the distance. Therefore, during the distance
measurement, the detector needs to sufficiently amplify the
received signal such that it is possible to correctly evaluate the
measurement.

Table 2 depicts reflectivity of selected materials in a way that is
presented on a website of the company Riegl [8]. In other litera-
ture, e.g., [4,5], the authors habitually refer to those values.

C. Gaussian Beams

Gaussian beams are of great importance in laser technology
because they describe properties of radiation generated by lasers
[1,19,20,28,29]. Let us consider transverse unlimited Gaussian
beams. These are beams whose intensity in the transverse
direction decreases according to a function (if we denote the
direction of wave propagation z), exp[—(x* + y?)/a], where 2
is a constant. It is known that for complex amplitude of a trans-
verse unlimited Gaussian beam in a point having coordinates
[x, ¥, 2] in distance z from the beam waist (the narrowest part
of the beam), it holds that [1,19,20,28,29]

_ Wwo _xz+)/2
Ux,y,2)= () exp |: ) :|

. 24,2
X exp |:z (gﬁ(z) — /exZR(zy) — /ez)] , (17)

where
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Fig. 4.

Intersection of a Gaussian beam spot with an inclined plane.

2
w w z

w(z):—o,/zé—f—zz, z0=k—>, @(z)=arctan—,
20 2 20

2
R(z)=z<1+z—g>,
z

k=2m/)\ is the wavenumber, XA is the wavelength, and wy
denotes the beam waist. Field intensity in the point [x, y, z] can
then be described by following formula [19,20,29]:

I(x,y,2)=K|U(x, y, 2)|, (18)

where K is a constant. Substituting Eq. (17) into Eq. (18), we
obtain for the intensity of transverse unlimited Gaussian beam
in the point[x, y, z],

2 2 2
[(x,y,z)z[([ Yo } exp [_M] (19)

w(z w?(2)

Analysis of Gaussian beam asymptotes can show that for the
divergenceangle 6, itholds that [19,20,29]

tan@ =A/(mwy), wob ~A/w, weh = M*r/m, (20)

where the second formula is an approximation for small angles,
and the third formula implements the so-called A2 factor [30],
which is in practice used to characterize a quality of laser beam
focusing. Generally, it holds that M? > 1 for lasers, and for
Gaussian beams, one supposes M?=1.

D. Influence of Spot Size of Laser Beam on Inclined
Surface on Transit Time Measurement

Let one study a case of a Gaussian beam impinging an inclined
plane. Consider the situation depicted in Fig. 4. A transverse
unlimited Gaussian beam having a radius of the beam waist wg
propagates along the axis z, and it impinges a plane inclined by
an angle a, while the plane intersects the propagation axis at a
distance z7. The intensity image at this plane will then cover a
surface S, which will be elliptical, and a distribution of intensity
can be determined using Eq. (18). Let us further assume that
there is a point P at the main axis of the elliptical trace having
coordinates [0, y, z]. Considering geometry in Fig. 4, we can
write the following formula for coordinates of the intersection:

sin 6

TS0 + )’
(21)

y=gzsino, z=z7+3z cosx, 3z =

If we neglect small curvature of the beam element that goes
through the point, then we can write for a transit time 7 of a
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duration of pulse traveling from a middle point of the beam
waist O toapoint B,

.(_2 /_)/2+Zz

v

: (22)

where v denotes the speed of pulse propagation through the
environment. In ideal case in which all points on the beam spot
on the slope become elementary sources of radiation, which
returns to the measuring device, we can express a transit time
Tmax for a maximal angle 6, after substituting Eq. (21) in

Eq. (22) as follows:
2z
max — — 1 + B + .
¢ v [ 0@ + Ome) | sin2(c + Or)
(23)

For small angles of dispersion, considering the first approxima-
tion, and after further rearrangement, we obtain

. 2 . 4
cos o sin o j| sin*o

2z

Tmax

\/ sina + 20, sin 2a. (24)

- v(sin o 4 O COS X)

A difference AT = T;0x — Timin, Where T, is obtained using
the same approach but with 0, = —0ax it is then possible to
write

A 2zr \/sinza + 26 1ax Sin 20 \/sinzoz — 20,0 Sin 20¢
T=— -

Sin & — Bpay COS O

(25)

v Sin o + O, cOs &

Through rearrangement and simplification for small angles, it

holds that

2z
AT = it (\/sinza + O pax Sin 200 — \/sinzoe — Onax SIN 201)
v

(26)

The value At defines the minimal resolution with which
the pulse counter must work depending on the slope of the
surface, since when the distance measurement by the TOF will
not be influenced. Respectively, if the sampling of the timing
measurement unit will be less than at least half of At, then the
width of the beam impinging the slope cannot influence dis-
tance measurement results of the TOF method. In case that the
time measurement unit is able to sample measured intensities
with frequency that sufficiently covers the interval At, it is
possible to advance to characterization of accuracy of transit
time measurement .

In practice, especially when a very precise measurement
using the method described above is considered, it is possible to
suppress the influence of beam divergence by using a so-called
field aperture, which prevents registration of intensity from
parts of the beam that are remote from its central part. However,
utilization of the field aperture results in larger dimensions of the
optical system of measurement devices. Therefore, field aper-
ture is not used, e.g., in laser scanning, or in cheaper electronic
range-finders for regular applications.

For illustration, let us consider the following parameters:
A=900nm, M?>=1, v=3-10m/s, Opu = 0.0100 deg,
wo =1.6370 mm (parameters of the range-finder of laser
scanner Riegl VZ-400i [8]), and z7 =100 m. Then, for the
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Fig. 5. A reflection of Gaussian beam from a non-planar surface
X(x, 5, 2).

value o =30deg, the corresponding At ~ 200 ps, and for
a = 65 deg, the corresponding At = 100 ps. Comparing these
values to the above-stated resolutions of timing measurement
units of transit time, it is apparent that the slope of the reflective
surface can realistically influence measured distances in the
presently available devices.

E. Influence of Non-planar Geometry of a Target
Object on a Registered Intensity of a Reflected Pulse

Non-planar geometry is a further source influencing distance
measurement by the method of transit time. It has been shown
that a spot of Gaussian beam is not a point, but a flat of certain
size. Since the spot becomes wider with increasing distance,
registered distribution of intensity can be distorted during meas-
uring geometrically non-planar surfaces (e.g., an inside corner
between two walls). As in the previous section, it holds that it is
possible to suppress the influence of divergence by using a field
aperture, but the approach is not often used in practice due to
dimension requirements on sensors.

Let us consider the situation depicted in Fig. 5. A transverse
unlimited Gaussian beam with a location of the beam waist
in the origin of the coordinate system, whose divergence is
determined by parameters wy and 6y, propagates through
an environment along an axis z and impinges a non-planar
topography described by a function X (x, y, 2). A spot of the
Gaussian beam is projected to the surface with a shape that
depends precisely on geometry of the reflective surface topog-
raphy. Complex amplitude and intensity within individual
points of the trace can be described by the Egs. (17) and (18).
Inside the spot, an elementary flat 4§ whose location is given by
a position vector r,s and whose slope is given by a unit normal
vector ngs becomes a source of elementary spherical waves
(according to Huygens—Fresnel principle [20]), and the waves
propagates back to the environment. Let us assume further that
the surface from which the radiation is reflected is Lambertian
[19,20,28,29], i.e., ideally matte, ideally diffuse, and reflecting
light energy evenly in all directions. The detector of the reflected
radiation is considered to be in the origin of coordinate system
for the sake of simplicity. A registered field in the location of the
detector is then given by a superposition of elementary reflected
waves (according to the principle of superposition [19,20,29].

For a complex amplitude 4U, given by a contribution of the
elementary flat 45, in the location of the detector, we can write
[19,20,29]
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exp(ikr s)
rds

AU = —%Rds Ulrys) cos(—tys. ng5)dS, (27)

where 7 = /=1 denotes the complex unit, A is the wavelength
of the radiation, Rys is the coefficient of reflectivity, U(xys)
is the complex amplitude in the position rzs, # =27 /X is the
wavenumber, 74 is vector size, and cos(—r g, n ) denotes the
cosine of an angle between the vector —r,s and the unit normal
vector. nys.

Let us now denote Sa; the sum of elementary flats Sa, such
that the Gaussian beams impinges them, and reflects from
them in a time interval Az. For a transit time 7 registered in the
detector, it holds that T = 2¢, and therefore for an interval A7, it
holds that At =2A¢. A complex amplitude U(AT) registered
in the detector in a certain interval of transit time At (assuming
a coherence time [19,20,29] of a given device longer than the
interval) At is given by a superposition of contributions of
elementary flats on which the radiation impinged in the time
interval At = At /2. We can, therefore, write

exp(ikrys)
7ds

7
Uan =+ / RusU(ras) cos(—ras, ngs)dS,

SAr
(28)
where integration is performed over the area Sa,. A registered
intensity of radiation in the given interval At will then be
givenas

I(A71) = K|U(AT)|%, (29)

where K isa constant.
Therefore, we can analyze the influence of object surface dis-
tribution on a registered intensity with the following algorithm:

1. Define parameters of a Gaussian beam and a geometry of an
object £ (x, y, z) on which we analyze the case.

2. For individual points of the object £ (x, y, z), we calcu-
late the complex amplitude U(x, y, z) when the beam
impinges the object using the Eq. (17).

3. Forindividual points we calculate the contributions 4 U for
the propagation of reflected radiation according to Eq. (27).

4. For individual points of the object X (x, y, z), we cal-
culate the transit times T corresponding to the speed of
pulse propagation in a given environment. For the sake
of simplicity, it is possible to choose rectilinear propaga-
tion of beams from the origin of the coordinate system (in
which we consider the beam waist) to the given points of
the object, neglecting small curvature of the rays of the
Gaussian beam.

5. We integrate (sum) contributions of the complex ampli-
tudes 4U for selected intervals At;, in which we select
the time interval considering the resolution of the timing
measurement unit.

6. For individual beginnings of intervals At;, we compute
registered intensity according to the relationship [Eq. (29)].

In this way, it is possible to obtain a data set for an analysis of
influence of geometric distribution of an object on a registered
intensity in dependence on a transit time 7. Using Egs. (9)—(13),
we can consequently determine an estimate of the actual value of
measured transit time 7T, an estimate of the corresponding dis-
tance D;, and its uncertainty # p. These estimations can be used
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as components of the covariance matrix in the law of covariance
propagation presented in Section 2 [see Eq. (7)], and one can
estimate the overall effect of uncertainties on measurement
results.

F. Influence of an Inhomogeneous Refractive Index
on a Measurement of a Point Location

Quality of position determination of a point with a direction
and TOF distance measurement of line of sight is influenced also
by variation of a refractive index of a surrounding environment.
In practical applications, we can consider terrestrial atmosphere
to be an isotropic non-homogeneous environment, since the
refractive index depends on a number of physical factors—
notably temperature, pressure, and humidity [19,20,28,29].
These can be variable within a measurement of one sight line,
their variation cannot be usually precisely determined (turbu-
lent atmosphere), and they need to be modeled for simplified
situations. The changes in distribution of the refractive index
of the environment curve trajectory of a ray by virtue of validity
of the Fermat’s principle [19,20,28,29], and the timing mea-
surement unit measures a different value of transit time than in
a case of pulse propagation through an isotropic homogeneous
environment (as a straight line). The direction of the ray that
is registered then also does not correspond to reality, and it
will be distorted by the curvature of the ray. For very precise
measurements, it is, therefore, necessary to introduce so-called
atmospheric corrections, which might be complicated for long
distances as it is not possible to measure atmospheric param-
eters in real time. However, approximate equations are often
implemented in internal software of measurement devices.

Let us now assume that a function of refractive index within a
time interval is dependent on location only; i.e.,

n=n(r)=n(x,y, 2, (30)

where r=[x, y, 2] denotes a position vector of an examined
location. In practice, it is very difficult to fully describe such a
functional dependence. Nevertheless, it is possible to obtain
a set of discrete data for selected positions and to approximate
the model by a suitable expansion into a series of base functions
[21], or to use spatial interpolation methods from discrete data
sets (e.g., linear or spline interpolation).

Itis known [19,31-33] that for one specific place it is possible
to express the dependence of refraction index on wavelength
A, pressure p, temperature #, and relative humidity v using the
so-called Edlén equation [33], which is valid in order of 1078
in the range of normal pressures and for wavelengths of visible
light. In practice, it turns out that for wavelength A = 633 nm
(He—Ne laser, the most frequently used one), it is possible to use
asimplified formula [19],

_ TP e -1 2

n=1+7.86-107 F— — 15100 +160). (31)

Let us consider the situation depicted in Fig. 6. Let us assume
a reference center of a range-finder in the origin of a coordinate
system O, and let a point 7 be in a geometric distance s from
the origin of the coordinate system. Evidently, it holds that

so=1/x7+ 5+ 27, (32)
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Fig. 6. The influence of inhomogeneous refractive index on a
measurement of angles and distances.

where x7, yr, and z7 are Cartesian coordinates of point
T. Let us also assume that there is an inhomogeneous iso-
tropic environment characterized by a refractive index
n=n(r) = n(x, y, 2), a function of coordinates, that is poten-
tially variable in time. In our case, we do not further study the
dependence on time, and we only consider the spatial change of
the refractive index.

