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Abstract

This thesis aims to explain the superscalar processor’s working principles and to design a mi-
croarchitecture based on the RISC-V RV32I instruction set architecture. The designed microar-
chitecture is called VTM (Veznik Tomas Microarchitecture) and is described using SystemVerilog
hardware description language. The VTM is a dual-issue out-of-order superscalar microarchitec-
ture that executes up to four instructions in the execution stage simultaneously. The primary
output of this thesis is the VTM source code. The simulation, accompanied by the theoreti-
cal part of this thesis, serves as a learning tool for anyone who wants to understand the inner
workings of superscalar processors, with students as the primary audience.

Keywords microarchitecture, superscalar processor, RISC-V, RV32I, out-of-order execution,
SystemVerilog

Abstrakt

Zaměřením této práce je přiblížení činnosti superskalárních procesorů a navržení superskalární
mikroarchitektury procesoru využívající instrukční sady RISC-V RV32I. Navržená mikroarchitek-
tura se nazývá VTM (Veznik Tomas Microarchitecture) a je popsána jazykem SystemVerilog.
VTM je superskalární mikroarchitektura, která zpracovává dvě instrukce najednou a ve vykoná-
vacím stupni vykonává do čtyř instrukcí najednou. Hlavním výstupem této práce jsou zdrojové
kódy popisující VTM. Zdrojové kódy spolu s teoretickou částí této práce mohou posloužit jako
učební pomůcka, která ukazuje fungovaní superskalárních procesorů, cílená na studenty.

Klíčová slova mikroarchitektura, superskalární procesor, RISC-V, RV32I, vykonávání instrukcí
mimo pořadí, SystemVerilog
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Introduction

The processor, a flattened rock with trapped lightning inside, tricked into thinking.[1]

As modern processor architectures get increasingly complicated year over year, keeping track of
all the technologies used is important. Therefore, creating tools and materials explaining the
trends and technologies used in modern devices is more than welcome.

The main goal of this thesis is to design and implement a simple superscalar processor mi-
croarchitecture based on the RISC-V RV32I instruction set architecture. Additional goals are
to simulate the implemented microarchitecture and to explain the working principles of a simple
superscalar processor microarchitecture.

Instruction Set Architecture (ISA) describes the “visible parts”, an interface between the
hardware and software of a computer system. It defines internal processor storage organisation,
memory alignment, memory addressing modes, etc. ISA is an abstraction that only describes the
behaviour of a system but does not specify precise implementation. Not being reliable on one
implementation allows the reusability of a binary code on multiple machines that support the
same ISA. Currently, there are two main trends in ISA design, complex instruction set computer
(CISC) and reduced instruction set computer (RISC). [2, 3, 4]

CISC is an instruction set architecture commonly used in desktop and server computers.
The main representative of CISC is the x86_64 instruction set architecture, now mostly used by
Intel and AMD. CISC instruction set architectures commonly have variable instruction lengths,
multi-cycle instruction execution, and extensive memory access modes. Common instructions
are shorter and simpler to implement, and specialised instructions are longer and more complex.
The size of one instruction varies from 1B to 16B. This allows for high code density but increases
complexity regarding instruction decoding. [3]

RISC focuses on the simplicity and highly-optimised instruction set. RISC instruction set
architectures commonly have fixed-length instructions, simple instruction encoding, and single
clock cycle instruction execution. RISC architectures heavily rely on the ability of a processor
to execute multiple instructions at once and the optimisations that code compilers provide. [5,
3]

RISC-V (pronounced ”risk-five”) is a new open and free standard ISA originating at UC
Berkley. Originally designed to aid in education and computer research but turned into a fast-
growing trend. As the name suggests, RISC-V is reduced instruction set computer (RISC) based
ISA that aims to be simple, extensible, and scalable. [4, 6]

The RISC-V utilises a more modular approach than other instruction set architectures (ISAs).
At the centre of RISC-V ISA is the base integer ISA and built onto it are optional extensions
ISAs. The base integer ISA defines only the necessary set of instructions needed by the majority

1



2 Introduction

of operating systems. There are two primary base integer variants, RV32I and RV64I, where
the main difference is the width of integer registers and the size of addressable memory space.
The RV32I and RV64I use 32-bit or 64-bit wide integer registers and address space, respectively.
RV32E base integer ISA, a subset of RV32I, is targeted at microcontrollers with half as many
integer registers and future RV128I base integer ISA with support for 128-bit address space.
All base integer ISAs use a two’s-complement signed integer representation and either little-
endian or big-endian memory systems. [4, 6] “To support general software development, a set of
standard extensions are defined to provide integer multiply/divide, atomic operations, and single
and double-precision floating-point arithmetic.” [4]

The RISC-V ISA focuses more on the software-visible interface and avoids implementations
detail where possible. [4] This gives the designer of a particular hardware implementation more
freedom and the ability to tailor the ISA to their needs with the RISC-V ISA extension approach.

Microarchitecture is a high-level description of a computer’s design, such as the memory
system, memory interconnect, and central processing unit (CPU) design. Microarchitecture is a
specific implementation of ISA; for example, two processors can share ISA and execute the same
binary code but have different microarchitectures, resulting in completely different performances.
[2]



Chapter 1

RISC-V RV32I

This chapter describes a subset of RISC-V RV32I instructions; this subset is implemented in
the designed microarchitecture.

The base integer ISA RV32I utilises 32 integer registers with a width of 32 bits each. Table 1.1
shows each register’s number and application binary interface (ABI) name. ISA also defines an
additional program counter (pc) register.

Table 1.1 RV32I register state with application binary interface and best practice use. [7]

Register ABI name Use
x0 zero Hardwired zero
x1 ra Return address for a call
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5 t0

Temporary registersx6 t1
x7 t2
x8 s0/fp Saved register / frame pointer
x9 s1 Saved register
x10 a0 Function arguments / return valuesx11 a1

x12–x17 a2–a7 Function arguments
x18–x27 s2–s11 Saved registers
x28–x31 t3–t6 Temporary registers

pc Holds current instruction address

The RV32I uses six 32-bit instruction formats R-type, I-type, S-type, U-type, B-type, and
J-type. The formats are designed to simplify instruction decoding by keeping source (rs1, rs2)
and destination registers (rd) at the same positions across all the formats. In formats where
immediate value is used, it is always sign-extended to 32 bits, and the most significant is used
as a sign bit. [4]

The RV32I is a load-store architecture where every instruction performs implicit memory
access so it can be fetched, but only LOAD and STORE instructions have direct access to the
memory. Other instructions have access only to registers. [4]

3



4 RISC-V RV32I

The designed microarchitecture doesn’t implement all RV32I instructions. The instruction
FENCE is omitted because the microarchitecture implements only one hardware thread, thus
making the FENCE instruction redundant. The microarchitecture also omits the ECALL and
EBREAK instructions as they transfer control to the debug environment, which is not imple-
mented. The unimplemented instructions are decoded as NOPs to ensure compatibility with the
whole instruction set.

All implemented instructions are shown in Table 1.2 and are described in detail in the fol-
lowing subsections and in [4].

Table 1.2 Overview of all implemented instructions.

