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Abstract

This thesis deals with detection of an
acoustic event, its training and the fol-
lowing analysis to recognize the voice us-
ing an automatic acoustic software. Mel-
frequency cepstral coefficients (MFCC)
have been used in speaker recognition as
well as in speech identification, mainly be-
cause they have been empirically checked
and verified to work well for audio recog-
nition in general due to their ability
to capture important spectral informa-
tion. These coefficients reckon on a mel-
frequency logarithmic spacing of filter
bank energies that imitate the non-linear
frequency response of the human hearing.

The objective of this research is to de-
velop an effective audio signal processing
system that leverages MFCC or other cep-
stral coefficients for various applications,
such as audio event detection.

The thesis evaluates the developed au-
dio signal processing system using exten-
sive experiments and comparative analy-
sis. The system performance is assessed in
terms of accuracy, robustness, and com-
putational efficiency. The results show
effectiveness of MFCC-based approaches
in detecting, training, and recognizing au-
dio signals for a range of applications.

Overall, this thesis contributes to the
field of audio signal processing by provid-
ing insights into the application of MFCCs
for audio event detection and recognition.
The findings offer valuable guidance for
the development of efficient and accurate
audio processing systems and pave the
way for further advancements in the field.

Keywords: Audio signal, feature, filter
bank, Mel-scale, cepstral coefficients,
classification, neural network, training.
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Abstrakt

Tato prace se zabyva detekci akustické
udalosti, jeji trénovani a naslednou ana-
lyzu k rozpoznavani zvuku pomoci au-
tomatického akustického softwaru. Mel-
frekvenéni kepstralni koeficienty (MFCC)
byly pouzity pfi rozpoznavani mluvcich i
pri identifikovani reci, predevsim proto, ze
byly empiricky zkontrolovany a ovéreny,
aby dobre fungovaly pro rozpoznavani
zvuku obecné kvuli jejich schopnosti za-
chytit dulezité spektralni informace. Tyto
koeficienty pocitaji s mel-frekvencnim lo-
garitmickym rozestupem energii banky
filtri, které napodobuji nelinearni frek-
venc¢ni odezvu lidského sluchu.

Cilem této prace je vyvinout efektivni
systém zpracovani audio signdlu, ktery
vyuziva MFCC ¢i jiné spektralni koefici-
enty pro ruzné aplikace, jako je detekce
zvukovych udalosti.

Nakonec prace hodnoti vyvinuty sys-
tém zpracovani audio signdlu pomoci roz-
sahlych experimentt a srovndvaci analyzy.
Vykon systému je hodnocen z hlediska
presnosti, robustnosti a vypocetni ucin-
nosti. Vysledky demonstruji efektivitu pii-
stupi zalozenych na MFCC pfi detekei,
trénovani a rozpoznavani audio signalt
pro radu aplikaci.

Celkové tato prace prispiva do oblasti
zpracovani zvukovych signala tim, ze po-
skytuje pohled na aplikaci MFCC pro de-
tekci a rozpoznavani zvukovych udéalosti.
Zjisténi nabizeji cenné voditko pro vyvoj
uc¢innych a presnych systému pro zpraco-
vani zvuku a dlazdi cestu pro dalsi pokrok
v této oblasti.

Klicova slova: Audio signél, znaky, filtr
bank, Mel-skalovani, kepstralni
koeficienty, klasifikace, neuronova sit,
trénovani.
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Introduction

With the growth of technology, the interest of checking it through a lot of
means or controlling it in many ways for the simplification of work. Today
we have numerous methods - for example, by sending sound signal through
microphones, or by moving a part of our body in front of a device using
cameras, and so forth.

As part of the research, many projects are freely available in different
programming languages, which are already abundant used in various applica-
tions. Due to the popularity of such applications among users, as well as a
large one military use, I decided to devote myself to a similar topic with a
hope of developing an application for voice events detection and classification,
to improve the process of monitoring using microphones. Due to the wide
availability of them in many devices today, the option is offering the work in
a lot of directions.

Due to the fact that we as people have five senses by which we perceive
the surrounding world, but only three of them, precisely sight and hearing
and touch, we have enough means of technology to work with. Regarding
taste and smell science is not that far yet in developing enough methods to
process and manage with them. Given the fact that in my bachelor thesis
I worked with image processing, and already back then I did notice, how
limited image processing is, because by it we can process and treat only the
areas we are aimed at with our camera system. For example, capturing a
public building from all different angles we cannot know about more details
happening outside of our capturing perception. That is the reason that back
in those days which made me thinking of other body sense to work with in
my future survey either in school or after graduating.

Because of dangerous and risky moments people might face in life, especially
in the last three decades regarding shooting in public areas, any kind of systems
that could detect, localize, classify, recognize or anything else to catch the
source of danger is appreciated to protect lives. And as mentioned above,
visual monitoring systems in general are not enough to capture dangers,
particularly fast gun-shooting events from angles not caught by cameras,
because of their placing in corners or at ceilings in rooms. Such placement,



albeit good to capture as much as possible, are known to human eyes, and
to criminals who previously study and measure the area in order to not
be caught. And so other techniques are demanded and called for, one of
which could be acoustic system based on standalone units, which continuously
monitor its surrounding, and in case of continuing threat, to track its source.
In comparison with video monitoring systems, acoustic surveillance systems
have the advantage to track the source, especially in crowded places or on
rugged terrain.

Monitoring using cameras on one hand and using microphones on the
other are two distinct approaches that provide different types of information
and serve special purposes, and the choice between using a camera or a
microphone to capture an environment and gather data depends on the
specific goals, context, and type of information we are interested in. Having
many similarities, like event detection, how both monitoring methods can be
used to detect and identify specific behaviors of interest (events). Yet cameras
can only detect visual events like motion, object presence, or changes in the
scene, whereas microphones can detect solely audio events such as specific
sounds, false alarms, or abnormal noise patterns. With the detection method
come the differences. For example, sensory input, for cameras primarily
capture visual information, providing an eye’s perceptible representation of
the monitored area. They are effective in detecting and observing spatial
relationships between objects, and physical movements with changes. On
the contrary, microphones capture auditory characteristics, enabling the
monitoring of sound patterns, environmental noise levels, and speech pattern
changes.

Inseparably to sensory input is data processing. Cameras monitor primarily
image frames, which require visual processing techniques, such as Image
Filtering, Image Segmentation, Edge Detection and many other methods to
extract appropriate image information. While microphones demand analyzing
audio signals, which call for signal processing, spectral analysis, or pattern
recognition to obtain relevant insights about the audio signal.

As the significant advantage for microphones compared to cameras is
regarding the environmental itself and its factors. While cameras rely heavily
on lighting conditions and visual obstructions, including weather or objects
in their way, which can affect the quality and accuracy of the captured
visual data. Microphones on the other hand, are generally less affected by
environmental factors and can capture audio data in a not-fitting weather or
in a low light workspace.

In recent decades, the field of audio and speech processing has witnessed
significant advancements in developing effective techniques for analyzing and
understanding various aspects of audio. Among the widely used methods,
Mel Frequency Cepstral Coefficients (MFCC) and other cepstral coefficients,
like Inverse Mel Frequency Cepstral Coefficients (IMFCC), Linear Frequency
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Cepstral Coefficients (LFCC), Gammatone Cepstral Coefficients (GTCC)
have emerged as powerful tools for extracting meaningful features from speech
and audio signals. These coefficients capture the spectral characteristics of
the signals in a compact and efficient manner, making work applications
easier. Among such applications are speech recognition, speaker identification,
and sometimes even music genre recognition and classification.

The goal of my thesis is to explore the usefulness and capability of MFCC
and other cepstral coefficients, along with spectral entropy and spectral
centroid in audio analysis. By examining and exploring the fundamentals
of cepstral analysis, its computational techniques, and applications of its
coefficients, I strive for gaining a deeper understanding of their variations,
restrictions, specific advantages and disadvantages for farther research.

The thesis begins with a basic overview of the fundamental concepts in
speech and audio processing, including the basic principles of signal represen-
tation, Fourier analysis, and spectral characteristics of audio signals. This
foundational knowledge will lay the basic for understanding the motivation
behind the development of MFCC and other cepstral coefficients as feature
extraction procedures.

Next, the thesis continues with an overview of MFCC computation, ex-
ploring the individual steps involved in the process, including steps such as
framing, windowing, Fast Fourier Transform, Mel filter bank application,
logarithmic compression, and Discrete Cosine Transform, which further shape
the spectral information and generate the final cepstral coefficients. The
implementation details and parameter choices for each step are thoroughly
explored, considering their impact on the quality and discriminative power of
the MFCC representation.

The thesis will then examine and explore the of cepstral coefficients ef-
fectiveness in speech recognition identification systems. Through a large
experiments and performance evaluations, an assessment of the performance
is included and robustness of these coefficients across different possibilities.

To address the task of audio event detection, the thesis investigates tech-
niques for identifying specific events or activities within audio recordings.
Convolutional neural networks (CNN) as machine learning algorithms, has
been involved to train classifiers using MFCC and other cepstral features. The
thesis explores feature selection methods, classifier optimization techniques,
and the challenges associated with real-world audio datasets.

The thesis also focuses on speaker identification, aiming to develop a system
capable of recognizing individual false alarms and particular guns based on
their gunshots’ voices. So the thesis explores the impact of feature represen-
tation, classifier selection, and dataset characteristics on the kind /type/class
classification performance. Speaker-specific MFCC models are trained using
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supervised learning techniques, and efficient matching algorithms, including
dynamic time warping, are employed to perform speaker recognition. The
thesis investigates the effects of different factors, including the number of
MFCC coefficients, the size of the training dataset, and the choice of classifier,
on the accuracy and robustness of speaker identification.

In summary, if an acoustic event is detected, an algorithm based on Mel
Frequency Transformation and classification using Support Vector Machine is
performed, because Mel coefficients could represent timbre quite accurately.
With our capturing sensors we can not only accurately and immediately
localize the source of the acoustic event, but also to track the source a identify
its type after deep learning through all sorts of sound, because the voice of
breaking a heavy pitcher is different than a glass of wine though both of them
could be made of the same material, as much as knocking on the door is
different than closing it, etc. If the gunshot is recognized, the detection system
is designed to immediately calculate the coefficients needed for training and
apply deep learning (to recognize and capture the source type.)

My hope is that through this thesis, I might contribute to the existing
knowledge about cepstral coefficient and provide any amount of insight that
might enhance the performance and applicability of cepstral coefficient-based
methods for future researches. In anticipation of the thesis’ conclusions to
serve as a valuable resource for developers and research workers, in the field
of speech and audio processing, helping them to enhance the using of MFCC
and other cepstral coefficients for future analysis.



Chapter 1

Analysis

B 11 Audio signal basis information

Audio signals are pervasive in our daily lives, carrying information and serving
as a fundamental means of communication, whether speech, music, or telecom-
munication. Studying to understand them and later analyze audio signals
is essential for a wide range of applications, including speech recognition,
speaker identification, noise reduction, audio synthesis, and in recent years
even as music analysis. The study of audio signals involves exploring their
underlying properties, processing techniques, and mathematical representa-
tions to extract meaningful information and gain insights into the underlying
audio content.