It is known from geometrical optics that an equation of ray is
given by the following formula [19,20,28,29]:

d d
Vi) = - [n(r)d—j , (33)

where ds is a curve arc element in place r and V is the
Hamilton’s operator [21]. Since the refractive index is not
generally constant, a curve of sight between points O and 7 is
nota straight line, as is apparent from the ray Eq. (33). A line of
sight will, therefore, be targeted in a wrong direction (on point
T", see Fig. 6, in which the point is deviated from by the angle)
A®, and also, a wrong distance s corresponding to the length
of the ray will be measured instead of the correct distance s¢. An
error of the measurement will then be given by the relationship
As =5 —59.

If we know the spatial distribution of the refractive index and
the initial conditions (location of the source and direction of
the ray, i.e., we solve a Cauchy boundary problem), it is possible
to calculate the true trajectory of the ray and the pulse path
length through solving Eq. (33), a partial differential equation
of second order. An analytical solution of the equation only
exists for very specific cases. In practice, it is, therefore, necessary
to solve the equation numerically. Methods of solution can be
found by the reader in the literature [19,21,34-43].

Foracurvearcelementin location r, we can generally write

¢
n(r)
where v(r) is a beam propagation speed in a given location, ¢ is
the speed of light in vacuum, and & stands for a time element.

Time 7 necessary to travel the distance s between the initial and
the final pointalong the curve will be given as

ds = v(r)dt = dt, (34)

T:l/n(r)dy, (35)
c

where we integrate by the curve of the beam. If a discrete set of
distribution values of the refraction index and path of the beam
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is known, the most convenient method of numerical solution is
given by the following relationship:

K-1

1
T==3  n)Vlri —nill, (36)

=0

where r; denotes a vector of jth point of the curve such that the
curve has been divided into K sections, the initial vector of the
beam is rg, and the location vector of the beam is r .

Through the calculation of a spatial propagation of a beam in
inhomogeneous environment and of a transit time required to
overcome a path along a curve thus determined, we can analyze
in a simple manner the influence of a refractive index distribu-
tion on a transit time, and therefore on a measurement of spatial
location using the TOF method, which is dependent on this
time. Geometric analysis can be conducted afterwards to ana-
lyze a directional deviation A® from rectilinear propagation.
Afterwards, one can use those deviations to estimate the overall 2
priori uncertainty of the scanning results with the law of variance
propagation presented in Section 2 [see Eq. (7)].

4. EXAMPLES
A. Example 1

Let us now consider an analysis of the influence of construction
errors of the steering and rotation unit of a scanner, of the error
of estimation of the transit time, and of the error in determining
tilt of the scanner [see Eq. (1)].

For now, let us omit the influence of a coordinate place-
ment of the scanner in a global system, i.e., let us assume zero
uncertainties for the vector X (the influence of uncertainty
in placement of the scanner would proportionately increase
the uncertainty of the resulting coordinates). Without loss of
generality, we can further assume the parameters in Eq. (1) as
X0 =0,x0 =0, R=R;(y), where y denotes a rotation angle
of a body of the scanner around its vertical axis. Then, for the
coordinate of point R in the global system, we can write

X = R, (Yaw)R, (Pitch)R, (RolDR, (y)rr (9, T),  (37)

where roll, pitch, and yaw determine tilt and orientation
of the scanner, ¢ is an angle of steering unit reflective sur-
face tilt, and At is a transit time. To define geometric
parameters of the steering unit and for parameters of the
measurement and its uncertainties, let us further assume in
this illustrative example that /=2cm, rg=|0, 0, 517 cm,
rc=[-1,0,01"cm, s=[0,0-1]", c=[0,1,0]7,
ng=[1/+/2,0,1/v/21", At=02ps, u(At)=20ps,
u(p) =0.0001 deg, #(y) = 0.005 deg, Roll = Pitch = Yaw =
0deg, u(Roll) =#(Pitch) =0.001 deg, #(Yaw)=0.01 deg.
Figure 7 depicts location of the points and their corresponding
ellipsoids of errors determined through Egs. (1)—(7) at a scale
of 500:1. The Jacobi matrix was constructed in a correspond-
ing way for measures for which we consider uncertainty, and a
covariance matrix of input parameters can be in this case con-
structed as a diagonal matrix, whose diagonal contains squares
of uncertainties of these parameters (estimates of covariances);
therefore, we assume their mutual independence. Using the
above-stated tools, it is possible to analyze numerous specific
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Fig. 7.  The location of points in a global system and ellipsoids of

errors at a scale of 500:1.

situations and, therefore, evaluate the a priori estimates of
uncertainty of measurements.

B. Example 2

The introduced algorithm for analysis and reconstruction
of measured distance by the method of transit time can be
applied to various analyzed geometries of the reflective sur-
face. In this case, we will consider a simple situation in which
the reflective surface is an outer corner between two walls.
The axis of sight of the range-finder is simultaneously the
axis of symmetry of the walls. Nominal distance of the corner
is selected as znom, = 50 m. Figure 8 shows the transit time
reconstruction, assuming that the beam propagates in the form
of unlimited Gaussian beam and its parameters correspond
to a terrestrial laser scanner Riegl VZ-400i [8], in particular,
Omax = 0.0100 deg, wo = 1.6370 mm, A =900 nm, assuming
M*=1, v=3-108m/s, and resolution of the timing mea-
surement unit AT =11 ps. Further, a constant coefficient of
reflectivity is assumed for individual points of the reflective
surface. In Fig. 8, blue crosses symbolize normalized intensities
registered by the unit at times 7;, the red line shows estimation
of the transit time 7, and red dashed lines show 1o interval of
estimated uncertainty of the transit time 7. It is apparent from
the results that divergence of rays has crucial influence on the
evaluated distance and its uncertainty.

C. Example 3

Let us now illustrate a case of ray tracing under so-called
Dirichlet boundary condition, i.e., if we know the positions
of start and end point and the goal is to determine the path of
a line of sight through the environment between those points,
while the refractive index of the environment is a function of
position. Without loss of generality, let us consider a plane case
in which distribution of temperature is given by the following
formula:

Vol. 59, No. 33 /20 November 2020 / Applied Optics 10251

Zom = 50.000 m, z = 50.005 m, Az =4.597 mm
o = 25.29 ps, 0, = 3.793 mm, A7=11.00 ps, u, = 3.823 mm
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Fig. 8. Normalized registered intensity for a corner target and
reconstruction of transit time.

(x —50)?

t(x, y) =254 10 exp [— 502

} exp(—0.3y) [°Cl.
(38)

Let us further consider a wavelength of the radiation
A=0633nm, an atmospheric pressure p = 101325 Pa, and
a relative humidity v =50%. The dependence of refrac-
tive index can then be expressed by Eq. (31). The beam was
traced using an optimization method for searching an initial
direction that allows the beam to intersect the target point
in minimal distance. Step of the calculation was selected as
ds =0.01 m. Figure 9 shows the deviation of the calculated
beam from rectilinear propagation, when the start point was
chosen as the origin of the coordinate system and the end
point has coordinates rz =[100, 5] m. Further, a deviation
from geometric length of the beam s from rectilinear distance
so is calculated, ie., As =5 —50=5.6-10"> mm, and the
angle deviation of the initial direction of rectilinear propaga-
tion AP = —0.0035 deg. It is obvious that the distribution
of refractive index of an environment can have significant
influence, especially on directions of measured rays.

5. CONCLUSION

The paper summarized a general theoretical description of
selected mathematical and physical aspects influencing the
accuracy of measurement by terrestrial laser scanners, together
with an apparatus that can be easily employed in specific
situations and analyses.

The first part was focused on a mathematical description of
geometrical properties of the scanner, and useful general formu-
las for uncertainty analysis of all types of scanner constructions
were presented. Afterwards, physical aspects affecting the scan-
ning were described. Specifically, a reflector-less measurement of
distances with the TOF method, reflectivity of natural surfaces,
the influence of spot size of laser beam on inclined surface and
non-planar geometry of a target object, and the influence of
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X, = 0.000 m, Yo = 0.000 m, Xg = 100.000 m, Vg = 5.000 m, Sy = 100.125 m
AD = -0.0035 deg, Asg =5.6e-05 mm
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Fig.9. Deviation of ray propagation from rectilinear case.

an inhomogeneous refractive index on a measurement were
discussed.

Compared to the currently published, mainly experimental
studies focused on specific measurement devices and situations,
the work is a valuable summary addition and completion of the
laser scanning area, with which it is possible to predict 2 priori
uncertainties of results.
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This article presents several fundamental formulas for ray tracing in optical systems used in
3D optical scanners. A procedure for numerical modeling of one-mirror and two-mirror optical
systems is presented, and the calculation of positioning and accuracy of the laser beam spot in a
detection plane is carried out. Finally, a point position and accuracy depending on a transit time
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1. Introduction

Three-dimensional (3D) optical scanners [1-11] are
devices that are able to perform noncontact, very
fast, and accurate measurements of 3D physical ob-
jects. Areas of application of 3D optical scanners are
in civil engineering, architecture, interior modeling,
earthwork (building foundations, mining, etc.), com-
ponents and modules in engineering, automobile
body shaping, measuring the condition of road surfa-
ces, railway lines, detecting and documenting cracks,
security and traffic control (laser gates), archaeology,
and so forth [3]. Furthermore, these systems are
widely used in safety technology such as the protec-
tion of objects and detection of human presence in
safety zones of production systems (e.g., machining
centers and foundries). Another area of 3D scanner
application is in laser technology (cutting, welding,
engraving, surface finishing of materials, etc.), medi-
cine, or the entertainment industry (laser effects,
theaters). There are many companies [4-9] that deal

1559-128X/14/122730-11$15.00/0
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with this issue and commercially offer 3D scanners
for the above-mentioned applications.

There are several studies of 1D and 2D optical
scanners that have been developed and presented
in many papers. Fundamental analysis of systems
of plane mirrors by matrix multiplication is carried
out in [12]. Other works are focused on design of
distortion-free two-mirror scanners [13], analysis of
various types of scanning patterns in the observation
plane [14-17], stability of plane-mirror systems for
as many as three mirrors [18], or 1D surface pro-
file measurement by detection of the angles of
deflection [19].

In the above-mentioned papers the attention is fo-
cused on 1D or 2D problems. In this paper, besides
2D analysis, 3D positioning and accuracy determina-
tion is carried out as well. This approach is required
in practical situations. First, a procedure for ray
tracing through a scanner optical system will be
presented, and the formulas for positioning and ac-
curacy of a laser beam spot in a detection plane will
be derived. Subsequently, a method for a 3D position
and accuracy estimation based on a time-of-flight
method is carried out. A vector approach is used



for its simplicity and versatility and can be applied in
many practical cases.

A 3D optical scanner comprises a radiation source,
an optical or opto-mechanical directional device for
laser beams, a radiation detector, and an evaluation
system. Light (beam) coming from the source of radi-
ation is transformed by means of an optical system,
deflected by a directional device to an accurately
determined direction, and impacts to the measured
object. After the reflection from the object, a part
of the diffused light returns through the optical
system and impacts on the radiation detector. The
evaluation system then determines the spatial coor-
dinates of the object point. The distance between the
object point and scanner is mostly determined by
modulating the light or by measuring the elapsed
time between the transmitted and received signal
(time of flight method). There are other ways to
determine the distance of the object from the scan-
ner, for example, the triangulation method [11],
but these are rarely used and therefore they are
not discussed.

There are usually one or two rotating mirrors used
in the design process. One-mirror scanners are used
where a larger angular range (field of view) of the
swept beams is needed. This type of scanner is usu-
ally formed by a laser module with a single rotating
mirror, which rotates around a horizontal axis (H),
while the laser beam sweeps in a plane perpendi-
cular to the axis of mirror rotation (vertical plane).
The laser module is then rotated around a vertical
axis (V) perpendicular to the axis of the mirror rota-
tion, and thereby it sweeps the laser beam in the
horizontal position (horizontal) plane. An achievable
field of view can be, for example, 360° x 320° (H x V).
Two-mirror scanners are used primarily in the field
of laser technology in engineering and elsewhere
where a large angular field of view is not required.
The optical system of this scanner consists of two
mirrors that revolve around two different axes and
thus lead to sweep the laser beam. There are several
companies that provide ready-made modules for two-
mirror scanners [11]. An achievable field of view may
be, for example, 80° x 80° (H x V).

2. Fundamental Formulas for Laser Beam Tracing
through the Scanner Optical System

A. Law of Refraction and Reflection in the Vector Form

To derive formulas for laser beam tracing one
can employ the basic equations of classical
electrodynamics—Maxwell’s equations [20-26].
However, the complete procedure is beyond the scope
of this work and can be found in [20,22-26]. Assume
that a unit normal vector N of the interface is
directed to the incident ray of light and the angle
of incidence and refraction is measured out from
the normal, as is shown in Fig. 1, where A; and
Ar are unit vectors along the incident and refracted
rays. All above-stated vectors lie in a plane, which is

interface

Fig. 1. Refraction and reflection on the plane.

called the plane of incidence, as known from funda-
mentals of geometrical optics.

