
Analyzing Large Code Repositories

by

Petr Máj

A dissertation thesis submitted to
the Faculty of Information Technology, Czech Technical University in Prague,
in partial fulfilment of the requirements for the degree of Doctor.

Dissertation degree study programme: Informatics

Department of Theoretical Computer Science

Prague, January 2023

Supervisor:
doc. Ing. Jan Janoušek Ph.D.
Department of Theoretical Computer Science
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Co-Supervisor:
prof. Jan Vitek Ph.D.
Department of Theoretical Computer Science
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Copyright © 2023 Petr Máj

ii

Abstract and contributions

Software engineering benefits from insights gleaned from large-scale software repositories as
they offer an unmatched window into the development process. Their sheer size holds the
promise of broadly applicable results. Yet, that very size presents scalability challenges. One
answer to such challenges is to limit studies to representative samples and generalize obser-
vations to the entire population. But finding such a representative sample is often impossible
and researchers must compromise by using smaller datasets with imprecise sampling, or sac-
rifice reproducibility of their results. This thesis analyzes the challenges in project selection
for mining large software repositories and provides a tool that supports precise, scalable and
reproducible sampling of software projects based on their attributes. Its contributions are
detailed in four papers:

1. A Map of Code Duplicates on GitHub [A.3] analyses source code clones present in
GitHub projects. It verifies the existence of one of the most common biases and shows
its scale. Our findings signify the necessity for dedicated project selection and filtering
steps in big code analyses.

2. On the Impact of Programming Languages on Code Quality [A.2] is a reproduction
study focusing on the data filtering, reproducibility, and statistical interpretation of
large corpora analyses. The paper shows the problems pointed out by this thesis are
present in contemporary research and that they affect our results.

3. Reproducible Queries over Large-Scale Software Repositories [A.1] introduces the in-
frastructure that forms the statement of this thesis: a scalable, precise, deterministic,
up-to-date and reproducible project selection pipeline.

4. How to Design Reproducible Large-scale Code Analysis Experiments [A.4] then devises
and argues for an explicit and rigorous project filtering step and demonstrates how it
can be done with the tool presented in the previous paper.

Keywords: Repository mining, big code, code duplication, selection bias, sampling.

iii

Abstrakt

Softwarové inženýrstv́ı těž́ı z poznatk̊u źıskaných z velkých softwarových repozitář̊u, které
nab́ızej́ı bezkonkurenčńı vhled do vývojového procesu. Jejich rozsah sám o sobě je př́ıslibem
široké použitelnosti výsledk̊u. Tento rozsah však také představuje výzvy pro škálovatelnost.
Jednou z odpověd́ı na tyto výzvy je omezeńı analýzy na reprezentativńı vzorky a zobecněńı po-
zorovaných jev̊u na celou populaci. Naj́ıt tento reprezentativńı vzorek je však často nemožné.
Výzkumńıci muśı dělat kompromisy jako je použ́ıt́ı menš́ıch soubor̊u dat s nepřesným vzor-
kováńım nebo obětováńı reprodukovatelnosti jejich výsledk̊u. Tato práce analyzuje výzvy pro
výběr projekt̊u v rámci vytěžováńı velkých softwarových úložǐst a poskytuje nástroj, který
podporuje přesné, škálovatelné a reprodukovatelné vzorkováńı softwarových projekt̊u podle
jejich atribut̊u. Př́ınosy této práce jsou podrobně popsány v těchto čtyřech článćıch:

1. A Map of Code Duplicates on GitHub [A.3] analyzuje klony ve zdrojových kódech Git-
Hub projek̊u. Naše práce ověřila existenci jednoho z nejběžněǰśıch zkresleńı v rámci
datových soubor̊u a ukazuje jeho rozsah. Naše zjǐstěńı potvrzuj́ı nutnost specializovaného
výběru projekt̊u a jejich pečlivému filtrováńı v analýzých velkých repozitář̊u.

2. On the Impact of Programming Languages on Code Quality [A.2] je reprodukčńı studie
se zaměřeńım na filtrováńı dat, reproducibilitu a statistickou interpretaci výsledk̊u z
velkých dataset̊u. Článek dokazuje, že problémy, na které tato práce upozorňuje existuj́ı
v současném výzkumu a že ovlivňuj́ı jeho výsledky.

3. Reproducible Queries over Large-Scale Software Repositories [A.1] představuje infrastruk-
turu, která tvoř́ı jádro této práce: škálovatelnou, přesný a reprodukovatelný výběr pro-
jekt̊u.

4. How to Design Reproducible Large-scale Code Analysis Experiments [A.4] pak prezentuje
design pečlivého a explicitńıho výběru projekt̊u pro analýzy velkých repozitář̊u kódu a
ukazuje jak je možné takový výběr realizovat za pomoci nástroje prezentovaného v
předchoźım článku.

Kĺıčová slova: vytěžováńı repozitář̊u, big code, duplikace kódu, vzorkováńı, selection bias.

v

Acknowledgements

First of all, I would like to express my gratitude to my dissertation thesis co-supervisor,
Professor Jan Vitek. His vast knowledge, guidance and patience had taught me a lot more
than just the skills necessary for finishing this thesis. I would also like to thank my supervisor,
associate professor Jan Janousek who has welcomed me at FIT and guided me throughout
my studies.

Special thanks go to the staff of the Department of Theoretical Computer Science, who
maintained a pleasant and flexible environment for my research and my colleagues for the
inspiring discussions throughout the years.

Finally, my greatest thanks go to my family. To Kristina, my wife, for her infinite support
and care and to Ada and Frantisek, our kids, for being who they are and thus making sure
that research never proved too difficult:)

My research has been supported by the Czech Ministry of Education, Youth and Sports
from the Czech Operational Programme Research, Development, and Education, under grant
agreement No. CZ.02.1.01/0.0/0.0/15 003/0000421.

vii

viii

Dedication

In memory of doc. Ing. Karel Müller, CSc.

for his knowledge, wisdom, inspiration, and kindness

ix

x

Contents

List of Figures xiii

List of Tables xiv

1 Introduction 1

1.1 On comparing languages . 3

1.2 Analyzing Software Development . 5

1.3 Motivation . 8

1.4 Thesis . 11

1.5 Structure of the Dissertation Thesis . 12

2 Background and State-of-the-Art 13

2.1 Sources . 13

2.1.1 GitHub . 14

2.1.2 Bitbucket . 14

2.1.3 Other Version Control Systems Hosts 15

2.1.4 Package Managers . 15

2.1.5 Software Heritage . 16

2.2 Software Repositories . 16

2.2.1 GitHub . 17

2.2.2 Software Heritage . 19

2.2.3 GH Torrent . 19

2.2.4 Orion . 20

2.2.5 Boa . 20

2.2.6 Other Repositories . 21

2.3 Summary . 22

3 Overview of Contributions 23

3.1 Mapping code duplication . 24

3.2 Producing wrong data without doing anything obviously right! 26

3.3 Precise Project Selection . 28

3.4 Designing Reproducible Big Code Experiments 34

3.5 Summary . 37

xi

Contents

4 Relevant Papers 39
4.1 Paper 1 - DejaVu: A Map of Code Duplicates on GitHub 40

4.1.1 Author’s Contributions . 40
4.1.2 Citations . 40

4.2 Paper 2 - On the Impact of Programming Languages on Code Quality: A
Reproduction Study . 76
4.2.1 Author’s Contributions . 76
4.2.2 Citations . 76

4.3 Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Reposit-
ories . 103
4.3.1 Author’s Contributions . 103
4.3.2 Citations . 103

4.4 Paper 4 - The Fault in Our Stars: How to Design Reproducible Large-scale
Code Analysis Experiments . 128
4.4.1 Author’s Contributions . 128

5 Conclusions 151
5.1 Future Work . 151

5.1.1 Increasing the dataset size . 152
5.1.2 Improving querying capabilities . 152
5.1.3 Finding more uses . 152

Bibliography 153

Reviewed Publications of the Author Relevant to the Thesis 155

Submitted Publications of the Author Relevant to the Thesis 157

Remaining Publications of the Author Relevant to the Thesis 159

Remaining Publications of the Author 161

xii

List of Figures

1.1 Manipulating integer array in C . 2
1.2 Manipulating integer array in Java . 2
1.3 Manipulating integer array in Rust . 2
1.4 Primes in C++ . 4
1.5 Primes in Haskell . 4
1.6 Example of a git commit with timestamp, author, commit message and changes

to the source code visible. 6
1.7 Pull request, as visualized by GitHub. Note that the pull request is automatically

linked to an issue describing the problem, can be labelled as a fix, contains a
discussion about the features, lists outputs of tests and so on. All this information
and the links are available for mining. 8

1.8 Pull request obtained in JSON format, abridged. 9

3.1 Map of code duplication in C++. The y-axis is the number of commits per pro-
ject, the x-axis is the number of files in a project. The value of each tile is the
percentage of duplicated files for projects in the tile. Darker means more clones. 25

3.2 Percentage of missing commits in the original paper’s dataset per analyzed lan-
guage. Note that Perl is not to scale with the rest. 27

3.3 Getting a random sample of 10K developed projects written in Haskell using the
low level Parasite API . 31

3.4 Getting a random sample of 10K developed projects written in Haskell using the
high level Djanco API . 32

3.5 Distribution of coefficients calculated from 1000 random subsets compared to
those provided in the original study . 32

3.6 Domain knowledge . 33
3.7 Distribution of project age and number of commits over various project selections. 34
3.8 Comparing developed and starred projects to the entire dataset in various soft-

ware engineering metrics. See [A.4] for their detailed descriptions. 36

xiii

List of Tables

2.1 Comparison of repositories. 22

3.1 Code duplication on GitHub across four languages and three duplication thresholds. 25

xiv

Chapter 1

Introduction

”The temptation to form theories upon insufficient data is the bane of our profession.”

- Sherlock Holmes

The world as we know it relies upon billions and billions of computers. From the tiny ones
embedded in their hundreds in our cars, television sets and washing machines to the larger
ones in smartphones, to the laptops and desktop computers, all the way to the supercomputers
and datacenters. Those computers are integral part of modern society. Over the years their
size has decreased almost as fast as their power increased: the smart watches we wear on our
wrists are as powerful as big box computers from the turn of the century, about 100,000 times
faster than the hardware that landed Apollo on the Moon.

The true ingenuity of a computer comes from the fact that a single physical computer
can do different tasks depending only on its code, instructions that break the complex tasks
to series of very simple operations the computer knows how to perform. To make a machine
perform a new task simply means to load a new software for it. But as the number of com-
puters exploded, supplying them with new software quickly and reliably became a problem.
As Edsger Dijkstra famously said in the Humble Programmer [3]:

The major cause of the software crisis is that the machines have become several orders

of magnitude more powerful! To put it quite bluntly: as long as there were no machines,

programming was no problem at all; when we had a few weak computers, programming

became a mild problem, and now we have gigantic computers, programming has become

an equally gigantic problem.

As the software tasks shifted away from number crunching to more complex tasks, the
values manipulated by computers became proxies of much more abstract objects with more
complicated relations. But while the runtime complexity of programs increased tremend-
ously, the low-level instructions that computers perform remained largely intact. Instead of
expressing the complex interactions that describe the intended functionality of the software,
programmers spent most of their time in routine decomposition. To remedy this, high level
programming languages were designed: those languages abstract from the low-level capab-
ilities of the machine and focus on expressivity at levels better suited to the relations and

1

1. Introduction

algorithms of the more complex tasks. As an example, consider manipulating an array of
integers in three languages: C, Java and Rust:

int * arr = malloc (sizeof(int) * n);

fill_array(arr);

int sum = 0;

for (size_t i = 0; i != n; ++i)

sum += *(arr + i * sizeof(int));

printf("Sum: %zu", sum);

free(arr);

Figure 1.1: Manipulating integer array in C

The oldest language, C (figure 1.1), requires the programmer to pay attention to low-level
details: the array must be manually allocated with correctly calculated size and deallocated
when no-longer needed. Accessing array elements is done by offset calculation and iteration
must be explicitly bounded. This level of detail allows programmers to squeeze out every
bit of performance from the machine but has to be repeated for every use. Mistakes lead to
costly errors.

ArrayList<int> arr = new ArrayList<int>();

fill_array(arr);

int sum = 0;

Iterator<int> = arr.iterator();

while (iter.hasNext()) {

sum = sum + iter.next();

}

System.out.println(sum);

Figure 1.2: Manipulating integer array in Java

Unlike C, Java (figure 1.2) uses automatic memory management so memory does not have
to be explicitly deallocated. Memory offsets and sizes do not have to be computed explicitly.
Iteration is done using an iterator which ensures no location outside of the array can be
accessed. The same mechanism can be used to iterate over various structures, such as lists
and trees for better modularity. The language provides more correctness guarantees to the
programmer, increasing the ease of writing code.

let mut array = [i32; n];

fill_array(& mut array);

let sum = array.iter().reduce(|a,b| a + b);

println!("Sum : {sum}");

Figure 1.3: Manipulating integer array in Rust

But automatic memory management is not the only productivity feature. Even manual
memory management can be safe. Rust (figure 1.3) is a newer language with manual memory
management and strong safety guarantees. In Rust, the array does not have to be freed
manually, deallocation is inserted by the compiler when the variable goes out of scope. It-

2

1.1. On comparing languages

eration looks different too: inspired by functional languages, one can write code with fewer
opportunities for errors. One simple task, three very different approaches.

Despite the Herculean efforts, best intentions and bold claims of the language design-
ers, the goal of improving programmers’ productivity has suffered from a persistent lack of
evaluation. There is very little we know about the effect of language design choices on the
productivity of programmers and quality of the code they write. This invites a sea of opin-
ions. While we all see the differences between the above solution, we will likely not agree that
one language is, strictly speaking, the best. Fruitless arguments continuously erupt over all
aspects of software development from benefits and scope of particular language features to
superiority of programming styles, or even whether to use spaces or tabs in code.

1.1 On comparing languages

How can one determine which programming languages make programmers more effective?
Such comparisons should be answered scientifically with controlled experiments: experiments
are run with all variables controlled for, except one, in our case the choice of language. Any
difference in outcome can then be attributed to that variable.

The first problem we encounter is how to determine what to measure. The näıve approach
would be to simply measure the time it takes to complete a given task in a language. The faster
the development, the better. However, if a solution contains more errors, the time required to
find and fix them will likely offset the initial productivity gains. Instead of measuring the raw
development time, we could focus on errors (or bugs). The fewer bugs in programs written
in some language, the better the language.

Let us make this discussion specific. Imagine that we wanted to render judgement on
two very distinct programming languages: C++ and Haskell. The former is a general-purpose
language created as an object-oriented extension to C and designed to allow writing low-
level code found in, for example, operating systems. It is statically typed and uses manual
memory management. It first appeared in 1985 and has been continuously improved by the
C++ Language Committee. The second language, Haskell first appeared in 1990 and, while
it too is a general purpose statically typed language, it emphasizes fundamentally different
programming model: it is a purely functional language where state cannot be mutated. It
has a powerful type inference system so that variable types can be computed by the compiler
and lazy evaluation of arguments leading to much denser code. The differences between the
languages are profound and more subtle than we can outline. While the details are outside of
our scope, a simple example such as finding prime numbers can illustrate the two approaches.

The C++ program (figure 1.4) is verbose. A growable array of integers is created, then the
code tries successively each number from 2 to 100. For each, we assume it is prime and then
check that no smaller number is a divisor. If a divisor is found, the prime flag is cleared and
the inner loop terminated. After the inner loop, the number is added to the results if the flag
is true.

The Haskell program (figure 1.5) filters numbers from 2 to 100 such that there is no
i that divides n completely for i’s between 2 and n-1. While the algorithm is the same,
the two programs are quite different. Haskell is shorter, contains no type annotations and
leverages high level operators. It is conceivable that the terse description with much more
implicit information is, in the long run, hard to understand and can hide subtle bugs that

3

1. Introduction

std::vector<int> result;

for (int n = 2; n <= 100; ++n) {

bool prime = true;

for (int i = 2; i < n; ++i) {

if ((n % i) == 0) {

prime = false;

break;

}

}

if (prime)

result.push_back(n);

}

Figure 1.4: Primes in C++

[n | n <- [2..100], not . any(\i -> n ‘mod‘ i==0) $ [2..(n-1)]]

Figure 1.5: Primes in Haskell

would be made obvious by a verbose algorithm. Or maybe the verbose algorithm forces the
programmers to focus on technicalities and the added complexity will lead to more errors.

But computing primes is likely not the right task to compare languages. For a more
complex program, we could, for example, write a web server. It is a reasonably well specified
task that can be automatically tested for errors. One could set the duration of the experiment
to one month, a decent expectation for such a problem. After a month, programs in both
languages can be subjected to extensive testing and compared to determine which language is
better. To make sure the experiment is controlled, we would have to ensure that all variables
are identical. In particular that the programmers implementing both versions have identical
skill levels and experience in their respective languages. One could select them from a pool
of candidates with an advertisement that might look like this:

Looking for programmers with exactly 5 years of industrial experience and exper-
ience in server programming. Applicants are required to submit their CV with
emphasis on their programming language and application development skills.

Although a technical discipline, programming is dependent on human factors that are hard
to control for. Even after carefully matching their resumes, the closest pair of programmers
will differ in a myriad of ways. Those differences, ranging from upbringings and personal
traits all the way to the quality of their teachers and the first programming language they
became comfortable with, may have substantial impact on their performance. So it is not
unlikely that a month later, instead of settling the language war, we would have only poured
petrol on the fire.

Software engineering is not the only discipline where controlling for humans is needed.
Consider clinical drug trials: faced with the similar challenges, doctors sort patients into a
control group that is not given a medication and the test group that is. The results for each
group are averaged under the assumption that variables not controlled for will be similarly
distributed in both groups. In simple terms, if the latter group recovers faster, the drug is

4

1.2. Analyzing Software Development

effective. Larger samples effectively allow to reclaim the uncertainty due to the uncontrollable
variables.

The same can be done for our language comparison problem. Instead of one programmer,
we can choose many. We no longer have to pay so much attention to their skills, as long as
their distributions are similar, which is an easier task. If one group of programmers is, on
average, able to produce less buggy code, then their language is the winner.

Alas, many professionals would object to our methodology on the grounds that C++ has
not been designed for writing web servers. Other languages, are better suited to the task. To
silence them, we could rerun the experiment with a different programming assignment only
to hear similar objections from the Haskell folks if C++ comes up on top this time.

But let us not despair, for we can use statistics again. Perhaps the actual program-
ming task itself should not be controlled – what if we gave multiple different programming
assignments and again averaged the results. Clearly, this will settle it.

Maybe, but likely not. The devil lies in the details. According to Statista [7], Haskell and
C++ salaries averaged to a $10K per month. For our experiment, we require 200 man-months
for a total cost of $2M for a single programming assignment. Since this amount surpasses
many research grants, it should be obvious that our proposal does not survive contact with
reality, and the win of C++ or Haskell remains as elusive as ever. And indeed, for much of the
short history of the computer science, studies about the qualities of programming language
design similar to our proposal were scattered far and few between, and of limited impact. Yet
with more and more software being written and penetrating still larger parts of our lives, the
need to make programmers measurably more productive has only grown in importance.

There are adjustments we can make to lower the costs. Shortening the duration, simpli-
fying the task, reducing the number of developers, or even using cheaper (less experienced)
developers (students). But those compromises come with their own drawbacks. Shorter dur-
ation means potentially less feature complete programs (i.e., instead of bugs we will have
missing features), simpler tasks mean less pressure on the language features to prevent bugs,
fewer developers impairs the cancellation of their differences and less experience shifts the
results from measuring the language efficiency to that of the speed of its acquisition. No
matter what we do, we will be trading practicality (cost) for signal (results).

1.2 Analyzing Software Development

The biggest hurdle in the experiment is the practical impossibility to develop software in a
controlled fashion. This is why we had to create an experiment of our own instead of turning
to already developed programs (surely, there has already been a web server developed in C++

and Haskell). We overcame our inability to control for the human condition by analyzing
and averaging more humans. The same could be done for software: Instead of one carefully
controlled experiment, we can grab thousands of uncontrolled ones and average the results.
This will require even more statistics - the software analyzed will not have identical, not
even similar specification, it will be implemented by teams of various sizes and from various
backgrounds. The development process will differ too. But if we can observe the development
process in enough detail, it might just be possible to refine the results enough for a statistically
significant answer.

To summarize, for our new approach, we require:

◦ access to very large amount of software,

5

1. Introduction

◦ knowledge of their development process (teams, developers, changes, sizes, etc.),

◦ ability to infer the number of bugs to analyze the efficiency of the development,

◦ a statistical framework to correctly interpret the results,

◦ and a fully automated analysis pipeline due to large data volumes

15 years ago, we would have already hit the wall with the first item, as most code was
developed privately by companies or individuals. However, recent evolution and widespread
adoption of version control systems with advanced features combined with the shift towards
open source and visible development process, have dramatically improved our ability to obtain
large bodies of code and analyze their development process in detail:

Version control systems (VCS), first introduced in [13] allow programmers to record and
track changes to the source code by storing smaller changes to the program in batches called
commits. Each commit usually contains a text message explaining the changes to the source
code themselves as shown in figure 1.6. Version control systems impose order on commits
made by different users, help dealing with conflicts (i.e. when two developers alter the same
part of the program at the same time) and allow reverting the code to any previous state.
They quickly matured to distributed version control systems offering the same functionality
for entire teams of developers collaborating on a single project. Their use skyrocketed when
git, a decentralized distributed VCS conceived by Linus Torvalds was published.

With the increased availability of internet bandwidth and the transition towards cloud
based services, several organizations started providing internet hosting for version control

commit 7596ed6ae97b4210acf0aef487820ab715e62d25 (HEAD -> master)
Author: peta <peta.maj82@gmail.com>
Date: Wed Dec 7 16:56:05 2022 +0100

Actually iterates

diff --git a/main.cpp b/main.cpp
index e36cc58..dc8f10c 100644
--- a/main.cpp
+++ b/main.cpp
@@ -5,7 +5,7 @@ int main() {

std::vector<int> result;
for (int n = 2; n <= 100; ++n) {

bool prime = true;
- for (int i = 2; i < n; i) {
+ for (int i = 2; i < n; ++i) {

if ((n % i) == 0) {
prime = false;
break;

Unique identifier of the commit

Commit message

Summary of changes made as part of
the commit

Old contents, removed by the commit (-)

New contents added by the commit (+)

Figure 1.6: Example of a git commit with timestamp, author, commit message and changes
to the source code visible.

6

1.2. Analyzing Software Development

systems around the turn of the century. The versioned source code thus moved from a large
number of private company servers and personal machines to a few large online software
repositories.

Although the software projects were now physically located in a few very large software
repositories, it was still private, accessible only to its authors. In a bid to increase their
adoption, many repositories offered their services for free to open source projects. Those
projects are developed in the open and while only their authors can make changes, anyone
can download and analyze their code. Initially picked up by hobbyists, large companies took
notice and started developing some of their software in the open en masse. The State of
the Octoverse for the year 2022, an annual report published by GitHub, the largest software
hosting provider, dedicates an entire section to the open source projects owned by large
companies, stating that ”In 2022, some of the largest open source projects on GitHub were
owned, led, or maintained by companies. How those projects are growing reveals broader
changes in how developers—and organizations—are building software” [9]. One of the best
examples of the magnitude of this shift is Microsoft: A company well known for fiercely
protecting its codebase started using public GitHub for some of its projects as early as 2012,
later becoming one of the top open-source contributors, including very large projects such as
Visual Studio Code, the JavaScript engine for the original Edge browser and the Windows
Terminal.1

This brings us to the last important feature of modern software development process that
makes it amenable to data mining: metadata. The collaborative development goes far beyond
having the source code and its changes in the open. Code hosting providers often provide
additional features such as discussions about the committed changes, issues raised by the
developers or users coupled with the changes that fix them, pull requests (in fig. 1.7), which
consist of a change to the code proposed by developers and their evaluation, continuous
integration that executes various checks upon each commit or pull request to ensure that
new changes do not introduce new bugs, release management that allows labelling certain
commits as versioned releases of the software and many more. These features are widely used
by external developers as well: While responsible for only a small percentage of source code
development, they engage in comments to new features, issues and pull request review [9].
The metadata is often provided in computer readable formats so that they can be visualized
by external software development tools such as task planners or code coverage tools. This
further increases the ease of its mining (an abridged version of the same pull request in JSON
format is shown in figure 1.8).

So here we are: the information about the entire software development process for millions
of projects is at our fingertips. We have access to source code of millions of public projects.
Better still, those projects vary from single person projects of passion to large open source
applications and to applications developed in the industry. Thanks to the version control
systems we can reconstruct the historic record of how their source code changed. And thanks
to the metadata, we can correlate those changes to new features, bugs, their fixes and much
more.

1Microsoft seems to be focused on increasing its open development even further, as in 2018 the company
purchased GitHub

7

1. Introduction

Figure 1.7: Pull request, as visualized by GitHub. Note that the pull request is automatically
linked to an issue describing the problem, can be labelled as a fix, contains a discussion about
the features, lists outputs of tests and so on. All this information and the links are available
for mining.

1.3 Motivation

Researchers recognized the potential of analyzing large software repositories and the method
has been used in many papers. In 2004, it even gave rise to a specialized conference, Mining
Software Repositories. The initial research was merely setting the stage, operating on smaller
datasets and exploring the boundaries of what can be analyzed. But in 2014, a paper titled
A Large Scale Study of Programming Languages and Code Quality in GitHub appeared [12].
The paper is notable as being one of the first attempts to utilize the wealth of available
projects and their development information to answer questions that are too costly to answer
by classical experiments. The study had a wide impact with over 470 citations recorded on
Google Scholar (December 2022) as well as numerous mentions outside the academia. It was
further selected in 2017 for a reprint in the prestigious CACM Research Highlights [11].

The paper aimed to settle the debate about programming language design qualities using
the approach we have arrived to previously. Instead of artificially creating new software in a

8

1.3. Motivation

{

"id": 1151891156,

"number": 2,

"state": "open",

"title": "Increments the loop variable when checking primes.",

"user": { "login": "petrmaj", ... },

"body": "Fixes issue #1.",

"created_at": "2022-12-07T16:04:07Z",

"closed_at": null,

"merged_at": null,

"assignee": { "login": "petrmaj", ... },

"requested_reviewers": [],

"labels": [

{ "name": "bug", ... }

],

"head": {

"label": "petrmaj:bugfix",

"ref": "bugfix",

"sha": "9e5a96188f1f7944dcfc4fbed3fa87efcceff69e",

"user": { "login": "petrmaj", ... },

"repo": { "id": 575482550, ... }

...

},

"base": {

"label": "petrmaj:main",

"ref": "main",

"sha": "461254f0168b710c3ed398326e061a5cdecefbe5",

...

},

"comments": 1,

"review_comments": 0,

"commits": 1,

"additions": 1,

"deletions": 1,

"changed_files": 1,

...

}

Figure 1.8: Pull request obtained in JSON format, abridged.

tightly controlled experiment, the study gathers a large set of existing projects (50 projects per
language, 17 programming languages, including C++ and Haskell) and their commits. Instead
of manually analyzing the bugs, the study turns to the data itself for this classification: It
determines for each commit whether it fixes a bug (based on the presence of selected keywords
in the commit message). This gives a ratio of bug fixing commits for different languages.

Clever statistics is then used to verify that all uncertainties have indeed been controlled for
and do not influence the outcome. For each language, a coefficient determining its propensity
towards bugs is calculated. Positive coefficient means the language does, on average, introduce
more bugs, while negative coefficient indicates a language that spares its users some of the
programming pitfalls. For the two languages we are interested in, the paper reports coefficients
0.23 for C++ and -0.23 for Haskell, both with very high statistical confidence of 99.9%. Those
results tell us C++ projects contain generally more bugs than average programming language,

9

1. Introduction

while Haskell projects are marred by much less errors. All other factors being averaged or
controlled for, this difference is due to the language selection alone, i.e. C++ is worse language
than Haskell. Informally put, if we choose C++ for an implementation of our project, we
should be prepared to deal with more bugs than we would have to if Haskell was chosen.

But let us not jump to conclusions. While the power of big data analysis is tempting,
big data comes with its own, equally big problems: The bigger the dataset, the noisier it is.
The noise comes from various sources: version control systems are advantageous not only to
source code, but to a wide variety of tasks that store their information predominantly in a
textual representation. Software repositories such as GitHub thus consist of not just programs,
but also books, examples, code snippets, programming tutorials, webpages, research papers
(including this thesis) and so on. Even when focusing on actual programs, the noise levels
are significant. The projects are developed by people of varying skill levels and teams of
varying sizes. The majority of programming projects are short-lived and abandoned personal
projects or student assignments. Such projects are much less likely to follow the software
development discipline. Large software repositories are also full of copies of both the actual
code, and of entire histories of programs. Apart from the practice of copying verbatim source
code snippets or entire libraries into projects that use them, GitHub allows users to copy any
project with its entire history for either collaboration or customization purposes. Such copies
are called forks and they comprise up to a half of all projects hosted on the platform.

For analyses such as the language quality paper outlined above, this is bad news: If the
results are obtained from student projects, the results will likely not generalize to experienced
developers. Analyzing projects that are not rigorously developed will invalidate the methods
of the paper (bugs not labelled as such and mentioned in commit messages). Analyzing
copies of same project will skew the results towards those observed in that particular project
as opposed to the general trend. To make matters worse, such projects comprise the bulk
of GitHub so if a simple random sample were chosen, any analysis would be garbage-in,
garbage-out.

To mitigate those issues, datasets obtained through large software repositories (same as
any big data source) must be thoroughly filtered and cleaned before the analysis, otherwise
they risk invalidation of their results. This warning is not hypothetical, the very paper on
which we demonstrated the benefits of large software repositories suffered exactly this fate
in [A.2] and [A.1] (those papers are part of this thesis and are discussed in greater detail in
chapter 3).

But why is it that even popular research papers focused on data mining fail in data filtering
and cleaning? We might brush the problem off as negligence, but before we do so, let us
imagine what a reasonable data preprocessing step would be for our motivation example and
how it can be accomplished with existing tools.

We need projects in the languages we are interested in that are developed rigorously. This
notion of rigorous development has to be mapped to known characteristics, such as:

◦ majority of changes in one of the programming languages we are interested in,

◦ more than one developer to increase the likelihood of proper development process and
descriptive commit messages

10

1.4. Thesis

◦ at least 50 commits and more than six months of active development so that there is
enough chance to observe the bugs being discovered and fixed

◦ the projects should not contain copies of each other to rule out over-representation

◦ active use of issues that implies bugs are detected and their fixes are tracked

Could this be done? The data exists. GitHub alone consists of 230M publicly available
projects we can download with all their metadata as well. The filtering and cleanup steps
are simple and easy to describe. Had the data been in a relational database, a few lines of
relatively simple SQL code would do. But GitHub and other source code hosting providers
are not relational databases. Their entire workflow focuses on working with a few projects
such as those one contributes to, not project discovery and analysis.

The only way to get the projects we need is to discover all projects on GitHub through
the existing API (a few weeks of work thanks to rate limiting) and get their metadata (many
years!). The projects we are interested in would then need to be cloned (some more months),
deduplicated, random sampled and only then can they be passed to further analysis. While
there are tools that can help with some of the tasks, such as deduplication, they require
considerable effort to make them work with the data at hand. Furthermore, at the end of
the year+ effort the data will be old, some projects more than others, which will likely be
a problem.2 If our filter needs some tweaking, such as longer lifetime, or different language,
some of the time consuming stages above will have to be repeated unless we have kept the
vast quantities of data, a problem of its own.

Simply put, mining software repositories for precisely selected projects in reasonable
amounts of time is impossible. This lack of functionality is what drives many researchers
to compromise. Instead of carefully curated subsets, they use readily available samples, such
as the most popular projects, one of the very few project properties GitHub allows semi-
deterministic searches for. This method, known as convenience sampling produces inferior
results as the analyzed datasets are likely biased.

And this lack of functionality is also the motivation for this thesis.

1.4 Thesis

Thesis statement: It is possible to create an infrastructure that automates precise,
scalable and reproducible selection of software projects from repositories.

All the above features are requirements for reliable and targeted data acquisition of soft-
ware projects without bias:

◦ precise - no information should be lost in the infrastructure and any information can be
queried for so that the queries can be as precise as possible for the best signal to noise
ratio.

◦ scalable - as the number of publicly available projects reaches hundreds of millions,
scalability is a primary concern. Tens of thousands of new projects are created every
day, while existing projects are evolving as their bugs are fixed and new features added.

2novel features, such as JavaScript ES6 classes, can be introduced in the middle of the data gathering,
skewing the information about its adoption rate, etc.

11

1. Introduction

◦ reproducible - asking the same question over the same dataset should yield the same res-
ult. Despite the continuously evolved dataset, it should be always possible to revert the
dataset to any previous moment so that filtering queries can be repeated and modified
long time after they were used.

◦ automated - the enormous data volumes involved require that the entire infrastructure
must be able to perform without any human intervention other than specifying the
filtering criteria.

This thesis introduces four research papers that together advance our understanding and
practical usability of large software repositories:

1. A Map of Code Duplicates on GitHub [A.3] analyses source code clones present in
GitHub projects. It verifies the existence of one of the most common biases and shows
its scale. Our findings signify the necessity for dedicated project selection and filtering
steps in big code analyses.

2. On the Impact of Programming Languages on Code Quality [A.2] is a reproduction
study focusing on the data filtering, reproducibility, and statistical interpretation of
large corpora analyses. The paper shows the problems pointed out by this thesis are
present in contemporary research and that they affect our results.

3. Reproducible Queries over Large-Scale Software Repositories [A.1] introduces the in-
frastructure that forms the statement of this thesis: a scalable, precise, deterministic,
up-to-date and reproducible project selection pipeline.

4. How to Design Reproducible Large-scale Code Analysis Experiments [A.4] then devises
and argues for an explicit and rigorous project filtering step and demonstrates how it
can be done with the tool presented in the previous paper.

1.5 Structure of the Dissertation Thesis

1. The Introduction describes the motivation behind the thesis and states its goals.

2. Background and State of the Art surveys the past and current solutions available for
mining software repositories.

3. Overview of Contributions summarizes the author’s work towards more scalable and
reproducible large software repository mining.

4. Relevant Papers presents a collection of the author’s papers that form the basis of the
thesis’ contributions. Each paper comes with a detailed list of the author’s contributions.

5. Conclusions summarizes the results of the thesis, hints at possible improvements and
future work.

12

Chapter 2

Background and State-of-the-Art

At its heart, a software repository comprises of two essential features: a data source containing
the projects and associated metadata, and an interface allowing querying and retrieval of the
dataset. The size and composition of the repository define its theoretical usefulness, while
the query precision and retrieval speed of the interface determine its practical usability. This
chapter presents an overview of current and past software repositories from those angles.

Creating and maintaining a large database of software projects is a complex undertaking.
Therefore, there exists only a relatively small number of such data sources. They are not
built to support a niche task like data mining but focus on aiding the software development
process itself. A larger number of software repositories follow a different approach and instead
of maintaining their own unique source, to reduce the costs, they choose to mirror an existing
source, or its portion (in both number of projects and kinds of data stored). Those secondary
repositories then provide a more complex interface to data querying that is better suited for
data mining.

This chapter splits the discussion about existing software repositories into first discussing
the primary data sources available in terms of their composition and volume. It then looks at
the software repositories from the querying and retrieval perspective. A software repository
that also maintains its own data source thus appears in both sections.

2.1 Sources

A software source can be characterized by the following main attributes:

◦ Size and bias - the number of projects available in the source and any bias associated
with it. For all the sources mentioned in this section, one has to accept the bias towards
publicly available open source software, but other biases, such as programming language,
licensing terms, project popularity and so on are mentioned where appropriate.

◦ Contents - data sources differ in the data they store. Historically the first sources
were built around version control systems hosting providers and therefore contained the
most recent code along with a history of changes. As development switched to open
distributed model, extra metadata about the software, such as code reviews, regression
test results and so on become available.

13

2. Background and State-of-the-Art

The rest of this section describes the main software sources in the above terms.

2.1.1 GitHub

Established in 2008 as an online hosting for git projects, its key advantage was the inclusion
of a free plan that allowed individuals and companies to host unlimited number of open source
projects with paid plans for private and closed projects. Over the years, this policy and the
rise of git itself has made GitHub extremely popular amongst programmers. This success
has made GitHub the hegemon in terms of number of software projects stored: as of 2022,
there are over 230M of publicly available projects and the total number of projects hosted
might well attack half a billion.1 The service is used by over 73M developers [8].

As its popularity increased, GitHub expanded into a complete platform for distributed
software development, integrating a plethora of extra services under its name. GitHub
provides project web hosting, issue tracking, code review process, continuous integration
builds, release management, deployment and much more. This vast portfolio of extra services
and their widespread use, as most are still offered free of charge for open source projects has
made GitHub a treasure trove of both software projects’ code and extensive details about
their entire development process.

All this makes GitHub the single most complete source currently available. But this
popularity comes at a price, especially when mining software repositories. The notoriety of
GitHub and the amount of extra services it sports has led its use to transcend the original
software development niche. Large amount of projects hosted on GitHub are not software per
se (including, but not limited to hosted web pages, book manuscripts and documentation).
Even larger amounts are pieces of software that were never intended to be developed. GitHub
is a popular vehicle for conducting computer science courses (with repositories automatically
generated in vast numbers for all enrolled students), showcasing demo applications and even
a dump site for abandoned projects for archival purposes.

Reproducibility is also an issue. Being oriented towards the development process itself,
GitHub does not provide any guarantees about future availability of its data. Projects can
be deleted or made private, their histories can be altered, or even purged, and none of these
changes are archived. The new content, or lack thereof, simply overwrites the past data with
no going back.

2.1.2 Bitbucket

Bitbucket was founded in 2008 as a hosting service for Mercurial, another version control
system. Following the upsurge in git’s popularity, it was added as option to Bitbucket as
well. Then in 2020, Mercurial support was removed, cementing git’s dominance. Bitbucket
is much smaller and thanks to its policy of allowing privately hosted repositories for free
from the very beginning, it contained much less open source software. In terms of repository
contents, Bitbucket is similar to GitHub, it is a primary repository, offering own bug trackers,
discussions, pull requests and continuous integration.

It is much harder to determine Bitbucket’s size - the ratio of private projects is likely
higher than in GitHub, but no yearly reports are published. Furthermore, it is impossible
to guess the total number of projects as Bitbucket uses unique text identifiers instead of

1Since it is impossible to distinguish between deleted and private projects on GitHub, we can only determine
the total number of projects created.

14

2.1. Sources

consecutive ids. A reasonable estimate of 3.4M public projects can be obtained from archival
sites’ records.2

2.1.3 Other Version Control Systems Hosts

Numerous other services similar to GitHub exist. As their usefulness for software repository
mining pales with the comparison of GitHub, they are only briefly discussed in the following
paragraphs:

GitLab GitLab is a service bearing striking similarity to GitHub itself, with a major twist:
GitLab is geared towards a self-hosted deployment, making itself less appealing to repository
mining as large amount of GitLab instances would have to be scanned for reasonable number
of projects to be acquired. In addition to self-hosted option, GitLab also provides cloud
hosting, with the number of projects available reaching 4M.3

SourceForge Created to support open software projects and their development directly
with no paid options, SourceForge provides capabilities similar to already mentioned services.
Its membership stands at over 500K projects.4 SourceForge supports multiple version control
systems: in addition to the popular git, Mercurial, CVS and others are supported as well.

2.1.4 Package Managers

Package managers provide software developers with access to large numbers of third-party
libraries available for their programs that can be easily integrated into applications. Instead of
the continuous development process supported by version control systems, package managers
focus on the releases - updates to the libraries made explicit by the developers, usually
following the semantic versioning pattern.

Package managers contain less noise in the form of non-software projects, and often provide
extra metadata about the usage and downloads analysis of the packages that can be used to
further filter interesting projects. Historic reproducibility is also better than version control
systems as older versions of packages are kept for backwards compatibility. Unfortunately, a
package can still be withdrawn by its developers, such as the infamous withdrawal of leftpad
in 2016.5

In terms of size, package managers for the most popular platforms, such as JavaScript,
reach millions of libraries, while less widespread languages such as the R programming lan-
guage used mainly for statistics with its CRAN package manager provides only 20K packages.

Their biggest weakness is strong bias towards library code as virtually no applications
(standalone executables) are part of any package manager. Package managers are rarely the
primary source of the code as most of their content is available from version control systems,
notably GitHub.

2Number of Bitbucket projects in Software Heritage corpus is about 2M projects, compared to 136M for
GitHub. Using the same ratio of completeness for both providers would give us 3.4M public projects.

3Via Software Heritage
4https://sourceforge.net/about
5https://www.theregister.com/2016/03/23/npm left pad chaos/

15

https://sourceforge.net/about
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/

2. Background and State-of-the-Art

2.1.5 Software Heritage

Started in 2015 by Inria, the Software Heritage Project [2] aims to preserve the large code base
mankind has created. It archives software projects from various primary sources including
GitHub, Bitbucket, GitLab, CRAN, SourceForge and Debian source packages. The project
is actively maintained and updated via means of automated crawlers or direct access by
partners. As of Fall 2022 the Software Heritage has archived over 184M projects. GitHub is
the major source with 136M projects, followed from a distance by GitLab (4M), Bitbucket
(2M) and NPM (1.8M). All other sources contribute less than 1M projects. Compared to
development-oriented platforms such as GitHub or BitBucket, Software Heritage stores only
version control systems’ data (file changes over time and commit messages).

Although technically not a primary software repository itself, we classify Software Heritage
as one for the purposes of this thesis due to its archival nature. It is the only such source that
provides historical reproducibility - when a new version of a software project is found a new
snapshot is added to the repository. Knowing the snapshot identifier, one can always access
the previous data.

Software Heritage has two major drawbacks: (a) the rate of snapshot updates is unpre-
dictable and long, which biases the dataset towards historical studies, not current trends.
(b) it archives the source code and its history only, not the extra metadata such as issues,
discussions, etc.

2.2 Software Repositories

After describing the available sources, we focus on software repositories from the querying
precision and retrieval performance point of view, where a repository can be characterized by
the following key attributes:

◦ Source - whether a repository maintains its own primary source, creates a mirror of one,
or simply provides a frontend to another repository.

◦ Activity - active repositories are accessible and can be used. Inactive repositories are
included for their historical significance.

◦ Updated - Some repositories offer a single view of the projects they store, while others
are regularly updated at varying intervals, or are the primary sources themselves.

◦ Query precision - while each repository provides some form of querying the projects it
contains, the expressiveness of the queries is a limiting factor.

◦ Deterministic - a deterministic repository will, for a given query, return always the same
answer as long as its underlying dataset remains unchanged.

◦ Reproducible - a reproducible repository goes beyond simple determinism by requiring
that a query can be constructed in such a way that identical results are returned even if
the underlying data gets updated in the meantime. Non-updating repositories achieve
reproducibility trivially; for updating repositories, especially the primary ones, repro-
ducibility is usually sacrificed as projects may be deleted or their history altered using
version control systems.

16

2.2. Software Repositories

To better illustrate the usefulness of the described repositories, we roughly describe how
each can be used to obtain a dataset that could be used for our motivation example. Recall
that we need projects that have enough development to make the bug fixing commits appear
in reasonable numbers. We have thus searched for Haskell and C++ projects that actively use
issues, have more than one developer, more than six months of active development and at
least 50 commits. We will need their commit messages, the changes to the source code the
commits made and their issues. As this is a rather low bar, we expect that more projects fulfill
our criteria than we can reasonably analyze and would therefore require a random sample of
10K such projects.

2.2.1 GitHub

As well as the largest primary source, GitHub is also widely used as a software repository for
querying and retrieval. GitHub is constantly updated as projects are changed, or indeed cre-
ated. Those projects can also be deleted, made private, or their histories may be overwritten
destructively. As GitHub does not keep any historic records other than those maintained by
git, it is not reproducible. Multiple ways of accessing the stored data are offered:

◦ Git The simplest method is to use git, the underlying version control system, to retrieve
the contents and history of hosted projects. Such access exists so that developers can
obtain the projects they are involved with and upload their changes. It therefore features
no project filtering, or even discovery capabilities as the project to be downloaded must
be known by other means. Only information maintained by git itself is accessible
using this method, i.e. no metadata. GitHub imposes no official data rate limits on
downloading repository contents via this API, but we have observed heavy throttling
for continuous multi-process accesses. Despite this, cloning GitHub projects remains
the fastest method of getting projects and their commits en masse. The git access is
deterministic, but not reproducible.6

◦ REST API Provides the complete access to all data available on GitHub. The API
is geared towards programmatic inspection and manipulation of the few projects one
develops, such as automatic releasing, code scanning, pull request alerts and summaries,
etc. The API also provides an endpoint capable of searching for projects based on simple
queries that allow filtering based on user or organization name, project description and
readme file contents, project size in bytes, number of followers, forks, stars, creation and
last update time, programming language used, topics associated with the project, issues
ready for contribution, and other project properties (mirrors, forks, archived projects,
sponsors). Limited sorting is supported (by stars, forks and help-wanted issues). Its
intended use is to promote community involvement, not any form of mining. This is
further exacerbated by the limitation of at most 1000 search results per query, which
makes constructing larger datasets impossible. A query must not be longer than 256
characters and can contain at most 5 clauses. The query results are not guaranteed
to be deterministic - if a query times out, partial results found so far are returned. It
also provides a special endpoint exempt from the 1000 results limitation, which allows
listing of public projects in the order of their creation, providing the discovery of all

6modulo history overwriting changes and project deletions, the access can be made reproducible by keeping
the latest commit returned and then pruning the newer results.

17

2. Background and State-of-the-Art

public GitHub projects. The API has rate limits of no more than 5000 requests per
hour by a single user, whereas the search queries incur additional rate limit of no more
than 30 requests per minute.7

◦ GraphQL API This API offers more complex queries to be formed, but its main advant-
age is the precise control over the data returned and the ability to construct a single
query that would have required multiple REST API endpoints. For instance, to return
all mergeable pull requests of a repository, the REST API would need a call to determine
pull-requests of a repository first and then a call per pull request to determine whether
it can be merged. The GraphQL API can achieve the same result in a single query.
For the purposes of data mining though, it suffers from the same drawbacks: limited
query power as it is not designed for project discovery, severe rate limiting, inability to
fetch all results (GraphQL queries are limited to 500000 nodes, the meaning of a node
depends on the exact query), and non-determinism.

◦ Web search Not intended for automated use, the web search is a search bar within
GitHub’s webpage. On top of searching for repositories via same queries as the REST
API, the web search also allows searching for particular files and even matching over
the file contents. Web search results are non-deterministic even for simple queries that
do not timeout, presumably due to load balancing of the requests.

In order to download the random sample from the motivating example, we would first need
to list all the public projects available, then obtain their metadata, such as major language
and number of commits, and then their code and issues themselves. The strict rate limiting
policy means that getting all projects would take 19 days (230M projects, 100 projects per
request, 5000 requests per hour). Getting the metadata at a cost of a request per project
would take 5 years, providing us with some information about presence of issues as well.8

Downloading the project’s source code and commit history would best be done by the git

access as this avoids the rate limits. We can use the commits history to determine if there is
enough commits and enough time has passed between the first and last one. Issues for the
sampled projects can be obtained through the REST API in hours (assuming 100 issues per
repository on average).

Those timelines are squarely outside of the realm of practicality. One can be clever and,
for instance, download all projects first (roughly 2 years of work), or sample earlier (needs
to be carefully designed to prevent bias and only works for popular languages), but the
amount of work and time required remains too high. Instead, researchers often compromise
in the dataset description. Limiting ourselves to a mere thousand projects per language,
using popularity instead of number of commits as an indication for project development and
selecting top projects instead of random sample would give us results in mere minutes as we
would be able to use the search API. It would be wrong, but tantalizingly easy.

7GitHub also uses secondary rate limiting which may be activated at any time GitHub suspects overuse of
its resources, details of which are not publicly disclosed.

8Not ideal, since GitHub would only report the number of open issues, not whether issues are actively
used.

18

2.2. Software Repositories

2.2.2 Software Heritage

Software Heritage is another primary source. Like GitHub, it is active and updated. Unlike
GitHub, the update rates are not instantaneous, but occur at irregular intervals that can
take years.9 Software Heritage is both deterministic and reproducible as different visits for
the same project are all archived and can be retrieved separately.

As the repository contains projects from various primary sources, it offers a special API,
called Vault that can asynchronously collect any archived project and export it as a bundle
in a variety of formats, such as git. In this regard the vault service is essentially equivalent
to downloading projects from GitHub.

Each piece of software is assigned a unique identifier and this identifier, project name,
URL, and assigned tags are the only things Software Heritage can be queried on. The API
is limited to 1000 results per request. It offers a REST API similar to that of GitHub with
endpoints geared towards retrieval of known items, not advanced search and filtering. Rate
limiting is more severe at 1200 requests per hour per authenticated user. Software Heritage is
work in progress and it is likely the querying capabilities will increase in the future.