Category Subcategory Encoding Instructions

Arithmetic and
Logic
Instructions

Register-Register R-type ADD, SLT, SLTU, AND, OR, XOR,
SLL, SRL, SUB, SRA

Register-Immediate I-type ADDI, SLTI, SLTIU, ANDI, ORI,
XORI, SLLI, SRLI, SRAI, NOP

Immediate only U-type LUI
Address-Relative U-type AUIPC

Control Flow
Instructions

Unconditional Branches J-type JAL
I-type JALR

Conditional Branches B-type BEQ, BNE, BLT, BLTU, BGE,
BGEU

Load and Store
Instructions

Load instructions I-type LW, LH, LHU, LB, LBU
Store instructions S-type SW, SH, SB

1.1 Arithmetic and Logic Instructions
This section describes instructions that perform basic arithmetic (adding, subtraction, etc.) and
logical (binary and, or, xor, etc..) operations. Instructions in this section are divided into four
groups based on how their operands are sourced:

Register-Register instructions source their operands only from registers and are described in
section 1.1.1.

Register-Immediate instructions source one of their operands from a register, and a 32-bit
sign extended value obtained from the instruction itself and are described in section 1.1.2.

Immediate Only instructions use a 32-bit sign extended value obtained from the instruction
itself as their operand and are described in section 1.1.3.

Address-Relative Immediate instructions use the instruction’s memory address and a 32-bit
sign extended value obtained from the instruction itself as their operands. They are described
in section 1.1.4.

Any arithmetic or logic instruction exceptions, such as overflow or division by zero [8], do
not throw any exceptions because software can manage such exceptions, thus simplifying the
hardware design. [4]

1.1.1 Register-Register Instructions
R-type format instructions that perform an arithmetic or logical operation on 32-bit values src1
and src2 from registers rs1 and rs2 respectively and store the final result in rd register. All
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R-type instructions use the same opcode; therefore, the type of operation is defined by funct3
and funct7 fields. The Table 1.3 shows the order and sizes in bits of fields used by the R-type
instruction format. [4]

Table 1.3 Encoding of R-type instructions. [4]

31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 rs1 funct3 rd opcode

7 5 5 3 5 7
0000000 src2 src1 ADD/SLT/SLTU dest OP
0000000 src2 src1 AND/OR/XOR dest OP
0000000 src2 src1 SLL/SRL dest OP
0100000 src2 src1 SUB/SRA dest OP

ADD adds src1 and src2. SUB subtracts src2 from src1. SLT (set less than) results in 1 if
src1 < src2, 0 otherwise. SLTU (set less than unsigned) performs the same operations as SLT
but treats src1 and src2 as unsigned integers. AND, OR, and XOR perform their typical logical
bitwise operations. SLL (shift left logical) shifts the src1 to the left by the amount in the lower
5 bits of src2 and pads the lower bits with zeros. SRL (shift right logical) shifts the src1 to the
right by the amount in the lower 5 bits of src2 and pads the upper bits with zeros. SRA (shift
right arithmetic) shifts the src1 to the right by the amount in the lower 5 bits of src2 and copies
the sign bit to the upper bits. [4]

1.1.2 Register-Immediate Instructions
The I-type format instructions perform an arithmetic or logical operation on 32-bit value src1
from register rs1 and 32-bit sign-extended I-immediate imm and store the final result in rd
register. [4] Table 1.4 depicts the encoding of non-shift Register-Immediate instructions using
the I-type instruction format. Table 1.5 illustrate the encoding of the shift Register-Immediate
instructions that use the I-type instruction format but encode the I-immediate field differently.

Table 1.4 Encoding of I-type instructions with 12-bit I-immediate. [4]

31 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
I-immediate[11:0] src1 ADDI/SLTI[U] dest OP-IMM
I-immediate[11:0] src1 ANDI/ORI/XORI dest OP-IMM

Table 1.5 Encoding of I-type instructions with immediate encoding shamt and direction. [4]

31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] imm[4:0] rs1 funct3 rd opcode

7 5 5 3 5 7
0000000 shamt[4:0] src SLLI dest OP-IMM
0000000 shamt[4:0] src SRLI dest OP-IMM
0100000 shamt[4:0] src SRAI dest OP-IMM

ADDI, SLTI, SLTIU, ANDI, ORI, XORI, SLLI, SRLI, and SRAI all perform the same oper-
ations as their non-I counterparts but use imm instead of src2 for calculations. SLLI, SRLI, and
SRAI encode the shift value shamt in 5 lower bits of the imm and in 7 upper bits of the imm is
encoded the direction of the shift. [4]
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1.1.3 Immediate Only Instructions
The RV32I provides the instruction LUI to calculate any address in available 232 address space.
LUI is a U-type format instruction that uses 32-bit sign-extended U-immediate imm and stores
its results into rd register. [4] Table 1.6 depicts encoding of the LUI instruction.

Table 1.6 Encoding of the LUI instruction. [4]

31 12 11 7 6 0
imm[31:12] rd opcode

20 5 7
U-immediate[31:12] dest LUI

LUI (load upper immediate) takes 20 lower bits of the imm and pads them with zeros to form
a 32-bit value. [4]

1.1.4 Address-Relative Immediate Instructions
The RV32I provides the instruction AUIPC to calculate a value relative to the AUIPC instruction
program address in the available 232 address space. AUIPC is a U-type format instruction that
uses 32-bit sign-extended U-immediate imm and stores its results into rd register. [4] Table 1.6
depicts encoding of the AUIPC instruction.

Table 1.7 Encoding of the AUIPC instruction. [4]

31 12 11 7 6 0
imm[31:12] rd opcode

20 5 7
U-immediate[31:12] dest AUIPC

AUIPC (add upper immediate to pc) computes the same value, from its immediate, as LUI
and adds to it the program address of the AUIPC instruction. [4]

1.1.5 NOP
NOP (no operation) is I-type instruction designed only to advance pc or any other relative
counters. [4] Table 1.8 shows that the NOP instruction is effectively ADDI instruction with all
source operands set to zero and destination register set to x0, which ISA dictates as constant
zero, making the NOP result redundant.

Table 1.8 Encoding of NOP instruction. [4]

31 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
0 0 ADDI 0 OP-IMM

1.2 Control Flow Instructions
This section describes instructions used to change control flow, meaning they dictate the order
in which instructions are executed.
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1.2.1 Unconditional Branches
Unconditional branches always change the program’s flow control based on the instruction’s
operands.

JAL (jump and link) is J-type format instruction. JAL encodes the 32-bit sign-extended
J-immediate imm as a 32-bit signed offset aligned to multiples of two. Omitting the 0 bit of
imm expands the possible address range and allows the offset to form a jump address range of
±1 MiB around the JAL instruction. The address of the following instruction (pc+4) is stored
into rd register. [4] Table 1.9 depicts the encoding of the JAL instruction and shows how the
J-type instruction format is derived from the U-type instruction format as the only difference is
the way the immediate value is encoded.

Table 1.9 Encoding of JAL instruction. [4]

31 30 21 20 19 12 11 7 6 0
imm[20] imm[10:1] imm[11] imm[19:12] rd opcode

1 10 1 8 5 7
offset[20:1] dest JAL

JALR (jump and link register) is I-type format instruction. JALR encodes the 32-bit sign-
extended I-immediate imm as a 32-bit signed offset, which is added with the value base of the
rs1 register then setting the least-significant bit to 0 to form an effective jump target address.
Calculating the jump target address based on register value than on the JALR instruction address
allows JALR to jump anywhere in the available 232 address space. The address of the following
instruction (pc+4) is stored into rd register. [4] Table 1.10 depicts the encoding of the JALR
instruction.

Table 1.10 Encoding of JALR instruction. [4]

31 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
offset[11:0] base 0 dest JALR

1.2.2 Conditional Branches
Conditional branches allow for additional logic when calculating jump target addresses. All
conditional branch instructions use a B-type instruction format. B-type format encodes the
32-bit sign-extended B-immediate imm as 32-bit signed offset aligned to multiples of two. The
branch instructions decide based on values src1 and src2 from rs1 and rs2 registers, respectively.
The effective jump target address is calculated by adding the offset and the address of branch
instruction giving it a target range of ±4 KiB. [4] Table 1.11 depicts the encoding of all conditional
branch instructions and shows how the B-type instruction format is derived from the S-type
instruction format (shown in Table 1.13) as the only difference is the way the immediate value
is encoded.