Angles of incidence a; and refraction a; are con-
nected with the well-known Snell’s law of refraction
at an interface between media of refractive indices
n; and ny [20-22,25-28]:

ny sin ar = np sin ar, (D

where subscript I and T denote rays of incidence
and refraction.

Consider the interface shape of any surface
described by function F'(r) = 0, where r is a position
vector of any point of the interface. As known
from differential geometry of surfaces, a normal
unit vector of the interface is obtained from the
formula [20,21,29]

_ gradF(r)

== 2
gradF (o) @

With the use of vector calculus, one can obtain the
law of refraction in the form [20]

n 1 .
Ap=-—LA; —n—N( n2 - n?sin? ar - ny cos al).
T

3

A similar situation is in the case of the law
of reflection. As can be proved, for example, in
[20-22,25-28], the angle of incidence is equal to the
angle of reflection. Therefore, the law of reflection
can be retained in the vector form as follows [20,26]:

Ar = A; 4+ 2N cos ay,
AR = AI - 2N(N * AI) (4)

B. Rotation of Vectors around an Axis

Consider unit vector N, which rotates around an axis
defined by unit directional vector C. As is well known
in mathematics [30], one gets the formula
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N(p) = N cos ¢ + C(C-N)(1 - cos ¢) + (C x N) sin ¢,
(5)

where ¢ denotes rotation angle. For differentially
small rotations d¢ (cos dgp ~ 1,sin dg ~ dp) one
gets

N(dp) = N + (C x N)dgp. (6)

During the rotation of the scanner’s mirror
the unit directional normal vector N of the mirror
is transformed with respect to Eq. (5). The effect
of rotation axis errors can be determined with
Eq. (6).

C. Reflection from the Mirror and the System of Mirrors

Let a beam, which is defined by unit directional vec-
tor A;, intersect planar mirror Z with unit normal
vector N directed to the incident beam, as is shown
in Fig. 2.

Unit directional vector Ay of the reflected beam is
then determined with the use of Eq. (4) as

Az = Al - 2N(A1 * N) = MAI (7)

Matrix M and vectors A;, Ay, and N are given as

1-2N2 -2N,N, -2N,N,
M= | -2N,N, 1-2N? -2N,N, |,
~2N,N, -2N,N, 1-2N?
Ay Ay
A =| Ay | Ay = (Azy),
Ay, Ag,

N,
N= (Ny). ®)
N,

For the reflection on % mirrors with repeated use of
Eq. (7) one gets the determinant

Fig. 2. Reflection on the planar mirror.

where A, is the unit directional vector of the re-
flected beam from the system of 2 mirrors. For the
system of two mirrors, the most practically used case,
Ags, is derived according to Eq. (9) as follows:

A 2(A;-Np) 2(A1-Ny)
Az =|N; 1 2(N; -Ng)
N, 0 1

A1 —2N;(A1-Nyp) —2Ny(A; - Ny)
+ 4N2(N; - No) (A1 - Ny).

(10)

D. Beam Reflection from a Rotating Mirror and a System
of Rotating Mirrors

If one rotates a mirror around any axis, the direction
of the reflected beam will be changed depending on
the angle of the mirror rotation and the direction of
the axis around which the mirror rotates. Thus the
direction of the mirror’s unit normal directional vec-
tor will be changed with respect to Eq. (5). Consider
the mirror’s rotation around vector C; by angle ¢;.
Then with Eq. (5) one gets for the rotation of the
mirror’s normal vector

N(p1) = N(0) cos 91 + C1(Cy - N(0))(1 - cos ¢1)

+ (C1 x N(0)) sin ¢, (11)
where N(0) denotes the initial position of the unit di-
rectional vector. For unit vector A, of the reflected
beam from the rotated mirror according to Eq. (7)
one gets

A; 2(A;-Np) 2(A1-Ng) 2(A;-Ng) 2(A1 - Np)
Ny 1 2(N; -Ng) 2(N;-Ns) 2(N; - Np)
_| N2 0 1 2(Ng * N3) 2(Ng - N)
A1 = N; 0 0 1 ’ ©)
N, 0 0 0 1
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Az = A1 - 2N(¢1)(A1 - N(g1)), (12)
where A; is the unit directional vector of the incident
beam. For the reflection from the % rotating mirrors
one gets, with Eqgs. (5) and (7), formulas

Ni(@;) = N;(0) cos ¢; + C;(C; - N;(0))(1 - cos ¢;)
+[C; x N;(0)] sin ¢;,
Ai1(9) = Ai(@) — 2N;(9) (Ai (@) - Ni(9;)), (13)

where i =1,2,...,k and A;(¢;) = A1(0) is the direc-
tional vector of the beam, which is the incident to
mirror Z;.

3. Calculation of Optical Beam Spot in Detection
Plane and Its Accuracy

To calculate beam pattern position in the detection
plane, it is necessary to model the trajectory of the
beam through an optical system. First, the procedure
for one-mirror scanners will be shown, then for two-
mirror scanners.

A. One-Mirror Scanners

Consider the situation shown in Fig. 3. The ray of
light, which comes from the source S and is given
by unit directional vector A;, goes through the timer
T's and impacts the mirror, which is rotated around
axis C; by angle ¢;. Furthermore, the entire scanner
rotates around the axis of the unit directional vector
C, by angle ¢,. Let the mirror axis intersect the mir-
ror at its center and consider the mirror center in the
beginning of the coordinate system. Denote dg as a
distance from the timer 7T'g to the center of the mirror.
The reflected beam continues and intersects detec-
tion plane £ at point P. Subsequently, light of a beam
is reflected from the point P and goes back in the
reverse direction, impacts the mirror, and after
reflection continues to the timer 7'p. Consider the

¢
o
Py é
J e :
g\ i o S
P &0 = + i
" i=C(0) X Ty A
e
+Z_/ ’ \‘\\\& —
x -
(053
=

Fig. 3. One-mirror scanner.

distance from the center of the mirror to the timer
TD to be dD'

The reflection from mirror Z is given by Egs. (11)
and (12). Due to complete scanner rotation by angle
@2, the final unit vector A3 of the beam can be esti-
mated as follows:

A3 = Ay cos g3 + Co(Cq - Ag)(1 - cos @)

+ (Cy x Ay) sin ¢y (14)
or
AT =R (p2)AT, (15)
where
cos g 0 sin @q
R,(p2) = 0 1 0 (16)
—sin ¢y 0 cos ¢y

is the rotation matrix around y axis by angle
¢ [29-31].

To calculate vector rp—the intersection of the
beam with detection plane £, which is given by
formula [29-31]

§=((r-0q)-q) =0, am

where q is the unit directional normal vector of the
plane ¢, r is the position vector of an arbitrary point
in the plane &, and b is the distance of the plane from
the origin—then one gets, due to the condition of the
reflection in the origin of coordinate system (x, y, z),

rp = pAs. (18)

Subsequently, substitution to Eq. (17) leads to
determination of parameter p, and the resulting
formula follows:

o b
P Az q

As. (19)

For practical purposes, the requirement for vector rp
as a function of angles of rotation ¢; and ¢, and a
transit time ¢ is made. One can write the following
formula:

rp = dA3, (20)
where d denotes a distance from the center of the
mirror to point P. If one considers ¢ to be a velocity

of used light in a medium, the formula for a mea-
sured distance d,, is obtained as

d, =ct =2d +dg +dp, (21)
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z,

Fig. 4. System of two mirrors.

where transit time ¢ is given as a difference between
detected time in the timer Tp and T's (t = Tp — Tg).

Rearranging Eq. (21) and substituting to Eq. (20)
leads to the following formula:

1
rp = 5 (Ct - ds - dD)A3. (22)

From equations stated above one can see that com-
ponents of the unit directional vector Az are func-
tions of angles of rotation ¢; and ¢y. This vector is
multiplied by a function of measured transit time ¢
and parameters of used optical system.

B. Two-Mirror Scanners

Consider a system of two planar mirrors Z; and Z, as
shown in Fig. 4. Suppose that mirror Z, passes
through point O; and rotates around an axis having
unit directional vector C;, and mirror Z, passes
through point O, and rotates around an axis having
unit directional vector C,. Further, let N; and Ny be
unit vectors of normals to mirrors Z; and Z,, and A;
is the unit directional vector of the beam incident on
mirror Z;, Ay is the unit directional vector of the
reflected beam from mirror Z; and the incident on
mirror Zy, and Ag is the unit directional vector of
the reflected beam from mirror Zs.

b

Fig. 5. System of two mirrors in the plane (x, y).
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Rotation of mirror Z; by angle ¢; around an axis
that is defined by unit directional vector C; and mir-
ror Zs by angle ¢, around the axis that is defined
by unit directional vector C, with respect to initial
positions can be easily described with Eq. (13).

Now calculate the coordinates of the intersection
of the beam reflected from the system of mirrors
Z, and Z, in detection plane ¢ (Fig. 5). Denote unit
vectors in the directions of the coordinate axes
(x, v, z) as (i, j, k). Axes x and y lie in the plane of
Fig. 5 and the z axis is perpendicular to this plane.
We say that the mirror system is in initial position,
if vectors A; and A3 are lying in mutually parallel
planes. Vectors belonging to the initial position are
denoted A;(0), A3(0), A3(0), N;(0), and Ny(0). The
beam coming from the mirror system in the initial
position then intersects plane & which is located
at distance b from point Oy, at point P. Points O,
and O, are separated by the value of a and point
O, is placed in the origin of the coordinate system.

Vector rp of the beam intersection with detection
plane ¢ is obtained by a similar procedure as in the
case of a one-mirror scanner, but considering the
reflections on two mirrors the resulting formula is

rp = Iy + p3Asz(ps), (23)

where

J - Na(92)

— 2% A , 24
As(@1) - Na(g2) 2(e1) 24

ro=aj—a

b+ry-q

== - 25
Az(p2) - q (25)

Ps3

As(p2) = Ag(@1) — 2No(92)(A2(91) - Na(@2)).  (26)

As(p1) = A1(0) — 2N1(91)(A1(0) - Ny(g1)).  (27)

where ry is the position vector of the point where the
beam intersects mirror Zs. Ni(¢;) and Ng(gs) are
given by Eq. (13).

+
Ts "
Ay
[ >
Tp
.,.
7
B
./.
»
+z

Fig. 6. Reflection on second mirror.



To calculate vector rp as a function of angles of
rotation ¢; and ¢y and a transit time #, consider
the situation depicted in Fig. 6. Measured transit
time ¢ can be expressed as a sum of several parts.
First, the beam goes from the timer T'g to point O,
and passes a distance dg. Then it is reflected from
the first mirror and passes a distance @’ to a point
given by vector ry. Subsequently, the beam is re-
flected from the second mirror and through a dis-
tance d to point P. Next, light is reflected and a
part of it goes reversely by the distance d and a'.
At last, from point O, to the timer T’ it goes through
a distance dp. If ¢ is considered to be a speed of
used light, then the formula for measured distance
d,, follows:

dp, =ct=2(d+a)+ds+dp. (28)

Suppose next the above-mentioned situation
where centers of mirrors are separated by the value
of a, point O, is placed in the origin of the coordinate
system, and point O, lies on axis y. One can see that
position vector rp given by the formula

rp = ry + dAsz(p2), (29
where d is given with Eq. (28) as follows:
1
d= 5 (Ct - ds - dl)) -a'. (30)

The last determined value is a’. With respect to
Fig. 6 and to Eq. (24) one obtains

J - Na(92)
As(p1) *Na(gg)

With respect to the above-stated results, the final
formula for position vector rp, which is given as a
function of angles of rotation ¢; and ¢y and transit
time ¢, can be expressed as follows:

a =|ry—aj| = -a (31)

JNa(g2)
As(91) - Na(g2)

1
+ 5 (ct —dg —dp)As(ps).

rp=aj+a [As(p2) — Ag(@1)]

(32)

Vectors Aq(p;) and As(ps) are given by Egs. (26)
and (27).

C. Estimation of Accuracy

Positional accuracy of the laser scanner’s beam spot
in the detection plane is evaluated by the coordinate
standard deviation and by the sample coordinate
standard deviation, which are defined as

oz + oy st + sy
Oy o Sy =g (33

where o; and s; denote the standard deviation and
the sample standard deviation of the ith coordinate.
The sample standard deviation of one coordinate is
given as

J (34)

where 6; = i; - i; is the difference between the aver-
age value of the jth point of the ith coordinate l_; and
the measured values of the jth point i; and n’ is the
number of redundant measurements.

To calculate the values of the standard deviations
o, and ¢,, one can use the well-known law of variance
propagation [32,33]. Consider a model given by a
vector function f = (f1.fs.....fm)! of n variables x;
@ =1,...,n). If function f has continuous partial
derivatives, actual errors of variables x; are small
compared to the functional values and have an
even distribution with zero expected value. The
relationship for the variance—covariance matrix of
functional values can be derived [32,33] as

3 =J2J7. (35)

Variances of functional values then will be
situated on the diagonal of the matrix X, In
Eq. (35) J denotes the Jacobi matrix of partial deriv-
atives of the model with respect to all variables
[32,33] and X, is the variance—covariance matrix
of the variables [32,33]. If variables are mutually in-
dependent, thus Cov(x;,x;) = 0, i #j, the variance—
covariance matrix is then diagonal and one can
rewrite Eq. (35) to the form

0% = ZI: (0f 1/ 0x;)%0%,. (36)

J

For our purposes, one can consider that one-mirror
and two-mirror optical scanners fulfill the above-
stated conditions; therefore, the law of variance
propagation can be used. Relations between stan-
dard deviations and uncertainties are clearly
described in [34].