Using Software Heritage for our example would therefore suffer from the same weaknesses
GitHub did, namely limited querying capabilities and rate limits and retrieval could take
years. Since Software Heritage only captures the code and its history, we would not be able
to obtain the related issues.

2.2.3 GH Torrent

GHTorrent started in 2012 as a scalable, queryable, offline mirror of data offered through the
GitHub APIs. It monitors the GitHub public timeline, a special API endpoint that publishes
many GitHub public events in a single stream. Those include project creation, new commits,
starring a project, creating or closing an issue and many more. The stream allows GHTorrent
to observe each such event in real-time and store them in its own database.

GHTorrent is currently inactive, there have been no updates to the project since 2020. At
its peak, it archived activity for more than 150M projects. For some projects the events ob-
tained through the public timeline were augmented with data outside of GHTorrent’s lifetime,
acquired via GitHub REST API. GHTorrent’s database exists in two versions, a MongoDB
dump of the raw GitHub public event timeline records, and a SQL version that contains the
information processed into tables, such as basic project information, popularity, commits,
messages and comments, issues and so on. Both MongoDB and SQL databases were search-
able online, and can still be downloaded offline for local use. Rate limits are moot in the local
download scenario and determinism and reproducibility were guaranteed via the monthly
released snapshots.

The databases also form the querying and retrieval API for the repository. All of the
archived information can be searched, filtered and ordered easily by complex queries that
far surpass the ability of GitHub or Software Heritage. Even more complex queries can be
calculated offline as GHTorrent archives enough metadata to allow calculation of various
aggregated software engineering metrics.

9As an anecdotal evidence, this thesis author’s own software terminalpp has been discovered and archived,
but not updated in two years. Software Heritage offers manual trigger for selected projects in such cases, but
this approach does not scale.

19

2. Background and State-of-the-Art

GHTorrent suffered various drawbacks. It lacked consistency; due to downtimes in the
GitHub public timeline the dataset integrity is not guaranteed. While one could patch the
dataset by crawling the projects, this is not enough as we have shown in our research [A.4].
Furthermore, it has bias in favor of projects that are actively updated; those which are not
are simply absent. Last, it does not have source code, so it cannot be the ultimate source of
truth.

Due to the lack of source code, GHTorrent alone cannot be used for our example. When used
together with GitHub it greatly speeds up the process: The latest snapshot of GHTorrent
can be downloaded and then queried for Haskell and C++ projects with sufficient amount
of commits in a matter of mere hours. Since GitHub public events timeline also contains
information about issues, these too can be obtained from GHTorrent at virtually no additional
costs. The URLs obtained can then be used to download the projects’ source code directly
from GitHub. Thanks to this speedup, GHTorrent was used extensively in research, including
own [A.3, A.2, A.1]. But the dataset has errors and holes, increasing the risk of bias in any
subsets obtained by it as issues, stars, users, commits or indeed entire projects can be missing
or wrong. Finally, while GHTorrent is deterministic and reproducible, GitHub is not. Over
time, the source code that is not part of GHTorrent itself will differ or become inaccessible.

2.2.4 Orion

Orion [1] is a software repository targeted specifically to data mining. Its dataset is modest,
consisting of 185K projects downloaded from GitHub, Sourceforge and GoogleCode (other
version control system providers popular at the time). Complete file contents, commits his-
tory, metadata available at the time and a wealth of synthesized software engineering metrics
are stored for each project. However, Orion’s main focus lies in the design of a domain spe-
cific language for querying large software repositories and the implementation of its search
engine allowing advanced search and filtering over all data items stored in Orion’s database.
The database does not support updates and therefore Orion achieved both consistency and
reproducibility trivially. The project is no longer maintained.

Answering our example question would be very easy with Orion. Had the project been
maintained still, the results would suffer from two main problems: (a) it is not clear the
relatively small corpus would contain enough projects fitting our criteria, (b) since updates
are not supported, the results would age quickly.

2.2.5 Boa

Like Orion, Boa [4] addresses the need for an efficient searching over large software repositories.
Boa goes even further and strives to provide tools to mine specifically the source code itself. It
supports not only searching the aggregated attributes, but also parsed abstract syntax trees
of the stored source files. It then uses its own domain specific language based on the visitor
pattern to allow constructing efficient queries over the syntax trees and project attributes.
It offers the biggest expressive power from the tools reviewed. The queries are executed in
parallel on a hadoop cluster.

20

2.2. Software Repositories

Boa’s dataset consists of 380K GitHub projects since 2015 and was extended to support
Python (2020) and Kotlin (2021).10 On top of the fully queryable 380K projects, the dataset
contains additional 7.5M projects without the source code with aggregate metrics only.

The project is active, but the dataset is updated very infrequently with no changes to the
Java dataset since 2015. Boa is both deterministic and reproducible via update snapshots.

Boa provides much more than our relatively simple example query requires. But that extra
expressiveness comes at a cost: Adding a new language to Boa is a substantial effort as its
files have to be syntactically understood. Neither C++, nor Haskell are supported. But even
if they were, the infrequent updates (it’s Java corpus is now 7 years old) make the results
quickly obsolete, similar to Orion.

2.2.6 Other Repositories

We briefly mention other software repositories that are either much smaller, or only vaguely
linked to the task of this thesis, but played an important role historically. None of them can
be used for our example query reasonably as they are either too small in scope to provide
relevant data, or not fit for the purpose.

Bitbucket Like GitHub, Bitbucket offers a REST API for accessing its data with only
slightly better querying capabilities. Notably, anything than can be filtered can also be
sorted. However, randomization of results is not supported and due to the use of textual
unique identifiers for projects, random project acquisition is not possible either.

Flossmetrics This work analyzed 2800 open source projects and computed statistics about
various aspects of their development process, such as number of commits and developers [6].
Information from additional sources such as project mailing lists and issue trackers was in-
cluded. Queries could be formulated on metrics such as COCOMO effort, core team members,
evolution and dynamics of bugs. Filtering based on these criteria was supported. The project
is inactive, and it did not support updates.

Black Duck Open Hub A public directory of open-source software that offers search
services for discovering, evaluating, tracking, and comparing projects.11 It bears similarity to
the older Flossmetrics projects upon which it improves on both quality and quantity, including
continuous updates. It analyzes both the code’s history and ongoing updates to provide
reports about the composition and activity of code bases. The Open hub does not store any
contents of the analyzed projects, nor does it keep historic data other than the aggregated
metrics. However, since the links between Open Hub projects and their repositories are kept,
and the querying capabilities over the analyzed attributes are extensible, the Open Hub can
be used to bootstrap an analysis by selecting projects whose contents will be downloaded
from a primary source. Open Hub does not support randomization of the results, but given
its relatively small size, getting all the data first and then doing own randomization is indeed
possible.

10Boa started with 490K Java projects obtained from SourceForge, but later switched to GitHub
11https://www.openhub.net

21

https://www.openhub.net

2. Background and State-of-the-Art

SourcererCC The single aim of this project is to detect code clones [14]. The tool scales
to large datasets and can detect near-identical code at various granularity. It has been used
to analyze cloning across large corpora of Java, JavaScript, Python, C and C++ projects on
GitHub [A.3]. SourcererCC does not keep the metadata or code of the analyzed projects but
keeps a hash of each file contents as well as a fingerprint obtained by tokenizing each file and
remembering the token counts. Only source files in the four analyzed languages are kept.
It could be used by researchers to detect duplication in their samples specified by links to
GitHub projects, after which a report of cloned files found within the dataset was provided.
The project is no longer active.

Stress One of the first attempts at reproducibility of project selection, Stress works either
locally, or online [5]. Its accompanying paper surveys the reproducibility of project selections
in 68 studies and finds none to be completely reproducible. It then proposes a selection tool
that allows extensive filtering based on the project information and 100 synthesized arguments
from the projects’ version control data and metadata, such as project lifetime or open tickets.
The tool is verified on a corpus of 211 Apache projects. Stress supports queries to be stored
and repeated later. Querying over source code is not supported. Stress is no longer active.

2.3 Summary

In Table 2.1, a summary of the software repositories discussed in this chapter is given in terms
of their numbers of projects (size), whether they are a primary source of data (sources), if
they are actively maintained (active), whether queries can be run again with identical results
(reproducible), whether queries only have the power to express basic project access, filter or
are full-featured (query), and lastly, what attributes of a project are stored, these can include
the code, versions, and metadata (contents).

For our data mining purposes, we need a software repository to scale in the number of
projects and languages supported and to be up to date, to allow for powerful queries to be
expressed, and to yield deterministic and reproducible results. For those requirements, none
of the existing solutions are adequate.

Size Sources Active Updates Reproducible Query Contents

GitHub 210M primary Y continuous – basic code, ver, meta
Software Heritage 175M many Y continuous Y basic code, ver

GHTorrent 157M GitHub – continuous – full ver, meta
Orion 185K many – – Y full code, ver, meta

Boa 980K GitHub Y – Y full code, ver, meta
Bitbucket primary Y continuous – basic code, ver, meta

Flossmetrics 2800 many – – Y filter other
Black Duck 1.4M many Y continuous – filter other

Stress 211 Apache – – Y full other
SourcererCC 4.5M GitHub – – Y basic other

Table 2.1: Comparison of repositories.

22

Chapter 3

Overview of Contributions

As we have argued in the previous section, analyzing large code bases requires identifying
which software projects to study. Any mistake in the choice of projects to look at can
introduce unwanted bias in the process and, eventually, even invalidate or skew the results
of the analysis. This chapter provides an overview of the contributions of this thesis towards
our understanding of the key challenges in the practice of big code analysis, and towards an
automated, scalable, precise and reproducible infrastructure for selecting software projects
from large scale open source software repositories.

Hundreds of millions of software projects with their histories and machine-readable metadata
about many aspects of their development process offer an unprecedented wealth of informa-
tion that, when mined properly, allows us to infer software engineering insights that would
simply be out of reach using traditional experiments.

But large software repositories, as many other instances of big data, come with their own
challenges. The enormous sizes of repositories such as GitHub, make gathering, and later
analyzing the data, a complex process. Every step must be fully automated as these steps
may be repeated many times by different researchers. Validating that those steps yield the
expected result is hard as errors in big data analysis do not fail in a visible manner, but rather
may corrupt the dataset or lead to unsound results. The reason for this is that insights are
not directly observed by inspection of unique data points, but rather aggregated from millions
of rows of results using statistical techniques that may obscure the errors further.

Torture the data long enough, and it’ll confess, Ronald Coase famously cautioned. No
big code step tortures the data more than project selection. The problem is that large-scale
software repositories are extremely noisy. Most non-trivial analyses of software repositories
give insights based on development patterns that can be observed. Chapter 1, which provides
context and motivation for this thesis mentions a paper that tried to show that choosing a
particular programming language impacts the number of bugs programmers will commit. To
answer whether languages affect bugs, researchers make an implicit, unstated, hypothesis:
namely that the software projects they study are representative and meaningful. We assume
that the projects are typical software projects developed by professionals trying to follow best
practices, and that the data is meaningful. In the particular example at hand, this meant
that the commit messages contain descriptions that match the content of the commit, that
bugs are looked for and eventually fixed, and that the git history is rich enough for us to be
able to observe patterns. We will often use the, somewhat informal, term developed project

23

3. Overview of Contributions

to denote such projects. But this hypothesis is wrong. The crux of the problem is that large
scale software repositories also contain garbage. Or at least, to be charitable, projects that
are entirely irrelevant to the analysis at hand.

Dealing with garbage is a problem in many areas. In our context, garbage is a byproduct
of the success and usefulness of GitHub. Hobbyists use it for efforts that do not progress past
a few commits before the project is abandoned and left to bit rot. Most of the world’s students
and their educational institutions use software repositories for their class assignments. Popular
projects are forked (i.e. duplicated) many times over with only a few changes applied to their
code. Going beyond software, repositories are also used to store text, configuration files,
research papers, and even the thesis you are reading. Taking a random sample of GitHub
will be disappointing. The overwhelming majority of projects one will find will be extremely
small, have few commits and no meaningful metadata. Garbage.

And garbage is what this thesis concerns itself with. Namely, how to deal with it in
our analyses. If it is true that most projects hosted by GitHub are irrelevant for virtually
any software engineering analysis one could imagine, then it is clear that what is required is
extremely careful selection to ensure only developed projects, as we call them, are returned.
Garbage will only add noise to any code analysis task and possibly skew the results.

3.1 Mapping code duplication

Our first contribution in the thesis is documented in the OOPSLA 2017 paper titled DejaVu: A
Map of Code Duplicates on GitHub, in which we have mapped duplication in GitHub projects
written in four popular programming languages. We have analyzed file-level duplication, both
exact and approximate and reported on the source and composition of the clones we found.

A proper project selection must not only ensure the absence of garbage, but it must also
correct for any bias that might be present in the selection. One source of bias comes from
code duplication which causes duplicated code to be over-represented in the analysis. This is
no surprise, as code reuse is encouraged practice in software development. Common software
functionality is packed into reusable libraries which are then included in other projects. And
while some libraries serve only a niche of applications, others have become extremely ubi-
quitous, such as the jQuery library found in almost every webpage. Code duplication is not
limited to libraries. Repositories often support a one-click copy of an entire project, including
all its history into a fork, a new and essentially independent project. This practice is widely
used by external developers wanting to work on a project they do not have authorization to
update.

In a sense, duplication in software engineering is a feature, not a problem. This is only
true if the duplication is explicit, such as in the case of forks, where the source is explicitly
linked to the clone and therefore can trivially be removed from any analysis. We thus went
after the more insidious, implicit duplication.

Our paper analyzed all non-forked repositories with code in four languages: C++, Java,
Python and JavaScript. We found duplication rampant. Table 3.1 shows the summary of
our findings in terms of exact and approximate clones. Java projects being the least affected
at 40% of files being exact copies of others, whereas JavaScript was affected the worst with
an eye-popping 94% files being cloned. We have attributed this high rate to the presence
of node modules directory where npm, the Node.js package manager downloads any library
dependencies. While only a small portion of the projects included this folder, the files within

24

3.1. Mapping code duplication

6

6

6

5

5

7

9

10

12

11

21

41

38

14

78

95

100

100

62

92

100

100

13

13

12

12

12

13

14

17

10

13

18

26

12

0

0

100

0

18

18

15

13

13

13

14

13

15

16

22

21

20

49

39

60

0

20

19

18

15

14

14

14

15

16

18

17

18

18

31

29

70

83

22

21

19

18

17

15

15

15

15

19

19

18

24

35

31

27

26

25

23

21

19

17

15

16

15

19

19

19

22

20

26

26

0

0

33

31

30

28

24

21

19

18

18

21

17

21

24

27

37

43

50

44

98

14

37

35

35

34

33

28

26

23

21

24

19

22

25

25

29

29

40

39

47

47

45

44

41

37

33

30

27

27

23

25

29

28

42

34

50

85

18

59

60

62

59

54

53

48

43

38

33

30

30

30

31

36

44

30

46

99

100

69

68

67

67

67

63

61

56

48

45

35

34

33

33

37

46

60

43

17

2

41

76

77

77

76

77

71

69

63

64

57

51

41

42

36

45

53

45

35

47

63

40

13

3

82

78

81

77

79

73

74

71

67

63

54

51

51

50

53

49

52

61

65

85

69

71

66

80

80

83

84

80

80

76

80

78

70

62

58

58

52

53

49

50

60

67

56

58

51

43

84

84

86

86

86

83

82

79

80

75

75

64

65

64

65

67

63

66

67

52

82

82

80

91

92

95

89

89

89

88

90

84

87

88

81

73

72

71

62

67

75

81

67

74

82

100

94

94

95

93

96

93

93

92

91

90

88

84

89

83

77

87

77

75

87

80

94

79

48

91

87

91

87

79

85

93

89

89

91

94

91

74

77

83

95

72

76

74

50

55

92

98

98

99

96

97

94

95

95

97

90

94

92

95

89

91

83

77

87

98

59

95

57

94

93

90

93

95

95

97

97

97

96

93

94

88

98

79

90

95

96

98

92

100

89

40

99

88

97

99

97

99

98

97

96

98

95

91

96

99

94

99

84

94

100

92

96

90

99

94

85

100

90

87

100

100

100

87

99

90

96

92

100

90

97

100

66

95

96

84

94

93

72

95

85

90

85

99

83

96

19

10

100

1000

10000

10 100 1000 10000

Figure 3.1: Map of code duplication in C++. The y-axis is the number of commits per
project, the x-axis is the number of files in a project. The value of each tile is the percentage
of duplicated files for projects in the tile. Darker means more clones.

accounted for a whopping 70% of the JavaScript dataset. Even after those files were removed
from the corpus, JavaScript duplication rate was still the highest at 89%.

Java C++ Python JavaScript
Total Files 72,880,615 61,647,575 31,602,780 261,676,091
File hashes 43,713,084 (60%) 16,384,801 (27%) 9,157,622 (29%) 15,611,029 (6%)

Token Hashes 40,786,858 (56%) 14,425,319 (23%) 8,620,326 (27%) 13,587,850 (5%)
>80% similar 22,085,265 (30%) 8,225,018 (13%) 5,887,579 (19%) 8,342,380 (3%)

Table 3.1: Code duplication on GitHub across four languages and three duplication thresholds.

Figure 3.1 gives a map of duplicates in one particular language, C++, and its relationship
with two notions of project size. The y-axis is the number of commits per project, the x-axis
is the number of files in a project. The value of each tile is the percentage of duplicated
files for projects in the tile. Darker means more clones. The heatmaps show that as project
size increases so does the fraction of duplicates and that projects with fewer commits tend to
have more clones. Of particular interest are the very high percentages of cloned files found
– including many projects with no unique files. The heatmap also shows various pathologies
such as the unusually high duplication found in the cluster of very small projects with large
number of commits. Those are a product of automatically generated commits with fake
timestamps.

Another angle of our investigation was the search for any patterns in the duplicated code:

25

3. Overview of Contributions

Manual classification of a sample of the cloned files revealed that most file-level duplication
comes from the inclusion of libraries, while the near-identical files are often due to code
generation (with the exception of C++ where the rate in the sample was only 15%, hinting to
the limited use of code generation in the ecosystem).

Our paper has provided a proof of the enormous levels of duplication and confirmed it as a
major source of bias that must be explicitly dealt with. Analyzing duplicates not only wastes
resources, but also skews results. If, for instance, we analyzed JavaScript, the presence of
jQuery clones would ensure that the results of our analysis would be a perfect representation
of the characteristics of jQuery and little else. Furthermore, our analysis of duplication shed
some light on the enormous number of often unexpected forms of garbage present in GitHub,
such as the included npm packages, or the autogenerated fake commits.

3.2 Producing wrong data without doing anything obviously right!

Our second contribution, the TOPLAS 2019 paper entitled On the impact of programming
languages on code quality: a reproduction study shows that garbage in software repositories
not only exists but has an impact on our research unless dealt with properly. The paper
is a reproduction study, an attempt to independently validate a previously published result.
In our case, the original publication, which happens to be the paper we mentioned in our
motivation, appeared at a software engineering venue. We will refer to it as the original
study, and our work as the reproduction. We documented in excruciating details how easy it
is to make mistakes in all phases of a big code analysis and how those the mistakes invalidate
the result of analyzing a large corpus of programs.

The original study aimed to establish a correlation between the choice of programming
language and the number of software defects in a project. In other words, to answer the
question: is Haskell better than C++? Technically, the original study did not claim a causal
linkage between language and bugs, but that is how the paper was widely interpreted, even
by some of its authors.

The setup of the original study is, briefly, as follows. Select fifty most popular projects,
as measured by GitHub stars, in seventeen influential languages. Then go over the commit
history stored in GitHub for these projects and count bugs. Finally, use a statistical model
to correlate bugs to project language. The results of the original study were statistically
significant for most languages and comforting to our prejudices. Haskell is indeed better than
C++. Generally, functional languages have fewer bugs than imperative ones.

The reproduction reviewed how the dataset was selected, as well as the data cleaning steps,
and the statistical model. Our work identified multiple errors, mistakes and slip ups. When
we corrected the errors, the results of the paper were affected, leaving very little conclusive
evidence, and definitely nothing that would support the strong conclusions that were drawn
from the original study.

To begin with, duplication in the dataset was not accounted for. As the data included the
unique commit identifiers from GitHub, cleanup was as simple as removing rows with already
seen commit ids. 1.8% of rows were removed in total, but some languages were affected
disproportionally. Of the 33 projects with duplicate commits, 18 were related to Bitcoin
(litecoin, megacoin, memorycoin, anoncoin, ppcoin, zetacoin and so on).

To attribute bugs to languages, programming languages used in a commit were identified
by extensions of files touched by the commits. This attribution was not without problems

26

3.2. Producing wrong data without doing anything obviously right!

80%

0

5

10

15

20
C

#

Ty
pe

sc
rip

t

C
lo

ju
re

O
bj

ec
tiv

e−
C

R
ub

y

Ja
va

H
as

ke
ll

Py
th

on

C
/C

++
C

of
fe

es
cr

ip
t

Sc
al

a

Ja
va

sc
rip

t

Ph
p

G
o

Er
la

ng Pe
rl

P
er

ce
nt

ag
e

m
is

si
ng

 c
om

m
its

Figure 3.2: Percentage of missing commits in the original paper’s dataset per analyzed lan-
guage. Note that Perl is not to scale with the rest.

either. In case of C++, header files (.h) were classified as C irrespective of the language used
and several frequently used extensions such as .cxx or .cc were omitted entirely leading to
mistakes such as classifying V8, Google’s JavaScript Engine written in C++, to only contain 7
C++ commits and be classified as the largest JavaScript project in the dataset. Other languages
fared worse: translation files for internationalization were often classified as TypeScript, while
its remaining files were mostly type definitions. As those contain no bugs, the original study
reported TypeScript as the best language. Without a tool to acquire more data and label
commits properly, that was missing from the artifact, we could only correct those by removing
the seriously affected projects and languages.

We also embarked on a costly reproduction of parts of the data gathering step. We could
not feasibly validate that the projects selected for the original study were indeed the most
popular projects as of its writing: no exact time was given and even if it were, it is not
possible to query GitHub for historic popularity efficiently. We focused on the completeness
of the dataset instead - i.e. given the projects selected for the study, were all of their commits
included in the dataset? This too, was surprisingly hard to verify as the artifact omitted
project owners’ names, necessary for project identification. Through careful reconstruction
using the project names alone and their commit hashes we were able to identify 423 out of
original 729 projects. Some were no longer available, some could not be identified from the
data. We found significant number of commits from those projects to be missing in the study,
19.95% of the dataset. Figure 3.2 shows their distribution per language, with Perl being
affected the worst with 80% of commits missing.

Taking a step back from the reproduction, our work identified four categories of challenges
for analyzing large code bases:

1. Selection. Getting the right projects is tricky, as we argued earlier most repositories
are littered with garbage. Finding developed projects that are representative of the
variety in each language ecosystem is hard. In our case study, the failure points were
the use of popularity as measured by stars and not accounting for duplication.

27

3. Overview of Contributions

2. Cleaning. Data found in software repositories is surprisingly noisy. Mistakes in data
cleaning accounted for a significant part of the issues our reproduction uncovered. Ex-
amples are misclassification of files due to errors in recognizing file extensions, and
misclassification of commits as “buggy” due to imprecision of the bug detection oracles
that were used.

3. Modelling. Statistical modelling is critical to analyze big data. We have observed an
over-reliance on p-values, which are mostly of use for small data sets, and a general
statistical naiveté. Collaboration with a practicing statistician was essential to build a
sound model of the data and that model revealed how few of the results are, in fact
significant.

4. Reproducibility. Being able to reproduce results is a key feature of good science. It
is essential for big code analysis as any manual step is likely to become a bottle neck
and a source of obscure errors. While we were lucky to have an artifact with code and
data, it turns out that the code was missing some key functions and the data did not
capture key attributes needed for reproduction.

3.3 Precise Project Selection

Our third contribution, the ECOOP 2021 paper entitled CodeDJ: Reproducible Queries over
Large-Scale Software Repositories designed and implemented CodeDJ, a tool for precise, scal-
able and reproducible project selection from large software repositories. Our tool allows
researchers to precisely specify the attributes of projects of interest and obtain their samples,
including source code, history and metadata. CodeDJ is fully deterministic and supports his-
torical reproducibility, i.e., each query can specify a time and the results will be returned as
if the query has been asked at that time. As a first example of the usefulness of our tool and
to motivate its use we have used CodeDJ to investigate the effects of project selection on the
original study discussed in the previous section. [A.1]

In our second contribution in section 3.2, we have identified reliance on project popularity,
instead of intrinsic project attributes, as selectors for developed projects as a problem. The
high duplication rates in projects related to popular themes at the time, and projects like
PHPDesignPatterns suggested the correlation between popular and developed projects is
not without issues. But although we have argued earlier that precise project selection is a
key step in dealing with garbage present in large software repositories, we could not confirm
its effects on the claim of the original study as GitHub does not support random selection,
complex queries, or historical records as detailed in chapter 2 of this thesis.

CodeDJ is our answer to this crucial lack of functionality. Its goal is to allow researchers to
formulate complex queries that evaluate attributes of software hosted on GitHub and return
data about matching projects. We have selected GitHub as our sole information provider,
but the tool is designed to support additional project sources in the future.

Being reproducible effectively means that CodeDJ must keep its own mirror of projects,
their metadata and contents, as GitHub itself gives no guarantees about immutability or
indeed availability of previously accessed data. The enormous sizes of data involved, both
in absolute and relative terms, mandated that instead of simply repurposing existing data
storage systems, such as relational databases used by GHTorrent, we opted for a bespoke
solution to minimize overhead. The design of CodeDJ flows from four high-level principles:

28

3.3. Precise Project Selection

◦ Consistent, eventually : The sheer size and churn in GitHub means that obtaining a
snapshot of the whole data source is not practical. But, it is often the case that a
slightly out-of-date view is sufficient for most investigations. We choose to refresh entire
projects atomically at irregular intervals. Thus, any individual project is consistent, but
for any group of projects, the lower bound on their refresh times is the last consistent
time point.

◦ Code-centric, language agnostic: We aim to support queries on project metadata and
file contents written in any programming language. To reduce space requirements, the
only source artifacts we store is code, deduplication is used to remove redundancy, and
metadata is trimmed where possible without loss of information.

◦ Flexible query interface: CodeDJ is split between two components - Parasite and Djanco.
Parasite is a continuously evolving datastore that tracks changes in GitHub projects
and adds them to its database. Parasite provides a simple querying API (index for
random access and sequential iterator). This simple but complete querying mechanism
can be extended by clients, one of which is Djanco. Djanco builds a domain specific
language for writing complex queries over the Parasite datastore that resemble modern
data manipulation pipelines.

◦ Reproducible by design: The importance of reproducibility cannot be overstated. CodeDJ
is designed so it is possible to run any query with the information the datastore had at
an arbitrary point in the past. For this purpose, the datastore is time-indexed, strictly
append-only.

Let us illustrate how CodeDJ works on the same task we subjected the existing software
repositories to in the previous chapter. Recall that we were after a random sample of 10K
projects, their commits and the source code changes. We require projects with at least 50
commits in either Haskell or C++ languages, active issues use, at least two developers, and
more than 6 months of development.

As CodeDJ is only a mirror of GitHub, we must first ensure that we have enough such
projects. If that were not the case, we would have to instruct Parasite to look for C++ and
Haskell projects and add them to the datastore. In the paper we bootstrapped CodeDJ with
project information from GHTorrent, but have since moved towards our own scanner that
uses a continuously updated list of all public repositories and randomly scans them for project
metadata. The random scan ensures that while the process continues, the data we have always
make an unbiased random sample of GitHub. Projects in the languages of our choice will
then be cloned and analyzed for file contents and other information Parasite keeps track of
(history, commit messages, project metadata, etc.).

All this information is deduplicated and stored in append-only storage files. Our storage
files have immutable schema, support variable length records and are designed with minimal
disk overhead to ensure we scale to hundreds of millions of projects. When newer versions
of the scrapper download new kinds of information, new storage files are created instead of
changing the schema of existing ones. The scrapper alternates between adding new projects
and revisiting existing projects for any changes to be added. The append-only nature of the
storage files ensure that we never lose information, i.e., if a project gets deleted, becomes
private, or its history is altered, we record the change as a new latest state without removing
the old one.

29

3. Overview of Contributions

The storage files, required internally for deduplication, or for any serious queries, are
extremely inefficient for random access. They only support forward search, that together
with the append only nature, makes it impossible to reason about validity of any entry until
the whole file is scanned. To mitigate, Parasite uses index files heavily. Similarly to databases,
but with much lower overhead, the index files store offsets to the storage files. Different index
files for direct, indirect, or linked access, where new entries link not only to the information
in the storage file, but also to the index of the previous entry, are supported.

Going back to our example, after we gathered the projects we wish to filter and sample,
one important step remains before we can query the datastore. To ensure historical reprodu-
cibility, CodeDJ requires each query to specify a savepoint of the datastore on which the query
will be executed. This feature is semantically similar to existing tools such as GHTorrent
and Orion who provide their database snapshots for download. Instead of a full dump, which
would be prohibitively expensive, we exploit the append-only nature of the storage files. A
savepoint for CodeDJ is nothing more than a list of storage files forming the dataset and their
current sizes. Savepoints are complicated by the need for our datastore to remain always con-
sistent, e.g., when commit A with parent commit B and a change to file C is in the dataset,
so must be commit B and the new contents of file C. We ensure this by enforcing an order
on analyzed new commits.

Specifying the savepoint gives us a queryable constant view into the full datastore, while
the store itself can continue to be updated. Parasite provides a Rust library that allows iterator
and index-based access to all of the storage files that can be directly used to run queries. As
an implementation detail, the CodeDJ datastore is partitioned into substores based on project
languages to simplify the default use case. Listing 3.3 shows an example program in abridged
Rust that gives a random subset of 10K Haskell projects fulfilling our needs.

Rust might not be the language best suited for further analysis, nor is the low-level API
using iterators and indices particularly efficient at expressing more complex queries. We have
designed CodeDJ and particularly the Parasite datastore to work with multiple clients with
varying capabilities. One such client, which did not make it into our paper is mistletoe, a
command-line utility that can list projects and their attributes and export the projects and
their file contents on disk, similarly to the GHTorrent vault. It can be used in combination
with other tools researchers are already familiar with, such as the R programming language to
provide efficient access to the datastore. Another Parasite client, Djanco introduces a domain
specific language (DSL) that is suited for analysis and filtering of projects based on their
intrinsic values. Figure 3.4 shows the same query expressed in Djanco. The DSL provides
several useful abstractions over the Parasite API such as synthesized attributes like the number
of commits and developers, project age, or more explicit sampling functions that also provide
deduplication out of the box.1

For a more detailed description of CodeDJ functionality and additional information, we
refer the reader to our paper.

Pitfalls of Project Selection. To showcase the value of CodeDJ, our paper demonstrates
how it can be used not only to perform precise project selection, but to assist in its validation
as well. We have reused the original study from our previous paper in section 3.2 as we
were already familiar with it, and CodeDJ allowed us to perform the last missing piece of the
reproduction, the validation of its project selection criteria.

1The main author of Djanco is Konrad Siek, not the author of this thesis. We simply use to it demonstrate
the capabilities of CodeDJ architecture.

30

3.3. Precise Project Selection

// select the datastore, specified by the root folder of its storage files

let cdj = DatastoreView::from("path/to/datastore").substore();

// select the savepoint and substore

let savepoint = cdj.savepoints().latest().unwrap();

let substore = Substore::Haskell;

// list all projects

let projects = ds

.projects(substore, & savepoint)

.filter_map(|project_id| {

// for each project obtain info and heads (latest commits in its branches)

let pinfo = cdj.project_updates(substore, & savepoint).get(project_id).

unwrap();

// filter projects with no issues

if pinfo.issues < 1 {

return None;

}

let heads = cdj.project_heads(substore, & savepoint).get(project_id).unwrap

();

let commits = ProjectCommitsIterator::new(& heads, cdj.commits_info(substore

)).collect::<Vec<_>>();

// filter projects with too few commits

if commits.len() < 50 {

None

// filter projects with less than 6 months lifetime

} else if (commits.iter().map(|c| c.author_time).max() - commits.iter().map

(|c| c.author_time).min()) < 31 * 6 {

None

// filter projects with less than 2 users

} else if (commits.iter().map(|c| x.author).distinct().len() == 1) {

None

} else {

Some((pinfo, commits))

}

})

// sample 10K projects randomly and store them to a vector

.choose_multiple(10000)

.collect::<Vec<_>>();

// do what needs to be done with the returned projects

// ...

Figure 3.3: Getting a random sample of 10K developed projects written in Haskell using the
low level Parasite API

First, to determine how well the reported results generalize, we performed a simple exper-
iment: Using CodeDJ we were able to quickly get 1000 sets of 50 random projects per language
(similar to the original study). For each of the thousand datasets we calculated the coeffi-
cients as obtained by the paper. The distribution of those compared to the single coefficient
per language given by the paper is shown in figure 3.5. The spread of each distribution is a
measure of the sensitivity of the analysis to its inputs. One could argue that picking close
to the median of the distribution is more likely to give a representative and robust answer.
Selecting outliers, such as the C#, Perl, or most strikingly TypeScript, should definitely raise
some eyebrows, ideally leading to further investigation.

The observed sensitivity to the input selection can usually be mitigated by increasing the

31

3. Overview of Contributions

// open the datastore

let projects = Djanco::from(PATH)

.projects()

// use only haskell projects

.filter_by(Equals(project::Language, "Haskell")

// select those with at least 50 commits

.filter_by(AtLeast(Count(project::Commits), 50))

// at least two users

.filter_by(AtLeast(Count(project::Users), 2))

// at least 6 months

.filter_by(AtLeast(Count(project::Age), 31 * 6))

// uses issues

.filter_by(AtLeast(Count(project::Issues), 1))

// sample 10K projects and ensure that each added project will have at least 90% unique

commits wrt the rest of the subset

.sample(Distinct(Random(10000, Seed(42)), MinRatio(project::Commits, 0.9)));

// process the projects

// ...

Figure 3.4: Getting a random sample of 10K developed projects written in Haskell using the
high level Djanco API

C C#
C++

Cloj
ure

Coff
ee

sc
rip

t

Erla
ng Go

Has
ke

ll
Ja

va

Ja
va

sc
rip

t

Obje
cti

ve
-C Perl Php

Pyth
on

Rub
y

Sca
la

Typ
es

cri
pt

0.6

0.4

0.2

0.0

0.2

0.4

0.6

C
oe

ffi
ci

en
t

FSE 2014

Figure 3.5: Distribution of coefficients calculated from 1000 random subsets compared to
those provided in the original study

sample sizes, i.e., analyzing more than 50 projects per language the original study did. But
this only works if the actual selection makes sense, e.g., if the most popular projects form
a representative subset of developed projects. We tried to verify this assumption by an ex-
periment that compared the predictions made by the most popular projects to other, equally
plausible selections. Our subsets were obtained from CodeDJ by sampling the population if in-
terest defined explicitly by project attributes expected to correlate with project development,
such as:

32

3.3. Precise Project Selection

◦ Touched Files: compute number of files changed by commits, pick projects that changed
the most files. Rationale: indicative of projects where commits represent larger units
of work.

◦ Experienced Author: experienced developers are those on GitHub for at least two years;
pick a sample of projects with at least one experienced contributor. Rationale: less
likely to be throw-away projects.

◦ 50% Experienced: projects with two or more developers, half of which experienced.
Rationale: focus on larger teams.

◦ Message Size: Compute size in bytes of commit messages; pick projects with the largest
size. Rationale: empty or trivial commit messages indicate uninteresting projects.

◦ Number of Commits: Compute the number of commits; pick projects with the most
commits. Rationale: larger projects are more mature.

◦ Issues: Pick projects with the most issues. Rationale: issues indicate a more structured
development process.

Figure 3.6 shows, for each language, the value of the coefficients (recall that higher means
more bugs). Coefficients that are not statistically significant are shown in faded colors. If the
input set did not matter for the model used for the analysis, one could expect the different
queries to give roughly the same coefficients with the same significance. That is not the case.
The touched files query is highly predictive, 14 of the languages are significant, but the coef-
ficients are frequently opposite from those of other queries. This is striking as it goes against
expectations. The stars query is the least informative. It only gives 7 statistically significant
coefficients with remarkably low values, with multiple disagreements with the majority as
well (e.g., CoffeeScript, Erlang, Java).

C C#
C++

Cloj
ure

Coff
ee

sc
rip

t

Erla
ng Go

Has
ke

ll
Ja

va

Ja
va

sc
rip

t

Obje
cti

ve
-C Perl Php

Pyth
on

Rub
y

Sca
la

Typ
es

cri
pt

0.75

0.50

0.25

0.00

0.25

0.50

0.75

C
oe

ffi
ci

en
t

Stars
50% Experienced
Experienced Author
Number of Commits
Message Size
Issues
Touched Files

Figure 3.6: Domain knowledge

In our paper, we stress the importance of understanding the selection criteria and its
impact, as statistical significance should not be confused with validity. To help, CodeDJ can
easily provide distributions of various measures in the data. Figure 3.7 shows the distribution

33

3. Overview of Contributions

Full
 da

tas
et

Star
s

50
% E

xp
eri

en
ce

d

Exp
eri

en
ce

d A
uth

or

Num
be

r o
f C

om
mits

Mes
sa

ge
 S

ize
Iss

ue
s

Tou
ch

ed
 File

s
0

1

2

3

4

5

lo
g 1

0
(C

om
m

its
)

Commits
Age [days]

0

1

2

3

4

5

lo
g 1

0
(A

ge
 [d

ay
s]

)

Figure 3.7: Distribution of project age and number of commits over various project selections.

of project sizes (left) and project age (right) for the entire dataset and for the various queries.
Looking at these distributions makes it clear that they return quite different projects. The
experienced author and number of commits are remarkably similar and return projects that
meet our expectations. The issues distribution is similar, which should raise red flags given
that it frequently disagrees. The stars query returns many smaller projects. Finally, message
sizes and touched files show distributions opposite to those expected. They favor degenerate
young projects with few commits that are either verbose, or disproportionately large (touching
over 100K files). This is reflected in the input sizes, ranging from 8M rows for the experienced
author query to mere 79K rows of the touched files query. It is likely that these queries are
“wrong” in the sense they do not return the population of interest, exacerbated by their
reliance on sorting, as opposed to random sampling.

In summary, our paper has provided the research community with CodeDJ, a tool for
precise, scalable and reproducible project selection, promised by this thesis. Our tool is
essential for the data gathering steps of big code analyses and we have shown some of its
usefulness and motivated its adoption by performing the analysis of project selection based
on project popularity used in an influential paper. Our analysis confirmed problems with
such extrinsic selection criteria.

3.4 Designing Reproducible Big Code Experiments

Our last contribution, a paper entitled The Fault in Our Stars: How to Design Reproducible,
Large-scale Code Analysis Experiments, submitted to ECOOP 2023 advocates in favor of
standardized experimental design methodology for big code analysis. In particular, we analyze
the shortcomings of using popularity related convenience sampling methods and provide a
simple methodology for experiment design based on explicit definition of projects of interest

34

3.4. Designing Reproducible Big Code Experiments

enabled by CodeDJ. [A.4]

We have analyzed two years’ worth of Mining Software Repositories (MSR) conference
and found out that a surprisingly high number of published studies - 48%, used stars as their
sole selection criteria. Why do GitHub stars play such a central role in our experimental
methodology? Most of the papers we have reviewed were not interested in popular projects
per se, but used popularity as a proxy to the already familiar, albeit vague notion of developed
projects. As the previous chapter showed in detail, large software repositories are not built
for data mining. GitHub does not provide an easy-to-use index of hosted projects that can
be searched. Selecting the most popular projects is an example of convenience sampling.
Without specialized tools, such as CodeDJ, it is next to impossible to select the real projects
of interest. Selecting the popular ones is the closest criteria we can practically get.

The reader of this thesis should already raise their eyebrows, since at this point, we
have demonstrated the implied correlation between popularity and quality to be dubious at
best. To convince those having only the paper to read, it analyzes the top starred projects
and how well they remove common biases, such as duplication, how much they preserve the
composition of the projects of interest and how efficient they are at filtering garbage. We
then follow by arguing for a big code experiments methodology that improves generalizability
and reproducibility of our results.

Stars v. All. For most big code analyses, one wants to find projects of interest while
avoiding the duplicates that litter most language ecosystems and weeding out obviously un-
interesting projects - the garbage. But do stars really correlate with some notion of interest,
filter out uninteresting projects and remove duplicates? Unfortunately, the answer to all three
questions is no.

Most popular projects certainly do not remove duplication in significant numbers. While
analyzing the entire GitHub for duplicates in C++, Java, Python and JavaScript, we have also
checked top 1K most popular projects in each language. For C++ and JavaScript, 41% and
44%, respectively, of the most popular projects were duplicates. Python was only slightly
better with 28%, but even in Java, the most popular projects contained 9% duplication (note
that much lower duplication rate in our case study was already affecting the results).

To judge how well stars perform in selecting the projects of interest we turn to project
attributes corresponding to developed projects, such as project size (in terms of commits,
lines of code, etc.), age, or the number of contributing developers. The exact values of
those attributes that make a project interesting enough are hard to quantify generally, so
we choose the opposite: any project that has fewer than 100 lines of code, fewer than 10
commits, or has been alive for less than a week is obviously uninteresting. This rather low bar
already removes copious amounts of the dataset, for Java only 29% of projects remain. Figure
3.8 contrasts the distribution of some project attributes related to its development on the
whole dataset (gray), the dataset with uninteresting projects removed (black), and 1K most
popular projects (deliberately chosen as what is available from GitHub). Ideally, one would
expect the distributions of the interesting and most popular projects to be skewed slightly
towards older, larger, more committed to projects, with generally similar shape to avoid
introduction of bias. The interesting projects follow this expectation, but the distribution
patterns in the top starred projects are rather different. The contrast is particularly stark
for the project age. It takes a while for a project to become popular, and since stars are
rarely removed, once a project becomes popular, it stays popular for many years after its
development cedes, rendering top starred projects, on top of all their problems, particularly

35

3. Overview of Contributions

unsuitable for analyzing the latest trends.

We might be willing to forgive the most popular projects their high duplication, or the
heavy skew towards large, old and community developed projects. One can always perform
deduplication separately, albeit at a cost of severely reduced dataset, and we might even
attempt to convince ourselves this is what we want, despite the rather different makeup of
the entire repository. But at the very least stars should be effective in removing garbage. Yet
not even this is the case. By manually examining the most popular projects for outliers in
the attributes associated with project development, we have found that at least 17% of the
thousand most popular projects in Java and Python should in fact be considered uninteresting
as they are either too small toy projects, large archives without significant development, or
not even software.

Despite their demonstrated shortcomings, the expected correlation between popularity
and quality (for any meaning of it) is deeply embedded in much of our thinking. Time and
time again have reviewers of the papers in this thesis raised the question of whether popularity
is really as bad as we claim. Perhaps, for some particular notion of quality, stars make perfect
sense. Maybe. But even then, selecting the most popular projects is the wrong answer that

Versions

Locs

Devs

Age

C−Index

1 10 100 1k 10k 100k 1m 10m

Entire Dataset
Interesting
Top Stars

Figure 3.8: Comparing developed and starred projects to the entire dataset in various software
engineering metrics. See [A.4] for their detailed descriptions.

36

3.5. Summary

reveals perhaps the biggest fault in our stars: one of the benefits of random sampling is that
each sample is different. Other studies analyzing different subsets will eventually point out
any discrepancies. But if everyone is using the same subset of the most popular projects, we
will never know, as new studies will keep analyzing the same data over.

Methodology. The task of filtering projects from large software repositories we designed
CodeDJ for is only one, albeit crucial, step towards a more robust and generalizable data
gathering for big code analyses. We thus conclude our contributions with a proposal of
methodology for designing reproducible experiments with the explicit goal of improving the
generalizability of the results. The methodology is in line with evolving community stand-
ards [10], but specific to large-scale code analysis. Our approach builds on our ability to
precisely and reproducibly select projects based on their measurable attributes and takes the
form of the following protocol:

◦ Population Hypothesis: A brief description of the population of interest, what the re-
search should generalize to, which may be a narrow slice such as “programs written by
students learning JavaScript as their first language” or a broader one such as “commer-
cial code”.

◦ Frame Oracle: A procedure for deciding if a project belongs to the population. Ideally,
an algorithm efficiently computed over intrinsic attributes of a project. An oracle could,
e.g., return GitHub projects with one JavaScript file which were created by a user with
no previous commits.

◦ Sampling Strategy : A strategy for selecting a subset of the values of the population.
Ideally, specified algorithmically. An example is random sampling without replacement
from a known seed.

◦ Validity : An argument about the oracle’s and sampling strategy’s validity as means to
obtain representative samples from the population. A discussion of attempts to validate
result quality, such as manual inspection of a sample to check if JavaScript code was
actually written by beginners.

◦ Reproduction Artifacts: The artifact should allow to reproduce exactly the reported
results as well as to change either the input or the experiment.

We have picked four research papers and shown how our methodology can improve their
results by either confirming or eliminating some of the threats to their validity and improving
the ability of our research community to review and trust our results.

3.5 Summary

We identify precise project selection, data filtering, and reproducibility as the key challenges
faced by researchers analyzing software repositories that are too large and too noisy to be
analyzed whole. Through an analysis of GitHub projects in four major programming lan-
guages, we give evidence of the widespread bias and noise present in software repositories,
and through reproductions we show that mistakes made in those areas, and lack of tooling to
support the tasks has direct impact on the research claims.

37

3. Overview of Contributions

We also introduce CodeDJ, a tool for precise, scalable and reproducible project selection.
Building on the abilities of CodeDJ, we propose a methodology to replace the widespread, but
grossly inadequate, practice of convenience sampling in the form of project popularity with
carefully designed reproducible experiments to improve the robustness and generalizability of
our results.

38

Chapter 4

Relevant Papers

This chapter presents the four research papers that form the main results of the thesis. Each
paper is accompanied by a description of author’s contributions and a list of citations. All our
papers come with functional and reusable artifacts that were submitted to the corresponding
artifact evaluation committees.

39

4. Relevant Papers

4.1 Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny, Hitesh
Sajnani, and Jan Vitek.

In: Proc. ACM Program. Lang. 1, OOPSLA, Article 84 (October 2017), 28 pages.
https://doi.org/10.1145/3133908

4.1.1 Author’s Contributions

I was responsible for almost all of the work on the JavaScript pipeline. Specifically the data
acquisition, tokenization and the analysis of duplicates. Since the JavaScript dataset was the
largest, I had to rewrite previously used programs from scratch to improve their scalability.
Those programs were then used for the other three languages as well. I was responsible for
almost all data visualization and interpretation in the paper, notably the heatmaps and their
analysis. I also implemented a library in the R programming language that automatically
generated all data results used in the paper to ensure reproducibility and prepared the artifact,
which was awarded the Distinguished Artifact Award at OOPSLA. The library was re-used
in our subsequent papers.

Jakub Zitny developed the first version of a JavaScript tokenizer and identified the NPM
modules as a source of duplication.

Cristina Lopes, Pedro Martins, Vaibhav Saini and Di Yang, all from the University of
California, Irvine, were responsible for gathering the Python, Java and C/C++ datasets, run-
ning the SourcererCC analysis on them, and for constructing the file level duplication graph
in the paper. Hitesh Sajnani is the author of the SourcererCC tool [14] that was used in the
paper.

I presented the paper at OOPSLA 2017 and performed the additional dataset and heatmap
analysis that was part of the presentation, but did not make it in the paper.