BEQ (branch equal) takes a branch if the src1 is equal to the src2. BNE (branch not equal)
takes a branch if the src1 is not equal to the src2. BLT (branch less than) takes a branch if the
src1 is less than the src2. BLTU (branch less than unsigned) performs the same operations as
BLT but treats src1 and src2 as unsigned integers. BGE (branch greater equal) take a branch
if the src1 is greater or equal to the src2. BGEU (branch greater equal unsigned) performs the
same operations as BGE but treats src1 and src2 as unsigned integers. [4]
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Table 1.11 Encoding of B-type instructions. [4]

31 30 25 24 20 19 15 14 12 11 8 7 6 0
imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode

1 6 5 5 3 4 1 7
offset[12|10:5] src2 src1 BEQ/BNE offset[11|4:1] BRANCH
offset[12|10:5] src2 src1 BLT[U] offset[11|4:1] BRANCH
offset[12|10:5] src2 src1 BGE[U] offset[11|4:1] BRANCH

1.3 Load and Store Instructions
Load and store instructions provide direct access to the memory. [4]

All loads are I-type format instructions encoding the 32-bit sign-extended I-immediate imm
as a 32-bit signed offset added with base, value from rs1 register, form effective memory address.
The instruction field width defines if 32, 16, or 8 bits are loaded from memory. The value
loaded from memory is copied into the rd register. [4] Table 1.12 depicts the encoding of LOAD
instructions.

Table 1.12 Encoding of LOAD instructions. [4]

31 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
offset[11:0] base width dest LOAD

LW (load word) loads 32 bits (word) from memory. LH (load halfword) loads 16 bits (half-
word) from memory and sign-extends the value to 32 bits. LHU (load halfword unsigned) per-
forms the same operations as LH but extends the value with zeros instead of the halfword sign
bit. LB (load byte) loads 8 bits from memory and sign-extends the value to 32 bits. LBU (load
byte unsigned) performs the same operations as LB but extends the value with zeros instead of
the halfword sign bit. [4]

Store instructions use an S-type instruction format. S-type format encodes 32-bit sign-
extended S-immediate imm as a 32-bit signed offset which added to base, value from rs1 register,
form effective memory address. The value to be stored src is loaded from rs2 register. The
instruction field width defines if the lower 32, 16, or 8 bits of src are being stored in memory. [4]
Table 1.13 depicts the encoding of STORE instructions.

Table 1.13 Encoding of STORE instructions. [4]

31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

7 5 5 3 5 7
offset[11:5] src base width offset[4:0] STORE

SW, SH, and SB store 32-bit (word), 16-bit (halfword), and 8-bit (byte) values, respectively,
in memory. [4]

1.4 Pseudoinstructions
Many other instructions can be implemented as pseudoinstructions using already existing in-
structions. For example, move instruction MV rd, rs1 is equivalent to instruction ADDI rd, rs1,
0, instruction NOT rd, rs can be implemented as XORI rd, rs1, -1 or J instruction as JAL where
rd=x0. Therefore reducing hardware design complexity and offloading it to a programmer. [4]



Chapter 2

CPU Microarchitecture and
Instruction Parallelism

This chapter introduces the reader to the basic principles of superscalar processors, namely
the various types of CPU microarchitectures, instruction processing, and the problems and
solutions to instruction-level parallelism.

2.1 CPU Microarchitecture

“The processor is the active part of the computer, following the instructions of a program to
the letter. It adds numbers, tests numbers, signals I/O devices to activate, etc.” [9] A Central
Processing Unit (CPU) is a core of a computer system that executes instructions of a computer
program. [10]

For a processor to properly execute an instruction, several steps are needed; these steps form
an instruction cycle:

1. Instruction fetch (IF). The instruction is fetched from memory or instruction cache at the
address held by the PC register.

2. Instruction decode (ID). The instruction is decoded. In this step, information about source
and destination registers, immediate values, and type of operation is extracted from the
instruction.

3. Execution (EX). This step performs arithmetic and logical operations. If the instruction
addresses memory, the effective address is calculated, and in the case of a branch instruction,
PC is set to the correct value.

4. Memory access (MEM). Having effective memory address from EX step data are loaded or
stored in memory or data cache.

5. Write back (WB). If the instruction writes into the register, the result of the operation
performed in EX gets stored. [10]

Depending on the microarchitecture used, these steps may or may not correspond to the
physical stages of the instruction processing.

9
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2.2 Classes of Processor Microarchitectures
Scalar microarchitecture executes one instruction at a time. The scalar microarchitectures fetch

at most one instruction per clock cycle. [9] The scalar microarchitectures can complete the
instruction in one, illustrated in Figure 2.2, or multiple clock cycles as depicted in Figure 2.3.
Figure 2.1 depicts an abstraction of a scalar microarchitecture. The scalar microarchitectures
are designed to be simple and are used in elementary applications.

Figure 2.1 Abstraction of a scalar microarchitecture.

Figure 2.2 Instruction cycle of a single-cycle scalar microarchitecture. An entire instruction is pro-
cessed in one cycle.

Figure 2.3 Instruction cycle of a multi-cycle scalar microarchitecture. Instructions are processed in a
series of shorter cycles. In this illustration, instr. 1 traverses all steps of the instruction cycle and takes
five clock cycles to finish, whereas instr. 2 requires only four clock cycles to finish as it does not access
memory.

Pipelined scalar microarchitecture utilises stages (Figure 2.4), which overlap parts of the in-
struction pipeline across instructions. The instruction pipeline of a simple scalar microar-
chitecture using instruction pipelining is demonstrated in Figure 2.5. [10, 2] The pipelined
microarchitectures with a high number of stages are called superpipelined. An example of a
processor with superpipelined microarchitecture is Intel® Pentium® 4 with Hyper-Pipelined
Technology (20-stage pipeline). [11]

Figure 2.4 Abstraction of a scalar pipelined microarchitecture. [10]
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Figure 2.5 Instruction cycle of a pipelined microarchitecture.

Superscalar microarchitecture simultaneously processes multiple instructions, meaning each
step of the instruction pipeline processes more than one instruction. The superscalar mi-
croarchitectures are often pipelined, meaning each stage processes multiple instructions as
depicted in Figure 2.6, with an instruction cycle similar to Figure 2.7, to achieve even better
performance. This allows for exploiting instruction-level parallelism.

Figure 2.6 Abstraction of a superscalar pipelined microarchitecture. In this case, all instructions
require five clock cycles to finish. However, several instructions are processed simultaneously, thus
improving the throughput significantly.

Figure 2.7 Instruction cycle of a superscalar pipelined microarchitecture.

The instruction level parallelism aims to break the program into several parallel running
instruction streams, increasing the system’s overall throughput. However, the exploitation of
instruction-level parallelism carries its problems, which are addressed in the following sections.