In 3D problems, accuracy of a measured point is
completely characterized by the error ellipsoid. As
known, its semiaxes are determined as a square root
of eigenvalues [29-31] of the variance—covariance
matrix [Eq. (35)] and directions of semiaxes are
represented by eigenvectors [29-31].

Another easy method to identify the characteris-
tics of accuracy is numerical modeling. If we know
the standard deviations of all variables and func-
tional relationships, we can, for example, simulate
actual measurements, using the MATLAB pseudo-
random number generator. With a sufficient number
of repetitions, we can a posteriori calculate the
characteristics of precision—the sample standard
deviations [Eq. (34)].
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4. Examples

A. Example 1—One-Mirror Scanner

Consider a situation of a one-mirror scanner with
parameters (Fig. 3) A; = -i, C; =i, C; =j, N(0) =
i+k)/J/(2), q=k, b=100m, dg=0.05m, and
dp = 0.05 m.

With the use of Egs. (11), (12), and (14)—(18) one
gets

Ay = —j sin ¢ + k cos ¢,
Ag =1 cos ¢ sin ¢y —j sin ¢; + k cos @1 cos ¢g,

tan ¢4

rp = ib tan (7)) —jb + kb. (37)

coS @9

Coordinates of point P on the detection plane are
then given by

b tan P1
cos ¢y’

xp = b tan ¢, yp = zp=0b. (38)

The above-stated situation is shown in Fig. 7.

The first and second formulas in Eq. (38) are para-
metrical equations of a curve in the detection plane.
After a simple treatment one gets the equation of the
curve in explicit form,

tan P1
=-———xp. 39
P sin @9 *p ( )

Using the Taylor series [29-31] for coordinates xp
and yp for small angles, considering just the power of
3 for angles of rotation, one gets

150

% X
X %
Xianise x X%
XXX X
éxiix?ix XX XXXXX§§X§§X§
L X AXGRXX XXX SOKKRERX AL X LB X
& & X R K R OIIOERIIIIXRE LR KL X X &
R B K KL BRI ERLEEEXKAKRIRIIIELLIRXR AR KL K K &
L XL XRLLXK &K 03 XXX L X
XEEXLE KXELXX LK
&Y % 8 &
50 3
—
g 2
—_ 0
o
-50 5 s
b4
XL ;s REX
K% KR BRI LRIRXLIK X & K
R L LR XL LKL EIEERRRIOOEEZIKXRKLLE X R L X % X
X AERX XXX XX XX bl
X 5 X ELRRLGIRX SOOAK XXKIRARLLEX 3 %
X XLBEXX: SORXRXK; XXX XXQEX X
S100 | SR X R RS  00OOOIIL IR IR K X 3 %
X XXX EXXEESX XRUEERREEX E X
X XX XXX XXX
X X X X
% XX X%
-150 . . .
-100 -50 0 50 100

X, [m]

Fig. 7. Point P in the detection plane for ¢;=
{-45°,-43°,...,43°,45°} and ¢, = {-40°,-38°,...,38°,40°} with
parameters from example 1.
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b
xp ~ bpy + —€0g»

b b
3 yp & =bp1 -5 195 - 50, (40)

3

where angles are substituted in radians. If we limit
the series [Eq. (40)] only to the first components, we
see that the coordinates of point P in the detection
plane are approximately proportional to the angles
of rotation. For relative error of the linear approxi-
mation of relations [Eq. (40)] one gets

oep _ 1, ayp 1,
Xp _3(‘027 yp _2(p2.

(41)

For example, for angle ¢ = 10° = 0.17 rad is the rel-
ative error of linear approximation &xp/xp~1.0%
and 8yp/yp ~ 1.4%.

Consider mutually independent angles of the mir-
ror rotation and the angle of the entire scanner rota-
tion with standard deviations ¢,; and ¢, then for
exact analysis of the positional accuracy of the laser
beam spot in the detection plane one uses Eq. (36).
The coordinate standard deviation is then given by

0',% + 0§
W=\
where

0xp\ 2 0xp\2 b 2
2 _ P 2 P 2 _ 2
= (5or) ot (Gor) = (o) o 9

2 2
2 _ ayP 2 ayP 2

-b 2 2 —b tan P1 sin @2 2 2
—————] 0, + 5 Cu2-
COS” 1 COS @9 COS” o

(44)

(42)

Figure 8 presents the coordinate standard
deviation in the detection plane.

oyy [mm]

-50
¥p [m] 100" -100 % [m]

Fig. 8. Coordinate standard deviation in the detection plane—
example 1.
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Fig. 9. Simulation of the laser beam spot in the detection plane

for the expected values of the angles ¢; = 20° and ¢, = 10° and
10,000 repetitions.

For the simulation and a posteriori determination
of the characteristics of accuracy assume a normal
distribution with zero expected value of mirror rota-
tion errors and standard deviations o, =0, =
50 prad. Figure 9 shows the simulation of the laser
beam spot for the expected values of the angles ¢; =
20° and ¢, = 10° for 10,000 repetitions. Figure 10
presents the progression of the sample coordinate
standard deviation with an increase in the number
of repetitions.

Position vector rp, as a function of angles of rota-
tion ¢; and ¢, and transit time ¢, is determined with
respect to Eq. (22). For its components, with consid-
eration of the above-stated formulas, it holds that

1
Xp = §(ct —dg —dp)cos ¢; sin @,

1 .
yp = —5(015 —dg —dp)sin ¢y,

1
P=35 (ct —dg —dp) cos ¢ cos @y. (45)

Diagonal elements of the variance—covariance ma-
trix, calculated using law of variance propagation, re-
present coordinate accuracy of the measured point.
Variables ¢;, @9, and ¢ are mutually independent;
the variance—covariance matrix will be diagonal.
Product ¢t =d,, is more suitable for a numerical

6.5

6

55

Sxy [mm]

5

4.5

0 2000 4000 6000 8000
repetition

10000

Fig. 10. Progression of sample coordinate standard deviation
with an increase in the number of repetitions for angles ¢; =
20° and ¢, = 10°.

estimation of accuracy instead of ¢, which is dispro-
portionately small in comparison with other varia-
bles. One can simply derive the following formula
for standard deviation o, using law of variance
propagation:

Cp = COy, (46)

where o; represents accuracy of measured transit
time. Equation (46) is suitable for expression of re-
quirements for technical parts of the scanner optical
system. For accuracy in measured pseudodistance d,,
equal to 0.001 m, with speed of used light approxi-
mately equal to 3-10%8 m, it holds that ¢, ~3.3-
10712 s = 3.3 ps; the timer has to accomplish this
condition.

Applying law of variance propagation [Eq. (36)] on
the situation described with Eq. (45), one obtains

1 , in o |
o2 = [§ (ds + dp - ct) sin ¢; sin ¢2] 031

1 2
+ [5 (ct —dg — dp) cos ¢y cos ¢2i| 02y

1 2
+ [5 cos @ sin goQ] 6%, 47)

, 1 2, 1. P,
oy = |5 (ds +dp —ct)cos g1 | o,y + | ~5sing | og,

2
(48)
1 2
o2 = [§ (dg + dp —ct) sin ¢, cos tpz} Gil
1 in o | 62
+ |:§ (dg + dp — ct) cos ¢ sin §02} 042
1 2 2
+ 3 COS @1 COS @3 | Oy. (49)

Eigenvalues and eigenvectors of the diagonal
variance—covariance matrix with elements given
by Egs. (47)—(49) can be used for determination of
error ellipsoids in 3D situations. In Fig. 11, ellipsoids
in plane (xz) are shown for different values of transit
time ¢. As is obvious, influence of timer accuracy is
more significant in closer parts of the scanned field.
Remote parts are more affected with errors of angles
of rotation.

B. Example 2—Two-Mirror Scanner

Consider a two-mirror scanner with parameters
(Fig. 12)

A1(0) =i,
a1 = 09 = 450,

N1 (0) = (i +j)/v2,

Clzi, szk,

No(0) = (i +j)/vV2,  (50)
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Fig. 11. Error ellipsoids (scaled 500:1) for different transit
time ¢, ¢; = 0° and ¢, = {-15°,-10°,...,10°,15°} with parameters
from example 1.

a = 0.05 m,
dp = 0.05 m.
With the use of Egs. (13), (26), and (27) one gets

b =100 m, dg = 0.05 m, and

1 .
—z (i+]j cos g1 + Kk sin ¢,), (51)

V2

Ag(@1) = —(j cos @1 + Kk sin ¢y), (52)

Ni(p1) = -

i .
Nao(pg) = 75 (cos g — sin ¢y)

+ g (cos @9 + sin @sg), (53)

NG

As(pg) =i cos ¢1(1-2sin® py)
+ j cos ¢ sin 2¢9 — Kk sin ¢;. (54)

Substitution of the estimated vectors in (24) and
(26) leads to

r, = —ak tan ¢y, (55)

g s b
rp = ib + jb tan 2¢9 — k tan ¢, (a + pv 2(,02)' (56)

2738 APPLIED OPTICS / Vol. 53, No. 12/ 20 April 2014

Coordinates of point P in the detection plane are then
given by the following formulas:

Xp = b, Yp = b tan 2(p2,

_ 4 b (57)
p = —tan ¢, a+cos2¢2‘

The second and third formulas in (57) are para-
metrical equations of the curve in the detection
plane. After a simple treatment, one gets the equa-
tion of the curve in explicit form:

_ tan ¢4
zp = (sin 2¢2)yp a tan ¢q. (58)

For small mirror rotations, with the use of the
Taylor series, one gets from Eq. (57):

zp ~ —¢1(a + b) - 2bg1 92,
(59)

8
yp &~ 2bpy + gbcog,

where just the powers of 3 are considered for the
rotation angles. Angles ¢; and ¢y are substituted
in radians. If we limit the series [Eq. (57)] only
to the first members, we see that the coordinates
of point P in the detection plane are approximately
proportional to the angles of rotation. For relative
error of the linear approximation of relations
[Eq. (67)] one gets

5yp 4 oz P 2

Yp o zZp 1+a/b¢2~2¢2’ (60)
where we supposed a/b < 1. For example, for angle
@9 = 10° = 0.17 rad is the relative error of linear
approximation &yp/yp ~4% and 5zp /zp ~ 6%. With
the use of the same procedure as in example 1, one
gets for the coordinate standard deviation formula

2 2
Oyz = %t UZ, (61)

2 2 2
2 _ ayp 2 ayp 2 _ 2b 2
%= (5ar) 7+ (5r) = (o) o

(62)
0zp\2 0zp\2
2 _ fis 2 P )
%‘(MJ”M+Q@)%2
b+ a cos 2¢, \2 ,
~ \cos? 2 %91
@1 COS 2@y
2b tan ¢ tan 2¢, 2022. 63)
cos 2¢9 ¢

Figure 13 presents the coordinate standard
deviation in the detection plane.
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Fig. 12. Scheme of two-mirror scanner and point P in the
detection plane for ¢; ={-30°-29°...,29°,30°}, @ =
{-18°,-17°,...,17°,18°} with parameters from example 2.

For the simulation and a posteriori determination
of the accuracy characteristics one can assume a nor-
mal distribution with zero expected value of mirror
rotation errors and with supposed standard devia-
tions and obtain similar results as in example 1.

Gyy, [mm]
o

yp [m] 2100 .50 2, [m] 8

Fig. 13. Coordinate standard deviation in the detection plane—
example 2.
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Fig. 14. Error ellipsoids (scaled 1000:1) for transit time
t =1{0.33-10"% 5,0.67- 1078 s}, ¢; = {~30°,-20°, ...,20°,30°} and
@o = {-15°,-5°5° 15°} with parameters from example 2.

Position vector rp, as a function of angles of rota-
tion ¢; and ¢, and transit time ¢, is determined with
respect to Eq. (32). For its components, with a consid-
eration of the above-stated formulas, it holds that

1
xXp = [§ (ct —dg —dp) - } COS (@1 €OS 2¢9,

oS @1

1
yp = [E (ct —dg —dp) - } CoS @7 Sin 2¢y,

cos ¢

1 .
zp = 5[(ds +dp - ct) sin ¢1]. (64)

With the use of same procedure as in example 1
one can calculate diagonal elements of the variance—
covariance matrix. Subsequently, error ellipsoids
are determined with eigenvalues and eigenvectors.
In Fig. 14, one can see scaled ellipsoids in the model
situation from example 2. Standard deviation for a
timer was chosen as 6, = 3.3 - 10713 s. It is equivalent
with accuracy 0.0001 m in the measured pseudodis-
tance d,,. Standard deviations of mirror rotations
were chosen as 6,1 = 6,9 = 50 prad.

As is obvious, timer accuracy more affects the
closer parts. Influence of angles of rotation is more
significant in the remote parts.

5. Conclusions

The objective of this article was to present tracing
of laser beams through the system of mirrors that
is used for the construction of 3D laser scanners.
The procedures for modeling of one-mirror and
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two-mirror systems, which are used most often in
practice, were derived. Furthermore, an analysis of
the position of the laser beam spot in the detection
plane was done. Subsequently, formulas for point
position as a function of angles of rotation and a
measured transit time were derived; application in
practical 3D situations then can be done.