4.1.2 Citations

1. Rabin, M., Hussain, A., Alipour, M. & Hellendoorn, V. Memorization and generalization
in neural code intelligence models. Information And Software Technology. 153 (2023)

2. Kang, W., Son, B. & Heo, K. TRACER: Signature-based Static Analysis for Detecting
Recurring Vulnerabilities. Proceedings Of The ACM Conference On Computer And
Communications Security. pp. 1695-1708 (2022)

3. Dyer, R. & Chauhan, J. An exploratory study on the predominant programming paradigms
in Python code. ESEC/FSE 2022 - Proceedings Of The 30th ACM Joint Meeting
European Software Engineering Conference And Symposium On The Foundations Of
Software Engineering. pp. 684-695 (2022)

4. Yu, Y., Huang, Z., Shen, G., Li, W. & Shao, Y. ASTENS-BWA: Searching partial syn-
tactic similar regions between source code fragments via AST-based encoded sequence
alignment. Science Of Computer Programming. 222 (2022)

5. Dann, A., Plate, H., Hermann, B., Ponta, S. & Bodden, E. Identifying Challenges for
OSS Vulnerability Scanners-A Study & Test Suite. IEEE Transactions On Software
Engineering. 48, 3613-3625 (2022)

40

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

6. Kang, H. & Lo, D. Active Learning of Discriminative Subgraph Patterns for API Misuse
Detection. IEEE Transactions On Software Engineering. 48, 2761-2783 (2022)

7. Hannousse, A., Nait-Hamoud, M. & Yahiouche, S. A deep learner model for multi-
language webshell detection. International Journal Of Information Security. (2022)

8. Jesse, K. & Devanbu, P. ManyTypes4TypeScript: A Comprehensive TypeScript Dataset
for Sequence-Based Type Inference. Proceedings - 2022 Mining Software Repositories
Conference, MSR 2022. pp. 294-298 (2022)

9. Ciniselli, M., Pascarella, L. & Bavota, G. To What Extent do Deep Learning-based
Code Recommenders Generate Predictions by Cloning Code from the Training Set?.
Proceedings - 2022 Mining Software Repositories Conference, MSR 2022. pp. 167-178
(2022)

10. Mir, A., Latoskinas, E., Proksch, S. & Gousios, G. Type4Py: Practical Deep Similarity
Learning-Based Type Inference for Python. Proceedings - International Conference On
Software Engineering. 2022-May pp. 2241-2252 (2022)

11. Huang, Y., Xu, F., Zhou, H., Chen, X., Zhou, X. & Wang, T. Towards Exploring the
Code Reuse from Stack Overflow during Software Development. IEEE International
Conference On Program Comprehension. 2022-March pp. 548-559 (2022)

12. Misu, M. & Satter, A. An Exploratory Study of Analyzing JavaScript Online Code
Clones. IEEE International Conference On Program Comprehension. 2022-March
pp. 94-98 (2022)

13. Liang, J., Zimmermann, T. & Ford, D. Towards Mining OSS Skills from GitHub Activ-
ity. Proceedings - International Conference On Software Engineering. pp. 106-110
(2022)

14. Ahmed, T. & Devanbu, P. Multilingual training for Software Engineering. Proceedings
- International Conference On Software Engineering. 2022-May pp. 1443-1455 (2022)

15. Coupette, C., Hartung, D., Beckedorf, J., Böther, M. & Katz, D. Law Smells: Defining
and Detecting Problematic Patterns in Legal Drafting. Artificial Intelligence And Law.
(2022)

16. Papathomas, E., Diamantopoulos, T. & Symeonidis, A. Semantic Code Search in Soft-
ware Repositories using Neural Machine Translation. Lecture Notes In Computer Sci-
ence (including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In
Bioinformatics). 13241 LNCS pp. 225-244 (2022)

17. Yang, L., Ren, Y., Guan, J., Li, B., Ma, J., Han, P. & Tan, Y. FastDCF: A Partial
Index Based Distributed and Scalable Near-Miss Code Clone Detection Approach for
Very Large Code Repositories. Lecture Notes In Computer Science (including Subseries
Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics). 13148
LNCS pp. 210-222 (2022)

18. Crawford, R. & Sloss, A. Is Expressiveness the Future of Software?. Computer. 55,
43-52 (2022)

41

4. Relevant Papers

19. Sonnekalb, T., Heinze, T. & Mäder, P. Deep security analysis of program code: A
systematic literature review. Empirical Software Engineering. 27 (2022)

20. Nguyen, P., Di Rocco, J., Iovino, L., Di Ruscio, D. & Pierantonio, A. Evaluation of
a machine learning classifier for metamodels. Software And Systems Modeling. 20,
1797-1821 (2021)

21. Amit, I. & Feitelson, D. Corrective commit probability: a measure of the effort invested
in bug fixing. Software Quality Journal. 29, 817-861 (2021)

22. Mathew, G. & Stolee, K. Cross-language code search using static and dynamic analyses.
ESEC/FSE 2021 - Proceedings Of The 29th ACM Joint Meeting European Software
Engineering Conference And Symposium On The Foundations Of Software Engineering.
pp. 205-217 (2021)

23. Bogomolov, E., Kovalenko, V., Rebryk, Y., Bacchelli, A. & Bryksin, T. Authorship
attribution of source code: A language-agnostic approach and applicability in software
engineering. ESEC/FSE 2021 - Proceedings Of The 29th ACM Joint Meeting European
Software Engineering Conference And Symposium On The Foundations Of Software
Engineering. pp. 932-944 (2021)

24. Liang, H. & Ai, L. AST-path Based Compare-Aggregate Network for Code Clone Detec-
tion. Proceedings Of The International Joint Conference On Neural Networks. 2021-
July (2021)

25. Bogart, C., Kästner, C., Herbsleb, J. & Thung, F. When and How to Make Break-
ing Changes: Policies and Practices in 18 Open Source Software Ecosystems. ACM
Transactions On Software Engineering And Methodology. 30 (2021)

26. He, J., Lee, C., Raychev, V. & Vechev, M. Learning to find naming issues with big code
and small supervision. Proceedings Of The ACM SIGPLAN Conference On Program-
ming Language Design And Implementation (PLDI). pp. 296-311 (2021)

27. Hata, H., Kula, R., Ishio, T. & Treude, C. Same file, different changes: The potential
of meta-maintenance on GitHub. Proceedings - International Conference On Software
Engineering. pp. 773-784 (2021)

28. Mir, A., Latoskinas, E. & Gousios, G. ManyTypes4Py: A benchmark python dataset
for machine learning-based type inference. Proceedings - 2021 IEEE/ACM 18th Inter-
national Conference On Mining Software Repositories, MSR 2021. pp. 585-589 (2021)

29. Svyatkovskiy, A., Lee, S., Hadjitofi, A., Riechert, M., Franco, J. & Allamanis, M. Fast
and memory-efficient neural code completion. Proceedings - 2021 IEEE/ACM 18th
International Conference On Mining Software Repositories, MSR 2021. pp. 329-340
(2021)

30. Woo, S., Park, S., Kim, S., Lee, H. & Oh, H. CENTRIS: A precise and scalable ap-
proach for identifying modified open-source software reuse. Proceedings - International
Conference On Software Engineering. pp. 860-872 (2021)

42

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

31. Tang, Y., Khatchadourian, R., Bagherzadeh, M., Singh, R., Stewart, A. & Raja, A.
An empirical study of refactorings and technical debt in machine learning systems.
Proceedings - International Conference On Software Engineering. pp. 238-250 (2021)

32. Golubev, Y., Poletansky, V., Povarov, N. & Bryksin, T. Multi-threshold token-based
code clone detection. Proceedings - 2021 IEEE International Conference On Software
Analysis, Evolution And Reengineering, SANER 2021. pp. 496-500 (2021)

33. Chen, X., Abdalkareem, R., Mujahid, S., Shihab, E. & Xia, X. Helping or not help-
ing? Why and how trivial packages impact the npm ecosystem. Empirical Software
Engineering. 26 (2021)

34. Nguyen, P., Di Ruscio, D., Pierantonio, A., Di Rocco, J. & Iovino, L. Convolutional
neural networks for enhanced classification mechanisms of metamodels. Journal Of
Systems And Software. 172 (2021)

35. Seker, A., Diri, B., Arslan, H. & Amasyali, M. Open Source Software Development
Challenges: A Systematic Literature Review on GitHub. Research Anthology On Agile
Software, Software Development, And Testing. 4 pp. 2134-2164 (2021)

36. Lachaux, M., Roziere, B., Szafraniec, M. & Lample, G. DOBF: A Deobfuscation Pre-
Training Objective for Programming Languages. Advances In Neural Information Pro-
cessing Systems. 18 pp. 14967-14979 (2021)

37. Seker, A., Diri, B., Arslan, H. & Amasyalı, M. Open Source Software Development
Challenges: A Systematic Literature Review on GitHub. Research Anthology On Usage
And Development Of Open Source Software. 1 pp. 33-62 (2021)

38. Källén, M., Sigvardsson, U. & Wrigstad, T. Jupyter Notebooks on GitHub: Character-
istics and Code Clones. Art, Science, And Engineering Of Programming. 5 (2021)

39. Villmow, J., Depoix, J. & Ulges, A. CONTEST: A Unit Test Completion Benchmark
featuring Context. NLP4Prog 2021 - 1st Workshop On Natural Language Processing
For Programming, Proceedings Of The Workshop. pp. 17-25 (2021)

40. Golubev, Y. & Bryksin, T. On the Nature of Code Cloning in Open-Source Java Pro-
jects. Proceedings - 2021 IEEE 15th International Workshop On Software Clones, IWSC
2021. pp. 22-28 (2021)

41. Farmahinifarahani, F., Lu, Y., Saini, V., Baldi, P. & Lopes, C. D-REX: Static Detection
of Relevant Runtime Exceptions with Location Aware Transformer. Proceedings - IEEE
21st International Working Conference On Source Code Analysis And Manipulation,
SCAM 2021. pp. 198-208 (2021)

42. David, Y., Alon, U. & Yahav, E. Neural reverse engineering of stripped binaries using
augmented control flow graphs. Proceedings Of The ACM On Programming Languages.
4 (2020)

43. Devore-Mcdonald, B. & Berger, E. Mossad: Defeating software plagiarism detection.
Proceedings Of The ACM On Programming Languages. 4 (2020)

43

4. Relevant Papers

44. Brody, S., Alon, U. & Yahav, E. A structural model for contextual code changes. Pro-
ceedings Of The ACM On Programming Languages. 4 (2020)

45. Kondo, M., Oliva, G., Jiang, Z., Hassan, A. & Mizuno, O. Code cloning in smart
contracts: a case study on verified contracts from the Ethereum blockchain platform.
Empirical Software Engineering. 25, 4617-4675 (2020)

46. Seker, A., Diri, B., Arslan, H. & Amasyalı, M. Open source software development
challenges: A systematic literature review on GitHub. International Journal Of Open
Source Software And Processes. 11, 1-26 (2020)

47. Spinellis, D., Kotti, Z. & Mockus, A. A Dataset for GitHub Repository Deduplication.
Proceedings - 2020 IEEE/ACM 17th International Conference On Mining Software Re-
positories, MSR 2020. pp. 523-527 (2020)

48. Golubev, Y., Eliseeva, M., Povarov, N. & Bryksin, T. A Study of Potential Code Borrow-
ing and License Violations in Java Projects on GitHub. Proceedings - 2020 IEEE/ACM
17th International Conference On Mining Software Repositories, MSR 2020. pp. 54-64
(2020)

49. Allamanis, M., Barr, E., Ducousso, S. & Gao, Z. Typilus: Neural type hints. Pro-
ceedings Of The ACM SIGPLAN Conference On Programming Language Design And
Implementation (PLDI). pp. 91-105 (2020)

50. Tang, W., Luo, P., Fu, J. & Zhang, D. LibDX: A Cross-Platform and Accurate Sys-
tem to Detect Third-Party Libraries in Binary Code. SANER 2020 - Proceedings Of
The 2020 IEEE 27th International Conference On Software Analysis, Evolution, And
Reengineering. pp. 104-115 (2020)

51. Couto, M., Saraiva, J. & Fernandes, J. Energy Refactorings for Android in the Large
and in the Wild. SANER 2020 - Proceedings Of The 2020 IEEE 27th International
Conference On Software Analysis, Evolution, And Reengineering. pp. 217-228 (2020)

52. Li, G., Wu, Y., Roy, C., Sun, J., Peng, X., Zhan, N., Hu, B. & Ma, J. SAGA: Efficient
and Large-Scale Detection of Near-Miss Clones with GPU Acceleration. SANER 2020
- Proceedings Of The 2020 IEEE 27th International Conference On Software Analysis,
Evolution, And Reengineering. pp. 272-283 (2020)

53. Allamanis, M. The adverse effects of code duplication in machine learning models of
code. Onward! 2019 - Proceedings Of The 2019 ACM SIGPLAN International Sym-
posium On New Ideas, New Paradigms, And Reflections On Programming And Software,
Co-located With SPLASH 2019. pp. 143-153 (2019)

54. Křikava, F., Miller, H. & Vitek, J. Scala implicits are everywhere a large-scale study
of the use of scala implicits in the wild. Proceedings Of The ACM On Programming
Languages.

55. Luan, S., Yang, D., Barnaby, C., Sen, K. & Chandra, S. Aroma: Code recommendation
via structural code search. Proceedings Of The ACM On Programming Languages. 3
(2019)

44

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

56. Mastrangelo, L., Hauswirth, M. & Nystrom, N. Casting about in the dark an empirical
study of cast operations in Java programs. Proceedings Of The ACM On Programming
Languages

57. Kessel, M. & Atkinson, C. Automatically curated data sets. Proceedings - 19th IEEE
International Working Conference On Source Code Analysis And Manipulation, SCAM
2019. pp. 56-61 (2019)

58. Ragkhitwetsagul, C. & Krinke, J. Siamese: scalable and incremental code clone search
via multiple code representations. Empirical Software Engineering. 24, 2236-2284
(2019)

59. Rigger, M., Marr, S., Adams, B. & Mössenböck, H. Understanding GCC builtins to
develop better tools. ESEC/FSE 2019 - Proceedings Of The 2019 27th ACM Joint
Meeting European Software Engineering Conference And Symposium On The Founda-
tions Of Software Engineering. pp. 74-85 (2019)

60. Davis, J., Michael, L., Coghlan, C., Servant, F. & Lee, D. Why arent regular expressions
a lingua franca? An empirical study on the re-use and portability of regular expressions.
ESEC/FSE 2019 - Proceedings Of The 2019 27th ACM Joint Meeting European Software
Engineering Conference And Symposium On The Foundations Of Software Engineering.
pp. 443-454 (2019)

61. Baltes, S. & Diehl, S. Usage and attribution of Stack Overflow code snippets in GitHub
projects. Empirical Software Engineering. 24, 1259-1295 (2019)

62. Theeten, B., Vandeputte, F. & Van Cutsem, T. Import2vec: Learning embeddings
for software libraries. IEEE International Working Conference On Mining Software
Repositories. 2019-May pp. 18-28 (2019)

63. Rua, R., Couto, M. & Saraiva, J. GreenSource: A large-scale collection of android code,
tests and energy metrics. IEEE International Working Conference On Mining Software
Repositories. 2019-May pp. 176-180 (2019)

64. Perez, D. & Chiba, S. Cross-language clone detection by learning over abstract syn-
tax trees. IEEE International Working Conference On Mining Software Repositories.
2019-May pp. 518-528 (2019)

65. Zhang, T., Yang, D., Lopes, C. & Kim, M. Analyzing and Supporting Adaptation of On-
line Code Examples. Proceedings - International Conference On Software Engineering.
2019-May pp. 316-327 (2019)

66. Thongtanunam, P., Shang, W. & Hassan, A. Will this clone be short-lived? Towards
a better understanding of the characteristics of short-lived clones. Empirical Software
Engineering. 24, 937-972 (2019)

67. Buch, L. & Andrzejak, A. Learning-Based Recursive Aggregation of Abstract Syntax
Trees for Code Clone Detection. SANER 2019 - Proceedings Of The 2019 IEEE 26th
International Conference On Software Analysis, Evolution, And Reengineering. pp.
95-104 (2019)

45

4. Relevant Papers

68. Alon, U., Zilberstein, M., Levy, O. & Yahav, E. Code2vec: Learning distributed repres-
entations of code. Proceedings Of The ACM On Programming Languages. 3 (2019)

69. Fernandes, P., Allamanis, M. & Brockschmidt, M. Structured neural summarization.
7th International Conference On Learning Representations, ICLR 2019. (2019)

70. Brockschmidt, M., Allamanis, M., Gaunt, A. & Polozov, O. Generative code modeling
with graphs. 7th International Conference On Learning Representations, ICLR 2019.
(2019)

71. Cvitkovic, M., Singh, B. & Anandkumar, A. Open vocabulary learning on source code
with a graph-structured cache. 36th International Conference On Machine Learning,
ICML 2019. 2019-June pp. 2662-2674 (2019)

72. Liu, J., Wang, T., Feng, C., Wang, H. & Li, D. A Large-Gap Clone Detection Approach
Using Sequence Alignment via Dynamic Parameter Optimization. IEEE Access. 7 pp.
131270-131281 (2019)

73. Moore, J., Gelman, B. & Slater, D. A convolutional neural network for language-agnostic
source code summarization. ENASE 2019 - Proceedings Of The 14th International
Conference On Evaluation Of Novel Approaches To Software Engineering. pp. 15-26
(2019)

74. Javed, O., Villazón, A. & Binder, W. JUniVerse: Large-scale jUnit-test analysis in the
wild. Proceedings Of The ACM Symposium On Applied Computing. Part F147772
pp. 1768-1775 (2019)

75. Chatley, R., Donaldson, A. & Mycroft, A. The next 7000 programming languages.
Lecture Notes In Computer Science (including Subseries Lecture Notes In Artificial
Intelligence And Lecture Notes In Bioinformatics). 10000 pp. 250-282 (2019)

76. Liu, Z., Wu, Z., Cao, Y. & Wei, Q. Software vulnerable code reuse detection method
based on vulnerability fingerprint. Zhejiang Daxue Xuebao (Gongxue Ban)/Journal Of
Zhejiang University (Engineering Science). 52, 2180-2190 (2018)

77. Palsberg, J. & Lopes, C. NJR: A normalized Java resource. Companion Proceedings
For The ISSTA/ECOOP 2018 Workshops. pp. 100-106 (2018)

78. Javed, O. & Binder, W. Large-Scale Evaluation of the Efficiency of Runtime-Verification
Tools in the Wild. Proceedings - Asia-Pacific Software Engineering Conference, APSEC.
2018-December pp. 688-692 (2018)

79. Gottschlich, J., Solar-Lezama, A., Tatbul, N., Carbin, M., Rinard, M., Barzilay, R.,
Amarasinghe, S., Tenenbaum, J. & Mattson, T. The three pillars of machine program-
ming. MAPL 2018 - Proceedings Of The 2nd ACM SIGPLAN International Workshop
On Machine Learning And Programming Languages, Co-located With PLDI 2018. pp.
69-80 (2018)

80. Alon, U., Zilberstein, M., Levy, O. & Yahav, E. A general path-based representation
for predicting program properties. ACM SIGPLAN Notices. 53, 404-419 (2018)

46

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

81. Alon, U., Zilberstein, M., Levy, O. & Yahav, E. A general path-based representation
for predicting program properties. Proceedings Of The ACM SIGPLAN Conference On
Programming Language Design And Implementation (PLDI). pp. 404-419 (2018)

82. Martins, P., Achar, R. & Lopes, C. 50K-C: A dataset of compilable, and compiled, Java
projects. Proceedings - International Conference On Software Engineering. pp. 1-5
(2018)

83. Markovtsev, V. & Long, W. Public git archive: A big code dataset for all. Proceedings
- International Conference On Software Engineering. pp. 34-37 (2018)

84. Horschig, S., Mattis, T. & Hirschfeld, R. Do Java programmers write better python?
Studying off-language code quality on GitHub. ACM International Conference Proceed-
ing Series. Part F137691 pp. 127-134 (2018)

85. Rigger, M., Marr, S., Kell, S., Leopoldseder, D. & Mössenböck, H. An analysis of x86-64
inline assembly in C programs. ACM SIGPLAN Notices. 53, 84-99 (2018)

86. Rigger, M., Marr, S., Kell, S., Leopoldseder, D. & Mössenböck, H. An analysis of x86-
64 inline assembly in C programs. VEE 2018 - Proceedings Of The 2018 International
Conference On Virtual Execution Environments. pp. 84-99 (2018)

87. Bagly, A. Developing code factoring transformation for FPGA. CEUR Workshop Pro-
ceedings. 2260 pp. 55-62 (2018)

47

84

DéjàVu: A Map of Code Duplicates on GitHub

CRISTINA V. LOPES, University of California, Irvine, USA
PETR MAJ, Czech Technical University, Czech Republic
PEDRO MARTINS, University of California, Irvine, USA
VAIBHAV SAINI, University of California, Irvine, USA
DI YANG, University of California, Irvine, USA
JAKUB ZITNY, Czech Technical University, Czech Republic
HITESH SAJNANI, Microsoft Research, USA
JAN VITEK, Northeastern University, USA

Previous studies have shown that there is a non-trivial amount of duplication in source code. This paper
analyzes a corpus of 4.5 million non-fork projects hosted on GitHub representing over 428 million iles written
in Java, C++, Python, and JavaScript. We found that this corpus has a mere 85 million unique iles. In other
words, 70% of the code on GitHub consists of clones of previously created iles. There is considerable variation
between language ecosystems. JavaScript has the highest rate of ile duplication, only 6% of the iles are distinct.
Java, on the other hand, has the least duplication, 60% of iles are distinct. Lastly, a project-level analysis shows
that between 9% and 31% of the projects contain at least 80% of iles that can be found elsewhere. These rates
of duplication have implications for systems built on open source software as well as for researchers interested
in analyzing large code bases. As a concrete artifact of this study, we have created DéjàVu, a publicly available
map of code duplicates in GitHub repositories.

CCS Concepts: • Information systems → Near-duplicate and plagiarism detection; • Software and its
engineering → Ultra-large-scale systems;

Additional Key Words and Phrases: Clone Detection, Source Code Analysis

ACM Reference Format:
Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny, Hitesh Sajnani, and Jan
Vitek. 2017. DéjàVu: A Map of Code Duplicates on GitHub. Proc. ACM Program. Lang. 1, OOPSLA, Article 84
(October 2017), 28 pages. https://doi.org/10.1145/3133908

1 INTRODUCTION
The advent of web-hosted open source repository services such as GitHub, BitBucket and Source-
Forge have transformed how source code is shared. Creating a project takes almost no efort and is
free of cost for small teams working in the open. Over the last two decades, millions of projects
have been shared, building up a massive trove of free software. A number of these projects have
been widely adopted and are part of our daily software infrastructure. More recently there have
been attempts to treat the open source ecosystem as a massive dataset and to mine it in the hopes
of inding patterns of interest.

Authors’ addresses: Cristina V. Lopes, University of California, Irvine, USA; Petr Maj, Czech Technical University, Czech
Republic; Pedro Martins, University of California, Irvine, USA; Vaibhav Saini, University of California, Irvine, USA; Di Yang,
University of California, Irvine, USA; Jakub Zitny, Czech Technical University, Czech Republic; Hitesh Sajnani, Microsoft
Research, USA; Jan Vitek, Northeastern University, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for proit or commercial advantage and that copies bear this notice and
the full citation on the irst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2017 Copyright held by the owner/author(s).
2475-1421/2017/10-ART84
https://doi.org/10.1145/3133908

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

This work is licensed under a Creative Commons Attribution 4.0 International License.

4. Relevant Papers

48

84:2 C. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek

When working with software, one may want to make statements about applicability of, say,
a compiler optimization or a static bug inding technique. Intuitively, one would expect that a
conclusion based on a software corpus made up of thousands of programs randomly extracted from
an Internet archive is more likely to hold than one based on a handful of hand-picked benchmarks
such as [Blackburn et al. 2006] or [SPEC 1998]. For an example, consider [Richards et al. 2011]
which demonstrated that the design of the Mozilla optimizing compiler was skewed by the lack of
representative benchmarks. Looking at small workloads gave a very diferent picture from what
could be gleaned by downloading thousands of websites.

Scaling to large datasets has its challenges. Whereas small datasets can be curated with care,
larger code bases are often obtained by random selection. If GitHub has over 4.5 million projects,
how does one pick a thousand projects? If statistical reasoning is to be applied, the projects must
be independent. Independence of observations is taken for granted in many settings, but with

7

7

7

7

7

7

7

7

7

7

6

10

7

9

7

3

12

3

7

22

0

10

10

10

9

10

10

10

10

10

10

10

9

9

11

10

8

11

4

18

23

30

0

0

11

10

10

11

10

10

11

11

11

10

11

10

10

11

9

12

11

7

9

7

18

17

100

11

11

12

11

11

11

11

11

11

12

11

12

13

10

10

13

8

15

11

18

12

5

13

13

13

13

13

13

13

13

13

13

14

13

12

10

11

14

14

18

13

8

2

52

15

15

15

15

15

15

15

15

15

14

15

15

15

18

16

12

15

19

13

22

43

0

86

18

18

18

18

18

18

17

17

18

19

18

20

19

19

16

17

20

30

24

20

2

22

22

22

22

22

21

22

23

23

21

22

23

21

22

27

23

19

17

24

9

3

30

30

30

30

30

30

31

29

31

30

31

28

28

33

29

27

25

40

49

0

47

35

37

35

36

36

36

35

36

36

35

37

36

30

48

45

47

36

30

60

55

31

0

39

39

40

40

39

41

40

43

40

40

45

44

44

43

37

35

30

52

63

26

84

46

49

49

48

46

49

49

51

48

46

46

44

43

48

70

73

48

13

34

58

54

53

53

53

55

55

54

53

54

53

53

56

47

46

51

46

14

100

99

0

59

62

57

57

59

59

59

56

56

56

60

58

39

63

35

36

78

48

67

68

69

64

66

65

68

65

62

65

70

58

73

32

89

95

97

65

67

66

69

66

66

61

59

69

69

59

80

79

100

7

43

97

76

70

70

71

76

67

69

70

68

68

58

65

48

98

45

80

80

77

80

77

78

76

77

80

76

68

89

70

85

85

25

0

78

82

82

80

77

81

89

71

94

96

81

98

75

99

73

85

80

70

96

86

70

24

44

46

100

9

81

97

71

84

62

100

22

88

67

100

85

100

99

98

97

81

97

91

99

89

100

87

83

93

83

95

68

88

93

96

10

100

1000

10000

10 100 1000 10000

12

9

7

7

8

10

11

15

17

24

17

22

27

27

42

47

54

40

0

100

100

0

100

16

15

13

12

11

13

13

16

18

26

26

31

34

11

30

0

17

33

50

0

23

21

19

16

16

16

17

18

20

22

24

30

28

24

40

15

39

8

36

30

0

30

27

25

22

21

20

19

20

22

24

23

25

33

23

32

40

31

55

33

29

48

44

41

36

29

27

25

24

24

26

23

28

29

28

40

43

80

9

48

42

40

39

37

33

31

29

27

27

27

27

28

40

35

30

20

57

56

2

100

100

100

48

46

43

41

38

36

31

31

29

32

30

31

30

39

38

33

51

48

66

55

6

50

53

50

47

43

40

37

35

31

34

33

33

32

37

37

42

23

61

3

62

59

61

58

55

49

46

41

36

38

37

35

38

38

42

36

48

60

74

30

72

74

69

71

66

60

58

53

47

44

43

41

40

36

42

45

47

44

61

74

79

95

82

86

83

81

79

74

72

67

60

59

47

49

40

42

46

43

41

64

56

59

2

98

93

92

92

91

89

87

84

78

77

71

64

59

52

54

45

49

59

61

64

52

50

96

95

97

96

95

93

93

92

92

89

80

72

68

68

60

52

71

72

56

64

61

63

95

99

96

96

96

94

96

94

90

90

87

80

91

72

71

70

48

65

74

73

84

57

64

41

98

98

98

98

98

98

98

96

95

93

89

90

76

77

80

84

72

90

77

89

78

84

98

96

97

98

96

96

98

98

93

96

90

85

93

80

61

94

34

79

78

72

97

97

96

98

94

95

96

91

93

98

85

91

97

98

92

99

89

96

91

86

85

100

90

94

91

98

99

96

99

98

95

99

98

73

68

52

99

98

69

45

83

91

99

97

99

98

96

100

98

98

100

100

100

100

98

99

83

97

99

99

100

100

70

100

95

100

99

91

76

99

100

100

100

100

100

99

0

99

100

94

10

100

1000

10000

10 100 1000 10000

Java Python

6

6

6

5

5

7

9

10

12

11

21

41

38

14

78

95

100

100

62

92

100

100

13

13

12

12

12

13

14

17

10

13

18

26

12

0

0

100

0

18

18

15

13

13

13

14

13

15

16

22

21

20

49

39

60

0

20

19

18

15

14

14

14

15

16

18

17

18

18

31

29

70

83

22

21

19

18

17

15

15

15

15

19

19

18

24

35

31

27

26

25

23

21

19

17

15

16

15

19

19

19

22

20

26

26

0

0

33

31

30

28

24

21

19

18

18

21

17

21

24

27

37

43

50

44

98

14

37

35

35

34

33

28

26

23

21

24

19

22

25

25

29

29

40

39

47

47

45

44

41

37

33

30

27

27

23

25

29

28

42

34

50

85

18

59

60

62

59

54

53

48

43

38

33

30

30

30

31

36

44

30

46

99

100

69

68

67

67

67

63

61

56

48

45

35

34

33

33

37

46

60

43

17

2

41

76

77

77

76

77

71

69

63

64

57

51

41

42

36

45

53

45

35

47

63

40

13

3

82

78

81

77

79

73

74

71

67

63

54

51

51

50

53

49

52

61

65

85

69

71

66

80

80

83

84

80

80

76

80

78

70

62

58

58

52

53

49

50

60

67

56

58

51

43

84

84

86

86

86

83

82

79

80

75

75

64

65

64

65

67

63

66

67

52

82

82

80

91

92

95

89

89

89

88

90

84

87

88

81

73

72

71

62

67

75

81

67

74

82

100

94

94

95

93

96

93

93

92

91

90

88

84

89

83

77

87

77

75

87

80

94

79

48

91

87

91

87

79

85

93

89

89

91

94

91

74

77

83

95

72

76

74

50

55

92

98

98

99

96

97

94

95

95

97

90

94

92

95

89

91

83

77

87

98

59

95

57

94

93

90

93

95

95

97

97

97

96

93

94

88

98

79

90

95

96

98

92

100

89

40

99

88

97

99

97

99

98

97

96

98

95

91

96

99

94

99

84

94

100

92

96

90

99

94

85

100

90

87

100

100

100

87

99

90

96

92

100

90

97

100

66

95

96

84

94

93

72

95

85

90

85

99

83

96

19

10

100

1000

10000

10 100 1000 10000

15

13

11

10

11

13

16

18

21

26

27

25

29

45

40

40

20

33

33

0

0

34

31

27

26

26

28

29

31

33

37

37

41

38

40

50

50

67

33

100

100

46

44

39

36

35

35

36

38

41

42

45

44

43

46

46

64

55

69

30

80

100

53

51

47

44

42

42

44

48

45

48

49

50

59

58

58

60

45

75

33

33

57

56

52

48

45

42

41

43

54

44

51

51

54

60

80

56

67

59

62

100

68

68

64

59

55

50

45

43

43

44

45

45

50

56

89

81

63

67

82

100

25

75

76

73

69

64

59

53

49

47

46

44

46

45

57

80

62

44

60

100

81

80

80

78

74

71

67

61

57

52

49

45

46

48

55

62

58

57

39

83

54

93

85

86

85

84

80

77

72

67

61

56

52

49

48

51

52

52

63

79

98

91

92

92

90

90

88

83

80

77

69

62

61

55

58

65

58

62

69

61

94

94

94

94

93

93

91

88

85

80

76

70

62

57

57

60

60

73

81

68

42

97

97

97

97

96

96

95

93

93

89

85

82

80

71

59

63

71

75

55

76

60

99

98

98

98

98

97

97

97

95

94

93

91

89

88

78

67

66

77

75

64

85

80

98

99

98

98

98

98

97

97

97

96

95

94

90

87

89

80

76

79

60

71

56

99

99

99

99

99

98

98

98

98

97

96

96

92

90

87

80

82

92

87

91

84

99

99

99

99

98

99

98

98

97

98

97

96

93

94

95

91

87

78

60

89

88

49

40

99

99

99

99

99

99

99

99

99

98

95

98

98

95

82

88

79

83

99

100

99

100

99

99

99

99

99

99

99

99

99

94

99

98

99

99

100

92

100

97

85

99

100

100

99

99

99

100

99

99

98

99

99

91

99

99

99

100

96

98

79

99

100

100

99

99

100

100

99

100

100

99

99

100

99

94

99

95

93

100

100

100

100

100

100

100

100

100

99

99

100

100

99

100

75

100

100

100

100

100

100

100

98

100

99

100

100

99

100

100

96

100

99

100

100

100

100

100

100

100

96

100

100

100

99

100

10

100

1000

10000

10 100 1000 10000

C++ JavaScript

Fig. 1. Map of code duplication. The y-axis is the number of commits per project, the x-axis is the number of
files in a project. The value of each tile is the percentage of duplicated files for all projects in the tile. Darker
means more clones.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

49

DéjàVu 84:3

software there are many ways one project can inluence another. Inluences can originate from
the developers on the team, for instance the same people will tend to write similar code. Even
more common are the various means of software reuse. Projects can include other projects. Apache
Commons is used in thousands of projects, Oracle’s SDK is universally used by any Java project,
JQuery by most websites. StackOverlow and other discussion forums encourage the sharing of
code snippets. Cut and paste programming where code is lifted from one project and dropped into
another is another way to inject dependencies. Lastly, entire iles can be copied from one project to
the next. Any of these actions, at scale, may bias results of research.

Several published studies either neglected to account for duplicates, or addressed them before
analysis. [Casalnuovo et al. 2015] studied the use of assertions in the top 100 most popular C and
C++ projects in GitHub. [Ray et al. 2014] studied software quality using the top 50 most popular
projects in 17 languages. Neither addressed ile duplication. Conversely, [Hofa 2016] studied the
old łtabs v. spacesž issue in 400K GitHub projects; ile duplication was identiied as an issue and
eliminated before analysis. [Cosentino et al. 2016] present a meta-analysis of studies on GitHub
projects where trends and problems related to dataset selection are identiied.

This paper provides a tool to assist selecting projects from GitHub. DéjàVu is a publicly available
index of ile-level code duplication. The novelty of our work lies partly in its scale; it is an index
of duplication for the entire GitHub repository for four popular languages, Java, C++, Python
and JavaScript. Figure 1 illustrates the proportion of duplicated iles for diferent project sizes
and numbers of commits (section 5 explains how these heatmaps were generated). The heatmaps
show that as project size increases the proportion of duplicated iles also increases. Projects with
more commits tend to have fewer project-level clones. Finally JavaScript projects have the most
project-level clones, while Java projects have the fewest.

Table 1. File-hash duplication in subsets.

10K Stars 10K Commits
Java 9% 6%

C/C++ 41% 51%
Python 28% 44%

JavaScript 44% 66%

The clone map from which the heatmaps were pro-
duced is our main contribution. It can be used to under-
stand the similarity relations in samples of projects or
to curate samples to reduce duplicates. Consider for in-
stance a subset that focuses on the most active projects,
as done in [Borges et al. 2016], by iltering on the num-
ber of stars or commits a project has. For example, the
clones for the 10K most popular projects are summarized
in Figure 1. In Java, this ilter is reasonably eicient at reducing the number of clones. In other
languages clones remain prevalent. DéjàVu can be used to curate datasets, i.e. remove projects with
too many clones. Besides applicability to research, our results can be used by anyone who needs to
host large amounts of source code to avoid storing duplicate iles. Our clone map can also be used
to improve tooling, e.g. being queried when new iles are added to projects to ilter duplicates.

At the outset of this work, we were planning to study diferent granularities of duplication. As
the results came in, the staggering rate of ile-level duplication drove us to select three simple levels
of similarity. A ile hash gives a measure of ile that are copied across projects without changes. A
token hash captures minor changes in spaces, comments and ordering. Lastly, SourcererCC captures
files with 80% token-similarity. This gives an idea of how many files have been edited ater cloning.
Our choice of languages was driven by the popularity of these languages, and by the fact that two
are statically typed and two have no type annotations. This can conceivably lead to diferences in
the way code is reused. We expected to answer the following questions: How much code cloning is
there, how does cloning afect datasets of sotware writen in diferent languages, and through
which processes does duplication come about? This paper describes our methodology, details the
corpus that we have selected and gives our answers to these questions. Along with the quantitative
analysis, we provide a qualitative analysis of duplicates on a small number of examples.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4. Relevant Papers

50

84:4 C. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek

Artifacts. The lists of clones, code for gathering data, computing clones, data analysis and visualiza-
tion are at: http://mondego.ics.uci.edu/projects/dejavu. Processing was done on a Dell PowerEdge
R830 with 56 cores (112 threads) and 256G of RAM. The data took 2 months to download and 6
weeks to process.

2 RELATED WORK
Code clone detection techniques have been documented in the literature since the early 90s.
Readers interested in a survey of the early work are referred to [Koschke 2007; Roy and Cordy
2007]. There are also benchmarks for assessing the performance of tools [Roy and Cordy 2009;
Svajlenko and Roy 2015]. The pipeline we used includes SourcererCC, a token-based code clone
detection tool that is freely available and has been compared to other similar tools using those
benchmarks [Sajnani 2016; Sajnani et al. 2016].1 SourcererCC is the most scalable tool so far for
detecting Type 3 clones. Type 3 clones are syntactically similar code fragments that difer at the
statement level. The fragments have statements added/modified/removed with respect to each
other.

One of the earliest studies of inter-project cloning, [Kamiya et al. 2002] analyzed clones across
three diferent operating systems. They found evidence of about 20% cloning between FreeBSD
and NetBSD and less than 1% between Linux and FreeBSD or NetBSD. This is explained by the fact
that Linux originated and grew independently. [Mockus 2007] performed an analysis of popular
open source projects, including several versions of Unix and several popular packages; 38K projects
and 5M files. The concept of duplication there was simply based on file names. Approximately
half of the file names were used in more than one project. Furthermore, the study also tried to
identify components that were duplicated among projects by detecting directories that share a
large fraction of their files. Both [Mockus 2007] and [Mockus 2009] use only a fraction of our
dataset and a single similarity metric, as opposed to the 3 metrics we provide.

A few studies have focused on block-level cloning, i.e. portions of code smaller than entire files.
[Roy and Cordy 2010] analyzed clones in twenty open source C, Java and C# systems. They found
15% of the C files, 46% of the Java files, and 29% of C# files are associated with exact block-level
clones. Java had a higher percentage of clones because of accessors methods in Swing. [Heinemann
et al. 2011] computed block-level clones consisting of at least 15 statements between 22 commonly
reused Java frameworks consisting of more than 6 MLOC and 20 open source Java projects. They
did not find any clones for 11 projects. For 5 projects, they found cloning to be below 1% and for
the remaining 4, they found up to 10% cloning. These two studies give conflicting accounts of
block-level code duplication.

Closer to our study, an analysis of file-level code cloning on Java projects is presented by [Ossher
et al. 2011]. This work, analyzed 13K Java projects with close to 2M files. The authors created a
system that merges various clone detection techniques with various degrees of confidence, starting
on the highest: MD5 hashes; name equivalence through Java’s full-qualified names. They report
5.2% file-hash duplication, considerably lower than what we found. Our corpus is three orders
of magnitude larger than Ossher’s. Furthermore, intra-project duplication meant to deal with
versioning was excluded. They looked at subversion, which may have diferent practices than git,
especially related to versioning. We speculate that the practice of copying source code files in open
source has become more pervasive since that study was made, and that sites like GitHub simplify
copying files among projects, but we haven’t reanalyzed the dataset as it is not relevant to the
DéjàVu map.

1http://github.com/Mondego/SourcererCC

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

51

DéjàVu 84:5

Over the past few years, open source repositories have turned out to be useful to validate beliefs
about sotware development and sotware engineering in general. The richness of the data and
the potential insights that it represents has created an entire community of researchers. [Kochhar
et al. 2013] used 50K GitHub repositories to investigate the correlation between the presence of
test cases and various project development characteristics, including the lines of code and the size
of development teams. They removed toy projects and included famous projects such as Juery
and Rails in their dataset. [Vendome et al. 2016] study how licensing usage and adoption changes
over a period of time on 51K repositories. They choose repositories that (i) were not forks; and
(ii) had at least one star. [Borges et al. 2016] analyze 2.5K repositories to investigate the factors
that impact their popularity, including the identification of the major paterns that can be used to
describe popularity trends.

The sotware engineering research community is increasingly examining large number of projects
to test hypotheses or derive new knowledge about the sotware development process. However,
as [Nagappan et al. 2013] point out, more is not necessarily beter, and selection of projects
plays an important role ś more so now than ever, since anyone can create a repository for any
purpose at no cost. Thus, the quality of data gathered from these sotware repositories might be
questionable. For example, as we also found out, repositories oten contain school assignments,
copies of other repositories, images and text files without any source code. [Kalliamvakou et al.
2014] manually analyzed a sample of 434 GitHub repositories and found that approximately 37%
of them were not used for sotware development. As a result, researchers have spent significant
efort into collecting, curating, and analyzing data from open source projects around the world.
Flossmetrics [Gonzalez-Barahona et al. 2010] and Sourcerer [Ossher et al. 2009] collect data and
provide statistics. [Dyer et al. 2013] have curated a large number of Java repositories and provide
a domain specific language to help researchers mine data about sotware repositories. Similarly
[Bissyande et al. 2013] have created Orion, a prototype for enabling unified search to retrieve
projects using complex search queries linking diferent artifacts of sotware development, such as
source code, version control metadata, bug tracker tickets, developer activities and interactions
extracted from hosting platform. Black Duck Open Hub (www.openhub.net) is a public directory
of free and open source sotware, ofering analytics and search services for discovering, evaluating,
tracking, and comparing open source code and projects. It analyzes both the code’s history and
ongoing updates to provide reports about the composition and activity of project code bases. These
platforms are useful for researchers to filter out repositories that are interesting to study a given
phenomenon by providing various filters. While these filters are useful to validate the integrity
of the data to some extent, certain subtle factors when unaccounted for can heavily impact the
validity of the study. Code duplication is one such factor. For example, if the dataset consists of
projects that have hundreds and thousands of duplicate projects that are part of the same dataset,
the overall lack of diversity in the dataset might lead to incorrect observations, as pointed out
by [Nagappan et al. 2013].

3 ANALYSIS PIPELINE
Our analysis pipeline is outlined in Figure 2. The pipeline starts with local copies of the projects that
constitute our corpus. From here, code files are scanned for fact extraction and tokenization. Two
of the facts are the hashes of the files and the hashes of the tokens of the files. File hashes identify
exact duplicates; token hashes allow catch clones up with minor diferences. While permutations
of same tokens may have the same hash, they are unlikely. Clones are dominated by exact copies,
and we did not observe any such collision in randomly sampled pairs. Files with distinct token
hashes are used as input to the near-miss clone detection tool, SourcererCC. While our JavaScript

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4. Relevant Papers

52

84:6 C. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek

Software
Projects

Tokens
and Facts

for
Each File

Tokenization File-hash Reduction

Project
Clones

Token-hash Reduction

Distinct
Source
Code

Group
of

Distinct
Files

Distinct
Source
Code

SourcererCC

Fig. 2. Analysis pipeline.

pipeline was developed independently, data formats, database schema and analysis scripts are
identical.

3.1 Tokenization
Tokenization transforms a file into a łbag of words,ž where occurrences of each word are recorded.
Consider, for instance, the Java program:

package foo;

public class Foo { // Example Class

private int x;

public Foo(int x) { this.x = x; }

private void print() { System.out.println("Number: " + x) }

public static void main() { new FooNumber (4).print(); } }

Tokenization removes comments, white space, and terminals. Tokens are grouped by frequency,
generating:

Java Foo:[(package ,1) ,(foo ,1) ,(public ,3) ,(class ,1) ,(Foo ,2) ,(private ,2) ,(int

,2) ,(x,5),

(this ,1) ,(void ,2) ,(print ,2) ,(System ,1) ,(out ,1) ,(println ,1) ,(Number ,1) ,(

static ,1),

(main ,1) ,(new ,1) ,(FooNumber ,1) ,(4,1)]

The tokens package and foo appear once, public appears three times, etc. The order is not
relevant. During tokenization we also extract additional information: (1) file hash ś the MD5 hash
of the entire string that composes the input file; (2) token hash ś the MD5 hash of the string that
constitutes the tokenized output; (3) size in bytes; (4) number of lines; (5) number of lines of code
without blanks; (6) number of lines of source without comments; (7) number of tokens; and (8)
number of unique tokens. The tokenized input is used both to build a relational database and as
input to SourcererCC. The use of MD5 (or any hashing algorithm) runs the risk of collisions, given
the size of our data they are unlikely to skew the results.

3.2 Database
The data extracted by the tokenizer is imported into a MySQL database. The table Projects
contains a list of projects, with a unique identifier, a path in our local corpus and the project’s URL.
Files contains a unique id for a file, the id of the project the file came from, the relative paths and
URLs of the file and the file hash. The statistics for each file are stored in the table Stats, which
contains the information extracted by the tokenizer. The tokens themselves are not imported. The

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

53

DéjàVu 84:7

Projects

Project Id Project Path GitHub URL

Files

File Id Project Id Relative Path Relative URL File Hash

Stats

File Hash Bytes Lines LOC SLOC Tokens ...

... Unique Tokens Token Hash

Stats table has the file hash as unique key. With this, we get an immediate reduction from files
to hash-distinct files. Two files with distinct file hashes may produce the exact same tokens, and,
therefore the same token hash. This could happen when the code of one file is a permutation of
another. The converse does not hold: files with distinct token hashes must have come from files
with distinct file hashes. For source code analysis, file hashes are not necessarily the best indicators
of code duplication; token hashes are more robust to small perturbations. We use primarily token
hashes in our analysis.

3.3 Project-Level Analysis
Besides file-level analysis, we also look for projects with significant overlap with other projects.
This is done with a script that queries the database making an intersection of the project files’
distinct token hashes. This script produces pairs of projects that have significant overlap in at
least one direction. The results are of the form: A cloned in B at x%, B cloned in A at y%, where x%
of project A’s files (in tokenized form) are found also in project B, and y% of project B’s files (in
tokenized form) are found in project A. Calculating project-level information is done in two steps.
First, collect all the files from a project A, say, for example there are 4 files in A: Then find the
token-hash duplicates for each of these files in other projects. It might be something like:

project A

File1 - B, B, C

File2 - B

File3 -

File4 - B, D, F

There are 3 files from A with duplicates in B, making A a clone of B at 75%. Conversely, there are 4
files in B with duplicates in A; assuming B has a total of 20 files, then B is cloned in A at 20%. A file
can be in other project multiple times (e.g. in diferent directories) as is File 1.

3.4 SourcererCC
The concept of inexact code similarity has been studied in the code cloning literature. Blocks of code
that are similar are called near-miss clones, or near-duplication [Cordy et al. 2004]. SourcererCC
estimates the amount of near-duplication in GitHub with a łbag of wordsž model for source code
rather than more sophisticated structure-aware clone detection methods. It has been shown to
have good precision and recall, comparable to more sophisticated tools [Sajnani 2016]. Its input
consists of non-empty files with distinct token hashes. SourcererCC finds clone pairs between

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4. Relevant Papers

54

84:8 C. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek

Table 2. GitHub Corpus.

Java C++ Python JavaScript

C
ou

nt
s

projects (total) 3,506,219 1,130,879 2,340,845 4,479,173
projects (non-fork) 1,859,001 554,008 1,096,246 2,011,875
projects (downloaded) 1,481,468 369,440 909,290 1,778,679
projects (analyzed) 1,481,468 364,155 893,197 1,755,618
iles (analyzed) 72,880,615 61,647,575 31,602,780 261,676,091

M
ed

ia
ns Files/project 9 (σ = 600) 11 (σ = 1304) 4 (σ = 501) 6 (σ = 1335)

SLOC/file 41 (σ = 552) 55 (σ = 2019) 46 (σ = 2196) 28 (σ = 2736)
Stars/project 0 (σ = 71) 0 (σ = 119) 0 (σ = 99) 0 (σ = 324)
Commits/project 4 (σ = 336) 6 (σ = 1493) 6 (σ = 542) 6 (σ = 275)

these files at a given level of similarity. We have selected 80% similarity as this has given good
empirical results. Ideally one could imagine varying the level of similarity and reporting a range
of results. But this would be computationally expensive and, given the relatively low numbers of
near-miss clones, would not afect our results.

4 CORPUS
The GitHub projects were downloaded using the GHTorrent database and network [Gousios
2013] which contains meta-data such as number of stars, commits, commiters, whether projects
are forks, main programming language, date of creation, etc., as well as download links. While
convenient, GHTorrent has errors: 1.6% of the projects were replicated entries with the same URL;
only the youngest of these was kept for the analysis.

Table 2 gives the size of the diferent language corpora. We skipped forked projects as forks
contain a large amount of code from the original projects, retaining those would skew our findings.
Downloading the projects was the most time-consuming step. The order of downloads followed
the GHTorrent projects table, which seems to be roughly chronological. Some of the URLs failed
to produce valid content. This happened in two cases: when the projects had been deleted, or
marked private, and when development for the project happens in branches other than master.
Thus, the number of downloaded projects was smaller than the number of URLs in GHTorrent. For
each language, the files analyzed were files whose extensions represent source code in the target
languages. For Java: .java; for Python: .py; for JavaScript: .js, for C/C++: .cpp .hpp .HPP .c
.h .C .cc .CPP .c++ and .cp. Some projects did not have any source code with the expected
extension, they were excluded.