To purely and simply define an audio signal we can say that it is a rep-
resentation of sound waves, using a changing level of electrical voltage for
analog signals, or using a changing series of binary numbers for digital ones.
Audio signals are essentially time-varying representations of sound waves,
which are generated by vibrating objects and transmitted through a medium
(microphone, speaker). As a generating source human speech, animal roaring,
natural event, such as a blowing wind, sea waves, raining drops touching a
surface, or any other kind. Along the main features, like frequency, amplitude,
and phase, by which we characterize sound waves, other parameters are used
as well, such are the energy level in decibels, and the voltage level in volts,
bandwidth (a hertz measured difference between the upper frequency and its
lower counterpart on a continuous band.), and nominal level (the operating
level at which an electronic signal processing device is designed to operate).

In our days, days of digital technology, is more available to work with audio
in a digital form, which concludes to convert analog signal into discrete-time
signals using an analog-to-digital converter (ADC). One key aspect of audio
signal analysis is the representation of the sound wave in the digital domain,
where the already converted signal into digital form is typically represented as
a sequence of discrete samples, where each sample represents the amplitude
of the signal at a specific point in time, and the rate at which these samples
are taken is known as the sampling rate, measured in samples per second



1. Analysis

(Hz). The accuracy of the digital representation is determined by the bit
depth, which defines the number of bits used to represent each sample.

Audio signals manifest diverse characteristics, and as most crucial I believe
are pitch (do not confuse with tone as sound’s quality), timbre, and intensity.
Pitch refers to the perceived frequency of a sound, determining its musical or
tonal quality. Timbre describes the unique qualities of a sound that allow us
to distinguish between different instruments or voices. Intensity represents
the loudness or amplitude of the sound.

There are many methods in the field to process audio signals with various
embedded techniques to analyze, manage, operate, and eventually extract
meaningful information from audio signals. These techniques encompass a
wide range of approaches, including frequency (or time) domain analysis,
digital filtering, and machine learning, in order to reduce noise, extract
feature, and recognize patterns. To name a few of the used techniques: Data
compression (reduces the broadcast bandwidth and storage requirements of
audio data), acoustic detection (means to measure the ability to differentiate
between information-bearing patterns and random patterns that distract the
information i.e. noise), filtering (frequency dependent circuits, working in the
frequency range from Low-pass to High-pass), and many other methods.

This research aims to explore the fundamentals of audio signal analysis,
focusing on specific aspects such as pattern recognition techniques, spectral
analysis, and feature extraction. By understanding the underlying principles
and methodologies, we can develop effective approaches for applications such
as speech recognition, and speaker identification. The output of this thesis
will contribute to the advancement of audio signal processing and facilitate
the development of innovative solutions in audio-related fields.

. 1.2 Peak detection

Peak detection in audio files, usually .wav format, is a fundamental task in
audio signal processing, in order to detect the significant points in acoustic
events. Peaks represent significant changes or spikes in the amplitude of the
audio signal and often correspond to important events or features in the audio
data. The process of peak detection involves identifying the locations and
magnitudes of the highest peaks in the audio signal. One common approach is
to analyze the amplitude envelope of the signal, which represents the variation
of signal amplitudes over time. The envelope can be obtained by applying an
envelope extraction technique, such as rectification, low-pass filtering, or in
some cases using the absolute value of the signal.

Once the amplitude envelope is obtained, the next step is to determine the
threshold for peak detection. The threshold represents a minimum amplitude
value above which a peak is considered significant. This threshold can be
set manually based on the characteristics of the audio signal or determined
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1.2. Peak detection

automatically using statistical methods, such as estimating the background
noise level or analyzing the distribution of signal amplitudes. After setting the
threshold, peak detection algorithm scans through the amplitude envelope to
identify regions where the amplitude exceeds the threshold. These regions are
considered potential peaks. To accurately detect peaks, additional criteria can
be applied, such as requiring the amplitude to exceed the threshold by a certain
margin or checking for a minimum peak duration to avoid detecting transient
noise spikes. Once potential peaks are identified, the algorithm selects the
highest point within each peak region as the peak sample. The sample index
and corresponding magnitude represent the location and intensity of the
detected peak in the audio signal.

For my particular case I divided the event into 8 pieces (windows), where I
found the mean value of each part. In view of the fact that the time course
of all parts, i.e. graph shape, is hopping around the zero amplitude axis, all
mean values will be very similar. It is because, in general, the more the waver
is higher above zero, the more it goes under zero. Needless to say, the mean
value of the window with a high peak and its following echos is greater than
a silent window. So having the mean value of all windows, which was a little
bit more than zero, I gave a trial based on empirical attempts and found
a suitable value for the threshold which will always be above all echos. In
Figure [1.1) we can see a recorded acoustic signal corresponding to a 556mm
gunshot with its echos and threshold.

0.07 [ % q

0.06 [ \ |

0.05 / ]
Peaks

oo4b | . . . .. . _ Threshold

0.03 1 ]

Echos
ooz «/‘// ,

Amplitude [-]

2.6 2.8 3 3.2 3.4 3.6 3.8
time [sec] sec

Figure 1.1: Peak detection in shooting by 556mm.

After finding individual peaks, one millisecond was reserved from before the
peak location and nine milliseconds after it. The reason for that contrast is
due to the audio course itself, since before any peak the sound wave carrying
information does not have as important data as after, which my supervisor
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1. Analysis

explained to me that run-ups bear less interesting data for future features
extraction than the descending parts.

It is worth noting that peak detection algorithms can be sensitive to
various factors, among which are the threshold value, noise levels, and signal
characteristics. Therefore, careful consideration should be given to selecting
appropriate techniques and parameters based on the specific requirements
of the application and the characteristics of the audio data. For certainly,
situations can happen where two close peaks might coincide a thus the seeking
for data will overlap, see Figure For such cases the software is designed
to avoid those collapses.

Threshold
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Figure 1.2: Close peak detection in shooting by 9mm.

For example, I have met softwares that allow Peaks’ Merge error, when if
two peaks are very close to each other in terms of their sample indices, a peak
detection algorithm considers them as a single peak. And so in that case, the
algorithm selects only the higher peak within the combined peak region as the
representative peak to the entire area. Unfortunately, this technique results
in the loss of information about lower individual peaks, since it prioritizes
one peak over others close to it. This prejudice may certainly impact the
representation of the detected peaks and will lead to inaccurate results or
interpretations.

Peak detection process involves identifying significant changes in amplitude,
which correspond to peaks in the audio signal. By analyzing the amplitude
envelope and applying thresholding techniques, peaks can be accurately
detected, enabling further analysis, feature extraction, or event segmentation
in audio processing applications.

It is important to note that the specific behavior and outcome may vary
depending on the implementation details of the peak detection algorithm and
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1.3. Mel Frequency Cepstral Coefficient (MFCC)

the characteristics of the audio signal being analyzed. Different approaches
and parameters can be employed to address the challenges posed by closely
spaced peaks, such as adjusting the detection threshold, employing advanced
peak separation algorithms, or using adaptive techniques to account for
variable peak distances.

Though Matlab allows the size of an array to grow greater and does not force
users to define it along array’s declaration, compared to other programming
languages, the way data are collected in the program is by nested structures,
because an ordinary array has to contain all the elements of same data type,
and to solve our problem numerous data types are required to be accumulated
at once.

e N
Structure
N /
/\V\
23 ~ ~
[ filename 1 filename 2 filename n ]
\ J/
Y Y Y
e N
[ details ] details [ details ]
N J/
Y
e N
[ Peak_location ] Peak_value [Data for classification]
N /

[lMFcc] [ LFec J [Gmc] [SENCC] [sccc]

Figure 1.3: The initial nested structure used in the program.

Note: The software is designed in way that many .wav files could be read
without restarting it (starting loading variables from the beginning) and their
necessary information gathered in one structure.

B 13 Mel Frequency Cepstral Coefficient (MFCC)

Mel Frequency Cepstral Coefficients are a set of features that are widely
used in speech and audio signal processing for assignments such as speech
recognition with speaker identification, and if need be the classification of
his voice. This type of cepstral coefficient being in the best recognition
accuracy relative to other acoustic analysis, because they are derived from
a type of cepstral representation of real or, precisely, nonlinear audio waves.
Using this frequency bending one is allow for better representation of sound.
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1. Analysis

Those characteristics are attributed to their good representation of the human
substantial aspects of perception of short-terms speech spectrum. MFCC rely
on a Mel-frequency spacing of filter bank energies, which imitate the frequency
response of the human auditory system’s reaction to different frequencies. The
main difference between common cepstrum and the mel-frequency one is the
frequency bands, which are equally spaced on the mel scale that approximates
the human auditory system’s response more closely than the linearly-spaced
frequency bands used in the common spectrum.

MFCC’s are derived from the power spectrum of a signal and provide a
compact representation of the spectral envelope of the signal. The operating
procedure is the following:

® Framing the signal into several short frames.
B Power spectrum for all frames.
® Mel filter bank to the power spectra, sum the energy in each filter.

B Logarithm of all filter bank energies and DCT of the log filter bank
energies. [SH23] [Lyo09] [Mat22]

{ audio wave, Framing » Hamming windowing
48kHz

DCT < Logarithm 10

FFT

Y

A 4

A

Mel filter bank

Figure 1.4: MFCC extraction in block diagram.

The resulting MFCCs can be understood of as a compact representation
of the spectral envelope of the audio signal. Those spectral characteristics
of the audio signal record crucial aspects of the signal’s frequency and are
less sensitive to variations in the signal’s amplitude than usual spectral
data. MFCCs are frequently used as input features for speech and speaker
recognition, machine learning algorithms in various audio-related applications
due to their effectiveness in representing the signal’s acoustic characteristics.

B 1.3.1 Window frame

Any audio signal is constantly changing, more or less depending on the
circumstances of its origin. To simplify the issue without ignoring frequent
changes, one could safely assume that on short time scales the audio signal
doesn’t change much, precisely that frequencies in a signal are stationary over
a short period of time.
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1.3. Mel Frequency Cepstral Coefficient (MFCC)

The window size can significantly affect the achievement of MFCC features,
because the framing window determines the size and the duration of frames
into which the signal is divided before computing the coefficients. Though
not often the rectangular window function is used to frame all windows in
the signal, because of its generality due to peaks’ position. And for my
particular solution where peaks are always located in the 10-th% in the
window rectangular windowing was the best choice. If the original decision
would have been to capture windows, in which peaks be placed right in the
middle, then Hamming window function would have been a better resolution,
since it represents a type of narrowing window that successively reduces
the amplitude of the signal towards the edges of the frame, see figure [1.5
frequency domain, compared to figure [1.6| where the tapered window sustain
its magnitude.

According to characteristics of the application output, the specific choice of
framing window size is made. If in the output we require longer span features
to be extracted from the original signal, then we must apply a larger window
size as more appropriate, whereas smaller window size is more applicable for
signals with shorter span features.

Usually framing signals take place into 20 — 40ms frames, because the
speech waveform is generally regarded stable in this interval. For my particular
case I chose 25ms because it was the best fit to divide the features gained
by [Peak detection| with, as a good balance between capturing satisfactory
amount of information about the signal and minimizing the effects of spectral
leakage/outflow. In case of the frame shorter than 20ms we don’t have enough
samples to get a reliable spectral estimate. On the other hand if it is longer,
then signals change too much within the frame. Besides, any speech signal
that is finite in time, and thus, any processing is only possible on limited
number of sampled windows.