Position accuracy in a detection plane was deter-
mined with the use of coordinate standard deviation,
calculated with the law of variance propagation, and
with the use of the sample coordinate standard
deviation, calculated a posteriori from the numerical
modeling. In practical applications it is important to
estimate accuracy in three dimensions. The most
suitable approach is to calculate error ellipsoids from
the variance—covariance matrix. One can make this
procedure with the use of eigenvalues and eigenvec-
tors; computations and results have been analyzed.

Formulas and procedures shown in the paper are a
simple solution for modeling of the optical systems
for laser scanners and for practical use in production.
Exact analysis has shown that the accuracy of the
presented optical systems is less then 10 mm for
100 m distance, if we consider the expected value
of mirror rotation errors 50 prad. Numerical model-
ing endorsed the results of the exact solution; more-
over, the size and the direction of the laser beam spot
scattering in the detection plane shown is actually
appropriate for construction processes. As analysis
in three dimensions shows, influence of timer accu-
racy is more significant in closer parts of the scanned
field. Remote parts are more affected with errors of
angles of rotation.

This work was supported by the grant 13-31765S
from the Czech Science Foundation and SGS14/110/
OHK1/2T/11 from Czech Technical University in
Prague.
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This paper presents a method for calculation of a surface deformation of a spherical lens or a plane-parallel plate
caused by its own weight. Formulas for the case of support at the edge or for the inner radius support are pre-

sented. Since it is not possible to find an analytical solution with appropriate boundary conditions, this paper

presents numerical methods enabling us to calculate an approximate solution. The mentioned deflection has
enormous impact in the field of optical metrology of large lenses where it has to be taken into account during

precise measurements.
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1. INTRODUCTION

It is very important to measure geometrical and optical param-
eters very accurately during manufacturing of optical compo-
nents. Surface topography is the one of the parameters that
has a significant impact on imaging quality. Many approaches
exist of precise measuring of the surface in the case of spherical
or aspherical lenses [1-11], and interferometrical measurements
are the most precise of them [12]. Many companies offer inter-
ferometers for very accurate measuring of optical surface topog-
raphies [7—11]. Deflection from a nominal shape of a surface
under test is caused by manufacturing errors and by deformation
caused by its own weight that can be present during the mea-
suring process. Moreover, there are some limits for the accuracy
that can be achieved during the surface shape measurement.

Many researchers presented works dealing with theory of
deformation of plates over the past years. The deflection in indi-
vidual points of supported planes was studied by Nadai [13,14].
Similarly, determination of plainness and bending of optical
flats were presented by Emerson [15]. Elastic deflections of
a thick circular mirror horizontally placed on a ring support
was studied by Selke [16]. A paper on point supports of a tele-
scope mirror and its deflections was shown by Nelson et al.
[17]. A study of the symmetrical bending of an elastic circular
plate supported at numerous internal points was published
by Nong and Bao-lian [18]. Deflections of a thin or thick
annular mirror and application to active mirror support opti-
mization were studied by Arnold [19]. Mik$ and Novék [20]
presented in detail the effect of self-deflection of a plane-
parallel plate caused by its own weight on interferometrical
measurements.

1559-128X/17/369984-08 Journal © 2017 Optical Society of America

The main goal of this paper is to present an analysis of a
deformation of a spherical lens positioned horizontally together
with several approaches of a numerical approximate solution of
derived governing equations. Vertically positioned lenses are
not investigated in this paper as the influence of self-deflection
is not practically measurable in this case for typical lenses.
Moreover, in practical industrial applications there are almost
no situations of vertical positioning because of complications
with fastening of lenses that could lead to unwanted tensions
and deformations.

First, fundamental equations for the calculation of the
deformation are presented. Afterward, different numerical
approximate solutions are compared. The importance of the
presented topic for very accurate measurements is shown in
an example. To the best of the authors’ knowledge, such a study
for a spherical lens has not been published yet. Therefore, the
reader can find the solution and a useful tool for practical mod-
eling of the aforementioned issue in this paper.

2. GOVERNING EQUATIONS FOR A
CALCULATION OF DEFORMATION OF A
SPHERICAL LENS CAUSED BY ITS OWN
WEIGHT

A lens can be considered as a circular plate of variable thickness
from the point of view of a theory of elasticity. And a deflection
caused by a lens’s own weight will be much smaller than its own
thickness.

First, consider a lens to be supported at the edge. As is
known from the theory of elasticity, a deflection w in a vertical
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direction, if one supposes a symmetrical loading, can be de-
scribed by the equations [21-24]

_ dw . d_(p ®
0=-2 M—D(’)[dﬁ”,]’ (1)

d*¢ {1 141)(7)]4_40

dr? r D(r) dr |dr
v dD(r) 1l¢ _ Q(r)
{D(r) dr r} r D(r)’ @
d3(r
DO =y a0 = dope (O

where w = w(r) is a vertical deflection of the plate (lens), 7 is a
radial distance from the center, v is the Poisson number, £ is
the Young modulus of elasticity, p is a volume density, g is the
gravitational acceleration, d(7) is a plate’s thickness in the po-
sition 7 from its center, ¢ = @(7) is a slope of a tangent to the
centerline, M = M(r) is a radial inner moment on a length
unit, D(r) is a bending stiffness, g(r) is a flat load, and
Q(r) is a pushing force per a unit distance. Note that the afore-
mentioned formulas are valid only for thin circular plates where
a ratio of its thickness and diameter is less than or equal to 1/8.
This condition covers usual optical components that come for
testing in output control processes during construction of
optical systems.

Suppose now that the lens is spherical (it has both surfaces
spherical), and therefore its thickness can be described as

d(r) =d,- R, <1 -4/1- (r/R1)2>
+ R, (1 -4/ 1- (”/Rz)z):

~dy - ayr? - agrt - agr®, 4

where

1(1 1) 1(1 1) 1(1 1)
aH=—\—-—-=1 ag=—\—=-=1 ag=—\|\—=-—=<)>
2\R, R, 8\R R 16\R, R

where R, a R, are radii of the curvature of the lens and 4 is its
axial thickness. Using Eqs. (3) and (4) one gets

1 dD(r) _ 3 [ 1 1 ]
D(r) dr  d() [Ry\/1-(r/R)> R\/1-(r/R))?

_ 6(ayr + 2447 + 3agr)
d(r)

With the use of Eq. (5) and appropriate boundary condi-
tions one can numerically solve Eq. (2). Boundary conditions
characterize a way of supporting a lens. For example, in the case

of support at the edge (as is shown in Fig. 1) boundary con-
ditions have the form

w(r)],=y = 0,

where 2 denotes the radius of the lens, and the pushing force
Q(7) can be calculated as

®)

M(7)|,=s =0, (6)
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R,

R,

J=2a

Fig. 1. Scheme of an edge support of a spherical lens.

Q0 =1 / " )rdr = pgll () - 1(0)]
rJo
ng(dor/2—4273/4—41475/6—416;*7/8), (7)

where

2
I(r) = /d(r)rdr = 5(510 -R, +R)

B Rl 1 —3(7’/R1)2 (R% _ 72)
+ RZ— Vl_?)(r/RZ)z (R% _ },2))
1o =" )

In the case of an inner support of the lens on a chosen radius
R, (see Fig. 2), there will be a discontinuity at the point 7 = 7,
and one has to find a solution in two cases as a function w; (r)
in interval » €[0,7,] and as a function w,(r) in interval
r € [r,, a]. The boundary conditions then become
wl(r)|r:r5 = w2(7)|7:rs =0, M2(7)|r:a =0. (9)
Further, conditions of continuity have to be prescribed at
the point » = r; they hold
@1 (7')|;':rJ =@ (7’) |r:r,’ M|r:r5 = M|r:rj' (1 0)
The pushing force Q(r) will be the same for the interval » €
[0, 7,] as in the case of the edge-supported lens. At the point
r = ry, there will be a change as a result of reaction of the sup-
port, and therefore the following formulas become valid:

@0 =1 [ g0t =*110) - 10}
7 Jo r
@0 == [ aordr =@ - 10} 1)

A difference in forces Q,(7,) and Q,(7,) is equal to the sup-
port reaction.

In the following part of this paper, a numerical solution of
the problem described by Eq. (2) will be presented.
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Fig. 2. Scheme of an inner support of a spherical lens.

3. NUMERICAL SOLUTION

This part is going to study several solutions of a calculation of
the lens deformation. First, a power series solution is shown,
presenting a universal method with transforming the problem
to a nonlinear optimization issue. It is followed by the Runge—
Kutta method and the finite differences method.

A. Power Series Solution Using Optimization
Algorithms

Suppose that a lens is supported at its edge. If a deflection is
prescribed as a power series of order 21V,

N
w=) by (12)
=0

where b,; are coefficients of the supposed power series and 7 is
the radius. Then it holds

dw N . 2i-1
40 = _Z = - 2(21)52,‘7 5 (13)
i=0
and therefore
do LN a
- =- > @i)(2i - 1y,
r =0
dz(p N )
—3=- D ()i = 1)(2i = 1)y, (14)
i=0

Boundary conditions of Eq. (9) then have the following

form:

N
wr)|mg = 0= bya®, (15)
=0

M(r)|,=, =0

N N
= D(a) |- > (20)(2i - Dby, -0y " (20)bya® V|

i=0 =0
(16)

It is obvious that the following condition has to be valid to

fulfill Eq. (16):
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N
D 202 - 1+ )by = 0. (17)
i=0

An approximate numerical solution of a problem defined by
Eq. (2) can be found with Egs. (5)—(8), e.g., within an opti-
mization algorithm [25,26].

Suppose now an inner support of the lens. Let a deflection
w,(r) be an even series of order 2NV| (considering function
w; (r) symmetrical about axis x = 0), and let a deflection w,(7)
be a general power series of order NV, (e.g., function w, () cannot
be approximated with even powers of 7 only). Then,

N, N,
w, = E bzl‘rZZ, Wy = E Cl‘rl, (18)
i=0 i=0

where 4,; and ¢; are coefficients of the supposed power series and
7 is the radius. Therefore,

dw o
B - N 201
Pr=-=- ;:0 (2) by,
_ ﬂ'wz _ = . i-1
=gy =2 ™
and similarly
do &
1 _ . L 2(-1)
e ;:0:(21)(22 1)y, 26D,
do i
2 (o i2
2= N i - Ve, 2
dr =0 e “
d’¢, S . 2i-3
2= _ZO:(@)(;- 1)(2i - 1)by;77,
2 N,
ddgz — Zizo i~ 1)(i - ), (21)

Boundary conditions for the aforementioned situation will
have the form

N, N,
w (r)|r:rs =0= bZirSZi = 7’1}2(7‘)|r:rj = Zfﬂﬁi (22)
i=0 i=0

N,
M(©)|,—, = 0 = -D(a) Z ii-14+v)ed?  (23)

i=0
and conditions of continuity
N, N,
01D ey =02 ,= ==Y Qi byyr 21 == et
i=0 =0
(24)
Ml (r)lrzrj = M2(r)|r=rj
N, ‘
=-D(r) Y (20)2i =1 + )byl
i=0
N,
=-D(r) Y i(i -1+ v)e;ri2. (25)
i=0
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Optimization algorithms [25,26] are a very powerful tool for
solving many problems. The main goal of those methods is to
minimize a user-defined function of variable unknowns (find
function minimum). In the presented case of the solution of
differential Eq. (2) the coefficients of the power series of
Eq. (12) or Eq. (18) become the unknowns. A goal function
to be minimized will be shown below.

Substituting Eqs. (12)—(14) into Eq. (2), one gets

N
> Ein)by = C(), (26)
i=0

where
E(r) = ei(r) + A(r)e;(r) + B(r)a;(r),
e;(r) = -(4i)(i - 1)(2i - 1)7*3,
e;(r) = =(2i)(2i - 1)r2 D),
a;(r) = -(2i)r¥1,

40 = 1+ 570
_1[ v dD() 1 Q)
B(’)_?[D(r) dr ’?}’ €0 =50y

If coefficients &,; in Eq. (26) are converging to a correct
solution, then the formula

N
Z Ei(7,,) by
i=0

is converging to zero for given point 7,,. Similarly, for boundary
conditions Egs. (15) and (16) one can write

$1(r,) = - C(ry) (27)

N N
$2=) bud”s  h3=) Q2)Qi-1+1)bya . (28)
i=0 i=0

The goal function ¢ for M + 1 points 7,,(m = 0, ..., M) in
the interval [0, 2](rg = 0, 73y = a) defined in a least-squares
sense can be formulated as

M
¢ = [Z W3 (r,)
m=0

where W, W,, and W3 are weight coefficients. One can
choose the goal function in a sense of a sum of absolute values,
and it holds as follows:

M
¢ = [Z Wildhi ()|
m=0

If the algorithm finds such coefficients 4,;, which will min-
imize the goal function of Eq. (29) or Eq. (30), then such co-
efficients define the approximate solution of Eq. (2) with the
boundary conditions Eq. (9).