The medians in Table 2 give additional properties of the corpus, namely the number of files per
(non-empty) project, the number of Source Lines of Code (SLOC) per file, the number of stars and
the number of commits of the projects. In terms of files per project, Python and JavaScript projects
tend to be smaller than Java and C++ projects. C++ files are considerably larger than any others,
and JavaScript files are considerably smaller. None of these numbers is surprising. They all confirm
the general impression that a large number of projects hosted in GitHub are small, not very active,
and not very popular. Figures 3 and 4 illustrate the basic size-related properties of the projects we
analyzed, namely the distribution of files per project and the distribution of Source Lines of Code
(SLOC) per file. For JavaScript we give data with and without NPM (it is a cause of a large number
of clones). Without NPM means that we ignored files downloaded by the Node Package Manager.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

55

DéjàVu 84:9
0

5
1
0

1
5

0 10 100 1000 10000 100000

Files per Project

%
 o

f
P

ro
je

c
ts

C++

0
5

1
0

1
5

2
0

0 10 100 1000 10000 100000

Files per Project

%
 o

f
P

ro
je

c
ts

Java

0
5

1
0

1
5

2
0

0 10 100 1000 10000 100000

Files per Project

%
 o

f
p

ro
je

c
ts

Statistics

Mean

Median

all

no NPM

JavaScript

0
5

1
0

1
5

2
0

0 10 100 1000 10000 100000 1000000

Files per Project

%
 o

f
P

ro
je

c
ts

Statistics

Python

Fig. 3. Files per project.

5 QUANTITATIVE ANALYSIS
We present analyses of the data at two levels of detail: file and project level. This section focuses
exclusively on quantitative analysis; the next section delves deeper into qualitative observations.

5.1 File-Level Analysis
Table 3 shows a summary of the findings for files. łSCC dup filesž is the number of files, out of the
distinct token-hash files, that SourcererCC has identified as clones; similarly, łSCC unique filesž is
the number of files for which no clones were detected. Figure 5 (top row) charts the numbers in
Table 3. The duplicated files (dark grey) are the files that are duplicate of at least one of the distinct
token-hash files (light grey); further, the distinct token-hash files are split between those for which
SourcererCC found at least one similar file (cloned files, grey) and those for which SourcererCC
did not find any similar file (unique files, in white).

These numbers show a considerable amount of code duplication, both exact copies of the
files (file hashes), exact copies of the files’ tokens (token hashes), and near-duplicates of files
(SourcererCC). The amount of duplication varies with the language: the JavaScript ecosystem
contains the largest amount of duplication, with 94% of files being file-hash clones of the other 6%;
the Java ecosystem contains the smallest amount, but even for Java, 40% of the files are duplicates;
the C++ and Python ecosystems have 73% and 71% copies, respectively. As for near-duplicates, Java
contains the largest percentage: 46% of the files are near-duplicate clones. The ratio of near-miss
clones is 43% for Java, 39% for JavaScript, and 32% for Python.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4. Relevant Papers

56

84:10 C. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek

0
2

.5
5

7
.5

1
0

1
2

.5

0 10 100 1000 10000 100000 1000000

SLOC

%
 o

f
p
ro

je
c
ts

Statistics

Mean

Median

all

no NPM

JavaScript

0
5

1
0

1
5

0 10 100 1000 10000 100000

SLOC (log)

%
 o

f
p
ro

je
c
ts

Java

0
3

6
9

0 10 100 1000 10000 100000 1000000

SLOC (log)

%
 o

f
p
ro

je
c
ts

Statistics

Python

0
5

1
0

0 10 100 1000 10000 100000 1000000

SLOC (log)

%
 o

f
p
ro

je
c
ts

C++

Fig. 4. SLOC per file.

The heatmaps (Figure 1) shown in the beginning of the paper were produced using the number
of commits shown in Table 2, the number of files in each project, and the file hashes. The heat
intensity corresponds to the ratio of file hashes clones over total files for each cell.

Duplication can come in many flavors. Specifically, it could be evenly or unevenly distributed
among all token hashes. We found these distributions to be highly skewed towards small groups
of files. In Java 1.5M groups of files with the same token-hash have either 2 or 3 files in them; the
number of token hash-equal groups with more than 100 files is minuscule. The same observation
holds for the other languages. Another interesting piece of information about clone groups is given
by the largest extreme. In Python, the largest group of file-hash clones has over 2.5M files. In Java,

Table 3. File-Level Duplication.

Java C++ Python JavaScript
Total files 72,880,615 61,647,575 31,602,780 261,676,091
File hashes 43,713,084 (60%) 16,384,801 (27%) 9,157,622 (29%) 15,611,029 (6%)
Token hashes 40,786,858 (56%) 14,425,319 (23%) 8,620,326 (27%) 13,587,850 (5%)
SCC dup files 18,701,593 (26%) 6,200,301 (10%) 2,732,747 (9%) 5,245,470 (2%)
SCC unique files 22,085,265 (30%) 8,225,018 (13%) 5,887,579 (19%) 8,342,380 (3%)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

57

DéjàVu 84:11
A

ll
F

ile
s

 Java C/C++ Python JavaScript

>
=

 5
0
 t
o
k
e
n
s

Duplicated Cloned Unique

Fig. 5. File-level duplication for entire dataset and excluding small files.

the largest group of SourcererCC clones has over 65K files. In the next section we show which files
these are.

5.2 File-Level Analysis Excluding Small Files
One observation that emerged immediately from all the language ecosystems was that the most
duplicated file is the empty file ś a file with no content, and size 0. In the Python corpus alone,
there are close to 2.2M occurrences of this trivial file, and in the JavaScript corpus there are 986K
occurrences of that same file. Another frequently occurring trivial file in all ecosystems is a file
with 1 empty line. Indeed, a common patern that emerged was that the most duplicated files tend
to be very small. Once we detected that, we redid the analysis excluding small files. Specifically,
we excluded all files with less than 50 tokens.2 Table 4 and Figure 5 (botom row) show the results.

Although the absolute number of files and hashes change significantly, the changes in ratios of
the hashes and SCC results are small. When they are noticeable, they show that there is slightly
less duplication in this dataset than in the entire dataset. Comparing Table 4 with Table 3 shows

2This threshold is arbitrary. It is based on our observations of small iles; other values can be used.

Table 4. File-level duplication excluding small files.

Java C++ Python JavaScript
of files 57,240,552 49,507,006 23,382,050 162,136,892
% of corpus 79% 80% 74% 62%
File hashes 34,617,736 (60%) 13,401,948 (27%) 7,267,097 (31%) 11,444,667 (7%)
Token hashes 32,473,052 (58%) 11,893,435 (24%) 6,949,894 (30%) 10,074,582 (6%)
SCC dup files 14,626,434 (26%) 5,297,028 (10%) 2,105,769 (9%) 3,896,989 (2%)
SCC unique files 17,848,618 (31%) 6,596,407 (13%) 4,844,125 (21%) 6,177,593 (4%)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4. Relevant Papers

58

84:12 C. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek

that small files account for a slightly higher presence of duplication, but not that much higher
than the rest of the corpus.

5.3 Inter-Project Analysis
So far, we investigated how code duplication is rampant at the file level. The next question is how
this finding maps into projects: how many projects are exact and near-duplicates of other projects,
even though they are not technically forks? This is called inter-project cloning. For that, and as
explained in Section 3, we computed the overlap of files between projects, as given by the files’
token hashes. We used the entire corpus, including the small files, as these are important for the
projects. The results are shown in Table 5 and Figure 6.

Table 5. Inter-project cloning.

Java C++ Python JavaScript
projects (analyzed) 1,481,468 364,155 893,197 1,755,618
clones ≥ 50% 205,663 (14%) 94,482 (25%) 159,224 (18%) 854,300 (48%)
clones ≥ 80% 135,168 (9%) 58,906 (16%) 94,634 (11%) 546,207 (31%)
clones 100% 87,220 (6%) 24,851 (7%) 51,589 (6%) 273,970 (15%)
exact dups 73,869 (5%) 19,809 (5%) 43,501 (5%) 198,556 (11%)
exact dups (≥ 10 files) 37,722 (3%) 10,286 (3%) 7,331 (1%) 78,972 (4%)

Java C/C++ Python JavaScript

0

10

20

30

40

50

%

>=50%

>=80%

100%

Fig. 6. Percentage of project clones at various levels of overlap.

Table 5 shows the number of projects whose files exist in other projects at some overlap threshold
ś 50%, 80% and 100%, respectively. A normalization of these numbers over the total number of
projects for each language is shown in Figure 6. JavaScript comes on top with respect to the amount
of project-level duplication, with 48% of projects having 50% or more files duplicated in some other
project, and an equally impressive 15% of projects being 100% duplicated.3 Not surprisingly, the
3Again, we remind the reader that our dataset does not contain forks.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

59

DéjàVu 84:13

percentage of project-level duplication tracks the percentage of file-level duplication, as shown in
Figure 5. The diferences seen between the language ecosystems do not seem to be related to the
size of projects: Table 2 in Section 4 shows that the median files per project in JavaScript is slightly
higher than in Python (so, JavaScript projects tend to have more files), but the inter-project cloning
is much higher for JavaScript than for Python. We will dive more into this in the next section.

The last two rows of Table 5 show the number of projects that are token-hash clones of some
other project (apart from diferences in white space, comments, and terminal symbols). This is
diferent, and more constrained, than being cloned at 100% elsewhere: it requires bidirectionality.
With the exception of JavaScript at 11%, the ratios are all 5%, but it is still surprising that there
are so many projects that are exact copies of each other. As the last row shows, though, many of
those are very small projects, with less than 10 files. The number for projects with at least 10 files
that are exact copies of some other project is considerably smaller, but still in the thousands for all
languages.

6 MIXED METHOD ANALYSIS
The numbers presented in the previous section portray an image of GitHub not seen before.
However, that quantitative analysis opens more questions. What files are being copied around,
and why? What explains the diferences between the language ecosystems? Why is the JavaScript
ecosystem so much of the charts in terms of duplication? In order to answer these kinds of
questions, we delve deeper into the data.

With so much data, our first heuristic was size. As seen in the previous section we noticed that
the empty file was the most duplicated file in the entire corpus, among all languages. We also
noticed that the top duplicated files tended to be very small and relatively generic. Although an
intriguing finding, very small, generic files hardly provide any insightful information about the
practice of code duplication. What about the non-trivial files that are heavily duplicated? What
are they?

This section presents observations emerging from looking at specific files and projects using
mixed methods. We divide the section into four parts: (1) an analysis of each language ecosystems
looking for the most duplicated files in general; (2) file duplication at diferent levels (file hashes,
token hashes and near duplicates with SourcererCC); (3) the most reappropriated projects in the
four ecosystems; and (4) an in-depth analysis of the JavaScript ecosystem.

6.1 Most Duplicated Non-Trivial Files
As stated above, we wanted to find out if the size of the files had an efect on their duplication.
For example, are small files copy-pasted from StackOverflow or online tutorials and blogs, and
large files from well-known supporting libraries? In order to make sense of so much data, we
needed to sample it first, so that interesting hypotheses could emerge, and/or we could find
counter-examples that contradicted our initial expectations. This is territory of qualitative and
mixed methods [Creswell 2014].

6.1.1 Methodology. We used a mixed method approach consisting of qualitative and quanti-
tative elements. Based on our quantitative analysis, we hypothesized that size of the files, and
whether the duplication was exact or token-based, might have an efect on the nature of duplica-
tion; for example, the empty file certainly is not being copy-pasted from one project to another, it
simply is created in many projects, for a variety of reasons. Maybe we could see paterns emerge
for files of diferent sizes. The following describes our methodology:

• Quantitative Elements. We split files according to the percentiles of the number of tokens
per file within each language corpus, and create bins representing the ranges 20%-30% (small),

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4. Relevant Papers

60

84:14 C. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek

Table 6. Number of tokens per file within certain percentiles of the distribution of file size.

20%-30% 45%-55% 70%-80% 90%+

To
ke

ns

Java 46-71 120-167 279-419 751+
C/C++ 50-77 138-199 372-623 1284+
Python 29-65 149-236 477-795 1596+
JavaScript 19-32 68-114 238-431 1127+

Fi
le

s

Java 7,670,926 (11%) 7,523,679 (10%) 7,335,067 (10%) 7,298,767 (10%)
C/C++ 6,381,850 (10%) 6,228,550 (10%) 6,204,943 (10%) 6,167,647 (10%)
Python 3,282,957 (10%) 3,205,337 (10%) 3,169,316 (10%) 3,161,325 (10%)
JavaSript 28,257,319 (11%) 27,306,195 (10%) 26,326,975 (10%) 26,134,513 (10%)

45%-55% (medium), 70%-80% (large), and greater than 90% (very large). So, the 45%-55% bin
contains files that are between the 45% percentile and the 55% percentile on the number of
tokens per file of a certain language. The number of tokens for the bins can be seen in Table 6.
For example in Java, the first bin includes files containing 47 to 72 tokens, and so on. The
gaps between these percentiles (for example, no file is observed between the 30% and the
45% percentile) ensure bufer zones that are large enough to isolate the diferently-sized files,
should diferences in their characteristics be observed. For each of these bins, we analyzed
the top 20 most cloned files; this grouping was performed twice, using file hashes and token
hashes, and this was done for all the languages. In total, for each language, 80 files were
analyzed.

• Qualitative Elements. Looking at names of most popular files, a first observation was that
many of these files came from popular libraries and frameworks, like Apache Cordova. This
hinted at the possibility that the origin of file duplication was in well-known, popular libraries
copied in many projects; a qualitative analysis of file duplication was beter understood
from this perspective. Therefore, each file was observed from the perspective of the path
relative to the project where it resides, and was then hand coded for its origin.4 For example,
project_name/src/external/com/http-lib/src/file.java was considered to be part
of the external library http-lib. Each folder assumed to represent an external library
was matched with an existing homepage for the library, if we could find it using Google.
Continuing the running example, http-lib was only flagged as an external dependency if
there was a clear pointer online for a Java library with that name. In some cases, the path
name was harder to interpret, for example: p roject_name/external/include/internal/tobjs.h.
In those cases, we searched Google for the last part of the path in order to find the origin
(in this particular case, we searched i nclude/internal/tobjs.h). For JavaScript the situation
was oten simpler: many of the files came from NPM modules, in which case the module
name was obvious from the file’s location. Some of the files were also minified versions of
libraries, in which case the name of the file gave the library name, oten with its version (e.g.
jquery-3.2.1.min). Using these methods, we were able to trace the origins of all the 320
files.

6.1.2 Observations. Contrary to our original expectation, we did not find any diferences in the
nature of file duplication related to either size of the files, similarity metric, or language in the 320
samples we inspected. We also didn’t find any StackOverflow or tutorial files in these samples.
Moreover, the results for these files show a patern that crosses all of those dimensions: the most

4For a good tutorial on coding, see [Saldaña 2009]

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

61

DéjàVu 84:15

duplicated files in all ecosystems come from a few well-known libraries and frameworks. The Java
files were dominated by the ActionBarSherlock and Cordova. C/C++ was dominated by boost
and freetype, and JavaScript was dominated by files from various NPM packages, only 2 cases
were from juery library. For Python, the origins of file cloning for the 80 files sampled were more
diverse, along 6 or 7 common frameworks.5

Because the JavaScript sample was so heavily (78 out of 80) dominated by Node packages, we
have performed the same analysis again, this time excluding the Node files. This uncovered juery
in its various versions and parts accounting for more than half of the sample (43), followed from
a distance by other popular frameworks such as Twiter Bootstrap (12), Angular (7), reveal (4).
Language tools such as modernizr, pretify, HTML5Shiv and others were present. We atribute this
greater diversity to the fact that to keep connections small, many libraries are distributed as a
single file. It is also a testament to the popularity of juery which still managed to occupy half of
the list.

The presence of external libraries within the projects’ source code shows a form of dependency
management that occurs across languages, namely, some dependencies are source-copied to the
projects and commited to the projects’ repositories, independent of being installed through a
package manager or not. Whether this is due to personal preference, operational necessity, or
simple practicality cannot be inferred from our data.

Another interesting observation was the proliferation of libraries for being themselves source-
included in other widely-duplicated libraries. Take Cordova, a common duplicated presence within
the Java ecosystem. Cordova includes the source of okhtp, another common origin of duplication.
Similarly, within C/C++, freetype2 was disseminated in great part with the help of another highly
dispersed supporting framework, cocos2d. This not only exacerbates the problem, but provides a
clear picture of the tangled hierarchical reliance that exists in modern sotware, and that sometimes
is source-included rather than being installed via a package manager.

6.2 File Duplication at Diferent Levels
In this section, we look in greater detail at the duplication in the three levels reported: file hashes,
token hashes and SCC clones:

6.2.1 File Hashes. Top cloned files of various sizes were already analyzed in 6.1. To complement,
we have also investigated mostly cloned non-trivial files across all sizes to make sure no interesting
files slipped between the bins, but we did not find any new information. Instead we tried to give
more precise answer to question which files get cloned most oten. Our assumption was that the
smaller the file, the more likely it is to be copied. Figure 7 shows our findings. Each file hash is
classified by number of copies of the file (horizontal axis) and by size of the file in bytes (vertical
axis). Furthermore, we have binned the data into 100x100 bins and we have a logarithmic scale
on both axes, which forms the artefacts towards the axes of the graph. The darker the particular
bin, the more file hashes it contains. The graphs show that while it is indeed smaller files that get
copied most oten, with the exception of extremely small outliers (trivial files, such as the empty
file), the largest duplication groups can be found for files with sizes in thousands of bytes, with
maximum sizes of the clone groups gradually lowering for either larger, or smaller files.

6.2.2 Token Hashes. For a glimpse of the distribution of token hashes, we have investigated
the relations between number of files within a token hash group and number of file hashes (i.e.

5The very small number of libraries and frameworks found in these samples is a consequence of having sampled only 80
iles per language, and the most duplicated ones. Many of the iles had the same origin, because those original libraries
consist of several iles.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4. Relevant Papers

62

84:16 C. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek

100

100000

100000000

10 1000

of duplicate files

F
ile

 S
iz

e
 (

b
y
te

s
)

1e+00

1e+02

1e+04

1e+06
count

Java

100

100000

100000000

10 1000 100000

of duplicate files

F
ile

 S
iz

e
 (

b
y
te

s
)

1

100

10000

count

C/C++

100

100000

100000000

10 1000 100000

of duplicate files

F
ile

 S
iz

e
 (

b
y
te

s
)

1

100

10000

count

Python

100

100000

100000000

10 1000 100000

of duplicate files

F
ile

 S
iz

e
 (

b
y
te

s
)

1

100

10000

count

JavaScript

Fig. 7. Distribution of file-hash clones.

diferent files). These findings are summarized in Figure 8. The outlier in the top-right corner of
each graph is the empty file. The number of diferent empty files is explained by the fact that
when using token hash, any file that does not have any language tokens in it is considered empty.
Given the multitude of sizes observed within token hash groups, the next step was to analyze the
actual diference in sizes within the groups. The results shown in Figure 9 summarize our findings.
As expected, for all four languages the empty file again showed very close to the top. For Java, the
biggest empty file was 24.3MB and contains a huge number of comments as a compiler test. For
C/C++ the empty files has the second largest diference and consists of a comment with ASCII
art. Python’s empty file was a JSON dump on a single line, which was commented, and finally for
JavaScript the largest empty file consisted of thousands of repetitions of an identical comment
line, totaling 36MB.

More interesting than largest empty files is the answer to the question: What other, non-trivial
files display the greatest diference between sizes in the same group. Interestingly, the answer

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

63

DéjàVu 84:17

10

1000

10 1000 100000

of duplicate files

#
 o

f
d
if
fe

re
n
t
fi
le

s

1e+00

1e+02

1e+04

1e+06

count

Java

10

1000

10 1000 100000

of duplicate files

#
 o

f
d
if
fe

re
n
t
fi
le

s

1e+00

1e+02

1e+04

1e+06

count

C/C++

10

1000

10 1000 100000

of duplicate files

#
 o

f
d
if
fe

re
n
t
fi
le

s

1e+00

1e+02

1e+04

1e+06

count

Python

10

1000

100000

10 1000 100000

of duplicate files

#
 o

f
d
if
fe

re
n
t
fi
le

s

1e+00

1e+02

1e+04

1e+06

count

JavaScript

Fig. 8. Distribution of token-hash clones.

is slightly diferent for each language: for Java, the greatest size diferences exist for binary files
disguised as java files. In these files, very few tokens were identified by the tokenizer and therefore
two unrelated binary files were grouped into a single token group with a small number of very
diferent files. For C/C++ oten, we have found source codes with and without hundreds of KB
of comments as members of the same groups. An outlier was a file with excessive white-spaces
at each line (2.42MB diference). In Python, formating was most oten the cause: a single file
multiplied its size 10 times by switching from tabs to 8 spaces. For JavaScript, we observed minified
and non-minified versions. Sometimes the files were false positives because complex Javascript
regular expressions were treated as comments by the simple cross-language parser.

6.2.3 SourcererCC Duplicates. For SourcererCC, we randomly selected 20 clone pairs and we
categorized them into three categories: i) intentional copy-paste clones; ii) unintentional accidental
clones; and iii) auto-generated clones. It is interesting to note that the clones in categories ii) and
iii) are both unavoidable and are created because of the use of the popular frameworks.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4. Relevant Papers

64

84:18 C. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek

10

1000

100000

10000000

100 10000

of duplicate files

D
e
lt
a
 s

iz
e
 (

b
y
te

s
)

1

100

10000

count

Java

10

1000

100000

100 10000

of duplicate files

D
e
lt
a
 s

iz
e
 (

b
y
te

s
)

1

100

10000
count

C/C++

10

1000

100000

10000000

10 1000 100000

of duplicate files

D
e
lt
a
 s

iz
e
 (

b
y
te

s
)

1

100

10000
count

Python

100

100000

100000000

10 1000 100000

of duplicate files

D
e
lt
a
 s

iz
e
 (

b
y
te

s
)

1

100

10000

count

JavaScript

Fig. 9. ∆ of file sizes in token hash groups.

Java. We have categorized 30% (6 out of 20) of the clone pairs into the intentional copy-paste
clones category. It included instances of both inter-project and intra-project clones. Intra-project
clones were created to test/implement functionalities that are similar while keeping them isolated
and easy to maintain. Inter-project clones seemed to come from projects that look like class projects
for a university course and from situations where one project was almost entirely copy-pasted into
the other project. We found 2 instances of unintentional cloning, both inter-project. The files in
such clone pairs implement a lot of similar boilerplate code necessary to create an Android activity
class. We categorized the majority (12 out of 20) of the clone pairs into the auto-generated clones
category. The files in this category are automatically generated from the frameworks like Apache
Axis (6 pairs), Android (2 pairs), and Java Architecture for XML Binding (4 pairs). The unintentional
and auto-generated clones together constitute 70% of the sample.

C/C++. The sample was dominated by intentional copy-paste clones (70%, 12 pairs). The origin
for these file clone pairs seems to be the same, independent of these being inter of intra-project

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

65

DéjàVu 84:19

clones, and relates to the reuse of certain pieces of source code ater which they sufer small
modification to cope with diferent setups or support diferent frameworks. Five pairs were classified
as unintentional cloning. They represented educational situations (one file was composed in its
large part by the skeleton of a problem, and the diference between the files clones was the small
piece of code that implements the solution). Two diferent versions of the same file were also
found (libpng 1.0.9 vs. libpng 1.2.30). Files from two projects sharing a common ancestor (bitcoin
vs dotcoin) were also observed. The auto-generated clones were present in three pairs, 2 of them
from the Meta-Object compiler.6 The unintentional and auto-generated clones accounted for 40%
of the sample.

Python. The sample was dominated by uses of the Django framework (17 pairs), all variants
of auto generated code to initialize a Djagno application. We classified them as auto-generated
clones. Two pairs were intentional copy-paste clones intra-project copy-paste of unitests. The last
pair belonged to the same category was a model schema for a Django database.

JavaScript. Only one intentional copy-paste clones example has been found, which consisted of a
test template with manually changed name, but nothing else. Five occurrences of unintentional
cloning comprised of pairs of diferent file versions for juery(2), google maps opacity slider,
modernizr, and angular socket service. The remaining 14 pairs (70%) have been classified as auto-
generated clones. Dominated by Angular project files(7), project files for express(3), angular locales
and diferent gruntfiles (builder files for Node projects) were present. All of the Angular project files
are created with Yeoman, a tool for creating application skeletons with boilerplate code used also
by the Angular Full Stack Generator. The last pair classified as autogenerated was also the only
inter-project clone and consisted of two very similar JSON records in a federal election commission
dump stored on Github. In total, 95% of the pairs were unintentional or auto-generated.

6.3 Most Reappropriated Projects
We look for projects duplicated in bulk without any addition or change, i.e. with 100% of their files
present in a single host project. This captures the practice of reappropriation. Since versioning
systems ofer features that should be used instead of reappropriation (such as Git submodules) we
were interested in how prevalent and for what purposes reappropriation exists. A simple query
into the database gave us some insights. Note our analysis is not exhaustive; projects originating
from outside GitHub may not be found unless an abandoned project that just reappropriated
them exists. But if the project’s exact copy will be missed, the files themselves will be identified as
clones between projects using the same library.

For Java, we found that Minecrat-API and PhoneGap are the two most reappropriated projects.
Looking for clues online, we found that the original Minecrat-API project was not hosted in GitHub
until 2012, so the copies may have been from developers who used GitHub at the time. Also, on
further inspection we found that PhoneGap is related to Apache Cordova. These frameworks might
not have been in GitHub from the beginning.

For C++, GNU ISO C++ Library, homework templates, and Arduino examples have been reap-
propriated the most. The homework case is interesting: it seems that some instructor created a
body of code that was then cloned by several dozen students, instead of being forked in GitHub,
as one might expect. All clones were exactly the same, which seems to indicate the students didn’t
push their changes back. This an unorthodox, and somewhat abusive use of GitHub.

6http://doc.qt.io/qt-4.8/moc.html

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4. Relevant Papers

66

84:20 C. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek

0

100000000

200000000

9/2006 3/2009 9/2011 3/2014 9/2016

Date

F
ile

s

Legend

non−test duplicates

test duplicates

npm non−test

npm test

unique tests

unique files

Files over time

0

20000000

40000000

60000000

80000000

9/2006 3/2009 9/2011 3/2014 9/2016

Date

F
ile

s

Legend

non−test duplicates

test duplicates

unique tests

unique files

NPM files

Non − NPM Files over time

Fig. 10. JavaScript files over time, with and without NPM files.

For Python, the top 3 most reappropriated projects are Cactus, which is a static site generator
using Django templates, Shadowsocks, a fast tunnel proxy that helps bypass firewalls, and Scons,
a sotware construction tool.

Finally, for JavaScript the most reappropriated project is the Adobe PhoneGap’s Hello World
Template7, which has been found intact in total of 1746 projects. PhoneGap is a framework for
building mobile applications using the web stack and it dominates the most frequently cloned
projects - the top 15 most cloned projects are all diferent versions of its template. PhoneGap is
followed by the OctoPress8 blogging framework and by a template for BlueMix.9

These observations show that project reappropriation exists for a variety of reasons: simple reap-
propriations that could be addressed by Git submodules (e.g. Minecrat API, Arduino), seemingly
abandoned derivative development (Cactus, PhoneGap), true forks with addition of non-source
code content (OctoPress) and even unorthodox uses of GitHub (the C++ homework).

6.4 JavaScript
JavaScript has the highest clone ratio of the languages studied. Over 94% of the files are file-hash
clones. We wanted to find out what is causing this bloat. Ater manually inspecting several files,
we observed that many projects commit libraries available through NPM as if they are part of
the application code.10 As such, we analyzed the data with respect to the efect of NPM libraries,
and concluded that this practice is the single biggest cause for the large duplication in JavaScript.
What follows are some mostly quantitative perspectives on the efect of NPM libraries, along
with some qualitative observations pulled from additional sources. Figure 10 on the let shows
the composition of JavaScript repositories over time with respect to unique files and tests and
token-hash clones and (we considered any file in test folder to be a test) compared with files &
tests coming from unorthodox use of NPM. Figure 10 on the right shows the corpus in the same
categories, but without the NPM files, whose number is indicated by the dashed line which quickly
surpasses all other files in the corpus. The huge impact of NPM files can be seen not only in the
sheer number of files, Figure 11 shows the percentage of token-hash clones for diferent subsets

7http://github.com/phonegap/phonegap-template-hello-world
8http://octopress.org/
9https://www.ibm.com/cloud-computing/bluemix/
10npm is the package manager used by the very popular Node framework.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

67

DéjàVu 84:21

70

80

90

100

1/2008 1/2009 1/2010 1/2011 1/2012 1/2013 1/2014 1/2015 1/201611/2016

Date

%

Legend

of all files

of NPM files

all files

non−NPM

non−NPM tests

NPM

% of non−unique files

Fig. 11. Percentage of clones over time

of the files over time. To help assess influence, the background of the graph shows the numbers
of total and NPM files at given times. Few files predate the NPM Manager itself (January 2010).
We have found similar outliers in the rest of the files (small amount of them predating not just
GitHub and Git, but even JavaScript itself). As soon as NPM files started to appear in the corpus,
they took over the global ratio (solid line), while the rest of the files slowly added original content
over time. Interesting is the higher originality of tests ś when people copy and paste the entire
files, they tend to ignore their tests.

6.4.1 NPM Files. When npm is used in a project, the package.json file contains the descrip-
tion of the project including its required packages. When the project is built, these packages,
are loaded and stored in the ’node_modules’ directory. If the packages themselves have depen-
dencies, these are stored under the package name in another nested ’node_modules’ directory.
The ’node_modules’ folder will be updated each time the project is built and a new version of
some of the packages it transitively requires is available. Therefore it should not be part of the
repository itself - a practice GitHub recommends.11 Since NPM allows dependencies to link to
specific versions of the package, there is no need to include the ’node_modules’ directory even if
the application requires specific package version. Even more surprising than the sheer number of
NPM files in the corpus is the number of packages responsible for them. 41.21% (732991) projects
use NPM package manager, but only 6% (106582) projects include their ’node_modules’ directory.
These 6% projects are ultimately responsible for almost 70% of the entire files. It is therefore not
surprising that once a project includes its NPM dependencies, its file number is overwhelmed by
the packages’ files as shown in Figure 12 on the let.

There are even projects that seem to contain only NPM files. Oten a project is created us-
ing an automated generator which installs various dependencies, pushed to Github with the
node_modules directory and never used again. The largest of such projects12 contains only NPM
modules used in other project of the same author and has 46281 files. If the project is writen

11https://github.com/github/gitignore/blob/master/Node.gitignore
12https://github.com/kuangyeheng/worklow-modules

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4. Relevant Papers

68

84:22 C. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek

0
1
0

2
0

3
0

4
0

5
0

0 25 50 75 100

% of NPM files

%
 o

f
p

ro
je

c
ts

Statistics

Mean

Median

% of NPM files

0
2
0

4
0

6
0

8
0

0 300 600 900 1200

of modules directly imported

%
 o

f
p
ro

je
c
ts

Statistics

Mean

Median

Direct Imports per Module

Fig. 12. % of NPM files in projects and directly imported NPM packages

a dialect of Javascript that does not use the js extension (such as jsx or TypeScript) it would
appear all its files come from NPM. This is the case of the second largest npm-only project13

consists of 16761 JS files from NPM and a handful of jsx files discovered by manual inspection.
We have also analyzed the depth of nested dependencies in the NPM packages. In the worst

case we have observed this nesting to be 47 modules deep with median of 5. The number of unique
projects included has median of 63 and maxes out at 1261, but this includes the nested dependencies
as well. The direct imports, i.e. modules specified as dependencies in the package.json file is in
general much smaller as shown in Figure 12 on the right. There are however outliers which come
close to the max number of unique projects included. The largests of them has been created by
the Angular Full Stack Generator,14 an automated service for generating Angular applications.15

Other projects with extraordinarily large direct dependencies are created using similar automated
generators, such as Yeoman. In terms of module popularity (Figure 13) (note the log scale on y
axis) most modules are imported by a small percent of projects, however there are some massively
popular ones: Express16 (59277 projects) is a minimalist web UI framework, body parser17 (31807
projects) a HTTP response body parser and debug18 (24413 projects), a debugging utility for Node
applications. Surprisingly, many of the NPM packages contain a great deal of tests in them, as
shown in Figure 10, which seems unnecessary, as these should be release versions of the packages
for users, not package for developers.

7 CONCLUSIONS
The source control system upon which GitHub is built, Git, encourages forking projects and
independent development of those forks. GitHub provides an easy interface for forking a project,
and then for merging code changes back to the original projects. This is a popular feature: the
metadata available from GHTorrent shows an average of 1 fork per project. However, there is a lot
more duplication of code that happens in GitHub that does not go through the fork mechanism,
and, instead, goes in via copy and paste of files and even entire libraries.

13https://github.com/george-codes/react-skeleton
14https://github.com/angular-fullstack/generator-angular-fullstack
15 Ironically the project itself was created to let people łquickly set up a project following best practicesž.
16https://www.npmjs.com/package/express
17https://www.npmjs.com/package/body-parser
18https://www.npmjs.com/package/debug

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

69

DéjàVu 84:23

1
0

1
0

0
0

0 20000 40000 60000

How many projects directly import a module

#
 o

f
m

o
d

u
le

s

Statistics

Mean

Median

Module popularity

Fig. 13. Popularity of NPM modules.

We presented an exhaustive investigation of code cloning in GitHub for four of the most popular
object-oriented languages: Java, C++, Python and JavaScript. The amount of file-level duplication
is staggering in the four language ecosystems, with the extreme case of JavaScript, where only 6%
of the files are original, and the rest are copies of those. The Java ecosystem has the least amount
of duplication. These results stand even when ignoring very small files. When delving deeper
into the data we observed the presence of files from popular libraries that were copy-included
in a large number projects. We also detected cases of reappropriation of entire projects, where
developers take over a project without changes. There seemed to be several reasons for this, from
abandoned projects , to slightly abusive uses of GitHub in educational contexts. Finally, we studied
the JavaScript ecosystem, which turns out to be dominated by Node libraries that are commited
to the applications’ repositories.

This study has some important consequences. First, it would seem that GitHub, itself, might be
able to compress its corpus to a fraction of what it is. Second, more and more research is being done
using large collections of open source projects readily available from GitHub. Code duplication can
severely skew the conclusions of those studies. The assumption of diversity of projects in those
datasets may be compromised. DéjàVu can help researchers and developers navigate through code
cloning in GitHub, and avoid it when necessary.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4. Relevant Papers

70

84:24 C. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek

A APPENDIX: SUMMARY STATISTICS

Table 7. Summary statistics for the entire dataset.

Java C++ Python JavaScript

Files per project

Min 1 1 1 1
1st u 3 3 2 2
Median 9 11 5 6
Mean 49 169 35 147
3rd u 24 40 13 22
Max 375,859 233,844 410,203 255,902

Bytes per file

Min 0 0 0 0
1st u 1,100 1,399 564 348
Median 2,334 3,114 2,169 1,123
Mean 5,714 10,340 8,784 11,326
3rd u 5,166 7,779 6,840 3,758
Max 80M 100M 105M 576M

Lines per file

Min 1 1 1 1
1st u 38 47 20 10
Median 75 100 66 33
Mean 164 279 205 265
3rd u 158 237 195 106
Max 1,437,949 8,129,599 5,861,049 5,105,047

LOC per file

Min 1 1 1 0
1st u 32 38 16 8
Median 63 83 54 28
Mean 142 240 174 232
3rd u 135 200 161 93
Max 1,436,850 8,129,570 5,860,092 5,105,045

SLOC per file

Min 0 0 0 0
1st u 17 23 12 5
Median 41 55 46 19
Mean 101 188 156 173
3rd u 97 147 143 75
Max 1,436,841 8,129,521 5,859,657 5,105,045

Distinct tokens per file

Min 0 0 0 0
1st u 30 31 27 15
Median 56 57 77 37
Mean 86 118 197 128
3rd u 100 111 180 92
Max 1,320,501 7,338,821 3,525,840 5,945,029

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

71

DéjàVu 84:25

Table 8. Summary statistics for the minimum set of files (distinct token hashes).

Java C++ Python JavaScript

Files per project

Min 1 1 1 1
1st u 3 3 2 1
Median 7 11 5 3
Mean 25.12 148.2 29 7
3rd u 19 38 12 7
Max 66,734 77,730 36,840 53,168

Bytes per file

Min 1 1 0 1
1st u 876 1,149 694 586
Median 1,984 2,622 1,896 1,605
Mean 5,189 10,557 10,005 22,711
3rd u 4,513 6,812 5,084 4,683
Max 80,344,320 100,095,279 104,749,580 576,196,992

Lines per file

Min 1 1 1 1
1st u 33 43 25 20
Median 67 90 60 50
Mean 149.3 301 182 441
3rd u 142 221 146 130
Max 1,437,949 8,129,599 5,861,049 5,105,047

LOC per file

Min 1 1 1 1
1st u 27 35 20 16
Median 56 74 48 42
Mean 128.4 260 155 394
3rd u 120 185 119 112
Max 1,436,850 8,129,570 5,860,092 5,105,045

SLOC per file

Min 0 0 0 0
1st u 18 24 16 13
Median 41 54 40 35
Mean 97.4 216 138 320
3rd u 93 145 102 95
Max 1,436,841 8,129,521 5,859,657 5,105,045

Distinct tokens per file

Min 0 0 0 0
1st u 31 33 34 26
Median 56 60 70 51
Mean 84.9 132 144 219
3rd u 99 122 137 105
Max 1,320,501 7,338,821 3,525,840 5,945,029

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4. Relevant Papers

72

84:26 C. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek

Table 9. Summary statistics for the minimum set of files (distinct file hashes).

Java C++ Python JavaScript

Files per project

Min 1 1 1 1
1st u 3 3 2 1
Median 8 11 5 3
Mean 28 150 29 8
3rd u 20 38 13 7
Max 74,144 78,106 37,009 53,168

Bytes per file

Min 0 0 0 0
1st u 899 1,149 662 583
Median 2,019 2,709 1,838 1,637
Mean 5,207 10,490 9,792 23,013
3rd u 4,563 6,925 5,008 4,964
Max 80.3M 100M 105M 576M

Lines per file

Min 1 1 1 1
1st u 34 44 24 18
Median 68 92 58 48
Mean 150 299 180 454
3rd u 143 223 143 131
Max 1,437,949 8,129,599 5,861,049 5,105,047

LOC per file

Min 1 1 1 0
1st u 27 36 19 15
Median 56 76 47 41
Mean 129 257 153 405
3rd u 121 187 118 113
Max 1,436,850 8,129,570 5,860,092 5,105,045

SLOC per file

Min 0 0 0 0
1st u 18 24 15 12
Median 41 54 39 33
Mean 97 212 136 324
3rd u 92 145 100 95
Max 1,436,841 8,129,521 5,859,657 5,105,045

Distinct tokens per file

Min 0 0 0 0
1st u 31 33 32 25
Median 55 60 68 52
Mean 84 130 142 218
3rd u 98 121 136 108
Max 1,320,501 7,338,821 3,525,840 5,945,029

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

73

DéjàVu 84:27

ACKNOWLEDGEMENTS
This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant agreement 695412), from the United States Defense
Advanced Research Agency under the MUSE program, and was partially support by NSF award 1544542 and
ONR award 503353.

REFERENCES
T. F. Bissyande, F. Thung, D. Lo, L. Jiang, and L. Reveillere. 2013. Orion: A Sotware Project Search Engine with Integrated

Diverse Sotware Artifacts. In International Conference on Engineering of Complex Computer Systems. https://doi.org/10.
1109/ICECCS.2013.42

Stephen M. Blackburn, Robin Garner, Chris Hofmann, Asjad M. Khan, Kathryn S. McKinley, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok
Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. 2006. The DaCapo benchmarks: Java benchmarking development and analysis. In Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA). https://doi.org/10.1145/1167473.1167488

Hudson Borges, André C. Hora, and Marco Tulio Valente. 2016. Understanding the Factors that Impact the Popularity of
GitHub Repositories. (2016). http://arxiv.org/abs/1606.04984

Casey Casalnuovo, Prem Devanbu, Abilio Oliveira, Vladimir Filkov, and Baishakhi Ray. 2015. Assert Use in GitHub Projects.
In International Conference on Sotware Engineering (ICSE). http://dl.acm.org/citation.cfm?id=2818754.2818846

James R. Cordy, Thomas R. Dean, and Nikita Synytskyy. 2004. Practical Language-independent Detection of Near-miss
Clones. In Conference of the Centre for Advanced Studies on Collaborative Research (CASCON). http://dl.acm.org/citation.
cfm?id=1034914.1034915

V. Cosentino, J. L. C. Izquierdo, and J. Cabot. 2016. Findings from GitHub: Methods, Datasets and Limitations. In Working
Conference on Mining Sotware Repositories (MSR). https://doi.org/10.1109/MSR.2016.023

John W. Creswell. 2014. Research Design: ualitative, uantitative, and Mixed Methods Approaches. SAGE.
Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2013. Boa: A Language and Infrastructure for

Analyzing Ultra-large-scale Sotware Repositories. In International Conference on Sotware Engineering (ICSE). http:
//dl.acm.org/citation.cfm?id=2486788.2486844

Jesus M. Gonzalez-Barahona, Gregorio Robles, and Santiago Dueñas. 2010. Collecting Data About FLOSS Development:
The FLOSSMetrics Experience. In International Workshop on Emerging Trends in Free/Libre/Open Source Sotware Research
and Development (FLOSS). https://doi.org/10.1145/1833272.1833278

Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Working Conference on Mining Sotware Repositories
(MSR). https://doi.org/10.1109/MSR.2013.6624034

Lars Heinemann, Florian Deissenboeck, Mario Gleirscher, Benjamin Hummel, and Maximilian Irlbeck. 2011. On the Extent
and Nature of Sotware Reuse in Open Source Java Projects. Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21347-2_
16

Felipe Hofa. 2016. 400,000 GitHub repositories, 1 billion files, 14 terabytes of code: Spaces or Tabs? (2016). https:
//medium.com/@hofa/400-000-github-repositories-1-billion-iles-14-terabytes-of-code-spaces-or-tabs-7cfe0b5dd7fd

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German, and Daniela Damian. 2014. The
Promises and Perils of Mining GitHub. In Working Conference on Mining Sotware Repositories (MSR). https://doi.org/10.
1145/2597073.2597074

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A Multilinguistic Token-based Code Clone
Detection System for Large Scale Source Code. IEEE Trans. Sotw. Eng. 28, 7 (2002). https://doi.org/10.1109/TSE.2002.
1019480

P. S. Kochhar, T. F. BissyandÃľ, D. Lo, and L. Jiang. 2013. Adoption of Sotware Testing in Open Source ProjectsśA
Preliminary Study on 50,000 Projects. In European Conference on Sotware Maintenance and Reengineering. https:
//doi.org/10.1109/CSMR.2013.48

R. Koschke. 2007. Survey of research on sotware clones. In Duplication, Redundancy, and Similarity in Sotware (Dagstuhl
Seminar Proceedings 06301).

A. Mockus. 2007. Large-Scale Code Reuse in Open Source Sotware. In First International Workshop on Emerging Trends in
FLOSS Research and Development. https://doi.org/10.1109/FLOSS.2007.10

A. Mockus. 2009. Amassing and Indexing a Large Sample of Version Control Systems: Towards the Census of Public Source
Code History. In Working Conference on Mining Sotware Repositories (MSR). https://doi.org/10.1109/MSR.2009.5069476

Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. 2013. Diversity in Sotware Engineering Research. In
Foundations of Sotware Engineering (FSE). https://doi.org/10.1145/2491411.2491415

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4. Relevant Papers

74

84:28 C. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek

J. Ossher, Sushil Bajracharya, E. Linstead, P. Baldi, and Crista Lopes. 2009. SourcererDB: An aggregated repository of
statically analyzed and cross-linked open source Java projects. In Working Conference on Mining Sotware Repositories
(MSR). https://doi.org/10.1109/MSR.2009.5069501

Joel Ossher, Hitesh Sajnani, and Cristina Lopes. 2011. File Cloning in Open Source Java Projects: The Good, the Bad, and
the Ugly. In International Conference on Sotware Maintenance (ICSM). https://doi.org/10.1109/ICSM.2011.6080795

Baishakhi Ray, Daryl Posnet, Vladimir Filkov, and Premkumar Devanbu. 2014. A Large Scale Study of Programming
Languages and Code uality in Github. In International Symposium on Foundations of Sotware Engineering (FSE).
https://doi.org/10.1145/2635868.2635922

Gregor Richards, Andreas Gal, Brendan Eich, and Jan Vitek. 2011. Automated Construction of JavaScript Benchmarks. In
Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA). https://doi.org/10.1145/
2048066.2048119

C. K. Roy and J. R. Cordy. 2007. A survey on sotware clone detection research. Technical Report 541. ueens University.
Chanchal K. Roy and James R. Cordy. 2009. A Mutation/Injection-Based Automatic Framework for Evaluating Code Clone

Detection Tools. In International Conference on Sotware Testing, Verification, and Validation. https://doi.org/10.1109/
ICSTW.2009.18

C. K. Roy and J. R. Cordy. 2010. Near-miss Function Clones in Open Source Sotware: An Empirical Study. J. Sotw. Maint.
Evol. 22, 3 (2010). https://doi.org/10.1002/smr.v22:3

Hitesh Sajnani. 2016. Large-Scale Code Clone Detection. Ph.D. Dissertation. University of California, Irvine.
Hitesh Sajnani, Vaibhav Saini, Jefrey Svajlenko, Chanchal K. Roy, and Cristina V. Lopes. 2016. SourcererCC: Scaling Code

Clone Detection to Big-code. In International Conference on Sotware Engineering (ICSE). https://doi.org/10.1145/2884781.
2884877

Johnny Saldaña. 2009. The Coding Manual for ualitative Researchers. SAGE.
SPEC. 1998. SPECjvm98 benchmarks. (1998).
J. Svajlenko and C. K. Roy. 2015. Evaluating clone detection tools with BigCloneBench. In International Conference on

Sotware Maintenance and Evolution (ICSME). https://doi.org/10.1109/ICSM.2015.7332459
Christopher Vendome, Gabriele Bavota, Massimiliano Di Penta, Mario Linares-Vásquez, Daniel German, and Denys

Poshyvanyk. 2016. License usage and changes: a large-scale study on GitHub. Empirical Sotware Engineering (2016).
https://doi.org/10.1007/s10664-016-9438-4

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.

4.1. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

75

4. Relevant Papers

4.2 Paper 2 - On the Impact of Programming Languages on Code
Quality: A Reproduction Study

Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek.
In: ACM Trans. Program. Lang. Syst. 41, 4, Article 21 (October 2019), 24 pages.

https://doi.org/10.1145/3340571

Due to the sensitivity of the topic, the paper’s authors were presented in alphabetical order.

4.2.1 Author’s Contributions

I was responsible for almost all aspects of the paper: the analysis of the original paper, the
review and reproduction of the paper’s artifact, data acquisition and reporting. I helped
design the experiment needed for validation of the bug classifier used in the original paper
and I prepared our artifact.

Celeste Hollenbeck (from Northeastern University) was responsible for executing the ex-
periment and for the implemention of its web interface. Olga Vitek, a statistics professor from
Northeastern University, provided the statistical insights and validated my work. Emery Ber-
ger from University of Massachusetts, Amherst, helped with the text of the paper.