The amount of overlap between frames needs to be taken into consideration
because it has an impact on the performance of any coefficient feature extrac-
tion. The advantage of overlapping frames is to capture more information
about the signal, however they might as well increase the computational
cost of the process which is a disadvantage. Similar to the choice of frame
window due to the specific requirements of the output, the overlapping should
be based on allowed for. For my particular case I tried and tested various
overlaps with framing window size 25ms, where I found out that the most
fitting overlap is no overlap at all, simply to keep clear all the data I work
with inside each frame separate without mingling.

Since the solution needs to be universal for any input audio of which its
length is unknown, not just framing is recommended to be in a specific
interval, but also the frequency contours of the signal over time would get lost
if the Fourier transform is applied across the entire signal. Therefore, by doing
a Fourier transform over 25ms time frame, we obtain a good approximation
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1. Analysis

of the frequency contours of the signal by associating the nearby frames. This
windowing step is needful to reduce signal interruptions, and make the ends
smooth enough to connect with the following beginnings.

So by dividing the input signal into considerably small no-overlapping
frames and applying a window function to each frame, the window function
helps to reduce spectral leakage, where the energy of a signal at one frequency
leaks into nearby frequencies. After cutting the signal up into separate frames,
to each frame I originally applied the Hamming window function, one which
smooths windows and has the following form:

w(n) = 0.54 — 0.46 cos (27?%,) (1.1)

where w(n) is the value of the window at sample n, and n € (0, N), with
N + 1 as the window’s frame length. Applying the (1.1) equation for 128
points we obtain the following graphs of time and frequency domains.

Window Viewer

Time domain - Frequency domain
r 20
08 ©
@ %/ 22
°
206 5}
g £
£ 5
0.4 S 60
-80
0.2r
-100
0 -120
20 40 60 80 100 120 0 0.2 0.4 0.6 0.8
Samples Normalized Frequency (xm rad/sample)

Figure 1.5: A symmetric Hamming window of 128 points.

The greater number of of points used, the more accurate and smoother
the plot is in the time domain, and more inflated function in the frequency
domain.

Flat top weighted windowing, Blackman windowing and other window
functions could be used for cepstral coefficients extraction, where each window
function has its own set of characteristics that impact the computation of
the cepstral coefficients. For example, the Hamming window has a smoother
transition from the frame center of to the edges, while Blackman is designed to
minimize spectral leakage, enhance frequency resolution to provide a trade-off
between main lobe width and side lobe levels, meanwhile Flat top weighted
is designed for accurate amplitude measurements in the frequency domain,
for it provides very precise representation of the true amplitudes of spectral
elements, because it has a very low level of spectral leakage, is often used in
applications that require accurate amplitude measurements, such as power
spectral density estimation. Needless to say that Flat top weighted, Blackman
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1.3. Mel Frequency Cepstral Coefficient (MFCC)

and Hanning functions have similar shaping in time domain with different
edges compared to hamming function.

Regardless of the advantages mentioned above about window functions, a
different one not commonly used for spectral analysis was chosen in the end
rectwin(L) i.e. Rectangular window which returns a rectangular window of
length parameter L' because it forms a rectangular shape in the time domain.
The reason for this choice is due to placing each peak in the frames. In|1.2
was mentioned how one millisecond before each peak and nine milliseconds
after it were reserved for data processing, and on the grounds of that fact, non
of the window functions mentioned above, though practically tested, could
be used, for peaks’ locations were no in the middle, but 40% more left.

On the basis of my supervisor’s help, the rectangular window function was
chosen as best fit due to peak’s location. Mathematically, the rectangular
window is expressed as:

w(n) = {1, n € (0;N) (1.2)

0, otherwise

where w(n) is the value of the window at sample n and N is the length of the
window.

The signal is multiplied by a constant value of 1 in the window’s duration
and zero outside. From which we can conclude that the rectangular function
does not taper the signal towards the edges of the window, and as a result,
it provides equal weight to all samples within the window. Compared to
other window functions mentioned above which offer smoother transitions and
better control over spectral leakage, the rectangular’s main issues is spectral
leakage, where the sharp transitions at the edges of the window introduce
unwanted frequency components in the Fourier transform. It should be
noted that leakage factor in for hamming function is 0.03%, whereas for the
rectangular one is 9.14%. (The greater the number of points is, the less is
leakage factor.)
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Figure 1.6: A rectangular window of 128 points.

"https://www.mathworks.com/help/signal /ref/rectwin.html
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1. Analysis

B 1.3.2 Fourier-Transform and Power Spectrum

Note: Sometimes in literature we might run across Discrete Fourier Transform,
i.e. DFT instead of FFT. But Matlab uses primarily FFT because for
computing the DFT with reduced execution time |?. And because the FFT
length of bins used in the window input must be greater than or equal to
the number of elements in the Window using DFT. Occasionally, I found
"Short-Time Fourier Transform", i.e. STFT, but mostly STFT is performed
on a computer using the fast Fourier transform.

Fast Fourier Transform is a mathematical tool that decomposes a time-
domain signal into its frequency components. It expresses the signal as a
sum of complex sinusoidal functions of different frequencies. This type of
transform allows users to analyze the frequency content of a signal and extract
information about the amplitudes and phases of its frequencies. To extract
the desired cepstral coefficients, FF'T is applied to each frame of the audio
signal to acquire the frequency spectrum which represents the distribution of
signal energy across different frequencies in the frame.

Now the necessity to use Fast Fourier transform with 512 point-size on
each frame to compute the frequency spectrum, and then calculate the power
spectrum, i.e. periodogram using the following equation with the squared
magnitude of each frequency bin in the Fast Fourier Transform:

1 2
P== [FFT(x;) (1.3)

where z; is the i*" frame in signal 2. The final result is the square of
the absolute value of the complex fourier transform. Though I generally
performed a 512 point-size FFT, I kept only the first half coefficents +1, due
to Hermitian symmetry that divide the FFT output into two halves, or the
Nyquist frequency as the maximum frequency that can be represented in a
discrete signal. More about that in the [mplementation| chapter.

The one dimensional DFT used, is defined as:

N-1
DFT = Y a; e 9™/ (1.4)
=0

where N is sample long analysis window, or the DFT is defined on the set of
N samples.

The [1.3| operation gives a real-valued spectrum that represents the energy
distribution across frequencies and provides a useful representation of the
signal’s spectral content for the cepstral coefficients extraction.

B 1.3.3 Mel Filter Banks

The Mel-scale is a perceptual scale that relates the frequency of a pure tone to
the perceived pitch of that tone. The Mel scale is nonlinear and has a higher

*https://www.mathworks.com /help/signal /ug/discrete-fourier-transform.html
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1.3. Mel Frequency Cepstral Coefficient (MFCC)

resolution at lower frequencies and a lower resolution at higher frequencies,
aligning more closely to human hearing perception.

Precisely Mel-scale filter banks, is a set of 20 to 40 triangular filters
used in audio signal processing that is applied to the periodogram power
spectral estimate from the previous step to extract frequency bands, banks
with fixed center and cut-off frequencies. They were designed to divide the
frequency spectrum of an audio signal into a set of overlapping triangular
filters, spaced according to the Mel scale. In other words, to simulate the
non-linear frequency response of the human auditory system, see [1.7] and
1.8, where they help capture the perceptually relevant spectral information
in a compact and efficient manner. The Mel-scale is a perceptual scale that
approximates the way humans perceive differences in frequency. It is based
on the observation that humans are more sensitive to changes in frequency
at lower frequencies compared to higher ones. This scale is logarithmically
spaced and covers a range of frequencies from low to high. It is important to
define the filter center frequencies that are evenly spaced on the Mel scale.
The lower and upper limits of the filter bank are typically set to the lowest
and highest frequencies of interest in the signal.

The conversion between Mel-vector m and the frequency one h is based on
the following two equations, where the spectral resolution becomes lower as
the frequency increases:

h
m = 2595 lo <1 ) 1.5
g10 + 700 (1.5)

h=700 (10m/23% — 1) (1.6)

Sometimes in literature I run across a similar equation to[1.5, converting from
Hertz to Mel scale using natural logarithm instead of Common logarithm
(base 10). The equation is the following:

h
— 11271 (1 ) 1.7
m n {1+ =5 (1.7)

Later the Mel frequencies are converted back to Hertz scale using the inverse
Mel-scale transformation, where the conversion maps each Mel frequency to
its corresponding Hertz frequency.

h = 700 e(#% B 1) (1.8)

My filter banks comes in the form of 26 vectors of length 24e3 Hertz based
on the frequency vector. We see how each the shape od all triangular filters
on the Mel-scale is defined by three points on the frequency axis: the lower
and upper cutoff equals 0, the center frequency equals 1. More about it in
Implementation| chapter.
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Mel frequency filtr bank
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Figure 1.7: Filter bank on Mel-Scale.

The filters in the Mel filter bank are overlapped to ensure that the entire
frequency spectrum is covered without any gaps or overlaps. The amount of
overlap between adjacent filters is typically determined empirically and may
vary depending on the application.

The reason why more filters are on the lower part of the frequency spec-
trum is due to similarity to the perception of human hearing, since human
recognition of the frequency for any speech does not follow a linear scale, but
the perceptive frequency is measured on the Mel-scale, based on actual aural
experiments. By taking a closer look on the following figure 1.8 we see the
non-linearity of the human audio perception, which is more sensitive to lower
frequencies.

By computing the area under each filter in figure [1.7| is the contained
energy of each band. In other words, the output of each filter represents the
energy in the corresponding frequency band, which is going to be applied
later for obtaining the spectral entropy. The wider filter is, the more energy
it contains. Filters that are more closely spaced with narrower bandwidths
at frequencies with higher speaker discriminative power, and more widely
spaced with wider bandwidths at other frequencies. [LG09]

In the MFCC extraction process, the power spectrum is often further
processed by applying a filterbank that emulates the human auditory system’s
response to different frequencies. The filterbank divides the spectrum into
several frequency bands, and the energies within each band are summed or
averaged to obtain the filterbank energies. These filterbank energies serve as
the basis for further computations, such as the logarithmic transformation
and the Discrete Cosine Transform (DCT), which ultimately yield the Mel
frequency cepstral coefficients.

16



1.3. Mel Frequency Cepstral Coefficient (MFCC)
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Figure 1.8: Mel-frequency scale depending on normal frequency.

The graph above shows how lower frequencies have a larger distance between
them Mels, and the contrary, drawing closer its human like characteristic.
Because the human cochlea vibrates at different locations in itself depending
on the frequency of incoming sounds, where different nerves inform the brain
that certain frequencies are at hand depending on the precise position in
the cochlea that vibrates, as the Mel-scale aims to imitate the non-linear
human ear perception of sound by more distinguishing lower frequencies and
less the higher ones. In other words, a scale that is linear in low frequencies
and logarithmic in high ones (approximately, linear frequency spacing less
than 1 kHz and logarithmic spacing greater than 1 kHz) to represent this
non-uniformity. That is why the [1.7] graph is very dense at lower parts of
spectrum and almost ignoring higher frequencies, because it is not directed
at them. The periodogram power spectral estimate performs a similar job,
identifying which frequencies are present in the individual frames.

B 1.3.4 Mel Coefficient

Sometimes after all the computation mentioned above is still possible to obtain
correlated Mel coefficients, which in some machine learning algorithms could
be difficult to work with. Therefore is highly recommended to apply Discrete
Cosine Transform (DCT) to the logarithmically transformed filter bank
energies to de-correlate the coefficients and to get a compressed representation
of the filter banks. [Fayl6] And also the DCT reduces the redundancy in the
filter bank energies and focuses on capturing the most significant spectral
information. The Mel Coefficients are calculated by using logarithms (log;)
in the Discrete Cosine Transform DCT.