For the lens with the inner support, the goal function can be
defined in a similar approach,

+ Wags + Wigs,  (29)

+ Wslda| + Ws|ohs]. (30)

M, M 8
P=>_ Widi(r)+ Y. Wadd(r)+> Wit (31)
m=0 m=M+1 j=3

where m = M denotes the position of the support in the in-
terval [0, 4], W, ..., Wy are weights, and

N
_ 5 Q)
D) = | D Eraba| =50
N
_ 2 QZ(rm)
D) = | D Filrades| =

Fi(r,) = pi(r,,) + A(r,)h; + B(r,)q,
2i(r) = =i(i = 1) (i = )7,

hi(ry) = -i(i = 1)r"2, q,(r,y) = —ir'™,

Ny N,

¢s = Z by, ¢y = Zfﬂﬁ;
i=0 i=0
N,

bs =Y ili-1+v)ca?
=0
N, N,

s = Z(zl‘)bzﬂ’gﬂ - Zl’fﬂ’fﬁ
i=0 =0
N, _

by = Q2D)Q2i-1+0)byri",
i=0
N,

by = ili-1+v)eri 32)
i=0

The goal function as a sum of absolute values can be con-
structed similarly, as in Eq. (30).

The aforementioned formulas present an approximate solution
for function ¢. Deflection w then can be easily calculated with, for
example, numerical integration [27,28], with respect to Eq. (1),

w(r) = - / "pOdE+ o (33)

where ¢ denotes an integration constant, which can be calculated
from boundary conditions.

B. Calculation of Deflection with Runge-Kutta Method
One can modify Eq. (2) as follows:

dzigu QW) ~ l+ 1 dD(r) d£
arr D(r) r D(r) dr |dr
v dD(r) 1]¢
B [D(r) dr ‘?] 7 (34)

Denoting Eq. (34) as ¢"” = f(r, ¢, ¢"), one can find an
approximate solution for the function ¢ with the Runge—
Kutta Method of the fourth order [28]. Recursion formulas
then hold

h
@it =¢n+h§0;1+8(k1 +ky+k3),
1
@i :q);‘i‘g(h +2ky +2k5 + ky),

h h k
kl = hf(r"’ qﬂn,gO,;), kz = bf <r” +§, Pn +§¢;’1)¢; +_1>;

2
bbb,k
ka—/Jf<’n+5)€0n+5(ﬂn+zk1;%+ 2>)
h
b=t (bl S b ), (@)
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where 4 is a calculation step. The resulting solution has to sat-
isfy the boundary conditions of Eq. (9). It is obvious that one
should make an initial guess of starting values in a way to re-
present the form of expected shape as close a possible.

To find a solution for the internally supported lens at the ra-
dius 7, the aforementioned Eq. (35) can be used without any
changes assuming Egs. (1)—(5) and (7)—(8) for interval [0, 7],
and Egs. (1)—(5) and the second formula of Eq. (11) for interval
[, a] with the appropriate solution of continuity in the point 7,.

C. Calculation of Deflection with Finite Differences
Method

The finite differences method [27] is based on expressing der-
ivations of a given function in a given point as a linear combi-
nation of function values in surrounding points. In our case,
derivations of the function ¢ can be expressed as

d_(ﬂ L Pit1 —Pin

dr~  2h
d*¢ @i -20;4 @i
P (30)

where @; is the value of the function to be found in given point
r; (i =0, ..., N, therefore interval [0, 4] is divided into V + 1
points), ¢, is the function value in the point 7,4, (see Fig. 3),
and h = r; -7,y = r;y1 - r; is the distance between calcula-
tion points.

Substituting Eq. (36) in Eq. (2) one gets the governing
equation for a solution of the aforementioned problem with
the use of the finite differences method; it holds

Qi1 = 20; + Qi +A(r) Pit1 — Pin

Vi 2h
+ B(r)p;, = C(r)), i=123..,N, (37)
where
dD(r
Alr) = E + Dtr) 35 )]’
1l v dD(») 1
By = r {D(r) dr ;]’

Q(r)] (38)

co =[5
could be calculated with Egs. (5)—(7).

Considering an assumption of a symmetric problem the
boundary conditions of Eq. (9) can be extended with

virtual point

o(r)

0 i-1 i r1+l N N+l

Fig. 3. Method of finite differences.
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@()],=0 = o = 0. (39)

Therefore, the value of function ¢(r) in point » =0 is
known and does not have to be assumed as an unknown to
be calculated [note 7 # 0 in Eq. (37)]. Using Eq. (1) the mo-
ment the boundary condition of Eq. (9) has the following form:

M)y = Dlry) [P 1 20 | = 0. (40)
r
Besides the value of @), is not an unknown value in the
considered interval, this value states in the last formula, where
i = N, and therefore it is necessary to calculate it from the
boundary condition (40) as

2hv
PN+l = -——@PN T Pn_1 (41)
TN

and, consequently, it has to be substituted into the last formula.

For an illustration let one formulate the system of Eq. (37)
using matrix notation. The values of function ¢ in discrete
points of the interval (0, 4] are calculated from the system of
equations

Af=C (42)

where A € RV is a tridiagonal matrix of the system whose
elements 6, (i = 1,2, ..., N) on the main diagonal can be ex-
pressed as follows:

2
Oilien = "2 + B(r:),
2 v v
Oili=n = _ﬁ__h_A(rN)_'FB(VN)- (43)
Y YN
The upper collateral diagonal elements a;(i = 1,2, ...,
N - 1) are then given with formula
1 A(r)
==+ —, 44
“=pT (44)
and the lower collateral diagonal elements f;(i = 2, ...V) as
1 A(ry) 2
Bilien = P— 2 Bili=n = ﬁ (45)

Next, f € RV*! in Eq. (42) denotes a column matrix of val-
ues @;(i =1,...,N) to be found, and C € RV*! is a matrix
with elements C(r;))(i = 1, ..., N).

Similarly to the previous approaches, the aforementioned
formulas present an approximate solution for function ¢.
Deflection w then can be easily calculated with, for example,
numerical integration [27,28], with respect to Eq. (1).

4. EXAMPLE

In this section, first, all the aforementioned methods are com-
pared within each other and to the finite elements method used
in a commercially available software ANSYS [29], too.
Afterward, a dependency of the deflection on material param-
eters of the lens is presented in the second subsection.

A. Comparison of Presented Numerical Solutions

To compare the presented numerical approaches, suppose
a lens with the following parameters: R} = 600 mm, R, =
-600 mm, dy =5 mm, =50 mm, £=282GPa, p=
2510 kg/m?, v = 0.206. Results of the approximate solution
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R1=600mm R2=-800mm d0=5mm D =100 mm
E=82GPa p=2510 kg/m® v =0.206

(@)

0.02 -

0.04

0.06

0.08

w(r) [A]

0.1}

012

0.14

0 5 10 15 20 25 30 35 40 45 50
Woias™ 0.176 A r

ma

R1=600mm R2=-800mm d0=5mm D =100 mm
(b) E=82GPa p=2510 kg/m® »=10.206

3 r =33.9mm
x 10 s

w(r) [A]

20
0 5 10 15 20 25 30 35 40 45 50

w x=0.016/\ r

ma

Fig. 4. Example of calculation of lens deflection.

presented in the previous part of the paper are shown in Fig. 4.
Figure 4(a) shows the result for a lens supported at the edge,
and Fig. 4(b) shows the result for a support in radial distance
7, = 33.9 mm. Please note that the scale of the second figure is
in 107. It demonstrates a large difference between the deflec-
tion for edge and inner support. The figure shows only one
result for all presented methods, because differences between
chosen numerical approaches are negligible. Besides the pre-
sented method the finite elements method was used with
the software ANSYS giving the same results. Note that the in-
terval 4 of the division in the radial direction was chosen,
h = 0.05 mm.

B. Dependency of Deflections on a Material

of a Lens

Let one study the effect of a material of a lens on deflections.
First, suppose a positive (biconvex) lens with the following
geometrical parameters: R} = 300 mm, R, = -300 mm,
dy =10 mm, 2 = 50 mm. Material parameters chosen for
a calculation are shown in Table 1. In the table, £ denotes
the Young modulus, p is the volume density, and v is the
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Table 1. Material Parameters of a Lens

Glass Type E [GPa] plg/cm?] v
SF57 54 5.51 0.248
N-BK7 82 2.51 0.206
N-LAF21 124 4.28 0.295
D =100 mm, R1 =300 mm, R2 =-300 mm
(a) d =10 mm (biconvex lens), A = 633 nm, W™ AT

0 T T T T

2 0.06 i
=
T 008 i
0.1 i
= N-BK7
012 ——N-LAF21 | |
SF57
0.14 : : : :
0 10 20 30 40 50

r [mm]

D =100 mm, R1 =300 mm, R2 =-300 mm, r= 33.9mm
(b) 103 =10 mm (biconvex lens), A =633 nm, w__ = \/78
_4 X ; max

T T T

2k 4

w(r)/A [-]

6l ]
sl ]
10 .
—— N-BK7
12 + = N-LAF21 | ]
SF57
14 ‘ ‘ . .
0 10 20 30 40 50

r [mm]

Fig. 5. (a) Comparison of deflections of a positive (biconvex) lens
for different materials and support at the edge (related to the wave-
length 4 = 633 nm), and (b) comparison of deflections of a positive
(biconvex) inner-supported lens for different materials (related to the
wavelength 4 = 633 nm). Note that the curves for materials N-BK7
and N-LAF21 coincide in this example despite the fact that materials
are different.

Poisson ratio. The deflections of the lens for support at the edge
are shown in Fig. 5(a), and results for the inner support at the
radius 7, = 33.9 mm = 0.6784 are shown in Fig. 5(b). Note
that the curves for materials N-BK7 and N-LAF21 coincide
in this example despite the fact that materials are different. As
is obvious, the maximal deflection for the edge support is
Wax = A/7 (where 2 = 633 nm) for the material SF57, and

the maximal deflection for the inner support is wy,,, = 4/78.
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D =100 mm, R1 =-300 mm, R2 =300 mm
(a) d =10 mm (biconcave lens), A =633 nm, w___ = A2

0.005

0.01

0.015

0.025 |- b

w(r)/A [-]

0.035

T
!

0.04 |- —— NBK7

== N-LAF21
SF57

T

0.045

0.05 . . . .
0 10 20 30 40 50

r [mm]
D =100 mm, R1 =-300 mm, R2 =300 mm, r= 33.9mm

1073 d =10 mm (biconcave lens), A = 633 nm, W™ AI319

w(r)/A[-]

25 1
—— N-BK7
3 [=—N-LAF21 .
SF57

35 L L 1 L
0 10 20 30 40 50

r [mm]

Fig. 6. (a) Comparison of deflections of a negative (biconcave) lens
for different materials and support at the edge (related to the wave-
length 4 = 633 nm), and (b) comparison of deflections of a negative
(biconcave) inner-supported lens for different materials (related to the
wavelength 4 = 633 nm).

One can see that the self-deflection could result in non-negligible
errors in combination with inappropriate support of the lens
under test.

Second, a similar analysis is done for a negative (biconcave)
lens with the following geometrical parameters: R =
-300 mm, R, = 300 mm, 4, = 10 mm, 2 = 50 mm. The
lens is again made by three different materials, which are the
same as in the previous example (see Table 1). Results for
the edge support of the lens are shown in Fig. 6(a) and for
the inner support in Fig. 6(b).

As is obvious from the presented results of numerical exam-
ples, the self-deflection caused by the lens’s weight cannot be
neglected for the case of measurements with high accuracy,
e.g., interferometry. Especially, with the use of inappropriate
material the deflection can enormously affect measured results.

5. CONCLUSION

This paper presented an analysis of a numerical solution of a
differential equation characterizing a deflection of a spherical
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lens caused by its own weight, based on a chosen support
and lens material. Several calculation methods were shown
and formulas for an easy implementation were presented.

Deflection of lenses depends on geometrical and material
parameters of the tested component. One of the examples pre-
sented in this paper shows a case study for the positive lens with
diameter of 100 mm, edge thickness of 10 mm, and radii of
curvatures equal to 300 mm. The deflection for this case, con-
sidering a material SF57, was approximately A/7 for the edge
support. Such a value is easily measurable during interferomet-
rical testing. Therefore, if one does not include such a phe-
nomenon into the correction of measurement results, it can
lead to a wrong evaluation of optical quality of the final prod-
uct. In the presented case, if a production tolerance would be
A/10, for example, the self-deflection effect could lead to an
elimination of a component that should remain in the produc-
tion process.

The reader can use the derived formulas and calculation pro-
cedures presented in this paper for solving specific problems in
practice that can vary for different geometries of tested compo-
nents. Especially during measurements with high accuracy,
e.g., interferometrical testing of large lenses, it is very important
to consider self-deflection of tested parts.

Generally, there are other effects that affect the testing pro-
cedure, e.g., variation in temperature, which can affect atmos-
pheric condition as well as elongation of component itself.
Usually, conditions for testing of a high accuracy are of such
quality that these phenomena are eliminated (temperature sta-
bilization, etc.). Nevertheless, the self-deflection cannot be
practically removed; therefore, one has to use inner support
for the tested component or numerically correct final results.