4.2.2 Citations

1. Li, Z., Qi, X., Yu, Q., Liang, P., Mo, R. & Yang, C. Exploring multi-programming-
language commits and their impacts on software quality: An empirical study on Apache
projects. Journal Of Systems And Software. 194 (2022)

2. Li, W., Li, L. & Cai, H. On the vulnerability proneness of multilingual code. ESEC/FSE
2022 - Proceedings Of The 30th ACM Joint Meeting European Software Engineering
Conference And Symposium On The Foundations Of Software Engineering. pp. 847-
859 (2022)

3. Li, W., Li, L. & Cai, H. PolyFax: a toolkit for characterizing multi-language software.
ESEC/FSE 2022 - Proceedings Of The 30th ACM Joint Meeting European Software
Engineering Conference And Symposium On The Foundations Of Software Engineering.
pp. 1662-1666 (2022)

4. Xu, R., Tang, Z., Ye, G., Wang, H., Ke, X., Fang, D. & Wang, Z. Detecting code vulner-
abilities by learning from large-scale open source repositories. Journal Of Information
Security And Applications. 69 (2022)

5. Khan, F., Chen, B., Varro, D. & McIntosh, S. An Empirical Study of Type-Related
Defects in Python Projects. IEEE Transactions On Software Engineering. 48, 3145-
3158 (2022)

6. Furia, C., Torkar, R. & Feldt, R. Applying Bayesian Analysis Guidelines to Empirical
Software Engineering Data: The Case of Programming Languages and Code Quality.
ACM Transactions On Software Engineering And Methodology. 31 (2022)

7. Tornhill, A. & Borg, M. Code Red: The Business Impact of Code Quality - A Quant-
itative Study of 39 Proprietary Production Codebases. Proceedings - International
Conference On Technical Debt 2022, TechDebt 2022. pp. 11-20 (2022)

76

4.2. Paper 2 - On the Impact of Programming Languages on Code Quality: A
Reproduction Study

8. Bogner, J. & Merkel, M. To Type or Not to Type? A Systematic Comparison of the
Software Quality of JavaScript and TypeScript Applications on GitHub. Proceedings -
2022 Mining Software Repositories Conference, MSR 2022. pp. 658-669 (2022)

9. Tian, Y., Zhang, Y., Stol, K., Jiang, L. & Liu, H. What Makes a Good Commit Mes-
sage?. Proceedings - International Conference On Software Engineering. 2022-May
pp. 2389-2401 (2022)

10. Mao, K., Kapus, T., Petrou, L., Hajdu, A., Marescotti, M., Loscher, A., Harman, M.
& Distefano, D. FAUSTA: Scaling Dynamic Analysis with Traffic Generation at What-
sApp. Proceedings - 2022 IEEE 15th International Conference On Software Testing,
Verification And Validation, ICST 2022. pp. 267-278 (2022)

11. Klima, M., Bures, M., Frajtak, K., Rechtberger, V., Trnka, M., Bellekens, X., Cerny, T.
& Ahmed, B. Selected Code-Quality Characteristics and Metrics for Internet of Things
Systems. IEEE Access. 10 pp. 46144-46161 (2022)

12. Amit, I. & Feitelson, D. Corrective commit probability: a measure of the effort invested
in bug fixing. Software Quality Journal. 29, 817-861 (2021)

13. Zhang, J., Li, F., Hao, D., Wang, M., Tang, H., Zhang, L. & Harman, M. A Study of Bug
Resolution Characteristics in Popular Programming Languages. IEEE Transactions On
Software Engineering. 47, 2684-2697 (2021)

14. Sztwiertnia, S., Grübel, M., Chouchane, A., Sokolowski, D., Narasimhan, K. & Mezini,
M. Impact of programming languages on machine learning bugs. AISTA 2021 - Proceed-
ings Of The 1st ACM International Workshop On AI And Software Testing/Analysis,
Co-located With ECOOP/ISSTA 2021. pp. 9-12 (2021)

15. Vogel, A., Griebler, D. & Fernandes, L. Providing high-level self-adaptive abstractions
for stream parallelism on multicores. Software - Practice And Experience. 51, 1194-1217
(2021)

16. Babii, H., Prenner, J., Stricker, L., Karmakar, A., Janes, A. & Robbes, R. Mining Soft-
ware Repositories with a Collaborative Heuristic Repository. Proceedings - International
Conference On Software Engineering. pp. 106-110 (2021)

17. Li, Z., Qi, X., Yu, Q., Liang, P., Mo, R. & Yang, C. Multi-Programming-Language Com-
mits in OSS: An Empirical Study on Apache Projects. IEEE International Conference
On Program Comprehension. 2021-May pp. 219-229 (2021)

18. Bonifro, F., Gabbrielli, M. & Zacchiroli, S. Content-Based Textual File Type Detection
at Scale. ACM International Conference Proceeding Series. pp. 485-492 (2021)

19. Ruohonen, J. The Similarities of Software Vulnerabilities for Interpreted Programming
Languages. Proceedings Of The 2021 IEEE International Conference On Progress In
Informatics And Computing, PIC 2021. pp. 304-307 (2021)

20. Hermann, B., Winter, S. & Siegmund, J. Community expectations for research artifacts
and evaluation processes. ESEC/FSE 2020 - Proceedings Of The 28th ACM Joint Meet-
ing European Software Engineering Conference And Symposium On The Foundations
Of Software Engineering. pp. 469-480 (2020)

77

4. Relevant Papers

21. Gonzalez, D., Zimmermann, T. & Nagappan, N. The State of the ML-universe: 10
Years of Artificial Intelligence & Machine Learning Software Development on GitHub.
Proceedings - 2020 IEEE/ACM 17th International Conference On Mining Software Re-
positories, MSR 2020. pp. 431-442 (2020)

78

21

On the Impact of Programming Languages on Code Quality:
A Reproduction Study

EMERY D. BERGER, University of Massachusetts Amherst and Microsoft Research
CELESTE HOLLENBECK, Northeastern University
PETR MAJ, Czech Technical University in Prague
OLGA VITEK, Northeastern University
JAN VITEK, Northeastern University and Czech Technical University in Prague

In a 2014 article, Ray, Posnett, Devanbu, and Filkov claimed to have uncovered a statistically significant associ-
ation between 11 programming languages and software defects in 729 projects hosted on GitHub. Specifically,
their work answered four research questions relating to software defects and programming languages. With
data and code provided by the authors, the present article first attempts to conduct an experimental repe-
tition of the original study. The repetition is only partially successful, due to missing code and issues with
the classification of languages. The second part of this work focuses on their main claim, the association
between bugs and languages, and performs a complete, independent reanalysis of the data and of the sta-
tistical modeling steps undertaken by Ray et al. in 2014. This reanalysis uncovers a number of serious flaws
that reduce the number of languages with an association with defects down from 11 to only 4. Moreover, the
practical effect size is exceedingly small. These results thus undermine the conclusions of the original study.
Correcting the record is important, as many subsequent works have cited the 2014 article and have asserted,
without evidence, a causal link between the choice of programming language for a given task and the number
of software defects. Causation is not supported by the data at hand; and, in our opinion, even after fixing the
methodological flaws we uncovered, too many unaccounted sources of bias remain to hope for a meaningful
comparison of bug rates across languages.

CCS Concepts: • General and reference → Empirical studies; • Software and its engineering → Soft-
ware testing and debugging;

Additional Key Words and Phrases: Programming Languages on Code Quality

ACM Reference format:
Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek. 2019. On the Impact of Program-
ming Languages on Code Quality: A Reproduction Study. ACM Trans. Program. Lang. Syst. 41, 4, Article 21
(October 2019), 24 pages.
https://doi.org/10.1145/3340571

This work received funding from the European Research Council under the European Union’s Horizon 2020 research and
innovation programme (grant agreement 695412), the NSF (awards 1518844, 1544542, and 1617892), and the Czech Ministry
of Education, Youth and Sports (grant agreement CZ.02.1.010.00.015_0030000421).
Authors’ addresses: E. D. Berger, C. Hollenbeck, P. Maj, O. Vitek, and J. Vitek, Khoury College of Computer Sciences,
Northeastern University, 440 Huntington Ave, Boston, MA 02115; emails: emery.berger@gmail.com, majpetr@fit.cvut.cz,
celeste.hollenbeck@gmail.com, o.vitek@northeastern.edu, vitekj@me.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0164-0925/2019/10-ART21 $15.00
https://doi.org/10.1145/3340571

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4.2. Paper 2 - On the Impact of Programming Languages on Code Quality: A
Reproduction Study

79

21:2 E. D. Berger et al.

1 INTRODUCTION
At heart, a programming language embodies a bet: the bet that a given set of abstractions will in-
crease developers’ ability to deliver software that meets its requirements. Empirically quantifying
the benefits of any set of language features over others presents methodological challenges. While
one could have multiple teams of experienced programmers develop the same application in dif-
ferent languages, such experiments are too costly to be practical. Instead, when pressed to justify
their choices, language designers often resort to intuitive arguments or proxies for productivity
such as numbers of lines of code.

However, large-scale hosting services for code, such as GitHub or SourceForge, offer a glimpse
into the lifecycles of software. Not only do they host the sources for millions of projects, but
they also log changes to their code. It is tempting to use these data to mine for broad patterns
across programming languages. The article we reproduce here is an influential attempt to develop
a statistical model that relates various aspects of programming language design to software quality.

What is the effect of programming language on software quality? is the question at the heart of
the study by Ray et al. published at the 2014 Foundations of Software Engineering (FSE) confer-
ence [26]. The work was sufficiently well regarded in the software engineering community to be
nominated as a Communication of the ACM (CACM) Research Highlight. After another round of
reviewing, a slightly edited version appeared in journal form in 2017 [25]. A subset of the authors
also published a short version of the work as a book chapter [24]. The results reported in the FSE
article and later repeated in the followup works are based on an observational study of a corpus
of 729 GitHub projects written in 17 programming languages. To measure quality of code, the
authors identified, annotated, and tallied commits that were deemed to indicate bug fixes. The au-
thors then fit a Negative Binomial regression against the labeled data, which was used to answer
the following four research questions:

RQ1 “Some languages have a greater association with defects than others, although
the effect is small.” Languages associated with fewer bugs were TypeScript, Clojure,
Haskell, Ruby, and Scala; while C, C++, Objective-C, JavaScript, PHP, and Python were
associated with more bugs.

RQ2 “There is a small but significant relationship between language class and de-
fects. Functional languages have a smaller relationship to defects than either procedural
or scripting languages.”

RQ3 “There is no general relationship between domain and language defect prone-
ness.” Thus, application domains are less important to software defects than languages.

RQ4 “Defect types are strongly associated with languages. Some defect types like mem-
ory errors and concurrency errors also depend on language primitives. Language matters
more for specific categories than it does for defects overall.”

Of these four results, it is the first two that garnered the most attention both in print and on social
media. This is likely the case, because those results confirmed commonly held beliefs about the
benefits of static type systems and the need to limit the use of side effects in programming.

Correlation is not causality, but it is tempting to confuse them. The original study couched its
results in terms of associations (i.e., correlations) rather than effects (i.e., causality) and carefully
qualified effect size. Unfortunately, many of the article’s readers were not as careful. The work was
taken by many as a statement on the impact of programming languages on defects. Thus, one can
find citations such as:

• “ . . . They found language design did have a significant, but modest effect on software qual-
ity” [23].

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4. Relevant Papers

80

On the Impact of Programming Languages on Code Quality 21:3

Table 1. Citation Analysis

Cites Self
Cursory 77 1
Methods 12 0

Cites Self
Correlation 2 2

Causation 24 3

• “ . . . The results indicate that strong languages have better code quality than weak lan-
guages” [31].

• “ . . . functional languages have an advantage over procedural languages” [21].

Table 1 summarizes our citation analysis. Of the 119 articles that were retrieved,1 90 citations were
either passing references (Cursory) or discussed the methodology of the original study (Methods).
Of the citations that discussed the results, 4 were careful to talk about associations (i.e., correla-
tion), while 26 used language that indicated effects (i.e., causation). It is particularly interesting to
observe that even the original authors, when they cite their own work, sometimes resort to causal
language. For example, Ray and Posnett write, “Based on our previous study [26] we found that the
overall effect of language on code quality is rather modest” [24]; Devanbu writes, “We found that
static typing is somewhat better than dynamic typing, strong typing is better than weak typing,
and built-in memory management is better” [5]; and “Ray [. . .] said in an interview that functional
languages were boosted by their reliance on being mathematical and the likelihood that more ex-
perienced programmers use them” [15]. Section 2 of the present article gives a detailed account of
the original study and its conclusions.

Given the controversy generated by the CACM paper on social media, and some surprising ob-
servations in the text of the original study (e.g., that Chrome V8 is their largest JavaScript project—
when the virtual machine is written in C++), we wanted to gain a better understanding of the exact
nature of the scientific claims made in the study and how broadly they are actually applicable. To
this end, we chose to conduct an independent reproduction study.

A reproduction study aims to answer the question can we trust the papers we cite? Over a decade
ago, following a spate of refutations, Ioannidis argued that most research findings are false [13].
His reasoning factored in small effect sizes, limited number of experiments, misunderstanding of
statistics, and pressure to publish. While refutations in computer science are rare, there are worri-
some signs. Kalibera et al. reported that 39 of 42 PLDI 2011 papers failed to report any uncertainty
in measurements [29]. Reyes et al. catalogued statistical errors in 30% of the empirical papers
published at ICSE [27] from 2006 to 2015. Other examples include the critical review of patch gen-
eration research by Monperrus [20] and the assessment of experimental fuzzing evaluations by
Klees et al. [14]. To improve the situation, our best bet is to encourage a culture of reproducible
research [8]. Reproduction increases our confidence: an experimental result reproduced indepen-
dently by multiple authors is more likely to be valid than the outcome of a single study. Initiatives
such as SIGPLAN and SIGSOFT’s artifact evaluation process, which started at FSE and spread
widely [16], are part of a move toward increased reproducibility.

Methodology. Reproducibility of results is not a binary proposition. Instead, it spans a spec-
trum of objectives that provide assurances of different kinds (see Figure 1 using terms from Refer-
ences [9, 29]).

1Retrieval performed on 12/01/18 based on the Google Scholar citations of the FSE article; duplicates were removed.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4.2. Paper 2 - On the Impact of Programming Languages on Code Quality: A
Reproduction Study

81

21:4 E. D. Berger et al.

Fig. 1. Reproducibility spectrum (from Reference [22]).

Experimental repetition aims to replicate the results of some previous work with the same data
and methods and should yield the same numeric results. Repetition is the basic guarantee pro-
vided by artifact evaluation [16]. Reanalysis examines the robustness of the conclusions to the
methodological choices. Multiple analysis methods may be appropriate for a given dataset, and
the conclusions should be robust to the choice of method. Occasionally, small errors may need to
be fixed, but the broad conclusions should hold. Finally, Reproduction is the gold standard; it im-
plies a full-fledged independent experiment conducted with different data and the same or different
methods. To avoid bias, repetition, reanalysis, and reproduction are conducted independently. The
only contact expected with the original authors is to request their data and code.

Results. We began with an experimental repetition, conducting it in a similar fashion to a con-
ference artifact evaluation [16] (Section 3 of this article). Intuitively, a repetition should simply be
a matter of running the code provided by the authors on the original data. Unfortunately, things
often do not work out so smoothly. The repetition was only partially successful. We were able to
mostly replicate RQ1 based on the artifact provided by the authors. We found 10 languages with a
statistically significant association with errors, instead of the 11 reported. For RQ2, we uncovered
classification errors that made our results depart from the published ones. In other words, while
we could repeat the original, its results were meaningless. Last, RQ3 and RQ4 could not be repeated
due to missing code and discrepancies in the data.

For reanalysis, we focused on RQ1 and discovered significant methodological flaws (Section 4 of
this article). While the original study found that 11 of 17 languages were correlated with a higher
or lower number of defective commits, upon cleaning and reanalyzing the data, the number of
languages dropped to 7. Investigations of the original statistical modeling revealed technical over-
sights such as inappropriate handling of multiple hypothesis testing. Finally, we enlisted the help
of independent developers to cross-check the original method of labeling defective commits, which
led us to estimate a false-positive rate of 36% on buggy commit labels. Combining corrections for
all of these aforementioned items, the reanalysis revealed that only 4 of the original 11 languages
correlated with abnormal defect rates, and even for those the effect size is exceedingly small.

Figure 2 summarizes our results: Not only is it not possible to establish a causal link between
programming language and code quality based on the data at hand, but even their correlation
proves questionable. Our analysis is repeatable and available in an artifact hosted at: https://github.
com/PRL-PRG/TOPLAS19_Artifact.

Follow up work. While reanalysis was not able to validate the results of the original study, we
stopped short of conducting a reproduction as it is unclear what that would yield. In fact, even
if we were to obtain clean data and use the proper statistical methods, more research is needed
to understand all the various sources of bias that may affect the outcomes. Section 5 lists some
challenges that we discovered while doing our repetition. For instance, the ages of the projects

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4. Relevant Papers

82

On the Impact of Programming Languages on Code Quality 21:5

Fig. 2. Result summary.

vary across languages (older languages such as C are dominated by mature projects such as Linux),
and the data include substantial numbers of commits to test files (how bugs in tests are affected
by language characteristics is an interesting question for future research). We believe that there
is a need for future research on this topic; we thus conclude our article with some best practice
recommendations for future researchers (Section 6).

2 ORIGINAL STUDY AND ITS CONCLUSIONS
2.1 Overview
The FSE paper by Ray et al. [26] aimed to explore associations between languages, paradigms,
application domains, and software defects from a real-world ecosystem across multiple years. Its
multi-step, mixed-method approach included collecting commit information from GitHub; iden-
tifying each commit associated with a bug correction; and using Negative Binomial Regression
(NBR) to analyze the prevalence of bugs. The paper claims to answer the following questions.

RQ1. Are some languages more defect prone than others?

The paper concluded that “Some languages have a greater association with defects than others,
although the effect is small.” Results appear in a table that fits an NBR model to the data; it re-
ports coefficient estimates, their standard errors, and ranges of p-values. The authors noted that
confounders other than languages explained most of the variation in the number of bug-fixing
commits, quantified by analysis of deviance. They reported p-values below .05, .01, and .001 as
“statistically significant.” Based on these associations, readers may be tempted to conclude that
TypeScript, Haskell, Clojure, Ruby, and Scala were less error prone; and C++, Objective-C, C,
JavaScript, PHP, and Python were more error prone. Of course, this would be incorrect as associ-
ation is not causation.

RQ2. Which language properties relate to defects?

The study concluded that “There is a small but significant relationship between language class
and defects. Functional languages have a smaller relationship to defects than either procedural or
scripting languages.” The impact of nine language categories across four classes was assessed. Since
the categories were highly correlated (and thus compromised the stability of the NBR), the paper
modeled aggregations of the languages by class. The regression included the same confounders as

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4.2. Paper 2 - On the Impact of Programming Languages on Code Quality: A
Reproduction Study

83

21:6 E. D. Berger et al.

in RQ1 and represented language classes. The authors report the coefficients, their standard errors,
and ranges of p-values. These results may lead readers to conclude that functional, strongly typed
languages induced fewer errors, while procedural, weakly typed, unmanaged languages induced
more errors.

RQ3. Does language defect proneness depend on domain?

The study used a mix of automatic and manual methods to classify projects into six application
domains. After removing outliers, and calculating the Spearman correlation between the order of
languages by bug ratio within domains against the order of languages by bug ratio for all domains,
it concluded that “There is no general relationship between domain and language defect proneness.”
The paper states that all domains show significant positive correlation, except the Database do-
main. From this, readers might conclude that the variation in defect proneness comes from the
languages themselves, making domain a less indicative factor.

RQ4. What’s the relation between language & bug category?

The study concluded that “Defect types are strongly associated with languages; Some defect type
like memory error, concurrency errors also depend on language primitives. Language matters more
for specific categories than it does for defects overall.” The authors report that 88% of the errors fall
under the general Programming category, for which results are similar to RQ1. Memory Errors
account for 5% of the bugs, Concurrency for 2%, and Security and other impact errors for 7%.
For Memory, languages with manual memory management have more errors. Java stands out; it
is the only garbage collected language associated with more memory errors. For Concurrency,
inherently single-threaded languages (Python, JavaScript, . . .) have fewer errors than languages
with concurrency primitives. The causal relation for Memory and Concurrency is understandable,
as the classes of errors require particular language features.

2.2 Methods in the Original Study
Below, we summarize the process of data analysis by the original manuscript while splitting it into
the following three phases: data acquisition, cleaning, and modeling.

2.2.1 Data Acquisition. For each of the 17 languages with the most projects on GitHub,
50 projects with the highest star rankings were selected. Any project with fewer than 28 com-
mits was filtered out, leaving 729 projects (86%). For each project, commit histories were collected
with git log --no-merges --numstat. The data were split into rows, such that each row had a
unique combination of file name, project name, and commit identifier. Other fields included com-
mitter and author name, date of the commit, commit message, and number of lines inserted and
deleted. In summary, the original paper states that the input consisted of 729 projects written in
17 languages, accounting for 63 million SLOC created over 1.5 million commits written by 29,000
authors. Of these, 566,000 commits were bug fixes.

2.2.2 Data Cleaning. As any project may be written in multiple languages, each row of the
data is labeled by language based on the file’s extension (TypeScript is .ts, and so on). To rule
out small change sets, projects with fewer than 20 commits in any single language are filtered
out for that language. Commits are labeled as bug fixes by searching for error-related keywords:
error, bug, fix, issue, mistake, incorrect, fault, defect, and flaw in commit messages. This is similar
to a heuristic introduced by Mockus and Votta [19]. Each row of the data is furthermore labeled
with four extra attributes. The Paradigm class is either procedural, functional, or scripting. The

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4. Relevant Papers

84

On the Impact of Programming Languages on Code Quality 21:7

Compile class indicates whether a language is statically or dynamically typed. The Type class
indicates whether a language admits “type-confusion,” i.e., it allows interpreting a memory region
populated by a value of one type as another type. A language is strongly typed if it explicitly
detects type confusion and reports it as such. The Memory class indicates whether the language
requires developers to manage memory by hand.

2.2.3 Statistical Modeling. For RQ1, the manuscript specified an NBR [7], where an observation
is a combination of project and language. In other words, a project written in three languages has
three observations. For each observation, the regression uses bug-fixing commits as a response
variable, and the languages as the independent variables. NBR is an appropriate choice, given
the non-negative and discrete nature of the counts of commits. To adjust for differences between
the observations, the regression includes the confounders age, number of commits, number of
developers, and size (represented by inserted lines in commits), all log-transformed to improve the
quality of fit. For the purposes of RQ1, the model for an observation i is as follows:

bcommitsi ∼ NegativeBinomial (μi ,θ), where
E{bcommitsi } = μi

Var{bcommitsi } = μi + μ
2
i /θ

loд μi = β0 + β1log(commits)i+β2log(age)i+β3log(size)i + β4log(devs)i +
∑16

j=1 β (4+j) languagei j

The programming languages are coded with weighted contrasts. These contrasts are customized
in a way to interpret β0 as the average log-expected number of bugs in the dataset. Therefore,
β5, . . . , β20 are the deviations of the log-expected number of bug-fixing commits in a language
from the average of the log-expected number of bug-fixing commits. Finally, the coefficient β21
(corresponding to the last language in alphanumeric order) is derived from the contrasts after the
model fit [17]. Coefficients with a statistically significant negative value indicate a lower expected
number of bug-fixing commits; coefficients with a significant positive value indicate a higher ex-
pected number of bug-fixing commits. The model-based inference of parameters β5, . . . , β21 is the
main focus of RQ1.

For RQ2, the study fit another NBR, with the same confounder variables, to study the association
between language classes and the number of bug-fixing commits. It then uses Analysis of Deviance
to quantify the variation attributed to language classes and the confounders. For RQ3, the article
calculates the Spearman’s correlation coefficient between defectiveness by domain and defective-
ness overall, with respect to language, to discuss the association between languages versus that
by domain. For RQ4, the study once again uses NBR, with the same confounders, to explore the
propensity for bugfixes among the languages with regard to bug types.

3 EXPERIMENTAL REPETITION
Our first objective is to repeat the analyses of the FSE article and to obtain the same results. We
requested and received from the original authors an artifact containing 3.45GB of processed data
and 696 lines of R code to load the data and perform statistical modeling steps.

3.1 Methods
Ideally, a repetition should be a simple process, where a script generates results and these match
the results in the published article. In our case, we only had part of the code needed to generate
the expected tables and no code for graphs. We therefore wrote new R scripts to mimic all of the
steps, as described in the original manuscript. We found it essential to automate the production
of all numbers, tables, and graphs shown in our article as we had to iterate multiple times. The

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4.2. Paper 2 - On the Impact of Programming Languages on Code Quality: A
Reproduction Study

85

21:8 E. D. Berger et al.

code for repetition amounts to 1,140 lines of R (file repetition.Rmd and implementation.R in
our artifact).

3.2 Results
The data were provided to us in the form of two CSV files. The first, larger file contained one row
per file and commit, and it contained the bug fix labels. The second, smaller file aggregated rows
with the same commit and the same language. Upon preliminary inspection, we observed that
the files contained information on 729 projects and 1.5 million commits. We found an additional
148 projects that were omitted from the original study without explanation. We choose to ignore
those projects as data volume is not an issue here.

Developers vs. Committers. One discrepancy was the 47,000 authors we observed versus the
29,000 reported. This is explained by the fact that, although the FSE article claimed to use devel-
opers as a control variable, it was in fact counting committers: a subset of developers with commit
rights. For instance, Linus Torvalds has 73,038 commits, of which he personally authored 11,343,
the remaining are due to other members of the project. The rationale for using developers as a
control variable is that the same individual may be more or less prone to committing bugs, but
this argument does not hold for committers as they aggregate the work of multiple developers.
We chose to retain committers for our reproduction but note that this choice should be revisited
in follow up work.

Measuring code size. The commits represented 80.7 million lines of code. We could not account
for a difference of 17 million SLOC from the reported size. We also remark, but do not act on, the
fact that project size, computed in the FSE article as the sum of inserted lines, is not accurate—as
it does not take deletions into account. We tried to subtract deleted lines and obtained projects
with negative line counts. This is due to the treatments of Git merges. A merge is a commit that
combines conflicting changes of two parent commits. Merge commits are not present in our data;
only parent commits are used, as they have more meaningful messages. If both parent commits of
a merge delete the same lines, then the deletions are double counted. It is unclear what the right
metric of size should be.

3.2.1 Are Some Languages More Defect Prone Than Others (RQ1). We were able to qualitatively
(although not exactly) repeat the result of RQ1. Table 2(a) has the original results, and (c) has
our repetition. Grey cells indicate disagreement with the conclusion of the original work. One
disagreement in our repetition is with PHP. The FSE paper reported a p-value <.001, while we
observed <.01; per their established threshold of .005, the association of PHP with defects is not
statistically significant. The original authors corrected that value in their CACM repetition (shown
in Table 2(b)), so this may just be a reporting error. However, the CACM article dropped the
significance of JavaScript and TypeScript without explanation. The other difference is in the coef-
ficients for the control variables. Upon inspection of the code, we noticed that the original manu-
script used a combination of log and log10 transformations of these variables, while the repetition
consistently used log. The author’s CACM repetition fixed this problem.

3.2.2 Which Language Properties Relate to Defects (RQ2). As we approached RQ2, we faced
an issue with the language categorization used in the FSE paper. The original categorization is
reprinted in Table 3. The intuition is that each category should group languages that have “similar”
characteristics along some axis of language design.

The first thing to observe is that any such categorization will have some unclear fits. The original
authors admitted as much by excluding TypeScript from this table, as it was not obvious whether a
gradually typed language is static or dynamic. But there were other odd ducks. Scala is categorized

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4. Relevant Papers

86

On the Impact of Programming Languages on Code Quality 21:9

Table 2. Negative Binomial Regression for Languages (Gray Indicates
Disagreement with the Conclusion of the Original Work)

Original Authors Repetition
(a) FSE [26] (b) CACM [25] (c)

Coef P-val Coef P-val Coef P-val
Intercept − 1.93 <0.001 − 2.04 <0.001 − 1.8 <0.001

log commits 2.26 <0.001 0.96 <0.001 0.97 <0.001
log age 0.11 <0.01 0.06 <0.001 0.03 0.03
log size 0.05 <0.05 0.04 <0.001 0.02 <0.05

log devs 0.16 <0.001 0.06 <0.001 0.07 <0.001
C 0.15 <0.001 0.11 <0.01 0.16 <0.001

C++ 0.23 <0.001 0.18 <0.001 0.22 <0.001
C# 0.03 – − 0.02 – 0.03 0.602

Objective-C 0.18 <0.001 0.15 <0.01 0.17 0.001
Go − 0.08 – − 0.11 – − 0.11 0.086

Java − 0.01 – − 0.06 – − 0.02 0.61
Coffeescript − 0.07 – 0.06 – 0.05 0.325

Javascript 0.06 <0.01 0.03 – 0.07 <0.01
Typescript − 0.43 <0.001 0.15 – − 0.41 <0.001

Ruby − 0.15 <0.05 − 0.13 <0.01 − 0.13 <0.05
Php 0.15 <0.001 0.1 <0.05 0.13 0.009

Python 0.1 <0.01 0.08 <0.05 0.1 <0.01
Perl − 0.15 – − 0.12 – − 0.11 0.218

Clojure − 0.29 <0.001 − 0.3 <0.001 − 0.31 <0.001
Erlang 0 – − 0.03 – 0 1

Haskell − 0.23 <0.001 − 0.26 <0.001 − 0.24 <0.001
Scala − 0.28 <0.001 − 0.24 <0.001 − 0.22 <0.001

Table 3. Language Classes Defined by the FSE Paper

Classes Categories Languages
Paradigm Procedural C C++ C# Objective-C Java Go

Scripting CoffeeScript JavaScript Python Perl PHP Ruby
Functional Clojure Erlang Haskell Scala

Compilation Static C C++ C# Objective-C Java Go Haskell Scala
Dynamic CoffeeScript JavaScript Python Perl PHP Ruby Clojure Erlang

Type Strong C# Java Go Python Ruby Clojure Erlang Haskell Scala
Weak C C++ Objective-C PHP Perl CoffeeScript JavaScript

Memory Unmanaged C C++ Objective-C
Managed Others

as a functional language, yet it allows programs to be written in an imperative manner. We are
not aware of any study that shows that the majority of Scala users write functional code. Our
experience with Scala is that users freely mix functional and imperative programming. Objective-
C is listed as a statically compiled and unmanaged language. However, Objective-C has an object
system that is inspired by SmallTalk; its treatment of objects is quite dynamic, and objects are
collected by reference counting, so its memory is partially managed. The Type category is the most

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4.2. Paper 2 - On the Impact of Programming Languages on Code Quality: A
Reproduction Study

87

21:10 E. D. Berger et al.

Table 4. Negative Binomial Regression for Language Classes

(a) Original (b) Repetition (c) Reclassification
Coef P-val Coef P-val Coef P-val

Intercept −2.13 <0.001 −2.14 <0.001 −1.85 <0.001
log age 0.07 <0.001 0.15 <0.001 0.05 0.003
log size 0.05 <0.001 0.05 <0.001 0.01 0.552

log devs 0.07 <0.001 0.15 <0.001 0.07 <0.001
log commits 0.96 <0.001 2.19 <0.001 1 <0.001

Fun Sta Str Man −0.25 <0.001 −0.25 <0.001 −0.27 <0.001
Pro Sta Str Man −0.06 <0.05 −0.06 0.039 −0.03 0.24
Pro Sta Wea Unm 0.14 <0.001 0.14 <0.001 0.19 0
Scr Dyn Wea Man 0.04 <0.05 0.04 0.018 0 0.86
Fun Dyn Str Man −0.17 <0.001 −0.17 <0.001 – –
Scr Dyn Str Man 0.001 – 0 0.906 – –
Fun Dyn Wea Man – – – – −0.18 <0.001
Language classes are combined procedural (Pro), functional (Fun), scripting (Scr), dynamic (Dyn),
static (Sta), strong (Str), weak (Wea), managed (Man), and unmanaged (Unm). Rows marked – have
no observation.

counter-intuitive for programming language experts as it expresses whether a language allows
value of one type to be interpreted as another, e.g., due to automatic conversion. The CACM paper
attempted to clarify this definition with the example of the ID type. In Objective-C, an ID variable
can hold any value. If this is what the authors intend, then Python, Ruby, Clojure, and Erlang
would be weak as they have similar generic types.

In our repetition, we modified the categories accordingly and introduced a new category of
Functional-Dynamic-Weak-Managed to accommodate Clojure and Erlang. Table 4(c) summarizes
the results with the new categorization. The reclassification (using zero-sum contrasts introduced
in Section 4.2.1) disagrees on the significance of 2 of 5 categories. We note that we could repeat
the results of the original classification, but since that classification is wrong, those results are not
meaningful.

3.2.3 Does Language Defect Proneness Depend on Domain (RQ3). We were unable to repeat
RQ3, as the artifact did not include code to compute the results. In a repetition, one expects the
code to be available. However, the data contained the classification of projects in domains, which
allowed us to attempt to recreate part of the analysis described in the paper. While we successfully
replicated the initial analysis step, we could not match the removal of outliers described in the
FSE paper. Stepping outside of the repetition, we explore an alternative approach to answer the
question. Table 5 uses an NBR with domains instead of languages. The results suggest there is no
evidence that the application domain is a predictor of bug-fixes as the paper claims. So, while we
cannot repeat the result, the conclusion likely holds.

3.2.4 What Is the Relation Between Language and Bug Category (RQ4). We were unable to repeat
the results of RQ4, because the artifact did not contain the code that implemented the heatmap or
NBR for bug types. Additionally, we found no single column in the data that contained the bug
categories reported in the FSE paper. It was further unclear whether the bug types were disjoint:
adding together all of the percentages for every bug type mentioned in Table 5 of the FSE study
totaled 104%. The input CSV file did contain two columns that, when combined, matched these
categories. When we attempted to reconstruct the categories and compared counts of each bug

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4. Relevant Papers

88

On the Impact of Programming Languages on Code Quality 21:11

Table 5. NBR for RQ3

Coef p-Val
(Intercept) −1.94 <0.001

log age 0.05 <0.001
log size 0.03 <0.001

log devs 0.08 <0.001
log commits 0.96 <0.001

Coef p-Val
Application 0 1.00

CodeAnalyzer −0.05 0.93
Database 0.04 1.00

Framework 0.01 1.00
Library −0.06 0.23

Middleware 0 1.00

type, we found discrepancies with those originally reported. For example, we had 9 times as many
Unknown bugs as the original, but we had only less than half the number of Memory bugs. Such
discrepancies make repetition invalid.

3.3 Outcome
The repetition was partly successful. RQ1 produced small differences, but qualitatively similar
conclusions. RQ2 could be repeated, but we noted issues with language classification; fixing these
issues changed the outcome for 2 of 5 categories. RQ3 could not be repeated, as the code was miss-
ing and our reverse engineering attempts failed. RQ4 could not be repeated due to irreconcilable
differences in the data.

4 REANALYSIS
Our second objective is to carry out a reanalysis of RQ1 of the FSE article. The reanalysis differs
from repetition in that it proposes alternative data processing and statistical analyses to address
what we identify as methodological weaknesses of the original work.

4.1 Methods: Data Processing
First, we examined more closely the process of data acquisition in the original work. This step was
intended as a quality control, and it did not result in changes to the data.

We wrote software to automatically download and check commits of projects against GitHub
histories. Out of 729 projects used in the FSE paper, 618 could be downloaded. The other projects
may have been deleted or became private. The downloaded projects were matched by name. As
the FSE data lacked project owner names, the matches were ambiguous. By checking for matching
SHAs, we confidently identified 423 projects as belonging to the study. For each matched project,
we compared its entire history of commits to its commits in the FSE dataset, as follows. We iden-
tified the most recent commit c occurring in both. Commits chronologically older than c were
classified as either valid (appearing in the original study), irrelevant (not affecting language files),
or missing (not appearing in the original study).

We found 106K missing commits (i.e., 19.95% of the dataset). Perl stands out with 80% of com-
mits that were missing in the original manuscript (Figure 3 lists the ratio of missing commits
per language). Manual inspection of a random sample of the missing commits did not reveal any
pattern. We also recorded invalid commits (occurring in the study but absent from the GitHub
history). Four projects had substantial numbers of invalid commits, likely due to matching errors
or a change in commit history (such as with the git rebase command).

Next, we applied three data cleaning steps (see below for details; each of these was necessary
to compensate for errors in data acquisition of the original study): (1) Deduplication, (2) Removal

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4.2. Paper 2 - On the Impact of Programming Languages on Code Quality: A
Reproduction Study

89

21:12 E. D. Berger et al.

Fig. 3. Percentage of commits identified as missing from the FSE dataset.

of TypeScript, (3) Accounting for C and C++. Our implementation consists of 1,323 lines of R code
split between files re-analysis.Rmd and implementation.R in the artifact.

4.1.1 Deduplication. While the input data did not include forks, we checked for project simi-
larities by searching for projects with similar commit identifiers. We found 33 projects that shared
one or more commits. Of those, 18 were related to bitcoin, a popular project that was fre-
quently copied and modified. The projects with duplicate commits are as follows: litecoin, mega-
coin, memorycoin, bitcoin, bitcoin-qt-i2p, anoncoin, smallchange, primecoin, terracoin, zetacoin,
datacoin, datacoin-hp, freicoin, ppcoin, namecoin, namecoin-qt, namecoinq, ProtoShares, QGIS,
Quantum-GIS, incubator-spark, spark, sbt, xsbt, Play20, playframework, ravendb, SignalR, New-
tonsoft.Json, Hystrix, RxJava, clojure-scheme, and clojurescript. In total, there were 27,450 dupli-
cated commits, or 1.86% of all commits. We deleted these commits from our dataset to avoid double
counting some bugs.

4.1.2 Removal of TypeScript. In the original dataset, the first commit for TypeScript was
recorded on 2003-03-21, several years before the language was created. Upon inspection, we
found that the file extension .ts is used for XML files containing human language translations. Of
41 projects labeled as TypeScript, only 16 contained TypeScript. This reduced the number of com-
mits from 10,063 to an even smaller 3,782. Unfortunately, the three largest remaining projects
(typescript-node-definitions, DefinitelyTyped, and the deprecated tsd) contained only
declarations and no code. They accounted for 34.6% of the remaining TypeScript commits. Given
the small size of the remaining corpus, we removed it from consideration as it is not clear that we
have sufficient data to draw useful conclusions. To understand the origin of the classification error,
we checked the tool mentioned in the FSE article, GitHub Linguist.2 At the time of the original
study, that version of Linguist incorrectly classified translation files as TypeScript. This was fixed
on December 6, 2014. This may explain why the number of TypeScript projects decreased between
the FSE and CACM articles.

4.1.3 Accounting for C++ and C. Further investigation revealed that the input data only in-
cluded C++ commits to files with the .cpp extension. However, C++ compilers allow many exten-
sions, including .C, .cc, .CPP, .c++, .cp, and .cxx. Moreover, the dataset contained no commits to .h
header files. However, these files regularly contain executable code such as inline functions in C
and templates in C++. We could not repair this without getting additional data and writing a tool

2https://github.com/github/linguist.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4. Relevant Papers

90

On the Impact of Programming Languages on Code Quality 21:13

Fig. 4. V8 commits.

Fig. 5. Commits and bug-fixing commits after cleaning, plotted with a 95% confidence interval.

to label the commits in the same way as the authors did. We checked GitHub Linguist to explain
the missing files, but as of 2014, it was able to recognize header files and all C++ extensions.

The only correction we applied was to delete the V8 project. While V8 is written mostly in C++,
its commits in the dataset are mostly in JavaScript (Figure 4 gives the number of commits per
language in the dataset for the V8 project). Manual inspection revealed that JavaScript commits
were regression test cases for errors in the missing C++ code. Including them would artificially
increase the number of JavaScript errors. The original authors may have noticed a discrepancy as
they removed V8 from RQ3.

At the end of the data cleaning steps, the dataset had 708 projects, 58.2 million lines of code, and
1.4 million commits—of which 517,770 were labeled as bug-fixing commits, written by 46 thou-
sand authors. Overall, our cleaning reduced the corpus by 6.14%. Figure 5 shows the relationship
between commits and bug fixes in all of the languages after the cleaning. As one would expect, the
number of bug-fixing commits correlated to the number of commits. The figure also shows that
the majority of commits in the corpus came from C and C++. Perl is an outlier, because most of its
commits were missing from the corpus.

4.1.4 Labeling Accuracy. A key reanalysis question for this case study is as follows: What is a
bug-fixing commit? With the help of 10 independent developers employed in industry, we com-
pared the manual labels of randomly selected commits to those obtained automatically in the
FSE paper. We selected a random subset of 400 commits via the following protocol. First, ran-
domly sample 20 projects. In these projects, randomly sample 10 commits labeled as bug-fixing and
10 commits not labeled as bug-fixing. Enlisting help from 10 independent developers employed in
industry, we omitted the commits’ bugfix labels and divided them equally among the ten experts.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4.2. Paper 2 - On the Impact of Programming Languages on Code Quality: A
Reproduction Study

91

21:14 E. D. Berger et al.

Each commit was manually given a new binary bugfix label by 3 of the experts, according to their
best judgment. Commits with at least 2 bugfix votes were considered to be bug fixes. The review
suggested a false-positive rate of 36%; i.e., 36% of the commits that the original study considered as
bug-fixing were in fact not. The false-negative rate was 11%. Short of relabeling the entire dataset
manually, there was nothing we could do to improve the labeling accuracy. Therefore, we chose
an alternative route and took labeling inaccuracy into account as part of the statistical modeling
and analysis.

We give five examples of commits that were labeled as bug fixing in the FSE paper but were
deemed by developers not to be bug fixes. Each line contains the text of the commit, underlined
emphasis is ours and indicates the likely reason the commit was labeled as a bug fix (when appar-
ent), and the URL points to the commit in GitHub:

• tabs to spaces formatting fixes.
https://langstudy.page.link/gM7N

• better error messages.
https://langstudy.page.link/XktS

• Converted CoreDataRecipes sample to MagicalRecordRecipes sample
application.
https://langstudy.page.link/iNhr

• [core] Add NIError.h/m.
https://langstudy.page.link/n7Yf

• Add lazyness to infix operators.
https://langstudy.page.link/2qPk

Unanimous mislabelings (when all three developers agreed) constituted 54% of the false pos-
itives. To control for random interrater agreement, we compute Cohen’s Kappa coefficient. We
calculate kappa coefficients for all pairs of raters on the subset of commits they both reviewed. All
values were positive with a median of 0.6. Within the false positives, most of the mislabeling arose,
because words that were synonymous with or related to bugs (e.g., “fix” and “error”) were found
within substrings or matched completely out of context. A meta-analysis of the false positives
suggests the following six categories:

(1) Substrings;
(2) Non-functional: meaning-preserving refactoring, e.g., changes to variable names;
(3) Comments: changes to comments, formatting, and so on;
(4) Feature: feature enhancements;
(5) Mismatch: keywords used in an unambiguous non-bug context (e.g., “this is not a bug”);
(6) Hidden features: new features with unclear commit messages.

The original study clarified that its classification, which involved identifying bugfixes by only
searching for error-related keywords came from Reference [19]. However, that work classified
modification requests with an iterative, multi-step process, which differentiates between six differ-
ent types of code changes through multiple keywords. It is possible that this process was planned
but not completed in the FSE publication.

It is noteworthy that the above concerned are well known in the software engineering com-
munity. Since the Mockus and Votta paper [19], a number of authors have observed that using
keywords appearing in commit message is error prone, and that biased error messages can lead
to erroneous conclusions [2, 12, 28] (Reference [2] has amongst its authors two of the authors of
FSE’14). Yet, keyword based bug-fix detection is still a common practice [3, 6].

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4. Relevant Papers

92

On the Impact of Programming Languages on Code Quality 21:15

4.2 Methods: Statistical Modeling
The reanalysis uncovered several methodological weaknesses in the statistical analyses of the orig-
inal manuscript.

4.2.1 Zero-sum Contrasts. The original manuscript chose to code the programming languages
with weighted contrasts. Such contrasts interpret the coefficients of the Negative Binomial Regres-
sion as deviations of the log-expected number of bug-fixing commits in a language from the av-
erage of the log-expected number of bug-fixing commits in the dataset. Comparison to the dataset
average is sensitive to changes in the dataset composition, makes the reference unstable, and com-
promises the interpretability of the results. This is particularly important when the composition of
the dataset is subject to uncertainty, as discussed in Section 4.1 above. A more common choice is to
code factors such as programming languages with zero-sum contrasts [17]. This coding interprets
the parameters as the deviations of the log-expected number of bug-fixing commits in a language
from the average of log-expected number of bug-fixing commits between the languages. It is more
appropriate for this investigation.

4.2.2 Multiplicity of Hypothesis Testing. A common mistake in data-driven software engineer-
ing is to fail to account for multiple hypothesis testing [27]. When simultaneously testing multiple
hypotheses, some p-values can fall in the significance range by random chance. This is certainly
true for Negative Binomial Regression, when we simultaneously test 16 hypotheses of coefficients
associated with 16 programming languages being 0 [17]. Comparing 16 independent p-values to a
significance cutoff of, say, 0.05 in absence of the associations implies the family-wise error rate (i.e.,
the probability of at least one false-positive association) FWER = 1 − (1 − 0.05)16 = 0.56. The sim-
plest approach to control FWER is the method of Bonferroni, which compares the p-values to the
significance cutoff divided by the number of hypotheses. Therefore, with this approach, we viewed
the parameters as “statistically significant” only if their p-values were below 0.01/16 = 0.000625.

The FWER criterion is often viewed as overly conservative. An alternative criterion is the False
Discovery Rate (FDR), which allows an average pre-specified proportion of false positives in the
list of “statistically significant” tests. For comparison, we also adjusted the p-values to control the
FDR using the method of Benjamini and Hochberg [1]. An adjusted p-value cutoff of, say, 0.05
implies an average 5% of false positives in the “statistically significant” list.

As we will show next, for our dataset, both of these techniques agree in that they decrease the
number of statistically significant associations between languages and defects by one (Ruby is not
significant when we adjust for multiple hypothesis testing).

4.2.3 Statistical Significance versus Practical Significance. The FSE article focused on the statis-
tical significance of the regression coefficients. This is quite narrow, in that the p-values are largely
driven by the number of observations in the dataset [11]. Small p-values do not necessarily imply
practically important associations [4, 30]. In contrast, practical significance can be assessed by ex-
amining model-based prediction intervals [17], which predict future commits. Prediction intervals
are similar to confidence intervals in reflecting model-based uncertainty. They are different from
confidence intervals in that they characterize the plausible range of values of the future individual
data points (as opposed to their mean). In this case study, we contrasted confidence intervals and
prediction intervals derived for individual languages from the Negative Binomial Regression. As
above, we used the method of Bonferroni to adjust the confidence levels for the multiplicity of
languages.

4.2.4 Accounting for Uncertainty. The FSE analyses assumed that the counts of bug-fixing com-
mits had no error. However, labeling of commits is subject to uncertainty: the heuristic used to

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4.2. Paper 2 - On the Impact of Programming Languages on Code Quality: A
Reproduction Study

93

21:16 E. D. Berger et al.

Table 6. Negative Binomial Regression for Languages (Gray Indicates Disagreement
with the Conclusion of the Original Work)

Original Authors Reanalysis
(a) FSE [26] (b) cleaned data (c) pV adjusted (d) zero-sum (e) bootstrap

Coef P-val Coef P-val FDR Bonf Coef Bonf Coef sig.
Intercept −1.93 <0.001 −1.93 <0.001 – – −1.96 – −1.79 *

log commits 2.26 <0.001 0.94 <0.001 – – 0.94 – 0.96 *
log age 0.11 <0.01 0.05 <0.01 – – 0.05 – 0.03
log size 0.05 <0.05 0.04 <0.05 – – 0.04 – 0.03 *

log devs 0.16 <0.001 0.09 <0.001 – – 0.09 – 0.05 *
C 0.15 <0.001 0.11 0.007 0.017 0.118 0.14 0.017 0.08

C++ 0.23 <0.001 0.23 <0.001 <0.01 <0.01 0.26 <0.01 0.16 *
C# 0.03 – −0.01 0.85 0.85 1 0.02 1 0

Objective-C 0.18 <0.001 0.14 0.005 0.013 0.079 0.17 0.011 0.1
Go −0.08 – −0.1 0.098 0.157 1 −0.07 1 −0.04

Java −0.01 – −0.06 0.199 0.289 1 −0.03 1 −0.02
Coffeescript −0.07 – 0.06 0.261 0.322 1 0.09 1 0.04

Javascript 0.06 <0.01 0.03 0.219 0.292 1 0.06 0.719 0.03
Typescript −0.43 <0.001 – – – – – – – –

Ruby −0.15 <0.05 −0.15 <0.05 <0.01 0.017 −0.12 0.134 −0.08 *
Php 0.15 <0.001 0.1 0.039 0.075 0.629 0.13 0.122 0.07

Python 0.1 <0.01 0.08 0.042 0.075 0.673 0.1 0.109 0.06
Perl −0.15 – −0.08 0.366 0.419 1 −0.05 1 0

Clojure −0.29 <0.001 −0.31 <0.001 <0.01 <0.01 −0.28 <0.01 −0.15 *
Erlang 0 – −0.02 0.687 0.733 1 0.01 1 −0.01

Haskell −0.23 <0.001 −0.23 <0.001 <0.01 <0.01 −0.2 <0.01 −0.12 *
Scala −0.28 <0.001 −0.25 <0.001 <0.01 <0.01 −0.22 <0.01 −0.13

label commits has many false positives, which must be factored into the results. A relatively sim-
ple approach to achieve this relies on parameter estimation by a statistical procedure called the
bootstrap [17]. We implemented the bootstrap with the following three steps. First, we sampled
with replacement the projects (and their attributes) to create resampled datasets of the same size.
Second, the number of bug-fixing commits bcommits∗i of project i in the resampled dataset was
generated as the following random variable:

bcommits∗i ∼ Binom(size = bcommitsi , prob = 1 − FP)

+Binom(size = (commitsi − bcommitsi), prob = FN)

where FP = 36% and FN = 11% (Section 4.1). Finally, we analyzed the resampled dataset with Nega-
tive Binomial Regression. The three steps were repeated 100,000 times to create the histograms of
estimates of each regression coefficients. Applying the Bonferroni correction, the parameter was
viewed as statistically significant if 0.01/16th and (1-0.01)/16th quantiles of the histograms did not
include 0.