2.3 Out-of-order Execution
With the scalar pipelined processors, if an instruction is stalled, all the instructions after that
instruction are also stalled. This is often caused because the instruction does not have valid
operands. Even if the following instruction has valid operands, it has to wait its turn. This
problem is caused by in-order execution, where instructions must follow the program order. [2,
10]

Instead of stalling instructions with valid operands, we want to execute them even if the pre-
ceding instruction is stalled. This is called out-of-order execution. The out-of-order is commonly
used in superscalar pipelined processors where multiple instructions are fetched, decoded, and
issued together, but diverge at the execution step breaking their order. Instructions must be
reordered after completion to preserve the program order. [2, 10]
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2.3.1 Data Dependencies and Data Hazards
If multiple instructions are executed simultaneously, some may be dependent on each other.
These situations create hazards. If every instruction depended on the preceding instruction, it
would create an instruction chain equivalent to in-order execution. This shows that the number
of dependencies determines how much parallelism can be done. If two instructions have no
dependency on each other, they are independent and can be executed simultaneously without
issues. [2]

Thus, inter-instruction dependencies must be resolved. Otherwise, they create hazards which
can break the illusion of in-order execution.

2.3.1.1 Data Dependencies
Data dependencies occur when two or more instructions are truly data-dependent. Then, they
must be executed in order. The data dependencies limit how much parallelism can be employed.
[2] The Code listing 2.1 shows data-dependency between the ADDI and SUB instructions. The
SUB instruction cannot be executed simultaneously with the ADDI instruction because the value
of s5 as seen by the SUB instruction is invalid until precedent ADDI instruction writes it.

Code listing 2.1 Example of data-dependent instructions.
ADDI s5, a0, 12
SUB s6, s5, s4

2.3.1.2 Name Dependencies
Name dependencies occur when two or more instructions try to use the same register or memory
location, but there is no data flow between these instructions. There are two types of such name
dependencies: an antidependence and an output dependence.[2]

The antidependence is a name dependence that occurs when a later instruction reads the
destination of the preceding instruction. [2] For example, the Code listing 2.2 shows that the
ADDI instruction reads the s5 register, and the SUB instruction writes to the s5. If both
instructions were executed simultaneously, the SUB instruction could write to the s5 register
before the ADDI could read it. This would result in an incorrect value.

Code listing 2.2 Example of an antidependency.
ADDI s4, s5, 12
SUB s5, a1, a2

The output dependence is a name dependence that occurs when two or more instructions
write to the same register or memory destination. [2] For example, the Code listing 2.3 shows
ADDI and SUB instructions both write to s5 register. If the SUB instruction were completed
before, the s5 would be later rewritten by the ADDI, resulting in the wrong value compared to
the program order.

Code listing 2.3 Example of an output dependency.
ADDI s5, a0, 12
SUB s5, a1, a2

The name dependencies, compared to data dependencies, do not transfer any values between
each other. The name-dependent instructions can be executed simultaneously if the naming
dependencies are resolved. [2]
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2.3.1.3 Data Hazards
Data hazards result from not handling the name or data dependencies resulting in a different
program order or incorrect results. [2] Even when executing instructions out-of-order, the pro-
gram order must be preserved as it would be impolite to change programmers’ work without
their permission.

There are three types of data hazards:
RAW (read after write) The Code listing 2.4 shows an example of the RAW hazard. When

executed simultaneously, the SUB instruction could read the s5 register before the ADDI
instruction wrote a new value, thus getting the old value.

Code listing 2.4 Example of RAW hazard.
ADDI s5, a0, 1
SUB s6, s5, a1

WAW (write after write) The Code listing 2.5 shows an example of the WAW hazard where
both instructions write to the same s5 register. When executed simultaneously, the SUB
instruction could write first and the ADDI second, breaking the program order and leaving
the s5 register with the wrong value.

Code listing 2.5 Example of WAW hazard.
ADDI s5, a0, 1
SUB s5, a1, a2

WAR (write after read) The Code listing 2.6 shows an example of the WAR hazard. When
executed simultaneously, the SUB instruction could write its result to the s5 register before
the ADDI instruction had read it, leaving the result of the ADDI instruction incorrect.

Code listing 2.6 Example of WAR hazard.
ADDI s4, s5, 1
SUB s5, a1, a2

RAR (read after read) is not a hazard, as reading a value after another instruction’s read does
not change the value. (The RAR was added for completion.)

2.3.2 Control Dependencies
The control dependencies arise from branching. Instructions must respect the program order.

The Code listing 2.7 shows an example of control dependency. The SUB instruction is control
dependent on BNE instruction. It thus cannot be executed in parallel with ADDI instruction
(before BNE), even when there is no data dependency between SUB and ADDI. Moreover,
ADDI instruction is not control dependent on BNE, and thus, cannot be moved after BNE, so
its execution would be controlled by BNE.

Code listing 2.7 Example of a control dependency.
start:

ADDI s5, a0, 1
BNE a1, a2, end
SUB s4, a3, a4

end:
ANDI s6, a5, 2

The control dependencies need to be preserved to ensure the program order. The instructions
can be executed together but must be completed in the program order.
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2.3.3 Tomasulo’s Algorithm
Tomasulo’s algorithm is a scheme for out-of-order execution. The algorithm resolves RAW haz-
ards by keeping track of operand availability and utilises hardware register renaming to eliminate
WAW and WAR hazards. Robert Tomasulo created it for the IBM 360/91 floating-point unit,
shown in the Figure 2.8, but it’s easy to adapt for general purposes. [2]

Figure 2.8 The basic structure of a RISC-V floating-point unit using Tomasulo’s algorithm. [2]

Issue (Dispatch) New instruction fetched from the head of the FIFO queue of decoded instruc-
tions is issued to a matching reservation station (if there is enough space). If the operand
values are in registers, they are also issued. If the operands are unavailable, the reservation
stations snoop the Common Data Bus (CDB) for the required valid operands. The Issue step
renames registers eliminating WAR and WAW hazards. [2]

Execute When all operands are available, the reservation station relays the instructions with
valid operands to the respective execution unit. Waiting until all instruction operands are
available resolves the RAW hazard. [2]

Write result Available results are written to the CDB and propagated to the rename registers,
reservation stations, and store buffers waiting for that result. Store buffers buffer store
operations until the store address and the store result are available. Then the result is
written to memory as soon as the memory unit is free. [2]

2.3.3.1 Register Renaming
As described above, register renaming is a technique that allows for the minimisation of hazards.
The registers can be divided into logical or architectural, defined by ISA, and physical, the total
register storage implemented. [10, 2, 12]

There are two commonly used methods for register renaming. The first method uses a physical
register file larger than the logical register file, and a mapping table is used to associate the
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physical register with a logical register. Physical registers with no logical register mapped to
them are recorded in a free list. When an instruction writes in a logical register, a physical
register is removed from a free list. And a link between the physical and logical registers is
added to the mapping table. The mapping table looks up the already-linked register to source
proper instruction operands. After the physical register is not in use, it is returned to the back
of the free list. [10, 2, 12]

The second method uses a physical register file the size of the logical register file. Additionally,
a buffer, typically called reorder buffer, that keeps entries of issued instructions and is commonly
implemented as a circular FIFO queue that ensures a program order. This approach also uses
a mapping table to indicate how logical registers are linked to physical registers. When an
instruction finishes execution, the result is written into the reorder buffer and an accordingly
mapped physical register. If the reorder buffer has an incomplete instruction at the head, it
blocks the completion of other instructions. Suppose the instruction at the head of the reorder
buffer is completed. In that case, the instruction result is written into the appropriate logical
register, and the mapping between the logical and physical registers is erased. When the reorder
buffer is full, the instruction issue is stalled. [10, 2, 12]

2.4 Speculative Execution
Speculative execution is when we don’t want to stall instructions until a branch target and
branch condition are calculated. For example, assume a superscalar processor that fetches and
issues two instructions simultaneously. With such a processor, the Code listing 2.8 shows a
simple example. If the processor does not use speculative execution, it is forced only to issue
the BNE as it does not know the branch result. This approach is limiting; therefore, we want
to avoid it. With speculative execution, BNE and SUB can be issued simultaneously, but the
SUB instruction must be somehow marked in case the BNE takes the branch skipping the SUB
instruction. If the branch was taken, all marked instructions must be invalidated, as they are
considered speculative. [13, 2]

Code listing 2.8 Example of a speculative execution.
BNE a1, a2, skip
SUB s4, a3, a4

skip:
ANDI s6, a5, 2

2.4.1 Tagging
Tagging is a common approach to indicating what instructions are speculatively executed. The
more branches we try to speculatively execute more tags we need. [2]

The Figure 2.9 shows how each subsequent branch adds another unique tag. After the branch
result is known, the speculative branches are resolved based on the tag information. Assuming
the first branch was speculated correctly, Tag1 is cleared, but if the second branch takes the
non-speculated path, then the processor resolves the branch based on Tag2.