DCT = \/ziil(logi) - cos (%(l - O.5)> (1.9)
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1. Analysis

where the N here is the number of filter bands. For my case the resulting
cepstral coefficients 2-26 are retained and the rest are discarded because
they represent fast changes in the filter bank coefficients and don’t help
the Automatic Speech Recognition. In the signal representation phase, Mel
Coefficients throw away a lot of the information in the sound wave using a
fixed filter bank.

The resulting DCT coefficients represent the MFCC, yet not all coefficients
have usable information, because usually a subset of the coefficients is selected
while discarding others. And that selection is often based on their applicability
in capturing the spectral characteristics of the signal. The most common
practice is to keep the lower order coefficients and discard the higher order
ones, as they tend to contain less biased information/redundancy.

. 1.4 Inverse Mel Frequency Cepstral Coefficients

Inverse Mel Frequency Cepstral Coefficients (IMFCC) is an extension of
MFCC that aims to preserve the phase information of the audio signal. It
combines the magnitude spectrum from MFCC with the phase spectrum
obtained from the inverse Fourier transform of the classical Mel coefficients,
and by preserving the phase information, IMFCC allow for better recon-
struction of the original audio signal. Yet, IMFCC may introduce additional
computational complexity compared to MFCC due to the inclusion of phase
information, and their effectiveness depends on the specific application and
the importance of phase information in the analysis.
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Figure 1.9: Filter bank on inverse Mel-Scale.

Note: for an unknown reason Matlab did not save the first filter in here,
which is the last purple one in the [1.7, though in before saving the file the
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1.5. Linear Frequency Cepstral Coefficients

purple filter was clearly available.

As a consistent inference, which I found out later by working with inverse
Mel coefficients, and should have concluded immediately from the label
(inverse) itself, is the fact that IMFCC are able to provide a more precise
representation of the audio signal, particularly for tasks involving audio
synthesis and alteration.

B 15 Linear Frequency Cepstral Coefficients

Linear Frequency Cepstral Coefficients (LFCC) is another alternative to
MFCC that uses linearly spaced filter banks instead of the Mel-scale, that
is related to use linear frequency scale. Unlike MFCC which models the
human auditory system’s frequency perception, LFCC do not directly model
the human hearing, for the human auditory system is non-linear frequency
perception, where the perception of frequency intervals becomes wider at
higher frequencies, see 1.8/ graph. We may conclude that LFCC is be beneficial
in applications where a linear representation of the audio signal is desired,
such as music analysis, such as genre classification, or instrument recognition,
LFCC could be used where linear frequency perception is more relevant, such
as speaker recognition, or for capturing individual characteristics related to
the fundamental frequency (F0) of the speaker’s voice.
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Figure 1.10: Filter bank on linear scale.

LFCC may capture fine-grained spectral details more accurately than
MFCC, particularly in the higher frequency range, which could be useful in
assignments that require precise frequency estimation. However, LFCC may
be less robust to noise or variations in the audio signal compared to MFCC,
since they do not incorporate the perceptual characteristics of the Mel scale.
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1. Analysis

. 1.6 Gammatone Filter Banks

Is another type of auditory filter bank used in audio signal processing, sim-
ilarly to MFCC in modeling the human auditory system. It is designed to
approximate the frequency selectivity and response characteristics of the
cochlea which holds accountability for frequency analysis in the human ear.
The Gammatone filters are effective in modeling the human auditory system’s
sensitivity to different frequency regions, and so it does provide a good repre-
sentation of sound that aligns well with human auditory processing, making
it fitting for a range of application.
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Figure 1.11: 9 Gamma Distribution Functions.

where every function depends on k; as a shape parameter, and 6, as a scale
parameter.

The issue with Gammatone filter bank is basically the same as with Mel
filter bank, i.e. same frequency distribution, but different curving. So, instead
of triangular filters based on Band Edges and logarithmically spaces, we use
similar curving to the gamma distribution. The name Gammatone itself is
derived from the gamma distribution, for it is the shape of each filter, which
is characterized by a symmetric shape resembling a Gaussian-like function
with a peak at its center frequency.

g(t) = at™ 1 e 2™ cos(27 fot + D) (1.10)

where a represents the signal amplitude, ¢ is time, n the individual filter order,
b is the bandwidth in Hz given the filter’s center frequency fo in Hz, and @ is
the phase of the carrier in radians. The relation between the bandwidth b
and the carrier frequency f is:

b(fo) = 1.019 - ERB(fy) = 1.019 - 24.7 (1 + 4.37 f/1000) (1.11)
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1.6. Gammatone Filter Banks

The carrier/center frequency I would defined as the location of each filter’s
peak response and defines the specific frequency to which the filter is most
sensitive, the frequency around which the filter’s response is concentrated. In
other words, it represents the primary frequency that the filter is designed to
capture.

For verification of the fact, that the shape of each filter, which is character-
ized by a symmetric shape resembling a Gaussian-like function, I implemented
them in time domain based on the equation, see the following 2 sub-
figures.

4th Filter Banks in time domain 14th Filter Banks in time domain
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(a) : the 4th Gammatone filter bank. (b) : the 14th Gammatone filter bank

Figure 1.12: 2 orders of Gammatone filter bank in time domain.

The center frequencies of the Gammatone filter banks are spaced logarith-
mically or according to the ERB (Equivalent Rectangular Bandwidth) scale,
which approximates the bandwidths of the auditory filters in the cochlea, and
helps capture the time-varying nature of sound perception. The bandwidths
are controlled by the Q-factor, which determines the shape and selectivity
of the filters - the higher Q-value, the narrower bandwidth and greater se-
lectivity, meaning the filter will be more focused on a specific frequency
region. The exact and final Q-values always vary depending on the desired
trade-off between frequency resolution and computational complexity in the
application.

Q — fC

b(fo)
where f. is the center frequency, and bw represent the bandwidth. Each filter
will have a different center frequency, different bandwidth, and therefore as
many Q values as the number of filters in the span of the desired frequency
range.

(1.12)

The steps to produce the gammatone filter bank are similar to the Mel
spectrogram, yet gammatone consists of bandpass filters in the ERB scale and
the shape is obtained as the multiplication of cosine and gamma functions,
and in time domain, where after passing an input signal to a gammatone
filter bank an impulse response of a particular filter has the impulse
response. Both Mel and Gammatone filters are computed using the same
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1. Analysis

procedure based on the FF'T whose frequency resolutions are set by the size
of the Hamming or other windowing. And in the final analysis as well as
logarithm and discrete cosine transform are applied. The output of each filter
represents the energy in a specific frequency band. Unlike Mel filter, the
Gammatone filter is defined in the frequency domain by its center frequency
and its bandwidth. So, using a hyperbole language, not just 3 points are
required as is the case with Mel filter, but every point.

P (dB)

Magnitude (dB)

Freauency (kHz)

Figure 1.13: Filter bank on a Mel-Scale with Gamma curving in frequency
domain.

Each filter in the Gammatone filter bank is a bandpass filter with a center

frequency and a bandwidth that corresponds to the critical bandwidth of
human hearing.
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Chapter 2

Implementation

In the beginning is necessary to read the audio file, to have its data and the
sample frequency which is the basis element for framing. The next step to
find peaks with the mean values of each window and verify how the existence
of peaks and their echos in a certain window raise the mean value of that
window. Adding the peak locations along with their values in a structure or
an array, we also add one millisecond of the signal before each peak, as much
as nine milliseconds from after all peaks.

B 2.1 Mel Frequency Cepstral Coefficient (MFCC)

B 2.1.1 Window frame

According to the number of elements I gather in the structure, which makes
ten milliseconds in total, I found that 25ms frames to be the best fit for both,
the features dividing number, and to have enough samples with a reliable
spectral estimate without signals changing too much within frames. The
requirement is to frame until the end of the audio file is reached. In case the
file does not divide into an even number of frames, is recommended to fill it
with zeros so that it does.

After obtaining the exact number of elements in structures, then through
dividing that particular number by the frame division (25ms) I found out
and suggest to eliminate some lateral elements, so in the final analysis there
is no need to pad any frame with zeros in order to make it dividable, see the
snippet code below (part of a for loop that scan all peaks in an audio signal)
to round any frame with odd number:

/4 if speech file does not divide into an even number
if mod(n_frame,2) ==
framed(n_frame+1,:) = zeros(size(framed(1,:)));
n_frame=n_frame+1;
end

where n__frame represents the number of frames obtained as the length of
10 milliseconds around each peak divided by the frame size, which is usually

23



2. Implementation

a 1200 samples achieved by the sample frequency times the framing window
constant, i.e. 25ms.

Rounding the frame number ensures that the frames align properly with
the signal samples, which later allows for consistent analysis and avoids any
limited /incomplete frames to overlapping. And later while working with
many data is very efficient to operate with fixed-size frames to save most
memory control, for rounding the frame number to an integer value simplifies
memory allocation and processing.

In the next part of code we see a temporary variable temp that is increased
with each round of loop, where f_ size equals 1200 samples, and representing
sampling frequency times frame division.

temp = 0;

for i = 1:n_frame / % ranges over the number of frames.
temp = temp + f_size;

end

The last step regarding window framing is applying smoothing filters to
all frames, where originally the sampling was hamming symmetrical, then
changed to Rectangular window, see the difference between figures
and in time domain, primarily.

for j = 1:n_frame
A sn(i,7) = framed(i,7)'.*hamming(length(framed(:,7)), "’
symmetric');
sn(i,j) = framed(i,j)'.*rectwin(length(framed(i,j)));

end

B 2.1.2 Fourier-Transform and Power Spectrum

This is a crucial part in the cepstral coefficients computation, by efficiently
computing the frequency spectrum of audio signal frames, providing a repre-
sentation of the signal’s spectral content that is further compiled to extract
the coefficient.

Now with results from the previous step we use Fast Fourier transform, of
which we take the absolute value since it is a complex function, and square the
result, but we only keep the first half coefficients +1 with regard to Hermitian
symmetry that divide the FFT in two halves, where the first half lying within
0 to N/2 (both indexes included), contains the unique frequency components,
while the other half from index N/241 to N-1, is a mirror image of the first
half.

In some literature I run across the Nyquist frequency as the maximum
frequency that can be represented in a discrete signal, which in the audio
processing is half to the sampling frequency, the element at index N/241 in
the FFT output corresponds to the Nyquist frequency. By taking just the
first half of the FFT output, including the Nyquist frequency component
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2.1. Mel Frequency Cepstral Coefficient (MFCC)

as the latest element and 0 as first, we capture all the unique information
about the frequency components of the real-valued signal while discarding
the redundant information in the second half. This reduces computational
complexity and ensures efficient use of memory.

Y = fft(sn);

P2= abs(Y/n_frame) ;

P1= P2(1:n_frame/2+1);
P1(2:end-1) = 2%P1(2:end-1);

The FFT output represents a complex-valued spectrum. However, for cep-
stral coefficient computation, typically only the magnitudes of the Fourier
coefficients are used, as the phase information is less relevant for capturing
the spectral characteristics of the signal. And to obtain the power spectrum,
which represents the distribution of energy across different frequencies in the
frame, the squared magnitudes of the FFT output are computed.