4.3 Results
Table 6(b)–(e) summarizes the re-analysis results. The impact of the data cleaning, without multiple
hypothesis testing, is illustrated by column (b). Gray cells indicate disagreement with the conclu-
sion of the original work. As can be seen, the p-values for C, Objective-C, JavaScript, TypeScript,

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4. Relevant Papers

94

On the Impact of Programming Languages on Code Quality 21:17

Fig. 6. Predictions of bug-fixing commits as function of commits by models in Table 6(c) and (d) for C++ (most
bugs) and Clojure (least bugs). (a) (1 − 0.01/16%) confidence intervals for expected values on log-log scale.
(b) Prediction intervals for a future number of bug-fixing commits, represented by 0.01/16 and 1 − 0.01/16
quantiles of the NB distributions with expected values in (a). ((c) and (d)) Translation of the confidence and
prediction intervals to the original scale.

PHP, and Python all fall outside of the “significant” range of values, even without the multiplicity
adjustment. Thus, 6 of the original 11 claims are discarded at this stage. Column (c) illustrates the
impact of correction for multiple hypothesis testing. Controlling the FDR increased the p-values
slightly, but did not invalidate additional claims. However, FDR comes at the expense of more po-
tential false-positive associations. Using the Bonferroni adjustment does not change the outcome.
In both cases, the p-value for one additional language, Ruby, loses its significance.

Table 6, column (d) illustrates the impact of coding the programming languages in the model
with zero-sum contrasts. As can be seen, this did not qualitatively change the conclusions. Ta-
ble 6(e) summarizes the average estimates of coefficients across the bootstrap repetitions, and
their standard errors. It shows that accounting for the additional uncertainty further shrunk the
estimates closer to 0. In addition, Scala is now out of the statistically significant set.

Prediction intervals. Even though some of the coefficients may be viewed as statistically sig-
nificantly different from 0, they may or may not be practically significant. We illustrate this in
Figure 6. The panels of the figure plot model-based predictions of the number of bug-fixing com-
mits as function of commits for two extreme cases: C++ (most bugs) commits) and Clojure (least
bugs). Age, size, and number of developers were fixed to the median values in the revised dataset.
Figure 6(a) plots model-based confidence intervals of the expected values, i.e., the estimated average

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4.2. Paper 2 - On the Impact of Programming Languages on Code Quality: A
Reproduction Study

95

21:18 E. D. Berger et al.

numbers of bug-fixing commits in the underlying population of commits, on the log-log scale con-
sidered by the model. The differences between the averages were consistently small. Figure 6(b)
displays the model-based prediction intervals, which consider individual observations rather than
averages, and characterize the plausible future values of projects’ bug-fixing commits. As can be
seen, the prediction intervals substantially overlap, indicating that, despite their statistical signif-
icance, the practical difference in the future numbers of bug-fixing commits is small. Figure 6(c)
and (d) translate the confidence and the intervals on the original scale and make the same point.

4.4 Outcome
The reanalysis failed to validate most of the claims of Reference [26]. As Table 6(d)–(f) shows, the
multiple steps of data cleaning and improved statistical modeling invalidated the significance of 7
of 11 languages. Even when the associations are statistically significant, their practical significance
is small.

5 FOLLOW UP WORK
We now list several issues that may further endanger the validity of the causal conclusions of the
original manuscript. We have not controlled for their impact; we leave that to follow up work.

5.1 Regression Tests
Tests are relatively common in large projects. We discovered that 16.2% of files are tests (801,248
files) by matching file names to the regular expression “*(Test|test)*”. We sampled 100 of these
files randomly and verified that every one indeed contained regression tests. Tests are regularly
modified to adapt to changes in API, to include new checks. Their commits may or may not be
relevant, as bugs in tests may be very different from bugs in normal code. Furthermore, counting
tests could lead to double counting bugs (that is, the bug fix and the test could end up being two
commits). Overall, more study is required to understand how to treat tests when analyzing large
scale repositories.

5.2 Distribution of Labeling Errors
Given the inaccuracy of automated bug labeling techniques, it is quite possible that a significant
portion of the bugs being analyzed are not bugs at all. We have shown how to accommodate for
that uncertainty, but our correction assumed a somewhat uniform distribution of labeling errors
across languages and projects. Of course, there is no guarantee that labeling errors have a uniform
distribution. Error rates may be influenced by practices such as using a template for commits.
For instance, if a project used the word issue in their commit template, then automated tools
would classify all commits from that project as being bugs. To take a concrete example, consider
the DesignPatternsPHP project: it has 80% false positives, while more structured projects such as
tengine have only 10% false positives. Often, the indicative factor was as mundane as the wording
used in commit messages. The gocode project, the project with the most false negatives, at 40%,
“closes” its issues instead of “fixing” them. Mitigation would require manual inspection of commit
messages and sometimes even of the source code. In our experience, professional programmers
can make this determination in, on average, 2 minutes. Unfortunately, this would translate to
23 person-months to label the entire corpus.

5.3 Project Selection
Using GitHub stars to select projects is fraught with perils as the 18 variants of bitcoin included
in the study attest. Projects should be representative of the language they are written in. The
PHPDesignPatterns is an educational compendium of code snippets; it is quite likely that is does
ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4. Relevant Papers

96

On the Impact of Programming Languages on Code Quality 21:19

represent actual PHP code in the wild. The DefinitelyTyped TypeScript project is a popular list
of type signatures with no runnable code; it has bugs, but they are mistakes in the types assigned
to function arguments and not programming errors. Random sampling of GitHub projects is not an
appropriate methodology either. GitHub has large numbers of duplicate and partially duplicated
projects [18] and too many throwaway projects for this to yield the intended result. To mitigate
this threat, researchers must develop a methodology for selecting projects that represent the pop-
ulation of interest. For relatively small numbers of projects, less than 1,000, as in the FSE paper, it
is conceivable to curate them manually. Larger studies will need automated techniques.

5.4 Project Provenance
GitHub public projects tend to be written by volunteers working in open source rather than by
programmers working in industry. The work on many of these projects is likely done by individ-
uals (or collections of individuals) rather than by close knit teams. If this is the case, then this may
impact the likelihood of any commit being a bug fix. One could imagine commercial software being
developed according to more rigorous software engineering standards. To mitigate for this threat,
one should add commercial projects to the corpus and check if they have different defect charac-
teristics. If this is not possible, then one should qualify the claims by describing the characteristics
of the developer population.

5.5 Application Domain
Some tasks, such as system programming, may be inherently more challenging and error prone
than others. Thus, it is likely that the source code of an operating system has different characteris-
tics in terms of errors than that of a game designed to run in a browser. Also, due to non-functional
requirements, the developers of an operating system may be constrained in their choice of lan-
guages (typically unmanaged system languages). The results reported in the FSE paper suggest
that this intuition is wrong. We wonder if the choice of domains and the assignment of projects to
domains could be an issue. A closer look may yield interesting observations.

5.6 Uncontrolled Influences
Additional sources of bias and confounding should be appropriately controlled. The bug rate (num-
ber of bug-fixing commits divided by total commits) in a project can be influenced by the project’s
culture, the age of commits, or the individual developers working on it. Consider Figure 7, which
shows that project ages are not uniformly distributed: some languages have been in widespread
use longer than others. The relation between age and its bug rate is subtle. It needs to be stud-
ied, and age should be factored into the selection of projects for inclusion in the study. Figure 8
illustrates the evolution of the bug rate (with the original study’s flawed notion of bugs) over time
for 12 large projects written in various languages. While the projects have different ages, there
are clear trends. Generally, bug rates decrease over time. Thus, older projects may have a smaller
ratio of bugs, making the language they are written in appear less error prone. Last, the FSE paper
did not control for developers influencing multiple projects. While there are over 45K developers,
10% of these developers are responsible for 50% of the commits. Furthermore, the mean number of
projects that a developer commits to is 1.2. This result indicates that projects are not independent.
To mitigate those threats, further study is needed to understand the impact of these and other
potential biases, and to design experiments that take them into account.

5.7 Relevance to the RQ
The FSE article argues that programming language features are, in part, responsible for bugs.
Clearly, this only applies to a certain class of programming errors: those that rely on language

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4.2. Paper 2 - On the Impact of Programming Languages on Code Quality: A
Reproduction Study

97

21:20 E. D. Berger et al.

Fig. 7. Bug rate vs. project age. Lines indicate means of project age (x-axis) and bug rate (y-axis).

features. It is unclear if bugs related to application logic or characteristics of the problem domain
are always affected by the programming language. For example, setting the wrong TCP port on
a network connection is not a language-related bug, and no language feature will prevent that
bug,whereas passing an argument of the wrong data type may be if the language has a static type
system. It is eminently possible that some significant portion of bugs are in fact not affected by
language features. To mitigate this threat, one would need to develop a new classification of bugs
that distinguishes between bugs that may be related to the choice of language and those that are
not. It is unclear what attributes of a bug would be used for this purpose and quite unlikely that
the process could be conducted without manual inspection of the source code.

6 BEST PRACTICES
The lessons from this work mirror the challenges of reproducible data science. While these lessons
are not novel, they may be worth repeating.

6.1 Automate, Document, and Share
The first lesson touches upon the process of collecting, managing, and interpreting data. Real-
world problems are complex, and produce rich, nuanced, and noisy datasets. Analysis pipelines
must be carefully engineered to avoid corruption, errors, and unwarranted interpretations. This
turned out to be a major hurdle for the FSE paper. Uncovering these issues on our side was a
substantial effort (approximately 5 person-months).

Data science pipelines are often complex: They use multiple languages and perform sophisti-
cated transformations of the data to eliminate invalid inputs and format the data for analysis. For

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4. Relevant Papers

98

On the Impact of Programming Languages on Code Quality 21:21

Fig. 8. Monthly avg. bug rate over lifetime. Points are % of bug-labeled commits, aggregated over months.

instance, this article relies on a combination of JavaScript, R, shell, and Makefiles. The R code
contains over 130 transformation operations over the input table. Such pipelines can contain sub-
tle errors—one of the downsides of statistical languages is that they almost always yield a value.
Publications often do not have the space to fully describe all the statistical steps undertaken. For
instance, the FSE paper did not explain the computation of weights for NBR in sufficient detail
for reproduction. Access to the code was key to understanding. However, even with the source
code, we were not able to repeat the FSE results—the code had suffered from bit rot and did not
run correctly on the data at hand. The only way forward is to ensure that all data analysis studies
be (a) automated, (b) documented, and (c) shared. Automation is crucial to ensure repetition and
that, given a change in the data, all graphs and results can be regenerated. Documentation helps
understanding the analysis. A pile of inscrutable code has little value.

6.2 Apply Domain Knowledge
Work in this space requires expertise in a number of disparate areas. Domain knowledge is criti-
cal when examining and understanding projects. Domain experts would have immediately taken
issue with the misclassifications of V8 and bitcoin. Similarly, the classification of Scala as a purely
functional language or of Objective-C as a manually managed language would have been red flags.
Finally, given the subtleties of Git, researchers familiar with that system would likely have coun-
seled against simply throwing away merges. We recognize the challenge of developing expertise
in all relevant technologies and concepts. At a minimum, domain experts should be enlisted to vet
claims.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4.2. Paper 2 - On the Impact of Programming Languages on Code Quality: A
Reproduction Study

99

21:22 E. D. Berger et al.

6.3 Grep Considered Harmful
Simple bug identification techniques are too blunt to provide useful answers. This problem was
compounded by the fact that the search for keywords did not look for words and instead captured
substrings wholly unrelated to software defects. When the accuracy of classification is as low as
36%, it becomes difficult to argue that results with small effect sizes are meaningful as they may be
indistinguishable from noise. If such classification techniques are to be employed, then a careful
post hoc validation by hand should be conducted by domain experts.

6.4 Sanitize and Validate
Real-world data are messy. Much of the effort in this reproduction was invested in gaining a thor-
ough understanding of the dataset, finding oddities and surprising features in it, and then sanitizing
the dataset to only include clean and tidy data [10]. For every flaw that we uncovered in the orig-
inal study and documented here, we developed many more hypotheses that did not pan out. The
process can be thought of as detective work—looking for clues, trying to guess possible culprits,
and assembling proof.

6.5 Be Wary of P-values
Our last advice touches upon data modeling and model-based conclusions. Complicated problems
require complicated statistical analyses, which in turn may fail for complicated reasons. A narrow
focus on statistical significance can undermine results. These issues are well understood by the
statistical community, and are summarized in a recent statement of the American Statistical Asso-
ciation [30]. The statement makes points such as “scientific conclusions should not be based only
on whether a p-value passes a specific threshold” and “a p-value, or statistical significance, does
not measure the importance of a result.” The underlying context, such as domain knowledge, data
quality, and the intended use of the results, are key for the validity of the results.

7 CONCLUSION
The Ray et al. work aimed to provide evidence for one of the fundamental assumptions in program-
ming language research, which is that language design matters. For decades, paper after paper was
published based on this very assumption, but the assumption itself still has not been validated. The
attention the FSE and CACM articles received, including our reproduction study, directly follows
from the community’s desire for answers.

Unfortunately, our work has identified numerous and serious methodological flaws in the FSE
study that invalidated its key result. Our intent is not to blame. Statistical analysis of software
based on large-scale code repositories is challenging. There are many opportunities for errors to
creep in. We spent over 6 months simply to recreate and validate each step of the original paper.
Given the importance of the questions being addressed, we believe it was time well spent. Our
contribution not only sets the record straight, but more importantly, provides thorough analysis
and discussion of the pitfalls associated with statistical analysis of large code bases. Our study
should lend support both to authors of similar papers in the future, as well as to reviewers of such
work.

After data cleaning and a thorough reanalysis, we have shown that the conclusions of the FSE
and CACM papers do not hold. It is not the case that eleven programming languages have statis-
tically significant associations with bugs. An association can be observed for only four languages,
and even then, that association is exceedingly small. Moreover, we have identified many uncon-
trolled sources of potential bias. We emphasize that our results do not stem from a lack of data,
but rather from the quality of the data at hand.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4. Relevant Papers

100

On the Impact of Programming Languages on Code Quality 21:23

Finally, we would like to reiterate the need for automated and reproducible studies. While statis-
tical analysis combined with large data corpora is a powerful tool that may answer even the hardest
research questions, the work involved in such studies—and therefore the possibility of errors—is
enormous. It is only through careful re-validation of such studies that the broader community may
gain trust in these results and get better insight into the problems and solutions associated with
such studies.

ACKNOWLEDGMENTS
We thank Baishakhi Ray and Vladimir Filkov for sharing the data and code of their FSE paper;
had they not preserved the original files and part of their code, reproduction would have been
more challenging. We thank Derek Jones, Shiram Krishnamurthi, Ryan Culppeper, and Artem
Pelenitsyn for helpful comments. We thank the members of the PRL lab in Boston and Prague for
additional comments and encouragements. We thank the developers who kindly helped us label
commit messages.

REFERENCES
[1] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach

to multiple testing. J. Roy. Stat. Soc. B 57, 1 (1995). DOI:https://doi.org/10.2307/2346101
[2] Christian Bird, Adrian Bachmann, Eirik Aune, John Duffy, Abraham Bernstein, Vladimir Filkov, and Premkumar

Devanbu. 2009. Fair and balanced?: Bias in bug-fix datasets. In Proceedings of the Symposium on the Foundations of
Software Engineering (ESEC/FSE’09). DOI:https://doi.org/10.1145/1595696.1595716

[3] Casey Casalnuovo, Yagnik Suchak, Baishakhi Ray, and Cindy Rubio-González. 2017. GitcProc: A tool for process-
ing and classifying github commits. In Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA’17). DOI:https://doi.org/10.1145/3092703.3098230

[4] David Colquhoun. 2017. The reproducibility of research and the misinterpretation of p-values. R. Soc. Open Sci. 4,
171085 (2017). DOI:https://doi.org/10.1098/rsos.171085

[5] Premkumar T. Devanbu. 2018. Research Statement. Retrieved from www.cs.ucdavis.edu/∼devanbu/research.pdf.
[6] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien Nguyen. 2013. Boa: A language and infrastructure for an-

alyzing ultra-large-scale software repositories. In Proceedings of the International Conference on Software Engineering
(ICSE’13). DOI:https://doi.org/10.1109/ICSE.2013.6606588

[7] J. J. Faraway. 2016. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression
Models. CRC Press.

[8] Dror G. Feitelson. 2015. From repeatability to reproducibility and corroboration. SIGOPS Oper. Syst. Rev. 49, 1 (Jan.
2015). DOI:https://doi.org/10.1145/2723872.2723875

[9] Omar S. Gómez, Natalia Juristo Juzgado, and Sira Vegas. 2010. Replications types in experimental disciplines. In
Proceedings of the Symposium on Empirical Software Engineering and Measurement (ESEM’10). DOI:https://doi.org/10.
1145/1852786.1852790

[10] Garrett Grolemund and Hadley Wickham. 2017. R for Data Science. O’Reilly.
[11] Lewis G. Halsey, Douglas Curran-Everett, Sarah L. Vowler, and Gordon B. Drummond. 2015. The fickle p-value

generates irreproducible results. Nat. Methods 12 (2015). DOI:https://doi.org/10.1038/nmeth.3288
[12] Kim Herzig, Sascha Just, and Andreas Zeller. 2013. It’s not a bug, it’s a feature: How misclassification impacts bug

prediction. In Proceedings of the International Conference on Software Engineering (ICSE’13). DOI:https://doi.org/10.
1109/ICSE.2013.6606585

[13] John Ioannidis. 2005. Why most published research findings are false. PLoS Med 2, 8 (2005). DOI:https://doi.org/10.
1371/journal.pmed.0020124

[14] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018. Evaluating fuzz testing. In Proceedings
of the Conference on Computer and Communications Security (CCS’18). DOI:https://doi.org/10.1145/3243734.3243804

[15] Paul Krill. 2014. Functional languages rack up best scores for software quality. InfoWorld (Nov. 2014). https://www.
infoworld.com/article/2844268/functional-languages-rack-up-best-scores-software-quality.html.

[16] Shriram Krishnamurthi and Jan Vitek. 2015. The real software crisis: Repeatability as a core value. Commun. ACM
58, 3 (2015). DOI:https://doi.org/10.1145/2658987

[17] Michael H. Kutner, John Neter, Christopher J. Nachtsheim, and William Li. 2004. Applied Linear Statistical Models.
McGraw–Hill Education, New York, NY. https://books.google.cz/books?id=XAzYCwAAQBAJ

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4.2. Paper 2 - On the Impact of Programming Languages on Code Quality: A
Reproduction Study

101

21:24 E. D. Berger et al.

[18] Crista Lopes, Petr Maj, Pedro Martins, Di Yang, Jakub Zitny, Hitesh Sajnani, and Jan Vitek. 2017. Déjà Vu: A map of
code duplicates on GitHub. In Proceedings of the ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’17). DOI:https://doi.org/10.1145/3133908

[19] Audris Mockus and Lawrence Votta. 2000. Identifying reasons for software changes using historic databases. In Pro-
ceedings of the International Conference on Software Maintenance (ICSM’00). DOI:https://doi.org/10.1109/ICSM.2000.
883028

[20] Martin Monperrus. 2014. A critical review of “automatic patch generation learned from human-written patches”:
Essay on the problem statement and the evaluation of automatic software repair. In Proceedings of the International
Conference on Software Engineering (ICSE’14). DOI:https://doi.org/10.1145/2568225.2568324

[21] Sebastian Nanz and Carlo A. Furia. 2015. A comparative study of programming languages in rosetta code. In Pro-
ceedings of the International Conference on Software Engineering (ICSE’15). http://dl.acm.org/citation.cfm?id=2818754.
2818848.

[22] Roger Peng. 2011. Reproducible research in computational science. Science 334, 1226 (2011). DOI:https://doi.org/10.
1126/science.1213847

[23] Dong Qiu, Bixin Li, Earl T. Barr, and Zhendong Su. 2017. Understanding the syntactic rule usage in Java. J. Syst. Softw.
123 (Jan. 2017), 160–172. DOI:https://doi.org/10.1016/j.jss.2016.10.017

[24] B. Ray and D. Posnett. 2016. A large ecosystem study to understand the effect of programming languages on code
quality. In Perspectives on Data Science for Software Engineering. Morgan Kaufmann. DOI:https://doi.org/10.1016/
B978-0-12-804206-9.00023-4

[25] Baishakhi Ray, Daryl Posnett, Premkumar T. Devanbu, and Vladimir Filkov. 2017. A large-scale study of programming
languages and code quality in GitHub. Commun. ACM 60, 10 (2017). DOI:https://doi.org/10.1145/3126905

[26] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar T. Devanbu. 2014. A large scale study of programming
languages and code quality in GitHub. In Proceedings of the International Symposium on Foundations of Software
Engineering (FSE’14). DOI:https://doi.org/10.1145/2635868.2635922

[27] Rolando P. Reyes, Oscar Dieste, Efraín R. Fonseca, and Natalia Juristo. 2018. Statistical errors in software engineering
experiments: A preliminary literature review. In Proceedings of the International Conference on Software Engineering
(ICSE’18). DOI:https://doi.org/10.1145/3180155.3180161

[28] Yuan Tian, Julia Lawall, and David Lo. 2012. Identifying linux bug fixing patches. In Proceedings of the International
Conference on Software Engineering (ICSE’12). DOI:https://doi.org/10.1109/ICSE.2012.6227176

[29] Jan Vitek and Tomas Kalibera. 2011. Repeatability, reproducibility, and rigor in systems research. In Proceedings of the
International Conference on Embedded Software (EMSOFT’11). 33–38. DOI:https://doi.org/10.1145/2038642.2038650

[30] Ronald L. Wasserstein and Nicole A. Lazar. 2016. The ASA’s statement on p-values: Context, process, and purpose.
Am. Stat. 70, 2 (2016). DOI:https://doi.org/10.1080/00031305.2016.1154108

[31] Jie Zhang, Feng Li, Dan Hao, Meng Wang, and Lu Zhang. 2018. How does bug-handling effort differ among different
programming languages? CoRR abs/1801.01025 (2018). http://arxiv.org/abs/1801.01025.

Received December 2018; revised May 2019; accepted June 2019

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 21. Publication date: October 2019.

4. Relevant Papers

102

4.3. Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Repositories

4.3 Paper 3 - CodeDJ: Reproducible Queries over Large-Scale
Software Repositories

Petr Maj, Konrad Siek, Alexander Kovalenko, Jan Vitek.
In: 35th European Conference on Object-Oriented Programming (ECOOP 2021). Article

No. 7; pp. 7:1–7:24

4.3.1 Author’s Contributions

I was responsible for the paper’s main idea of implementing CodeDJ, a tool for precise, scal-
able and reproducible project selection from large software repositories. I was responsible
for the overall design of CodeDJ that consists of two components, Parasite and Djanco. I de-
signed and implemented Parasite, which is an incremental GitHub scrapper and reproducible
source code warehouse. I performed the reproduction analysis and helped with the query
language interface design and calculation of attributes for Djanco. I helped with the artifact
preparation.

Konrad Siek implemented the second component, the Djanco query engine and prepared
the artifact. Alexander Kovalenko was responsible for the graphs in the paper.

I presented the paper at ECOOP 2021.

4.3.2 Citations

1. Arteca, E. & Turcotte, A. Npm-filter: Automating the mining of dynamic information
from npm packages. Proceedings - 2022 Mining Software Repositories Conference, MSR
2022. pp. 304-308 (2022)

103

CodeDJ: Reproducible Queries over
Large-Scale Software Repositories
Petr Maj1

Czech Technical University in Prague

Konrad Siek1

Czech Technical University in Prague

Alexander Kovalenko
Czech Technical University in Prague

Jan Vitek
Czech Technical University in Prague and
Northeastern University

Abstract
Analyzing massive code bases is a staple of modern software engineering research – a welcome
side-effect of the advent of large-scale software repositories such as GitHub. Selecting which projects
one should analyze is a labor-intensive process, and a process that can lead to biased results if
the selection is not representative of the population of interest. One issue faced by researchers is
that the interface exposed by software repositories only allows the most basic of queries. CodeDJ is
an infrastructure for querying repositories composed of a persistent datastore, constantly updated
with data acquired from GitHub, and an in-memory database with a Rust query interface. CodeDJ
supports reproducibility, historical queries are answered deterministically using past states of the
datastore; thus researchers can reproduce published results. To illustrate the benefits of CodeDJ, we
identify biases in the data of a published study and, by repeating the analysis with new data, we
demonstrate that the study’s conclusions were sensitive to the choice of projects.

2012 ACM Subject Classification Software and its engineering → Ultra-large-scale systems;

Keywords and phrases Software, Mining Code Repositories, Source Code Analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.7

1 Introduction

With over 190 million public projects, GitHub is our largest source of empirical data about
how software is developed. It is a treasure trove that must be mined if we want to distill
insights from its contents. Manual inspection is limited to small-scale case studies; even
automated analysis tools struggle with the sheer amount of data available. The software
engineering community has taken up this challenge, researchers examine increasingly larger
numbers of projects in order to test hypotheses and derive knowledge about the software
development process. Examples of such studies include investigations of testing practices [12],
changes to licensing over time [18], popularity trends [4] and configuration settings [17].
These works use samples of GitHub ranging from 15K to 100K projects filtered to exclude
projects considered as lacking in size, popularity, originality or importance.

For any scientific study of software, selecting the projects that make up the input of
that study is fraught with risks. Any given choice can introduce unwanted and sometimes
undetected bias. This bias may, in turn, taint the conclusions of the work. Much like the
task of polling voters before an election, choosing a subset of a larger population must be

1 These authors contributed equally.

© Petr Maj, Konrad Siek;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 7; pp. 7:1–7:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

4. Relevant Papers

104

7:2 Reproducible Queries over Large-Scale Software Repositories

done carefully. In polls, the goal is to ensure appropriate representation of likely voters. The
chosen subset excludes citizens who are either not eligible or unlikely to vote, and balances
the various population groups. At the same time, for reasons of cost and practicality, the
size of this subset is kept as small as possible. Even when pollsters are careful, the accuracy
of predictions varies. In software engineering, we often look for some properties of “real”
code — where our definition of the term is sensitive to context and research goals. One may
exclude course assignments because the errors made by beginners are not relevant to deployed
software; on the other hand, if our goal is to shine a light on acquisition of programming
skills, then that kind of code may be exactly what is needed. Picking the right set of inputs
is thus the first challenge any researcher in the field must address.

With software, Nagappan et al. warned us that more is not always better [14]. Their
observations hold now more so than back in 2013 as anyone can create a GitHub repository
at no cost and house almost anything there. Manual inspection found that 37% of hosted
projects are not used for software development [11]. Thus, the quality of data gathered from
software repositories should always be questioned. A stark illustration why skepticism is in
order comes from the finding that ten common source corpora have up to 68% of bit-for-bit
identical file duplicates [1]. Furthermore, the same paper showed that clones impacted
the accuracy of results obtained with these corpora. We argue that more is worse: as the
number of projects to scrutinize grows, it becomes harder to check whether their data is
clean, consistent and well-formed. Consider the case of text files accidentally misidentified
as code [15], an error that went unnoticed for three years and was “fixed” by partially
invalidating the original paper’s conclusions [2]. As a result of this state of affairs, researchers
spend significant effort collecting and curating meaningful suites of open source projects.
Unfortunately, manual curation cannot track the constantly changing software landscape.

In this paper, we aim to address a seemingly simple yet eminently practical question,
how does one find software projects in large-scale software repositories? The assumption
underlying our work, our hypothesis, is that it is possible to select thousands of projects
from millions by formulating queries on attributes found in the projects’ metadata and on
easily computed properties of their source code. To be concrete about the kinds of queries
we envision, consider looking for the one hundred most popular projects predominantly
written in Java, developed in the five years before the introduction of Lambdas by at least
two developers with five years of experience. Furthermore, let’s ensure that the selected
projects have no more than 5% duplicate files between each other. While the search interface
provided by software repositories may allow to query for projects by language, there is no
way to compute this query automatically without retrieving all projects.

This paper reports on the status of CodeDJ, an infrastructure for querying large-scale
software repositories. In its current incarnation our system is geared towards processing
data from any git-based software repository. For our experiments, we specifically target
GitHub. The three main engineering challenges we contend with are the sheer size of the
data source, the constant updates to its data, and the narrow, rate-limited, interface for
accessing projects. In addition, a key design requirement is reproducibility; not only should
queries execute deterministically, but the infrastructure should be able to replay a historical
query with identical results. Thus, researchers may take any query from the literature, even
years after it was originally run and its output was used in a publication, and match its
results. Furthermore, researchers should be able to modify a historical query and run it
based on the information available at any point in the past.

4.3. Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Repositories

105

Maj, Siek, et al. 7:3

To address these challenges and requirements, CodeDJ is architected in two distinct
subsystems. Interaction with the data source is mediated by Parasite, a time-indexed
datastore that automatically and continuously queries GitHub for data about projects.
Parasite is responsible for data acquisition and keeping that data up-to-date over time. Every
datum is logically time-stamped to enable reproducibility. To ensure that CodeDJ can scale,
Parasite can be split up into multiple distinct substores based on the projects’ main language.
The second subsystem, an in-memory database named Djanco, handles user-written queries.
For each query, Djanco determines the portion of the datastore that is required, loads the
data, and executes the query. Queries evaluate with project metadata in memory while source
code remains on disk. The query syntax is based on data frame manipulation interfaces
popular in data science, such as dplyr [19], and is expressed in Rust. We claim the following
contributions:

The design of CodeDJ, a scalable infrastructure for querying large-scale software repositories
that supports reproducibility and continuously updated data sources.
A prototype implementation of Parasite and Djanco written in Rust that shows scalability
to millions of projects.
A dataset consisting of 3.6 million software projects written in 17 languages obtained
from GitHub.
A case study illustrating that the choice of projects can invalidate the conclusion of a
research project.

Equally important is what we don’t do. We do not provide guidance on how to use our
infrastructure. The determination of what is the right input for a given analysis is problem
specific and the choice remains something individual researchers must grapple with. We have
not shown scalability of our infrastructure to the whole of GitHub, we are comfortable with
datastores of up to 10 million projects. A larger size may require more work. We do not
support interactive queries, our infrastructure was designed with the understanding that
queries can take hours to run. We did not focus on optimizing query evaluation by, e.g.
parallelizing their execution. Lastly, we do not index any artifacts other than code. Adding
images, configuration files and documentation is possible but was not considered one of our
targets.

Availability. CodeDJ is an open source infrastructure. Readers interested in repeatability,
will find our reproduction package at:

https://github.com/PRL-PRG/codedj-ecoop-artifact

The source code of Parasite and Djanco are on GitHub at:

https://github.com/PRL-PRG/codedj-parasite
https://github.com/PRL-PRG/djanco

As our datastore is too large to easily share, Sec. 3.3.4 discusses how external users can run
queries on our servers. Another alternative is for users to set up their own CodeDJ instance
and gather their own data to execute queries. Our reproduction package contains a complete
walk-through of the set up procedure. Of course, users must publish their dataset to enable
reproducibility.

ECOOP 2021

4. Relevant Papers

106

7:4 Reproducible Queries over Large-Scale Software Repositories

2 Related Work

Table 1 gives a high-level comparison with eight systems with aims similar to ours. The first
column (Active) indicates if the system is actively maintained. Some research projects have
fallen into disrepair and their web pages are unreachable. The second column (Updated)
indicates if continuous updates are supported. Given the rate of addition to GitHub, most
systems struggle to keep up. The third column (Reproducible) indicates if results are
reproducible. Reproducibility is only relevant when the data is updated, systems built on
a single static snapshot trivially support reproducibility. The fourth column (Consistent)
indicates that the data is consistent. Inconsistencies arise when some earlier data (such as
parent commits) are missed. The fifth column (Queries) describes the nature of the query
interface exposed to users. Some systems have a simple filtering mechanism for a fixed set of
attributes, such as the language of the project, others have their own query language. In
our case, we express queries in Rust. The sixth column (Sources) indicates where the data
comes from. Mostly this is GitHub, but the Apache Software Foundation and various other
sources have also been used in the past. The seventh column (Size) is an estimate of how
many projects are available. Finally the last column (Contents) indicates if source code can
be queried. Most systems only include metadata about projects due to the size of the code.

A
ct

iv
e

U
pd

at
ed

R
ep

ro
du

ci
bl

e

C
on

sis
te

nt

Queries Sources Size C
on

te
nt

s
Stress [8] – – Y Y Filter Apache 211 –

Flossmetrics [9] – – Y Y Filter Many 2.8K –
Orion [3] – – Y Y Own Many 185K Y

Boa [7] Y – Y Y Own Java 380K Y
Black Duck Y Y – Y Filter Many 680K –

Sourcerer [16] – – Y Y Filter GitHub 4.5M –
GHTorrent [10] Y Y – Y SQL GitHub 157M –

GitHub Y Y – – Filter GitHub 190M Y
CodeDJ Y Y Y Y Rust GitHub 3.6M Y

Table 1 Systems comparison

Stress: This system aims to help choose projects in a reproducible manner [8]. Its corpus
consists of 211 projects which can be filtered on 100 pre-computed attributes such as bug
tickets or lifetime. The corpus can be sorted and sampled randomly. Queries can be exported
so they can be repeated later. Source code is not available for querying. Stress is inactive.
CodeDJ scales to larger corpora and allows to specify richer queries. In terms of reproducibility,
we support updates to the corpus.

Flossmetrics: This work analyzed 2800 open source projects and computed statistics about
various aspects of their development process, such as number of commits and developers [9].
Information from additional sources such as project mailing lists and issue trackers was
included. Queries could be formulated on metrics such as COCOMO effort, core team
members, evolution and dynamics of bugs. Filtering based on these criteria was supported.
The project is inactive and it did not support updates.

4.3. Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Repositories

107

Maj, Siek, et al. 7:5

Orion: This system aimed to enable retrieving projects using complex search queries linking
different artifacts of software development, such as source code, version control metadata, bug
tracker tickets, developer activities and interactions extracted from the hosting platform [3].
The project is no longer maintained, it scaled to about 185K projects. CodeDJ is designed to
scale to larger corpora and offers a more flexible query interface.

Boa: This system focuses on semantics queries over Java programs [7]. A corpus of 380K
Java projects can be queried using a dedicated query language that supports automatic
parallelization and pluggable mining functions. Source code can be queried in sophisticated
ways as Boa is able to parse and analyze Java. A larger corpus of 7.5M projects can be queried
on project summaries. Boa provides reproducibility by ensuring its queries are deterministic
with respect to the dataset’s version, which are created and archived infrequently (i.e. 2013,
2015, 2019, 2020). CodeDJ differs from Boa in that it is language agnostic and geared
towards project selection, as opposed to project analysis. Furthermore, CodeDJ provides full
reproducibility in the presence of a continuously evolving dataset.

Black Duck Open Hub: A public directory of open source software2 that offers search
services for discovering, evaluating, tracking, and comparing projects. It analyzes both the
code’s history and ongoing updates to provide reports about the composition and activity of
code bases. CodeDJ allows researchers to write their own queries and supports reproducibility.

SourcererCC: The aim of this project is to detect code clones [16]. The tool scales to large
datasets and can detect near-identical code at various granularities. It has been used to
analyze cloning across large corpora of Java, JavaScript, Python, C and C++ projects on
GitHub [13]. It can be used by researchers to detect duplication in their samples which is a
source of bias. The project’s web page appears to be inactive.

GHTorrent: This database of metadata about GitHub projects offers an SQL interface
for queries [10]. It monitors GitHub events to constantly update the available data. The
limitation of the approach is that GitHub’s events do not have all commit details and file
contents, thus these are not stored by GHTorrent. In our experience, the database is not
always consistent, this may be due to missed events. We have attempted to upload queries
through the public SQL interface but the queries timed out.

GitHub: This service provides two ways to query metadata and contents. A REST API can
be used for requesting information about projects and listing them, its search queries provide
filtering capabilities across a small set of fixed attributes. A web API provides extended
filtering options such as searching within repositories written in a particular language. These
interfaces are rate-limited and thus return partial results. The results are non-deterministic
and non-reproducible as projects may be added and deleted at any time. CodeDJ provides a
view of a subset of GitHub on which we support reproducibility and our queries are richer
and deterministic.

We would be remiss if we failed to mention the Software Heritage Archive which aims
to preserve all publicly available source code; currently upwards of 9.5B source files, 2B
commits and 150M projects [6]. It only allows retrieval of single objects. The authors point
to the fragility of current arrangements and the dynamic nature of source code repositories
makes it difficult to reproduce studies that use them. We have encountered this ourselves:
we see projects deleted from GitHub, changing names, or visibility. In the future, CodeDJ
can be extended to query the heritage corpus as well as other repositories.

2 https://www.openhub.net

ECOOP 2021

4. Relevant Papers

108

7:6 Reproducible Queries over Large-Scale Software Repositories

3 An Infrastructure for Querying Large-Scale Repositories

The goal of CodeDJ is to allow researchers to formulate queries that evaluate attributes of
projects hosted on GitHub and return data about projects matching a specified predicate.

3.1 Design considerations and system architecture
The design of CodeDJ flows from four high-level principles that we motivate next:

Consistent, eventually: The sheer size and churn in data sources such as GitHub
means that obtaining a snapshot of the whole data source is not practical. But, it is often
the case that a slightly out-of-date view is sufficient for most investigations. We choose
to refresh entire projects atomically at irregular intervals. Thus, any individual project is
consistent, but for any group of projects, the lower bound on their refresh times is the
last consistent time point (git histories can be destructively updated, allowing for post
factum inconsistencies, we ignore these).
Code-centric, language agnostic: We aim to support queries on project metadata
and file contents written in any programming language. To reduce space requirements,
the only source artifacts we store is code, deduplication is used to remove redundancy,
and metadata is trimmed where possible.
Flexible query interface: Popular data science tools such as dplyr [19] or Spark [20]
offer a mix operations inspired by database query languages extended with general purpose
capabilities. Inspired by these, we propose an interface expressed in Rust as a library
with operations for selecting, grouping, filtering and sampling data. The benefits of our
approach over, say, SQL, is that queries are type-safe and benefit from the full generality
of the Rust language.
Reproducible by design: The importance of reproducibility cannot be overstated [5],
consider [15] which recorded the names of the most starred projects seven years ago,
without author names it is not possible uniquely to identify projects, and even with their
full names, reconstructing a historical star count is not possible. CodeDJ is designed so it
is possible to run any query with the information that the datastore had at an arbitrary
point in the past. For this purpose the datastore is time-indexed, strictly append-only.

DejaCode

Parasite Djancoinstance

GitHub
repos

GitHub
REST API

query.rs results
CSVs

incremental
extraction

project
metadata

query API export API

query
archiverepro

API

Figure 1 System overview

Fig. 1 overviews the architecture of CodeDJ. The system is structured around two components,
Parasite, a datastore that tracks GitHub, and Djanco, an in-memory database with a Rust
interface. Parasite is set up to continuously extract information from GitHub using its REST
API for some data and cloning project repositories for other data. The information obtained

4.3. Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Repositories

109

Maj, Siek, et al. 7:7

from the data source is deduplicated and stored in a dedicated format on disk. At irregular
intervals projects are refreshed, and the new information is appended to the datastore. When
an end-user query is submitted for execution, it comes as a Rust function calling the Djanco
query API, a database instance is created for that query. The database will load the data
needed for query execution from Parasite. The output of a query is some results, usually as a
text file and a record of that query in a reproducibility archive.

The remainder of this section describes our implementation, the design of the query
interface and our support for reproducibility.

3.2 The Parasite datastore
Parasite is a dedicated, perpetually running application whose task is to synchronize its
on-disk representation with GitHub. This task is complicated by these four constraints:

Scalable: We expect to grow to hundreds of millions of projects, the disk format must
be space efficient and its in memory format must be compact and fast to access.
Peaceful co-existence: We must abide by GitHub’s terms of service. Parasite must be
economical in both the number requests to the GitHub API calls and raw git operations.
Time-indexed: Every datum in the store must be associated with its acquisition date,
this feature must have a minimal overhead so as not to increase our footprint.
Robust: Backups are not possible due to limited resources, the datastore must thus be
resilient to corruption.

Our description focuses on three aspects, the data acquisition process, the data storage format
and the interface exposed to Djanco. We also explain how we meet the above constraints.

3.2.1 Acquisition
While, in theory, the GitHub API is sufficient to fulfill all our needs, the fact that GitHub
defends itself against denial of service attacks limiting users to 5,000 requests per hour causes
a practical problem. As every commit requires one request, the interface is too restrictive to
collect data within a reasonable amount of time. Therefore, instead of relying on the API
alone, Parasite combines a number of interfaces:

Git: we use the git clone command to retrieve source code files and commit histories
from repositories;
GitHub: we use the REST API for project metadata (stars, watchers, issues, etc.),
information that cannot be obtained through git alone;
GHTorrent: instead of querying GitHub for projects directly, we seeded Parasite with
the URLs of projects obtained from GHTorrent.3

Parasite continuously downloads data from its data sources on a per-project basis. The
projects known to Parasite are maintained in a priority queue. Projects are visited in inverse
order of last access time. Thus, given any group of projects, the lower bound on the time
they were last visited determines the last point when Parasite had a consistent view of those
projects modulo destructive git history rewrites.

When a project is visited, the download procedure begins. First, the project’s metadata
is retrieved via a call to the REST API. This yields a JSON file with metadata and sundry

3 While GHTorrent has over 100M URLs, they are not all valid. Out of 5.5M URLs we visited, only 3.6M
were usable, the remaining are either duplicates, have been deleted, or have become private.

ECOOP 2021

4. Relevant Papers

110

7:8 Reproducible Queries over Large-Scale Software Repositories

information. The metadata is stripped of non-essential information (such as URLs for various
REST API requests) and stored. The project’s current and last known URLs are compared
to detect renaming and the new URL is recorded if a change occurred. Next, the project’s
heads are checked against the heads in the datastore. Each head corresponds to a branch in
git. If any of the heads changed, the project is cloned and data about new commits and
the contents of changed files are extracted and stored. We clone projects because using the
REST API to get new commits is slow and rate limited. We clone repeatedly at each visit,
caching projects is not feasible due to space limitations (in the future, we plan to cache the
most active projects to reduce the amount of data unnecessarily transferred via full clones).

Once a local copy of a project exists, we determine which substore that project belongs to
and append new commits and files to it. Substores are partitions of the dataset that Parasite
uses to organize its disk structures around. Projects are matched to a single substore by
properties such as size (e.g. a substore for small projects) or dominant language (e.g. a
substore of Python projects).

When processing a chain of commits, a simple optimization is achieved by observing that
if we find a commit that is already in the datastore, then all of its parent commits must also
already be present. The final step is to record the time of the visit, and move to next project
in the queue. Any error during the processing, terminates the visit and the project is flagged
as potentially invalid.

Parasite is written in Rust using libgit2. It has been parallelized at project-level
granularity and scales up to 32 threads. With more threads, the bottleneck shifts from local
repository analysis to network bandwidth and ultimately to the GitHub rate limit. When
adding projects, Parasite processes 244 projects per thread per hour. As GitHub limits are
attached to users (identified by tokens), Parasite supports rotating multiple tokens which
allow us to sustain a download rate of 7821 projects per hour using 32 threads. Since Parasite
is still in accretion mode, we cannot report on the update rate alone, but we expect it to be
limited by GitHub to a rate of 120K active project updates per day per token.

Records Size Ratio
Users 4.8M 200M <0.01%

Projects 3.6M 4.9G 0.2%
Commits 167M 88G 3.2%

Paths 848M 80G 2.9%
Files 463M 2603G 93.7%

Table 2 Current dataset composition

Parasite has visited 3.6M projects composed from all non-fork C++ and Python projects
available in GHTorrent and a random subset of 50K projects in 17 popular languages. In
total, the datastore has 3.6M projects and occupies 2.8TB on disk. Table 2 shows that the
majority of the datastore is taken by source code.

3.2.2 Storage
The storage format of Parasite is designed to ensure a low disk footprint, to scale to hundreds
of millions of projects. The store is append-only to allow reverting to historic states and
to simplify recovery from data corruption. Parasite can be thought of as storing records.
Records of same kind are backed by a single record file. Records compose together to form
entities. The following entities are stored by Parasite:

4.3. Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Repositories

111

Maj, Siek, et al. 7:9

Projects: A project is identified by unique git clone URL, it has a set of heads (one
per branch) and other information from GitHub metadata.
Commits: A commit is identified by its SHA hash, it has a message, changes, parents,
an author, a committer, and a time.
Paths: A path is identified by the hash of its string value.
Users: A user is identified by their email.
Snapshots: A snapshot of a file containing source code is identified by its hash.

Records are the smallest unit of information in the datastore, the only way to update an
entity is to add a new record. The decomposition of entities to records has been designed
along the lines of what information can be updated in isolation. Entities are assigned unique
numeric identifiers based on their contents. One of the key internal data structures in Parasite
are the multiple mappings from entity hashes to identifiers. These mappings are used for
deduplication.

Deduplication is crucial as up to 94% of files can be duplicates [13]. Mappings are costly
as they must be kept in memory. For our corpus, the deduplication mappings for all entities
require 89GB. While not a concern at this time, as our dataset grows, mappings will become
a bottleneck. To decrease their size, we split Parasite into substores. Each substore manages
a disjoint partition of the projects. We perform deduplication only within substores. This
means that mappings are smaller at the price of some duplication across substores. Our
implementation assigns projects to substores based on their size and dominant language;
small projects (less than 10 commits) are kept distinct from projects written in targeted
languages. A drawback of this design is that identifiers are not unique, if multiple substores
must be accessed, extra care must be taken when merging their contents. On the other hand,
this compartmentalization has immediate benefits: In terms of robustness, different substores
can be stored in different locations and a loss of one does not impact the others. In terms
of performance, queries can trivially skip reading irrelevant substores. We measured the
duplication across substores at only 5.1%.

As source code (snapshots) dominate the datastore, Parasite internally splits snapshots
by language, storing each language separately. This improves reading times for queries that
filter by language.

Parasite avoids storing information that is expensive to update and that can be computed
readily. For instance, the relation between commits and their project is not stored; it can
be recovered from project heads and commit parents. To further reduce footprint, larger
records are compressed. For snapshots, the compression ratio is 70%.

To quickly find the latest records for a particular entity, Parasite computes indices, which
are stored in dedicated index files that provide, for each entity, the location of the latest
version of its constituent records. These index files are updated in place as new records are
added which exposes them to the risk of being inconsistent. If this occurs, they can always
be recomputed from scratch. As of this writing, all indices in the datastore comprised 0.6%
of our disk footprint.

To ensure that it is possible to associate a time with every datum on disk, Parasite
introduces the notion of a savepoint. Since the store is append-only, time-indexing in
Parasite boils down to simply associating a time to the current position of each substore.
For consistency, savepoints can only be created between visits of projects. They are thus
both a mechanism for reproducibility and robustness. Any query can be re-executed at any
savepoint and will see the same information. The datastore can be rolled back to a savepoint
in case of data corruption.

ECOOP 2021

4. Relevant Papers

112

7:10 Reproducible Queries over Large-Scale Software Repositories

3.2.3 Interfaces
Parasite has two interfaces, one for data acquisition and another for reading data.

For monitoring purposes data acquisition exposes a detailed breakdown of running tasks,
their progress and the usage of GitHub resources. Parasite has both an interactive text-based
interface and a command-line interface for automation via scripts. These interfaces allow to
create savepoints, verify integrity of the datastore and repair data corruption by reverting
to previous savepoints. Parasite monitors available memory to keep as many mappings in
memory as it can. Most of the datastore management can be done without reloading any
mappings; the initial load takes 26 minutes.

The read interface allows to access records. Iterators are created relative to a savepoint
and return records in the order they were added up to that savepoint. Many records are
never superseded, for these iterator return values can be used as such. For records that can
be overridden with newer values, iterators return updates in reverse chronological order. For
projects, Parasite assembles their information; this takes some time as URLs, heads, update
status, substore, and metadata must be loaded first, assembly discards all but the most
recent versions. Iterators are geared towards sequential access to all elements, but the index
files kept by Parasite can be used for random access as well.

3.3 The Djanco database
The Djanco database acts as an intermediary between Parasite and the end-user. It provides
a robust query engine that manages loading and pre-processing data and a domain-specific
language to express queries easily and concisely. Finally, it supports replaying historical
queries. Djanco is designed under the following simplifying assumptions:

Single-user: Djanco is used by a single user for a single query at a time; any parallelism
is internal and transparent.
Determinism: Queries are fully replayable on the basis of parameters explicitly provided
by the end-users such as random seeds, timestamps, and data source.
Read-only: Queries cannot update the datastore, changes are limited to local objects
and are not persisted.
Fixed-schema: Djanco only contains data and metadata pertaining to GitHub.