2.4.2 Branch Prediction
With speculative execution, we can minimise the number of wrongly taken branches using branch
prediction. There are two approaches to branch prediction:
Static branch predictors that predict the branch outcome using the static information from the

program itself, such as binary flags inserted by the compiler or the sign of immediate operand
(indicating the branch direction) of branching instructions.



16 CPU Microarchitecture and Instruction Parallelism

Figure 2.9 Tag accumulation example. [14]

Dynamic branch predictors use and update information based on the running program’s actual
behaviour. These predictors usually predict branch behaviour based on the branch result
history. The dynamic branch predictors are commonly used as cache-like structures that
return taken or not taken based on the branch instruction address. [12]

The branch predictors can vary from simple 2-bit branch predictors, implemented using a simple
finite state machine, to tagged hybrid predictors, which combine multiple branch predictors into
one with predictions based on a branch history length.
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Implementation

This chapter describes the components of the designed microarchitecture and the instruction
execution process.

The designed microarchitecture is called the VTM (Veznik Tomas Microarchitecture). The VTM
is a dual-issue superscalar processor microarchitecture based on the RISC-V RV32I ISA. The
VTM is designed as a power-on reset architecture running the program on startup, where the
program has access to the whole address space.

The VTM uses a variation of a modern adaptation of Tomasulo’s scheme. It uses register
renaming, reservation stations, and a reorder buffer to eliminate data and control hazards.

The VTM uses a simple branch predictor that assumes every branch is not taken to prevent
stalling on every branch instruction. The simple branch prediction allows for speculative exe-
cution where a one-bit tagging is used. The one-bit tag allows only one branch instruction to
be executed, but other branch instructions can be staged in the Issue step. If the tag is active,
no other branch instruction can be issued because the execution of multiple branch instructions
would require a vector of tags.

The following steps create the VTM instruction cycle:

Load Two instructions are loaded from the Instruction Cache to the Decoder if present oth-
erwise, the cache loads the instructions from the Memory and then forwards them to the
Decode.

Decode The two instructions are simultaneously decoded.

Fetch The types of instructions are recognised and values are loaded from registers.

Prepare All the necessary information about the instructions is packed. In this step, the de-
pendencies between the two instructions are resolved. If necessary, the destination registers
are renamed.

Issue If all the requirements are met, the instructions are sent to their respective reservation
stations and are queued into the Reorder buffer.

Execute If the instruction has all operands valid and the respective execution unit is free, it is
executed; otherwise, it waits for valid operands. This step breaks the order of instructions
and creates an “execution pool” of instructions that are either being executed or are waiting
for execution.

Complete After the instruction is executed, the Reorder buffer changes the status of the in-
struction to complete.

17
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Write back If the instruction at the head of the Reorder buffer is completed, the instruction
result is written into the architectural portion of the Register File.

Figures 3.1 to 3.3 depict possible instruction cycles used in the VTM. The A and B blocks
symbolise one instruction each because of the VTM’s dual-issue microarchitectural design. The
unnamed purple blocks symbolise a pool of processed instructions in the system, as the number
of instructions in these blocks depends on the program being run.

The Figure 3.1 shows the default instruction cycle where no problems or hazards are detected.
Both instructions are processed simultaneously and only diverge at the Execution step and are
reordered back into the program order in the Write back step.

Figure 3.1 Instruction cycle processing two instructions through the whole microarchitecture.

The Figure 3.2 shows a variation of the instruction cycle where a potential problem arose.
This can happen when a reservation station doesn’t have enough space for another instruction
(instruction B in this case) and only issues one instruction into the execution pool.

Figure 3.2 Instruction cycle processing two instructions until a potential hazard is detected.

The Figure 3.3 shows a variation of the instruction cycle. Similarly to the Figure 3.2, if
all reservation stations are out of space or the reorder buffer is full, the microarchitecture falls
into the Stall loop (the green arrow in the Figure 3.3), which essentially waits for free space.
Additionally, if an error is detected (primarily an invalid instruction), the microarchitecture falls
into the Break loop (the red arrow in the Figure 3.3). The Break loop disables the Load of new
instructions, letting the already-issued instructions finish but halting the rest of the program’s
execution.

Figure 3.3 Instruction cycle processing two instructions until a potential hazard is detected or an
error occurs.
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3.1 Components

Figure 3.4 The VTM microarchitecture overview.

3.1.1 PC
The Program counter (PC) holds the memory address of the next instruction to be processed.
The Instruction Cache and the Dispatch read the PC. The PC has three ways to change its value
as described in section 3.2.

3.1.2 Decoder
Decoder is a combination logic that takes the whole 32-bit instruction and decodes it into usable
parts defined by RV32I. It also provides instruction flags to help with additional logic, allowing
easier processing in Dispatch. Decoder processes instructions in two ways data and control. Data
includes:

Destination register (rd).

Source registers (rs1, rs2).

Immediate value which is arranged according to RV32I specification and sigh-extended to 32
bits (imm).

Control includes:

Unique pseudo identifier (pid). Execution units use PID to discern which operation should
be used.

Destination station (station).
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Operation flags. Writes, jumps, opimms indicate if the given instruction writes to a register,
is jump or branch instruction, or if the given instruction is arithmetical or logical and uses
the immediate value, respectively.

3.1.3 Dispatch
The Dispatch works with two instructions simultaneously. The Dispatch takes the decoded
information about the two instructions and marks them as one of four sequence types:

NJ1NJ2 where both instructions do not jump.

NJ1J2 where the first instruction does not jump, but the second does.

J1NJ2 where the first instruction jumps and the second does not.

J1J2 where both instructions do jump.

The VTM uses a very primitive branch predictor, assuming the branch is always un-taken.
This predictor is implemented in the Dispatch using instruction tagging. The tag is set when a
branch instruction is issued, and every instruction following the branch instruction is tagged as
speculative. The tag is cleared when the Reorder buffer completes the branch instruction.

Depending on the status of the tag and the sequence type of processed instructions, the
Dispatch behaves accordingly:

For the NJ1NJ2, both instructions are issued as the tag is irrelevant because both instructions
do not jump.

For the NJ1J2, only the first instruction is issued if the tag is active. If the tag is inactive,
both instructions are issued, and the tag is set to active.

For the J1NJ2, if the tag is active, both instructions are stalled. If the tag is inactive, both
instructions are issued, and the tag is set to active.

For the J1J2, if the tag is active, both instructions are stalled, but only the first instruction
is issued if the tag is not active.

To summarise the behaviour. If the tag is active and jump instruction is to be issued, then the
Dispatch stalls because processing multiple jump or branch instructions would require multiple
tags.