Funding. Czech Technical University in Prague (CTU).
(SGS17/004/OHK1/1T/11).
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This paper proposes a simple noninvasive method that makes it possible to calculate the inner design parameters
of the cemented doublet using measurements of its chosen paraxial optical and geometrical parameters without
any damage to the system under testing (e.g., dismantling). Derived formulas are based on the knowledge of
measured values of the lenses thicknesses, the radii of curvatures of the first and the last doublet’s surfaces,

the paraxial focal length, and positions of the object and the image focal point. Practical usefulness of the

proposed method is demonstrated on the real measurement of a known doublet.
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1. INTRODUCTION

In practical industrial applications the issue of determining the
internal parameters of the optical system (e.g., photographic
objective, etc.) without any damage to its components is in fo-
cus very often. The optical systems are usually composed by
individual simple lenses or cemented doublets. A determination
of parameters of simple lenses is very well known and it is an
easily solvable problem, because one is able to measure the radii
of curvatures of the lens’ surfaces and the central thickness.
Afterwards, the index of refraction can be calculated from
the known formula for the optical power of the lens. A much
more complicated issue comes to role with testing the cemented
doublet if one wants to determine its internal parameters with-
out any damage to the component, which is advantageous for
practical purposes.

A cemented doublet belongs to frequently used optical sys-
tems in practice [1-6]. The doublet is composed of two spheri-
cal lenses, where the second radius of the first lens is identical to
the first radius of the second lens, and both lenses are cemented
together. In practice, it is possible to measure external param-
eters and aberrations relatively easily by various measurement
techniques [7—14]. However, the internal parameters cannot be
measured directly.

The authors’ previous work [15] describes the possibility of
determination of internal parameters of a cemented doublet,
which is based on the measurement of paraxial parameters
and wave aberration for a point on the optical axis of the dou-
blet (spherical aberration). With regard to the fact that it is not
possible to obtain a simple analytical solution for a determina-
tion of an unknown doublet’s internal parameters, the optimi-
zation technique has to be used [16,17].

1559-128X/16/205456-03 Journal © 2016 Optical Society of America

The aim of this work is to propose a novel and simple non-
invasive method that makes it possible to obtain the internal
design parameters of the cemented doublet using measure-
ments of some paraxial optical and geometrical parameters of
the doublet. The simplification of the previous procedure [15]
is based on the measurement of internal thicknesses of the
individual lenses, which can be by available commercial mea-
surement devices, e.g., OptiCentric by the company Trioptics
[13]. Such an approach provides a possibility to derive simple
and explicit analytical formulas for the calculation of the re-
maining internal parameters only with the knowledge of the
focal length, position of the object focal point, and position
of the image focal point. Therefore, it is not needed to measure
the wave aberration and calculate the internal parameters with
complex optimization techniques, as it was necessary in the
authors’ previous paper [15].

2. DETERMINATION OF PARAMETERS OF
CEMENTED DOUBLET

A scheme of the cemented doublet is shown in Fig. 1. Such an
optical system has seven design parameters, namely three
radii of curvature (7, 75, 73), two values of central thickness
(d,,d>), and two values of refractive index (7, 7,) of individ-
ual lenses, from which the doublet is composed by. In Fig. 1, F
and F' denote object and image focal point of the doublet,
ny and 73 are refractive indices of the object and image media,
V| and V, are vertices of the doublet laying on the optical axis,
sp and s, are distances of the object and the image focal points
from the vertices.
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d, d,

Fig. 1. Optical scheme of cemented doublet.

Using equations for paraxial ray tracing [1-6] one can derive
the following formulas for optical power ¢, position of the
object focal point s, and position of the image focal point

s of the doublet. It holds:
»=¢1+ ¢+ @3- D192 + 9193)
- Dy(¢1903 + 9203) + D1D2p1 0293, (1)

sp = noy(D193 + D13 + D3 - D1 Drgrps - 1) [, (2)

spr = =n3(D19y + Dy + Dygy - D Drgpyp; - 1)/ 9,
(3)

_ myn3(Dy + Dy - Dy Dy@y) = s50p
@(sp - s)

where s is the distance of the object from the first surface of the

doublet, s is the distance of the image from the last surface of

the doublet. Optical powers @1, @,, @3 of individual refractive

surfaces are given by the following formulas:

’
s

>

o1 = (m - ng) /71, 0y = (ny—-m)/ry

@3 = (n3 - m)/r3
and it holds for the reduced values of thickness D; and D,:
Dy =d,/m, Dy = dy/n,.

As one can see from Fig. 1, it is possible to measure relatively
easily the radii of curvature 7, and 73, overall central thickness
of the doublet = d + d,, positions of the object and image
focal points sz and sy, and focal length /" = n3/¢ between
the second principal plane and the image focal point 7' of the
doublet using the methods given, for example, in [7-15]. Next,
it is possible to measure thicknesses & and d, of the individual
lenses using available commercial devices, e.g., Trioptics’
OptiCentric [13].

Suppose now that the doublet is in the air, i.e., it holds for
the object and image refractive indices 7y = 1, n; = 1. Such a
situation is the most common in practical situations. As was
already stated in the introduction, the aim of this work is to
determine the internal parameters 7;, 7,, and 7, of the ce-
mented doublet if one is able to measure radius 7, of its first
surface, radius 73 of its last surface, thickness # of the first lens
and d, of the second lens, the focal length /" = 1/¢ (where ¢
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is the optical power of the doublet when the surrounding media
is air), position sz of the object focal point, and position s, of
the image focal point. The remaining parameters (7, 7,, and
75) then can be calculated as follows.

Solution of the system of Eqgs. (1)—(3) gives the following
formula for the index of refraction 7, of the second lens:

_ dy+@*dy (spsp +rir3 = 7358 = 118))
dy+ry-@rs(dy-r) + @*sp (dysp +rysp-dyr) —rirs)
(4)

Afterwards, the index of refraction 7, of the first lens can be
calculated as follows:

ny

_ pd nyrs(ry - sp) (5)
ri(dyny - dy + nyrs3) - (/’”2”35F(dl -71)

7y

Finally, one can find the value of the second radius 7, of the
doublet with one of the following formulas:

d [M + 1} (1 = my)

mrs

EE 4on) | din D) 4 4] (©)
sy + 20 4 1]
173 273
di(n-1
dy {% - 1} (m - my)
Ea ! dy(m-1) dy(m-1) 1 ' (7)
| PSp + nr + mry

In summary, one should follow the steps below for the cal-
culation of inner parameters of the doublet:

1. The index of refraction 7, of the second lens is calcu-
lated with Eq. (4).

2. Such a value is used in Eq. (5) and the index of refrac-
tion 7, of the first lens can be calculated.

3. Using the values of indices of refraction in Eq. (6) or
Eq. (7) gives the value of radius 7, of the doublet.

The issue of inner parameters determination is therefore
solved.

3. EXAMPLE

In this example the authors will present the proposed novel
method of the calculation of parameters of the doublet in the
case when the refractive indices 7;, 7, and radius 7, of the dou-
blet are not known. As a comparison with the authors’ previous
method [15], the same cemented doublet will be used.

Consider a cemented doublet having the following nominal
parameters: 7} = 57.008 mm, 7, = -40.738 mm, 73 =
-173.786 mm, 4, =8 mm, d, =4 mm, n; = 1.51874
(Schott N-BK7), 7, = 1.62409 (Schott F2) for the wavelength
A = 546 nm. Further, one obtains /" = 100.029 mm, sz =
-98.603 mm, sy, = 93.599 mm.

Measurements of individual parameters of the doublets were
carried out in laboratories of Meopta-optika company [18].
Measurements were performed using several measuring instru-
ments in order to obtain a higher reliability. Measurements
of parameters f”, sz, and si, were carried out using OTS
200 from OEG-Messtechnik, OptiCentric MOT 2R from
Trioptics, and the interferometer OWI 150 XT from
Optotech. Measurements of the radii of curvatures were
performed using the interferometer OWI 150 XT from
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Table 1. Comparison of Nominal and Calculated Values
of Inner Parameters of Cemented Doublet

n ) r,[mm]
Nominal Values 1.51874 1.62409 -40.738
Calculated Values 1.51856 1.62373 -40.743

Optotech and the interferometer Zygo Verifire ATZ from
ZYGO. The following values for individual parameters were
obtained: ry,, = 57.036 mm, 73, = -174.068 mm, s, =
93.696 mm, sz, = -98.704 mm, f, = 100.128 mm,
di,, = 8.001 mm, and ,,, = 3.998 mm. The accuracy of
the measured parameters was as follows. The accuracy of the
measurements of parameters f', sg, and s was £0.03%,
the accuracy of the measurement of the thickness (4, d,)
was £0.001 mm with the use of the device Trioptics
OptiCentric, and the accuracy of the radii of curvature
measurement was £0.003 mm. Using the measured values
and Egs. (4)—(7) one can obtain the unknown parame-
ters (71, 13, 75).

The nominal and resulting calculated values of the internal
doublet parameters are given in Table 1. As one can see, the
differences of the calculated parameters from the nominal
parameters are very small, and the proposed method is efficient
for the described problem of the determination of the inner
parameters of the doublet in practice.

4. CONCLUSION

The paper presented novel and simple explicit formulas for the
calculation of the inner parameters of a cemented doublet
(71, my, r5) based only on the knowledge of the first and back
radii of curvature (7, 73), central thickness (4, 4,), and the
doublet’s paraxial parameters, i.e., focal lengths ', position
of the object focal point s, and position of the image focal
point s%.,. It was shown with the example of a real doublet that
the proposed method is very efficient for the described issue of
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the determination of the inner doublet’s parameters and that
the method can find practical usage.
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The paper presents an experimentally simple, accurate, and inexpensive method for measuring the focal length
and distortion of optical systems using a diffraction grating, where both of the properties are determined from the
transversal distances of diffraction maximums in one measurement. The proposed approach does not require any
special components or any expensive equipment. A detailed theoretical analysis is performed, and the estimation
of uncertainties is studied as well. Afterward, the method is demonstrated with a computer simulation and ex-
perimental measurement, and compared with commercially available measurement devices. It is shown that the

method provides sufficiently accurate results for many practical applications; therefore, it is appropriate for

laboratory testing and for industrial applications.
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1. INTRODUCTION

Focal length [1-3] is a fundamental characteristic of optical sys-
tems, and it is very important to be able to measure its value for
a given optical system. The current state of the art is described
in many papers [4-31]. The methods differ in the complexity
of their experimental equipment and the achievable precision of
the measured focal length. The error in these measurements
ranges from a fraction of a percent to a few percent [4-31].

Classical methods of measuring the focal length using con-
jugate distance equations are given in [5—14]. Usage of two dif-
fraction gratings for the measurement of the focal length was
presented in [15-22]. Such double gratings behind the lens
under test generate a moiré effect, and the focal length is cal-
culated from the evaluation of the moiré pattern. The methods’
accuracy is in the range from 0.15% to 0.05% for long focal
lengths [22]. The method proposed in this paper requires only
one grating, and the process of evaluation is much simpler, as
will be presented in the following parts.

The imaging quality of the optical system depends on the
residual aberrations of the system [1-3]. The fidelity of the geo-
metrical parameters of the image created by the optical system
is characterized by an optical distortion [32]. For a chosen ob-
ject point the image is not a point; it is formed by an energy
distribution—a point spread function [1,3]. Afterward, the dis-
tortion is defined as a distance from the maximum of the point
spread function to a paraxial image of the point [32]. The dis-
tortion of the optical system can be measured by many methods

[6-11], which are characterized by varying degrees of accuracy
and experimental demands.

In the usual practice (e.g., in photography or cinematogra-
phy), the focal length does not have to be known with a high
accuracy. Therefore, it is useful to use some simple measure-
ment method for its determination.

The aim of this work is to present a method for a measure-
ment of the focal length and the distortion of the optical system
with the use of a diffraction grating. To the authors’ best
knowledge, this simple and accurate method has not been pub-
lished yet; therefore, it can expand the range of existing meth-
ods, and it can find utlization in many laboratory and
industrial applications.

2. METHOD DESCRIPTION

In Fig. 1 the principal scheme of the measurement method is
shown. A point source (A) is placed at the focal plane of a col-
limating lens (CL). The collimated beam is then directed to-
ward a linear transmissive amplitude grating (G) where
diffraction occurs. Such a phenomenon is very well known,
and it can be described with the following formula [1]:

m=0,%+1,+2,... (1)

In Eq. (1) 2 denotes the grating’s period,  is the diffraction
order, @, is the diffraction angle of the mth diffraction order
(the angle between the diffracted beam and the normal of the
grating), 4 is the wavelength of the used monochromatic light,

sin a,, = mA/a = mAN,

1559-128X/15/3410200-07$15/0$15.00 © 2015 Optical Society of America
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and /V denotes the spatial frequency of the grating—that is, the
number of grooves per unit of length. For simplicity and read-
ability, only the zero (0), the plus first (+1), and the minus first
(-1) diffraction orders are shown in Fig. 1.

The measured optical system is placed behind the diffraction
grating, and the outgoing diffracted beams are focused in points
AO AGED and ACD . As was already mentioned in Section 1,
the image of the point A will not be a point, but the energy
distribution—the point spread function [1,3]—will be formed.
In the sense of geometrical optics one can characterize the
energy distribution with a circle of confusion—a spot
diagram [2,32].