The need for Djanco comes from the structure of Parasite. The datastore is designed to allow
continuous updates and to decrease footprint. This complicates answering research questions.
For instance, Parasite elides the relation from a project to its commits. A simple question
such as how many commits there are in a project requires recomputing that relation by
looking up one the of project’s branches and its most recent commit. From that commit,
one can follow the parent commits and recursively enumerate them all. Then, repeat for all
branches. The database layer computes relations such as these and caches data persistently
to speed up queries.

The rationale for a dedicated database rather than an off-the-shelf one are threefold.
First, and most arguably, our experience using MySQL on a related project suggested that
scalability to large data size (2.8TB and growing) can lead to significant execution overheads.
Secondly, we can leverage the assumptions above to implement a domain-specific database as
many features of traditional databases (transactions, locks, a general schema) are superfluous.
Instead, we implement a solution specialized to our schema that lazily loads selected data
from the datastore. Finally, some of our queries are difficult to express in the relational
model. Queries can become lengthy and involve multiple joins, nesting and views, which
makes them difficult to debug and maintain.

4.3. Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Repositories

113

Maj, Siek, et al. 7:11

3.3.1 Instances
A Djanco database instance is logically created for each end-user query. Each instance is
irrevocably tied to a specific slice of the datastore. This slice is defined by two parameters:
the substores that indicate which projects to load, and a timestamp indicating a savepoint
to be checked out from each substore. If multiple datastores are used, the database joins and
deduplicates them.

Figure 2 Djanco schema (computed attributes marked ◦)

The Djanco schema is shown in Fig. 2, it defines five different entities: projects, commits,
paths, users and snapshots. Each with their own attributes and convenience methods. Even
though Djanco derives its schema from Parasite, there is not a one-to-one correspondence
between them. While Parasite tends towards generality and frugality, Djanco instead tends
towards expressivity and convenience. For instance, Parasite stores project metadata in
JSON, while Djanco parses the format, extracts useful information at sensible types. The
basic information about projects is their ID and URL. The metadata includes:

the language as determined by GitHub;
the numbers of stars, watchers, subscribers, issues, and forks;
dates for creation, most recent update, and most recent push;
the license, description, and homepage URL;
which web services are active: issues, wiki, downloads, pages;
size in bytes;
name of the default branch (e.g. “master” or “main”);
whether the project is archived or a fork.

Djanco provides a method to calculate the age of a project as the span of the time between
its first and most recent commit. Finally, it provides methods to retrieve relations between a

ECOOP 2021

4. Relevant Papers

114

7:12 Reproducible Queries over Large-Scale Software Repositories

project and other entities: heads, commits, users, authors, committers, paths, and snapshots.
Except for heads, all the relations need to be computed.

Commits have IDs, hashes, messages, as well as timestamps at which they were authored
and pushed. Each commit is associated with users, having an author and a committer. A
commit also has a list of changes: a change is a modification to a file represented by a path
in the repository and the contents of the file after the change. Finally, commits reference a
list of zero or more parent commits in the commit tree.

Users have IDs and emails. In addition, experience is computed for authors and committers
as the timespan between their first and last commit. Users also have a method to acquire
the list of commits they authored or committed.

Paths represent file system locations within the project (e.g. "src/main.c"). They are
identified by a synthetic ID and contain a string representing the path. A method to guess
the language of a file from its extension is provided. Snapshots are the stream of bytes that
are contents of a file at some point in time. For instance, if a file is edited during a commit,
the contents of that file before and after the edit are two separate snapshots.

3.3.2 Queries
Queries can be expressed either through a low-level interface or via a DSL. The former
accesses the schema directly with Rust iterators and methods. The DSL is a more compact
way to implement common queries.

The first step for all queries is to construct a database instance. Since an instance wraps
around a specific view of the datastore, constructing it requires specifying a path, a savepoint
and substores. The following snippet constructs an instance for small projects available on
December 1st, 2016:

let db = Djanco::new(PATH, timestamp!(December 2016), substore!(SmallProjects))?;

Alternatively, an instance for C, C++, and Python programs is constructed like this:
let db = Djanco::new(PATH, timestamp!(December 2016), substores!(C, C++, Python))?;

Parameters can be skipped; an instance from all substores at their most recent savepoint is
constructed thus (values of defaults are recorded for reproducibility):

let db = Djanco::from(PATH)?;

Iterators offer access to entities. The snapshot iterator is lazy, the others eagerly load
information from the datastore. Iterators are entry points to queries; they return objects that
conform to the schema of Fig. 2. This snippet extracts a vector of all languages occurring in
projects:

let all_languages = db.projects()
.map(|project| project.language())
.unique()
.collect()::<Vec<Language>>;

While iterators suffice for just about any query, most queries can be expressed more concisely
in our DSL. The DSL uses a pipeline paradigm, where an initial data structure is transformed
by a series of methods (aka verbs) that do part of the processing in each step. We provide the
following verbs: group, filter, sort_by, sample, and map_into. We also provide access to
any attribute in the schema. In addition, objects and their attributes are composable into
complex statements expressing comparisons (e.g. AtLeast, AtMost, Matches, Contains),
basic statistical functions (Count, Max, Median), sampling methods (Top, Random), and many
others. The code below showcases a few of these:

4.3. Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Repositories

115

Maj, Siek, et al. 7:13

let selection = db.projects()
.group_by(project::Language)
.filter_by(AtLeast(Count(project::Users), 5))
.sort_by(project::Stars)
.sample(Top(50));

Projects are grouped according to their language, then filtered so that only projects that
have at least 5 users are kept, these are sorted by the number of stars in each project and,
finally, a sample of top 50 projects is returned.

A useful feature is the ability to deduplicate projects while sampling them according to
specific criteria. For example, in the following snippet projects will not be added to the
result set unless 90% of their commits are unique with respect to any other project already
within the result set:

selection.sample(Distinct(Top(50), MinRatio(project::Commits, 0.9)))

The final step of a query is to output its results; here we show results written to a CSV file:
selection.into_csv(OUTPUT_PATH)?;

Each object serializes verbosely, including all information about itself. If only specific
information is required, an appropriate format may be imposed by using the map verb to
translate an object into its attributes. Here each project is translated into its ID and URL:

selection
.map_into(Select!(project::Id, project::URL))
.into_csv(OUTPUT_PATH)?;

We also provide a function that outputs all information related to a project, including
commits, users, paths and snapshots. This creates multiple CSV files.

selection.dump_all_info_to(OUTPUT_DIR_PATH)?;

Crucially, end-users can do their own use-case–specific formatting by resorting to Rust:
selection.for_each(|project| println!("{}:␣{}", project.url(), project.has_wiki()))

Further details about our query facilities can be found in the Djanco GitHub repository.

A friend in need We had an opportunity to test our system when posed a question that
was difficult to answer with GitHub’s REST API. The query had to retrieve popular C++
repositories that use custom allocators. Finding out whether a project is using a custom
allocator requires checking if it imports a library called memory_resource. Therefore, we

1 let wanted: HashMap<SnapshotId> = db
2 .snapshots()
3 .filter(|snapshot|
4 snapshot.contains(
5 "#include␣<memory_resource>"))
6 .map(|snapshot| snapshot.id())
7 .collect();
8
9 let projects = db.projects()

10 .filter(|project| {
11 project.snapshots()
12 .map_or(false, |snapshots| {
13 snapshots.iter()
14 .map(|snapshot| snapshot.id())
15 .any(|snapshot_id| {
16 wanted.contains(snapshot_id)
17 })
18 })
19 .sorted_by_key(|project|
20 project.star_count());

1 let wanted: HashSet<SnapshotId> = db
2 .snapshots()
3 .filter_by(
4 Contains(snapshot::Contents,
5 "#include␣<memory_resource>"))
6 .map_into(snapshot::Id)
7 .collect();
8
9 let projects = db.projects()

10 .filter_by(
11 AnyIn(project::SnapshotIds, wanted))
12 .sort_by(project::Stars);
13
14
15
16
17
18
19
20

Figure 3 Emery query

ECOOP 2021

4. Relevant Papers

116

7:14 Reproducible Queries over Large-Scale Software Repositories

grep through source code for the string "#include␣<memory_resource>". In a second step, we
iterate over projects and find those, which contain one of the selected snapshots. At that
point, we order them by popularity and retrieve some number of the most popular projects.
For comparison we wrote the query in pure Rust and then in the DSL. Both implementations
are in Fig. 3. As expected the DSL is more compact and more readable. We ran the query
on a store with 3M projects and 429M snapshots. The first part of the query found 1724
snapshots in 12 hours. The second part of the query retrieved 1197 projects and their
metadata in 24 hours. Then, an additional 6 hours was spent on preparing the project
metadata for CSV export.

3.3.3 Data management
Djanco transparently manages the loading and pre-processing of data from the datastore.
This involves two mechanisms: lazy loading and caching. Given the size of the data, loading
it all into memory is not desirable. Most queries are interested with a small slice of the data,
usually filtering out most projects and neglecting most attributes. Therefore, Djanco uses
lazy loading to tailor the in-memory data to the needs of each specific query. Snapshots
(source code files) are bulky and cannot be split into independent attributes. Only a single
snapshot is held in memory at once. The database retrieves them from the datastore only
when needed either by scanning the store sequentially or by using the datastore’s ability to
seek and access a specific snapshot. For the other objects (projects, commits, paths, and
users), their attributes are loaded independently on request. Attributes are cached in the
database as they can be needed several times.

Memory usage is not the only concern while loading data from the store. From our
experiences in querying GitHub, we find that many similar queries are executed on the same
datastore view, especially when a query is being developed. Loading attributes from the
datastore can be costly, especially in places where the Djanco schema requires the values to
be calculated, e.g. for mappings between entities. Therefore, we found it beneficial to avoid
recalculating some attributes across queries by implementing on-disk attribute caching, thus
improving performance of similar or repeated queries.

For each attribute occuring in a query, the database creates an in-memory map, mapping
an entity ID to that entity’s value for a given attribute. After an attribute has been loaded,
the caching extension serializes it onto disk using the CBOR serialization format. The on-disk
cache structure preserves information about which datastore, savepoint, and substore a
particular attribute map was read from. Subsequent queries requesting this attribute for this
particular datastore view then prefer loading data from the cache rather than the datastore.
This process is transparent to the end-user, and can be turned off to save disk space.

extracting writing reading size
from store to cache from cache on disk cached?

commit::Parents+commit::Users 1h 21m 28s 35m 16s 7m 25s 2.3GB Y
user::Experience 1h 10m 19s 1s 1s 5.7MB Y

user::CommitterExperience 1h 9m 52s 1s 1s 5.6MB Y
user::AuthoredCommits 1h 8m 47s 1m 1s 39s 213MB Y

project::Commits 1h 8m 33s 5m 29s 3m 25s 1.1GB Y
commit::Changes 52m 29s 2h 53m 53s 1h 21m 28s 20GB N

commit::CommitterTimestamp 41m 49s 1m 55s 1m 21s 418MB Y
commit::Message 41m 24s 3m 20s 1h 38m 3s 6GB N

Table 3 Caching performance

4.3. Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Repositories

117

Maj, Siek, et al. 7:15

However, while the cache uses up disk space, reading an attribute from CBOR is potentially
orders of magnitude faster than loading it from the store. On the other hand, when loading
from the store is simple and the data is difficult to serialize (e.g. it consists of large string
vectors) caching is not indicated. We have benchmarked and pre-tuned the database to cache
only when it is clearly advantageous. Table 3 shows the performance impact of caching while
extracting selected attributes on a dataset containing 130K projects and 44M commits. The
table lists a few representative attributes in the first column. Columns two and three present
what happens when the attribute is requested for the first time: how long it takes to extract
it from the datastore and how long it takes to subsequently serialize it onto disk. The fourth
and fifth columns show the impact of caching: how long it takes to read the argument from
cache (e.g. when the query is re-executed or when another query requires the same attribute
from the same datastore view) and how much disk space has to be devoted to the CBOR file.
The final column shows our decision whether to cache this attribute or not.

3.3.4 Availability
While users can download their own datasets and run queries on them locally, doing so
requires time and computational resources. Therefore, we also provide a procedure for running
queries on our hardware using our incrementally updated dataset. A durable, publically
available resource also fosters reproducibility.

The submission procedure plugs into the standard Rust toolkit. Queries are submitted as
cargo crates. These crates include functions marked as individual queries via annotations
which also specify the savepoint and subsets that the specific query expects. For convenience,
we provide a template for query crates that works with the cargo generate command.4
We also provide an accompanying cargo djanco command5 which generates an execution
harness around query functions. The harness is a small standalone Rust program that sets up
the datastore and runs each query according to the specifications found in their annotations.
The harness includes a commandline interface through which it can be executed with a
specific dataset paths, output directory, and other parameters. We generate the harness for
executing the query on our server, but it can be used to test queries locally as well.

As of this writing queries are scheduled manually by the authors. Users should contact
us by email with a link to the repository. The query will undergo a manual inspection and
will be executed on our hardware and dataset using the same generated harness as above.
After the query is executed, a snapshot of the crate is created and stored it in the query
archive. The snapshot contains the complete source code of all the queries, logs, the exact
generated harness used for execution, and the results of all the queries — files generated
to the designated output directory. Any result file exceeding 50MB is ignored (if a query
produces large files we contact the user to advise on compaction or to negotiate different
means of delivery).

In the future, we will extend our infrastructure to include a web API that will allow users
to execute queries themselves. These queries will be expressed in a limited query language
(to obviate security risks) and the volume of results will be limited. Queries and results will
also be archived and accessible publicly with a receipt. Another extension we foresee is to
extend the existing mechanism to allow automatic query execution. This would resemble our
current process but it would remove the need for a manual check and emailing the authors

4 https://github.com/PRL-PRG/djanco-query-template#template
5 https://github.com/PRL-PRG/cargo-djanco

ECOOP 2021

4. Relevant Papers

118

7:16 Reproducible Queries over Large-Scale Software Repositories

as submission could be automated. This option is contingent on our ability to create a static
checker for incoming crates and sufficiently isolating them during execution.

Finally, storing user emails has privacy issues. we are considering whether it is appropriate
to expose emails for external queries. If retaining emails becomes problematic, we may have
to obfuscate the emails and replace them with numeric identifiers.

3.3.5 Reproducibility

To further support reproducibility, above and beyond the ability to deterministically run
historical queries, every query executed by Djanco is stored in a public query archive. The
query archive is a git repository hosted on GitHub.6 Each query is hosted in a separate
branch in the repository. We expect queries to undergo revisions. Each revision and execution
results from that revision are archived as separate commits in a single branch. This produces
a development history of the query.

Each query execution produces a receipt — a hash representing a specific commit in the
archive repository representing the execution. The hash can be used to share queries (exactly
as executed) and their results (exactly as produced). It can be used to retrieve the cargo
crate and to re-execute the code (e.g. on a different dataset). Code re-execution is helped
by the fact that queries are deterministic and the snapshot of the crate contains a list of
all depedencies, a timestamp, a list of all subsets and all random seeds. The receipt for the
queries in this paper is da6ae7dd50565e84efbeac990f5788f383939014.7

4 A Case Study: Of Bugs and Languages

The work’s motivation is the claim that the selection of inputs matters in empirical studies
of software and that CodeDJ can assist researchers in that process. We illustrate these points
with a case study. We start from prior work, and show that input selection impacts scientific
claims, and that CodeDJ allows rapid exploration of the input space.

The starting point is a Foundation of Software Engineering (FSE) paper published in
2014 [15].8 One contribution of that work is to establish that some programming languages
have a greater association with defects than others (RQ1 in [15]). Their methodology can be
summarized as follows. For 17 popular languages, select 50 projects hosted on GitHub that
have at least 28 commits. For each commit touching a file that contains code in one of the
target languages, label the commit as bug-fixing if its message contains a bug-related keyword.
Fit a Negative Binomial Regression (NBR) against the labeled data and obtain, for each
language, a coefficient and a p-value. The coefficient indicates the strength of the association
(positive means more bugs), and the p-value tells us about statistical significance (less than
.05 means the coefficient is significant). The FSE paper concluded that TypeScript, Clojure,
Haskell, Ruby and Scala were associated with fewer bugs, while C, C++, Objective-C,
JavaScript, PHP and Python were associated with more bugs. The remaining languages did
not have statistically significant coefficients.9

6 https://github.com/PRL-PRG/codedj-query-archive
7 https://github.com/PRL-PRG/codedj-query-archive/tree/da6ae7dd50565e84efbeac990f5788f383939014
8 A revised version of the work appeared in the Communications of the ACM in 2017 with some issues

fixed, notably the removal of TypeScript from the analyzed languages.
9 These results were questioned, but the issues raised in [2] are orthogonal to the selection of inputs.

4.3. Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Repositories

119

Maj, Siek, et al. 7:17

4.1 Corpus
For this experiment we created a datastore using stratified sampling of data available on
GHTorrent. We started with 11,000 projects with at least 28 commits written in each of the
17 languages. For each language, we added 6,000 projects randomly selected from GitHub
(including smaller projects). In total, our dataset had 172K projects with 28 or more commits
and 230K projects in total. Only 3.8K large Erlang projects were available. The dataset has
47M unique commits (and 66M commits in total, suggesting a commit-duplication of 30%,
high given forks were excluded). The datastore occupies 51GB on disk. Our goal was to
have enough variety to represent the richness of GitHub. Unlike the FSE paper, which was
written in 2013, our corpus goes all the way to 2020.

4.2 Random input selection
Our first experiment explores the distribution of possible analysis outcomes. For this, we
repeatedly pick a random subset of 50 projects of each of the 17 languages and fit them
with NBR. Fig. 4 shows the distribution of the coefficients obtained by 1000 such random
selections compared to the results obtained in [15] (shown as a tick to the right of the
distribution). Positive values indicate a higher association of the language with defects.

C C#
C++

Cloj
ure

Coff
ee

sc
rip

t

Erla
ng Go

Has
ke

ll
Ja

va

Ja
va

sc
rip

t

Obje
cti

ve
-C Perl Php

Pyth
on

Rub
y

Sca
la

Typ
es

cri
pt

0.6

0.4

0.2

0.0

0.2

0.4

0.6

C
oe

ffi
ci

en
t

FSE 2014

Figure 4 Random subsets

The spread of each distribution is a measure of the sensitivity of the analysis to its inputs.
Intuitively, consider the distribution of coefficients for Objective-C, it is roughly centered
around 0. This means, that a random input is about equally likely to say that the language
has a positive association with defects as a negative one. One could argue that picking close
to the median of the distribution could give a representative answer. As we can see the FSE
paper often picks subsets that are outliers; see the cases of CoffeeScript, Go, Perl, Scala and
most strikingly TypeScript.

Discussion: As most distributions straddle the axis, random selection is likely to result in
noisy conclusions. But, GitHub is noisy itself — for instance there is much code duplication,
and the are many low quality projects. A random selection is not the appropriate choice for
making conclusions about software developed by professionals. One could choose to mitigate
selection bias by increasing the size of the sample; CodeDJ can be used to generate multiple
random inputs, if the inputs agree, then our confidence in the results increases.

ECOOP 2021

4. Relevant Papers

120

7:18 Reproducible Queries over Large-Scale Software Repositories

4.3 Observing change over time
As we have more data than was available in 2013, we can use CodeDJ to select inputs at
various times. Here we create eight datasets, each containing data up to one of the years
between 2013 and 2020. For simplicity, we only plot the distribution of coefficients for
TypeScript. The original paper’s coefficient was −.43 (shown as a red line). The graph
clearly shows that the value was an outlier. The association with bugs shifted over time,
increasing to a relatively stable position from 2016.

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

0.6

0.4

0.2

0.0

0.2

0.4

0.6

C
oe

ffi
ci

en
t

FSE 2014

Figure 5 TypeScript over time

While it is reasonable to expect variations from year to year, TypeScript experienced a
rather large shift over a short period. The language was released in 2012, so there were few
projects on GitHub in 2013. Furthermore, a number of human language translation files
were misidentified as TypeScript; these files did not have bugs, biasing the result. The rising
popularity of TypeScript quickly caused real code to crowd out the translation files, and the
association with bugs settled to around 0.2.

Discussion: Using CodeDJ to prepare inputs at different time points can help researchers spot
trends in the data. For some properties of interest one expects changes over time, for others
changes may be an indication of bias that needs to be controlled for. For instance, one would
expect the association with bugs of an established, popular, language to be stable.

4.4 Introducing domain knowledge
Choosing any subset of a larger population introduces bias, but this may be intentional,
reflecting domain knowledge about the relative importance of observations. For instance,
small projects with few commits may be less interesting as they correlate with student
projects. These projects have fewer descriptive commit messages and their defects reflect
beginner mistakes. It stands to reason to exclude such projects from consideration. Justifying
the choice of any particular selection criterion is beyond the scope of our work. CodeDJ
allows researchers to explore the impact of various subsets. Our next experiment looks at 6
different criteria for selecting projects and compares them to the original paper’s criterion.
The Djanco code for those queries is in Fig. 8 in the appendix.

Stars: Pick projects with most stars. Rationale: starred projects are popular and thus
likely to be well written and maintained. [Used in FSE 2014]
Touched Files: compute #files changed by commits, pick projects that changed the
most files. Rationale: indicative of projects where commits represent larger units of work.

4.3. Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Repositories

121

Maj, Siek, et al. 7:19

Experienced Author: experienced developers are those on GitHub for at least two
years; pick a sample of projects with at least one experienced contributor. Rationale: less
likely to be throw-away projects.
50% Experienced: projects with two or more developers, half of which experienced.
Rationale: focus on larger teams.
Message Size: Compute size in bytes of commit messages; pick projects with the largest
size. Rationale: empty or trivial commit messages indicate uninteresting projects.
Number of Commits: Compute the number of commits; pick projects with the most
commits. Rationale: larger projects are more mature.
Issues: Pick projects with the most issues. Rationale: issues indicate a more structured
development process.

C C#
C++

Cloj
ure

Coff
ee

sc
rip

t

Erla
ng Go

Has
ke

ll
Ja

va

Ja
va

sc
rip

t

Obje
cti

ve
-C Perl Php

Pyth
on

Rub
y

Sca
la

Typ
es

cri
pt

0.75

0.50

0.25

0.00

0.25

0.50

0.75

C
oe

ffi
ci

en
t

Stars
50% Experienced
Experienced Author
Number of Commits
Message Size
Issues
Touched Files

Figure 6 Domain knowledge

Fig. 6 shows, for each language, the value of the coefficients (higher means more bugs);
the queries returned 50 projects in each of the 17 target languages: Coefficients that are
not statistically significant are shown in faded colors. If the input set did not matter for
the model, one could expect the different queries to give roughly the same coefficients with
the same significance. This is not the case. If we focus on how many languages have
statistically significant coefficients: The touched files query is highly predictive, 14 of the
languages are significant, but the coefficients are frequently opposite from those of other
queries. Specifically, C is associated with slightly fewer bugs, so are C#, CoffeeScript, Java,
JavaScript, Objective-C, Perl, PHP, Python, Ruby and TypeScript. On the other hand C++,
Erlang, Go and Haskell are associated with more defects. This is striking as it goes against
expectations. The stars query is the least informative. It only gives 7 statistically significant
coefficients with remarkably low values.

Discussion: While some queries yield broadly similar conclusions, this is not the case for all.
We stress the importance of understanding the selection criteria and its impact, as statistical
significance should not be confused with validity. To help, CodeDJ provides distributions of
various measures in the data, Fig. 7 visualizes the distribution of project sizes (left) and
project age (right) for the entire dataset and for the various queries.
Looking at these distributions makes it clear that the queries return quite different projects.
The experienced author and number of commits are remarkably similar and return projects
that meet our expectations. The issues distribution is similar, which should raise red flags
given that it frequently disagrees. The stars query returns many smaller projects. Finally,

ECOOP 2021

4. Relevant Papers

122

7:20 Reproducible Queries over Large-Scale Software Repositories

Full
 da

tas
et

Star
s

50
% E

xp
eri

en
ce

d

Exp
eri

en
ce

d A
uth

or

Num
be

r o
f C

om
mits

Mes
sa

ge
 S

ize
Iss

ue
s

Tou
ch

ed
 File

s
0

1

2

3

4

5

lo
g 1

0
(C

om
m

its
)

Commits
Age [days]

0

1

2

3

4

5

lo
g 1

0
(A

ge
 [d

ay
s]

)

Figure 7 Project Size and Age Distributions

message sizes and touched files show distributions opposite to those expected. They favor
degenerate young projects with few commits that are either verbose, or disproportionately
large (touching over 100K files). This is reflected in the input sizes, ranging from 8M rows
for the experienced author query to mere 79K rows of the touched files query. It is likely
that these queries are “wrong” in the sense they do not return the population of interest.
The figure also suggest that stars is a bad choice.

5 Conclusions

Finding projects on GitHub is akin to looking for the proverbial needle in a haystack.
While having a wealth of data at our fingertips is an undeniable asset to empirical software
engineering research, the sheer size of the code being hosted is a challenge to any data
processing pipeline. Selecting manageable subsets of available projects can introduce subtle,
but significant biases that, in turn, can influence or even invalidate the conclusion of the
analysis being conducted. Our case study illustrates this problem — we demonstrate that
by choosing various, apparently sensible, subsets of the data at hand, we can significantly
change the observed association between programming languages and software defects.

This paper introduces CodeDJ, an infrastructure designed to support the reproducible
specification of selection criteria for projects hosted on large-scale software repositories. Our
implementation is geared towards GitHub. As GitHub is a living system undergoing constant
change, ensuring reproducibility requires extra work. The same project downloaded today
and last month may contain different code, different commit histories, or the project may
disappear entirely. Our infrastructure mitigates this problem by building on a time-indexed,
append-only datastore. Queries are expressed in a front-end database that can access a view
of the data at a specific point in the history of the datastore.

For future work, three directions stand out: Expanding the datastore, improving the
query evaluation performance, and extending accessibility of the our dataset. The dataset
provided contains only a fraction of the data we expect to eventually need. As the data
grows in volume, our downloading, storage, and processing capabilities will be put to the test
and adjusted accordingly to ensure they scale up. We will explore how to ensure backwards
compatibility and determinism of queries in the face of changes to the implementation, and

4.3. Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Repositories

123

Maj, Siek, et al. 7:21

to the data format (e.g. adding new information, such as issues, or new file kinds). In terms
of performance, our implementation does not try any optimizations of the query evaluation.
We intend to parallelize queries and explore ideas from the database community regarding
query compilation strategies. Finally, we plan on extending our infrastructure. We will
create a web API and a limited query language to make our dataset more generally accessible.
We will also investigate an infrastructure for automatic security checking and execution
scheduling for query crates which would allow for their automated submission.

Acknowledgments. This work is supported by the Czech Ministry of Education, Youth
and Sports from the Czech Operational Programme Research, Development, and Education,
under grant agreement No.CZ.02.1.01/0.0/0.0/15_003/0000421 and the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 695412).

References
1 Miltiadis Allamanis. The adverse effects of code duplication in machine learning models of

code. In Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software (Onward!), 2019. doi:10.1145/3359591.3359735.

2 Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek. On the impact of
programming languages on code quality: A reproduction study. ACM Trans. Program. Lang.
Syst., 41(4):21:1–21:24, 2019. doi:10.1145/3340571.

3 T. F. Bissyande, F. Thung, D. Lo, L. Jiang, and L. Reveillere. Orion: A software project search
engine with integrated diverse software artifacts. In International Conference on Engineering
of Complex Computer Systems, 2013. doi:10.1109/ICECCS.2013.42.

4 Hudson Borges, André C. Hora, and Marco Tulio Valente. Understanding the factors that
impact the popularity of GitHub repositories. CoRR, 2016. URL: http://arxiv.org/abs/
1606.04984.

5 Andy Cockburn, Pierre Dragicevic, Lonni Besanc on, and Carl Gutwin. Threats of a replication
crisis in empirical computer science. Communications of the ACM, 2020. doi:10.1145/
3360311.

6 Roberto Di Cosmo and Stefano Zacchiroli. Software Heritage: Why and How to Preserve
Software Source Code. International Conference on Digital Preservation, 2017. URL: https:
//hal.archives-ouvertes.fr/hal-01590958.

7 Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. Boa: A language and
infrastructure for analyzing ultra-large-scale software repositories. In International Conference
on Software Engineering (ICSE), 2013. URL: http://dl.acm.org/citation.cfm?id=2486788.
2486844.

8 Davide Falessi, Wyatt Smith, and Alexander Serebrenik. Stress: A semi-automated, fully
replicable approach for project selection. In International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2017. doi:10.1109/ESEM.2017.22.

9 Jesus M. Gonzalez-Barahona, Gregorio Robles, and Santiago Dueñas. Collecting data about
FLOSS development: The FLOSSMetrics experience. In International Workshop on Emerging
Trends in Free/Libre/Open Source Software Research and Development (FLOSS), 2010. doi:
10.1145/1833272.1833278.

10 Georgios Gousios and Diomidis Spinellis. GHTorrent: GitHub’s data from a firehose. In
Michael W. Godfrey and Jim Whitehead, editors, Working Conference on Mining Software
Repositories (MSR), 2012. doi:10.1109/MSR.2012.6224294.

11 Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German, and
Daniela Damian. The promises and perils of mining GitHub. In Working Conference on
Mining Software Repositories (MSR), 2014. doi:10.1145/2597073.2597074.

ECOOP 2021

4. Relevant Papers

124

7:22 Reproducible Queries over Large-Scale Software Repositories

12 P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang. Adoption of software testing in open
source projects–a preliminary study on 50,000 projects. In European Conference on Software
Maintenance and Reengineering, 2013. doi:10.1109/CSMR.2013.48.

13 Crista Lopes, Petr Maj, Pedro Martins, Di Yang, Jakub Zitny, Hitesh Sajnani, and Jan Vitek.
Déjà Vu: A map of code duplicates on GitHub. Proc. ACM Program. Lang., 1(OOPSLA),
2017. doi:10.1145/3133908.

14 Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. Diversity in software
engineering research. In Foundations of Software Engineering (FSE), 2013. doi:10.1145/
2491411.2491415.

15 Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. A large scale
study of programming languages and code quality in github. In International Symposium on
Foundations of Software Engineering (FSE), 2014. doi:10.1145/2635868.2635922.

16 Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V. Lopes.
Sourcerercc: scaling code clone detection to big-code. In International Conference on Software
Engineering (ICSE), 2016. doi:10.1145/2884781.2884877.

17 Gerald Schermann, Sali Zumberi, and Jürgen Cito. Structured information on state and
evolution of dockerfiles on github. In International Conference on Mining Software Repositories
(MSR), 2018. doi:10.1145/3196398.3196456.

18 Christopher Vendome, Gabriele Bavota, Massimiliano Di Penta, Mario Linares-Vásquez, Daniel
German, and Denys Poshyvanyk. License usage and changes: a large-scale study on GitHub.
Empirical Software Engineering, 2016. doi:10.1007/s10664-016-9438-4.

19 Hadley Wickham, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino McGowan,
Romain Franc ois, Garrett Grolemund, Alex Hayes, Lionel Henry, Jim Hester, Max Kuhn,
Thomas Lin Pedersen, Evan Miller, Stephan Milton Bache, Kirill Müller, Jeroen Ooms, David
Robinson, Dana Paige Seidel, Vitalie Spinu, Kohske Takahashi, Davis Vaughan, Claus Wilke,
Kara Woo, and Hiroaki Yutani. Welcome to the tidyverse. Journal of Open Source Software,
4(43):1686, 2019. doi:10.21105/joss.01686.

20 Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In Conference on Hot Topics in Cloud Computing
(HotCloud), 2010. doi:10.5555/1863103.1863113.

4.3. Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Repositories

125

Maj, Siek, et al. 7:23

A Analysis with GitHub toolkits

Can users do without CodeDJ? Consider the case study queries: stars and touched files.
GitHub exposes a REST API that can return any object and its metadata. The API

is limited. It allows filtering by language and sorting by stars, but not by touched files.
Furthermore it only returns 1000 results. Therefore, we can’t get directly the 17K projects
of the case study. While repositories can be obtained by numeric IDs, given the rarity of
some of languages such as Erlang means that a random sample would, in the worst case, end
up sampling every project on GitHub.

Repository URLs can be retrieved with the /repositories query. Assuming 150M
repositories, 1.5M queries are needed to find them all. The rate limit is 5K queries/user/hr,
so this takes 12 days. We also need language and number of commits to perform stratified
sampling. Getting languages is another 12 days. This can be done by getting a list of
contributors and summing up their contributions. This only requires one query per repository,
so another 12 days. Stratified sampling thus requires approximately a month.

The GitHub data is in JSON, which is not easy to query. One can convert it into a more
useful format, such as a relational database. From there, one can retrieve top 50 most-starred
projects in each language within that dataset with a query like:

select id from (
select id, row_number() over(partition by language order by stars desc) as place
from projects

) ranks
where place <= 50;

The second use case query requires ordering projects by average number of changes per
commit. This requires information about all commits. The REST API can list commits,
but not changes. To get those, the detailed metadata of each commit is need. This requires
one query per commit. With 66M commits, that is 550 days. Deduplicating commits before
retrieval shaves this down to 391 days. Having retrieved the data, one can select projects:

select id from (
select id, row_number() over(partition by lang order by avg_touched desc) as place

from (
select id, language as lang, avg(touched) as avg_touched
from project_commits
join (
select commit_id, count(path_id) as touched
from commit_changes
group by commit_id

) touched on project_commits.commit_id = touched.commit_id
join projects on projects.id = project_commits.project_id
group by project_id, language

) projects
) ranks
where place <= 50;

The query is complex. An alternative is to update the data with precomputed attributes.
As the reader may have gathered using GitHub is impractical. An alternative is to use

multiple sources of information. Project URLSs, stars and commit counts can be obtained
from GHTorrent, commits can be obtained by cloning repositories and analyzing their logs
locally. However, these sources have their own shortcomings. GHTorrent does not contain
all information, and it can be out of date. For instance, we found commit and star counts off
by orders of magnitude. Cloning repositories requires significant bandwidth. In addition,
care must be taken with large projects as they can take weeks to analyze if approached
naïvely. Gathering data never goes smoothly. The code will likely run for weeks even if
massively parallel and then fail on some unexpected corner case. If one then continuously
and incrementally update the obtained dataset, then one has essentially reinvented CodeDJ.

ECOOP 2021

4. Relevant Papers

126

7:24 Reproducible Queries over Large-Scale Software Repositories

B Domain queries

Fig. 8 gives the queries used to inject domain knowledge in the analysis discussed in Sec. 4.

Stars:
Djanco::from(PATH).projects()

.group_by(project::Language)

.sort_by(project::Stars)

.sample(Distinct(Top(50), MinRatio(project::Commits, 0.9)));

Touched Files:
Djanco::from(PATH).projects()

.group_by(project::Language)

.sort_by(Median(FromEach(project::Commits, Count(commit::Paths))))

.sample(Distinct(Top(50), MinRatio(project::Commits, 0.9)));

Experienced Author:
Djanco::from(PATH).projects()

.group_by(project::Language)

.filter_by(AtLeast(Count(FromEachIf(project::Users,
AtLeast(user::Experience,

Duration::from_years(2)))), 1))
.sort_by(Count(project::Commits))
.sample(Distinct(Random(50, Seed(42)), MinRatio(project::Commits, 0.9)));

50% Experienced:
Djanco::from(PATH).projects()

.group_by(project::Language)

.filter_by(AtLeast(Count(project::Users), 2))

.filter_by(AtLeast(Ratio(FromEachIf(project::Users,
AtLeast(user::Experience,

Duration::from_years(2))),
project::Users),

Fraction::new(1,2)))
.sample(Distinct(Random(50, Seed(42)), MinRatio(project::Commits, 0.9)));

Message Size:
Djanco::from(PATH).projects()

.group_by(project::Language)

.sort_by(Mean(FromEach(project::Commits, commit::MessageLength)))

.sample(Distinct(Top(50), MinRatio(project::Commits, 0.9)));

Number of Commits:
Djanco::from(PATH).projects()

.group_by(project::Language)

.sort_by(Count(project::Commits))

.sample(Distinct(Top(50), MinRatio(project::Commits, 0.9)));

Figure 8 Domain queries

4.3. Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Repositories

127

4. Relevant Papers

4.4 Paper 4 - The Fault in Our Stars: How to Design Reproducible
Large-scale Code Analysis Experiments

Petr Maj, Stefanie Muroya, Konrad Siek, Jan Vitek
Submitted to 37th European Conference of Object-Oriented Programming (ECOOP 2023).

4.4.1 Author’s Contributions

I was responsible for the paper’s idea of providing new methodology for precise project selec-
tion, designed with the aim to replace the convenience sampling by project popularity. I have
designed the methodology, performed the acquisition and curation of all datasets, dataset
analysis, stars analysis, most extensions of the Djanco query engine and one of the dataset
experiments (called ”What constitutes a software”). I was responsible for the artifact and
have supervised junior members of the team.

Konrad Siek performed literature review and reviewed the selection criteria used in existing
papers. He also performed one dataset experiment. Stefanie Muroya performed two dataset
experiments.

128

The Fault in Our Stars1

How to Design Reproducible Large-scale Code2

Analysis Experiments3

Petr Maj4

Czech Technical University5

Stefanie Muroya6

Czech Technical University7

Konrad Siek8

Czech Technical University9

Jan Vitek10

Czech Technical University11

Abstract12

Software engineering benefits from the insights gleaned from large-scale software repositories as13

they offer an unmatched window into the software development process. Their sheer size holds the14

promise of broadly applicable results. At the same time, that very size presents scalability challenges.15

The traditional answer to such challenges is to limit studies to representative samples and generalize16

observations to the entire population. The contribution of this paper is both modest and, we believe,17

important. We advocate in favor of a standardized experimental design methodology for experiments18

over large-scale repositories. In particular, we steer researchers away from using extrinsic attributes19

such as stars, and emphasize careful delineation of the population of interest backed up by random20

sampling of inputs.21

2012 ACM Subject Classification Software and its engineering → Ultra-large-scale systems;22

Keywords and phrases software, mining code repositories, source code analysis23

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.2324

1 Introduction25

And so it begins26

We count the number of stars associated with each repository. The number of stars relate27

to how many people are interested in that project. Thus, we assume that stars indicate the28

popularity of a project. We select the top 50 projects in each language...29

Sentences like these appear in the methodology sections of our papers. They are often all30

there is to be found in terms of experimental design. This paper aims to convince readers of31

the dangers that this state of affairs presents for generalizability and reproducibility of our32

results and to suggest some simple improvements.33

Large-scale code repositories such as GitHub are a boon to the software engineering34

community as they give us a large body of software along with metadata written in many35

languages with various degrees of care and expertise. The number of artifacts for each of the36

major language ecosystems ranges in the millions. With a little patience and enough storage,37

a researcher can acquire thousands of projects for their latest research effort. Unfortunately,38

obtaining an entire ecosystem is difficult, and analyzing it may be prohibitive – in hardware39

resources and researcher effort.40

Empirical software engineering studies are experiments performed on a corpus of software41

to validate some hypothesis. The value of any given experiment does not lie in what we42

© Petr Maj et al.;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object Oriented Programming (ECOOP 2023).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

4.4. Paper 4 - The Fault in Our Stars: How to Design Reproducible Large-scale Code
Analysis Experiments

129

23:2 The Fault in Our StarsHow to Design Reproducible Large-scale Code Analysis Experiments

learn about the projects that were analyzed, but rather in what they teach us about the43

larger population. There is little value in, say, learning that 10 particular Java projects44

adopted a new language feature if we cannot generalize that result to a broader portion of45

the ecosystem. Yet, few papers articulate their claims of generality and it is often not even46

clear how researchers selected the software artifacts they studied.47

Table 1 has a meta-study of three editions of Mining Software Repositories (2019, 4748

papers; 2020, 45 papers; 2021, 48 papers). Out of 140 papers, 46 do not have an experimental49

component that involves software, 24 analyze very small curated datasets, and 29 use the50

entire available populations. This leaves 41 papers which analyze code obtained from a51

larger population: 5 are not reproducible, lacking information about how their dataset52

was constructed or using proprietary data, 21 use GitHub stars to filter projects, 10 use53

combinations of attribute thresholds and only 5 use random sampling. In summary, out of54

41 large-scale code analysis papers, 51% rely on stars.55

papers projects classification description

46 – incompatible No experiments
24 – curated Small curated datasets
29 – everything Entire population

5 1–35K unknown Unknown or proprietary
21 5–2M stars Filter projects using stars
10 7–290K other Other filter for projects
5 6–51K random Filter and sample randomly

Table 1 Experimental design summary (MSR 2019–2021)

Why do GitHub stars play such a central role in our experimental methodology? We want to56

think it is neither malice nor sloth, but rather expectations and pragmatics. Community57

standards are set by the papers we publish. The literature codifies expectations for authors of58

the next batch of papers. These expectations slowly evolve in response to reviewer attitudes.59

So we use stars because our peers do, but the pragmatics are just as important. GitHub does60

not provide an index of its projects, nor does it allow to query over intrinsic attributes of61

code. Finding inputs is thus hobbled by limitations of our tools. One wants to find projects62

of interest while avoiding the duplicates that litter most language ecosystems and weeding63

out obviously uninteresting projects. Absent any other tools, stars play a double role. First,64

they are an index of projects, one that can be queried from the GitHub interface. Second,65

there is an expectation that they correlate with some notion of quality. But, not only do66

stars not accomplish that, they introduce reproduction barriers into project selection. So67

what to do?68

We propose a methodology for designing reproducible experiments with the explicit goal69

of improving the generalizability of our results. The methodology is in line with evolving70

community standards [21] but specific to large-scale code analysis, and we emphasize the71

needed for proper tooling to ensure reproducibility. Our approach takes the form of the72

following protocol:73

1. Population Hypothesis: A brief description of the population of interest, what the74

research should generalize to, which may be a narrow slice such as “programs written by75

students learning JavaScript as their first language” or a broader one such as “commercial76

code”.77

4. Relevant Papers

130

P. Maj et al. 23:3

2. Frame Oracle: A procedure for deciding if a project belongs to the population. Ideally,78

an algorithm efficiently computed over intrinsic attributes of a project. An oracle could,79

e.g., return GitHub projects with one JavaScript file which were created by a user with80

no previous commits.81

3. Sampling Strategy: A strategy for selecting a subset of the values of the population.82

Ideally, specified algorithmically. An example is random sampling without replacement83

from a known seed.84

4. Validity: An argument about the oracle’s and sampling strategy’s validity as means to85

obtain representative samples from the population. A discussion of attempts to validate86

result quality, such as manual inspection of a sample to check if JavaScript code was87

actually written by beginners.88

5. Reproduction Artifacts: The artifact should allow to reproduce exactly the reported89

results as well as to change either the input or the experiment.90

Reproducibility has nuances. We specifically do not talk about the experiment itself – others91

have been there before us. Instead our emphasis is on inputs and support for the following92

three use cases: Repetitions which run the reproduction artifact to obtain bit-for-bit equal93

results (or as close as feasible). This is the most stringent use case and often requires a94

reproduction artifact that bundles code and inputs. Reanalysis alters either the method95

or its input, it requires an executable artifact and a method for acquiring new inputs.96

Finally, reproductions are independent implementations that require the paper to have an97

unambiguous description of all experimental details.98

Design experiments that support reproducibility can be greatly simplified with appropriate99

tooling. Our work builds on the open source CodeDJ infrastructure.1 Our contributions,100

briefly, are:101

1. A dataset of 2Mio+ Java, Python and JavaScript projects. Modified CodeDJ to compute102

36 intrinsic project attributes. (Sec. 4)103

2. A characterization of stars as a means to select inputs for code analysis experiments.104

(Sec. 4)105

3. A methodology that can be readily adopted by researchers to improve reproducibility106

of their work. (Sec. 5)107

4. A reproduction of four papers that highlights challenges to generality. (Sec. 3 and 6)108

Our work is open source and reproducible.2109

2 Related Work110

We review relevant advice, warnings and the state of tooling.111

Community Standards. A strong push towards reproducibility is underway, efforts such112

as the standards framework of [21] include a section on experimental design and specifically113

sampling. These ideas are further explored by [1] who argue that software engineering faces114

a generalizability crisis. They carried out a meta-analysis of 120 papers in all areas of the115

field and report that purposive and convenience sampling are widely used. Such sampling116

1 https://codedj-prg.github.io
2 A polished artifact will be submitted for evaluation should our paper be accepted. For now, we share an

anonymized code bundle. We have several terabytes of data, the Program Chairs kindly agree to act as
intermediary should reviewers require access: https://github.com/unknown-john/ICSE21-Anonymized

ECOOP 2023

4.4. Paper 4 - The Fault in Our Stars: How to Design Reproducible Large-scale Code
Analysis Experiments

131

23:4 The Fault in Our StarsHow to Design Reproducible Large-scale Code Analysis Experiments

techniques rarely lead to representative samples, and – without a careful study of potential117

sources of bias – can lead to conclusions that do not generalize. They explain this state118

of affairs by a fundamental challenge in the field, the lack of appropriate sampling frames119

to access elements of the population of interest. Earlier work by [17] already attempted to120

address this problem by defining the notion of sample coverage to assess the quality of the121

data used as input to an experiment. Even closer to our paper is the study by [4] which122

reported that out of 93 large corpus papers, 63 papers failed to provide replication datasets.123

Most papers did not use random samples and omitted mentions of limitations.124

Mining Repositories. GitHub is extremely popular data source. Warnings about perils125

go back to the work of [9] who highlighted “noise” among hosted projects. In particular126

they point out that tiny and inactive projects dominate the platform. [11] pour oil on that127

fire by showing that up 95% of the code in some language ecosystems were copies. Stars128

are known to be widely used as a mean to find signal in that sea of noise. But what do129

they mean? [2] surveyed users and found that the most common reasons for starring a130

project are to show appreciation (e.g. I starred this repository because it looks nice.) and131

bookmark it (e.g. I starred it because I wanted to try using it later.). They also warn against132

promotional campaigns in social media driving up ratings. Popularity of projects was studied133

by [7] who suggest that while most users believe stars are the best metric to determine134

popularity of a project, other attributes such as branches, open issues and contributors are135

better predictors. Expending on that result, [16] propose to use random forest to create a136

classifier for engineered projects, which they define as projects that leverage sound software137

engineering principles. Their classifier outperforms stars. [20] further improved classification138

with an approach based on time-series clustering.139

Tools for Miners. A number of infrastructures have been developed to assist researchers140

in the field. The most ubiquitous is GHTorrent [6], a continuously updated database of141

metadata about public projects that is a valuable building block for other tools. Boa is142

complementary as it lets users write sophisticated queries over source code [5]. CodeDJ is a143

newer infrastructure that supports queries over both meta-data and file contents [13]. Unlike144

Boa it is language agnostic. [12] and [15] address performance issues of querying at scale. Of145

these, only CodeDJ ensures reproducible queries.146

3 State of Practice147

How do people design experiments for large-scale code studies? This section give examples148

from the meta-study of Table 1. We emphasize to the reader, it is not our goal to criticize149

individual authors, but it is helpful to establish a baseline to improve community best150

practices. Following our proposed methodology, for each paper, we give a brief summary of151

the scientific claim followed by an account of the paper’s stated population hypothesis, a152

description of the frame oracle, sampling strategy, validation and reproduction artifacts. We153

conclude with some observations.154

3.1 MSR 2020: What is Software155

“Software” has an intuitive definition, namely code, but there is more. [19] classifies the156

content of repositories in categories such as code, data and documentation. They then157

observe that software is more than just code. Documentation is an integral constituent158

of software, and software without data is often correlated with libraries, and finally that159

software without code is rare, but exists.160

4. Relevant Papers

132

P. Maj et al. 23:5

Population Hypothesis: The paper answers the question “what are the constituents of161

software and how are they distributed?” The authors claim that existing definitions of the162

term are non-descriptive, inconclusive and even contradictory. Implicitly the population is163

all inclusive.164

Frame Oracle: Any software project hosted on GitHub.165

Sampling Strategy: Convenience sampling; the authors chose popular repositories and166

further clarify that “by popularity we mean the starred criteria with which GitHub users167

express liking similar to likes in social networks.”168

Most-starred projects in 25 languages were acquired by executing one query by language,169

saying that “without language qualifier, the API returns only 1,020 repositories in total,170

which we decided is not enough for our study.”171

Validity: No discussion of relevant issues.172

Reproducibility Artifacts: A listing of files and repositories is provided with the code of the173

classifier. Figures and numbers produced by a notebook are also included. The contents of174

the repositories analyzed are not preserved.175

3.2 MSR 2020: Method Chaining176

In an object-oriented language, a method chain occurs when the result of a method invocation177

is the receiver of a subsequent method call. In Java, method chaining manifests as a sequence178

of calls connected by dots. [18] analyze trends in usage of method chains and conclude that179

their use increased over a period of eight years.180

Population Hypothesis: Java projects developed “by real-world programmers.” The authors181

state that they ”did not apply any filter to the collected repositories. This supports the182

generalizability of our results.” The authors consider generalization beyond Java, saying “our183

results are more likely to be applied to a language that does not provide such a construct (e.g.184