The Dispatch processes the two instructions in stages. Those stages are:

LOAD stage requests instructions from the Instruction Cache. If the Instruction Cache hits the
Dispatch proceeds to the next stage; otherwise is stuck in LOAD.

FETCH stage processed the Register Query, described in section 3.2, to acquire values stored
in source registers, and if the instruction writes, request a renamed register number to avoid
hazards. FETCH also defines what sequence type loaded instructions create, which dictates
if one, both, or no instruction is issued.

PREPARE stage assembles results of the Register Query with any other information that
Reservation stations need (data, instruction address, source and destination registers, data
validity, ...).

ISSUE stage checks the fullness of the destination Reservation station of currently processed
instructions. If they have enough space, ISSUE will write instructions to Instruction Issue
Buses, described in section 3.2; otherwise, it waits for them to empty.

STALL stage is to trap Dispatch in a loop that waits for signals that resolve the tag.

BREAK stage is a trap with no escape.



Components 21

3.1.4 Reorder buffer
As The Dispatch issues instructions to Reservation stations, Reorder buffer (ROB) listens and
stores instructions chronologically in a queue. Then ROB listens to Common Data Buses, de-
scribed in section 3.2, to see if any of held instructions were completed, and if so, it is marked as
finished. If the instruction at the head of the queue is finished, ROB will request CDB to com-
plete the instruction. If the completed instruction writes, the result is stored in an architectural
register in the Register File and a renamed register, used to ensure the hazard-free operation, is
freed. Every completed instruction needs to be written to the CDB because other components
(such as the Data Cache) listen for changes in the instruction status.

3.1.5 Combo Units
Combo units combine the Reservation station, execution unit, and Arbiter, which is described
in section 3.2.1, into one component. The primary purpose of the combo unit is to manage wires
between the Reservation station and the execution unit because not all connections from the
Reservation station are necessary for the execution unit to function. The secondary purpose is
to house an Arbiter that controls bus access. The insides of the Combo unit blocks from the
Figure 3.4 are shown in the section 3.1.5, and the execution units are described in more detail
in the following subsections.

Figure 3.5 Execution Combos overview. The (a), (b), and (c) show the insides of the Branch Combo,
ALU Combo, and Load/Store Combo, respectively, which are depicted in their block form in Figure 3.4.

3.1.6 Branch Unit
The Branch Unit is responsible for calculating unconditional and conditional branches. The
Branch Unit executes eight instructions: JAL, JALR, BEQ, BNE, BLT, BGE, BLTU, and BGEU.

From the microarchitecture perspective, unconditional and conditional branches are the same
types that change the PC value, with the only difference being that JAL and JALR write to
a register. This behaviour is not optimal as the unconditional branches always jump. The
instructions following an unconditional branch instruction are, therefore, always speculatively
executed. The Dispatch, or some preprocessor module, should instead precalculate the uncondi-
tional branch result, skip instructions after the unconditional branch, and load the instructions
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at the destination of the unconditional branch. Unfortunately, this revelation was discovered
late in the implementation process and wasn’t implemented.

3.1.7 Arithmetic and Logic Unit
An Arithmetic and Logic Unit (ALU) is an execution unit that executes arithmetic and logical
operations. ALU performs twenty-one instructions: ADDI, SLTI, SLTIU, XORI, ORI, ANDI,
SLLI, SRLI, SRAI, ADD, SUB, SLL, SLT, SLTU, XOR, SRL, SRA, OR, AND, LUI, AUIPC.
Some of these instructions perform essentially the same task (ADD, ADDI, AUIPC), so they could
be grouped into one operation, but it would reduce the readability of the waveform diagram.

3.1.8 Load and Store unit
The Load and Store Unit (LS) manages all direct data access to the Memory. The LS executes
eight instructions: LB, LBU, LH, LHU, LW, SB, SH, and SW. The LS communicates indirectly
with the Memory because the Data Cache buffers memory reads and writes.

3.1.9 Reservation Stations
Reservation stations serve as instruction buffers and listen to CDBs for valid required operands.
The reservation station uses a queue as a buffer. The Reservation station listens to IIB, and if
the bus contains instructions for that type of station, it will be placed at the end of the queue. If
the instruction at the head of the queue has all operands valid, it is propagated to the connected
execution unit. The station listens to CDB for the result of the current head instruction to
ensure it was executed. After observing the instruction result on CDB, the queue is advanced.

The Reservation stations report their fullness status to the Dispatch to prevent queue over-
flow.

There are two variations of the Reservation station. The simple single output station feeds
operands only to one execution unit and a multi-station that feeds two execution units simulta-
neously.

3.1.10 Register File
The Register File contains 32 architectural registers (ARN) required by the RV32I and 32 re-
named registers (RRN) used to resolve data hazards. The registers are numbered using a 6-bit
vector where the most significant bit indicates if the register is architectural (0) or renamed (1).
The Register File also contains renamed register queue (RRQ), which holds values of free RRN.

The Register File resolves the Register Queries. The query contains the numbers of the
source and destination architectural registers. The Register File reads the number of the source
registers. If the selected register is linked to a renamed register, the values of the renamed register
are returned; otherwise, the values of the architectural register are returned. The returned values
consist of the 32-bit register value, the validity bit of the register value, and the number of the
register from which the values are read.

The Register Query can signal to the Register File that there is a need to rename a register.
The Register File then pops a new renamed register number from the front of the RRQ and links
the number with the architectural destination register. The popped renamed register value is
also returned to the Dispatch through the Register Query.

Only the instructions that write into a register need renaming. The VTM is designed so
that the number of processed instructions that write does not exceed the number of renamed
registers.



Components 23

Because the VTM can execute instructions speculatively, the Register File needs to keep
track of what writes and renames are speculative. This is done with the help of the tag. If the
instruction is speculatively executed and does write, then the linking to the renamed register
must be done non-destructively in case the branch was taken. If the branch was taken, all tagged
renaming is cleared, and the used renamed registers are pushed at the back of the RRQ.

The Register File listens to the CDB, where the instruction results are propagated. If the
instruction result originates from the execution unit, it’s written to a renamed register. The
result is written to the architectural register if it originates from the ROB.

To ensure a proper renamed register linking the order of operations is as follows:

1. The Register File writes the results from the CDB to respective registers.

2. If the query source register matches the destination register, the Register File saves the
current state of the destination register. No state is saved if the query source and destination
registers are different.

3. The Register File renames the query destination register.

4. If the Register File stored query destination register state, then values based on the stored
state are returned; otherwise, values based on the query source register are returned.

Code listing 3.1 depicts the ports of the Registers module where we can see the DebugInterface,
which provides the state of the x11 register used during testing.

Code listing 3.1 Register File module ports.
module Registers(

GlobalSignals.rest global_signals ,
RegisterQuery.regs query1 , query2 ,
CommonDataBus.regs data_bus1 , data_bus2 ,
DebugInterface debug

);

3.1.11 Instruction Cache
The Instruction Cache buffers instructions into two mapped ways. The cache record consists of
the instruction address and the instruction itself. The Instruction Cache does not require any
validity bits because the Instruction Cache loads the instructions from the Memory and does
not modify the data. Each load from memory switches the way used to ensure two instructions
beside each other in memory but in different memory blocks can be loaded.

If a memory sector not containing instructions is loaded, then the Decoder can interpret
random data as valid instruction.

3.1.12 Data Cache
The Data Cache combines load and store buffers from Tomasulo’s design. The cache, however,
works slightly differently than Tomasulo’s because it manages tags. The Load/Store unit can
speculatively change the cache’s values, in which case the confirmation of the instruction’s com-
pletion from ROB is needed. The Data Cache is connected to the CDB as shown in the Figure 3.4
and Code listing 3.2.