B 2.1.3 Spectral centroid

On the basis of this article about An Entropy-Based Architecture for Detection
of Sepsis in New-2 born Cry Diagnostic Systems [ZKT22], section 2.3.3.
Spectral Centroid Cepstral Coefficients (SCCC), I discoverd that Spectral
Centroid (SC) is a measure of the shape of the spectrum of the signal and
the position of the mass of the spectrum, where the mean value of SC was
shown to be a discriminative feature that indicates where the major energy
of the signal is concentrated.

The article has been a very helpful tool to know the number of Spectral
Centroid Cepstral Coefficients (SCCC), though there is no fixed or standard
number of coefficients for Spectral Centroid, which is not dependent on
the number of Mel Frequency Cepstral Coefficients (MFCC), because each
of these two types of cepstral coefficients capture different aspects of the
audio signal. Since I run across various numbers in books or articles, where
inherently no one specified the exacts number of coefficients for the spectral
centroid, besides the used article above, where the authors define the number
by writing: "SC denotes the center of the signal’s gravity and is computed
from taking the weighted mean of the frequency bins. The SC value, Ci of
the i-th window is computed by

Wfl
> kXi(k)

C; =kt 2.1
W, (2.1)

> Xi(k)
k=1

Where x;(n) are the i-th window samples, and X;(k) are the DFT coefficients."
From which I concluded that for each window could be only one spectral
centroid cepstral coefficient, see the following figure [2.1, where five SCCC are
depicted. So, the spectral centroid is a single scalar value representing the
center of weight of the power spectrum, and their number is usually smaller
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than the number of MFCC or any other cepstral coefficients. Their selection
is altogether independent on other cepstral coefficients and based on factors
such as the desired level of accuracy, computational constraints, or the type
of speech signal.
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Figure 2.1: Spectral Centroid of 5 detected peaks in the signal.

Certainly, the spectral centroid values are within the same frequency range
as the signal being analyzed. For example, since I analyzed speech signals
within a range of 0 Hz to 48 kHz, then the spectral centroid values would
fall within that range. The result, spectral centroid, should be within the
frequency range of the signal and not exceed the Nyquist frequency, which is
half the sampling rate.

In the following piece of code, the freq,xis represents the frequency values
corresponding to each bin of the power spectrum. The spectral centroid is
then calculated by taking the weighted average of the frequency values, where
the weights are the corresponding magnitudes from the power spectrum.

/% Compute the frequency azis for the power spectrum
freq_axis = (0:(n_frame/2)) * (fs/n_frame);

% Compute the spectral centroid
spectral_centroid = sum(freq_axis * P1(:,j)) / sum(P1(:,j));
if spectral_centroid>0 && spectral_centroid<fs/2
/4 add to structures
str(n) .detail(j) .SCCC = spectral_centroid;
end

It is important to note that the calculation of the spectral centroid should be
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2.1. Mel Frequency Cepstral Coefficient (MFCC)

done on a frame-by-frame basis if we are working with frames of the signal.
And so summing up the spectral centroid across all frames is not correct.
To compute the spectral centroid for each frame, we would need to perform
the above computation within a loop iterating over the frames. Also, we
need to make sure that the dimensions of power spectrum P2 are appropriate
for the calculation. That is the reason I added power spectrum P1 having
the dimensions (n__frame/2 + 1) within the code snippet in [2.1.2] section.
Spectral centroid could also represent the average frequency of the power
spectrum, and its value is directly related to the frequency range of the signal.

B 2.1.4 Mel Filter Banks

MFCCs are computed from the mel-filterbank energies. The number of MFCC
coefficients is typically determined by the output of the application. While
both MFCC and SCCC can be used as features for audio analysis, they serve
different purposes and are not inherently linked in terms of the number of
coefficients. De facto, the number of coefficients is usually chosen based on
the trade-off between computational complexity and the performance of the
feature extraction algorithm. Filter banks made up of 26 vectors within the
range (0.3-24)e3 Hertz based on the frequency vector. The lower value was
chosen experimentally as a good value, whereas the upper is limited to half
of the sample frequency. Now to convert both lower and upper frequencies to
Mel scale from the linear frequency scale using the conversion equation in [1.5
or [1.7.

lowf = 300;

highf=fs/2;

%4 computing band frequency to Mel scale
mel_low =2595 *1logl0(1+(lowf /700));
mel_high=2595 *1logl0(1+(highf/700));

Mel Filter Bank, involves applying a set of Mel filters to the power spectrum
obtained from the FFT with the purpose to approximate the frequency
response characteristics of the human hearing perception. According to the
number of filters are created both Mel-scaled vector along with frequency
vector, by which we verify whether start and end points of it are the required
frequencies, i.e. lower and upper. To determine the number of Mel filters
or filter bank channels to be used that depends on the required frequency
resolution and the output’s requirements. Each filter is defined by its center
frequency in Mel scale and its bandwidth.

nfilt=26;

/4 creating the mel-scaled vector

mVec = linspace(mel_low, mel_high, nfilt+1); /nfilt+1
%4 computing frequencies of the Mel vector

hVec = 700*(exp(mVec/1125)-1);

And later the Mel frequencies are converted back to Hertz scale using the
inverse Mel-scale transformation, where the conversion maps each Mel fre-
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quency to its corresponding Hertz frequency using |1.8| equation, for hVec is
the frequency variable that is going to define the center of each filter.

Since there is no frequency resolution to put filters at the exact points
calculated above, so is essential to round those frequencies to the nearest FF'T
bin. This process has no impact on the accuracy of features. Rounding the
frequencies to the nearest FFT bin is necessary to align the filter bank channels
with the power spectrum output and ensure consistency in the analysis. The
FFT bins (or bins resolution) represent discrete frequency points in the
spectrum, because the FFT operates on a discrete set of frequency bins
determined by the sampling rate and the FFT size. The frequency resolution
of each bin is determined by the sampling rate divided by the FFT size. And
also the very Mel filters, which are designed based on the Mel scale, need
to align with the FFT bins to accurately capture the energy distribution
across different frequency regions. Rounding the filter center frequencies to
the nearest FFT bin ensures that each filter aligns with the corresponding
frequency bin in the FFT output, and avoiding any mismatch or misalignment
that may occur due to fractional frequency values. This alignment is essential
for accurate representation of the spectral energy distribution.
nfft = 512; J FFT point-size.

/i convert frequencies to mearest bins
for i=1:nfilt+l /nfilt+1
f(i) = floor((nfft+1)*hVec(i)/fs);

end

Rounding the frequencies helps maintain consistency and coherence in the
analysis. It guarantees the filter bank energies correspond to the suitable
frequency regions and allows for meaningful comparisons across different
signals or frames, assuring accurate representation of the energy distribution
across different frequency regions

To build the Mel filter bank by making the triangular-shaped filters, where
each one is centered at a specific Mel frequency and extends to adjacent
Mel frequencies. The shape of each triangular filter is defined by its center
frequency and bandwidth. The step to get the desired filters is to use
the following formula h [Lyo09], from row 3 of the next piece of code for
calculating:

0 k< f(m—1)
E—f(m—1)
Fom) = fm = 1) fim—=1) <k < f(m)
h(m, k) = (2.2)
k(m+1) — k
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2.1. Mel Frequency Cepstral Coefficient (MFCC)

where parameter m represents filter number, k the frequency on x-axes for
future plotting, and f is the precise frequency of each filter taken from
The first filter bank starts at the first point, reach its peak at the second
point, then return to zero at the 3rd point. The second filter bank will start
at the 2nd point, reach its max at the 3rd, then be zero at the 4th etc.

%4 filterbank has 26=m vectors of length fs/2=k
for m=2:nfilt
for k=1:fs/2
h(m-1,k) = formula(k,hVec,m);
end

end
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Figure 2.2: Filter bank on a Mel-Scale.

As has been said in subsection [1.3.3 how Mel-scale imitates the non-linear
human hearing by more distinguishing lower frequencies and less the higher
ones. The dimensions of filters is 26224000, where 24000 is the upper value
on the frequency scale, and 26 represents the number of filters -1, because
of the resulting cepstral coefficients for Automatic Speech Recognition, that
start from number 2 instead of 1. Otherwise the h—formula will not work,
for it is designed that particular way.

B 2.1.5 Mel Coefficients

The last step to acquire Mel Coefficients, we need to apply each Mel filter to
the power spectrum obtained from the FFT. The application involves element-
wise multiplication between the power spectrum and the filter’s frequency
response. This process calculates the energy within each filter’s frequency
band for later using the Discrete Cosine Transform (DCT).
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/4 final cepstral coeffictents.
for k = 1:length(str(n).detail)
for j = 1:n_frame/2+1
for i = 1:nfilt-1
num(i,:) = P1(j,k).*h(i,:);
end
energy_log M(j,i) = log(sum(num(i,:)));
dct_energy_M(j,:) = dct(energy_log M(j,:));
end
% add to structures
str(n) .detail (k) .MFCC=dct_energy_ M(1,:);

end

The logarithm operation at row 8 is used to approximate the logarithmic
nature of human perception of sound (the natural logarithm is used instead
of other bases). Taking the logarithm compresses the dynamic range of the
filter bank energies, giving the Mel coefficients more perceptually meaningful,
for Human hearing is more sensitive to relative changes in loudness than
absolute values. The dynamic compression is needed, because the energy
values obtained from the Mel triangular filter bank might vary over a wide
range, and so the natural logarithm, the dynamic range of the filter bank
energies is compressed. This reduces the impact of big energy variations and
helps to normalize the representation across different signal conditions.

And also the natural logarithm in this part help weighting the low energy
sections, for these sections of the frequency spectrum in many audio processing
or speech recognition contain less relevant information. What the logarithm
does, is emphasizing sections with higher energy and at the same time
downplaying the importance of sections with lower energy. This can help
improve the discriminative power of the MFCCs by focusing on the more
perceptually salient spectral features. Besides that natural logarithm improves
stability and numerical precision of most cepstral coefficients, because when
dealing with very small energy values the logarithm helps to decrease all
effects of numerical errors and enhance, which leads to better validity of the
cepstral coefficient calculation.

As the last step to achieve any of the cepstral coeflicients mention, whether
MFCC, IMFCC, LFCC or GTCC the discrete cosine transform is crucial for
de-correlating the coefficients, to get a compressed representation of the filter
banks, to reduce the redundancy and captures the most prominent spectral
features more effectively. Because the energies obtained by filter bank are
often correlated for neighboring filters tend to capture energy from similar
frequency areas around. And so DCT transforms the correlated coefficients
into a set of de-correlated cepstral coefficients. What also happens along
with the de-correlation is energy concentratio, when DCT concentrate the
energy in a few lower order coefficients while spreading it out in higher
order coefficients. The lower order DCT coefficients seize the outstanding
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2.1. Mel Frequency Cepstral Coefficient (MFCC)

spectral elements, while the higher order ones seize lighter spectral items.
And because noise in audio signals affects primarily higher order coefficients,
by discarding those DCT coefficients we reduce the influence of noise in the
resulting cepstral coeflicient significantly. Which means that DCT can help
improve the robustness of the MFCC features to noise.

Besides de-correlation, energy concentration and features’ robustness, the
DCT is used for a purpose called Dimensionality Reduction, which reduces the
dimensionality of the feature representation that happens in case the output
of the Mel filter bank yields a large number of filter bank energies, which
might contain redundant information. The DCT transforms that energy into a
smaller set of coefficients that catch the most critical spectral information. All
that retaining of the less discriminative information then cepstral coefficients
representation becomes more efficient and compressed.