PHP and JavaScript). The empirical study of this hypothesis is future work.” The construct185

in question is support for DSLs.186

Frame Oracle: Implicitly defined as all Java projects hosted on GitHub.187

Sampling Strategy: The authors use convenience sampling, taking 2,814 projects that188

appeared at least once in the list of the 1K most-starred projects between November and189

December 2019. Projects were deduplicated and filtered for syntactically invalid files.190

Validity: –191

Reproducibility Artifacts: Project metadata and computed chain lengths are published.3192

Communication with the authors reveals that their complete reproduction package is currently193

not available.194

3.3 MSR 2019: Style analyzer195

Each software project seems to develop its own formatting conventions. [14] demonstrate196

that an unsupervised learning algorithm can automate project-specific code formatting. They197

reproduce the style of a project with a high degree of precision on a dataset of repositories198

with one base and one head commit specified for each.199

3 https://zenodo.org/record/3697939#.YSYcZ9OA63I

ECOOP 2023

4.4. Paper 4 - The Fault in Our Stars: How to Design Reproducible Large-scale Code
Analysis Experiments

133

23:6 The Fault in Our StarsHow to Design Reproducible Large-scale Code Analysis Experiments

Population Hypothesis: From statements made about the outcome of the experiment, we200

surmise that the population is that of “real projects.” From tools, mechanics and the sample201

prepared for the experiment, we suppose the authors aimed for developed projects. The202

population is implicitly limited to JavaScript as the tool includes a parser for that language.203

Frame Oracle: The oracle is implicitly all JavaScript project hosted on GitHub.204

Sampling Strategy: Convenience sampling: 19 JavaScript projects with high numbers of205

stars are picked. Date of selection is not provided.206

Validity: Authors manually inspected projects in the selection.207

Reproducibility Artifacts: A GitHub repository containing the tool and a file with project208

URLs along with their head and base commits is provided.4 Contents of repositories are not209

included. Documentation, run scripts and configuration information are patchy.210

3.4 MSR 2020: Code Smells211

Code smells are programming idioms that are often correlated with correctness or maintenance212

issues. [8] contrast code smells in projects related to deep learning and general purpose213

software projects. Their scientific claim is that for large and small projects there is a214

statistical difference in the occurrence of code smells, whereas medium sized projects are215

indistinguishable.216

Population Hypothesis: The authors are interested in two populations: On one hand projects217

that implement or use deep learning algorithms, and general purpose software on the other.218

For pragmatic reasons, they focus on the Python ecosystem as it is widely used for machine219

learning.220

Frame Oracle: Projects must be in Python and hosted on GitHub. Keyword search is used221

for machine learning frameworks and technologies such Tensorflow and Keras, discarding222

tutorials. Furthermore, the authors “also carefully select popular and mature DL projects223

from them by employing maturity and popularity metrics (e.g., issue count, commit count,224

contributor count, fork count, stars).”225

Sampling Strategy: A staged strategy was employed to sample both populations. The226

authors relied on judgment sampling to manually select 59 deep learning projects. For227

general purpose projects, they used a top-starred list of 106 Python projects from [3] and228

randomly sampled 59 projects. Projects were further clustered into small (≤ 4000), medium,229

and large (≥ 15000).230

Validity: –231

Reproducibility Artifacts: A listing of the 59 deep learning projects is provided.5232

3.5 Reproducibility issues233

While these four research projects were done with care, none can be fully reproduced.234

Reproducibility failures have many reasons, most of which are common to several of the235

papers we have reviewed:236

Missing descriptions: Failure to specify either one of: population hypothesis, frame237

oracle or sampling strategy. Reproduction is fraught with perils and an apple-to-apple238

4 https://github.com/src-d/style-analyzer
5 https://github.com/Hadhemii/DLCodeSmells/blob/master/data/dlRepos.csv

4. Relevant Papers

134

P. Maj et al. 23:7

Versions

Locs

Devs

Age

C−index

1 10 100 1k 10k 100k 1m 10m

Java Top 1k Stars

1 10 100 1k 10k 100k 1m 10m

Python Top 1k Stars

Figure 1 Comparing datasets

comparisons between papers is difficult. This affects [19, 18, 14, 8] as their descriptions239

are open to interpretation.240

Missing projects: Even with a list of URLs, the corresponding projects may vanish at any241

time (e.g., deleted or made private). Reproductions are partial at best, we have seen a242

project disappear while being downloaded. This affects [19, 18, 14, 8].243

Fading stars: Stars are volatile. [18] observed close to 3,000 projects in the top 1K244

during a period of two months. Without a history of star attribution and a timestamp,245

reconstructing the star listings is not possible. This affects [8].246

Shifting contents: The contents of a project change with new commits. To reconstruct the247

data, ids of the last observed commit must be specified. Even that is not foolproof as Git248

histories can be updated destructively. This affects [19, 18, 8].249

Language attribution: Projects contain code in many languages. For reproduction attribu-250

tion must specified. While dlegating to, e.g. GitHub, is reasonable, one should be aware251

that GitHub has changed their attribution algorithm several times. Double counting a252

project is sometimes valid. This affects [19, 18, 14].253

Deterministic replay: Non-determinism must be limited. Random sampling seeds should254

be specified. This affects [14].255

4 Mapping the GitHub Landscape256

The meta-study of Table 1 highlights the dominant position of GitHub as a data source in257

large-scale code analysis studies. We claimed that convenience sampling using stars as a proxy258

for various other characteristics of “real-world” software is flawed. While this may sound259

plausible to some readers, it should be backed up with data. Given the size of GitHub, this260

section uses sampling to answer the following questions: Are starred projects a representative261

sample of all projects? and Are starred projects a representative sample of developed projects?262

where what it means for a project to be developed is purposefully left open.263

Since the later parts of this paper require Java, Python and JavaScript, we acquire264

samples of these three ecosystems. We use CodeDJ to do this. CodeDJ is an open source265

ECOOP 2023

4.4. Paper 4 - The Fault in Our Stars: How to Design Reproducible Large-scale Code
Analysis Experiments

135

23:8 The Fault in Our StarsHow to Design Reproducible Large-scale Code Analysis Experiments

project that can be forked and used to create a dedicated project database. CodeDJ ensures266

reproducibility of queries over the database and generates reproduction receipts for all queries267

used in this paper.268

We used random sampling over the entire GHTorrent dataset to select which projects to269

acquire in each of the languages of interest. The number of downloaded projects is somewhat270

arbitrary as it is based on available hardware during the acquisition phase which began on271

April 1st, 2021. The datastore has 1,111,950 Java projects, 216,602 Python projects and272

1,259,856 JavaScript projects (include source code). To give an idea of the scale, our Java273

dataset accounts for 20% of all non-forked GitHub Java projects. For simplicity, we down274

sampled further, randomly selecting 1Mio Java and JavaScript projects, and 200K Python275

projects.276

4.1 Attributes277

With CodeDJ, it is easy to write queries that compute project attributes. For this paper, we278

calculate 36 attributes for each project. From these, we select five attributes that highlight279

the differences between projects:280

Age: The age of a project is the number of day separating the first commit and the most281

recent commit. This correlates with the maturity of a project.282

Devs: The count of unique developer handles in the git logs; includes both the author of283

a code change and the committer of that change. Devs approximates the size of a team,284

of course some individuals may have more than one handle.285

Locs: The total number of lines in files that are recognized as code, in any language, and286

appear in the head of the default branch. Locs measures the active code in the project.287

Versions: A version is implicitly created for each commit touching a file, be that for288

insertion, deletion or update. This counts versions in the entire project’s history including289

branches. Versions measure the activity in a project.290

C-index: A developer handle has a c-index of n if that developer was party to at least291

n commits to n projects (i.e. n2 commits). The c-index of a project is the highest such292

number across developers. This measures developer expertise.293

While we make no claims that these five attributes suffice to describe a software project, we294

have found them to be an effective summary of many interesting dimensions.295

4.2 Stars v. All296

What do these attributes tell us about the overall population and about starred projects?297

Fig. 1 is a histogram of attributes, the x-axis is log scaled and the y-axis is normalized298

for maximum height. In grey (background) is the whole population, red (Java) and blue299

(Python) are used for the 1K most starred projects.300

The whole population is similar across languages. Most projects are young, with 49%/34%301

(J/P) of projects less than a week old, and with median ages of 7/46 days. Many projects are302

the work of a single developer, medians are 2/2 Devs. Most project are small, medians are303

655/448 Locs. Median versions are 16/16. Finally, the C-index is low, with medians of 2/2.304

Unsurprisingly, Fig 1 confirms that starred project, and in particular the top 1K, have a305

very different make up than the overall population of GitHub projects. Visually it is obvious306

that every distribution is shifted towards older and larger projects with more developers307

and these being more experienced. While there are slight differences between languages,308

the overall picture is consistent. The greatest shift is in project ages with medians of309

4. Relevant Papers

136

P. Maj et al. 23:9

2,581/1,440 days, i.e. many years old projects. C-Indices also increase, with medians of310

19/15.5, suggesting that active developers tend to contribute to popular repositories. While311

many of them are team efforts, a significant portion has few contributors. Manual inspection312

revealed that any starred projects have been inactive for years. Project cannot “loose” stars,313

so if project gets to the top there is a chance it will stay there long past its useful lifetime.314

We can now answer the first question by the negative. Starred projects do not yield a315

representative sample of the overall population. Now, this is not necessarily a bad thing, as316

folklore suggests that most of GitHub is uninteresting.317

4.3 Stars v. Developed318

Many researchers yearn for engineered [16, 20] or developed projects – informally, taken to319

mean projects that have been created with some care – alas there is little agreement on a320

precise definition. Slightly easier, perhaps, is to settle on what we don’t want, the projects321

that are clearly of little value for any reasonable research question. Moreover, one could322

hope that the complement of uninteresting projects are the projects we want to analyze. Let323

us define a project that has less than 100 lines of code, fewer than 7 days old, and fewer than324

10 commits as uninteresting. When this definition is used to filter projects, this rather low325

bar manages to eliminate 71% of Java and 55% of Python projects.326

It would be handy if stars were a proxy for filtering out such uninteresting projects. Fig. 2327

overlays the whole population (grey), the result of removing uninteresting projects (black)328

and the top 1K starred projects (red for Java, blue for Python). Sadly, developed projects329

do not align with stars. In terms of lines of code, developed projects have roughly the same330

distribution as the whole population but biased towards larger projects. Stars push the331

distribution much further. As for ages, our criteria filters out a large number of short lived332

projects, but stars skew significantly older.333

Manual inspection of the starred project highlights their main issue – stars are extrinsic334

properties without a direct connection to any attributes of a project, and unlike attributes335

stars grow monotonically. Thus their meaning is unclear. Users award them for various336

reasons including humor and shock value. Some projects earned many stars because of a337

joke not fit for a research paper,6 another has invalid code and a documentation daring users338

to star junk.7 While these remarks might seem off-topic, they illustrate that stars do not339

correlate with quality or usefulness of repositories.340

To further illustrate the limitation of stars as a filter, we take, for each attribute, the 20341

lowest scoring Java and Python top starred projects. Table 2 has our manual classification.342

Arguably none of these projects is particularly useful: externals lack histories, widgets are343

small and biased by their application domain, babies are too small to yield much insights,344

and the others only have code snippets.345

Fig. 2 answers our second question, developed projects are broadly similar in terms of346

distribution of attribute values as the whole population. For all attributes starred projects347

trend towards higher values. To summarize what we learned about stars, they capture348

extrinsic characteristics of GitHub projects and are at best indirect and noisy proxies for a349

robust frame oracle.350

6 https://github.com/dickrnn/dickrnn.github.io
7 https://github.com/gaopu/java

ECOOP 2023

4.4. Paper 4 - The Fault in Our Stars: How to Design Reproducible Large-scale Code
Analysis Experiments

137

23:10 The Fault in Our StarsHow to Design Reproducible Large-scale Code Analysis Experiments

4.4 How to select projects?351

What to use for project selection if not stars? We argue that selection must be based on352

intrinsic features – measurable attributes of a project’s contents or origin. While one may353

use machine learning [16, 20] to build classifiers, we propose to leverage the discriminative354

power of our five attributes as a frame oracle.355

Fig. 3 is the cumulative density function of the various attributes for Java (Python is356

similar). The interpretation of each line is what percentage of the dataset is filtered for a357

particular attribute value. So for instance, if one were to use 10 days as a cutoff, then 52%358

of the Java set would be filtered out. Half of Java projects have been around for less than 10359

days! What also stands out is that 82% of projects do not have any stars. A 10 star cutoff360

one filters out 98% of all projects. The discontinuity of C-Index at 65 is worrisome. After361

investigation, we found a single GitHub’developer’ with such a high index, it turns out that362

it is a bot doing automated updates.363

Project selection can be performed by a combination of attributes with cutoffs. We do364

not argue for a particular formula; researchers must make their own choices in this respect.365

Versions

Locs

Devs

Age

C−Index

1 10 100 1k 10k 100k 1m 10m

Entire Dataset
Interesting
Top Stars

Figure 2 Comparing developed and starred projects

4. Relevant Papers

138

P. Maj et al. 23:11

Category Java Python
Externals 9% 5%
Very few commits, likely from another repository, occasionally
synchronized.
Widgets 43% 0%
Tiny projects with little activity that implement popular UI
widgets or plugins.
Docs 4% 15%
Interview questions, code snippets, course materials, card
games, knitting patterns.
Tutorials 17% 9%
Educational materials, tutorials and example applications.
Babies 16% 32%
Valid but extremely small projects with little activity.
Artifacts 0% 21%
Artifacts for (mostly ML) research papers. Likely developed
elsewhere.
Deprecates 1% 5%
Deprecated projects, no code on the main branch.

Table 2 Categorizing 200 starred projects

0.00

0.25

0.50

0.75

1.00

1 10 100 1k 10k 100k 1m

%

Locs
Versions

Age
C-Index

Devs
Stars

Figure 3 Cumulative Density Functions

4.5 Validity366

Working with the dataset, we noticed an oddity around project ages. Experience with367

GitHub trained us to expect the unexpected. Our investigation started with a plot of creation368

dates. Fig. 4 shows the log scaled counts of new projects over time. While there is a steady369

progression in the count of projects created each year, we see a significant drop in 2015 and370

a plateau until 2019. We reviewed our pipeline to no avail. We use GHTorrent to acquire371

all available URLs. Then, we randomly sample projects from that list. We validated both372

acquisition and sampling. This leaves with two hypotheses. First is a consistent flaw in the373

CodeDJ downloader causing some projects to fail to download. 17% URLs obtained from374

GHTorrent point to dead projects, but there is no apparent bias. Second some projects could375

ECOOP 2023

4.4. Paper 4 - The Fault in Our Stars: How to Design Reproducible Large-scale Code
Analysis Experiments

139

23:12 The Fault in Our StarsHow to Design Reproducible Large-scale Code Analysis Experiments

be missing in GHTorrent. Again, we have not been able to eliminate this possibility. Another376

issue showed up on inspection, JavaScript project ages are significantly higher than those of377

other languages. We found that GitHub timestamps are frequently inconsistent, but why378

JavaScript be more affected? Until an explanation can be found, we removed JavaScript from379

the overall comparison and use JavaScript projects in the reproduction with extreme care.380

0

10

100

1k

10k

100k

1m

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

P
ro

je
ct

 c
re

at
ed

Java Python JavaScript

Figure 4 Creation date

5 Reproducible Experiment Design381

This paper proposes that researchers conducting experiments over large-scale software382

repositories follow a specific experimental design methodology to ensure their work can be383

reproduced and increase chances their results generalize as expected. While the mechanics of384

reproducibility of the actual experiment itself vary, the setup of the experiment is a common385

problem. The proposed methodology has five steps, we encourage researchers to document386

each of these steps explicitly.387

5.1 Population Hypothesis388

Formulating a population hypothesis lets researchers stake a claim about the applicability389

of their work. This represent the population to which the result of an experiment should390

generalize to. The statement of that hypothesis can be brief and appeal to intuition, the391

other parts of the description flesh out the details. Ideally we would like our results to be as392

broadly applicable as possible, but pragmatically designing experiments that back up overly393

broad claims is difficult. Some populations of interest are difficult to sample, for instance394

“commercial software” is a relatively simple and unambiguous description but one that we395

typically can’t sample from as most of the software is not in the public domain. Other396

populations can be difficult to identify. Imagine a study of the challenges linked to retraining397

imperative programmers to use functional idioms. Finding code written by such developers398

can be done manually but is difficult to automate. It is often easier to describe a population399

by intrinsic features of projects such as the language used to write the code or some estimate400

of the size of the project.401

4. Relevant Papers

140

P. Maj et al. 23:13

5.2 Frame Oracle402

A frame oracle is a, possibly noisy, deterministic algorithm for deciding if a project belongs403

to the population of interest. The oracle is our best approximation of the population of404

interest. An executable and reproducible oracle allows to compare different papers with the405

same selection. The description of the oracle should specify the data source along with any406

information required to acquire projects. The procedure for evaluating a project should be407

clear and based on intrinsic attributes. A paper should at least have a short description of408

the oracle, full details should be given in the reproduction artifact.409

5.3 Sampling Strategy410

The literature has an abundant advice on sampling (see e.g. [10]). Briefly, a sampling strategy411

picks the type of sampling (probabilistic or non-probabilistic) and describe the high-level412

steps used to obtain a sample. The sampling implementation is expected to be found in the413

reproduction artifact. Many works use purposive or convenience sampling as it is simpler,414

cheaper and less time consuming. A better alternative is some form of probabilistic sampling415

as it is more likely to yield a representative sample. Probabilistic sampling can be staged if416

the structure of the population is more complex. The simplest approach is random sampling417

where each element has the same chance of being picked. We often have to resort to stratified418

sampling when the population is divided in subgroups of different sizes. Typically we sample419

without replacement as we do not want to pick the same project multiple times.420

5.4 Validity421

The validity section should argue, when there are reasons for doubt, why using the frame422

oracle and the sample strategy results in representative samples of the population. This423

section should also address potential sources of bias and attempts by the authors to control424

for them. This section should address any foreseen challenges to reproducibility and offer425

means to mitigate them.426

5.5 Reproducibility Artifacts427

The last components of our approach is to link the paper to a reproduction artifact that428

contains code and data to support experimental repeatability and reanalysis.429

5.6 Tool support430

Section 3 has listed specific issues with reproducibility. Roughly, there are two kinds of431

issues. The first is related to authors not being precise in their description of some of the432

steps outlined above. We believe that following the methodology as a template in the text433

of a paper and providing a reproduction artifact will greatly help. The second category434

of issues are more pragmatic, it is difficult to repeat the analysis of a paper because some435

aspect of the data used is not available. We suggest that research infrastructures should436

support the task by explicitly supporting experimental reproducibility. An example of such437

an infrastructure is CodeDJ which is both a continuously updated datastore and a database438

that can be queried by a DSL written in Rust. We have adopted that infrastructure for our439

work and illustrate how it helps with reproducibility.440

The implementation of a frame oracle and the sampling strategy can be combined into441

a single expression. Fig. 5 shows a query which starts by filtering out projects with fewer442

ECOOP 2023

4.4. Paper 4 - The Fault in Our Stars: How to Design Reproducible Large-scale Code
Analysis Experiments

141

23:14 The Fault in Our StarsHow to Design Reproducible Large-scale Code Analysis Experiments

than 80% JavaScript code, then it uses pre-computed attributes Locs, Age and Devs to filter443

further. The last stage of filtering involves computing an attribute on the fly, here we sum444

up the commits in the project. Random sampling is implemented by calling the ş function.445

database.projects()
.filter(|project| {

project.language_composition()
.map_or(false, |languages| {

languages.into_iter().any(
|(language, proportion)| {

language == Language::JavaScript
&& proportion >= 80

})
})

})
.filter_by(AtLeast(Locs, 5000))
.filter_by(AtLeast(Age,

Duration::from_months(12)))
.filter_by(AtLeast(Devs, 2))
.filter_by(AtLeast(Count(Commits), 100))
.sample(Random(30, SEED)))

Figure 5 Project selection with CodeDJ

The architecture of CodeDJ is split between a persistent datastore in which every data446

item is timestamped with an insertion data, and an ephemeral database used to service447

queries. A reproducible query is a Rust crate archived in a git repository associated to the448

datastore. Running the query produces a receipt which is the hash of a commit automatically449

added to the archive repository. The receipt can be used to share the query (exactly as450

executed) and its results (exactly as produced). It can be used to retrieve the Rust crate and451

re-execute the code. Code re-execution is helped by the fact that queries are deterministic452

and the crate contains a list of all dependencies, a timestamp, and all random seeds. When453

a historical query is executed CodeDJ access the exact state of the datastore at the time the454

query was run. Since CodeDJ stores the contents of files, entire experiments can be fully455

reproduced.456

6 Reproductions457

We demonstrate the value of the methodology with examples. Results suggest that additional458

experiments are needed to validate some of the claims made in the reproduced works.459

6.1 Reproducing: What is Software460

This reproduction aims to validate two simple findings of [19]: (C1) sowftare is diverse, only461

4% of repositories do not contain code, data and documentation; (2) documentation is an462

integral constituent of software, only 2% of repositories do not contain documentation. Our463

methodology is to start by a reproduction that attempts to follow the paper. Then we464

investigate if the results generalize to the intended population.465

Population Hypothesis: The entire universe of software projects.466

Frame Oracle: To understand the impact of project selection we consider three oracles.467

O1 accepts any software project hosted on GitHub. O2 is subset of O1 with uninteresting468

projects removed (as defined above). O3 uses a stronger filter, removing projects with fewer469

4. Relevant Papers

142

P. Maj et al. 23:15

than 500 commits, 180 days, or 10K Locs. We use GitHub language attribution to select a470

project’s language.471

Sampling Strategy: We report on four samples. S0 is a convenience sample of starred472

projects from O1 following [19]. S1, S2 and S3 are random samples without replacement473

from O1, O2 and O3 respectively, stratified by language. Projects with duplicate contents474

are removed.475

Validity: Our reproduction differs in the number of languages (3 v. 25) and by categorizing476

files based on the file path alone. We tested stability of our results with multiple samples of477

varying sizes and manually inspected the produced labels.478

Reproduction Artifact: Our artifact has CodeDJ receipt for this query.479

2%

0%

33%

23%

17%

12%

5%

4%

C2

C1

S3 S2 S1 S0

Figure 6 Content of software projects

Results480

Fig. 6 shows the results of reproduction for claims C1 and C2. Compare the percentages481

between S0 (original) and S1 (target population). Statistical analysis is not required to see482

that the difference is significant. The samples S2 and S3 are there to illustrate the impact of483

slightly more developed populations, but even these are still quite different. Would the results484

agree if we included more languages? The three languages we downloaded account for most485

of GitHub, it is conceivable that other languages could affect results, but that would just486

push the generalizability issue somewhere else as the claims would become language-specific.487

6.2 Reproduction: Method Chaining488

[18] claim that 50% of projects in 2018 had method chains longer than 7 while in 2010 that489

number was 42%, and more generally they observed longer chains at all lengths. They state490

that “chains of length 8 are unlikely to be composed by programmers who tend to avoid491

method chaining, this result is another supportive evidence for the widespread use of method492

chaining.’493

We intend to reproduce the authors methodology, and then compare to various samples494

that might represent that the authors expresed as their population of interest in their paper.495

Population Hypothesis: The universe of real-world Java programs.496

ECOOP 2023

4.4. Paper 4 - The Fault in Our Stars: How to Design Reproducible Large-scale Code
Analysis Experiments

143

23:16 The Fault in Our StarsHow to Design Reproducible Large-scale Code Analysis Experiments

Frame Oracle: We accept any Java project hosted on GitHub and delegate to GitHub for497

language attribution.498

Sampling Strategy: Stratified sampling to randomly select projects with commits in 2010499

and 2018.500

Validity: To reproduce the original results, we performed stratified sampling to get top501

starred projects active in the target years. The authors used a different sample of top stars.502

The original paper had different sample sizes for each year, but those are not specified. We503

fix the sample size to 250. The authors could not locate the code of their chain detector, so504

we use our own implementation.505

Reproduction Artifact: The selection of input is represented by a CodeDJ receipt in the506

artifact.507

−0.10

−0.05

0.00

0.05

0.10

0 8 25 50 75 100

Figure 7 Difference in chain lengths

Results508

Fig. 7 shows the difference in proportion of projects at various chain lengths. The solid509

line uses stars, colors represent different random samples. For instance, if we pick chains of510

length 8, the number used by [18], the difference is a 13% increase in the number of projects511

between 2011 and 2018. The differences for our random samples are -2%, 0.6% and 0.7%.512

This particular population does not seem to show the effect expected by the authors. We513

surmise that some notion of developed project may show more favorable results, but without514

more guidance in the population hypothesis it is hard to guess which to pick.515

4. Relevant Papers

144

P. Maj et al. 23:17

6.3 Reproduction: Style Analyzer516

[14] build model of the style of a repository and apply this model on a held-out part of that517

repository to produce corrections. Their experiment uses 19 top-starred JavaScript project518

to gauge the precision with which the tool flags formatting discrepancies and the relationship519

between this precision and the size of the project. They report a precision of 94% (average,520

weighed by project size) and better overall performance for large projects and projects with521

better style guidelines.522

We investigate how different project samples impact these conclusions. For the repro-523

duction we attempted to create samples to fulfill our intuition about the original’s paper524

intentions as best we understand them from the conclusions they draw.525

Population Hypothesis: A developed JavaScript projects.526

Frame Oracle: Our oracle picks JavaScript projects such they contain at 80% JavaScript527

code (files), Loc ≥ 5000, Age ≥ 12 ∗ 31 and Devs ≥ 2.528

Sampling Strategy: We randomly select 10 sets of 30 projects. We select more projects529

than the original sample to account for errors in processing. After processing is finished, we530

randomly select 19 out of the pool of successfully processed projects in each selection.531

Validity: Given the complexity of the tools configuration and the fact that it is missing532

from the artifact, we used a default configuration provided by the tool. This produces an533

average increase in project size by 46% per project (up to a maximum of 154%) and causes534

precision to diverge by 2.2% on average, and up to 7.9%.535

The tool failed to process 4 projects: freecodecamp and atom due to errors in unicode536

processing, express due to a programming bug, and 30-seconds-of-code probably due to537

bad file identification. Three of the missing projects were located close to the median in538

terms of precision, prediction rate, and project size in the original paper, while axios was in539

the lower quartile for sample count. We reproduced the study using 19-project samples.540

Style analyzer analyzes each project at two points in its history specified by a base541

commit and a head commit. The base commit is a point in the past which the tool checks542

out to learns the project’s formatting style. The head commit is a more recent point used543

to evaluate the model and calculate precision. The original paper provides head and base544

commits for each project in their experiment, but does not specify the method of selecting545

these commits. We pick the current head of the default branch as the head commit. For546

base commit we pick one that lies at an offset equal to 10% of the number of all commits in547

the default branch from the head commit. This retrieves different commits than the original548

paper, which causes a 3.1% median change in precision (up to 17%—telescope) and a549

median project size increase of 76%, and up to 311% (reveal.js).550

Reproduction Artifact: Datasets, receipts from submitted Djanco queries, style analyzer’s551

reports and scripts for the entire experimental pipeline are included in the artifact.552

Results553

We recreate a plot of the effect of the number of items in the training set on precision from554

the original paper in Fig. 8. The training set consists of snippets created around tokens/AST555

nodes relevant to formatting (whitespace, indentation, quotes, zero-length gaps). We plot the556

selection from the original paper along three selections from our interesting project frames.557

In addition, we plot the distributions of precision in each selection in Fig. 9. We compare558

the precision scores in each sample with the selection used in the original paper using a559

Mann-Whitney U test to show which samples performed statistically differently from the560

ECOOP 2023

4.4. Paper 4 - The Fault in Our Stars: How to Design Reproducible Large-scale Code
Analysis Experiments

145

23:18 The Fault in Our StarsHow to Design Reproducible Large-scale Code Analysis Experiments

250k

500k

750k

250k

500k

750k

0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0

Precision

P
ro

je
ct

 s
iz

e

Figure 8 Relationship between label groups and precision

original. The scatter plots show a different grouping of results from the original paper. The561

groupings in the scatter plot visibly differ between selections. The distribution comparison562

shows that our selections generate significantly smaller training sets in all cases and yield lower563

precision. In addition, 6 out of the 10 interesting project selections produced significantly564

lower precision, with the remainder producing a statistically equivalent distribution.565

Overall, we see our selections yielding precision between 0.91 and 0.95 (the paper sets a566

precision of 0.95 as a benchmark for success). We also do not see a clear relationship between567

the number of label groups and precision, such as the one the authors note in the original568

paper.569

6.4 Reproduction: Code Smells570

We seek to validate the claim of [8] that for large and small projects there is a statistical571

difference in the occurrence of code smells, whereas medium sized projects are indistinguish-572

able.573

Population Hypothesis: Mature GitHub projects in all application domains including machine574

learning written in Python.575

Frame Oracle: Projects with C-Index ≥ 5, or Age ≥ 180, or Locs ≥ 10000, or Versions576

≥ 100. We delegate to GitHub for language attribution.577

Sampling Strategy: The deep learning projects were provided by the authors. Out of 59578

4. Relevant Papers

146

P. Maj et al. 23:19

0.6

0.7

0.8

0.9

1.0

Original Interesting Projects

P
re

ci
si

on

original
equivalent to original
different

Figure 9 Comparing label group count and precision

projects, 57 were still accessible on August 2nd 2021. At download time there were 6 small,579

13 medium, and 38 large deep learning projects. For the reproduction of the original results,580

we used a staged strategy, first convenience sampling the top starred Python projects and581

amongst those used stratified sampling to select 57 projects with a similar distribution of582

sizes. To generalize the results we used quota sampling to match the size distribution.583

Validity: Our reproduction uses the Locs reported by CodeDJ. The date the authors584

downloaded the repositories is unknown. We use the content of the main branch of each585

repository as of April 1st, 2020. The authors say “each of repositories is pre-processed586

and prepared for code smell detection”, however details are missing. We used the default587

thresholds of their tool.588

Reproduction Artifact: A CodeDJ receipt is included in our reproduction package along589

with code to run the experiment.590

Results591

Fig. 10 contrasts the distribution of smell for deep learning projects, top stars, and three592

random samples. Computing the p-values with the non-parametric Mann-Whitney Wilcoxon593

shows that one of the samples disagrees on small projects (i.e. the difference is not statistically594

significant) and two of the samples disagree on the large projects (again the difference is not595

significant). Generalizability of the results is thus questionable.596

7 Conclusions597

Sometimes doing it wrong is so much easier than the alternative, that we convince ourselves598

that the wrong is right enough.599

Our paper is unusual. While it purports to contain a call to arms for better experimental600

practices, it is just as much a record of our own journey to that goal. What reads as601

ECOOP 2023

4.4. Paper 4 - The Fault in Our Stars: How to Design Reproducible Large-scale Code
Analysis Experiments

147

23:20 The Fault in Our StarsHow to Design Reproducible Large-scale Code Analysis Experiments

10

100

1k

10k

100k

Deep Learning Top Stars

sm

el
ls

small
medium
large

Figure 10 Comparing Smells

criticism was just as likely written in self-reflection. So, what can a researcher in the field602

take away from this paper? There are three ideas we would like to leave you with regarding603

generalizability, reproducibility and tooling.604

Generalizability. The value of an experiment often lies as much in what it generalizes to,605

as in the experiment’s outcome. We found that many researchers rely on GitHub stars to606

pick representative samples of software projects, yet starred projects tend to be larger in607

most dimensions than typical ones, also that they are more likely to be inactive, and that608

their ranking is not a measure of intrinsic qualities of the code. Hopefully, this paper is the609

last nail in that coffin. More generally, we advocate for the use of probabilistic sampling over610

populations defined by intrinsic attributes of software, and also for clear and standardized611

documentation of experimental design.612

Reproducibility. The value of a scientific experiment also lies in our ability to reproduce613

it. Carrying out reproducible experiments over large-scale software repositories is hard.614

Especially when aiming to support the three reproduction modalities: repetition, as practiced615

in artifact evaluation, where an artifact is re-executed to obtain identical results; reanalysis,616

where the artifact or its input are modified; and independent reproduction, where the entire617

experiment is re-implemented from scratch. The first modality requires faithful replay and618

is best served if all data used is included with the artifact. The second, requires support619

for automatically acquiring new representative samples. The third needs an unambiguous620

description of all experimental steps. We advocate for reproductions artifacts that supports621

the first two modes, and a detailed description of the experiment for the last.622

Tooling. Generalizability and reproducibility, while worthy goals, represent much work,623

and they are work that is orthogonal to the scientific goals of researchers. The only624

reasonable answer is to provide tooling that automates acquisition of representative samples625

and generation of reproduction artifacts. In this paper, we used CodeDJ and found it helpful626

as it let us specify queries over attributes of the code for many projects, while also supporting627

experimental repetition and reanalysis through historical queries. It has its limitations, we628

found execution times to be somewhat long and doubt it will scale to the whole of GitHub.629

Our vision for a bright and shiny future is one where the community agrees on standard630

4. Relevant Papers

148

P. Maj et al. 23:21

tools and techniques for this kind of experiment, tools which automate the acquisition and631

packaging of input datasets and the re-execution of entire experiments.632

References633

1 S Baltes and P Ralph. Sampling in software engineering research. CoRR, 2020. URL:634

https://arxiv.org/abs/2002.07764.635

2 H Borges and M Tulio Valente. What’s in a github star? understanding repository starring636

practices in a social coding platform. Journal of Systems and Software, 2018. doi:10.1016/j.637

jss.2018.09.016.638

3 Z Chen et al. Understanding metric-based detectable smells in python software. Information639

and Software Technology, 2018. doi:10.1016/j.infsof.2017.09.011.640

4 V Cosentino, J Izquierdo, and J Cabot. Findings from GitHub: Methods, datasets and641

limitations. In Mining Software Repositories (MSR), 2016. doi:10.1145/2901739.2901776.642

5 R Dyer, H Nguyen, H Rajan, and T Nguyen. Boa: A language and infrastructure for analyzing643

ultra-large-scale software repositories. In Int. Conf. on Software Engineering (ICSE), 2013.644

doi:10.5555/2486788.2486844.645

6 G Gousios and D Spinellis. GHTorrent: GitHub’s data from a firehose. In Mining Software646

Repositories (MSR), 2012. doi:10.1109/MSR.2012.6224294.647

7 J Han et al. Characterization and prediction of popular projects on GitHub. In Computer648

Software and Applications Conf. (COMPSAC), 2019. doi:10.1109/COMPSAC.2019.00013.649

8 H Jebnoun et al. The scent of deep learning code. In Mining Software Repositories (MSR),650

2020. doi:10.1145/3379597.3387479.651

9 E Kalliamvakou et al. The promises and perils of mining GitHub. In Mining Software652

Repositories (MSR), 2014. doi:10.1145/2597073.2597074.653

10 S Lohr. Sampling: Design and Analysis. 2010.654

11 C Lopes et al. Déjà Vu: A map of code duplicates on GitHub. Proc. ACM Program. Lang.,655

(OOPSLA), 2017. doi:10.1145/3133908.656

12 Y Ma et al. World of code: enabling a resarch workflow for mining and analyzing the universe657

of open source vcs data. Empirical Softw. Eng., 2021. doi:10.1007/s10664-020-09905-9.658

13 P Maj et al. CodeDJ: Reproducible queries over large-scale software repositories. In European659

Conf. on Object-Oriented Programming (ECOOP), 2021. doi:10.1145/2658987.660

14 V Markovtsev et al. Style-analyzer: fixing code style inconsistencies with interpretable661

unsupervised algorithms. In Mining Software Repositories (MSR), 2019. doi:10.1109/MSR.662

2019.00073.663

15 T Mattis, P Rein, and R Hirschfeld. Three trillion lines: Infrastructure for mining github664

in the classroom. In Conf. on Art, Science & Eng. of Programming <Programming>, 2020.665

doi:10.1145/3397537.3397551.666

16 N Munaiah et al. Curating github for engineered software projects. Empirical Software667

Engineering, 2017. doi:10.1007/s10664-017-9512-6.668

17 M Nagappan, T Zimmermann, and C Bird. Diversity in software engineering research. In669

Foundations of Software Engineering (FSE), 2013. doi:10.1145/2491411.2491415.670

18 T Nakamaru et al. An empirical study of method chaining in Java. In Mining Software671

Repositories (MSR), 2020. doi:10.1145/3379597.3387441.672

19 R Pfeiffer. What constitutes software? In Mining Software Repositories (MSR), 2020.673

doi:10.1145/3379597.3387442.674

20 P Pickerill et al. Phantom: curating github for engineered software projects using time-series675

clustering. CoRR, 2019. URL: http://arxiv.org/abs/1904.11164.676

21 P Ralph et al. Empirical standards for software engineering research. CoRR, 2020. URL:677

https://arxiv.org/abs/2010.03525.678

ECOOP 2023

4.4. Paper 4 - The Fault in Our Stars: How to Design Reproducible Large-scale Code
Analysis Experiments

149

Chapter 5

Conclusions

The wealth of data available in large software repositories offers unprecedented opportunities
for analyzing source code and software development patterns. Due to the sheer size and noise
present in those repositories, careful project selection and filtering is a crucial step for each
such analysis. The contributions of this thesis lie in improving our ability to select software
projects precisely and reproducibly at scale. We introduce CodeDJ, an infrastructure for the
maintenance and querying of a local mirror of software projects that provides precision in the
project selection criteria, scalability in the number of software projects, and reproducibility
in the presence of frequent updates to both the stored projects and data types kept over time,
including historical accuracy which allows querying an updated database in the future as if
the query happened on the dataset as it looks now.

The details of these contributions can be found in the four research papers that form the
bulk of the thesis, namely:

1. A Map of Code Duplicates on GitHub [A.3] analyses source code clones present in
GitHub projects. It verifies the existence of one of the most common biases and shows
its scale. Our findings signify the necessity for dedicated project selection and filtering
steps in big code analyses.

2. On the Impact of Programming Languages on Code Quality [A.2] is a reproduction
study focusing on the data filtering, reproducibility, and statistical interpretation of
large corpora analyses. The paper shows the problems pointed out by this thesis are
present in contemporary research and that they affect our results.

3. Reproducible Queries over Large-Scale Software Repositories [A.1] introduces the in-
frastructure that forms the statement of this thesis: a scalable, precise, deterministic,
up-to-date and reproducible project selection pipeline.

4. How to Design Reproducible Large-scale Code Analysis Experiments [A.4] then devises
and argues for an explicit and rigorous project filtering step and demonstrates how it
can be done with the tool presented in the previous paper.

5.1 Future Work

Although the tool and dataset as provided are immediately usable, further improvements are
planned along the following main lines:

151

5. Conclusions

5.1.1 Increasing the dataset size

The actual GitHub scrapper processes projects based on their main programming language
and new languages are added as needed. Aside from new projects, the dataset should also
grow in the types of data it stores, such as discussions, continuous integration results, releases,
etc. As this information comes at the cost of extra GitHub API requests, which is a scarce
resource, these too, will be added on a needed basis.

We have already demonstrated scalability of the solution to millions of projects, but given
the enormous size of GitHub, it may be that extra effort will be necessary in the future to
maintain scalability.

Finally, software repositories other than GitHub can be added as sources to CodeDJ in the
future. This would require adapting the sources to the git based terminology of CodeDJ for
source code contributions, and either mapping the metadata to the items known and already
downloaded from GitHub, or simply adding new categories.

5.1.2 Improving querying capabilities

CodeDJ enforces a split between the datastore management and updates and the querying
itself. It provides only a simple programmatic API that can be used for parallel random
access and linear scanning of the stored information. Djanco, the proof of concept querying
engine provided in the paper [A.1] is very expressive and user friendly, but as it does not
support parallelism, has limits in terms of scalability. To remain competitive with increasing
Parasite dataset sizes, Djanco needs to be optimized. Addition of other, perhaps less express-
ive, but simpler and faster querying front-ends to complement Djanco would be a welcome
improvement.

5.1.3 Finding more uses

Having access to a large database of software projects and their attributes is useful not only
for project selection and sampling. The author of this thesis is currently working on an
automated detection of implicit clones, a tool that for any given GitHub project uses the
Parasite database to scan its contents for duplication and then reports any possible problems,
such as outdated copy, etc. More uses are possible and should be explored.

152

Bibliography

[1] T. F. Bissyande, F. Thung, D. Lo, L. Jiang, and L. Reveillere. Orion: A software project
search engine with integrated diverse software artifacts. In International Conference on
Engineering of Complex Computer Systems, 2013.

[2] Roberto Di Cosmo and Stefano Zacchiroli. Software heritage: Why and how to pre-
serve software source code. In iPRES 2017: 14th International Conference on Digital
Preservation, Kyoto, Japan, 2017.

[3] Edsger W. Dijkstra. The humble programmer. Commun. ACM, 15(10):859–866, oct
1972.

[4] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories. In International
Conference on Software Engineering (ICSE), 2013.

[5] Davide Falessi, Wyatt Smith, and Alexander Serebrenik. Stress: A semi-automated,
fully replicable approach for project selection. In International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2017.

[6] Jesus M. Gonzalez-Barahona, Gregorio Robles, and Santiago Dueñas. Collecting data
about FLOSS development: The FLOSSMetrics experience. In International Workshop
on Emerging Trends in Free/Libre/Open Source Software Research and Development
(FLOSS), 2010.

[7] Statista inc. Programming languages that are associated with the highest salaries
worldwide in 2022. https://www.statista.com/statistics/1127190/programming-
languages-associated-highest-salaries-worldwide/.

[8] Github LLC. The 2021 state of the octoverse. https://octoverse.github.com/static/
octoverse-report-2021.pdf, 2021.

[9] Github LLC. The 2022 state of the octoverse. https://octoverse.github.com/2022/
how-companies-invest-in-open-source, 2022.

[10] Paul Ralph, Nauman bin Ali, Sebastian Baltes, Domenico Bianculli, Jessica Diaz, Yvonne
Dittrich, Neil Ernst, Michael Felderer, Robert Feldt, Antonio Filieri, Breno Bernard Nic-
olau de FranC ca, Carlo Alberto Furia, Greg Gay, Nicolas Gold, Daniel Graziotin, Pinjia

153

https://www.statista.com/statistics/1127190/programming-languages-associated-highest-salaries-worldwide/
https://www.statista.com/statistics/1127190/programming-languages-associated-highest-salaries-worldwide/
https://octoverse.github.com/static/octoverse-report-2021.pdf
https://octoverse.github.com/static/octoverse-report-2021.pdf
https://octoverse.github.com/2022/how-companies-invest-in-open-source
https://octoverse.github.com/2022/how-companies-invest-in-open-source

Bibliography

He, Rashina Hoda, Natalia Juristo, Barbara Kitchenham, Valentina Lenarduzzi, Jorge
Mart́ınez, Jorge Melegati, Daniel Mendez, Tim Menzies, Jefferson Molleri, Dietmar
Pfahl, Romain Robbes, Daniel Russo, Nyyti Saarimäki, Federica Sarro, Davide Taibi,
Janet Siegmund, Diomidis Spinellis, Miroslaw Staron, Klaas Stol, Margaret-Anne Storey,
Davide Taibi, Damian Tamburri, Marco Torchiano, Christoph Treude, Burak Turhan,
Xiaofeng Wang, and Sira Vegas. Empirical standards for software engineering research,
2020.

[11] Baishakhi Ray, Daryl Posnett, Premkumar Devanbu, and Vladimir Filkov. A large-
scale study of programming languages and code quality in github. Commun. ACM,
60(10):91–100, sep 2017.

[12] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. A large scale
study of programming languages and code quality in github. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2014, page 155–165, New York, NY, USA, 2014. Association for Computing Machinery.

[13] Marc J. Rochkind. The source code control system. IEEE Transactions on Software
Engineering, SE-1(4):364–370, 1975.

[14] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. Sourcerercc: scaling code clone detection to big-code. In International Conference
on Software Engineering (ICSE), 2016.

154

Reviewed Publications of the Author
Relevant to the Thesis

[A.1] P. Maj, K. Siek, A. Kovalenko, J. Vitek. CodeDJ: Reproducible Queries over Large-Scale
Software Repositories. In 35th European Conference on Object-Oriented Programming
(ECOOP), 2021.

[A.2] E.D. Berger, C. Hollenbeck, P. Maj, O. Vitek, J. Vitek. On the impact of programming
languages on code quality: a reproduction study. ACM Transactions on Programming
Languages and Systems (TOPLAS), 41 (4), 1-24, 2019.

[A.3] C. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, J. Vitek. DéjàVu:
A Map of Code Duplicates on GitHub. In Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA), 2017.

155

Submitted Publications of the Author
Relevant to the Thesis

[A.4] P. Maj, S. Muroya, K. Siek, J. Vitek. The Fault in Our Stars: How to Design Reprodu-
cible Large-scale Code Analysis Experiments. Submitted to 37th European Conference
on Object-Oriented Programming (ECOOP), 2023.

157

Remaining Publications of the Author
Relevant to the Thesis

[A.5] E.D. Berger, P. Maj, O. Vitek, J. Vitek. SE/CACM Rebuttal 2: Correcting A Large-
Scale Study of Programming Languages and Code Quality in GitHub. arXiv preprint
arXiv:1911.11894, 2019.

[A.6] P. Maj, C. Hollenbeck, S. Hussain, J. Vitek. Analyzing Duplication in JavaScript. In
BenchWork, 2018.

[A.7] P. Maj, F. Gauthier, C. Hollenbeck, S. Hussain, J. Vitek, C. Cifuentes. Building a
node.js Benchmark: Initial Steps. In BenchWork, 2018.

[A.8] P. Maj. Analyzing Large Code Repositories. Ph.D. Minimum Thesis, Faculty of In-
formation Technology, Prague, Czech Republic, 2018.

159

Remaining Publications of the Author

[A.9] J. Sliacky, P. Maj. Lambdulus: teaching lambda calculus practically In Proceedings
of the 2019 ACM SIGPLAN Symposium on SPLASH-E, pages 57-65, 2019.

[A.10] T. Kalibera, P. Maj, F. Morandat, J. Vitek. A Fast Abstract Syntax Tree Interpreter
for R. In Conference on Virtual Execution Environments (VEE), 2014.

[A.11] P. Maj, T. Kalibera, J. Vitek. TestR: R language test driven specification. In The R
User Conference, useR!, 2013.

[A.12] T. Kalibera, J. Hagelberg, P. Maj,F. Pizlo, B. Titzer, J. Vitek. A family of real-time
Java benchmarks. In Concurrency and Computation: Practice and Experience, 2011.

[A.13] F. Pizlo, L. Ziarek, E. Blanton, P. Maj, J. Vitek. High-level programming of embedded
hard real-time devices. In Proceedings of the 5th European conference on Computer
Systems, pages 69-82, 2010.

[A.14] F. Pizlo, L. Ziarek, P. Maj, A.L. Hosking, E. Blanton, J. Vitek. Schism: fragmentation-
tolerant real-time garbage collection. ACM Sigplan Notices, 45 (6), pages 146-159,
2010.

161

	List of Figures
	List of Tables
	Introduction
	On comparing languages
	Analyzing Software Development
	Motivation
	Thesis
	Structure of the Dissertation Thesis

	Background and State-of-the-Art
	Sources
	GitHub
	Bitbucket
	Other Version Control Systems Hosts
	Package Managers
	Software Heritage

	Software Repositories
	GitHub
	Software Heritage
	GH Torrent
	Orion
	Boa
	Other Repositories

	Summary

	Overview of Contributions
	Mapping code duplication
	Producing wrong data without doing anything obviously right!
	Precise Project Selection
	Designing Reproducible Big Code Experiments
	Summary

	Relevant Papers
	Paper 1 - DejaVu: A Map of Code Duplicates on GitHub
	Author's Contributions
	Citations

	Paper 2 - On the Impact of Programming Languages on Code Quality: A Reproduction Study
	Author's Contributions
	Citations

	Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Repositories
	Author's Contributions
	Citations

	Paper 4 - The Fault in Our Stars: How to Design Reproducible Large-scale Code Analysis Experiments
	Author's Contributions

	Conclusions
	Future Work
	Increasing the dataset size
	Improving querying capabilities
	Finding more uses

	Bibliography
	Reviewed Publications of the Author Relevant to the Thesis
	Submitted Publications of the Author Relevant to the Thesis
	Remaining Publications of the Author Relevant to the Thesis
	Remaining Publications of the Author