The cache record contains 32-bit data, data memory address, instruction address, tag, record
state, and word select.

The word select determines what bits are valid for a given operation. The word select is
either WORD (32-bit), HALFWORD (16-bit), BYTE (8-bit), or EMPTY (0-bit, error state).
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The record state indicates the state of the data in a record. The record state is always one
of the following:

VALID states that the data in the record are just loaded from the Memory.

WAITING is used when the data have been modified, but the instruction has yet to be com-
pleted by ROB.

INVALID is the default state of a cache record. This state is used for all records after the
initial reset or if the record is tagged and the tag delete signal is issued.

MODIFIED signifies that the record has been modified and ROB has completed the instruction
that changed the data.

The invalidation of the cache records follows a different order during load operations than store
operations. Load operations invalidate records in this order:

1. INVALID

2. MODIFIED

3. VALID

Store operations invalidate records in this order:

1. MODIFIED, where the data address of the incoming store and record match,

2. INVALID

3. VALID

4. MODIFIED

Ejected MODIFIED records are sent into the Write Buffer. WAITING records are not invalidated
as the cache is designed to be significantly bigger than the Reservation station feeding the LS.

Code listing 3.2 Data Cache module ports.
module DataCache #(

parameter cache_size = 16
)(

GlobalSignals.rest global_signals ,
CommonDataBus.cache data_bus1 , data_bus2 ,
DataCacheBus.cache data_ls ,
DataMemoryBus.cache data_mem

);

3.1.13 Write Buffer
The Write Buffer is a queue of ejected MODIFIED Data Cache records. If the Data Memory
Bus is unused, the Write Buffer writes the modified data to the Memory.

3.1.14 Memory Management Unit
The Memory Management Unit (MMU) manages access to the Memory. The MMU unifies the
Instruction and Data Memory Buses into one to approach more traditional designs.
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3.2 Connections
This section describes all buses and connections used in the VTM. The most significant buses
are:

Common Data Bus (CDB) propagates results from execution units through the system. The
VTM contains two Common Data Buses to allow for multiple writes simultaneously. Access
to the CDB is managed through Arbiters. The first CDB is prioritised by Reorder buffer
(ROB), and execution units prioritise the second CDB.

Code listing 3.3 Common Data Bus Wires.
interface CommonDataBus;

wire [31:0] data, address , jump_address;
wire [5:0] arn, rrn;
wire [3:0] select;
wire we;

endinterface

data carries the result of the instruction if the instruction writes to a register,
address is the instruction address and is used for identification purposes through the
system,
jump_address carries the result of a jump or branch instruction and is needed because
jump instructions return two values, one that is to be stored in a register and another that
replaces the current pc value,
arn and rrn carry architectural and renamed destination register numbers respectively,
select is used by Arbiters to communicate the availability of the bus,
we enables writing into the Register File.

Instruction Issue Bus (IIB) is used to issue all the necessary information from Dispatch to
the Reservation stations and the Reorder buffer (ROB). Similarly to the CDB, there are also
two IIBs used to issue two instructions simultaneously to achieve superscalar behaviour.

Code listing 3.4 Instruction Issue Bus Wires.
interface InstrIssue;

logic [31:0] data1 , data2 , address , imm;
logic [5:0] src1, src2, arn, rrn;
logic valid1 , valid2 , jump, tag;
PID pid;
Station stat_select;

endinterface

data1, data2 are used as operands in the instructions,
address is the instruction address and is used for identification purposes and address-
relative calculations,
imm, short for immediate,
src1, src2 specify the source register numbers,
arn, rrn specify the destination register numbers,
valid1, valid2 indicate the validity of the data1 and data2 respectively,
jump specifies if the instruction jumps and is only used by the ROB,
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tag indicates that the instruction is being executed speculatively,
pid is unique instruction operation identifier,
stat_select defines for which reservation station the data is targeted.

Register Query (RQ) connects the Dispatch and the Register File.

Code listing 3.5 Register Query Wires.
interface RegisterQuery;

logic [31:0] reg1_data , reg2_data;
logic [5:0] ret_renamed , reg1_ren , reg2_ren;
logic [4:0] reg1_num , reg2_num , reg3_num;
logic reg1_valid , reg2_valid , get_renamed , tag;

endinterface

reg1_data, reg2_data return register value with their respective validity reg1_valid,
reg2_valid,
ret_renamed returns number of newly linked renamed register if get_renamed is 1 other-
wise returns nothing,
reg1_ren, reg2_ren return architectural register number if the register is not renamed;
otherwise return the number of the renamed register,
reg1_num, reg2_num are architectural register numbers which DD uses to query the values,
reg3_num is used for renaming purposes,
tag indicates speculative renaming.

Global Signals (GS) connects all components.

Code listing 3.6 Global Signal Wires.
interface GlobalSignals(input logic clk, reset);

logic delete_tagged , clear_tags;
endinterface

clk is the global clock signal,
reset is used to reset all components to their default state,
delete_tagged signal is used when the branch is taken,
clear_tag signal is used when the branch isn’t taken.

PC Interface (PCI) connects the program counter with the Dispatch, Reorder buffer, and
Instruction Cache.

Code listing 3.7 PC Interface Wires.
interface PCInterface;

logic [31:0] jump_address , address;
logic inc, inc2, wr;

endinterface

jump_address is used to set the value of the PC,
address outputs the current PC value,
inc signals to the PC to add 4 to the current value,
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inc2 signals to the PC to add 8 to the current value,
wr signals to the PC to replace the current value with the jump_address

Less significant interconnects are:

Data Memory Bus connects the Data Cache with the Memory Management Unit (MMU).

Data Cache Bus connects the Load/Store unit (LS) with the Data Cache.

Instruction Memory Bus connects the Instruction Cache with the Memory Management
Unit (MMU).

Instruction Cache Bus connects the Instruction Cache with the Decode.

Memory Bus connects the Processor with the Memory.

Execution Feed bundles wires that connect the Reservation stations with their respective ex-
ecution unit.

3.2.1 Arbiter
The Arbiters manage access to CDB, to which multiple components often write simultaneously.
The Arbiter is a modified version of the arbiter design [15]. Each component that writes to the
CDB has its Arbiter with a unique arbiter address which dictates bus access priority. Prior-
ities/addresses were selected by the expected utilisation of a given component and can be set
with the address parameter viz. Code listing 3.8.

Code listing 3.8 Arbiter module parameter and ports.
module Arbiter #(

parameter address = 4'b0000
)(

input logic get_bus ,
inout wire [3:0] select ,
output logic bus_granted

);
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Chapter 4

Simulation and Testing

This chapter describes the simulation processes and tests used.

The GitLab repository [16] contains all source and simulation code required and a user manual
on how to run the simulation. The simulation requires the Vivado ML Edition [17] because it
supports all used SystemVerilog features.

The simulation was used to validate the functionality of the VTM design. The validation
was done using two SystemVerilog testbenches. The first testbench TopTest runs a single test
and displays its waveform, an example of such simulation is shown by Figure 4.3. The second
testbench TopTestAll runs RISC-V RV32I official tests for all implemented instructions, thus
overseeing the overall VTM functionality. There is also the Top testbench, which runs any
program, not just tests, and focuses on displaying the program’s waveform.

Additionally to the testbenches, a ”fake” RAM module was implemented, which loads a .hex
file, which contains a program. The format of the used .hex file contains program instructions
represented as 32-bit hexadecimal little-endian values with only one instruction per line. An
example of a such file is given in the Code listing 4.1.