B 2.1.6 Spectral Entropy

Spectral entropy is a statistical measure that characterizes the level of uncer-
tainty or randomness of the spectral amplitudes or power distribution in a
signal. It indicates how the energy is been distributed as one across different
frequency components.

Similarly to the Spectral Centroid, I proceed from the same article: An
Entropy-Based Architecture for Detection of Sepsis in New-2 born Cry Diag-
nostic Systems [ZKT22], section 2.3.2. Spectral Entropy Cepstral Coefficients
(SENCC). The authors describe spectral entropy as follows: "Evaluates the
signal’s energy distribution uniformity. This measure is an indicator of the
complexity of the signal. It can also be employed to capture the peakiness in
a signal. In order to compute the spectral entropy, the spectrum is written in
terms of a Prob-285 ability Mass Function (PMF)-like function:

C; = (2.3)

where X; is the energy of i-th frequency component of the spectrum."

Later on in the article the authors write: "After going through the Mel-
filter banks, the spectral entropy of each sub-band is evaluated." From which
I concluded that the Spectral Entropy Cepstral Coefficients (SENCC) are
not dependent on MFCC because they are two different feature extraction
techniques used in speech and audio processing. While both methods extract
useful information from the spectral domain, they have distinct purposes
and calculations. MFCC focuses on capturing the mel-frequency cepstral
characteristics of the audio signal, which are based on the Mel filter bank
analysis, natural logarithm and discrete cosine transform coefficients. So, it
aims to represent the spectral shape of the signal with emphasis on perceptual
properties. On the other hand, SENCC is used for capturing the information
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related to spectral complexity and variability, for it measures the entropy of the
power spectrum of the audio signal by assessing the level of disorder/accidental
character/randomness in the distribution of spectral energy, for it provides
information about the distribution of spectral energy across different frequency
components in a signal’s spectrum.

The computational process of spectral entropy includes estimating the
spectral power of a signal that is performed by executing a spectral analysis
using Fast Fourier Transform. Spectral entropy values in range 0-1 (including
both), where 0 indicates a completely deterministic or pure sinusoidal signal
with all energy concentrated at a single frequency, and 1 indicates maximum
disorder, where the energy is evenly spread across the entire frequency range.
Maximum entropy is at value 1, see figure [2.3| below.

Spectral entropy over Time

0.035
0.03
0.025
0.02

0.015

Spectral entropy

0.01

0.005

Time (s)

Figure 2.3: Spectral entropy of 5 detected peaks in the signal.

In audio processing and speech recognition, spectral entropy is used to
characterize the spectral properties of audio, to changes in the spectral content
or to detect transitions in order to distinguish between different types of
sounds or speech parts.

But I used spectral entropy for a bit different reason, as a feature for sub-
sequent machine learning as a pattern recognition, because next to spectral
centroid and Mel frequency cepstral coeflicients spectral entropy stands for
complementary feature in capturing learning aspects with spectral character-
istics in a signal.

The next piece of code describe the applied process for extraction the

SENCC.
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2.2. Inverse Mel Frequency Cepstral Coefficients

/i compute spectral entropy of each frame
for j = 1:length(str(n).detail)
entropy = zeros(n_frame/2+1,1);

for k=1:n_frame/2+1
Xi = energy(k,j)./sum(energy(k,:));
entropy (k) = -sum(Xi.*log2(Xi));
end
/4 apply DCT to spectral entropy sequence
SENCC = dct(entropy);
num_SENCC = size(SENCC,1)-1;

/4 add to structures
str(n) .detail(j) .SENCC = SENCC(1:end);
end

In the final analysis the number of spectral entropy coefficients (SENCC) was
chosen half of the number of frames +1.

B 2.2 Inverse Mel Frequency Cepstral Coefficients

To build the inverse Mel filter bank, by making reverse triangular-shaped
filters, where each one is centered at a specific Mel frequency and extends to
adjacent Mel frequencies. The shape of each triangular filter is defined by
its center frequency and bandwidth, as much as with the classical Mel filter
banks. The step to get the desired filters is the use the same formula [2.2,
but with and inverse h. In particular, using Matlab the flip() function was
applied. I specifically used the function with the dim parameter to reverses
the elements in each row /!

The rest of the code is similar to the MFCC features extraction, with one
difference compared to row 5, where now is necessary to multiply the
power spectrum P1 with the fliped h, precisely hinv = flip(h,2).

The final product is in figure 2.4, the middle filter bank. Please note how
Matlab in this case plotted the first (purple) filter, compared to I really
do not know the reason, though I implemented and tried more command to
have them consistent.

B 23 Linear Frequency Cepstral Coefficients

4% linear filtr
linVec = linspace(lowf, highf, nfilt+1);
for m=2:nfilt

Thttps://www.mathworks.com/help/matlab /ref/flip.html
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for k=1:fs/2
hlin(m-1,k) = formula(k,linVec,m);
end
end

In the previous code snippet we see how the process to get linear filters is to
start with a linear vector and not the Mel-scale one. The boundaries (upper
and lower frequencies) have to be kept. The used formula remains the same,
with the difference of the second parameter, which is the linear vector for
this scenario. And the rest of code is the same to MFCC extraction in
with the difference around the multiplication the power spectrum P1, where
hlin has to be applied.

The final product is in figure the lower filter bank. And again please
note how Matlab in this case did not plotted the first (purple) filter, as much
as in [1.10.
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Figure 2.4: Mel bands with different scales.

. 2.4 Gammatone Filter Bank

Gammatone cepstral coefficients (GTCC) are another alternative to MFCC
that utilizes gammatone filter bank instead of the traditional triangular Mel
filter bank. GTCC aims to capture the spectral properties of the audio signal
more accurately, particularly at lower frequencies.

The approach I used was through the already obtained MFCC:
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2.4. Gammatone Filter Bank

% gtcc
numCoeffsRows = length(str(n).detail);

/4 Compute center frequencies of triangular Mel
filterbanks in Hz
centerFreqs = hVec;

/4 Compute Gammatone filterbank outputs for each MFCC
gammWeights = zeros(numCoeffsRows, nfilt-1);
for i = 2:nfilt

gammWeights(:,i-1) = gammatoneFilter(mfccs(:,i-1),
centerFreqs(i), 1);
end

gtcc = dct(log(gammWeights)) ;
/% Normalize GICCs to get unit variance

gtcc = bsxfun(@minus, gtcc, mean(gtcc));
gtcc = bsxfun(@rdivide, gtcc, std(gtcc));

function y = gammatoneFilter(x, f, q)
/4 filter coefficients

t = 1:length(x);

a = 1/(2xpixf*q) ;

b = 1.019%f/q;

c = 2*pixf;

g = axt .* exp(-bxt) .*x sin(c*t);

e

Apply filter to the stignal
= filter(g, sum(g), x);

<

end

where numCoef f s Rows represents the number of detected peaks in the signal,
from which follow the column number and that is the nfilt — 1 equal to the
number of MFCC for each peak. The gammatoneFilter() function operate with
three parameters: x stands for the individual MFCC in particular columns, f
the center /carrier frequencies that define each filter derived from the Mel-scale
frequencies, since the gammatone filter banks operate at the same frequencies
like Mel, because both were originally designed to approximate the non-linear
nature of human perception of sound.

Then I applied the Matlab 1-D digital filter function, that has at least 3
parameters: The Gammatone filter coefficient g is computed based on the
input parameters, and they define the impulse response of the filter. The
sum(g) is used to normalize the filter coefficients, ensuring that the total
response energy is preserved. It represents the initial conditions of the filter
and specifies the initial state of the filter’s internal delay line. By using sum/(g)
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as the initial conditions, the filter function starts with an initial state that
corresponds to the filter’s impulse response, to ensure the filter’s output is
correctly computed by convolving the input signal with the filter coefficients.

Row 13 in the snippet code: The gammatone filter outputs are passed
through the Discrete Cosine Transform (DCT) and logarithmic transforma-
tion to compute the Gammatone Cepstral Coefficients (GTCCs): The natural
logarithmic operation is applied to the Gammatone filter bank outputs to
mimic the non-linear perception of loudness in the natural human auditory
system. To compresses the dynamic range of the filter bank outputs, empha-
sizing the lower energy components and reducing the impact of higher energy
ones. The DCT is used to decorrelate the logarithmically transformed filter
bank outputs, to reduce the redundancy and capturing the most relevant
information from the filter bank outputs.

The GTCC normalizing as the final step ensures that the GTCC are less
sensitive to the energy level variations across different utterances. It helps in
achieving better robustness and comparability of the GTCC features.

Magnitude (dB)

Frequency (kHz)

Figure 2.5: Filter bank on a Mel-Scale with Gamma curving in frequency domain.

The amplitudes of each filter will be different and greater due to the filter
order occurring in the exponent of time, where each magnitude is greater
with the increasing filter order, so much in time domain with the amplitude,
compare to [2.6.

4th Filter Banks in time domain

14th Filter Banks in time domain

0.025

o
o
S}

Amplitude [-]
Amplitude [-]

0.015

0.01

0.005

0 0.5 1 15 2 25 3 3.5 4 0 0.5 1 1.5 2 25 3 35 4
time [sec] time [sec]

Figure 2.6: 2 orders of Gammatone filter bank in time domain.
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Chapter 3

Classification

Now after finishing all the necessary details regarding signal analysis, 1
received a lot of data in .wav format and others in .mat structures from my
supervisor, which I had to convert each file from the mat structure to a .wav
file using the Matlab audiowrite function.

dataSet

gunShots

~

Bouble_wrap Book_slam ] door_slam ’ hand_slam | |hand_clap ‘ 556 ’ [ 9mm ’ Tokarev
Y Y Y Y Y \ 4 \ 4 Y
‘ 40x struct ‘ 32x struct ] ‘ 24x struct 8x struct 8x struct 7x struct [30X struct ‘ 20x struct

- |~

‘ filename ’ ‘ y (signal) fs [ coefficients J

‘ MFCCJ [IMFCCJ ‘ LFCC J [GTCC ] [SENCC ’ ‘ SCCC ’

Figure 3.1: The final structure’s shape used before classification.

Note: The software’s final version before classification is designed in an
adaptable and flexible way that by loading the dataSet structure with false
alarms and gun shots, any .wav file could be read, added to structure, its
features get computed, and in the end be added to the dataSet structure to
the right place according to its features.

Before training the Convolution Neural Network (CNN), it’s important to
pre-process the data as per the requirements of the final model. This process
may involve scaling, reshaping, normalization, and other pre-processing steps
necessary to enhance the training process.
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3. Classification

. 3.1 Data collection

The fist step before classification starts is that all features from all files have
to be gathered in one array, according to their type. For example, one array
collecting only MFCC from gun shots, another MFCC array assembling all
MFCCs from false alarms, an so forth. I ended up with 8 array, 4 from
each substructure representing their cepstral coefficients. The preparatory
structure to classification has the following shape [3.2

hand_clap Tokarev

hand_slam

door_slam

[Bouble_wrap [Book slam

mfccGun imfccGun IfccGun gtecGun

gtccfalse

imfccfalse Ifccfalse

mfccfalse

Figure 3.2: The modified structure for classification.