Let one suppose that the parallel beam of rays impinges the
optical system under an angle of incidence a. It is known from
the theory of geometrical optics [1-3] that for the optical sys-
tem without any aberration such a beam will be focused on a
point which is at a distance y from the optical axis, and the
following formula holds for such a distance and the optical sys-
tem in air [1-3]:

y=-f"tan a. (2

In Eq. (2) f is the focal length of the optical system. If one
measures the distance y and the angle a is known, the focal
length " of the optical system can be easily calculated with
the use of Eq. (2).

In a general situation, the beam does not have to impinge on
the diffraction grating perpendicularly. Suppose that the parallel
beam is impinging on the diffraction grating G under an angle
p measured from the grating’s normal. Consequently, one
gets [1]

a(sin a,, - sin ff) = ml, m=0,+1,4+2,... (3)

Afterward, a diffraction angle a,, of the mth diffraction order
can be calculated from Eq. (3) as follows:

sin a,, = sin § + ml/a. (4)
Let one denotes an angle between the diffracted beam and the z

axis as @,,,. With the use of Eq. (4) one gets the following
formula for such an angle; it holds

Q,,, = arcsin(sin f + ml/a) - p. (5)
¥
ACD
CL G

b Q)] -1)
©) ¥
A O (Ga)) Optical A©

I8)) system
© +1)
v 1) e

AGD

Collimator

Fig. 1. DPrincipal scheme of measurement device (A, point source;
CL, collimating lens; G, diffraction grating; Al image of mth dif-
fraction order). The focal length and distortion of an optical system
can be calculated from transversal distances between diffraction
maximums and the zero-order maximum.
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The maximal angle of the grating’s rotation S, is given ac-
cording to Eq. (5) as follows:

pr = arcsin(1 - mi/a). (6)

Figure 2 shows the dependency between the angles a,,, and
for the diffraction grating with the spatial frequency
N = 200 lines/mm; the diffraction orders m =1, m = 2,
m = 3, and m = 4; and the wavelength A = 587 nm. It is ob-
vious that with the rotation of the diffraction grating by the
angle f around the x axis one can continuously change the an-
gle a,,, of the field of view of the optical system.

It is gradually arising from the aforementioned statements

that if one measures the distance y = y“’l) =AOAED (or
¥ =y('1) = AOACD) (see Fig. 1) for f=0 and m =1,
the focal length £ of the optical system can be calculated from
the following formula:

fr=o"anay, =5 NE -2 @)
It is obvious from Egs. (5) and (6) and Fig. 2 that the change in
the angle f# changes the distance y},m) of the energy centrum of
the point spread function of the optical system. Therefore, if
one measures the distances y};m) for different angles f of the

grating’s rotation, for example, for 7 = 1 and m = 2, both

the distortion and the focal length of the optical system can

be simply calculated. Let one denote yg;?) = -/ tan a,,, as

a “paraxial image distance” of the point A from the point
A©. Afterward, the distortion 8y of the optical system for
the given paraxial image distance can be calculated as follows:

&y =" -y ®)

The given issue of the measurement of the focal length and the
distortion of the optical system is therefore simply solved.
Note that the same effect can be reached without the rota-
tion of the diffraction grating by using several diffraction gra-
tings with different periods  (with different spatial frequency
N). The mechanical construction of such a measurement de-
vice with several gratings will be simpler; the angle of rotation
does not have to be measured at all. During the last decades
gratings with a variable frequency [33-38] and liquid-crystals-
on-silicon based spatial light modulators [39,40] have been

Diffraction by a grating
m =1 [blue], m = 2 [red], m = 3 [green], m = 4 [magenta], N = 200 lines/mm
60 T T T T T T

50

40+

30

o[

i ——

20F

101

0 é 1‘0 1‘5 2‘0 2‘5 3‘0

% = 587 [nm] B[]
Fig. 2. Dependency between the angle a,,, of a field of view of the
optical system and the rotation angle § of the diffraction grating for
N = 200 lines/mm, m = 1 (blue line), m = 2 (red line), m =3
(green line), and 7 = 4 (magenta line).
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developed. However, the quality and temporary stabilicy of
such commercially available devices or generated structures do
not fulfil the demands for the presented application. Another
disadvantage of the usage of such devices is the additional elec-
tronics for generation of variable structures. From this point of
view the classical diffraction gratings are still the best option
and the most suitable solution for practical applications.

For the elimination of the aberrations of the optical system
on the measured values, the F-number of the tested system
should be set to a high value, for example, F = 10.

The measurement of the focal length of the optical system
will proceed as follows:

1. The collimator with the diffraction grating without ro-
tation (ff = 0) is placed in front of the tested optical system,
and the collimator’s optical axis is aligned to be parallel with the
optical axis of the tested system.

2. The position of the first diffraction order (m = +1)
yED = AOAED 4+ <0 for £/ > 0) is measured, and
the focal length of the tested optical system is calculated with
Eq. (7); it holds f’(“) = —y(H)(az - 2312 /). Afterward, the
distance 1 = AQACD is measured, and the focal length for
the minus first diffraction order (m=-1) is calculated; it holds
F'EY =y (a2 - 22)1/2 /). The resulting focal length of
the optical system is then calculated as follows: [’ =

(f'(+) + f/(—))/z.
The focal length f' is therefore calculated. This result is

used for the calculation of the distortion of the optical system.
However, this value is not explicitly equal to the paraxial focal
length because the measured values 1) and y-V differ from
the paraxial ones by the distortion of the optical system.
Nevertheless, if the values y(“) and y('l) are smaller than
the quarter of the semidiameter of the field of view of the tested
optical system (it can be adjusted by the diffraction grating with
appropriate spatial frequency V), the effect of the distortion
can be practically neglected. Afterward, the measured focal
length can be considered as the paraxial focal length of the
tested optical system.

The measurement of the distortion of the optical system
proceeds as follows:

3. The positions of maximums of the higher diffraction
orders than m = 1 are measured with f = 0, that is, values

y(er) =AOAGM  35d y('m) = AOAC - Afrerward, the
value 7 = (y& — 5" /2 is calculated.
4. The value of tan a,,, = mA/[a> - (mA)*]'/? is calcu-

= -f" tan q,,,
where the focal length f” is known from paragraph 2.
5. The distortion belonging to such paraxial image height

gy s given with Eq. (8); it holds 8y = j*+) - y(t™.

lated with the “paraxial image height” y(()rﬂ")

The distortion for the paraxial image height y(();m) is there-
fore calculated for the diffraction grating perpendicular to the
optical axis (f# = 0). The distortion of different paraxial image
heights can be calculated with the following procedure (simi-
larly as in the previous paragraphs).

6. The diffraction grating is rotated by the angle f (or it is
changed with a different one with higher spatial frequency and

p =0); the angle a,, is calculated from the formula
a,,, = arcsin(sin f + mid/ ﬂ) ﬂ and the paraxial image
height from the formula )’o = -f" tan a,,.

7. The positions of the ﬁrst and the second diffraction or-

ders are measured, namely, y(im) AOAEM - Afterward, the
'(m) ()/(+m) (_m)) /2 is calculated.
8. The dlStOl‘thIl belonglng the parax1al image helght Yop

50m) _ - Yop (m)

value j

is afterward calculated as follows: 5)/ =7

The issue of the determination of the distortion of the op-
tical system is therefore solved.

3. MEASUREMENT ERRORS AND
UNCERTAINTY ANALYSIS

It was already stated above that one of the sources of error is the
uncertainty of determination of the paraxial focal length caused
by the optical system’s distortion. As is known, the distortion of
the optical system for small angles of the field of view is de-
scribed enough accurately (in the sense of geometrical optics)
by the theory of aberrations of the third order, and one can
express the distortion 8y, by the following approximate
formula [32]:
By = -5 Sudfgw’ +Spige). (@)
In Eq. (9) S;; is the coefficient of coma, Sy is the coefficient of
distortion, 2w' is the angle of the field of view in the image
space, and A}, is the maximal numerical aperture of the optical
system in the image space. It can be shown that the distortion of
almost every optical system is practically zero for small angles of
the field of view (until approx. 5°) [41—44]. Therefore, the
value of the paraxial focal length of the tested optical system
can be considered unaffected by the distortion.
In Fig. 3 an example of aberrations of the objective Tessar
(AKLIN USP 2,165,328 [42]) with the focal length
99.767 mm is shown for the half-angle of the field of view

Field 6.74 deg
0.1 mm ASTIGMATISH LONGITUDINAL CHROMATIC
Sx T+ (mm) SPHERICAL ABER. (nm)| FOGAL SHIFT (mn)

u_ i [
— | \

MONOCHROMATIC SYSTEM

Field 4.73 deg
Q

.1 mm
Y 2 03 1 1
20}
“E
'—L‘T P‘Ti ODnI|STCﬁTION (%)
s N
L]
AXIS
0.1 mm .01
E\ LATERAL COLOR (mm)
\ 1
\*&\
ﬁ\\ l\\
s "
- LNITS: mm
:ﬁg;Ni:ZdTU L 50.am Tessar AKLIN USP 2,165,328 23035'-”‘5
WAVELGTH: +:0,587 210,587 0,587 i RAY TRACE ANALYSIS S——

Fig. 3. Aberrations of objective Tessar /' = 100 mm for the half-
angle of the field of view w = 6.74° and for the wavelength
A =578 nm.
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w = 6.742° (in object space) and for the wavelength 578 nm.
Such an angle of the field of view corresponds to a diffraction
angle of the first diffraction order (m = 1) of a grating with
spatial frequency N = 200 lines/mm. The coefficients of
coma and distortion of the objective are S;; = 1.63,
Sy = -0.705. As is obvious from Fig. 3, the distortion is less
than 0.01% for the image height y = 11.794 mm
(w' = 7.385° A}, = 0.1). Therefore, the effect of the distor-
tion on the paraxial focal length is negligible. The calculation
was performed in the OSLO software [45].

Let us study the uncertainty of evaluated values of the mea-
surement now. Imperfections of the used diffraction grating, an
unstable source of light, misalignment of components of the
measurement setup, and the quality of the used sensor can af-
fect the results of the measurement procedure.

First, one can analyze the uncertainty in the image height,

u()/}m)), for a given image height, y},m). For the rotated diffrac-

tion grating about the angle # one can use Egs. (2) and (5),
that is, y;jm) =-f'tan a,,, where a,, = arcsin(sin f +
ml/a) - f. Suppose now that systematic errors of the measure-
ment are suppressed and random errors are very small in com-
parison to absolute values of the mutually independent parent
variables, that is, the effect of absolute errors can be compared
with the value of a total differential [46] of the functional value

of the image helght yﬂ ). Moreover, suppose that the errors have
an even probability distribution (one can use such an
assumption because the errors of the aforementioned values
can be positive or negative as well, and small errors are more
probable than the large ones). Without the loss of generality
such conditions can be accepted for the studied situation.
Therefore, the effect of uncertainties can be described with

the law of variance propagation [46—48], and the estimation
of the uncertainty u()/},m)) of the image height y;)‘m) is given with
the following formula:

u(”) = £/t @l () + (UP) + 20, (10)

where

U = L (U + W e
cos® a,,
+ (Uﬁm))Zuz(ﬂ)] 1/2)

U(m)zl— cosﬂ) U — i mA

cos a,, a* cos a,,

Uﬁm) = l, a,, = arcsin(sin f# + ml/a),

a cos a,,

u(f") is the uncertainty in the focal length, #(f) is the uncer-
tainty in the angle of the diffraction grating’s rotation, #(a) is
the uncertainty in the grating’s period, #(2) is the uncertainty in
the wavelength, and #(r) denotes the uncertainty of the mea-
sured image height, which has to be considered according the
accuracy of the used reading device (e.g., an objective micro-
scope, the resolution of digital sensor).

The estimation of the uncertainty of the focal length calcu-
lated with the use of paragraph 2 of the aforementioned mea-
surement procedure can be expressed with a similar approach.
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With the use of the law of variance propagation [46—48] and

after an elementary rearrangement, one gets

W) =+ OKPA0) + @K 0+ (f 1y
(1)

where K = a/[A(a® - 2%)'/?] and u(y) is calculated with
Eq. (10) for # = 0 and m = 1 (for the angle # = 0 the follow-
ing equality holds: u(y(H)) = (y( )

The estimation of uncertainty of the dlstortion of the optical
system can be derived with the use of Eq. (10), because the
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value of the paraxial image height is present in Eq. (8) for the
calculation of the distortion. Next, the uncertainty in determi-
nation of the position of the diffraction orders’ maximums will
affect the result. Applying the law of variance propagation
[46-48] gives the following formula for the uncertainty
u(5y;;m) ) of the distortion of the optical system; it holds

u@dy") = i‘/g W2(r) + 202 (7)) (12)
where #(7) denotes the uncertainty in determination of the po-
sition of diffraction orders’ maximums, and u(yé;;l)) is calculated
with Eq. (10) for u(r) = 0.

The last unknown information for the uncertainty analysis
is the expression of uncertainties #(x) of input variables x. The
manufacturers usually provide estimations of absolute errors
(A(x)), peak-to-valley values (PV (x)), or root-mean-square val-
ues (RMS(x)). If one assumes a normal probability distribution
of errors with 95% confidence int