Code listing 4.1 .hex file format example.
ffff83b7
48771263
00600193
800000b7
00000113

If custom tests are used in the TopTest testbench, they must adhere to the pass/fail interface
the testbench uses. The TopTest and TopTestAll testbenches control the value of the x11
register. If the register contains value 0x0600d000 at the end of the simulation run, then the
test passes. Any other values will fail.

4.1 RISC-V Official Tests
The RISC-V foundation provides its official tests (available at [18]) for each instruction set. These
tests contain an assembly language file for each instruction in an official RISC-V instruction set.
All tests must include the riscv-test.h header file containing the necessary macros used during
testing. The RISC-V official header file had to be modified for my testing purposes because the
official test relies on functionality absent in my design. An example of the modified header file
is Code listing 4.2, where macros for successful and unsuccessful tests are defined. As mentioned
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before, the value 0x0600d000 is required for a test to be deemed successful because that is the
value specified in the RVTEST_PASS macro.

Code listing 4.2 Example of a customized testing environment for the official RISC-V tests.
#define RVTEST_PASS \

li a1, 0x60; \
slli a1, a1, 8; \
addi a1, a1, 0xd; \
slli a1, a1, 12; \
ecall

#define TESTNUM gp

#define RVTEST_FAIL \
addi a1,a1,0xBA; \
slli a1,a1,4; \
addi a1, a1, 0xD; \
slli a1, a1, 16; \
ecall

In this case, the official tests for the RV32I instruction set were used, specifically the RV32UI
tests, as the VTM does not support privileged mode. Because the official tests cover every
instruction and a lot of edge-case scenarios that can result in data or control hazards, no other
tests were needed. Code listing 4.3 shows one of 38 tests for the instruction ADD.

Code listing 4.3 Example of a section from a RISC-V RV32UI official ADD test.
80000440 <test_30 >:
80000440: 01e00193 li gp,30
80000444: 00000213 li tp,0
80000448: 00b00113 li sp,11
8000044c: 00e00093 li ra,14
80000450: 00000013 nop
80000454: 00208733 add a4,ra,sp
80000458: 00120213 addi tp,tp,1 # 1 <_start -0x7fffffff >
8000045c: 00200293 li t0,2
80000460: fe5214e3 bne tp,t0 ,80000448 <test_30+0x8>
80000464: 01900393 li t2,25
80000468: 10771a63 bne a4,t2 ,8000057c <fail>

4.1.1 Official Tests Compilation
The RISC-V official tests come with their Makefile, which builds tests for all the instruction
sets. This is unnecessary as, for our purposes, tests for the RV32I suffice. Therefore the official
Makefile was modified to compile only necessary tests. The compiled official tests need to be
translated into the .hex files for the Vivado to load properly as memory. A custom Python script
was created for this translation that takes binary .elf file and returns the respective .hex file.

Requirements for compiling the RISC-V official tests and their simulation in the Vivado:

1. Vivado ML Edition (the edition used was 2022.2) [17]

2. Python 3.10 or higher [19]

3. riscv64-unknown-elf-gcc, other compilers may be used, but this is what the official test
use by default; if another compilator is used, the Makefile needs to be modified
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4. riscv64-unknown-elf-binutils

5. Git [20]

6. Cmake [21]

The following Code listing 4.4 lists command necessary to prepare the VTM-official repository
[16] for simulation.

Code listing 4.4 Steps required to prepare everything needed for the Vivado simulation.
git clone https://gitlab.fit.cvut.cz/veznitom/VTM-official
cd VTM-official
git submodule update --init --recursive
./build -tests.sh
python3.10 elfhex.py

These are the steps to run a simulation in a Vivado (tutorial with all pictures available at [16]):

1. Create a new Viado project File->Project->New or use the Quick Start.

2. Name the project and select the project location.

3. Select RTL Project and check Do not specify sources at this time.

4. Boards and select any available board (preferably Artix-7 AC701).

5. Finish and now we have a new clear Vivado RTL project.

6. Add Sources.

7. Select Add or create design sources.

8. Add Directories and select the path to the VTM-official/src directory.

9. Finish

10. Add Sources

11. Select Add or create simulation sources.

12. Add Directories and select the path to the VTM-official/sim directory.

13. Finish

14. Reorder the compilation order as seen on the Figure 4.1.

15. Select desired simulation file in the Hierarchy window, right-click the simulation file and select
Set as Top to make the file a simulation target.

16. Change the absolute-path in the path portion of the desired testbench to the absolute path
to the test.

17. Flow->Run Simulation->Run Behavioural Simulation or use the Flow Navigator.

18. After the previous step, the simulation should start and open the waveform diagram. The Vi-
vado should automatically load pre-configured waveform diagram configurations for the Top
and TopTest testbenches. If not, repeat the same steps for loading the simulation files, but in-
stead, load files and select VTM-official/sim/Top.wcfg and VTM-official/sim/Top.wcfg.
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Figure 4.1 Vivado project compilation order.

4.1.2 Results
The RISC-V official test provided an excellent tool that helped discover various bugs and im-
perfections in the implementation. The Figure 4.2 shows a printed debug message containing
the official test results for every implemented instruction. An additional test called rv32ui-p-
simple.hex is present to control that tests function correctly.
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Figure 4.2 Results of the TopTestAll testbench.
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Figure 4.3 Showcase of a Vivado simulation waveform diagram. The test run in the figure is the
official test for the ADD instruction.



Chapter 5

Conclusions

The main objective of this thesis was to design a simple superscalar processor microarchitecture
based on the RISC-V instruction set architecture. Additional goals were to explain the working
principles of superscalar processor microarchitectures, describe the designed microarchitecture
in the SystemVerilog, and to simulate the design to demonstrate its functionality.

The main goal was fulfilled as the designed microarchitecture is described in the chapter 3 and
in the [16] source files and was validated by official tests provided by [18]. The chapter 2 briefly
explains every principle, technique, or scheme used in the designed microarchitecture fulfilling
another set objective. The chapter 4 provides information on how the designed microarchitec-
ture’s functionality was verified and how to run the simulation. Overall, the thesis completes all
the established objectives.

The resulting microarchitecture has room for improvement as the experience gained during the
design process was initially missing. In the future, the main improvement to the implementation
could be reducing the more advanced SystemVerilog features (interface modports, imports, ...)
as the open-source compilators struggle or outright do not support these features. Since this
thesis is aimed at anyone, the ability to run the simulation should not be locked to a specific
advanced application suite like Vivado.

All source and simulation codes are available at the [16].
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code
build-tests.sh ........................Bash script for compilation of the official tests.
elhex.py ....................Custom Python script to translate binary files to hex files
rv32i-tests .......................................... Folder for official RISC-V tests.
sim .......................................................... VTM simulation sources.

fake-ram.sv
top-test-all.sv
top-test.sv
top.sv
Top.wcfg
TopTest.wcfg

src .................................................................VTM source codes
components

arbiter.sv
cpu.sv
data-cache.sv
decoding.sv
dispatch.sv
execution-units.sv
instr-cache.sv
memory-management.sv
multi-station.sv
pc.sv
registers.sv
rob.sv
station.sv
alu-combo.sv
branch-combo.sv
ls-combo.sv

interfaces
control.sv
ex-mem-data.sv
in-data.sv

structures.sv
thesis ......................................................Folder for LATEXsource codes.

Images .......................................................Folder with images used.
Chapters ...................................................Folder with my LATEXfiles.
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Text ..................................................Folder with template LATEXfiles.
ctufit-thesis.cls
ctufit-thesis.tex
veznitom-assignment.pdf

thesis.pdf
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