As a code snippet I provide the following:

% gather Guns MFCC

mfcc = struct('MFCC', {0});

% initialize array size, to ensure columns size
mfccGun = zeros(1,25);

cnt=zeros(1,length(dataSet.gunShots)) ;
i=1;
mfccGun(l,:)=[];
for k=1:length(dataSet.gunShots)
for j=1:length(dataSet.gunShots(k).details)
cnt (k)=cnt (k) +size(dataSet.gunShots (k) .details(j) .
coefficients.MFCC,1);
mfcc(i) .MFCC=dataSet.gunShots (k) .details(j).
coefficients.MFCC;
mfccGun = [mfccGun;vertcat(mfcc(i) .MFCC)];
i=i+1;
end
end

The counter, e.i. cnt was added to find out the exact number of rows collected
from each gun shot type. The numbers are very crucial for the CNN, which
is going to take the individual rows of cepstral coefficients and assign to them
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their exact type later on using categorical function. The same process was
repeated for all types within gun shots or false alarms, in order to gather all
cepstral coefficients from dataSet structure. The last step was to create a
new structure for the purpose of saving memory for future starts, where only
cepstral coefficients gather in arrays without nested structures.

B 32 Data partition

Now working with the new structure clasi, I had to split the data into
individual groups according to the gun shots or false alarms types with the
right sizes using the cnt or entf (for false alarms) variables, respectively.
Below the snippet is just for the gun shots MFCC for illustration.

mfccGun=clasi.mfccGun;

/4 Splitting the data into groups' types
fiveMF=mfccGun(l:cnt(1),:);
nineMF=mfccGun(cnt(1)+1:cnt(1)+cnt(2),:);
tokaMF=mfccGun(cnt (1)+cnt(2)+1:end, :);

All the sizes are 1 row vectors, next to each other, because by doing one column
each label next to each other, Matlab will throw an error that dimensions of
arrays are not consistent, for not all columns are of same size.

Now to apply the cvpartition function to create a partitioned data set
for cross-validation or other evaluation strategies. It helps in dividing a
dataset into subsets for tasks like training, validation, and testing ', The first
parameter should be equal to the number of rows in the MFCC matrix. It
represents the size of the data that we want to partition, for it is the total
number of observations in the dataset.

The second parameter is the method used for partitioning the data. It
specifies how the data will be divided into subsets for purposes such as
cross-validation or holdout validation. Matlab offers more parameters, such
as ‘Stratified’, ‘LeaveOut’. I worked with ‘KFold’ and ‘Holdout’. ‘KFold’
performs K-fold cross-validation, where the data is divided into K equally
sized subsets, where each subset is used as a validation set once, while the
remaining subsets are used for training. While ‘Holdout’ just creates a simple
random partition of the data into two subsets, for holdout validation. In both
case we need to specify the desired proportion of the data to be held out as a
validation set using the third parameter in ‘Holdout’ or specify the desired
value of K as the third parameter in ‘KFold".

For our specific case in here it is necessary to compute the sizes for training
and validation sets for each group, and not just in general. Because from
each gun shot or false alarm we want to keep an amount for validation on
the basis of the desired proportion.

"https://www.mathworks.com/help/stats/cvpartition.html
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trainProp = 0.7;
validProp = 0.3;

/4 stzes for tratining and valtidation sets for each group
numTrainSamplesFiveMFCC = round(trainProp * cnt(1));
numTrainSamplesNineMFCC = round(trainProp * cnt(2));
numTrainSamplesTokaMFCC = round(trainProp * cnt(3));

/i make cupartition objects for each group

cvfiveMF = cvpartition(cnt(1), 'Holdout', validProp);
cvnineMF = cvpartition(cnt(2), 'Holdout', validProp);
cvtokaMF = cvpartition(cnt(3), 'Holdout', validProp);

B 33 Training and validation sets

Now, after the partitioning, I had to split the data into training and validation
sets. By defining the data proportion, Matlab itself splits the whole set into
trainingData and validationData according to set proportion. Before that
I had to generate the training and validation indices for each group, based on
the partition data for cross-validation from the previous code snippet. Then
use the indices to extract the training and validation sets for each type. The
last step is to combine the training and validation sets for all groups. In the
following snippet I illustrate only the steps regarding one type of gunshots
to save space for text. The same steps are required for the rest of gunshots’
types, or all types in false alarms.

/i Generate the train and valid indices for each group
trainIdxFiveMFCC = training(cvfiveMF);
validIdxFiveMFCC = test(cvfiveMF) ;

/s Use indices to extract train and valid sets for each
trainDataFiveMFCC = fiveMF (trainIdxFiveMFCC, :);
validDataFiveMFCC = fiveMF(validIdxFiveMFCC, :);

/ Combine the training and validation sets for all groups
trainingData = [trainDataFiveMFCC; trainDatanineMFCC;
trainDataTokaMFCC] ;

validationData = [validDataFiveMFCC; validDataNineMFCC;
validDataTokaMFCC] ;
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. 3.4 Labels

Now after knowing the sizes of each gun shot and false alarm we set the labels.
Labels are necessary for convolutional neural networks because they represent
the target values associated with each input sample. In my classification
problem, labels indicate the category to which each input sample belongs.
We can choose to represent these labels either as a categorical array or as a
numerical array.

I run across one-hot encoding % If I understood correctly, then in one-hot,
each category is represented by a binary vector where all elements are zero
except for the element corresponding to the class label, which is set to one
(one-hot). For example, if we have three categories (A, B, C), one-hot encoding
would represent them as [1 0 0], [0 1 0], and [0 0 1]. On the other hand,
categorical encoding assigns a unique numerical value to each category. For
example, in a same scenario (A, B, C), categorical encoding might represent
them just as 1, 2, and 3. This encoding is useful when the numerical order of
the categories does not carry any meaningful information.

In the end, I decided for categorical encoding over the one-hot, because one-
hot encoding will result in a label array with a shape of (number of samples,
number of categories), where each sample is represented by a binary vector,
whereas categorical encoding will result only in a label array with a shape of
(number of samples, 1), where each sample is represented by a numerical label.
I made that decision after implementing and trying the one-hot encoding,
where i realized 2 disadvantages: The first is better representation that suits
my specific problem and the requirements of CNN model was the categorical
one, for their clarity, since they are obvious by the first look. And the other
disadvantage was a Matlab complication regarding matrices size. (Later, I
will show both implementations.)

Immediately after it, I had to extract the labels corresponding to the
samples included in the training set defined by training(cv), or in the test set
defined by test(cv).

/4 Categorical labels for the training and validation sets
traininglabels = categorical([ ...

repmat ({'fiveMF'}, size(trainDataFiveMFCC, 1), 1);

repmat ({'nineMF'}, size(trainDatanineMFCC, 1), 1);

repmat ({'tokaMF'}, size(trainDataTokaMFCC, 1), 1)]1);

validationLabels = categorical([ ...

repmat ({'fiveMF'}, size(validDataFiveMFCC, 1), 1);
repmat ({'nineMF'}, size(validDataNineMFCC, 1), 1);
repmat ({'tokaMF'}, size(validDataTokaMFCC, 1), 1)1);

Zhttps:/ /www.mathworks.com /help/deeplearning/ref/onehotencode.html
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In the code snippet above is the Categorical assigning, whereas in the below
snippet is the one-hot encoding. Where I implemented it myself in order to
test the validation behind it. I used Matlab’s Unique function to get the
unique values in array °, or the precise number of different sets there.

/% one-hot encoding
uniquelLabels = unique(trainingLabels);
numClasses = numel (uniquelabels);

traininglabels = zeros(size(traininglabels,1), numClasses);

traininglabels(1:numTrainSamplesFiveMFCC, 1) = 1; 7'fiveMF';

traininglabels (1+numTrainSamplesFiveMFCC:
numTrainSamplesFiveMFCC + numTrainSamplesNineMFCC, 2) = 1;
A 'nineMF"';

traininglabels (1+numTrainSamplesFiveMFCC+
numTrainSamplesNineMFCC:end, 3) = 1;/'tokaMF’;

traininglabels = categorical(traininglabels);

The sizes of trainingData and traininglLabels have to match: If trainingData
size is (N, F), where N is the number of samples and D is the number of
features. The trainingLabels size is supposed to be (N, 1). A confirmation
is necessary that there are no missing elements or NalN values whether in
trainingData and traininglLabels. Similarly, ensure that the dimensions of
validationData and validationLabels are compatible. The number of rows in
validationData should be equal to the number of elements in validationLabels.
That’s the reason, as mentioned above regarding my choice for the categorical
sorting over the one-hot encoding.

B 35 Layers

By now, all the necessary data components are finished, just to define the
architecture by setting the layers and options to train the neural network.
The following figure |3.3| describes the layers applied for CNN architecture.

X = [fiveMF;nineMF;tokaMF] ;

/#Define the architecture of the CNN

layers = [

imageInputLayer([size(X, 1), size(X, 2),1], 'Name', 'input')
VA9

convolution2dlayer(3, 16, 'Padding', 'same', 'Name', 'convl')
reluLayer('Name', 'relul')

maxPooling2dlayer([3, 1], 'Stride', [2, 1], 'Name', 'maxpooll')
WAKN

convolution2dlayer (3, 32, 'Padding', 'same', 'Name', 'conv2')
relulayer ('Name', 'relu2')

3https://www.mathworks.com/help/matlab/ref/double.unique.html
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3.5. Layers

maxPooling2dLayer([3, 1], 'Stride', [2, 1], 'Name', 'maxpool2')
V944

fullyConnectedLayer (64, 'Name', 'fcl')

reluLayer('Name', 'relu3')

fullyConnectedLayer (numClasses, 'Name', 'fc2')
softmaxLayer('Name', 'softmax')

classificationLayer('Name', 'classification')

1;

Figure 3.3: The individual layers used in the Convolution Neural Network.

As the first layer that defines the input to the network I used imagelnputLayer.
It particularizes the size of the input MFCC features in this case (images
in general) using their dimensions. The third parameter in the array is the
number of channels, referring to the depth in an image, or to the number
of color channels. For grayscale images, there is one channel representing
the intensity values. For colorful images, there are 3 color channels: red,
green, and blue. In the MFCC data I used just single-channel input, since
it is unlikely for MFCCs to have multiple channels. The ‘Name’ parameter
assigns the name ‘input’ to this layer.

I also tried ‘sequenceInputLayer’ *in hope of getting a better result, because
I expected, based on the label, that ‘imagelnputLayer’ works only for images
and here I wanted to elaborate with audio features. Fact of the matter is,
‘imagelnputLayer’ works with dimensions, without regard to the original data

“https: //www.mathworks.com/help/deeplearning/ref /nnet.cnn.layer.sequenceinputlayer.html
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source.

The second applied layer is convolution2dLayer, which performs 2D con-
volution on the input feature maps by applying a set of learnable filters
to the input feature maps, to produce a set of output feature maps. Each
filter performs a convolution operation by sliding across the input feature
maps, computing element-wise multiplications and summations. The applied
layer has 16 filters of size 3x3, where the size determines the receptive field
of the filters, influencing the patterns this layer can detect. The ‘Padding’
parameter controls the treatment of the borders of the input feature maps
during convolution, and by setting it to ‘same’, the layer does not add padding
to the borders, allowing the output feature maps to have the same spatial
dimensions as the input, to preserve the spatial dimensions of the input.

Follows the reluLayer, i.e. Rectified Linear Unit. It introduces non-linearity
into the network, allowing the model to learn complex patterns and relation-
ships in the data. It applies a ReLLU activation function element-wise to the
input tensor or feature map, which is to the output of the previous layer.
That activation is beneficial in deep learning, because it provides thinness in
the network, as it sets negative values to zero, leading to more efficient and
sparse representations.

f(z) = max(0,x) (3.1)

where x is the input, and by comparing it to zero gives the maximum value
to the output.

maxPooling2dLayer performs a 2D max pooling on the input feature maps,
which divides the them into non-overlapping rectangular sections called
pooling regions, where within each one the maximum value is selected and
passed to the next layer, while the other values are thrown away. This
operation effectively down-samples the feature maps by keeping the most
prominent features and discarding less important ones. Parameter [3, 1]
represents a pooling region with a height of 3 and a width of 1. While the
[2, 1] Stride specifies the amount by which the pooling regions are shifted
vertically (2 units) and horizontally (1 unit).

Dense layer or fullyConnectedLayer that connects every neuron in the pre-
vious layer to the neurons in the current layer. It does a linear transformation
on the input data by multiplying them with a weight matrix and adding a
bias vector, where the size of the weight matrix determines the number of
neurons in the current layer, and the size of the bias vector is equal to the
number of neurons in the current layer. This one has 64 neurons. After the
linear transformation in the first fully connected layer, an activation function
is applied to introduce non-linearity into the network, such as a reluLayer
follows the first fully connected layer, which applies the ReLLU activation
function to the output of the fully connected layer. The number of neurons
in the second fully connected layer corresponds to the number of classes in
the classification problem.
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3.5. Layers

softmaxLayer converts the network’s raw outputs into understandable
probabilities. These probabilities indicate the likelihood of each class being
the correct prediction using a cross-entropy loss function as and suitable
one. The output of the fully connected layer (64 neurons) is fed into a
softmax layer to obtain the final class probabilities or predictions. This layer
is used for multi-class classification problems, because it applies the softmax
activation function to the input and produces a probability distribution over
the classes by applying exponentiation function to each element of the input
and afterwards normalizes the values by dividing them by the sum of all
exponentiated values. This normalization ensures that the output values lie
in the range of [0, 1] and sum up to 1, representing probabilities.

softmax(x) = exp(z)/sum(exp(x)) (3.2)
where x is the input vector.

classificationLayer is the final layer of the network to compute the cross-
entropy loss between the predicted class probabilities and the true class labels,
and perform classification based on the predicted probabilities. The output
is a vector of class probabilities, where each element in it represents the
probability of the corresponding class.

Adding a connection between layers in a neural network is an essential step
to define the flow of information during forward and backward propagation,
for each connection represents a track through which data is passed from one
layer to another. Adding connections between layers ensures that the network
is properly connected and can effectively spread information during training.
Adding a connection that does not already exist is necessary to establish an
architectural configuration of the neural network. The connections determine
the flow of information and the interaction between layers, affecting the
network’s ability to learn from the training data.

/4 Convert Connections table to cell array
connections = table2cell(lgraph.Connections);

/i Check if connection already exzists before adding %t
connectionExists = false;
for i = 1:size(connections, 1)
if strcmp(connections{i, 2}, 'maxpooll') && strcmp(
connections{i, 1}, 'relul')
connectionExists = true;
break;
end
end

/4 Add comnection if it does not exist
if ~connectionExists

lgraph = connectlayers(lgraph, 'relul', 'maxpooll');
end
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By checking if a connection already exist, the code avoids adding duplicate
connections, which could lead to throw errors in the network.

But before that I had to convert the connections between layers in the
layer graph into a cell array, to simplify the subsequent operations for flexible
handling, and later checking of the connections. The code then could be easily
accessed over the individual connections using array indexing in the for loop
that iterates through each connection in the cell array to check whether a
specific connection does already exists. The stremp function compare strings
of the source and destination layers of each connection. So, by converting
the connections into a cell array allowed me for more easier and efficient
operations, such as checking if a specific connection already exists or modifying
the connections between layers.

B 36 Training options

The training options are necessary to specify various settings for teaching the
neural network. It allows to define various aspects of the training process,
and how the whole process should be performed with specific arrangement.

/% Set training options
options = trainingOptions('adam',
'MiniBatchSize', 32,
'MaxEpochs', 20,
'Shuffle', 'never',
'"ValidationData', {validationData, validationLabels},
'ValidationFrequency', 1,
'Verbose', false,
'Plots', 'training-progress');

The first parameter specifies the optimization algorithm to be used during
training. adam, i.e. Adaptive Moment Estimation was chosen over stochastic
gradient descent (SGD), though it requires additional memory usage, and
also SGD’s noise prevents overfitting and improving the model’s ability to
generalize to new unseen data.

Adam adapts the learning rate for each parameter individually based
on the historical gradients (more memory). Because my training is not
expected to be any large scale model, so the memory usage was not a concern.
Adam maintains a separate learning rate for each parameter and updates it
dynamically throughout the training process. And because Adam’s adaptive
learning rate allows him to handle different parameters updates effectively, it
provides a better performance. And also Adam anticipates a bias correction
during the early iterations of training, which helps him mitigate the prejudices
towards zero that can occur in the estimates of the first moments of the
gradients. This correction allows him to prepare more accurate updates to
the network’s parameters, especially at the beginning of training.

mini-batch determines the number of samples that are fed into the network
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together at the same time before the gradient update is performed. Size of 32
means that during each iteration of the training algorithm, 32 samples will be
processed at the same time, and the gradient update will be based on these
32 samples. The choice of its size involves a tradeoff between computational
efficiency, memory usage, and generalization performance. Smaller mini-batch
sizes may can provide better generalization, but lead to longer training times.

MaxEpochs defines the maximum number of training epochs, where an epoch
refers to a complete pass through the entire training file in the training process.
In each epoch, the network goes through all the training samples, updates
the weights and biases based on the calculated gradients, and modifies the
model parameters to minimize the loss function. Once the specified number
of epochs (20) is reached, the training process stops even if the confluence
criteria will not be met yet. Training a CNN with a large number of epochs
can be time consuming.

Shuffle is used to specify whether and how the training data should be
shuffled before each epoch. Shuffling the data helps in randomizing the order
of samples and reduces any bias that might be introduced due to the order
of the data. The never parameter specifies that shuffling should not be
performed at any epoch. Compared to the other limit that is every — epoch
which shuffles before every epoch and by that increases the randomness and
reduces the possibility of the model learning any systematic teaching, because
it would make the model seeing the data in a different order in each epoch.

The ValidationData option allows to specify the validation data to be
used during the training. The validation data is a separate dataset that is
used to monitor the model’s performance and generalization of the network
during training. It consists of validationData (the input data) and valida-
tionLabels (the corresponding ground truth labels). This is the step, where
the validationData and validationLabels must match, where each row of the
validationData matrix corresponds to the correct label in the validationLabels
vector, in order that the network’s performance is correctly evaluated during
training.

The ValidationFrequency option particularizes the frequency at which the
validation accuracy is computed, to control how often the validation data is
evaluated throughout the training process. The larger validation frequency
is, the less frequently is performed, resulting in fewer evaluations on the
validation set and less checkpoints to monitor the model’s performance during
training. Yet a advantage to it, is the speed of the training process, for
it might boom as less computational resources are assigned to validation
evaluations. In the case of parameter equals 1, the validation frequency is
computed every training iteration (mini-batches).

The Verbose option determines whether or not to display the training
progress and other information during training, and by setting it to false value
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means that training process will run silently without any output messages,
such as the current epoch, mini-batch progress, or training metrics. And also
having the Verbose false reduces the computational overhead associated with
console output. Other options are mini, normal, or detailed that displays the
same information as normal choice, but additionally shows the training and
validation loss with accuracy for each mini-batch iteration.

Setting the Plots option to training-progress shows the training and valida-
tion accuracies as the training progresses with a visual representation of the
model’s performance. These plots give a visual feedback on how the network
is learning and how the performance metrics change over time. By visualizing
the training progress, one may acquire a better understanding of how the
network is learning, identify patterns in the loss and accuracy, and detect
potential issues such as overfitting or insufficient learning on the other hand.

B 37 Training network

The last step I implemented before training the network was to check whether
any of the trainingData NaN (Not a Number), in order to avoid any error in
the computation. If it does find any, sets it to 0.

trainingData(isnan(trainingData)) = 0;

/4 Train the CNN model

numObservationsData = size(trainingData, 1);
numObservationsLabels = numel(traininglabels);
numValidationsData = size(validationData,1);
numValidationsLabels = numel(validationLabels) ;

if (numObservationsData == numObservationsLabels &&
numValidationsData == numValidationsLabels)
disp('in')

trainedNet = trainNetwork(trainingData,
traininglabels, lgraph, options);

end

When Matlab threw an error saying: “Number of observations in X and Y
disagree.” I more the double-checked all observations in the program and set
them to right order, they are supposed to be based on Matlab’s instructions.
Though I am certain of that, I sadly do not know where the error lies.
Unfortunately, I could not plot a graph or provide any table according to
which I could have made reflection on the built neural network.
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Chapter 4

Conclusion

In conclusion, this thesis focused on exploring the effectiveness of Mel Fre-
quency Cepstral Coefficients (MFCC) and other cepstral coefficients, along
with spectral entropy and spectral centroid, for audio signal analysis. The
objective was to leverage these features in the development of a Convolutional
Neural Network (CNN) for audio classification.

Throughout the research, various audio processing techniques were applied
to extract MFCC and other cepstral coefficients, which capture essential
characteristics of the audio signals. Additionally, spectral entropy and spectral
centroid measures were calculated to provide additional insights into the
frequency distribution and energy concentration within the signals. The
extracted features demonstrated their significance in representing audio signals
and capturing relevant information for classification tasks. They offered a
compact representation of the audio data, reducing dimensionality while
retaining important discriminative information.

The obtained cepstral coefficients have been proven as an effective tool
in capturing the spectral shape of the signal with emphasis on perceptual
properties. MFCC provides a compact representation of the spectral informa-
tion and is relatively robust to noise and other variations in the audio signal.
However, MFCC may not capture fine-grained spectral details and may have
limitations in capturing non-linear variations in the spectral domain.

To further enhance the analysis and classification capabilities, a CNN
architecture was designed and implemented. The CNN architecture comprised
multiple layers, including convolutional, pooling, and fully connected layers,
followed by a softmax activation layer for classification. The training phase
of the CNN, which aims to optimize the network parameters, plays a crucial
role in achieving accurate and reliable classification results. However, due to
certain challenges with the dimensions encountered during the training of the
built CNN;, this specific aspect could not be completed within the scope of
this thesis.

Nevertheless, the research presented a comprehensive analysis of MFCC and
other cepstral coefficients, along with spectral entropy and spectral centroid,
highlighting their potential for audio signal analysis and classification. The
work laid a solid foundation for future investigations and improvements in
training the CNN model, which could involve adjusting parameters, refining
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the architecture, or employing alternative optimization algorithms.

Overall, this thesis contributes to the field of audio signal processing and
classification by providing valuable insights into the application of MFCC
and cepstral coefficients, alongside spectral entropy and spectral centroid,
and laying the groundwork for the development of a CNN model to further
enhance audio classification capabilities.

As a goal to the future could be an implementation of a multi-modal
monitoring system that integrate visual and auditory information to im-
prove situational awareness and enhance the accuracy of event detection and
recognition which ultimately is the best choice that may be involved using a
combination of cameras and microphones, as their respective strengths can
complement each other and provide a more comprehensive understanding
of the environment. Integration of visual and auditory data can enhance
situational awareness and enable a more robust analysis of complex scenarios.
For example, combining camera footage with audio data can enable more
comprehensive monitoring of complex areas.
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